

Gross lattices of supersingular elliptic curves Algebra and Number Theory Seminar

Gaurish Korpal

University of Arizona

March 25, 2025

Elliptic curves over finite field

Let *E* be an elliptic curve over finite field \mathbb{F}_q where $q = p^n$ with prime p > 3 and n > 0.

- $E: y^2 = x^3 + ax + b$ where $a, b \in \mathbb{F}_q$ and $4a^3 + 27b^2 \neq 0$, along with an extra point 0_E . Points on E form a group with 0_E as the neutral element.
- An F_q-isogeny between E/F_q and E'/F_q is a non-constant rational function
 φ : E → E' that is compatible with the group law. If φ is a one-to-one polynomial map then it is called F_q-isomorphism.
- The *j*-invariant $j(E) = 1728 \frac{4a^3}{(4a^3+27b^2)}$ identifies isomorphism classes over $\overline{\mathbb{F}}_p$.
- The \mathbb{F}_q -endomorphism ring of E, $\operatorname{End}_{\mathbb{F}_q}(E)$, is the set of \mathbb{F}_q -isogenies from E to itself, together with the zero map $[0]: E \to E$ given $[0](P) = 0_E$.
- $#E(\mathbb{F}_q) = q + 1 tr(\pi_q)$, where π_q is Frobenius endomorphism $\pi_q(x, y) = (x^q, y^q)$ with $|tr(\pi_q)| \le 2\sqrt{q}$. In fact, an \mathbb{F}_q -isogeny $\varphi : E \to E'$ exists iff $#E(\mathbb{F}_q) = #E'(\mathbb{F}_q)$.

New results

Supersingular elliptic curves

 $\operatorname{End}_{\mathbb{F}_q}^0(E) := \operatorname{End}_{\mathbb{F}_q}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$ is called endomorphism algebra of E.

- End⁰_{F_q}(E) is either an imaginary quadratic field Q(√-Δ) and such a curve is referred to as ordinary elliptic curve, or a definite quaternion Q-algebra B_p ramified at p and ∞ and such a curve is referred to as supersingular elliptic curve.
- If E is supersingular then j(E) ∈ F_{p²} and hence the number of F_p-isomorphism classes of such curves is finite and is given by S_p := [p/12] + ε where ε ∈ {0,1,2}.
- E/\mathbb{F}_q is supersingular iff $\operatorname{End}_{\overline{\mathbb{F}}_p}(E)$ is isomorphic to a maximal order in B_p .

$$\left\{ \begin{matrix} \text{isomorphism classes} \\ \text{of supersingular} \\ \text{elliptic curves over } \overline{\mathbb{F}}_p \end{matrix} \right\} \Big/ \mathsf{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \longleftrightarrow \left\{ \begin{matrix} \text{maximal orders} \\ \text{of } B_p \end{matrix} \right\} / \cong$$

one-to-one correspondence if $j(E) \in \mathbb{F}_p$ & two-to-one correspondence if $j(E) \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$.

New results

Definite quaternion algebras

A quaternion \mathbb{Q} -algebra is of the form $\mathbb{Q}\langle i, j \rangle = \mathbb{Q} + \mathbb{Q}i + \mathbb{Q}j + \mathbb{Q}ij$, where $i^2, j^2 \in \mathbb{Q}^{\times}$, and ij = -ji.

Let B_p be a definite quaternion \mathbb{Q} -algebra ramified at p and ∞ .

$$B_{p} = \mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle := \begin{cases} \mathbf{i}^{2} = -1, \, \mathbf{j}^{2} = -1 & \text{if } p = 2\\ \mathbf{i}^{2} = -\ell, \, \mathbf{j}^{2} = -p & \text{if } p \equiv 1 \pmod{4}\\ \mathbf{i}^{2} = -1, \, \mathbf{j}^{2} = -p & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

where $\ell \equiv 3 \pmod{4}$ is a prime such that $\left(\frac{p}{\ell}\right) = -1$

New results

Maximal quaternion orders

 $O \subseteq \mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle$ is called an order if O is a ring whose elements are integral, $\mathbb{Z} \subseteq O$, and contains a basis for $\mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle$ as \mathbb{Q} -vector space. An order $O \subseteq \mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle$ is called maximal if it is not properly contained in another order.

For B_p we know the following explicit examples of maximal orders

$$O = \begin{cases} \mathbb{Z} \left\langle 1, \mathbf{i}, \mathbf{j}, \frac{1+\mathbf{i}+\mathbf{j}+\mathbf{k}}{2} \right\rangle & \text{if } p = 2 \\ \mathbb{Z} \left\langle 1, \frac{1+\mathbf{i}}{2}, \frac{\mathbf{j}+\mathbf{k}}{2}, \frac{r\mathbf{i}+\mathbf{k}}{\ell} \right\rangle & \text{if } p \equiv 1 \pmod{4} \\ \mathbb{Z} \left\langle 1, \mathbf{i}, \frac{1+\mathbf{j}}{2}, \frac{\mathbf{i}+\mathbf{k}}{2} \right\rangle & \text{if } p = 3 \pmod{4} \end{cases}$$

where $r^2 + p \equiv 0 \pmod{\ell}$.

Difficult and easy problems

Theoretically, it is possible to translate a problem about supersingular curves to a problem about maximal orders in quaternion algebra, and vice versa.

Difficult

Given a supersingular *j*-invariant, find a maximal quaternion order $O \subsetneq B_p$ such that $O \cong \operatorname{End}_{\mathbb{F}_p}(E(j))$.

Easy

Given a maximal quaternion order $O \subsetneq B_p$, find a supersingular *j*-invariant such that $O \cong \operatorname{End}_{\overline{\mathbb{F}}_p}(E(j)).$ Motivation

Not so difficult problem when $j \in \mathbb{F}_p$

World of curves

- 1 If $j \in \mathbb{F}_p$ then $\pi_p^2 \operatorname{tr}(\pi_p)\pi_p + p = 0$ in $\operatorname{End}_{\overline{\mathbb{F}}_p}(E(j))$.
- 2 Since E(j) is supersingular, $tr(\pi_p) = 0$ and hence $\pi_p^2 + p = 0$.
- Supersingular E(j) is CM by the imaginary quadratic order Z[√−p] in the field Q(√−p).

World of quaternions

- 1 ℓ be a prime such that $\left(\frac{p}{\ell}\right) = -1$ and $\ell \equiv 3 \pmod{8}$.
- 2 $\left(\frac{-p}{\ell}\right) = 1$ implies there exists r such that $r^2 + p \equiv 0 \pmod{\ell}$.
- **3** If $p \equiv 3 \pmod{4}$, then there exists r' such that $r'^2 + p \equiv 0 \pmod{4\ell}$.

A solution to the difficult problem when $j \in \mathbb{F}_p$ Let $B_p = \mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle$ with $\mathbf{i}^2 = -\ell$ and $\mathbf{j}^2 = -p$.

$$\mathsf{End}_{\overline{\mathbb{F}}_p}(\mathsf{E}(j)) \cong egin{cases} O(\ell) \coloneqq \mathbb{Z}\left\langle 1, rac{1+\mathbf{i}}{2}, rac{\mathbf{j}+\mathbf{k}}{2}, rac{r\mathbf{i}+\mathbf{k}}{2}
ight
angle & ext{if } rac{1+\pi_p}{2}
ot\in \mathsf{End}_{\overline{\mathbb{F}}_p}(\mathsf{E}(j)) \ O'(\ell) \coloneqq \mathbb{Z}\left\langle 1, \mathbf{i}, rac{1+\mathbf{j}}{2}, rac{r'\mathbf{i}+\mathbf{k}}{2\ell}
ight
angle & ext{if } rac{1+\pi_p}{2}
ot\in \mathsf{End}_{\overline{\mathbb{F}}_p}(\mathsf{E}(j)) \end{cases}$$

 $p \equiv 1 \mod 4$ There are $\frac{h(-4p)}{2}$ supersingular *j*-invariants where End_{**F**_{*p*}(*E*) $\cong \mathbb{Z}[\sqrt{-p}]$ and End_{**F**_{*p*}(*E*) $\cong O(\ell)$.}} $p \equiv 3 \mod 4$ and $j \neq 1728$

- $\frac{h(-4p)-1}{2}$ supersingular *j*-invariants where End_{**F**_p}(*E*) $\cong \mathbb{Z}[\sqrt{-p}]$ and End_{**F**_p}(*E*) $\cong O(\ell)$.
- $\frac{h(-p)-1}{2}$ supersingular *j*-invariants where $\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathbb{Z}[\frac{1+\sqrt{-p}}{2}]$ and $\operatorname{End}_{\overline{\mathbb{F}}_p}(E) \cong O'(\ell)$.

Successive minima

The quaternion algebra $\mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle$ is equipped with an inner product $(x, y) = \frac{1}{2} \operatorname{trd}(x\overline{y})$ and norm $||x||^2 = (x, x) = \operatorname{nrd}(x)$.

For Λ a free \mathbb{Z} -module (or a lattice) in $\mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle$ of rank n and $1 \leq i \leq n$, the *i*th successive minimum of Λ is the smallest value D_i such that the rank of the \mathbb{Z} -submodule of Λ generated by $\{x \in \Lambda : ||x||^2 \leq D_i\}$ is greater than or equal to *i*. An ordered list of elements $x_1, \ldots, x_n \in \Lambda$ attains the successive minima of Λ if $||x_i||^2 = D_i$.

Lemma

A lattice Λ of rank at most 3 always has a basis that attains its successive minima, we call this ordered basis a successive minimal basis of Λ .

Gram matrix

A lattice in $\mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle$ with a \mathbb{Z} -basis $\{b_1, \ldots, b_n\}$ is denoted by $\langle b_1, \ldots, b_n \rangle$.

Let Λ be a rank-*n* lattice in $\mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle$ with a basis $\{b_1, b_2, \dots, b_n\}$. The Gram matrix for this basis is the symmetric matrix $G_{\Lambda} = ((b_i, b_j))_{i,j} = (\frac{1}{2} \operatorname{trd}(b_i \overline{b}_j))_{i,j}$, and the determinant of Λ , denoted by det $(\Lambda) := \det(G_{\Lambda})$, is the square of the volume of Λ .

Lemma

There is a minimal constant γ_n (called the *n*-th Hermite constant) such that

$$\det(\Lambda) \leq \prod_{i=1}^n D_i \leq \gamma_n^n \det(\Lambda)$$

Moreover,
$$\gamma_2^2 = rac{4}{3}$$
 and $\gamma_3^3 = 2$

Size reduction

Given a basis b_1, b_2, \dots, b_m of a lattice Λ , we can apply the Gram-Schmidt process to obtain an orthogonal basis b_1, b_2^*, \dots, b_m^* for $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$, which we call the Gram-Schmidtification of b_1, b_2, \dots, b_m , and the Gram-Schmidt coefficients $\mu_{i,j} = \frac{(b_i, b_j^*)}{(b_j^*, b_j^*)}$ for i > j. The ordered pair $\{b_i, b_j\}$ for i > j is called size-reduced if $|\mu_{i,j}| \leq \frac{1}{2}$.

Lemma

If a pair $\{b_i, b_j\}$ is not size-reduced, then we can obtain a new size-reduced pair $\{b'_i, b_j\}$ by replacing b_i with $b'_i = b_i - \lfloor \mu_{i,j} \rceil b_j$, where $\lfloor \mu_{i,j} \rceil$ denotes the integer closest to $\mu_{i,j}$. Moreover, $\langle b_i, b_j \rangle = \langle b'_i, b_j \rangle$, i.e., they generate the same lattice.

Motivation

Gross lattice

Let O be a maximal order in B_p .

If $\operatorname{End}_{\overline{\mathbb{F}}_n}(E) \cong O$, then $O^T := \{2\alpha - \operatorname{trd}(\alpha) : \alpha \in O\}$ is called the Gross lattice of E.

Lemma O^T is a free \mathbb{Z} -module of rank 3.

Lemma (Kohel, Corollary 71, PhD thesis, 1996) det $(O^{T}) = 4p^{2}$ and hence $4p^{2} \leq D_{1}D_{2}D_{3} \leq 8p^{2}$ using the Hermite constants.

In late 1980s, Gross defined this lattice, Elkies showed that $D_1 \leq 2p^{2/3}$, and Kaneko improved it to $D_1 \leq \frac{4}{\sqrt{3}}p^{1/2}$ when $j(O) \in \mathbb{F}_p$.

Utility of Gross lattice

Let O_1 and O_2 be two maximal orders of B_p . We say that O_1 and O_2 are of the same type if there exists non-zero $c \in B_p$ such that $cO_1c^{-1} = O_2$, in which case we write $O_1 \sim O_2$.

Theorem (Chevyrev-Galbraith, 2013)

 \mathcal{O}_1 and \mathcal{O}_2 are of the same type if

- *p* > 286
- O₁^T and O₂^T have the same successive minima D₁ ≤ D₂ ≤ D₃
- $D_1 D_2 < 16 p/3$

If $j(O) \in \mathbb{F}_p$, then $D_1 D_2 < 16p/3$.

Theorem (Goren-Love, 2023)

 O_1 and O_2 are of the same type if O_1^T and O_2^T have the same successive minima $D_1 \leq D_2 \leq D_3$.

(Their theorem is a bit stronger.)

Joint work with

Chenfeng He, Ha Tran, and Christelle Vincent.

Thanks to BIRS and SLMath!

No Gross lattice is orthogonal or well-rounded

A lattice is said to be orthogonal if it has an orthogonal basis, i.e., every pair of distinct vectors in this basis is orthogonal, and a lattice of rank n is well-rounded if it has n linearly-independent shortest vectors, i.e., all of its n successive minima are equal.

Theorem

If $p \neq 2$, then there is no supersingular elliptic curve over $\overline{\mathbb{F}}_p$ for which the Gross lattice is orthogonal or well-rounded.

Orthogonality will lead to $D_1 = 4$ and contradict our results about j = 1728. Well-roundedness will contradict Goren-Love's Lemma 4.4.

ls $j(O) \in \mathbb{F}_p$?

Theorems

Any one of the following conditions is necessary and sufficient for $j(O) \in \mathbb{F}_p$:

- **1** O^T has a rank-2 sublattice of determinant 4p.
- **2** A rank-2 sublattice of O^T with a basis consisting of two elements attaining the first two successive minima of O^T is of determinant 4p.

(3) For $p \ge 37$, the third successive minimum of O^T is bounded by $p \le D_3 \le \frac{8p}{7} + \frac{7}{4}$.

Tight bounds on D_3 **1** For $p \ge 11$, $\frac{1+\pi_p}{2} \in \text{End}_{\overline{\mathbb{F}}_p}(E)$ iff $D_3 = p$ (or j = 1728). **2** If $j = -15^3$, $p \equiv 5 \pmod{7}$, and $p \ge 13$, then $D_3 = \frac{8p+9}{7} \approx \left(\frac{8p}{7} + \frac{7}{4}\right) - 0.46$.

ls $j(O) \in \mathbb{F}_p^2 \setminus \mathbb{F}_p$?

Theorem

 $j(O) \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$ iff the third successive minimum of O^T is bounded by $D_3 \leq \frac{3p}{5} + 5$.

The proof uses the following key ideas:

- $1 \max_{\left[\sqrt{a},b\right]} \left\{ x + \frac{a}{x} \right\} = b + \frac{a}{b}$
- **2** Size-reducedness property of a basis attaining the successive minima of O^{T} .
- **3** O^T is an integral, rank-3 lattice of determinant $4p^2$.

Tight bound on D_3

If
$$j = -565760a + 914880 \in \mathbb{Q}(a) = \mathbb{Q}[t]/\langle t^2 - t - 1 \rangle \cong \mathbb{Q}(\sqrt{5})$$
 and $p \equiv 17 \pmod{20}$ then $D_3 = \frac{3p+9}{5}$ (or $\frac{3p+4}{5}$).

Motivation

$$j=$$
 0 and $j=$ 1728

 $j = 0, p \equiv 2 \mod 3, B_p = \mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle$ such that $\mathbf{i}^2 = -3, \mathbf{j}^2 = -p, O \coloneqq O(3)$

 $O^{\mathcal{T}}$ has a successive minimal basis given by $\{i,\frac{i+3j-k}{3},\frac{-i-2k}{3}\}$ and the Gram matrix of this basis is

$$G_{O^{T}} = \begin{pmatrix} 3 & 1 & 1 \\ 1 & \frac{4p+1}{3} & -\left(\frac{2p-1}{3}\right) \\ 1 & -\left(\frac{2p-1}{3}\right) & \frac{4p+1}{3} \end{pmatrix}.$$

 $j = 12^3$, $p \equiv 3 \mod 4$, $B_p = \mathbb{Q}\langle \mathbf{i}, \mathbf{j} \rangle$ with $\mathbf{i}^2 = -1$, $\mathbf{j}^2 = -p$, $O \coloneqq O'(1)$

For p > 3, O^T has a successive minimal basis given by $\{2\mathbf{i}, \mathbf{j}, \mathbf{i} - \mathbf{k}\}$ and the Gram matrix of this basis Is

$$G_{O^{T}} = \begin{pmatrix} 4 & 0 & 2 \\ 0 & p & 0 \\ 2 & 0 & p+1 \end{pmatrix}.$$

= 1728 $\iff D_{2} = p \iff D_{3} = p+1.$

The 13 CM curves over \mathbb{Q}

Lemma

Let *E* be a CM-elliptic curve defined over \mathbb{Q} with $\mathcal{O} := \operatorname{End}_{\overline{\mathbb{Q}}}(E) \subseteq \mathbb{Q}(\sqrt{-\Delta})$ and disc(\mathcal{O}) = -d. Let *p* be a prime of supersingular reduction and $\widetilde{E} := E \pmod{p}$ with $O := \operatorname{End}_{\overline{\mathbb{F}}_p}(\widetilde{E}) \subseteq B_p$. There exists a positive integer N_E , which depends on j(E), such that for $p \ge N_E$ we have $D_1 = d$.

It is a consequence of Gross-Zagier formula.

<i>j</i> -invariant	0	1728	-15^{3}	20 ³	-32^{3}	$2 \cdot 30^3$	66^{3}	-96^{3}
$D_1 = d$	3	4	7	8	11	12	16	19
N _E	5	7	13	23	29	41	67	79

<i>j</i> -invariant	$-3 \cdot 160^3$	255 ³	-960^{3}	-5280^{3}	-640320^{3}
$D_1 = d$	27	28	43	67	163
NE	167	181	433	1103	6691

Sign of *j*-invariant for the 13 CM curves over $\mathbb Q$

For $p \ge N_E$, we have the following four types of Gram matrix of a successive minimal basis of the Gross lattice of \tilde{E}/\mathbb{F}_p .

Theorem For i(E) > 0. 1) if $O = O'(\ell)$ then $G_{O^T} = \begin{pmatrix} d & 2t & 0\\ 2t & \frac{4(p+t^2)}{d} & 0\\ 0 & 0 & n \end{pmatrix}$ with 0 < t < d/4, or (2) if $O = O(\ell)$ then $G_{O^{T}} = \begin{pmatrix} d & 2m & 2n \\ 2m & \frac{4(p+m^{2})}{d} & m \\ 2n & m & p+n \end{pmatrix}$ with $0 < m, n \le d/4$

For
$$j(E) \le 0$$
, we have $O = O(\ell)$.
8 $G_{O^T} = \begin{pmatrix} d & 2u \\ 2u & \frac{4(p+u^2)}{d} & \frac{2(p+u^2)}{d} \\ u & \frac{2(p+u^2)}{d} & p + \frac{p+u^2}{d} \end{pmatrix}$ with
 $0 \le u \le d/4$, or
9 $G_{O^T} = \begin{pmatrix} d & a \\ a & \frac{4p+a^2}{d} & -(\frac{2p-ab}{d}) \\ b & -(\frac{2p-ab}{d}) & p + \frac{p+b^2}{d} \end{pmatrix}$
with $0 < a, b \le d/2$

Thank you!