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Introduction Motivation New results

Elliptic curves over finite field

Let E be an elliptic curve over finite field Fq where q = pn with prime p > 3 and n > 0.

• E : y2 = x3 + ax + b where a, b ∈ Fq and 4a3 + 27b2 ̸= 0, along with an extra
point 0E . Points on E form a group with 0E as the neutral element.

• An Fq-isogeny between E/Fq and E ′/Fq is a non-constant rational function
φ : E → E ′ that is compatible with the group law. If φ is a one-to-one polynomial
map then it is called Fq-isomorphism.

• The j-invariant j(E ) = 1728 4a3

(4a3+27b2)
identifies isomorphism classes over Fp.

• The Fq-endomorphism ring of E , EndFq(E ), is the set of Fq-isogenies from E to
itself, together with the zero map [0] : E → E given [0](P) = 0E .

• #E (Fq) = q + 1− tr(πq), where πq is Frobenius endomorphism
πq(x , y) = (xq, yq) with | tr(πq)| ≤ 2

√
q. In fact, an Fq-isogeny φ : E → E ′ exists

iff #E (Fq) = #E ′(Fq).
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Supersingular elliptic curves

End0Fq
(E ) := EndFq(E )⊗Z Q is called endomorphism algebra of E .

• End0Fq
(E ) is either an imaginary quadratic field Q(

√
−∆) and such a curve is

referred to as ordinary elliptic curve, or a definite quaternion Q-algebra Bp

ramified at p and ∞ and such a curve is referred to as supersingular elliptic curve.

• If E is supersingular then j(E ) ∈ Fp2 and hence the number of Fp-isomorphism
classes of such curves is finite and is given by Sp :=

⌊ p
12

⌋
+ ϵ where ϵ ∈ {0, 1, 2}.

• E/Fq is supersingular iff EndFp
(E ) is isomorphic to a maximal order in Bp.

isomorphism classes
of supersingular

elliptic curves over Fp

/
Gal(Fp/Fp) ←→

{
maximal orders
of Bp

}
/∼=

one-to-one correspondence if j(E) ∈ Fp & two-to-one correspondence if j(E) ∈ Fp2 \ Fp.
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Definite quaternion algebras

A quaternion Q-algebra is of the form Q⟨i, j⟩ = Q+Qi+Qj+Qij, where i2, j2 ∈ Q×,
and ij = −ji.

Let Bp be a definite quaternion Q-algebra ramified at p and ∞.

Bp = Q⟨i, j⟩ :=


i2 = −1, j2 = −1 if p = 2

i2 = −ℓ, j2 = −p if p ≡ 1 (mod 4)

i2 = −1, j2 = −p if p ≡ 3 (mod 4)

where ℓ ≡ 3 (mod 4) is a prime such that
(p
ℓ

)
= −1
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Maximal quaternion orders

O ⊆ Q⟨i, j⟩ is called an order if O is a ring whose elements are integral, Z ⊆ O, and
contains a basis for Q⟨i, j⟩ as Q-vector space.
An order O ⊊ Q⟨i, j⟩ is called maximal if it is not properly contained in another order.

For Bp we know the following explicit examples of maximal orders

O =


Z
〈
1, i, j, 1+i+j+k

2

〉
if p = 2

Z
〈
1, 1+i

2 , j+k
2 , r i+k

ℓ

〉
if p ≡ 1 (mod 4)

Z
〈
1, i, 1+j

2 , i+k
2

〉
if p = 3 (mod 4)

where r2 + p ≡ 0 (mod ℓ).
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Difficult and easy problems

Theoretically, it is possible to translate a problem about supersingular curves to a
problem about maximal orders in quaternion algebra, and vice versa.

Difficult

Given a supersingular j-invariant, find a
maximal quaternion order O ⊊ Bp such
that O ∼= EndFp

(E (j)).

Easy

Given a maximal quaternion order O ⊊ Bp,
find a supersingular j-invariant such that
O ∼= EndFp

(E (j)).
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Not so difficult problem when j ∈ Fp

World of curves

1 If j ∈ Fp then π2
p − tr(πp)πp + p = 0

in EndFp
(E (j)).

2 Since E (j) is supersingular, tr(πp) = 0
and hence π2

p + p = 0.

3 Supersingular E (j) is CM by the
imaginary quadratic order Z[

√
−p] in

the field Q(
√
−p).

World of quaternions

1 ℓ be a prime such that
(p
ℓ

)
= −1 and

ℓ ≡ 3 (mod 8).

2
(−p

ℓ

)
= 1 implies there exists r such

that r2 + p ≡ 0 (mod ℓ).

3 If p ≡ 3 (mod 4), then there exists r ′

such that r ′2 + p ≡ 0 (mod 4ℓ).
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A solution to the difficult problem when j ∈ Fp

Let Bp = Q⟨i, j⟩ with i2 = −ℓ and j2 = −p.

EndFp
(E (j)) ∼=

O(ℓ) := Z
〈
1, 1+i

2 , j+k
2 , r i+k

ℓ

〉
if

1+πp

2 ̸∈ EndFp
(E (j))

O ′(ℓ) := Z
〈
1, i, 1+j

2 , r
′i+k
2ℓ

〉
if

1+πp

2 ∈ EndFp
(E (j))

p ≡ 1 mod 4

There are h(−4p)
2

supersingular j-invariants
where
EndFp(E )

∼= Z[
√
−p] and

EndFp
(E ) ∼= O(ℓ).

p ≡ 3 mod 4 and j ̸= 1728

• h(−4p)−1
2 supersingular j-invariants where

EndFp(E )
∼= Z[

√
−p] and EndFp

(E ) ∼= O(ℓ).

• h(−p)−1
2 supersingular j-invariants where

EndFp(E )
∼= Z[1+

√
−p

2 ] and EndFp
(E ) ∼= O ′(ℓ).
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Successive minima

The quaternion algebra Q⟨i, j⟩ is equipped with an inner product (x , y) = 1
2 trd(xy)

and norm ∥x∥2 = (x , x) = nrd(x).

For Λ a free Z-module (or a lattice) in Q⟨i, j⟩ of rank n and 1 ≤ i ≤ n, the ith
successive minimum of Λ is the smallest value Di such that the rank of the
Z-submodule of Λ generated by {x ∈ Λ : ∥x∥2 ≤ Di} is greater than or equal to i .
An ordered list of elements x1, . . . , xn ∈ Λ attains the successive minima of Λ if
∥xi∥2 = Di .

Lemma

A lattice Λ of rank at most 3 always has a basis that attains its successive minima, we
call this ordered basis a successive minimal basis of Λ.
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Gram matrix
A lattice in Q⟨i, j⟩ with a Z-basis {b1, . . . , bn} is denoted by ⟨b1, . . . , bn⟩.

Let Λ be a rank-n lattice in Q⟨i, j⟩ with a basis {b1, b2, . . . , bn}. The Gram matrix for
this basis is the symmetric matrix GΛ = ((bi , bj))i ,j = (12 trd(bi b̄j))i ,j , and the
determinant of Λ, denoted by det(Λ) := det(GΛ), is the square of the volume of Λ.

Lemma

There is a minimal constant γn (called the n-th Hermite constant) such that

det(Λ) ≤
n∏

i=1

Di ≤ γnn det(Λ)

Moreover, γ22 = 4
3 and γ33 = 2.
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Size reduction

Given a basis b1, b2, · · · , bm of a lattice Λ, we can apply the Gram–Schmidt process to
obtain an orthogonal basis b1, b

∗
2, · · · , b∗m for Λ⊗Z R, which we call the

Gram-Schmidtification of b1, b2, · · · , bm, and the Gram-Schmidt coefficients

µi ,j =
(bi ,b

∗
j )

(b∗j ,b
∗
j )

for i > j . The ordered pair {bi , bj} for i > j is called size-reduced if

|µi ,j | ≤ 1
2 .

Lemma

If a pair {bi , bj} is not size-reduced, then we can obtain a new size-reduced pair
{b′i , bj} by replacing bi with b′i = bi − ⌊µi ,j⌉bj , where ⌊µi ,j⌉ denotes the integer closest
to µi ,j . Moreover, ⟨bi , bj⟩ = ⟨b′i , bj⟩, i.e., they generate the same lattice.
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Gross lattice

Let O be a maximal order in Bp.

If EndFp
(E ) ∼= O, then OT := {2α− trd(α) : α ∈ O} is called the Gross lattice of E .

Lemma

OT is a free Z-module
of rank 3.

Lemma (Kohel, Corollary 71, PhD thesis, 1996)

det(OT ) = 4p2 and hence 4p2 ≤ D1D2D3 ≤ 8p2

using the Hermite constants.

In late 1980s, Gross defined this lattice, Elkies showed that D1 ≤ 2p2/3, and Kaneko
improved it to D1 ≤ 4√

3
p1/2 when j(O) ∈ Fp.
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Utility of Gross lattice

Let O1 and O2 be two maximal orders of Bp. We say that O1 and O2 are of the same
type if there exists non-zero c ∈ Bp such that cO1c

−1 = O2, in which case we write
O1 ∼ O2.

Theorem (Chevyrev-Galbraith, 2013)

O1 and O2 are of the same type if

• p > 286

• OT
1 and OT

2 have the same
successive minima D1 ≤ D2 ≤ D3

• D1D2 < 16p/3

If j(O) ∈ Fp, then D1D2 < 16p/3.

Theorem (Goren-Love, 2023)

O1 and O2 are of the same type if OT
1

and OT
2 have the same successive

minima D1 ≤ D2 ≤ D3.

(Their theorem is a bit stronger.)
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Joint work with

Chenfeng He, Ha Tran, and Christelle Vincent.

Image

Thanks to BIRS and SLMath!
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No Gross lattice is orthogonal or well-rounded

A lattice is said to be orthogonal if it has an orthogonal basis, i.e., every pair of distinct
vectors in this basis is orthogonal, and a lattice of rank n is well-rounded if it has n
linearly-independent shortest vectors, i.e., all of its n successive minima are equal.

Theorem

If p ̸= 2, then there is no supersingular elliptic curve over Fp for which the Gross
lattice is orthogonal or well-rounded.

Orthogonality will lead to D1 = 4 and contradict our results about j = 1728.
Well-roundedness will contradict Goren-Love’s Lemma 4.4.
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Is j(O) ∈ Fp?

Theorems

Any one of the following conditions is necessary and sufficient for j(O) ∈ Fp:

1 OT has a rank-2 sublattice of determinant 4p.

2 A rank-2 sublattice of OT with a basis consisting of two elements attaining the
first two successive minima of OT is of determinant 4p.

3 For p ≥ 37, the third successive minimum of OT is bounded by p ≤ D3 ≤ 8p
7 + 7

4 .

Tight bounds on D3

1 For p ≥ 11,
1+πp

2 ∈ EndFp
(E ) iff D3 = p (or j = 1728).

2 If j = −153, p ≡ 5 (mod 7), and p ≥ 13, then D3 =
8p+9
7 ≈

(
8p
7 + 7

4

)
− 0.46.
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Is j(O) ∈ F2
p \ Fp?

Theorem

j(O) ∈ Fp2 \ Fp iff the third
successive minimum of OT is
bounded by D3 ≤ 3p

5 + 5.

The proof uses the following key ideas:

1 max
[
√
a,b]

{
x + a

x

}
= b + a

b

2 Size-reducedness property of a basis attaining
the successive minima of OT .

3 OT is an integral, rank-3 lattice of determinant
4p2.

Tight bound on D3

If j = −565760a+ 914880 ∈ Q(a) = Q[t]/⟨t2 − t − 1⟩ ∼= Q(
√
5) and p ≡ 17

(mod 20) then D3 =
3p+9
5 (or 3p+4

5 ).
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j = 0 and j = 1728

j = 0, p ≡ 2 mod 3, Bp = Q⟨i, j⟩ such
that i2 = −3, j2 = −p, O := O(3)

OT has a successive minimal basis given by
{i, i+3j−k

3 , −i−2k
3 } and the Gram matrix of

this basis is

GOT =


3 1 1

1 4p+1
3 −

(
2p−1
3

)
1 −

(
2p−1
3

)
4p+1
3

 .

j = 123, p ≡ 3 mod 4, Bp = Q⟨i, j⟩
with i2 = −1, j2 = −p, O := O ′(1)

For p > 3, OT has a successive minimal
basis given by {2i, j, i− k} and the Gram
matrix of this basis Is

GOT =

4 0 2
0 p 0
2 0 p + 1

 .

j = 1728 ⇐⇒ D2 = p ⇐⇒ D3 = p + 1.
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The 13 CM curves over Q
Lemma

Let E be a CM-elliptic curve defined over Q with O := EndQ(E ) ⊆ Q(
√
−∆) and

disc(O) = −d . Let p be a prime of supersingular reduction and Ẽ := E (mod p) with
O := EndFp

(Ẽ ) ⊆ Bp.There exists a positive integer NE , which depends on j(E ), such
that for p ≥ NE we have D1 = d .

It is a consequence of Gross-Zagier formula.

j-invariant 0 1728 −153 203 −323 2 · 303 663 −963
D1 = d 3 4 7 8 11 12 16 19

NE 5 7 13 23 29 41 67 79

j-invariant −3 · 1603 2553 −9603 −52803 −6403203
D1 = d 27 28 43 67 163

NE 167 181 433 1103 6691
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Sign of j-invariant for the 13 CM curves over Q
For p ≥ NE , we have the following four types of Gram matrix of a successive minimal
basis of the Gross lattice of Ẽ/Fp.

Theorem
For j(E ) > 0.

1 if O = O ′(ℓ) then

GOT =

( d 2t 0

2t 4(p+t2)
d

0
0 0 p

)
with

0 ≤ t ≤ d/4, or

2 if O = O(ℓ) then

GOT =

( d 2m 2n

2m 4(p+m2)
d

m
2n m p+n

)
with

0 ≤ m, n ≤ d/4

For j(E ) ≤ 0, we have O = O(ℓ).

3 GOT =

 d 2u u

2u
4(p+u2)

d

2(p+u2)
d

u
2(p+u2)

d
p+ p+u2

d

 with

0 ≤ u ≤ d/4, or

4 GOT =

( d a b

a 4p+a2

d
−( 2p−ab

d )

b −( 2p−ab
d ) p+ p+b2

d

)
with 0 < a, b ≤ d/2



Thank you!
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