$\frac{1}{100}$ How to find endomorphism ring of an isogenous elliptic curve

[+2] [1] samething

[2024-12-20 16:15:43]

[elliptic-curves noncommutative-rings isogenies]

[https://mathoverflow.net/questions/484539/how-to-find-endomorphism-ring-of-an-isogenous-elliptic-curve]

I have a supersingular elliptic curve E with a known endomorphism ring End(E). I'd like to find an isogeny $\varphi: E \to E'$, and by Deuring correspondence I know the corresponding ideal I_{φ} in quaternion algebra. How could I find the endomorphism ring of E' in this case?

What do you mean by "finding" the endomorphism ring? Is it enough to determine the isomorphism type (e.g. as a set of elements in the quaternion algebra containing $\operatorname{End}(E)$), or do you need some an explicit description of the endomorphisms generating $\operatorname{End}(E')$ (e.g. rational functions in the coordinates of E')? And likewise, what data do we have about each of $\operatorname{End}(E)$, φ , and I_{φ} ? - **Jonathan Love** For a preliminary answer: working in the quaternion algebra B, if $\operatorname{End}(E)$ is the *right-order* of I_{φ} (the set of all $\alpha \in B$ such that if $f \in I_{\varphi}$ then $f \cdot \alpha \in I_{\varphi}$) then $\operatorname{End}(E')$ will be isomorphic to the *left-order* of I_{φ} (the set of all $\alpha \in B$ such that if $f \in I_{\varphi}$ then $\alpha \cdot f \in I_{\varphi}$). These are not equal because B is not commutative. So if you're given I_{φ} as a subset of B then it's quite straightforward to compute a ring isomorphic to $\operatorname{End}(E')$. - **Jonathan Love**

Your formulation is unclear to me. What is given to you as input? I_{φ} ? E'? It makes a big difference. Could you please clarify? - **Aurel** I have an elliptic curve E and I know it's endomorphism ring. For example: $E: y^2 = x^3 + x$ over \mathbb{F}_p , $p \equiv 3 \mod 4$. It is known that the endomorphism ring is isomorphic to the following order $\mathcal{O}_0 = \mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} \frac{i+j}{2} \oplus \mathbb{Z} \frac{1+k}{2}$. Then I choose some ideal I_{φ} which is equal to an isogeny $\varphi: E \to E'$ (according to Deuring correspondence) and find it. I'd like to understand how, in this case, I could find the endomorphism ring of E' using the information above. - **samething**

So the known parameters are: $E(\mathbb{F}_p), E', \operatorname{End}(E) \cong \mathcal{O}_0, \varphi : E \to E', I_{\varphi}$. I'd like to find $\operatorname{End}(E')$. - samething Then the answer is in Jonathan Love's second comment: $\operatorname{End}(E')$ is the left order of I_{φ} . - Aurel

[+3] [2024-12-21 04:16:59] Jonathan Love [VACCEPTED]

Moving this from a comment to an answer since it seems that this might be what you're looking for. I'm also using this opportunity to switch right vs left - it is just a convention (do you define the multiplication $a \cdot b$ in the quaternion algebra to correspond to the composition $a \circ b$ or $b \circ a$ in the endomorphism ring) but in my comment I used the less natural choice. In what follows $a \cdot b$ corresponds to $a \circ b$.

Let *B* be the unique quaternion algebra ramified at *p* and ∞ . The endomorphism ring $\operatorname{End}(E)$ is isomorphic to some maximal order $\mathcal{O} \subseteq B$. To any isogeny $\varphi : E \to E'$ we can associate a *left* \mathcal{O} -ideal $I_{\varphi} \subseteq \mathcal{O}$ as the image of $\operatorname{Hom}(E', E)$ in \mathcal{O} under the pullback map $\psi \mapsto \psi \circ \varphi$. Note that this is indeed a left \mathcal{O} -ideal because if $\alpha \in \operatorname{End}(E)$ and $\psi \circ \varphi \in I_{\varphi}$ then $(\alpha \circ \psi) \circ \varphi \in I_{\varphi}$.

Given this setup, $\operatorname{End}(E')$ is isomorphic to the *right* order \mathcal{O}' of I_{φ} . In fact, we have an explicit isomorphism $\operatorname{End}(E') \to \mathcal{O}'$ given by

$$eta\mapsto rac{1}{\deg arphi}(\phi^ee\circeta\circ\phi).$$

To see that \mathcal{O}' is indeed a right order, if $eta\in \operatorname{End}(E')$ and $\psi\circ\phi\in I_{arphi}$ then

$$(\psi\circ\phi)\cdot\left(rac{1}{\degarphi}(\phi^ee\circeta\circ\phi)
ight)=rac{1}{\deg\phi}(\psi\circarphi\circarphi^ee\circeta\circarphi^ee\circeta\circarphi)=(\psi\circeta)\circarphi\in I_arphi$$

showing that I_{φ} is closed under multiplication by elements of \mathcal{O}' on the right.

To summarize: if you are given a maximal order $\mathcal{O} \simeq \operatorname{End}(E)$, and a left \mathcal{O} -ideal I_{φ} corresponding to $\varphi : E \to E'$, then you can recover $\operatorname{End}(E')$ up to isomorphism by computing the right order of I_{φ} , that is, the set of all elements $b \in B$ such that $I_{\varphi}b \subseteq I_{\varphi}$.

One possible reference is John Voight's Quaternion Algebras Section 42.2.