Pairing-based cryptography 000 Lattice-based cryptography 000

Class-group-based cryptography 000

What is cryptography? SIAM Mini-Conference 2025

Gaurish Korpal

University of Arizona

May 02, 2025

Pairing-based cryptography 000 Lattice-based cryptography 000

Class-group-based cryptography

1 Introduction

2 Pairing-based cryptography

 Lattice-based cryptography

Class-group-based cryptography

Pairing-based cryptography

Lattice-based cryptography

Class-group-based cryptography

Introduction

 $\underset{O \oplus O}{\mathsf{Introduction}}$

Pairing-based cryptography 000 Lattice-based cryptography

Class-group-based cryptography

Propaganda

Pairing-based cryptograph

Lattice-based cryptography

Class-group-based cryptography

Algebra primer

Pairing-based cryptography •00 Lattice-based cryptography 000

Class-group-based cryptography 000

Pairing-based cryptography

Pairing-based cryptography

Lattice-based cryptography

Class-group-based cryptography

Elliptic curves

- $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{F}_p$ and $4a^3 + 27b^2 \neq 0$.
- Points $E(\mathbb{F}_p)$ form a group with \mathcal{O}_E as identity.
- $P \in E(\mathbb{F}_p)[r]$, that is $\underbrace{P \oplus \cdots \oplus P}_{r-\text{times}} = [r]P = \mathcal{O}_E$.
- ECDLP: Given Q = [m]P, find m.

For r prime to p there exists a non-degenerate distorted bilinear map:

$$e_r: E(\mathbb{F}_p)[r] imes E(\mathbb{F}_p)[r] o \mathbb{F}_{p^u}^{ imes}$$

u is called the embedding degree of E w.r.t. r.

- $e_r(aP, bQ) = e_r(P, Q)^{ab}$
- $e_r(Q, Q) \neq 1$
- If $e_r(Q_1, Q_2) = 1$ for all $Q_1 \in E(\mathbb{F}_p)[r]$ then $Q_2 = \mathcal{O}_E$.

Pairing-based cryptography

Lattice-based cryptography

Class-group-based cryptography

Scout's honor!

Short Signature

- Supports non-interactive aggregation property: given a collection of signatures (σ₁,...,σ_n), anyone can produce a short signature (σ) that authenticates the entire collection.
- BLS short signature (2001) is relies on pairing-friendly curves.
- Ethereum blockchain uses BLS signatures.

Polynomial Commitment Scheme

- Allows one party to prove to another the correct evaluation of a polynomial at some set of points, without revealing any other information about the polynomial.
- KZG polynomial commitment (2010) relies on pairing-friendly curves.
- Irrespective of the degree of the polynomial, KZG commitment size is constant.

Pairing-based cryptography

Lattice-based cryptography •00 Class-group-based cryptography 000

Lattice-based cryptography

Pairing-based cryptograph

Lattice-based cryptography 000 Class-group-based cryptography

Lattices

- A lattice Λ is a discrete subgroup of \mathbb{R}^n . Given basis matrix $B \in \mathbb{R}^{m \times n}$, $\Lambda = \{B\mathbf{x} \mid \mathbf{x} \in \mathbb{Z}^n\}$
- CVP: Find a vector closest to given vector $\bm{v}\in\Lambda.$
- LWE: Given $A \in \mathbb{F}_p^{m \times n}$ and $\mathbf{b} \in \mathbb{F}_p^m$ such that $A \cdot \mathbf{s} + \mathbf{e} = \mathbf{b}$ find $\mathbf{s} \in \mathbb{F}_p^n$ for unknown error $\mathbf{e} \in \mathbb{F}_p^m$.
- LWE↔CVP: The lattice vector A · s with distance e is almost always a vector closest to b.

Let $f \in \mathbb{Z}[t]$ be a monic polynomial of degree n and consider the ring $R := \mathbb{Z}[t]/f$ and ideal $I \subset R$.

 $(R,+) \longleftrightarrow (\mathbb{Z}^n,+) \quad \text{and} \quad I \longleftrightarrow \Lambda$

Multiplicative closure property of ideal lattice results in bonus geometric symmetries.

- *I* ⊆ *R* is called an ideal if it is a subgroup of (*R*, +) that absorbs multiplication by elements of *R*.
- If $I = \alpha R$ then I is principal ideal.
- $\mathbb{Z}[t]/f = \{g \mod f \mid g \in \mathbb{Z}[t]\}$ where deg $(g \mod f) < \deg(f)$.

Pairing-based cryptograph

Lattice-based cryptography

Class-group-based cryptography

Bend, don't break!

Post-Quantum Cryptography

- Symmetric cryptography do not rely on mathematics vulnerable to quantum computers.
- Security of common key exchange and digital signature schemes rely on hardness of factorization and discrete logarithm, vulnerable to Shor's quantum algorithm.
- Cryptographic Suite for Algebraic Lattices (CRYSTALS) is one of the first standardized PQC scheme (2024).

Fully Homomorphic Encryption

- Homomorphic refers to homomorphism in algebra: φ(a ⊕ b) = φ(a) ⊗ φ(b)
- Allows computations to be performed on encrypted data without first having to decrypt it.
- Gentry constructed the first ever FHE scheme using ideal lattices (2009).
- All known fully-homomorphic encryption schemes with compact ciphertexts use lattice techniques.

Pairing-based cryptography

Lattice-based cryptography 000

Class-group-based cryptography • 00

Class-group-based cryptography

Pairing-based cryptograph

Lattice-based cryptography 000 Class-group-based cryptography $\circ \circ \circ$

Imaginary quadratic orders

- Let D < 0 be such that D ≡ 0, 1 (mod 4). Then the ring Z[ω] = Z + Zω where ω = D+√D/2 is called an imaginary quadratic order of discriminant D.
- The field of fractions is $\mathbb{Q}(\sqrt{D})$.
- A fractional ideal of Z[ω] is a subset J ⊂ Q(√D) such that aJ is an ideal of Z[ω] for some a ∈ N.
- J is invertible if there is fractional ideal J' such that $JJ' := \{\sum_{i=1}^{n} a_i b_i \mid a_i \in J, b_i \in J'\} = \mathbb{Z}[\omega].$
 - The class group Cl(D) of Z[ω] is the quotient group of invertible fractional ideals by principal ideals with ideal multiplication.
 - It is a composite order group of unknown order with a subgroup of known order where the DL is easy.

DDH for CI(D) can be characterized as a HSM since it is hard to determine if a given element is a member of CI(D).

https://eprint.iacr.org/2022/1466.pdf

Pairing-based cryptograph

Lattice-based cryptography 000

Class-group-based cryptography $\circ \circ \bullet$

Rest assured!

Multi-Party Computation

- Allows a group of mutually distrustful parties to compute a joint function on their inputs without revealing any information beyond the result of the computation.
- Class groups were first proposed as an alternative to ECC, but CL attack broke it.
- Ideas from the CL attack make class groups well-suited for MPC protocols that require a one-time transparent setup with minimal interaction among parties.

Verifiable Delay Function

- Allows a prover to show a verifier that a certain amount of time running a function was spent, and do it in a way that the verifier can check the result quickly.
- Groups of unknown order are great candidates for VDF construction.
- Class groups are one of the most popular choice because the can be generated without trusted setup (Wesolowski, 2018)

Thank you!

