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Propaganda

Technology

AI, IT, Robotics, Telecom, Biotech

Engineering

Civil, Elec, Mech, Chem

Science

Phy, Chem, TCS

Math

Libraries

OpenSSL, Signal, Tor, WireGuard, Zcash

Protocols

SHA-3, AES-GCM, EdDSA, PLONK

Primitives

CHF, PKC, ZKP
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Algebra primer
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Pairing-based cryptography
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Elliptic curves

• E : y2 = x3+ ax +b with a, b ∈ Fp and 4a3+27b2 ̸= 0.

• Points E (Fp) form a group with OE as identity.

• P ∈ E (Fp)[r ], that is P ⊕ · · · ⊕ P︸ ︷︷ ︸
r -times

= [r ]P = OE .

• ECDLP: Given Q = [m]P, find m.

F89

F89

y 2 = x3 − 2x + 1
#E(F89) = 96

For r prime to p there exists a non-degenerate
distorted bilinear map:

er : E (Fp)[r ]× E (Fp)[r ]→ F×
pu

u is called the embedding degree of E w.r.t. r .

• er (aP, bQ) = er (P,Q)ab

• er (Q,Q) ̸= 1

• If er (Q1,Q2) = 1 for all
Q1 ∈ E(Fp)[r ] then Q2 = OE .
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Scout’s honor!
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Short Signature

• Supports non-interactive aggregation
property: given a collection of
signatures (σ1, . . . , σn), anyone can
produce a short signature (σ) that
authenticates the entire collection.

• BLS short signature (2001) is relies on
pairing-friendly curves.

• Ethereum blockchain uses BLS
signatures.

Polynomial Commitment Scheme

• Allows one party to prove to another
the correct evaluation of a polynomial
at some set of points, without
revealing any other information about
the polynomial.

• KZG polynomial commitment (2010)
relies on pairing-friendly curves.

• Irrespective of the degree of the
polynomial, KZG commitment size is
constant.
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datatracker.ietf.org/doc/draft-boneh-bls-signature/
https://risencrypto.github.io/Kate/
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Lattice-based cryptography
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Lattices
• A lattice Λ is a discrete subgroup of Rn. Given basis
matrix B ∈ Rm×n, Λ = {Bx | x ∈ Zn}
• CVP: Find a vector closest to given vector v ∈ Λ.

• LWE: Given A ∈ Fm×n
p and b ∈ Fm

p such that
A · s+ e = b find s ∈ Fn

p for unknown error e ∈ Fm
p .

• LWE↔CVP: The lattice vector A · s with distance e is
almost always a vector closest to b.

R

R

Let f ∈ Z[t] be a monic polynomial of degree n and
consider the ring R := Z[t]/f and ideal I ⊂ R.

(R,+)←→ (Zn,+) and I ←→ Λ

Multiplicative closure property of ideal lattice
results in bonus geometric symmetries.

• I ⊆ R is called an ideal if it is a
subgroup of (R,+) that absorbs
multiplication by elements of R.

• If I = αR then I is principal ideal.

• Z[t]/f = {g mod f | g ∈ Z[t]}
where deg(g mod f ) < deg(f ).
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Bend, don’t break!
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Post-Quantum Cryptography

• Symmetric cryptography do not rely
on mathematics vulnerable to
quantum computers.

• Security of common key exchange and
digital signature schemes rely on
hardness of factorization and discrete
logarithm, vulnerable to Shor’s
quantum algorithm.

• Cryptographic Suite for Algebraic
Lattices (CRYSTALS) is one of the
first standardized PQC scheme (2024).

Fully Homomorphic Encryption

• Homomorphic refers to
homomorphism in algebra:
φ(a⊕ b) = φ(a)⊗ φ(b)

• Allows computations to be performed
on encrypted data without first having
to decrypt it.

• Gentry constructed the first ever FHE
scheme using ideal lattices (2009).

• All known fully-homomorphic
encryption schemes with compact
ciphertexts use lattice techniques.
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https://pq-crystals.org/index.shtml
https://fhe.org/history/
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Class-group-based cryptography
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Imaginary quadratic orders
• Let D < 0 be such that D ≡ 0, 1 (mod 4). Then the

ring Z[ω] = Z+ Zω where ω = D+
√
D

2 is called an
imaginary quadratic order of discriminant D.

• The field of fractions is Q(
√
D).

• A fractional ideal of Z[ω] is a subset J ⊂ Q(
√
D) such

that aJ is an ideal of Z[ω] for some a ∈ N.
• J is invertible if there is fractional ideal J ′ such that
JJ ′ := {

∑n
i=1 aibi | ai ∈ J, bi ∈ J ′} = Z[ω].

Z
[
−3+

√
−3

2

]
in C

• The class group Cl(D) of Z[ω] is the quotient
group of invertible fractional ideals by principal
ideals with ideal multiplication.

• It is a composite order group of unknown order with
a subgroup of known order where the DL is easy.

DDH for Cl(D) can be characterized as a

HSM since it is hard to determine if a

given element is a member of Cl(D).
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Rest assured!
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Multi-Party Computation

• Allows a group of mutually distrustful
parties to compute a joint function on
their inputs without revealing any
information beyond the result of the
computation.

• Class groups were first proposed as an
alternative to ECC, but CL attack
broke it.

• Ideas from the CL attack make class
groups well-suited for MPC protocols
that require a one-time transparent
setup with minimal interaction among
parties.

Verifiable Delay Function

• Allows a prover to show a verifier that
a certain amount of time running a
function was spent, and do it in a way
that the verifier can check the result
quickly.

• Groups of unknown order are great
candidates for VDF construction.

• Class groups are one of the most
popular choice because the can be
generated without trusted setup
(Wesolowski, 2018)
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https://eprint.iacr.org/2022/1466.pdf
https://eprint.iacr.org/2018/712.pdf


Thank you!
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https://xkcd.com/538/
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