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Abstract

Continued Fractions have fascinated many mathematicians due to their mystical properties. Today I
will discuss one of my personal experiences with continued fractions (without giving its exact mathematical
definition). I will illustrate two methods (without proof) for solving equations in two variables in integers.
Ability to do basic arithmetic is required.

1 ax+ by = c, where a, b, c ∈ Z; a, b 6= 0

Theorem 1.1. Let a, b, c ∈ Z; a, b 6= 0. Consider the linear equation ax+ by = c. If d = gcd(a, b) then this
linear equation is solvable in integers if and only if d | c.

Sketch of Proof. The basic idea behind proof is to apply Euclid’s Division Algorithm in bottom-up fashion

Now I will compare two forms of Euclid’s Division Algorithm (for proof see pp. 34 of [Si]). Let’s consider
following example (pp. 47-48 of [K]):

Example 1.1. Solve 127x− 52y + 1 = 0 for integers.

Solution. Firstly we will calculate gcd(127, 52)

127 = 52× 2 + 23

52 = 23× 2 + 6

23 = 6× 3 + 5

6 = 5× 1 + 1

5 = 1× 5 + 0

Since gcd(127, 52) = 1 this equation is solvable.

Method 1: Last Partial Quotient Omission & Subtraction1

First step is to create an improper fraction by dividing bigger coefficient by smaller coefficient (magnitude
only)
Thus in this example we get: 127

52
Now separate out the integral part of this fraction:

127

52
= 2 +

23

52

Then re-write the fractional part in terms of terminating continued fraction as:

127

52
= 2 +

23

52
= 2 +

1

2 +
1

3 +
1

1 +
1

5
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1I first time came across this method in [G]
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Now we will omit the last partial quotient and simplify the continued fraction so formed:

2 +
1

2 +
1

3 +
1

1

=
22

9

Now we will subtract this new fraction from our original improper fraction:

127

52
− 22

9
=
−1

52× 9

Cross multiply denominators to get:

127× 9− 52× 22 + 1 = 0

Compare it with original equation and get x = 9 and y = 22 as a particular solution.

Method 2: Remainder Substitution & Isolation
The first step is to rewrite the equation first step of division algorithm as:

23 = a− 2b, where we let a = 127 & b = 52

Next we substitute this value into second equation and also replace 52 by b:

b = (a− 2b)× 2 + 6

Now rearrange the terms and isolate the reminder:

6 = 5b− 2a

Now substitute 6 and 23 in terms of a and b in next equation of division algorithm:

a− 2b = (5b− 2a)× 3 + 5

Again rearrange terms and isolate remainder:

5 = 7a− 17b

Now substitute 5 and 6 in next equation of division algorithm:

5b− 2a = (7a− 17b)× 1 + 1

Now rearrange the terms to get:
9a− 22b+ 1 = 0

Comparing with given equation we get: x = 9 and y = 22 as a particular solution.

Remark: Note that both the methods described above lead to same solutions, which provides a verification
to my assertion that at base level both methods are equivalent. It may be noted that these methods provide
the least solution of the equation, namely that for which x < |b| and y < |a|.

2 x2 −Dy2 = 1, where D ∈ Z+

Theorem 2.1. Given an equation:
x2 −Dy2 = 1

where D ∈ Z+ and
√
D is irrational2. This equation possesses a non-trivial solution (x1, y1) in positive

integers.

2The equation is of no interest when D is a perfect square, since the difference of two perfect squares can never be 1, except
in the case 12 − 02
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Remark: (x1, y1) is called the least solution or minimal solution of equation if for x = x1 and y = y1 the
binomial x + y

√
D, assumes the least possible value among all the possible values which it will take when

all the possible positive integral solutions of the equation are substituted for x and y.
Challenge: Prove this theorem using Diophantine Approximation! (for hints and alternate proof using

continued fractions see pp. 50-58 of [K])
Now let’s again consider an example to illustrate the steps involved in finding particular solution.

Example 2.1. Find an integer solution for: x2 − 67y2 = 1

Solution. For proof of both of these methods and their equivalence see [Su].

Method 1: Lagrange’s Method3

We can write
√
D in continued fraction form as:

√
D = q0 +

1

q1 +
1

q1 +

.. .

2q0 +
1

q1 +
1

. . .

where q0 = b
√
Dc.

Because any continued fraction for
√
N is necessarily of the form:

q0, q1, q2, . . . , q2, q1, 2q0︸ ︷︷ ︸
n terms

where the period begins immediately after the first term q0 , and it consists of a symmetrical part q1, q2, . . . , q2, q1,
followed by the number 2q0 (for proof see pp. 92 of [D]).
Then the least solution to this equation turns out to be:

(x1, y1) =

{
(Pn−1, Qn−1) if n is even

(P2n−1, Q2n−1) if n is odd

where Pk
Qk

= δk is kth convergent of the continued fraction4 and δ0 = q0.
Google says that sqrt(67) = 8.18535277187, so let’s start writing our continued fraction:

√
67 = 8 + 0.18535277187 = 8 +

1

5.3951175907
= 8 +

1

5 + 0.3951175907

3Such equation was first solved in Europe by Brouncker in 1657-58 in response to a challenge by Fermat, using continued
fractions. But a method for the general problem was first completely described rigorously by Lagrange in 1766

4The expression obtained by omitting all terms of its continued fraction (of say α) starting with some particular term is
called convergent. The first convergent δ1 is equal to first partial quotient (q0). Also convergents satisfy following inequality:
δ1 < δ3 < . . . < δ2k−1 < α and δ2 > δ4 > . . . > δ2k > α. Also we can write kth convergent as: δk = Pk

Qk
, (1 ≤ k ≤ n) Then we

write a recursive formula: {
Pk = Pk−1qk + Pk−2

Qk = Qk−1qk +Qk−2

Also for consecutive convergents:

δk − δk−1 =
(−1)k

QkQk−1
(k > 1)
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proceed so on ‘or’ use SAGE math code continued fraction(sqrt(67)) to get:

√
67 = 8 +

1

5 +
1

2 +
1

1 +
1

1 +
1

7 +
1

1 +
1

1 +
1

2 +
1

5 +
1

16 +
1

. . .

= [8; 5, 2, 1, 1, 7, 1, 1, 2, 5, 16, 5, 2, . . .]

Hence here, n = 10, thus least solution is, (P9, Q9).

δ9 = [8; 5, 2, 1, 1, 7, 1, 1, 2, 5, 16] = 8 +
1

5 +
1

2 +
1

1 +
1

1 +
1

7 +
1

1 +
1

1 +
1

2 +
1

5 +
1

16

Evaluate manually or use SAGE math code a = continued fraction(sqrt(67)); a.convergent(9)

to get:

δ9 =
48842

5967
=
P9

Q9

So, x = 48842 and y = 5967 is a particular solution.

Method 2: Chakravala Method5

We can prove 6that the Chakravala does give all the solutions using the continued fractions method developed
by Lagrange. Moreover, Chakravala algorithm can easily be implemented on a computer.

We will write (u, v;n) to mean u2 −Nv2 = n. Start with p0 = b
√
Nc, here,

p0 = b
√

67c = 8

Now, take q0 = 1 and m0 = p20 −N (note m0 < 0), here,

m0 = 82 − 67 = −3

Then, we have (p0, q0;m0) = (8, 1;−3)

5This method is due to Jayadeva, Bhaskara and Narayana from the 11th and 12th centuries. The amazing thing is that this
method produces all solutions!

6As defined below, we need to show that each mi ∈ (−2
√
N, 2
√
N). The mi’s will repeat in cycles - hence called chakravala.

However, it is not obvious as yet that some mk = 1 but we can prove this using continued fractions.
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Now, choose x1 ≡ −p0 mod |m0| and x1 <
√
N < x1 + |m0|, here,

x1 ≡ −8 (mod 3) ⇒ x1 = 7

Suppose (p, q) is a solution of x2 −Ny2 = m and (r, s) is a solution of x2 −Ny2 = n. Then7,

(p, q) ∗ (r, s) := (pr +Nqs, ps+ qr) is a solution of x2 −Ny2 = mn

Now note that since q0 = 1,

(p0, q0) ∗ (x1, 1) = (p0x1 +N, p0 + x1) is the solution of
(
p0x1 +N, p0 + x1;m0(x

2
1 −N)

)
where the numbers (p0x1 + N), (p0 + x1) , (x21 −N) are all multiples of m0. Also, |x21 −N | is as small as
possible. Here:

(123, 15; 54) is another equation-solution generated for N = 67

Indeed,
p0 + x1 ≡ 0 (mod m0) and p0x1 +N ≡ −p20 +N = −m0 ≡ 0 (mod m0)

Moreover, we also have
x21 −N ≡ p20 −N = m0 ≡ 0 (mod m0)

We have then, (p1, q1;m1) such that: 
p1 =

p0x1 +N

|m0|
q1 =

p0 + x1
|m0|

m1 =
x21 −N
m0

Also m1 > 0 as x21 −N < 0 and m0 < 0.

Here, we have, (p1, q1;m1) = (41, 5; 6)

Knowing pi, qi,mi, xi we shall describe (in that order) xi+1,mi+1, pi+1, qi+1 such that (pi+1, qi+1;mi+1)
holds and stop when (and if !) we reach mk = 1.[Su]

Thus in general, we have following recursive definition:
pi =

pi−1xi +Nqi−1

|mi−1|
qi =

pi−1 + xiqi−1

|mi−1|

mi =
x2i −N
mi−1

where, xi+1 ≡ −xi mod |mi| with xi+1 <
√
N < xi+1 + |mi| and x0 = p0.

The key point to note is that the choice of the congruence defining xi+1 ensures that we get integer values
for pi+1, qi+1 and mi+1 (extend the argument used in obtaining (p1, q1;m1) from (p0, q0;m0)) Here, x2 ≡ −7

(mod 6) and x2 <
√

67 < x2 + 6, thus x2 = 5 and substitute all values to get (p2, q2;m2) = (90, 11;−7)

Continuing in same way we get:

x3 = 2 and (p3, q3;m3) = (131, 16; 9)

x4 = 7 and (p4, q4;m4) = (221, 27;−2)

x5 = 7 and (p5, q5;m5) = (1678, 205; 9)

x6 = 2 and (p6, q6;m6) = (1899, 232;−7)

x7 = 5 and (p7, q7;m7) = (3577, 437; 6)

x8 = 7 and (p8, q8;m8) = (9053, 1106;−3)

x9 = 8 and (p9, q9;m9) = (48842, 5967; 1)

7This ‘composition law’ or ‘samasabhavana’ was discovered by Brahmagupta.
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Exercise 2.1. Find an integer solution for x2 − 61y2 = 1

Hint. Observe that:

√
61 = [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, ...] ⇒ (x1, y1) = (P21, Q21)

Remark: The method of finding solutions by using continued fractions can even be extended to equations
of form: ax2 − by2 = c, see [M]. Also we can reduce lot’s of calculation steps by using “Brahmagupta’s
Shortcuts”, see pp. 3 of [Su].
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