Continued Fractions in disguise

Short Undergraduate Mathematics Seminar - 54
Gaurish Korpal*
gaurish4math.wordpress.com

October 16, 2015

Abstract

Continued Fractions have fascinated many mathematicians due to their mystical properties. Today I will discuss one of my personal experiences with continued fractions (without giving its exact mathematical definition). I will illustrate two methods (without proof) for solving equations in two variables in integers. Ability to do basic arithmetic is required.

$1 a x+b y=c$, where $a, b, c \in \mathbb{Z} ; a, b \neq 0$
Theorem 1.1. Let $a, b, c \in \mathbb{Z} ; a, b \neq 0$. Consider the linear equation $a x+b y=c$. If $d=\operatorname{gcd}(a, b)$ then this linear equation is solvable in integers if and only if $d \mid c$.

Sketch of Proof. The basic idea behind proof is to apply Euclid's Division Algorithm in bottom-up fashion
Now I will compare two forms of Euclid's Division Algorithm (for proof see pp. 34 of [Si]). Let's consider following example (pp. 47-48 of [K]):

Example 1.1. Solve $127 x-52 y+1=0$ for integers.
Solution. Firstly we will calculate gcd $(127,52)$

$$
\begin{aligned}
127 & =52 \times 2+23 \\
52 & =23 \times 2+6 \\
23 & =6 \times 3+5 \\
6 & =5 \times 1+1 \\
5 & =1 \times 5+0
\end{aligned}
$$

Since $\operatorname{gcd}(127,52)=1$ this equation is solvable.

Method 1: Last Partial Quotient Omission \& Subtraction ${ }^{1}$

First step is to create an improper fraction by dividing bigger coefficient by smaller coefficient (magnitude only)
Thus in this example we get: $\frac{127}{52}$
Now separate out the integral part of this fraction:

$$
\frac{127}{52}=2+\frac{23}{52}
$$

Then re-write the fractional part in terms of terminating continued fraction as:

$$
\frac{127}{52}=2+\frac{23}{52}=2+\frac{1}{2+\frac{1}{3+\frac{1}{1+\frac{1}{5}}}}
$$

[^0]Now we will omit the last partial quotient and simplify the continued fraction so formed:

$$
2+\frac{1}{2+\frac{1}{3+\frac{1}{1}}}=\frac{22}{9}
$$

Now we will subtract this new fraction from our original improper fraction:

$$
\frac{127}{52}-\frac{22}{9}=\frac{-1}{52 \times 9}
$$

Cross multiply denominators to get:

$$
127 \times 9-52 \times 22+1=0
$$

Compare it with original equation and get $x=9$ and $y=22$ as a particular solution.

Method 2: Remainder Substitution \& Isolation

The first step is to rewrite the equation first step of division algorithm as:

$$
23=a-2 b, \quad \text { where we let } a=127 \quad \& \quad b=52
$$

Next we substitute this value into second equation and also replace 52 by b :

$$
b=(a-2 b) \times 2+6
$$

Now rearrange the terms and isolate the reminder:

$$
6=5 b-2 a
$$

Now substitute 6 and 23 in terms of a and b in next equation of division algorithm:

$$
a-2 b=(5 b-2 a) \times 3+5
$$

Again rearrange terms and isolate remainder:

$$
5=7 a-17 b
$$

Now substitute 5 and 6 in next equation of division algorithm:

$$
5 b-2 a=(7 a-17 b) \times 1+1
$$

Now rearrange the terms to get:

$$
9 a-22 b+1=0
$$

Comparing with given equation we get: $x=9$ and $y=22$ as a particular solution.
Remark: Note that both the methods described above lead to same solutions, which provides a verification to my assertion that at base level both methods are equivalent. It may be noted that these methods provide the least solution of the equation, namely that for which $x<|b|$ and $y<|a|$.

$2 x^{2}-D y^{2}=1$, where $D \in \mathbb{Z}^{+}$

Theorem 2.1. Given an equation:

$$
x^{2}-D y^{2}=1
$$

where $D \in \mathbb{Z}^{+}$and \sqrt{D} is irrational ${ }^{2}$. This equation possesses a non-trivial solution $\left(x_{1}, y_{1}\right)$ in positive integers.

[^1]Remark: $\left(x_{1}, y_{1}\right)$ is called the least solution or minimal solution of equation if for $x=x_{1}$ and $y=y_{1}$ the binomial $x+y \sqrt{D}$, assumes the least possible value among all the possible values which it will take when all the possible positive integral solutions of the equation are substituted for x and y.

Challenge: Prove this theorem using Diophantine Approximation! (for hints and alternate proof using continued fractions see pp. 50-58 of [K])

Now let's again consider an example to illustrate the steps involved in finding particular solution.
Example 2.1. Find an integer solution for: $x^{2}-67 y^{2}=1$
Solution. For proof of both of these methods and their equivalence see $[\mathrm{Su}]$.

Method 1: Lagrange's Method ${ }^{3}$

We can write \sqrt{D} in continued fraction form as:

$$
\sqrt{D}=q_{0}+\frac{1}{q_{1}+\frac{1}{q_{1}+\frac{\ddots}{2 q_{0}+\frac{1}{q_{1}+\frac{1}{\ddots}}}}}
$$

where $q_{0}=\lfloor\sqrt{D}\rfloor$.
Because any continued fraction for \sqrt{N} is necessarily of the form:

$$
q_{0}, \underbrace{\overline{q_{1}, q_{2}, \ldots, q_{2}, q_{1}, 2 q_{0}}}_{n \text { terms }}
$$

where the period begins immediately after the first term q_{0}, and it consists of a symmetrical part $q_{1}, q_{2}, \ldots, q_{2}, q_{1}$, followed by the number $2 q_{0}$ (for proof see pp. 92 of [D]).
Then the least solution to this equation turns out to be:

$$
\left(x_{1}, y_{1}\right)= \begin{cases}\left(P_{n-1}, Q_{n-1}\right) & \text { if } n \quad \text { is even } \\ \left(P_{2 n-1}, Q_{2 n-1}\right) & \text { if } n \quad \text { is odd }\end{cases}
$$

where $\frac{P_{k}}{Q_{k}}=\delta_{k}$ is $k^{t h}$ convergent of the continued fraction ${ }^{4}$ and $\delta_{0}=q_{0}$.
Google says that $\operatorname{sqrt}(67)=8.18535277187$, so let's start writing our continued fraction:

$$
\sqrt{67}=8+0.18535277187=8+\frac{1}{5.3951175907}=8+\frac{1}{5+0.3951175907}
$$

[^2]Also for consecutive convergents:

$$
\delta_{k}-\delta_{k-1}=\frac{(-1)^{k}}{Q_{k} Q_{k-1}} \quad(k>1)
$$

proceed so on 'or' use SAGE math code continued_fraction(sqrt(67)) to get:

$$
\sqrt{67}=8+\frac{1}{5+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{7+\frac{1}{1+\frac{1}{1+\frac{1}{2+\frac{1}{5+\frac{1}{16+\frac{1}{\ddots}}}}}}}}}}}=[8 ; 5,2,1,1,7,1,1,2,5,16,5,2, \ldots]
$$

Hence here, $n=10$, thus least solution is, $\left(P_{9}, Q_{9}\right)$.

$$
\delta_{9}=[8 ; 5,2,1,1,7,1,1,2,5,16]=8+\frac{1}{5+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{7+\frac{1}{1+\frac{1}{1+\frac{1}{2+\frac{1}{16}}}}}}}}}
$$

Evaluate manually or use SAGE math code a = continued_fraction(sqrt(67)); a.convergent (9) to get:

$$
\delta_{9}=\frac{48842}{5967}=\frac{P_{9}}{Q_{9}}
$$

So, $x=48842$ and $y=5967$ is a particular solution.

Method 2: Chakravala Method ${ }^{5}$

We can prove ${ }^{6}$ that the Chakravala does give all the solutions using the continued fractions method developed by Lagrange. Moreover, Chakravala algorithm can easily be implemented on a computer.

We will write $(u, v ; n)$ to mean $u^{2}-N v^{2}=n$. Start with $p_{0}=\lfloor\sqrt{N}\rfloor$, here,

$$
p_{0}=\lfloor\sqrt{67}\rfloor=8
$$

Now, take $q_{0}=1$ and $m_{0}=p_{0}^{2}-N\left(\right.$ note $\left.m_{0}<0\right)$, here,

$$
m_{0}=8^{2}-67=-3
$$

Then, we have $\left(p_{0}, q_{0} ; m_{0}\right)=(8,1 ;-3)$

[^3]Now, choose $x_{1} \equiv-p_{0} \bmod \left|m_{0}\right|$ and $x_{1}<\sqrt{N}<x_{1}+\left|m_{0}\right|$, here,

$$
x_{1} \equiv-8 \quad(\bmod 3) \quad \Rightarrow x_{1}=7
$$

Suppose (p, q) is a solution of $x^{2}-N y^{2}=m$ and (r, s) is a solution of $x^{2}-N y^{2}=n$. Then ${ }^{7}$,

$$
(p, q) *(r, s):=(p r+N q s, p s+q r) \quad \text { is a solution of } \quad x^{2}-N y^{2}=m n
$$

Now note that since $q_{0}=1$,

$$
\left(p_{0}, q_{0}\right) *\left(x_{1}, 1\right)=\left(p_{0} x_{1}+N, p_{0}+x_{1}\right) \quad \text { is the solution of } \quad\left(p_{0} x_{1}+N, p_{0}+x_{1} ; m_{0}\left(x_{1}^{2}-N\right)\right)
$$

where the numbers $\left(p_{0} x_{1}+N\right),\left(p_{0}+x_{1}\right),\left(x_{1}^{2}-N\right)$ are all multiples of m_{0}. Also, $\left|x_{1}^{2}-N\right|$ is as small as possible. Here:

$$
(123,15 ; 54) \quad \text { is another equation-solution generated for } N=67
$$

Indeed,

$$
p_{0}+x_{1} \equiv 0 \quad\left(\bmod m_{0}\right) \quad \text { and } \quad p_{0} x_{1}+N \equiv-p_{0}^{2}+N=-m_{0} \equiv 0 \quad\left(\bmod m_{0}\right)
$$

Moreover, we also have

$$
x_{1}^{2}-N \equiv p_{0}^{2}-N=m_{0} \equiv 0 \quad\left(\bmod m_{0}\right)
$$

We have then, $\left(p_{1}, q_{1} ; m_{1}\right)$ such that:

$$
\left\{\begin{array}{l}
p_{1}=\frac{p_{0} x_{1}+N}{\left|m_{0}\right|} \\
q_{1}=\frac{p_{0}+x_{1}}{\left|m_{0}\right|} \\
m_{1}=\frac{x_{1}^{2}-N}{m_{0}}
\end{array}\right.
$$

Also $m_{1}>0$ as $x_{1}^{2}-N<0$ and $m_{0}<0$.
Here, we have, $\left(p_{1}, q_{1} ; m_{1}\right)=(41,5 ; 6)$
Knowing $p_{i}, q_{i}, m_{i}, x_{i}$ we shall describe (in that order) $x_{i+1}, m_{i+1}, p_{i+1}, q_{i+1}$ such that $\left(p_{i+1}, q_{i+1} ; m_{i+1}\right)$ holds and stop when (and if!) we reach $m_{k}=1$.[Su]

Thus in general, we have following recursive definition:

$$
\left\{\begin{array}{l}
p_{i}=\frac{p_{i-1} x_{i}+N q_{i-1}}{\left|m_{i-1}\right|} \\
q_{i}=\frac{p_{i-1}+x_{i} q_{i-1}}{\left|m_{i-1}\right|} \\
m_{i}=\frac{x_{i}^{2}-N}{m_{i-1}}
\end{array}\right.
$$

where, $x_{i+1} \equiv-x_{i} \bmod \left|m_{i}\right|$ with $x_{i+1}<\sqrt{N}<x_{i+1}+\left|m_{i}\right|$ and $x_{0}=p_{0}$.
The key point to note is that the choice of the congruence defining x_{i+1} ensures that we get integer values for p_{i+1}, q_{i+1} and m_{i+1} (extend the argument used in obtaining $\left(p_{1}, q_{1} ; m_{1}\right)$ from $\left.\left(p_{0}, q_{0} ; m_{0}\right)\right)$ Here, $x_{2} \equiv-7$ $(\bmod 6)$ and $x_{2}<\sqrt{67}<x_{2}+6$, thus $x_{2}=5$ and substitute all values to get $\left(p_{2}, q_{2} ; m_{2}\right)=(90,11 ;-7)$

Continuing in same way we get:

$x_{3}=2$	and	$\left(p_{3}, q_{3} ; m_{3}\right)=(131,16 ; 9)$
$x_{4}=7$	and	$\left(p_{4}, q_{4} ; m_{4}\right)=(221,27 ;-2)$
$x_{5}=7$	an	$\left(p_{5}, q_{5} ; m_{5}\right)=(1678,205 ; 9)$
$x_{6}=2$	a	$\left(p_{6}, q_{6} ; m_{6}\right)=(1899,232 ;-7)$
$x_{7}=5$	a	$\left(p_{7}, q_{7} ; m_{7}\right)=(3577,437 ; 6)$
$x_{8}=7$	a	$\left(p_{8}, q_{8} ; m_{8}\right)=(9053,1106 ;-3)$
$x_{9}=8$	and	$\left(p_{9}, q_{9} ; m_{9}\right)=(48842,5967 ; 1)$

[^4]Exercise 2.1. Find an integer solution for $x^{2}-61 y^{2}=1$
Hint. Observe that:

$$
\sqrt{61}=[7 ; 1,4,3,1,2,2,1,3,4,1,14,1,4,3,1,2,2,1,3, \ldots] \quad \Rightarrow\left(x_{1}, y_{1}\right)=\left(P_{21}, Q_{21}\right)
$$

Remark: The method of finding solutions by using continued fractions can even be extended to equations of form: $a x^{2}-b y^{2}=c$, see $[\mathrm{M}]$. Also we can reduce lot's of calculation steps by using "Brahmagupta's Shortcuts", see pp. 3 of [Su].

References

[D] H. Davenport : The Higher Arithmetic, Eighth Edition, Cambridge University Press, ISBN 978-0-511-45555-1 eBook(EBL) (2008)
[G] A. O. Gelfond : Solving Equations in Integers, English translation, Little Mathematics Library, Mir Publishers Moscow (1981)
[K] Gaurish Korpal, Diophantine Equations, Summer Internship Project Report, http://upgrade. bprim.org/articles-notes/2015/Diophantine-Equations-Gaurish-Korpal (2015)
[M] R. A. Mollin, K. Cheng \& B. Goddard : The diophantine equation $A x^{2}-B y^{2}=C$ solved via continued fraction, Acta Math. Univ. Comenianae, Vol. LXXI (2), pp. 121-138 (2002)
[Si] Joseph H. Silverman, A Friendly Introduction to Number Theory, Fourth Edition, Pearson Education, Inc., ISBN: 978-0-321-81619-1 (2012)
[Su] B. Sury, Chakravala - a modern Indian method, Lecture Notes, http://www.isibang.ac.in/~sury/ chakravala.pdf (2010)

[^0]: *2nd year Int. MSc. student, National Institute of Science Education and Research, Jatni
 ${ }^{1}$ I first time came across this method in [G]

[^1]: ${ }^{2}$ The equation is of no interest when D is a perfect square, since the difference of two perfect squares can never be 1 , except in the case $1^{2}-0^{2}$

[^2]: ${ }^{3}$ Such equation was first solved in Europe by Brouncker in 1657-58 in response to a challenge by Fermat, using continued fractions. But a method for the general problem was first completely described rigorously by Lagrange in 1766
 ${ }^{4}$ The expression obtained by omitting all terms of its continued fraction (of say α) starting with some particular term is called convergent. The first convergent δ_{1} is equal to first partial quotient $\left(q_{0}\right)$. Also convergents satisfy following inequality: $\delta_{1}<\delta_{3}<\ldots<\delta_{2 k-1}<\alpha$ and $\delta_{2}>\delta_{4}>\ldots>\delta_{2 k}>\alpha$. Also we can write $k^{t h}$ convergent as: $\delta_{k}=\frac{P_{k}}{Q_{k}},(1 \leq k \leq n)$ Then we write a recursive formula:

 $$
 \left\{\begin{array}{l}
 P_{k}=P_{k-1} q_{k}+P_{k-2} \\
 Q_{k}=Q_{k-1} q_{k}+Q_{k-2}
 \end{array}\right.
 $$

[^3]: ${ }^{5}$ This method is due to Jayadeva, Bhaskara and Narayana from the 11th and 12th centuries. The amazing thing is that this method produces all solutions!
 ${ }^{6}$ As defined below, we need to show that each $m_{i} \in(-2 \sqrt{N}, 2 \sqrt{N})$. The m_{i} 's will repeat in cycles - hence called chakravala. However, it is not obvious as yet that some $m_{k}=1$ but we can prove this using continued fractions.

[^4]: ${ }^{7}$ This 'composition law' or 'samasabhavana' was discovered by Brahmagupta.

