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Let Ey be a supersingular elliptic curve. By Deuring's correspondence, End(Ey) ~ O, is a maximal order in
the quaternion algebra B, o, over Q ramified at p and oo.

When p = 17, By o = (—p, —q) = (17,3) and Oy = (-~ Sl igk, #, k) (I'm omitting what the value c is) is

a maximal order. I'm trying to implement a constructive algorithm for Deuring's correspondence [Algorithm
3, EHL+18] 1), which computes a supersingular j € F,, such that End(E(j)) ~ O,.

Let me briefly explain how the algortihm works; they constructed an isomorphism of (Q-algebras
B, — End(F) ® Q, (1,4, j,k) — (1,7, ¢, m¢), where 7 is a pth-power Frobenius endomorphism (they
presumed that Oy ~ End(E) is supersingular so that 7 lies in End(E)). To find ¢ with ¢? = [—q], they first
computed all j-invariants with an embedding Ox C End(E) where Ok is the ring of integers of
K = Q(4/—q), by finding roots of the hilbert class polynomial (modulo p) of K (by the construction of p and
g, the roots are precisely the j-invariants with the embedding). Then they computed all endomorphisms of
degree g for each E(j) and checked if one of them satisfies ¢* = [—q].

Now this is my implementaion on Sagemath:

sage: def j_with_embedding(p, q):
sage: F = GF(p)

sage: R.<x> = PolynomialRing(F)

sage: K = QuadraticField(-q)

sage: o0 = K.maximal_order()

sage: d = o.discriminant()

sage: H = hilbert_class_polynomial(d)

sage: return R(H).roots(multiplicities=False)

j_with_embedding(p, @) computes all j-invariant in F, with Og( /=) C End(E(j)).

When p = 17 and g = 3, it returns 0.

sage: j_with_embedding(17,3)
[e]

Then I used 'E.isogenies_prime_degree(q)' which computes all isogenies over K of degree g from E/K.
There are 4 isogenies of degree 3 from j = 0. The first isogeny is the only endomorphism of degree 3. You can
get the endomorphism by post-composing an isomorphism of curves.

sage: E = EllipticCurve(j=GF(1772)(0)); E

Elliptic Curve defined by y”2 = x*3 + 1 over Finite Field in z2 of size 17”2

sage: E.isogenies_prime_degree(3)

[Isogeny of degree 3 from Elliptic Curve defined by y”2 = x*3 + 1 to Elliptic Curve defined by y”2 = x*3 + 7,

Isogeny of degree 3 from Elliptic Curve defined by y”2 = x*3 + 1 to Elliptic Curve defined by y”2 = x*3 + 13*x + 15,
Isogeny of degree 3 from Elliptic Curve defined by y”*2 = x*3 + 1 to Elliptic Curve defined by y”2 = x"3 + (3*z249)*x +
Isogeny of degree 3 from Elliptic Curve defined by y”?2 = x*3 + 1 to Elliptic Curve defined by y”2 = x*3 + (14*z2+12)*x
sage: phi = E.isogenies_prime_degree(3)[0]

sage: phi.set_post_isomorphism(phi.codomain().isomorphism_to(E))

sage: phi

Isogeny of degree 3 from Elliptic Curve defined by y”2 = x*3 + 1 to Elliptic Curve defined by y”*2 = x"*3 + 1

sage: phi.rational_maps()

(((-4*%z2 + 5)*x"3 + (22 + 3))/x"2, ((3*z2 + 7)*x"3*y + (-7*z2 - 5)*y)/x"3)

but this endomorphism doesn't satisfy ¢? = [—q].

sage: (X1, Y1) = phi.rational_maps()
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sage: (X2, Y2) = phi.rational_maps()

sage: X3 = X2.subs(x=X1, y=Y1l)

sage: Y3 = Y2.subs(x=X1, y=Y1l)

sage: (X3, Y3) == E.multiplication_by m(-3)
False

I'm not sure where it went wrong. Even if I work over an algebraic closure F,, 1 get only one curve j = 0 and
there is a unique endomorphism of degree g. I guess End(E(0)) ~ Oy, but for some reason I can't construct
an endomorphism of degree q.

[1] https://eprint.iacr.org/2018/371.pdf

[+4] [2022-02-01 04:28:15] djao [N/ACCEPTED]

All you need to do is define GF(172) explicitly using a concrete irreducible polynomial.

SageMath version 9.4, Release Date: 2021-08-22
Using Python 3.9.5. Type "help()" for help.

sage: F.<z> = GF(17”2, modulus=x"2+3)

....: E = EllipticCurve(F, [0,1])

....: ker = E(0,1)

....: phi = E.isogeny(ker)

....: phi.set_post_isomorphism(phi.codomain().isomorphism_to(E))

co..t X3 = X2.subs(x=X1, y=Y1)
...t Y3 = Y2.subs(x=X1, y=Y1)

Thanks a lot! It was simpler than I thought. - Andy

[+1] [2023-06-21 04:32:31] yyyyyyy
The core of the issue is that the endomorphism you've constructed is off by a nontrivial automorphism:
sage: E = EllipticCurve(j=GF(1772)(0))

sage: phi = E.isogenies_prime_degree(3)[0]
sage: phi = phi.codomain().isomorphism_to(E) * phi

sage: phi”f2 == E.scalar_multiplication(-3)
False
sage: [(aut*phi)”2 == E.scalar_multiplication(-3) for aut in E.automorphisms()]

[False, False, False, False, True, True]

This can happen because .isogenies_prime_degree() only returns a set of representatives of the outgoing isogenies
up to post-composition with isomorphisms.

Thus, to solve your problem, you should identify the correct automorphism to compose with, for instance by evaluating
the endomorphism ¢ on some points and checking which of the automorphisms acts in the same way. Note that this
phenomenon is specific to the curves with j-invariants 1728 and 0, as all other elliptic curves only have +1 as
automorphisms.

(The fact that the issue also goes away when defining the field using an explicit polynomial, as suggested by the other answer, is merely a

coincidence coming from implementation choices within SageMath.)

A better method to solve this problem — construct a supersingular curve together with a small-degree endomorphism —

[1] https://ia.cr/2023/106
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