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>>> HTTPS

1. Visit https://letsencrypt.org/

2. View security information in your browser.
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>>> NIST

1. https://www.nist.gov/news-events/news/2023/02/
nist-revises-digital-signature-standard-dss-and-publishes-guideline

2. Use better browsers like Firefox which support ECDSA.

* https://www.keylength.com/en/compare/
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>>> ECDSA

Choose a cryptographic hash function H with appropriate
domain and codomain. The key generation algorithm outputs a
pair (k,Q) such that Q = [k]P ∈ G = ⟨P ⟩ with |G| = ℓ ∤ p, where k
is the secret signing key and Q is the public verification
key.

Signing (G, P, k,H,m)

1. t
$← {1, . . . , ℓ− 1}

2. R← [t]P

3. r ← x(R) (mod ℓ)

4. if r = 0 then goto Step 1.
5. e← H(m)

6. s← (e+ rk)t−1 (mod ℓ)

7. if s = 0 then goto Step 1.
8. return σ := (r, s)

Verification (G, P,Q,H,m, σ)

1. e← H(m)

2. u1 ← es−1 (mod ℓ), u2 ← rs−1

(mod ℓ)

3. T ← [u1]P + [u2]Q

4. return r
?
= x(T ) (mod ℓ)
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>>> Warning

1. ECDSA requires a good source of entropy because the
ephemeral secret t needs to be truly random.

2. ECDSA was invented only to circumvent patents in Schnorr
signatures. Unfortunately, ECDSA does not come with a
proof of security, while Schnorr signatures did.
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>>> Failures

1. Sony PlayStation 3:
https://en.wikipedia.org/wiki/PlayStation_3_homebrew

* A failure to choose random ephemeral values allowed
attackers to determine the private key for signing all
applications.

2. NSA: https://en.wikipedia.org/wiki/Dual_EC_DRBG

* At the CRYPTO 2007 conference rump session, Dan Shumow and
Niels Ferguson presented a potential backdoor in the
NIST/NSA specified Dual_EC_DRBG cryptographically secure
pseudorandom number generator. The backdoor was confirmed
to be real in 2013 as part of the Edward Snowden leaks.
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>>> Punchline
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>>> Elliptic curves

Let p be a prime larger than 3 and q = pn for n > 0. Elliptic
curves can be represented with several different types of
defining equations over Fq.

1. Short Weierstrass form: y2 = x3 + ax+ b such that
4a3 + 27b2 ̸= 0

* Every elliptic curve can be represented in this form.

2. Montgomery form: by2 = x3 + ax2 + x such that b(a2 − 4) ̸= 0

* The group order is divisible by 4.
* x-only "differential addition," i.e. x(P +Q) can be

computed using only x(P ), x(Q), and x(Q− P ).

3. Twisted Edwards form: ax2 + y2 = 1 + dx2y2 such that
ad(a− d) ̸= 0

* Birationally equivalent to Montgomery form.
* If a is a square and d is a non-square, then a single

addition formula works for all possible inputs.
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>>> Safe curves

The Dual_EC_DRBG algorithm was based on P-256 curve

y2 = x3 − 3x+

41058363725152142129326129780047268409114441015993725554835256314039467401291

modulo p = 2256 − 2224 + 2192 + 296 − 1.

This led to concerns about security of P-256 itself and the
following curve emerged as the de facto alternative
(https://safecurves.cr.yp.to).

* Curve25519: y2 = x3 + 486662x2 + x modulo p = 2255 − 19.

* This Montgomery curve is used in ECDSA with co-factor 8
subgroup G = ⟨P ⟩ such that x(P ) = 9.

* Ed25519: −x2 + y2 = 1− 121665

121666
x2y2 modulo p = 2255 − 19.

* This twisted Edwards curve is birationally equivalent to
Curve25519.

[2. Punchline]$ _ [11/15]
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>>> EdDSA, Step 1: Σ-protocol

Let G = ⟨P ⟩ with |G| = ℓ ∤ p.

The prover P randomly chooses
(secret) k ∈ {0, . . . , ℓ− 1} and publishes Q = [k]P. Now, P can
prove knowledge of a discrete logarithm k to a verifier V:

P V

t
$← {0, . . . , ℓ− 1}
R← [t]P

e← {0, . . . , ℓ− 1}

s← t+ ek (mod ℓ) [s]P
?
= R+ [e]Q

G,p,Q

commitment: R

challenge: e

response: s
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>>> EdDSA, Step 2: Fiat-Shamir transformation

Choose a random oracle cryptographic hash function H with
appropriate domain and codomain.

The key generation algorithm
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Signing (G, P, k,H,m)

1. t
$← {1, . . . , ℓ− 1}

2. R← [t]P

3. e← H(m∥R)

4. s← t+ ek (mod ℓ)

5. return σ := (R, s)

Verification (G, P,Q,H,m, σ)

1. e← H(m∥R)

2. return [s]P
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= R+ [e]Q
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>>> Demonstration: Ed25519

1. Download binary https://jedisct1.github.io/minisign/

2. Generate key pair.

* minisign.pub contains a concatination of Ed (2 bytes),
random bits (8 bytes), and 256-bit public key (32 bytes)
stored in base64 format.

* minisign.key contains the encrypted private key derived
using scrypt, a password-based key derivation function,
and stored in base64 format.

3. Create and sign a file myfile.txt.

* myfile.txt.minisig contains the signature for BLAKE2b hash
of the file contents, stored in base64 format.

4. Verify the signature using public key.

* Origin non-repudiation: Protection against falsely denying
having performed the action.

* Entity authentication: Assurance about the identity of the
entity interacting with the system.

* Data authentication: Assurance of the integrity of data.
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>>> Further reading

Hüseyin Hışıl, 2010, Elliptic Curves, Group Law, and
Efficient Computation. §1.1 and 2.3.4
https://eprints.qut.edu.au/33233/

Nigel P. Smart, 2016, Cryptography Made Simple. §21.3

Simon Josefsson and Ilari Liusvaara, 2017,Edwards-Curve
Digital Signature Algorithm. §1
https://www.rfc-editor.org/info/rfc8032

Steven D. Galbraith, 2018, Mathematics of Public Key
Cryptography. §9.12
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html

David Wong, 2021, Real World Cryptography. §7.3.4

Luís T. A. N. Brandão and Michael Davidson, 2022, Notes
on Threshold EdDSA/Schnorr Signatures. Figures 1 and 2
https://csrc.nist.gov/pubs/ir/8214/b/ipd
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