>>> EdDSA: Not just ECDSA with a twist
>>> Math 445 (Introduction to Cryptography)

Name: Gaurish Korpal (University of Arizona) Date: April 29, 2024

>>> Table of contents

>>> Setup

1. Visit https://letsencrypt.org/

- 1. Visit https://letsencrypt.org/
- 2. View security information in your browser.

1. https://www.nist.gov/news-events/news/2023/02/ nist-revises-digital-signature-standard-dss-and-publishes-guideline

>>> NIST

- 1. https://www.nist.gov/news-events/news/2023/02/ nist-revises-digital-signature-standard-dss-and-publishes-guideline
- 2. Use better browsers like Firefox which support ECDSA.

>>> NIST

- 1. https://www.nist.gov/news-events/news/2023/02/
 nist-revises-digital-signature-standard-dss-and-publishes-guideline
- 2. Use better browsers like Firefox which support ECDSA.
 - * https://www.keylength.com/en/compare/

>>> ECDSA

Choose a cryptographic hash function H with appropriate domain and codomain. The key generation algorithm outputs a pair (k, Q) such that $Q = [k]P \in \mathbb{G} = \langle P \rangle$ with $|\mathbb{G}| = \ell \nmid p$, where k is the secret signing key and Q is the public verification key.

>>> ECDSA

Choose a cryptographic hash function H with appropriate domain and codomain. The key generation algorithm outputs a pair (k,Q) such that $Q = [k]P \in \mathbb{G} = \langle P \rangle$ with $|\mathbb{G}| = \ell \nmid p$, where k is the secret signing key and Q is the public verification key.

Signing $(\mathbb{G}, P, k, \mathsf{H}, m)$

1.
$$t \stackrel{\$}{\leftarrow} \{1, \dots, \ell - 1\}$$

2.
$$R \leftarrow [t]P$$

3.
$$r \leftarrow x(R) \pmod{\ell}$$

- 4. if r=0 then goto Step 1.
- **5.** $e \leftarrow \mathsf{H}(m)$
- 6. $s \leftarrow (e + r\mathbf{k})t^{-1} \pmod{\ell}$
- 7. if s=0 then goto Step 1.

8. return $\sigma \coloneqq (r,s)$

>>> ECDSA

Choose a cryptographic hash function H with appropriate domain and codomain. The key generation algorithm outputs a pair (k,Q) such that $Q = [k]P \in \mathbb{G} = \langle P \rangle$ with $|\mathbb{G}| = \ell \nmid p$, where k is the secret signing key and Q is the public verification key.

Signing $(\mathbb{G}, P, k, \mathsf{H}, m)$

1.
$$t \stackrel{\$}{\leftarrow} \{1, \ldots, \ell - 1\}$$

- **2.** $R \leftarrow [t]P$
- **3.** $r \leftarrow x(R) \pmod{\ell}$
- 4. if r=0 then goto Step 1.
- **5.** $e \leftarrow \mathsf{H}(m)$
- 6. $s \leftarrow (e + r\mathbf{k})t^{-1} \pmod{\ell}$
- 7. if s=0 then goto Step 1.

8. return $\sigma \coloneqq (r,s)$

Verification $(\mathbb{G}, P, Q, \mathsf{H}, m, \sigma)$

1.
$$e \leftarrow \mathsf{H}(m)$$

2. $u_1 \leftarrow es^{-1} \pmod{\ell}, \ u_2 \leftarrow rs^{-1} \pmod{\ell}$ (mod ℓ)

$$3. \quad T \leftarrow [u_1]P + [u_2]Q$$

4. return $r \stackrel{?}{=} x(T) \pmod{\ell}$

>>> Warning

1. ECDSA requires a good source of entropy because the ephemeral secret t needs to be truly random.

>>> Warning

- 1. ECDSA requires a good source of entropy because the ephemeral secret t needs to be truly random.
- 2. ECDSA was invented only to circumvent patents in Schnorr signatures. Unfortunately, ECDSA does not come with a proof of security, while Schnorr signatures did.

1. Sony PlayStation 3: https://en.wikipedia.org/wiki/PlayStation_3_homebrew

- 1. Sony PlayStation 3: https://en.wikipedia.org/wiki/PlayStation_3_homebrew
 - * A failure to choose random ephemeral values allowed attackers to determine the private key for signing all applications.

- 1. Sony PlayStation 3: https://en.wikipedia.org/wiki/PlayStation_3_homebrew
 - * A failure to choose random ephemeral values allowed attackers to determine the private key for signing all applications.
- 2. NSA: https://en.wikipedia.org/wiki/Dual_EC_DRBG

1. Sony PlayStation 3: https://en.wikipedia.org/wiki/PlayStation_3_homebrew

* A failure to choose random ephemeral values allowed attackers to determine the private key for signing all applications.

2. NSA: https://en.wikipedia.org/wiki/Dual_EC_DRBG

* At the CRYPTO 2007 conference rump session, Dan Shumow and Niels Ferguson presented a potential backdoor in the NIST/NSA specified Dual_EC_DRBG cryptographically secure pseudorandom number generator. The backdoor was confirmed to be real in 2013 as part of the Edward Snowden leaks. >>> Punchline

Let p be a prime larger than 3 and $q = p^n$ for n > 0. Elliptic curves can be represented with several different types of defining equations over \mathbb{F}_q .

1. Short Weierstrass form: $y^2 = x^3 + ax + b$ such that $4a^3 + 27b^2 \neq 0$

- 1. Short Weierstrass form: $y^2 = x^3 + ax + b$ such that $4a^3 + 27b^2 \neq 0$
 - * Every elliptic curve can be represented in this form.

- 1. Short Weierstrass form: $y^2 = x^3 + ax + b$ such that $4a^3 + 27b^2 \neq 0$
 - * Every elliptic curve can be represented in this form.
- 2. Montgomery form: $by^2 = x^3 + ax^2 + x$ such that $b(a^2 4) \neq 0$

- 1. Short Weierstrass form: $y^2 = x^3 + ax + b$ such that $4a^3 + 27b^2 \neq 0$
 - * Every elliptic curve can be represented in this form.
- 2. Montgomery form: $by^2 = x^3 + ax^2 + x$ such that $b(a^2 4) \neq 0$
 - * The group order is divisible by 4.

- 1. Short Weierstrass form: $y^2 = x^3 + ax + b$ such that $4a^3 + 27b^2 \neq 0$
 - * Every elliptic curve can be represented in this form.
- 2. Montgomery form: $by^2 = x^3 + ax^2 + x$ such that $b(a^2 4) \neq 0$
 - * The group order is divisible by 4.
 - * x-only "differential addition," i.e. x(P+Q) can be computed using only x(P), x(Q), and x(Q-P).

Let p be a prime larger than 3 and $q = p^n$ for n > 0. Elliptic curves can be represented with several different types of defining equations over \mathbb{F}_q .

- 1. Short Weierstrass form: $y^2 = x^3 + ax + b$ such that $4a^3 + 27b^2 \neq 0$
 - * Every elliptic curve can be represented in this form.
- 2. Montgomery form: $by^2 = x^3 + ax^2 + x$ such that $b(a^2 4) \neq 0$
 - * The group order is divisible by 4.
 - * x-only "differential addition," i.e. x(P+Q) can be computed using only x(P), x(Q), and x(Q-P).

3. Twisted Edwards form: $ax^2 + y^2 = 1 + dx^2y^2$ such that $ad(a-d) \neq 0$

- 1. Short Weierstrass form: $y^2 = x^3 + ax + b$ such that $4a^3 + 27b^2 \neq 0$
 - * Every elliptic curve can be represented in this form.
- 2. Montgomery form: $by^2 = x^3 + ax^2 + x$ such that $b(a^2 4) \neq 0$
 - * The group order is divisible by 4.
 - * x-only "differential addition," i.e. x(P+Q) can be computed using only x(P), x(Q), and x(Q-P).
- 3. Twisted Edwards form: $ax^2 + y^2 = 1 + dx^2y^2$ such that $ad(a-d) \neq 0$
 - * Birationally equivalent to Montgomery form.

Let p be a prime larger than 3 and $q = p^n$ for n > 0. Elliptic curves can be represented with several different types of defining equations over \mathbb{F}_q .

- 1. Short Weierstrass form: $y^2 = x^3 + ax + b$ such that $4a^3 + 27b^2 \neq 0$
 - * Every elliptic curve can be represented in this form.
- 2. Montgomery form: $by^2 = x^3 + ax^2 + x$ such that $b(a^2 4) \neq 0$
 - * The group order is divisible by 4.
 - * x-only "differential addition," i.e. x(P+Q) can be computed using only x(P), x(Q), and x(Q-P).

3. Twisted Edwards form: $ax^2 + y^2 = 1 + dx^2y^2$ such that $ad(a-d) \neq 0$

- * Birationally equivalent to Montgomery form.
- * If a is a square and d is a non-square, then a single addition formula works for all possible inputs.

The Dual_EC_DRBG algorithm was based on P-256 curve

41058363725152142129326129780047268409114441015993725554835256314039467401291 modulo $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$.

The Dual_EC_DRBG algorithm was based on P-256 curve

modulo $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$.

This led to concerns about security of P-256 itself and the following curve emerged as the de facto alternative (https://safecurves.cr.yp.to).

The Dual_EC_DRBG algorithm was based on P-256 curve

modulo $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$.

This led to concerns about security of P-256 itself and the following curve emerged as the de facto alternative (https://safecurves.cr.yp.to).

* Curve25519: $y^2 = x^3 + 486662x^2 + x \mod p = 2^{255} - 19$.

The Dual_EC_DRBG algorithm was based on P-256 curve

modulo $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$.

This led to concerns about security of P-256 itself and the following curve emerged as the de facto alternative (https://safecurves.cr.yp.to).

- * Curve25519: $y^2 = x^3 + 486662x^2 + x \mod p = 2^{255} 19$.
 - * This Montgomery curve is used in ECDSA with co-factor 8 subgroup $\mathbb{G} = \langle P \rangle$ such that x(P) = 9.

The Dual_EC_DRBG algorithm was based on P-256 curve

modulo $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$.

This led to concerns about security of P-256 itself and the following curve emerged as the de facto alternative (https://safecurves.cr.yp.to).

- * Curve25519: $y^2 = x^3 + 486662x^2 + x \mod p = 2^{255} 19$.
 - * This Montgomery curve is used in ECDSA with co-factor 8 subgroup $\mathbb{G} = \langle P \rangle$ such that x(P) = 9.

* Ed25519: $-x^2 + y^2 = 1 - \frac{121665}{121666} x^2 y^2$ modulo $p = 2^{255} - 19$.

The Dual_EC_DRBG algorithm was based on P-256 curve

modulo $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$.

This led to concerns about security of P-256 itself and the following curve emerged as the de facto alternative (https://safecurves.cr.yp.to).

- * Curve25519: $y^2 = x^3 + 486662x^2 + x \text{ modulo } p = 2^{255} 19.$
 - * This Montgomery curve is used in ECDSA with co-factor 8 subgroup $\mathbb{G} = \langle P \rangle$ such that x(P) = 9.
- * Ed25519: $-x^2 + y^2 = 1 \frac{121665}{121666} x^2 y^2$ modulo $p = 2^{255} 19$.
 - * This twisted Edwards curve is birationally equivalent to Curve25519.

Let $\mathbb{G}=\langle P\rangle$ with $|\mathbb{G}|=\ell \nmid p$.

>>> EdDSA, Step 1: Σ-protocol

Let $\mathbb{G} = \langle P \rangle$ with $|\mathbb{G}| = \ell \nmid p$. The prover \mathcal{P} randomly chooses (secret) $\mathbf{k} \in \{0, \dots, \ell-1\}$ and publishes $\mathbf{Q} = [\mathbf{k}]P$.

Let $\mathbb{G} = \langle P \rangle$ with $|\mathbb{G}| = \ell \nmid p$. The prover \mathcal{P} randomly chooses (secret) $k \in \{0, \dots, \ell - 1\}$ and publishes Q = [k]P. Now, \mathcal{P} can prove knowledge of a discrete logarithm k to a verifier \mathcal{V} :

 $s \leftarrow t + ek \pmod{\ell}$ $[s]P \stackrel{?}{=} R + [e]Q$

[2. Punchline]\$ _

Let $\mathbb{G} = \langle P \rangle$ with $|\mathbb{G}| = \ell \nmid p$. The prover \mathcal{P} randomly chooses (secret) $k \in \{0, \dots, \ell - 1\}$ and publishes Q = [k]P. Now, \mathcal{P} can prove knowledge of a discrete logarithm k to a verifier \mathcal{V} :

Let $\mathbb{G} = \langle P \rangle$ with $|\mathbb{G}| = \ell \nmid p$. The prover \mathcal{P} randomly chooses (secret) $k \in \{0, \dots, \ell - 1\}$ and publishes Q = [k]P. Now, \mathcal{P} can prove knowledge of a discrete logarithm k to a verifier \mathcal{V} :

Choose a *random oracle* cryptographic hash function H with appropriate domain and codomain.

Choose a random oracle cryptographic hash function H with appropriate domain and codomain. The key generation algorithm outputs a pair (k, Q) such that $Q = [k]P \in \mathbb{G} = \langle P \rangle$ with $|\mathbb{G}| = \ell \nmid p$, where k is the secret signing key and Q is the public verification key.

Choose a random oracle cryptographic hash function H with appropriate domain and codomain. The key generation algorithm outputs a pair (k, Q) such that $Q = [k]P \in \mathbb{G} = \langle P \rangle$ with $|\mathbb{G}| = \ell \nmid p$, where k is the secret signing key and Q is the public verification key.

Signing $(\mathbb{G}, P, k, \mathsf{H}, m)$

1.
$$t \stackrel{\$}{\leftarrow} \{1, \dots, \ell - 1\}$$

2.
$$R \leftarrow [t]P$$

3.
$$e \leftarrow \mathsf{H}(m || R)$$

- 4. $s \leftarrow t + e^{k} \pmod{\ell}$
- 5. return $\sigma \coloneqq (R,s)$

Choose a random oracle cryptographic hash function H with appropriate domain and codomain. The key generation algorithm outputs a pair (k, Q) such that $Q = [k]P \in \mathbb{G} = \langle P \rangle$ with $|\mathbb{G}| = \ell \nmid p$, where k is the secret signing key and Q is the public verification key.

Signing $(\mathbb{G}, P, k, \mathsf{H}, m)$

- **1.** $t \stackrel{\$}{\leftarrow} \{1, \dots, \ell 1\}$
- **2.** $R \leftarrow [t]P$
- **3.** $e \leftarrow \mathsf{H}(m || R)$
- 4. $s \leftarrow t + e^{k} \pmod{\ell}$
- 5. return $\sigma \coloneqq (R,s)$

 $\texttt{Verification} \ (\mathbb{G}, P, Q, \mathsf{H}, m, \sigma)$

1.
$$e \leftarrow H(m||R)$$

2. return
$$[s]P \stackrel{?}{=} R + [e]Q$$

- >>> Demonstration: Ed25519
 - 1. Download binary https://jedisct1.github.io/minisign/

- 1. Download binary https://jedisct1.github.io/minisign/
- 2. Generate key pair.

- 1. Download binary https://jedisct1.github.io/minisign/
- 2. Generate key pair.
 - * minisign.pub contains a concatination of Ed (2 bytes), random bits (8 bytes), and 256-bit public key (32 bytes) stored in base64 format.

- 1. Download binary https://jedisct1.github.io/minisign/
- 2. Generate key pair.
 - * minisign.pub contains a concatination of Ed (2 bytes), random bits (8 bytes), and 256-bit public key (32 bytes) stored in base64 format.
 - * minisign.key contains the encrypted private key derived using scrypt, a password-based key derivation function, and stored in base64 format.

- 1. Download binary https://jedisct1.github.io/minisign/
- 2. Generate key pair.
 - * minisign.pub contains a concatination of Ed (2 bytes), random bits (8 bytes), and 256-bit public key (32 bytes) stored in base64 format.
 - * minisign.key contains the encrypted private key derived using scrypt, a password-based key derivation function, and stored in base64 format.
- 3. Create and sign a file myfile.txt.

- 1. Download binary https://jedisct1.github.io/minisign/
- 2. Generate key pair.
 - * minisign.pub contains a concatination of Ed (2 bytes), random bits (8 bytes), and 256-bit public key (32 bytes) stored in base64 format.
 - * minisign.key contains the encrypted private key derived using scrypt, a password-based key derivation function, and stored in base64 format.
- 3. Create and sign a file myfile.txt.
 - * myfile.txt.minisig contains the signature for BLAKE2b hash
 of the file contents, stored in base64 format.

- 1. Download binary https://jedisct1.github.io/minisign/
- 2. Generate key pair.
 - * minisign.pub contains a concatination of Ed (2 bytes), random bits (8 bytes), and 256-bit public key (32 bytes) stored in base64 format.
 - * minisign.key contains the encrypted private key derived using scrypt, a password-based key derivation function, and stored in base64 format.
- 3. Create and sign a file myfile.txt.
 - * myfile.txt.minisig contains the signature for BLAKE2b hash
 of the file contents, stored in base64 format.
- 4. Verify the signature using public key.

- 1. Download binary https://jedisct1.github.io/minisign/
- 2. Generate key pair.
 - * minisign.pub contains a concatination of Ed (2 bytes), random bits (8 bytes), and 256-bit public key (32 bytes) stored in base64 format.
 - * minisign.key contains the encrypted private key derived using scrypt, a password-based key derivation function, and stored in base64 format.
- 3. Create and sign a file myfile.txt.
 - * myfile.txt.minisig contains the signature for BLAKE2b hash
 of the file contents, stored in base64 format.
- 4. Verify the signature using public key.
 - * Origin non-repudiation: Protection against falsely denying having performed the action.

- 1. Download binary https://jedisct1.github.io/minisign/
- 2. Generate key pair.
 - * minisign.pub contains a concatination of Ed (2 bytes), random bits (8 bytes), and 256-bit public key (32 bytes) stored in base64 format.
 - * minisign.key contains the encrypted private key derived using scrypt, a password-based key derivation function, and stored in base64 format.
- 3. Create and sign a file myfile.txt.
 - * myfile.txt.minisig contains the signature for BLAKE2b hash
 of the file contents, stored in base64 format.
- 4. Verify the signature using public key.
 - * Origin non-repudiation: Protection against falsely denying having performed the action.
 - * Entity authentication: Assurance about the identity of the entity interacting with the system.

- 1. Download binary https://jedisct1.github.io/minisign/
- 2. Generate key pair.
 - * minisign.pub contains a concatination of Ed (2 bytes), random bits (8 bytes), and 256-bit public key (32 bytes) stored in base64 format.
 - * minisign.key contains the encrypted private key derived using scrypt, a password-based key derivation function, and stored in base64 format.
- 3. Create and sign a file myfile.txt.
 - * myfile.txt.minisig contains the signature for BLAKE2b hash
 of the file contents, stored in base64 format.
- 4. Verify the signature using public key.
 - * Origin non-repudiation: Protection against falsely denying having performed the action.
 - * Entity authentication: Assurance about the identity of the entity interacting with the system.
 - * Data authentication: Assurance of the integrity of data.

>>> Further reading

- Hüseyin Hışıl, 2010, Elliptic Curves, Group Law, and Efficient Computation. §1.1 and 2.3.4 https://eprints.qut.edu.au/33233/
- Nigel P. Smart, 2016, Cryptography Made Simple. §21.3
- Simon Josefsson and Ilari Liusvaara, 2017, Edwards-Curve Digital Signature Algorithm. §1 https://www.rfc-editor.org/info/rfc8032
- Steven D. Galbraith, 2018, Mathematics of Public Key Cryptography. §9.12 https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
- 📎 David Wong, 2021, Real World Cryptography. §7.3.4
- Luís T. A. N. Brandão and Michael Davidson, 2022, Notes on Threshold EdDSA/Schnorr Signatures. Figures 1 and 2 https://csrc.nist.gov/pubs/ir/8214/b/ipd