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>>> HTTPS

1. Visit https://letsencrypt.org/
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2. View security information in your browser.
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2. Use better browsers like Firefox which support ECDSA.
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2. Use better browsers like Firefox which support ECDSA.
* https://www.keylength.com/en/compare/
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>>> ECDSA

Choose a cryptographic hash function H with appropriate
domain and codomain. The key generation algorithm outputs a
pair (k,()) such that () = [k]P € G = (P) with |G| =/{{p, where k
is the secret signing key and () is the public verification
key.
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>>> ECDSA

Choose a cryptographic hash function H with appropriate
domain and codomain. The key generation algorithm outputs a
pair (k,()) such that () = [k]P € G = (P) with |G| =/{{p, where k
is the secret signing key and () is the public verification
key.

Signing (G, P, k,H,m)

t& {1, 0—1}

R« [t|P

r < z(R) (mod ¢)

if r =0 then goto Step 1.
e + H(m)

s+ (e+7rk)t™* (mod £)

if s =0 then goto Step 1.

0 N o o b W N =

. return o = (r,s)
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>>> ECDSA

Choose a cryptographic hash function H with appropriate
domain and codomain. The key generation algorithm outputs a
pair (k,()) such that () = [k]P € G = (P) with |G| =/{{p, where k
is the secret signing key and () is the public verification
key.

Signing (G, P, k,H,m) Verification (G, P,Q,H,m,o)
1. tE {1, .01} 1. e+ H(m)
2. R« [t|P 2. ui +es ' (mod £), us < rs*
3. r+ z(R) (mod ¢) L)
4. if r =0 then goto Step 1. 3. T ¢ [wa]P + [u2]@
5. e+ H(m) 4. return r = z(T) (mod ¢)
6. 5+ (e+rk)t™" (mod £)
7. if s =0 then goto Step 1.
8. return o := (r,s)
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>>> Warning

1. ECDSA requires a good source of entropy because the
ephemeral secret ¢ needs to be truly random.
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>>> Warning

1. ECDSA requires a good source of entropy because the
ephemeral secret ¢ needs to be truly random.

2. ECDSA was invented only to circumvent patents in Schnorr
signatures. Unfortunately, ECDSA does not come with a
proof of security, while Schnorr signatures did.
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>>> Failures

1. Sony PlayStation 3:
https://en.wikipedia.org/wiki/PlayStation_3_homebrew
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>>> Failures

1. Sony PlayStation 3:
https://en.wikipedia.org/wiki/PlayStation_3_homebrew

* A failure to choose random ephemeral values allowed
attackers to determine the private key for signing all
applications.
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>>> Failures

1. Sony PlayStation 3:
https://en.wikipedia.org/wiki/PlayStation_3_homebrew
* A failure to choose random ephemeral values allowed
attackers to determine the private key for signing all
applications.
2. NSA: https://en.wikipedia.org/wiki/Dual_EC_DRBG
* At the CRYPTO 2007 conference rump session, Dan Shumow and
Niels Ferguson presented a potential backdoor in the
NIST/NSA specified Dual_EC_DRBG cryptographically secure
pseudorandom number generator. The backdoor was confirmed
to be real in 2013 as part of the Edward Snowden leaks.
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>>> Elliptic curves
Let p be a prime larger than 3 and ¢ =p" for m > 0. Elliptic

curves can be represented with several different types of
defining equations over F,.
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>>> Elliptic curves

Let p be a prime larger than 3 and ¢ =p" for m > 0. Elliptic
curves can be represented with several different types of
defining equations over F,.

1. Short Weierstrass form: y2::;r3+—aw—%b such that
4a> + 276 £ 0
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* Every elliptic curve can be represented in this form.
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>>> Elliptic curves

Let p be a prime larger than 3 and ¢ =p" for m > 0. Elliptic
curves can be represented with several different types of
defining equations over F,.
1. Short Weierstrass form: y2::m34—ax—+b such that
4a> + 276 £ 0
* Every elliptic curve can be represented in this form.
2. Montgomery form: by? =23+ ax? 4+ z such that b(a? —4) #0
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>>> Elliptic curves

Let p be a prime larger than 3 and ¢ =p" for m > 0. Elliptic
curves can be represented with several different types of
defining equations over F,.
1. Short Weierstrass form: y2 =23 + azr + b such that
4a> + 276 £ 0
* Every elliptic curve can be represented in this form.
2. Montgomery form: by? =23+ azx?+x such that b(a®—4) #0

* The group order is divisible by 4.
* r-only "differential addition," i.e. z(P+ @) can be
computed using only z(P), x(Q), and z(Q — P).
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Let p be a prime larger than 3 and ¢ =p" for m > 0. Elliptic
curves can be represented with several different types of
defining equations over F,.
1. Short Weierstrass form: y2::m34—ax—+b such that
4a> + 276 £ 0
* Every elliptic curve can be represented in this form.
2. Montgomery form: by? =23+ ax? 4+ z such that b(a? —4) #0
* The group order is divisible by 4.
* r-only "differential addition," i.e. z(P+ @) can be
computed using only z(P), x(Q), and z(Q — P).
3. Twisted Edwards form: amg—kyQ:: 1+—dx2y2 such that
ad(a —d) # 0
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>>> Elliptic curves

Let p be a prime larger than 3 and ¢ =p" for m > 0. Elliptic
curves can be represented with several different types of
defining equations over F,.
1. Short Weierstrass form: y2::$34—ax—+b such that
4a> + 276 £ 0
* Every elliptic curve can be represented in this form.
2. Montgomery form: by? =23+ azx?+x such that b(a®—4) #0
* The group order is divisible by 4.
* r-only "differential addition," i.e. z(P+ @) can be
computed using only z(P), x(Q), and z(Q — P).
3. Twisted Edwards form: amQ—kyQ:: 1+—dx2y2 such that
ad(a —d) # 0

* Birationally equivalent to Montgomery form.
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>>> Elliptic curves

Let p be a prime larger than 3 and ¢ =p" for m > 0. Elliptic
curves can be represented with several different types of
defining equations over F,.
1. Short Weierstrass form: y2::;r3+—aw—%b such that
4a> + 276 £ 0
* Every elliptic curve can be represented in this form.
2. Montgomery form: by? =23+ azx?+x such that b(a®—4) #0
* The group order is divisible by 4.
* r-only "differential addition," i.e. z(P+ @) can be
computed using only z(P), x(Q), and z(Q — P).
3. Twisted Edwards form: axQA%yQ:: 1#fdx2y2 such that
ad(a —d) # 0
* Birationally equivalent to Montgomery form.
* If a is a square and d is a non-square, then a single
addition formula works for all possible inputs.
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>>> Safe curves

The Dual_EC_DRBG algorithm was based on P-256 curve

y? =23 — 3z+

41058363725152142129326129780047268409114441015993725554835256314039467401291
modulo p = 26 — 2224 4 9192 4 996 _ 7,

[2. Punchline]$ _ [11/15]


https://safecurves.cr.yp.to

>>> Safe curves

The Dual_EC_DRBG algorithm was based on P-256 curve

y2 =23 — 3z+

41058363725152142129326129780047268409114441015993725554835256314039467401291

modullo pi= 2226F— 9228 L 9l82i 936/ __Hj

This led to concerns about security of P-256 itself and the
following curve emerged as the de facto alternative
(https://safecurves.cr.yp.to).
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>>> Safe curves

The Dual_EC_DRBG algorithm was based on P-256 curve

y2 =23 — 3z+

41058363725152142129326129780047268409114441015993725554835256314039467401291
modullo pi= 2226F— 9228 L 9l82i 936/ __Hj
This led to concerns about security of P-256 itself and the
following curve emerged as the de facto alternative
(https://safecurves.cr.yp.to).

* Curve25519: 92 = x3 + 48666222 + = modulo p = 2235 —19.

* This Montgomery curve is used in ECDSA with co-factor 8
subgroup G = (P) such that z(P)=9.
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>>> Safe curves
The Dual_EC_DRBG algorithm was based on P-256 curve
y? =23 — 3z+

41058363725152142129326129780047268409114441015993725554835256314039467401291

modullo pi= 2226F— 9228 L 9l82i 936/ __Hj
This led to concerns about security of P-256 itself and the
following curve emerged as the de facto alternative
(https://safecurves.cr.yp.to).

* Curve25519: g2 = 23 + 48666222 + = modulo p = 225 — 19,

* This Montgomery curve is used in ECDSA with co-factor 8
subgroup G = (P) such that z(P)=9.
121665

*y? modulo p =2%° —19.
121666~ 7/ "o P )

* Ed25519: —x24 92 =1
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>>> Safe curves

The Dual_EC_DRBG algorithm was based on P-256 curve

y2 =23 — 3z+

41058363725152142129326129780047268409114441015993725554835256314039467401291
modullo pi= 2226F— 9228 L 9l82i 936/ __Hj
This led to concerns about security of P-256 itself and the
following curve emerged as the de facto alternative
(https://safecurves.cr.yp.to).

* Curve25519: 92 = x3 + 48666222 + = modulo p = 2235 —19.

* This Montgomery curve is used in ECDSA with co-factor 8
subgroup G = (P) such that z(P)=9.
121665
121666
* This twisted Edwards curve is birationally equivalent to
Curve25519.

* Ed25519: —x24 92 =1 2242 modulo p = 2255 — 19,
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>>> EdDSA, Step 1: ZX-protocol

Let G = (P) with |G| =/1p.
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Let G = (P) with |G| =/¢{p. The prover P randomly chooses
(secret) k€ {0,...,/ —1} and publishes () = [k]P.
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>>> EdDSA, Step 1: ZX-protocol

Let G = (P) with |G| =/¢{p. The prover P randomly chooses
(secret) k€ {0,...,/—1} and publishes () = [k]P. Now, P can
prove knowledge of a discrete logarithm k to a verifier V:

e+ {0,...,4—1}

s« t+ek (mod?) [s]P £ R+ [e]Q
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Let G = (P) with |G| =/¢{p. The prover P randomly chooses
(secret) k€ {0,...,/—1} and publishes () = [k]P. Now, P can
prove knowledge of a discrete logarithm k to a verifier V:

C
%}
LR

e+ {0,...,4—1}

cpatt eng®
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>>> EdDSA, Step 1: ZX-protocol

Let G = (P) with |G| =/¢{p. The prover P randomly chooses
(secret) k€ {0,...,/—1} and publishes () = [k]P. Now, P can
prove knowledge of a discrete logarithm k to a verifier V:

C
%}
LR

e+ {0,...,4—1}

cpatt eng®

s<t+ek (modl) =2 (P L R+ []Q
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>>> EdDSA, Step 2: Fiat-Shamir transformation

Choose a random oracle cryptographic hash function H with
appropriate domain and codomain.
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>>> EdDSA, Step 2: Fiat-Shamir transformation

Choose a random oracle cryptographic hash function H with
appropriate domain and codomain. The key generation algorithm
outputs a pair (k,()) such that () = [k]P € G = (P) with

|G| =t p, where k is the secret signing key and () is the
public verification key.

Signing (G, P, k,H,m)

t& {1, 0—1}
R+ [t]P
e < H(m||R)

s < t+ ek (mod )

a & W N -

return o = (R, s)
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>>> EdDSA, Step 2: Fiat-Shamir transformation

Choose a random oracle cryptographic hash function H with
appropriate domain and codomain. The key generation algorithm
outputs a pair (k,()) such that () = [k]P € G = (P) with

|G| = ¢t p, where k is the secret signing key and () is the
public verification key.

Signing (G, P, k,H,m) Verification (G, P, Q,H,m, o)
1.t&0,...,0-1} 1. e+ H(m|R)
2. R« [t]P 2. return [s]P LR+ le]@
3. e+ H(m||R)
4. s<t+ek (mod ¢)
5. return o := (R,s)
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>>> Demonstration: Ed25519

1. Download binary https://jedisctl.github.io/minisign/
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* minisign.pub contains a concatination of Ed (2 bytes),
random bits (8 bytes), and 256-bit public key (32 bytes)
stored in base64 format.
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having performed the action.
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* minisign.pub contains a concatination of Ed (2 bytes),
random bits (8 bytes), and 256-bit public key (32 bytes)
stored in base64 format.

* minisign.key contains the encrypted private key derived
using scrypt, a password-based key derivation function,
and stored in base64 format.

3. Create and sign a file myfile.txt.

* myfile.txt.minisig contains the signature for BLAKE2b hash
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having performed the action.
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entity interacting with the system.
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>>> Demonstration: Ed25519

1. Download binary https://jedisctl.github.io/minisign/
2. Generate key pair.

* minisign.pub contains a concatination of Ed (2 bytes),
random bits (8 bytes), and 256-bit public key (32 bytes)
stored in base64 format.

* minisign.key contains the encrypted private key derived
using scrypt, a password-based key derivation function,
and stored in base64 format.

3. Create and sign a file myfile.txt.

* myfile.txt.minisig contains the signature for BLAKE2b hash

of the file contents, stored in base64 format.
4. Verify the signature using public key.

* Origin non-repudiation: Protection against falsely denying
having performed the action.

* Entity authentication: Assurance about the identity of the
entity interacting with the system.

* Data authentication: Assurance of the integrity of data.
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>>> Further reading

\>

A\ >

\ >

Hiseyin Hisil, 2010, Elliptic Curves, Group Law, and
Effictent Computation. §1.1 and 2.3.4
https://eprints.qut.edu.au/33233/

Nigel P. Smart, 2016, Cryptography Made Simple. §21.3

Simon Josefsson and Ilari Liusvaara, 2017, Fdwards-Curve
Digital Signature Algorithm. §1
https://www.rfc-editor.org/info/rfc8032

Steven D. Galbraith, 2018, Mathematics of Public Key

Cryptography. §9.12
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html

David Wong, 2021, Real World Cryptography. §7.3.4

Luis T. A. N. Branddo and Michael Davidson, 2022, Notes
on Threshold EdDSA/Schnorr Signatures. Figures 1 and 2
https://csrc.nist.gov/pubs/ir/8214/b/ipd
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