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Abstract

We know that the sequence of prime numbers 2, 3, 5, 7, . . . is infinite and the size of its gaps
between two prime numbers is not bounded. In fact we can give a sequence of k-consecutive

composite numbers, N + 2, N + 3, N + 4, . . . , N + (k+ 1) where N =
∏

p≤k+2

p. Bertrand conjectured

that the gap to the next prime cannot be larger than the number we start our search at. I will pay
homage to Paul Erdős (whom I will refer to as “Uncle Paul”) by discussing his elegant proof of
Bertrand’s conjecture.

1 Introduction

Paul Erdős was one of the founder of probabilistic number theory. He pursued problems in com-
binatorics, graph theory, number theory, classical analysis, approximation theory, set theory, and
probability theory. He holds record of publishing around 1500 articles with 507 coauthors. You can
find 1265 of his papers at http://www.renyi.hu/~p_erdos/Erdos.html

He died at age of 83 and was living counterexample of G. H. Hardy’s statement1:

o mathematician should ever allow him to forget that mathematics, more than any other
art or science, is a young man’s game. & Galois died at twenty-one, Abel at twenty-seven,
Ramanujan at thirty-three, Riemann at forty. There have been men who have done great
work later; & [but] I do not know of a single instance of a major mathematical advance
initiated by a man past fifty. & A mathematician may still be competent enough at sixty,
but it is useless to expect him to have original ideas.

Why are we celebrating 103rd birthday? During my 5-year stay at NISER, his 103rd birthday is
his only prime birthday! Of all the numbers, the primes that were Uncle Paul’s “best friends”.

Even at this early point in his career, Uncle Paul had definite ideas about mathematical elegance.
He believed that God, whom he called the S.F. or Supreme Fascist, had a transfinite book (“transfinite”
being a mathematical concept for something larger than infinity) that contained the shortest, most
beautiful proof for every conceivable mathematical problem. The highest compliment he could pay to
a colleague’s work was to say, “That’s straight from The Book.”

2 Bertrand’s Postulate

In 1845, Joseph Bertrand2 conjectured (what he called postulate) that

A prime can always be found between any integer n > 1 and its double.

∗2nd year Integrated M. Sc. student at NISER, Bhubaneswar (Jatni), India
1A Mathematician’s Apology (1940), available at https://www.math.ualberta.ca/mss/misc/A%20Mathematician’s%

20Apology.pdf
2Joseph Bertrand. Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres

qu’elle renferme. Journal de l’Ecole Royale Polytechnique, Cahier 30, Vol. 18 (1845), 123-140.
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Bertrand himself verified his statement for all numbers in the interval [2, 3× 106].
In 1852, Pafnuty Lvovich Chebyshev3 attempted to prove the Prime Number Theorem (PNT)

lim
x→∞

π(x)

x/ ln(x)
= 1

where π(x) is the prime-counting function. Though he couldn’t prove PNT but his estimates for π(x)
were strong enough for him to prove Bertrand’s postulate.

Similar proof was given by Edmund Georg Hermann Landau in 1909 but it introduced a very useful
idea for verification of Bertrand’s Postulate for finite values of n, what we now call Landau’s Trick4.
Srinivasa Ramanujan Iyengar5 provided a short proof in 1919 but it also used the prime-counting
function, π(x).

As a college freshman in 1932, Uncle Paul (when he was 19) made a name for himself in mathe-
matical circles with a stunningly simple proof of Bertrand’s Postulate. As for Bertrand’s Postulate,
no one doubted that he had found The Book proof.

3 Proof from “The Book”

I am 19 and I guess it will be nice to go through Uncle Paul’s first published work on his birthday.
This will be a kind of exposition in English for original paper in German6. The basic idea of the
proof is to show that a certain central binomial coefficient needs to have a prime factor within the
desired interval in order to be large enough. This is made possible by a careful analysis of the prime
factorization of central binomial coefficients.

Step 1 Let p denote the prime numbers then
∏
p≤x

p ≤ 22(x−1) ∀x ∈ R≥2

Note that if q is the largest prime with q ≤ x, then∏
p≤x

p =
∏
p≤q

p and 22(q−1) ≤ 22(x−1)

Now we will prove given statement by induction on q.
Base case: q = 2 then 2 < 4. Hence given statement is holds in this case.
Induction hypothesis: For all integers x in the set {2, 3, . . . , 2m} we have

∏
p≤x p ≤ 22(x−1)

Inductive step: Consider odd primes q = 2m+ 1, then we split the product∏
p≤2m+1

p =
∏

p≤m+1

p ·
∏

m+1<p≤2m+1

p

Exercise. We have ∏
m+1<p≤2m+1

p ≤
(

2m+ 1

m

)
≤ 22m

Hint: Compare the prime factors of (2m+1)! andm!(m+1)! for given primes.
∑2m+1

k=0

(
2m+1

k

)
=

22m+1 and the binomial coefficients form a sequence that is symmetric and unimodal.

⇒
∏

p≤2m+1

p ≤ 22m · 22m = 24m

Hence proving the claim.

3P. Tchebychev. Mémoire sur les nombres premiers (in English: Memory on prime numbers). Journal de
mathématiques pures et appliquées, Sér. 1(1852), 366-390. (Proof of the postulate: 371-382)

4Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen (in English: Handbook of the the-
ory of distribution of prime numbers), Leipzig and Berlin, 1909, Bd. 1, S. 92 [https://archive.org/details/
handbuchderlehre01landuoft]

5Ramanujan, S. (1919), A proof of Bertrand’s postulate, Journal of the Indian Mathematical Society 11: 181–182
6A nice English translation of this paper (with comments) is available on pp. 8–12 of M. Aigner and G. M. Ziegler,

Proofs from THE BOOK (4th ed.), Springer, 2010.
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Step 2 For n ≥ 3, (
2n

n

)
>

22n

2n

Observe that,

2n

(
2n

n

)
=

2

1
· 3

1
· 4

2
· 5

2
· · · 2n− 2

n− 1
· 2n− 1

n− 1
· 2n

n
· 2n

n
> 22n

Step 3 For n ∈ Z>0, we have 2n < 26(2n)
1
6 .

2n =
(

(2n)
1
6

)6
<
(

(2n)
1
6 + 1

)6
Exercise. For n ≥ 2 we have n+1 < 2n.

Hint: Apply induction on n

⇒ 2n <

(
2

⌊
(2n)

1
6

⌋)6

< 26(2n)
1
6

Step 4 The largest power of primes that divide
(
2n
n

)
is not larger than 2n

We have to estimate the number of times the prime factor p occurs in
(
2n
n

)
= (2n)!

n!n! .

Exercise. The number of times the prime factor p occurs in n! is given by∑
k≥1

⌊
n

pk

⌋

The number of times the prime factor p occurs in
(
2n
n

)
is∑

k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
The summands vanish whenever pk > 2n. Moreover, each summand is at most 1 since it is an

integer and satisfies
⌊
2n
pk

⌋
− 2

⌊
n
pk

⌋
< 2n

pk
− 2

(
n
pk
− 1
)

= 2. Thus we get∑
k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
< max{` : p` ≤ 2n}

Hence the largest power of p that divides
(
2n
n

)
is not larger than 2n.

Step 5 Primes with p >
√

2n appear at most once in
(
2n
n

)
and the primes with 2

3n < p ≤ n

don’t appear at all in
(
2n
n

)
for n ≥ 3

This was Uncle Paul’s key observation.
From Step 4 we conclude that the primes p >

√
2n appear at most once in

(
2n
n

)
. Moreover,

3p > 2n implies that p and 2p are the only multiples of p that appear as factors in the numerator
of (2n)!

n!n! , while p ≤ n implies that there are two p-factors in the denominator. From this we

conclude that such primes don’t appear at all in
(
2n
n

)
.

Step 6 If
(
2n
n

)
didn’t have any prime factors in the range n < p ≤ 2n, then it would be

too small for n large enough.

For n ≥ 5 we have7
√

2n < 2
3n hence we can write∏

p≤2n
p =

∏
p≤
√
2n

p ·
∏

√
2n<p≤ 2

3
n

p ·
∏

2
3
n<p≤n

p ·
∏

n<p≤2n
p

7Erdős used n ≥ 3 in [1], which I believe is wrong since
√

6 > 2.
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Exercise. For all n ≥ 2(
2n

n

)
≤
∏
p≤2n

p

From Step 4 and Step 5 we get:(
2n

n

)
≤ (2n)

√
2n ·

∏
√
2n<p≤ 2

3
n

p ·
∏

n<p≤2n
p

Assume now that there is no prime factor p with n < p ≤ 2n, so
∏

n<p≤2n p vanishes. From Step
1 we get (

2n

n

)
≤ (2n)

√
2n · 2

4
3
n (1)

Using Step 2 in above equation
22n

2n
< (2n)

√
2n · 2

4
3
n

⇒ 22n < (2n)3(
√
2n+1)

Now Step 3 leads to

22n <

(
26(2n)

1
6

)3(
√
2n+1)

= 2(18
√
2n+18)(2n)

1
6

For n ≥ 50 we have 18 < 2
√

2n, thus

22n < 220
√
2n(2n)

1
6 = 220(2n)

2
3

⇒ (2n)
1
3 < 20

⇒ n < 4000

Hence (1) will lead to very small value of
(
2n
n

)
for n large enough.8

Step 7 Verification of Bertrand’s postulate for n < 4000
Following Landau’s trick we do not need to check 4000 cases, rather it suffices to check that

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001

is a sequence of prime numbers, where each is smaller than twice the previous one.

Exercise. Check that every number in above sequence is a prime number.

Hence every interval (n, 2n] with n < 4000, contains one of these 14 primes.
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