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Abstract

In this report we discuss the proof of the Weil conjectures for elliptic curves [Sil09, §V.2]. We
assume the knowledge of Galois theory [DF04, §14.9], commutative algebra [AM69, Chapter 9],
algebraic number theory [Neu99, §I.8,12 and §IV.1,2], and algebraic varieties [Sha77, §III.5.6].
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Notations

K a perfect field, like Q,R,Qp,Fq.
K̄ a fixed algebraic closure of K, like A,C,Cp,

⋃
d≥1 Fqd .

GK̄/K the absolute Galois group of K. It is a profinite group.

V a projective variety1, i.e. a projective algebraic set whose
homogeneous ideal is a prime ideal in K̄[X0, X1, . . . , Xn].

V (K) the set of K-rational points of V , also described as the set
{P ∈ V : σ(P ) = P ∀ σ ∈ GK̄/K}.

V/K V is defined over K, i.e. the ideal of V is generated by
polynomials in K[X0, X1, . . . , Xn].

K̄(V ) the function field of V , i.e. the field of fractions correspond-
ing to the coordinate ring of affine subvariety V ∩ An.

1We will write some inhomogeneous equations to describe V , with the understanding that V is the projective
closure of the indicated affine variety.
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K(V ) the function field of V/K.
K̄[V ]P the local ring of V at P .
mP the maximal ideal of K̄[V ]P .
C a curve, i.e. a projective variety of dimension one.
ordP (f) valuation on f ∈ K̄[C]P at a smooth point P ∈ C. It is

defined as sup{d ∈ Z : f ∈ md
P }. We can extend it to K̄(C)

by using ordP (f/g) = ordP (f)− ordP (g).
deg(φ) degree of a rational map φ : C1 → C2 defined over K. If

φ is constant then deg(φ) = 0, otherwise we have deg(φ) =
[K(C1) : φ∗K(C2)] <∞ with φ∗ : K(C2)→ K(C1) defined
as φ∗f = f ◦ φ.

degs(φ) separable degree of extension of K(C1)/φ∗K(C2).
degi(f) inseparable degree of extension of K(C1)/φ∗K(C2).
eφ(P ) ramification index of a nonconstant rational map φ : C1 →

C2 of smooth curves at point P ∈ C1. If tφ(P ) ∈ K(C2) is a
uniformizer at φ(P ) then eφ(P ) = ordP

(
φ∗tφ(P )

)
.

Div(C) divisor group of C, i.e. a free abelian group generated by
points of C.

Div0(C) subgroup of divisors of degree 0. It is defined as the set
{D =

∑
P∈C nPP ∈ Div(C) :

∑
P∈C nP = 0}.

div(f) the divisor associated to f ∈ K̄(C)∗ when C is smooth. It
is defined as

∑
P∈C ordP (f)P .

Pic0(C) degree 0 part of the divisor class group of C. It is defined
as the quotient of Div0(C) by the subgroup of divisors of
the form div(f) for some f ∈ K̄(C)∗.

` a prime number different from p = char(K).
µµµn the group of nth roots of unity in K̄∗

T`(µµµ) the Tate module of the multiplicative group K̄∗ defined as
lim←−dµµµ`d . As abstract group, it is isomorphic to Z`.

1 Introduction

1.1 Weil Conjectures

Let Fq be a finite field consisting q elements, such that q is a power of some prime interger p.

Definition 1.1 (Zeta function). The zeta function of V/Fq is defined as

ZV/Fq(t) = exp

( ∞∑
n=1

(#V (Fqn))
tn

n

)

where #V (Fqn) is the number of points in V over Fqn .

Remark 1.1. By setting t = q−s we get

ζV/Fq(s) = exp

( ∞∑
n=1

(#V (Fqn))
q−ns

n

)
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Then, for example, when V = PN we get the familiar looking zeta function

ζPN/Fq(s) =
N∏
j=0

1

1− q−(s−j)

Theorem 1.1 (Weil conjectures). Let V/Fq be a nonsingular2 (or smooth) projectve variety of
dimension N . Then its zeta function satisfies the following properties:

1. Rationality: ZV/Fq(t) ∈ Q(t) such that

ZV/Fq(t) =
p1(t)p3(t) · · · p2N−1(t)

p0(t)p2(t) · · · p2N (t)

with each pj ∈ Z[t], and p0(t) = 1− t, p2N (t) = 1− qN t.

2. Riemann hypothesis: For every 0 ≤ j ≤ 2N , the polynomial pj(t) factors over C as

pj(t) =

bj∏
i=1

(1− αijt)

such that |αij | = qj/2.

3. Functional equation:

ZV/Fq

(
1

qN t

)
= ±q

χ(V )N
2 tχ(V )ZV/Fq(t)

where χ(V ) is the Euler characteristic3 of V .

4. Betti numbers: If V/Fq is the “good reduction” of a smooth projective variety Ṽ defined over a
number field embedded in C, then the jth Betti number4 of the topological space Ṽ (C) (complex
points of Ṽ ) equals the degree bj of each pj.

1.2 Elliptic Curves

Definition 1.2 (Elliptic curve). An elliptic curve is a pair (E,O), where E is a nonsingular curve
of genus one and base point O ∈ E. Moreover, the elliptic curve E is defined over K, written E/K,
if E is defined over K as a curve and O ∈ E(K).

Remark 1.2. We generally denote the elliptic curve by E, the point O being understood.

Theorem 1.2. Let E/K be an elliptic curve.

1. There exist functions x, y ∈ K(E) such that the map

φ : E → P2

P 7→ [x(P ) : y(P ) : 1]

gives an isomorphism of E/K onto a curve given by a Weierstrass equation

C : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with coefficients a1, . . . , a6 ∈ K and satisfying φ(O) = [0 : 1 : 0]. The functions x and y are
called Weierstrass coordinates for the elliptic curve E.

2That is, dimK̄ mP /m
2
P = dim(V ) for every point P ∈ V .

3It is the intersection number of the diagonal with itself in the product V × V [Mil13, §II.26].
4It is defined using étale cohomology [Mil13, §I.1].
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2. Conversly, every smooth cubic curve C given by a Weierstrass equation (as above) is an
elliptic curve defined over K with base points O = [0 : 1 : 0].

Proposition 1.1 (Geometric group law). Let E ⊂ P2 be an elliptic curve given by a Weierstrass
equation. Then, we define addition P ⊕Q of two points P,Q ∈ E as follows:

Let L ⊂ P2 be the line through P and Q (if P = Q, let L be the tangent line to E at P ), and
R be the third point of intersection of L with E. Then, let L′ ⊂ P2 be the line through R and O.
Then L′ intersects E at R, O, and a third point denoted by P ⊕Q.

Then the following properties hold:

1. The addition law makes E into an abelain group with identity element O.

2. Suppose E is defined over K. Then

E(K) = {(a, b) ∈ K2 : b2 + a1ab+ a3b = a3 + a2a
2 + a4a+ a6} ∪ {O}

is a subgroup of E.

Theorem 1.3 (Algebraic group law). Let (E,O) be an elliptic curve.

1. For every D ∈ Div0(E) there exists a unique point P ∈ E such that D and P − O belong to
the same divisor class of Pic0(E).

2. There exists a surjective map σ : Div0(E) → E which maps each degree-0 divisor D to its
associated point P .

3. σ induces a bijection of sets σ̃ : Pic0(E)→ E.

4. If E is given by a Weierstrass equation, then the “geometric group law” on E described above
and the “algebraic group law” induced from Pic0(E) using σ are the same.

Corollary 1.1. Then E be an elliptic curve and D =
∑
nPP ∈ Div(E). Then D is a principal

divisor if and only if
∑
nP = 0 ∈ Z and

∑
[nP ]P = O ∈ E.

2 The Proof

2.1 Preliminary Results

Definition 2.1 (Isogeny). Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a
morphism φ : E1 → E2 satisfying φ(OE1) = OE2 .

Theorem 2.1. Every isogeny is a group homomorphism.

Definition 2.2 (Homomorphism group of isogenies). The set of isogenies Hom(E1, E2) from E1

to E2 form a group under addition where the sum of two isogenies is defined by (φ + ψ)(P ) =
φ(P )⊕ ψ(P ).

Proposition 2.1. Hom(E1, E2) is a torsion-free Z-module.

Proposition 2.2. The degree map deg : Hom(E1, E2)→ Z is a positive definite quadratic form.

Definition 2.3 (Endomorphism ring of E). If E1 = E2 = E, then Hom(E1, E2) = End(E) is a
ring whose multiplication is given by composition defined as (φψ)(P ) = φ(ψ(P )).
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Proposition 2.3. End(E) is a ring of characteristic zero with no zero divisors.

Definition 2.4 (Frobenius endomorphism). Let K be a field of characteristic p > 0 and q = pr. If
E/K is an elliptic curve given by a Weierstrass equation, then E(q)/K is the elliptic curve defined
by raising the coefficients of the equation for E to the qth power. Then the Frobenius morphism ρ
is defined by

ρ : E → E(q)

(a, b) 7→ (aq, bq)

ρ is called Frobenius endomorphism when K = Fq since then E(q) = E.

Theorem 2.2. Let E/Fq be an elliptic curve and ρ : E → E be the Frobenius endomorphism.

1. ρ∗Fq(E) = Fq(E)q = {f q : f ∈ Fq(E)}

2. ρ is purely inseparable

3. deg(ρ) = q

4. If m,n ∈ Z then the map [m] + [n]ρ : E → E is separable if and only if p - m, where
p = char(Fq). In particular, the map 1− ρ is separable.

Definition 2.5 (Translation-by-Q map). Let E/K be an elliptic curve and Q ∈ E. Then we define
a translation-by-Q map as the morphism

τQ : E → E

P 7→ P ⊕Q

Remark 2.1. The map τQ is an isomorphism with τ−Q as the inverse. However, τQ is an isogeny iff
Q = O.

Theorem 2.3. Let φ : E1 → E2 be a nonzero isogeny.

1. For every Q ∈ E2, we have #φ−1(Q) = degs(φ). Moreover, for every P ∈ E1, eφ(P ) =
degi(φ).

2. The map

Ψ : ker(φ)→ Aut(K̄(E1)/φ∗K̄(E2))

Q 7→ τ∗Q

is an isomorphism. Here τ∗Q is the automorphism that the translation-by-Q map τQ : E1 → E1

induces on K̄(E1).

3. If φ is separable, then φ is unramified with # ker(φ) = deg(φ). Moreover, K̄(E1) is a Galois
extension of φ∗K̄(E2).

Definition 2.6 (Multiplication-by-m isogeny). For each m ∈ Z we define the multiplication-by-m
isogeny as

[m] : E → E

P 7→


P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸

m times

if m > 0

O if m = 0

[−m](−P ) if m < 0
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Proposition 2.4. Let E/K be an elliptic curve and m ∈ Z with m 6= 0. Then [m] : E → E is
nonconstant (surjective) on E(K̄).

Theorem 2.4 (Dual isogeny). Let φ : E1 → E2 be a nonconstant isogeny such that deg(φ) = m.
Then there exists a unique isogeny φ̂ : E2 → E1 satisfying φ̂ ◦ φ = [m].

Remark 2.2. The φ̂ obtained above is called the dual isogeny to φ. This assumes that φ 6= [0]. If
φ = [0] then we set φ̂ = [0].

Proposition 2.5. Let φ : E1 → E2 be an isogeny.

1. If deg(φ) = m then φ̂ ◦ φ = [m] on E1 and φ ◦ φ̂ = [m] on E2.

2. If λ : E2 → E3 is another isogeny then λ̂ ◦ φ = φ̂ ◦ λ̂.

3. If φ : E1 → E2 is another isogeny then φ̂+ ψ = φ̂+ ψ̂.

4. For all m ∈ Z, [̂m] = [m] and deg([m]) = m2.

5. deg(φ̂) = deg(φ)

6.
ˆ̂
φ = φ.

Definition 2.7 (m-torsion subgroup of E). Let E be an elliptic curve with m ∈ Z≥1. Then the
m-torsion subgroup of E, denoted by E[m], is the set of points of E of order m, i.e.

E[m] = {P ∈ E : [m]P = O}

Theorem 2.5. Let E be an elliptic curve and m be a nonzero integer.

1. If m 6= 0 in K, i.e. if either char(K) = 0 or char(K) - m, then

E[m] = Z/mZ× Z/mZ

Thus E[m] is a free Z/mZ-module of rank two.

2. If char(K) = p > 0, then one of the following is true:

(a) E[pd] = {O} for all d = 1, 2, 3, . . .

(b) E[pd] = Z/pdZ for all d = 1, 2, 3, . . .

Definition 2.8 (`-adic Tate module of E). Let E be an elliptic curve and let ` ∈ Z be a prime.
The `-adic Tate module of E is the group

T`(E) = lim←−
d

E[`d]

with the inverse limit being taken with respect to the natural maps [`] : E[`d+1]→ E[`d].

Proposition 2.6. The Tate module has the following structure:

1. T`(E) ∼= Z` × Z` as a Z`-module if ` 6= char(K).

2. Tp(E) ∼= {0} or Zp as a Zp-module if p = char(K) > 0.
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Remark 2.3. Let φ : E1 → E2 be an isogeny of elliptic curves. Then φ induces maps φ : E1[`d] →
E2[`d], and hence induces a Z`-linear map φ` : T`(E1) → T`(E2). In particular, if a ∈ Z` then
[a] : T`(E)→ T`(E) is the map induced by a = (ad)d≥1 such that [ad] : E → E is the multiplication-
by-ad isogeny.

Definition 2.9 (Weil em-pairing). Let Q ∈ E[m]. Then, by Corollary 1.1, there is f ∈ K̄(E)
satisfying div(f) = mQ −mO. Next, by Proposition 2.4, there is Q′ ∈ E such that [m]Q′ = Q.
Then, again using Corollary 1.1, there is g ∈ K̄(E) satisfying

div(g) = [m]∗Q− [m]∗O =
∑

R∈E[m]

(
(Q′ ⊕R)−R

)
Now, since f ◦ [m] and gm have the same divisor, by multiplying f with an appropriate constant
from K̄∗, we may assume that f ◦ [m] = gm. Then, for P ∈ E[m] and X ∈ E we have

g(X ⊕ P )m = f([m]X ⊕ [m]P ) = f([m]X) = g(X)m

That is, for every X, the function g(X +P )/g(X) is an mth root of unity. This allows us to define
the Weil em-pairing

em : E[m]× E[m]→ µµµm

(P,Q) 7→ g(X ⊕ P )

g(X)

where X ∈ E is any point such that g(X ⊕ P ) and g(X) are both defined and nonzero.

Definition 2.10 (`-adic Weil pairing). Let ` be a prime number different from char(K). The `-adic
Weil pairing on the Tate module is the morphism of inverse limits

e : T`(E)× T`(E)→ T`(µµµ)

such that the diagram

E[`d+1]× E[`d+1] µµµ`d+1

E[`d]× E[`d] µµµ`d

e
`d+1

[`] ω 7→ω`
e
`d

commutes. That is, e`d+1(P,Q)` = e`d([`]P, [`]Q) for all P,Q ∈ E[`d+1].

Theorem 2.6. The `-adic Weil pairing has the following properties:

1. Bilinear:

e(P ⊕` P ′, Q) = e(P,Q)e(P ′, Q)

e(P,Q⊕` Q′) = e(P,Q)e(P,Q′)

where the input elements are of the form P = (Pd)d∈Z+ ∈
∏
dE[`d] such that [`](Pd+1) = Pd

and5 P ⊕` P ′ = (Pd ⊕ P ′d)d≥1.

2. Alternating: e(Q,Q) = 1. In particular, e(P,Q) = e(Q,P )−1.

3. Nondegenerate: if e(P,Q) = 1 for all P ∈ T`(E), then Q = O, where O = (O,O, . . .).

4. Galois invariant: σ (e(P,Q)) = e(σ(P ), σ(Q)) for all σ ∈ GK̄/K .

5. Dual isogeny is adjoint: if φ : E1 → E2 is an isogeny, then φ and its dual φ̂ are disjoints for
the pairing, i.e. e(φ`P,Q) = e(P, φ̂`Q).

5In this notation, when clear from the context, [a]P = ([ad]Pd)d≥1.
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2.2 Final Steps

Lemma 2.1. Let φ ∈ End(E), and φ` : T`(E) → T`(E) be the map induced by φ on the Tate
module of E. Next, by Proposition 2.6, we can choose a Z`-basis {P,Q} for T`(E) and write
φ`(P ) = [a]P ⊕` [b]Q and φ`(Q) = [c]P ⊕` [d]Q so that the 2× 2 matrix6 of φ` relative to this basis
is

φ` =

(
a b
c d

)
Then we have

det(φ`) = deg(φ) and tr(φ`) = 1 + deg(φ)− deg(1− φ)

where, as in Theorem 2.2, 1− φ = [1] + [−1]φ ∈ End(E). In particular, det(φ`) and tr(φ`) are in
Z ⊂ Z` and are independent of `.

Proof. Using the properties of the Weil pairing stated in Theorem 2.6, we compute

e(P,Q)deg(φ) = e ([deg(φ)]P,Q) (bilinearity of e)

= e
(
φ̂`φ`P,Q

)
(Theorem 2.4)

= e (φ`P, φ`Q) (adjoint dual and Proposition 2.5)

= e ([a]P ⊕` [b]Q, [c]P ⊕` [d]Q)

= e (P,Q)ad−bc (bilinear and alternating e)

= e(P,Q)det(φ`)

Since e is nondegenerate, we conclude that deg(φ) = det(φ`). Finally, the other result follows from
the fact that for any 2× 2 matrix A, we have tr(A) = 1 + det(A)− det(Id−A).

Proposition 2.7. Let E/Fq be an elliptic curve, ρ : E → E be the qth-power Frobenius endomor-
phism and a = q+ 1−#E(Fq). If α, β ∈ C are the roots of the polynoimal c(t) = t2− at+ q. Then
α and β are complex conjugates satisfying |α| = |β| = √q, and for every n ≥ 1 we have

#E(Fqn) = qn + 1− αn − βn

Proof. Since the Galois group GF̄q/Fq is generated by the qth power map on F̄q, for every point

P ∈ E(F̄q) we have P ∈ E(Fq) iff ρ(P ) = P . Thus, E(Fq) = ker(1 − ρ). Moreover, from
Theorem 2.2 we know that 1− ρ is separable. Hence, we can use Theorem 2.3 to get

#E(Fq) = # ker(1− ρ) = deg(1− ρ)

Also, using Lemma 2.1 we get that

det(ρ`) = deg(ρ) = q (Theorem 2.2)

tr(ρ`) = 1 + deg(ρ)− deg(1− ρ) = 1 + q −#E(Fq) = a

Hence the characteristic polynomial of ρ` is

det(t− ρ`) = t2 − tr(ρ`)t+ det(ρ`) = t2 − at+ q = c(t)

6Note that most of the facts that we learn about matrices corresponding to linear transformations between finite
dimensional vector spaces over fields also hold for the matrices corresponding to linear maps between finite rank
modules over integral domains (eg: integer matrices). Also, here we define the scalar multiplication as a · P = [a]P .
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Since the characteristic polynomial of ρ` belongs to Z[t], we can factor it over C as

det(t− ρ`) = t2 − at+ q = (t− α)(t− β)

Moreover, c(t) is a nonnegative quadratic polynomial over R since for any a/b ∈ Q we have

det
(a
b
− ρ`

)
=

det(a− bρ`)
b2

=
deg(a− bρ)

b2
≥ 0

Therefore, α and β are either complex conjugates or equal to each other. In either case, we have
|α| = |β|. Furthermore, since αβ = q, we get that |α| = |β| = √q.

Similarly, for each integer n ≥ 1, the (qn)th-power Frobenius endomorphism satisfies

#E(Fqn) = deg(1− ρn)

Now, since the Jordan normal form of ρ` is an upper triangular matrix with α and β along the
diagonal [FIS97, §7.1], it follows that the characteristic polynomial of ρn` is given by

det(t− ρn` ) = (t− αn)(t− βn)

In particular, we have

#E(Fqn) = deg(1− ρn) = det(1− ρn` ) = (1− αn)(1− βn) = 1− αn − βn + qn

Theorem 2.7 (Weil conjectures for elliptic curves). Let E/Fq be an elliptic curve. Then we have

1. Rationality: ZE/Fq(t) ∈ Q(t) such that

ZE/Fq(t) =
1− at+ qt2

(1− t)(1− qt)

where a = q + 1−#E(Fq) is the trace of Frobenius.

2. Riemann hypothesis: We have

1− at+ qt2 = (1− αt)(1− βt) ∈ C(t)

with |α| = |β| = q1/2.

3. Functional equation:

ZE/Fq

(
1

qt

)
= ZE/Fq(t)

4. Betti numbers: E(C) has the Betti numbers b0 = 1, b1 = 2, and b2 = 1

Proof. The second statement follows directly from Proposition 2.7. Therefore, we will prove the
other three statements.
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1. We take log of both sides of the zeta function and simplify:

log
(
ZE/Fq(t)

)
=

∞∑
n=1

(
#E(Fqn)

tn

n

)

=
∞∑
n=1

(1− αn − βn + qn)
tn

n
(Proposition 2.7)

= − log(1− t) + log(1 + αt) + log(1− βt)− log(1− qt)

Therefore, we have

ZE/Fq(t) =
(1− αt)(1− βt)
(1− t)(1− qt)

=
1− at+ qt2

(1− t)(1− qt)
(Proposition 2.7)

3. From the rational function it is clear that this functional equation holds true. Moreover, the
Euler characteristic of elliptic curves is 0 since they are genus 1 curves [Sha77, §VII.3.3].

4. It follows from the fact that any elliptic curve over C can be represented by as torus [Sil09,
§VI.5].

Remark 2.4. To see why the third statement is called Riemann hypothesis, note that

ζE/Fq(s) =
(1− αq−s) (1− βq−s)
(1− q−s)

(
1− q−(s−1)

)
Therefore, if ζE/Fq(s) = 0 then |α| = |β| = |qs| = q1/2, which is equivalent to Re(s) = 1

2 .
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