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Abstract

Fermat’s Last Theorem (FLT) states that xn + yn = zn has no integer solution for n > 2. It
is easy to show that if the theorem is true when n equals some integer r, then it is true when n
equals any multiple of r. Since every integer greater than 2 is divisible by 4 or an odd prime, it is
sufficient to prove the theorem for n = 4 and every odd prime. On 19th September 1994, Andrew
Wiles announced that he had finally completed the proof of FLT. Today we will see an elementary
proof by Sophie Germain (1823) which can be extended to prove FLT for all prime exponents less
than 1700.

1 Introduction

It is believed that Fermat knew the proof for n = 4. In 1760, Leonhard Euler gave elementary proof
for n = 3 (apart from an ingenious algebraic proof in 1770) but it was incomplete and was completed
by Adrien-Marie Legendre.

In 1823, Sophie-Marie Germain1 proved FLT (using elementary methods) for all prime exponents
2 < p < 100 by giving a prime q for which following theorem applies.

Let p, q be distinct odd primes, and assume the following two conditions:

1. p 6≡ ap (mod q) for any a ∈ Z

2. If x, y, z are integers and if xp + yp + zp ≡ 0 (mod q) then q divides x, y or z.

Then FLT holds for exponent p such that p - xyz.

For example, if p = 7, q = 29, then both the conditions of the Germain’s theorem are satisfied[1] and
hence FLT is proved for p = 7.

In 1985, Étienne Fouvry2, Leonard M. Adleman and David R. Heath-Brown3 used a refinement of
Germain’s criterion together with difficult analytic estimates to prove that there are infinitely many
primes p such that first case of FLT is true.

2 The Proof

I will follow the proof given on pp. 55 of [2].
On the contrary, assume that there exist relatively prime integers x, y, z which satisfy FLT, hence

xp + yp + zp = 0. Then by condition 2. it follows that q divides one of the integers x, y or z. Say, q | x
and q - yz.
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Exercise (Barlow-Abel relations). If pairwise relatively prime integers x, y, z are not multiples
of p and satisfy FLT, xp + yp + zp = 0, then for some integers t, t1, r, r1, s, s1:

x + y = tp, xp+yp

x+y = tp1, z = −tt1;

y + z = rp, yp+zp

y+z = rp1, x = −rr1;

z + x = sp, zp+xp

z+x = sp1, y = −ss1;

such that gcd(t, t1) = gcd(r, r1) = gcd(s, s1) = 1, p - tt1, p - rr1, p - ss1, t1, r1, s1 are odd and
greater than 1.

Hint: All these statements are symmetrical so we just have to prove one of them and others
follow. Since x + y + z ≡ xp + yp + zp = 0 (mod p), it follows that −z ≡ x + y (mod p), so
p - (x + y). Now

(−z)p = xp + yp =

(
p−1∑
k=0

xk(−y)p−k−1

)
(x + y) = Qp(x, y) · (x + y)

Note that gcd (Qp(x, y), (x + y)) = gcd (p, (x + y)) = 1. By unique factorization of integers,
Qp(x, y) and (x + y) are pth powers.

We can re-write the Barlow-Abel relations as

x = −rp + rp+sp+tp

2 =
−rp + sp + tp

2
;

y = −sp + rp+sp+tp

2 =
rp − sp + tp

2
;

z = −tp + rp+sp+tp

2 =
rp + sp − tp

2
;

where r, s, t ∈ Z. Therefore we have

−rp + sp + tp = 2x ≡ 0 (mod q)

But the condition 2. it follows that q divides r, s or t. Also, clearly q | r and q - st. By Barlow-Abel
relations following congruences hold

y ≡ −z (mod q)

tp1 ≡ yp−1 (mod q) because (x + y)tp1 = xp + yp

rp1 ≡ ptp1 (mod q) because rp1 =
yp + zp

y + z
=

p−1∑
k=0

yk(−z)p−k−1 ≡ pyp−1 ≡ ptp1 (mod q)

Since q - t1, we have an integer t′ such that t′t1 ≡ 1 (mod q), then (t′r1)
p ≡ p (mod q). This

contradicts the condition 1.

3 Birth of Cases

For primes p and q = 2p + 1 with p - xyz, we will check that the conditions for above theorem holds.
If p ≡ ap (mod q), then by using Euler’s Criterion of quadratic residue and Fermat’s Little Theorem:

a(q−1)/2 = ap ≡ ±1 (mod q) and ap ≡ p (mod q)

so p ≡ ±1 (mod q) and this is impossible.
Now, suppose xp + yp + zp ≡ 0 (mod q) and q - xyz. Since p = (q − 1)/2, using Euler’s Criterion

we can say that

xp ≡ ±1 (mod q), yp ≡ ±1 (mod q), zp ≡ ±1 (mod q)

So, 0 = xp + yp + zp ≡ ±1± 1± 1 (mod q), which is impossible. Therefore we conclude that
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For a prime p if 2p + 1 is also prime and p - xyz, then there is no integer solution of xp + yp = zp.

Based on this result, the statement of FLT is generally subdivided into two cases, with Germain’s
condition being the first case:

1. For the prime exponent p when there do not exist integers x, y, z such that p 6 |xyz and xp +yp =
zp.

2. For the prime exponent p when there do not exist integers x, y, z all different from zero, such
that p|xyz, gcd(x, y, z) = 1 and xp + yp = zp.

Interestingly, there doesn’t exist an elementary proof for second case of FLT.

4 Sophie Germain Primes

If she could prove that there are infinitely many such primes p such that 2p + 1 is also prime, now
called Sophie Germain primes, then she would have been able to prove first case of FLT for infinite
number of prime exponents. This year, 1st April 2016, was Sophie Germain’s 240th Birthday and 239
is 17th Sophie Germain prime (the next one is 251). But,

Nobody knows that whether there are infinitely many Sophie Germain primes.

Euler proved that if p is of the form 4k + 3, then 2p + 1 divides the Mersenne number, Mp = 2p − 1.
Thus, large Sophie Germain primes of the form 4k + 3 lead to the largest known composite Mersenne
numbers[6]. It has not yet been shown that there are infinitely many Mersenne composites. It is
generally believed that there are an infinite number of Sophie Germain primes. In fact there is good
reason to believe that there are about the same number of Germains as twin primes (prime numbers p
such that p+ 2 is also a prime). In both cases we have linear polynomials 2X + 1, X + 2 respectively,
and the question is whether they infinitely often assume prime values at primes[3].

5 But Why?

In 1970, Yuri Matiyasevich, following works of Martin Davis, Hilary Putnam and Julia Robinson
proved that there is no hope of producing a complete theory of the subject of Diophantine Equations.
Thus, there doesn’t exist a process according to which it can be determined by a finite number of
operations whether the equation is solvable in rational integers. But the reason behind why equations
of form xn + yn = zn and axn + bzn = c (especially for a = c = 1, n = 2) were (and are) still studied is
their frequent occurrence in Algebraic Number Theory, a branch of number theory initially motivated
by study of higher reciprocity laws.
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