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Introduction: ECC 1.0

The use of elliptic curves in cryptography was suggested
independently by Neal Koblitz [Kob87] and Victor S. Miller [Mil86] in
1985.
We begin with an elliptic curve E given by equation

y2 = x3 + ax + b over a finite field Fq such that char(Fq) 6= 2, 3.

Let E (Fq) denote the set of Fq-rational points satisfying the equation
of E and the special point O lying at infinity. Then, (E (Fq),+)
forms an abelian group with O as the identity element.
The traditional elliptic curve cryptosystems are constructed on the
group of E (Fq) with the security depending on the difficulty of
computing the discrete logarithm problem of E (Fq):

Elliptic curve discrete logarithm problem

Compute x ∈ N, given P and Q, where P ∈ E (Fq) and
Q = xP = P + · · ·+ P︸ ︷︷ ︸

x times
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Introduction: ECC 1.0 (contd.)

We can also design an elliptic curve cryptosystem scheme in a
manner similar to that of a scheme based on the multiplicative
discrete logarithm problem.
The advantage of elliptic curve based cryptosystems over other
public-key cryptosystems is their short key size, high processing
throughput, and low bandwidth. For example, the typical key size of
ECC that guarantees the security comparable to that of 1024 bit key
size with the RSA cryptosystems is considered to be just 160 bits
[Oka06].
The reason why elliptic curve cryptosystems have such short key
lengths is that the index calculus technique is considered to be
ineffective for computing the discrete logarithm of the elliptic curve
group over finite fields, while it can effectively compute integer
factoring and discrete logarithm of the multiplicative group of a finite
field [Fre01].
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Identity-based encryption

In 1984, A. Shamir proposed a variant of public-key encryption
(PKE), called identity-based encryption (IBE), in which the identity
of a user is employed in place of the user’s public-key [Sha85].

Assumptions

There exist trusted key generation centers, whose sole purpose is to
give each user a personalized smart card when they first join the
network. The smart card contains a microprocessor, an I/O port, a
RAM, a ROM with secret key, and programs for message
encryption/decryption and signature generation/verification, such
that the information embedded in this card for perfoming these tasks
is totally independent of the identity of the other party. Previously
issued cards and user database do not have to be updated when new
users join the network and the centers can be closed after all the
cards are issued.
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Identity-based encryption (contd.)

When Bob wants to
send a message to
Alice, he signs it with
the secret key in his
smart card, encrypts
the result by using
Alice’s name and
network address, adds
his own name and
network address to the
message and sends it to
Alice. When Alice
receives the message,
she decrypts it using
the secret key in her
smart card, and then
verifies the signature
using the sender’s name
and network address as
a verification key.
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Identity-based encryption (contd.)

Note that, ke = i since encryption key is the user’s identity i and
kd = f (i , k) since decription key is derived from the user’s idntity i
and a random seed k . Therefore, the overall security of this
cryptosystem depends on the following points:

1 The security of the underlying cryptographic functions
2 The secrecy of the priveleged information stored at the key

generation centers.
3 The thoroughness of the identity checks performed by the

centers before issuing cards.
4 The precautions taken by users to prevent the loss, duplication,

or unautherised use of their card.

Hence, to implement such a cryptosystem, we need PKE to have two
additional properties (RSA couldn’t satisfy these simultaneously):

1 When the seed k is known, secret keys can be easily computed
for a non-negligiable fractions of the possible public keys.

2 The problem of computing the seed k from specific public/secret
key pairs generated with k is intractable.
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Pairing-based cryptography: ECC 2.0

Let E/Fq be an elliptic curve and m ≥ 2 be an integer prime to
p = char(Fq).

m-torsion subgroup of E

It is the set of points of E of order m, denoted by E (Fq)[m]. That is,

E (Fq)[m] = {P ∈ E (Fq) : mP = O}

embedding degree of E [HPS14, §6.9.1]

The embedding degree of E with respect to m is the smallest value
of k such that

E (Fqk )[m] ∼= Z/mZ× Z/mZ

In fact, we have E [m] = E (Fq)[m] = Z/mZ×Z/mZ [Sil09, Corollary
III.6.4]. This allows us to define Weil pairing

em : E [m]× E [m]→ µm
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Pairing-based cryptography: ECC 2.0 (contd.)

where µm is the group of mth roots of unity in F∗
q, i.e.

em(P,Q)m = 1 for all P,Q ∈ E [m], with the following properties:

1 Bilinear: for any P,Q,P1,P2,Q1,Q2 ∈ E [m] we have

em(P1 + P2,Q) = em(P1,Q)em(P2,Q)

em(P,Q1 + Q2) = em(P,Q1)em(P,Q2)

2 Alternating: for any P,Q ∈ E [m], em(P,Q) = em(Q,P)−1 since
em(P,P) = 1 for any P ∈ E [m].

3 Non-degenerate: If em(P,Q) = 1 for all P ∈ E [m] then Q = O.

There are many other instances of pairings on ellitpic curves, for
example Tate pairing [Gal05].

Historically, Weil pairing [MOV93] and Tate pairing [FMR99] were
used to attack elliptic curve cryptosystems by reducing the discrete
logarithm (DL) problem on certain (supersingular) elliptic curves to
the DL in the multiplicative group of an extension of the underlying
finite field
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Pairing-based cryptography: ECC 2.0 (contd.)

The Weil pairing is alternating, that is, em(P,P) = 1 for all P. In
cryptographic applications we generally want to evaluate the pairing
at points P1 = aP and P2 = bP, but using the Weil pairing directly
is not helpful, since

em(P1,P2) = em(aP, bP) = em(P,P)ab = 1ab = 1

One way around this dilemma is to choose a nice elliptic curve
(supersingualr curve) that has (efficiently computable) isogeny
φ : E → E , called distortion map, with the property that E [m] has a
basis of the form {P, φ(P)} [Sil09, §IX.7]. For more detials, see
[HPS14, §6.9].

modified Weil pairing

Let P ∈ E [m] and φ be a distortion map for P, then the modified
Weil pairing êm on E [m] is defined by

êm(P,Q) = em(P, φ(Q))
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Pairing-based cryptography: ECC 2.0 (contd.)

Note that êm(P,P) 6= 1 and êm(P,Q) = êm(Q,P) [Oka06, §4]. In

2000, A. Joux [Jou00] showed that this modified Weil (and Tate)
pairing can be used for a protocol for three party one round
Diffie-Hellman key exchange, and Sakai et al. [SOK00] used it for key
exchange. Then in 2001, E. Verheul [Ver01] used it to construct an
ElGamal encryption scheme where each public key has two
corresponding private keys. Finally, D. Boneh and M. Franklin [BF01]
used the modified Weil pairing of a specific supersingular elliptic
curve to propose the first ever identity-based encryption system.

The pairing-based cryptography is possible because [KM05, §2]:

1 there exits a prime ` 6= p such that Diffie-Hellman problem is
intractable in E [`].

2 the Weil pairing e`(P, φ(Q)) can be efficietly computed using
Miller’s algorithm [Sil09, §XI.8].
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Pairing-based cryptography: ECC 2.0 (contd.)

a basic version of the Boneh-Franklin scheme [KM05]

Bob wants to send Alice a message m, which we suppose is an
element of Fqk where k is the embedding degree of E , and he wants
to do this using nothing other than her identity, which we suppose is
hashed and then embedded in some way as a point IA ∈ E (Fq)[`]. In
addition to the field Fq and the curve E , the system-wide parameters
include a basepoint P ∈ E (Fqk )[`] and another point K ∈ 〈P〉 that is
the public key of the Trusted Authority (TA). The TA’s secret key is
the integer s that it used to generate the key K = sP.
To send the message m, Bob first chooses a random r and computes
the point rP and the Weil pairing ê`(K , IA)r = ê`(rK , IA) ∈ F∗

qk . He
sends Alice both the point rP and the field element
u = m + ê`(rK , IA). In order to decrypt the message, Alice must get
the decryption key DA from the TA; this is the point
DA = sIA ∈ E (Fq) that the TA computes using the secret key s.
Finally, Alice can now decrypt by subtracting ê`(rP,DA) from u,
since by billinearlity we have ê`(rP,DA) = ê`(rK , IA).
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Applications
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Group signatures

In 1991, D. Chaum and E. van Heyst [CH91] introduced a new type
of signature for a group of people, called group signature, which has
the following properties:

1 only the group members can sign the messages

2 the receiver can verify that it is a valid group signature, but
cannot discover which group member signed it.

3 if necessary, the signature can be “opened”, so that the person
who signed the message is revealed.

Therefore, group signatures were introduced as a generalization of
credential mechanisms and memebership schemes in which a group
memeber can convince the verifier that they belong to a certain
group, without revealing their identity.

Moreover, they introduced four schemes that satisfy these properties,
based on different cryptographic assumptions like:

1 For each person it is unfeasible to compute RSA roots.
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Group signatures (contd.)

2 For each person it is unfeasible to compute the discrete
logarithm modulo a large prime number.

Figure: Here Z denotes the Trusted Authority, conf. pr. = confirmation protocol, and “independent/linear” means that the
number is independent/linear in the number of group members. In the last three schemes, the signatures made by the group
members are undeniable signatures, but it is possible to make digital signatures.

In 2004, using pairing-based cryptography, new group schemes were
proposed based on the Strong Diffie-Hellman [BBS04] and a
discrete-logarithm-based assumption called LRSW [CL04]. Both of
these are a shorter alternative to the RSA group signature schemes
based on strong RSA assumption. Later, in 2006, these group
schemes were modified to be provably secure without random oracles
[ACH05] [BW06], just like the ones based on strong RSA assumption.

https://doi.org/10.1007/0-387-23483-7_446
https://doi.org/10.1007/0-387-23483-7_343
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Homomorphic encryption

In 1978, R. L. Rivest, L. Aldeman, and M. L. Dertouzos [RAD78]
gave four simple examples to illustrate the existance of special
encryption functions called “privacy homomorphisms” which would
permit encryped data to be operated on without preliminary
decryption of the operands.

Figure: Homomorphic encryption lets the owner exchange the order of operations withou changing the result; that is, one can
encrypt then compute, or compute then encrypt.
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Homomorphic encryption (contd.)

In 2009, Craig Gentry proposed the first plausible construction for a
fully homomorphic encryption (FHE) scheme using lattice-based
cryptography. Before that many partial results were published.
Among them, the first ever “doubly homomorphic” encryption
scheme was Boneh-Goh-Nissim cryptosystem, proposed in 2005
[BGN05]. It is based on pairing-based cryptography and supports
unlimited number of addition operations but at most one
multiplication. However, Gentry’s scheme supports unlimited number
of both addition and multiplication operations on ciphertexts, making
it possible to perform computations on data while it is encrypted.

The current homomorphic encryption solutions are based on the
learning with errors (LWE) problem or the ring version (RLWE),
proposed between 2005 and 2010 [Lau17]. A list of open-source FHE
libraries implementing second-generation and/or third-generation
FHE schemes is maintained by the Homomorphic Encryption
Standardization consortium to advance secure computation.

https://homomorphicencryption.org/
https://homomorphicencryption.org/
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Secure multiparty computation

In 1982, A. C. Yao [Yao82] proposed the following problem:

Millionires’ problem

Two millionaires wish to know who is richer; however, they do not
want to find out inadvertently any additional information about each
other’s wealth. How can they carry out such a conversation?

Many solutions have been introduced for the problem. This was the
beginning example of secure multiparty computation.

The aim of secure multiparty computation (MPC) is to enable parties
to carry out such distributed computing tasks in a secure manner.
Following are the two special cases of MPC:

1 Private set intersection (PSI): It’s about the secure computation
of the intersection of private sets. That is, it allows two parties
holding sets to compare encrypted versions of these sets in order
to compute the intersection.
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Secure multiparty computation (contd.)

2 Threshold cryptography: It’s about the secure computation of
digital signatures and decryption, where no single party holds the
key. That is, in order to decrypt an encrypted message or to sign
a message, several parties (more than some threshold number)
must cooperate in the decryption or signature protocol.

Theoretically, secure multiparty protocol exist for any distributed
computing task [Lin21]. However, there are major differences
between the practical protocols proposed for two party computation
(2PC) and multiparty computation (MPC).

We can use the garbled circuit protocol for 2PC. In 2017, S.
Garg and A. Srinivasan provide constructions for garbling
arbitrary protocols based on pairing-based cryptography [GS17].

Most MPC protocols, as opposed to 2PC protocols, make use of
secret sharing schemes like Shamir secret sharing.

https://doi.org/10.1007/0-387-23483-7_373
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Post-quantum cryptography
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Lattice-based cryptography

So far, lattice-based solutions are not known to be vulnerable to
polynomial-time quantum attacks; however, depending on the
underlying security assumption, quantum attacks on lattice-based
systems might be possible.

Efficient lattice-based systems built on number-theoretic
constructions, such as number rings, have been shown to be provably
secure in the sense adopted by the cryptographic community.

For details, see [HPS14, Chapter 7] and [MR09].
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Supersingular Isogeny Graphs: ECC 3.0

A supersingular isogeny graph is specified by a large prime number p,
of cryptographic size-that is, at least 256 bits-satisfying some
conditions, and a small prime `. The nodes of the graph are the
isomorphism classes of supersingular elliptic curves modulo p, and the
edges are the isogenies of degree `. The number of nodes is
approximately p/12 (the Eichler class number), and the graph is
(`+ 1) regular. Isogenies of low degree can be efficiently computed
using Velu’s formulae.

For details, see [CGL09] and [Feo17].
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