Math-O-Trick: Assignment

Gaurish Korpal

Prove the following statements based on your understanding of Bachet-1, Bachet-2 and Bachet-3. Definitions and useful theorems (from arithmetic) are given on the other side of this page.

1. Given a deck of $2 n$ cards, s in-riffle-shuffle will restore the original order just when $2^{s} \equiv 1$ $(\bmod 2 n+1)$.
2. If you in-riffle-shuffle $2 n$ cards $2 n$ times, and $2 n+1$ is prime, then cards will come back to their original order.
3. In you out-riffle-shuffle $2 n$ cards $2 n-2$ times, where $2 n-1$ is prime, the cards will come back to their original order.
4. The number of Monge's shuffles required to restore the original order is the smallest s for which $2^{s} \equiv \pm 1(\bmod 4 n+1)$.
5. If $4 n+1$ is prime, then $2 n$ Monge's shuffles of a $2 n$ card deck restore the original order.
6. The number of bases (like base- $2=$ binary, base- $10=$ decimal, etc.) modulo a prime number p in which $1 / p$ has the cycle length k is just the same as the number of fractions

$$
\frac{0}{p-1}, \frac{1}{p-1}, \ldots, \frac{p-2}{p-1}
$$

that have least denominator k.
7. For a permutation π of $\{1,2,3, \ldots, N\}$ the following four properties are equivalent:
(a) π is a Gilbreath permutation, defined as: Fix a number between 1 and N, call it j. Deal the top j cards into a pile face-down on the table, reversing their order. Now, riffle shuffle (need not be perfect-riffle-shuffle) the j cards with the remaining $N-j$ cards.
(b) For each j, the top j cards

$$
\{\pi(1), \pi(2), \ldots, \pi(j)\}
$$

are distinct modulo j.
(c) For each j and k with $k j \leq N$, the j cards

$$
\{\pi((k-1) j+1), \pi((k-1) j+2), \ldots, \pi(k j)\}
$$

are distinct modulo j.
(d) For each j, the top j cards are consecutive in $1,2,3, \ldots, N$.

References

[1] Conway, J. H. and Guy R. K. The Book of Numbers. Copernicus, Springer-Verlag: New York. 1996
[2] Diaconis P. and Graham R. Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks. Princeton University Press: Princeton and Oxford. 2012

Hints:

- The symbol $a \equiv b(\bmod n)$ is read as "a is congruent to b , modulo n " and is equivalent to saying that both the integers a and b leave same remainder when divided by some integer n.
- If $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then:
- $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$
- $a_{1}-a_{2} \equiv b_{1}-b_{2}(\bmod n)$
- $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)$
- The symbol $\operatorname{gcd}(a, b)=1$ means that the greatest common divisor of the integers a and b is 1, i.e. a and b don't have any common divisor other than 1 .
- Let the prime number p be 7 , then following are the different representations of $\frac{1}{7}$:

base (b)	representation	cycle length
2	$0.001001001001001 \ldots$	3
3	$0.01021201021201 \ldots$	6
4	$0.021021021021021 \ldots$	3
5	$0.032412032412032 \ldots$	6
6	$0.05050505050505 \ldots$	2
7	0.1	terminating
8	$0.11111111111111 \ldots$	1
9	$0.12512512512512 \ldots$	3
10	$0.142857142857142 \ldots$	6

So, the cycle length is

	for the 2 cases when	$b \equiv 3,5 \quad(\bmod 7)$
3	for the 2 cases when	$b \equiv 2,4 \quad(\bmod 7)$
2	se	$\equiv 6 \quad(\bmod 7)$
	for the 1 case when	$b \equiv 1 \quad(\bmod 7)$

- Number of fractions among $\frac{0}{6}, \frac{1}{6}, \ldots, \frac{5}{6}$ with lowest denominator

$$
\begin{aligned}
& 6 \text { are the } 2 \text { fractions } \frac{1}{6}, \frac{5}{6} \\
& 3 \text { are the } 2 \text { fractions } \frac{1}{3}, \frac{2}{3} \\
& 2 \text { is the } 1 \text { fraction } \frac{1}{2} \\
& 1 \text { is the } 1 \text { fraction } \frac{0}{1}
\end{aligned}
$$

- For any positive integer $m \leq n$, the number of fractions from $\frac{0}{n}, \frac{1}{n}, \ldots, \frac{n-1}{n}$ has m as least possible denominator is given by Euler's totient function, $\phi(m)$. It's value can be calculated using the formula:

$$
\phi(m)=m \times\left(1-\frac{1}{p}\right) \times\left(1-\frac{1}{q}\right) \times\left(1-\frac{1}{r}\right) \times \cdots
$$

where p, q, r, \ldots are the distinct prime factors of m. For example, $\phi(3)=\phi(6)=2$ and $\phi(1)=\phi(2)=1$.

- A group G is a finite or infinite set of elements together with a binary operation that together satisfy the four fundamental properties of closure, associativity, the identity property, and the inverse property.
- We denote the group of integers modulo n under multiplication operation by $(\mathbb{Z} / n \mathbb{Z})^{\times}$and the number of elements in this group is $\phi(n)$. For example, $(\mathbb{Z} / 7 \mathbb{Z})^{\times}=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$.
- Permutation of a finite set X is a bijective map from the set X to itself. The number of permutations of a set of cardinality n is $n!=1 \times 2 \times \cdots \times(n-1) \times n$.
- [Fermat's little theorem] If p is a prime number, then for any integer a, the number $a^{p}-a$ is an integer multiple of p. In the notation of modular arithmetic, $a^{p} \equiv a(\bmod p)$. For example, if $a=2$ and $p=7$, $2^{7}=128$ and $128-2=7 \times 18$ is an integer multiple of 7 . And if $\operatorname{gcd}(a, p)=1$ then we can write $a^{p-1} \equiv 1$ $(\bmod p)$, which is a special case of: $a^{\phi(n)} \equiv 1(\bmod n)$ for any integer n with $\operatorname{gcd}(a, n)=1$.

Answers to Math-O-Trick Assignment

Hitesh Kumar

March 9, 2017

1. It is a simple observation that a card moves to position $2 x \bmod (2 n+1)$ after an in-riffle-shuffle, where x is the initial position of the card in the deck of $2 n$ cards. Say the original order is restored after s in-riffle-shuffles. This means, after s in-riffle-shuffles, card at position 1 is back to position 1 i.e. $2^{s} * 1 \equiv 1 \bmod (2 n+1)$. Conversely, if $2^{s} \equiv 1$ $\bmod (2 n+1)$ holds for some natural number s then $2^{s} x \equiv x \bmod (2 n+1)$ for all natural numbers x, which implies that the card at position x is back to its original position after s in-riffle-shuffles. Hence, s in-riffle-shuffles restore the order of $2 n$ cards iff $2^{s} \equiv 1$ $\bmod (2 n+1)$.
2. We know that if p is a prime and a is an integer such that $\operatorname{gcd}(p, a)=1$ then $a^{p-1} \equiv 1$ $\bmod (p)$. If $2 n+1$ is prime then by above theorem, $2^{2 n} \equiv 1 \bmod (2 n+1)$ since $\operatorname{gcd}(2,2 n+1)=$ 1 for all natural numbers n. Hence, by the result in Q.1, the claim is straightforward.
3. In the case of out-riffle-shuffle, the position of first and last cards in the deck of $2 n$ cards, never changes. The $2 n-2$ remaining cards behave as if an in-riffle-shuffle has been applied. So, by the result in Q.2, we can say that the original order will be restored after $2 n-2$ out-riffle-shuffles if $2 n-1$ is prime.
4. Let us label the cards from 1 to $2 n$ where 1 is at the bottom of the deck of $2 n$ cards. Then the Monge's shuffle corresponds to the following permutation (say p) :

$1 \mapsto 2 n$	$2 \mapsto 1$
$3 \mapsto 2 n-1$	$4 \mapsto 2$
\cdot	\cdot
\cdot	\cdot
$2 n-1 \mapsto n+1$	$2 n \mapsto n$

Consider the inverse permutation p^{-1} :

$$
\begin{array}{ll}
1 \mapsto 2 & n+1 \mapsto 2 n-1 \\
2 \mapsto 4 & n+2 \mapsto 2 n-3 \\
\cdot & \cdot \\
\cdot & \cdot \\
n \mapsto 2 n & 2 n \mapsto 1
\end{array}
$$

Note that, p^{-k} takes the card originally at position x to $\min \{a, b\}$ where a and b are the least positive residues $\bmod (4 n+1)$ of $2^{k} x$ and $-2^{k} x$ respectively.
So, if the order of cards is restored by m applications of p^{-1} then for a given $1 \leq x \leq 2 n$, either $2^{m} x \equiv x \bmod (4 n+1)$ or $-2^{m} x \equiv x \bmod (4 n+1)$ holds.
We know that m is the order of p iff m is the order of p^{-1}. Also by (1), m is the order of p^{-1} iff m is the least number such that $2^{m} \equiv 1 \bmod (4 n+1)$ or $-2^{m} \equiv 1 \bmod (4 n+1)$. It follows that order of p is m i.e. m is the minimum number of Monge's shuffles required to restore the order iff m is the least number such that $2^{m} \equiv \pm 1 \bmod (4 n+1)$.
5. We know that, if p is a prime and a is an integer such that $\operatorname{gcd}(a, p)=1$, then $a^{(p-1) / 2} \equiv \pm 1$ $\bmod (p)$. If $4 n+1$ is prime then simple application of the result in Q. 4 and the statement above, proves the claim.
6. Let, b be denote a base and p be a prime. Let, $1 / p$ has a cycle of length $k \geq 1$ i.e. $1 / p=0 . a_{1} a_{2} \ldots a_{k} a_{1} \ldots$, (where $a_{1}, a_{2}, \ldots, a_{k}$ are non-negative integers, not all zero which form the smallest repeating unit in $1 / p$), then $b^{k} / p=a_{1} a_{2} \ldots a_{k}+1 / p$ which implies $b^{k} \equiv 1$ $\bmod (p)$. Suppose, s is the smallest positive integer such that $b^{s} \equiv 1 \bmod (p)$, then $s \leq k$. Suppose $s<k$. Then, $b^{s} \equiv 1 \bmod (p)$ implies $1 / p=0 . a_{1} a_{2} \ldots a_{s} a_{1} \ldots$ i.e. cycle length of $1 / p$ is s which is less than k, a contradiction. Hence, the cycle length k of $1 / p$ is the smallest positive integer such that $b^{k} \equiv 1 \bmod (p)$ if $\operatorname{gcd}(b, p)=1$.
Now, let m be the number of bases b modulo p such that $1 / p$ has cycle length k in base b. It means that m is the number of solution classes of the congruence relation $b^{k} \equiv 1$ $\bmod (p)$. Or in other words, m is the number of elements in $(\mathbb{Z} / p \mathbb{Z})^{\times}$with order k. We know that, in a finite cyclic group, number of elements of order k is $\phi(k)$, where ϕ is the Euler totient function. Hence, $m=\phi(k)$.
Again, for $0 \leq x \leq p-2, x /(p-1)$ has least denominator k iff $(x k /(p-1), k)=1$. Hence, $\phi(k)$ gives the number of fractions in $\frac{0}{p-1}, \frac{1}{p-1}, \ldots, \frac{p-2}{p-1}$, that have least denominator k. So, the claim holds.
7. Given that π is a permutation of $\{1,2,3, \ldots, N\}$.

Let π be a Gilbreath permutation. Then, π is given by the interlacing of sub-permutations A and B where $A=(t+1, t+2, \ldots, N)$ and $B=(t, t-1, \ldots, 1)$ with $0 \leq t \leq N$.
Consider, the sub-permutation $P=(\pi((k-1) j+1), \pi((k-1) j+2), \ldots, \pi(k j))$ for k and j such that $k j \leq n$. Define, $s=|B \cap P| \geq 0$ and $r=\max B \cap P$ if $s>0$ else $r:=0$.
Then, $r, r-1, \ldots, r-s+1 \in B \cap P$ and $(k-1) j+r+1,(k-1) j+r+2, \ldots,(k-1) j+r+$ $j-s-1,(k-1) j+r+j-s \in A \cap P$.
Let, $a<b \in P$.
Case 1: $a, b \in A$
By (1), $1 \leq b-a<j$ which implies $b \not \equiv a \bmod (j)$.
Case 2: $a, b \in B$
Similar to Case 1.
Case 3: $a \in B$ and $b \in A$
By (1), $a=r-x$ where $0 \leq x \leq s-1$ and $b=(k-1) j+r+y$ where $1 \leq y \leq j-s$. Then, $b-a \equiv y+x \bmod (j)$ But $1 \leq y+x \leq j-1$. It follows that $b \not \equiv a \bmod (j)$.
Hence, (a) \Rightarrow (c).

If we take $k=1$ then $(\mathrm{c}) \Rightarrow(\mathrm{b})$.
Assume (b). Now, (d) is true for $j=1$. Let (d) be true for some $j \geq 1$ i.e. $\{\pi(1), \pi(2), \ldots, \pi(j)\}=$ $\{a, a+1, \ldots, a+j-1\}$ for some $a \geq 1$. We claim that $\pi(j+1)$ is equal to $a-1$ or $a+j+1$. If not, then $\pi(j+1)$ equals $a-x$ or $a+j+x$ for some $x>1$. If $\pi(j+1)=a-x$ then $\pi(j+1) \equiv a-x+j+x-1 \equiv a+j-1 \bmod (j+x-1)$ which contradicts (b). Similarly, if $\pi(j+1)=a+j+x$ then $\pi(j+1) \equiv a+1+j+x-1 \equiv a+1 \bmod (j+x-1)$ which contradicts (b). Therefore, $\{\pi(1), \pi(2), \ldots, \pi(j), \pi(j+1)\}=\{a, a+1, \ldots, a+j\}$ for some $a \geq 1$.
Hence, $(\mathrm{b}) \Rightarrow(\mathrm{d})$.

Assume (d). We've seen that $\pi(j+1)$ equals $\max \{\pi(1), \pi(2), \ldots, \pi(j)\}+1$ or $\min \{\pi(1), \pi(2)$, $\ldots, \pi(j)\}-1$ where $1 \leq j \leq N-1$. It is then clear that either $\pi=(1,2, \ldots, N)$ or π can be partitioned into two sub-permutations $A=(t, t+1, t+2, \ldots, N)$ and $B=(t-1, t-2, \ldots, 1)$, where $t=\pi(1)>1$, by adding $\pi(j+1)$ to A if $\pi(j+1)>t$ else adding $\pi(j+1)$ to B, sequentially. In either case π is a Gilbreath permutation.
Hence, (d) \Rightarrow (a)

In total, $(\mathrm{a}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{d}) \Rightarrow(\mathrm{a})$.

