
Math-O-Trick: Assignment

Gaurish Korpal

Prove the following statements based on your understanding of Bachet-1, Bachet-2 and Bachet-3.
Definitions and useful theorems (from arithmetic) are given on the other side of this page.

1. Given a deck of 2n cards, s in-riffle-shuffle will restore the original order just when 2s ≡ 1
(mod 2n+ 1).

2. If you in-riffle-shuffle 2n cards 2n times, and 2n+ 1 is prime, then cards will come back to their
original order.

3. In you out-riffle-shuffle 2n cards 2n− 2 times, where 2n− 1 is prime, the cards will come back
to their original order.

4. The number of Monge’s shuffles required to restore the original order is the smallest s for which
2s ≡ ±1 (mod 4n+ 1).

5. If 4n+ 1 is prime, then 2n Monge’s shuffles of a 2n card deck restore the original order.

6. The number of bases (like base-2=binary, base-10=decimal, etc.) modulo a prime number p in
which 1/p has the cycle length k is just the same as the number of fractions

0

p− 1
,

1

p− 1
, . . . ,

p− 2

p− 1

that have least denominator k.

7. For a permutation π of {1, 2, 3, . . . , N} the following four properties are equivalent:

(a) π is a Gilbreath permutation, defined as: Fix a number between 1 and N , call it j. Deal
the top j cards into a pile face-down on the table, reversing their order. Now, riffle shuffle
(need not be perfect-riffle-shuffle) the j cards with the remaining N − j cards.

(b) For each j, the top j cards
{π(1), π(2), . . . , π(j)}

are distinct modulo j.

(c) For each j and k with kj ≤ N , the j cards

{π((k − 1)j + 1), π((k − 1)j + 2), . . . , π(kj)}

are distinct modulo j.

(d) For each j, the top j cards are consecutive in 1, 2, 3, . . . , N .
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Hints:
• The symbol a ≡ b (mod n) is read as “a is congruent to b, modulo n” and is equivalent to saying that

both the integers a and b leave same remainder when divided by some integer n.

• If a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n), then:

◦ a1 + a2 ≡ b1 + b2 (mod n)

◦ a1 − a2 ≡ b1 − b2 (mod n)

◦ a1a2 ≡ b1b2 (mod n)

• The symbol gcd(a, b) = 1 means that the greatest common divisor of the integers a and b is 1, i.e. a and
b don’t have any common divisor other than 1.

• Let the prime number p be 7, then following are the different representations of 1
7 :

base (b) representation cycle length

2 0.001001001001001. . . 3
3 0.01021201021201. . . 6
4 0.021021021021021. . . 3
5 0.032412032412032. . . 6
6 0.05050505050505. . . 2
7 0.1 terminating
8 0.11111111111111. . . 1
9 0.12512512512512. . . 3
10 0.142857142857142. . . 6

So, the cycle length is

6 for the 2 cases when b ≡ 3, 5 (mod 7)

3 for the 2 cases when b ≡ 2, 4 (mod 7)

2 for the 1 case when b ≡ 6 (mod 7)

1 for the 1 case when b ≡ 1 (mod 7)

• Number of fractions among 0
6 ,

1
6 , . . . ,

5
6 with lowest denominator

6 are the 2 fractions
1

6
,

5

6

3 are the 2 fractions
1

3
,

2

3

2 is the 1 fraction
1

2

1 is the 1 fraction
0

1

• For any positive integer m ≤ n, the number of fractions from 0
n ,

1
n , . . . ,

n−1
n has m as least possible

denominator is given by Euler’s totient function, φ(m). It’s value can be calculated using the formula:

φ(m) = m×
(

1− 1

p

)
×

(
1− 1

q

)
×

(
1− 1

r

)
× · · ·

where p, q, r, . . . are the distinct prime factors of m. For example, φ(3) = φ(6) = 2 and φ(1) = φ(2) = 1.

• A group G is a finite or infinite set of elements together with a binary operation that together satisfy the
four fundamental properties of closure, associativity, the identity property, and the inverse property.

• We denote the group of integers modulo n under multiplication operation by (Z/nZ)
×

and the number
of elements in this group is φ(n). For example, (Z/7Z)

×
= {1̄, 2̄, 3̄, 4̄, 5̄, 6̄}.

• Permutation of a finite set X is a bijective map from the set X to itself. The number of permutations of
a set of cardinality n is n! = 1× 2× · · · × (n− 1)× n.

• [Fermat’s little theorem] If p is a prime number, then for any integer a, the number ap − a is an integer
multiple of p. In the notation of modular arithmetic, ap ≡ a (mod p). For example, if a = 2 and p = 7,
27 = 128 and 128−2 = 7×18 is an integer multiple of 7. And if gcd(a, p) = 1 then we can write ap−1 ≡ 1
(mod p), which is a special case of: aφ(n) ≡ 1 (mod n) for any integer n with gcd(a, n) = 1.
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1. It is a simple observation that a card moves to position 2x mod(2n + 1) after an in-
riffle-shuffle, where x is the initial position of the card in the deck of 2n cards. Say the
original order is restored after s in-riffle-shuffles. This means, after s in-riffle-shuffles, card
at position 1 is back to position 1 i.e. 2s ∗ 1 ≡ 1 mod(2n + 1). Conversely, if 2s ≡ 1
mod(2n + 1) holds for some natural number s then 2sx ≡ x mod(2n + 1) for all natural
numbers x, which implies that the card at position x is back to its original position
after s in-riffle-shuffles. Hence, s in-riffle-shuffles restore the order of 2n cards iff 2s ≡ 1
mod(2n+ 1).

2. We know that if p is a prime and a is an integer such that gcd(p, a) = 1 then ap−1 ≡ 1
mod(p). If 2n+1 is prime then by above theorem, 22n ≡ 1 mod(2n+1) since gcd(2, 2n+1) =
1 for all natural numbers n. Hence, by the result in Q.1, the claim is straightforward.

3. In the case of out-riffle-shuffle, the position of first and last cards in the deck of 2n cards,
never changes. The 2n−2 remaining cards behave as if an in-riffle-shuffle has been applied.
So, by the result in Q.2, we can say that the original order will be restored after 2n − 2
out-riffle-shuffles if 2n− 1 is prime.

4. Let us label the cards from 1 to 2n where 1 is at the bottom of the deck of 2n cards. Then
the Monge’s shuffle corresponds to the following permutation (say p) :

1 7→ 2n
3 7→ 2n− 1
.
.
2n− 1 7→ n+ 1

2 7→ 1
4 7→ 2
.
.
2n 7→ n

Consider the inverse permutation p−1:

1 7→ 2
2 7→ 4
.
.
n 7→ 2n

n+ 1 7→ 2n− 1
n+ 2 7→ 2n− 3
.
.
2n 7→ 1

Note that, p−k takes the card originally at position x to min{a, b} where a and b are the
least positive residues mod(4n+ 1) of 2kx and −2kx respectively.
So, if the order of cards is restored by m applications of p−1 then for a given 1 ≤ x ≤ 2n,
either 2mx ≡ x mod(4n+ 1) or −2mx ≡ x mod(4n+ 1) holds. (1)
We know that m is the order of p iff m is the order of p−1. Also by (1), m is the order of
p−1 iff m is the least number such that 2m ≡ 1 mod(4n+ 1) or −2m ≡ 1 mod(4n+ 1). It
follows that order of p is m i.e. m is the minimum number of Monge’s shuffles required to
restore the order iff m is the least number such that 2m ≡ ±1 mod(4n+ 1).

5. We know that, if p is a prime and a is an integer such that gcd(a, p) = 1, then a(p−1)/2 ≡ ±1
mod(p). If 4n+ 1 is prime then simple application of the result in Q.4 and the statement
above, proves the claim.
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6. Let, b be denote a base and p be a prime. Let, 1/p has a cycle of length k ≥ 1 i.e.
1/p = 0.a1a2...aka1..., (where a1, a2, ..., ak are non-negative integers, not all zero which
form the smallest repeating unit in 1/p), then bk/p = a1a2...ak + 1/p which implies bk ≡ 1
mod(p). Suppose, s is the smallest positive integer such that bs ≡ 1 mod(p), then s ≤ k.
Suppose s < k. Then, bs ≡ 1 mod(p) implies 1/p = 0.a1a2...asa1... i.e. cycle length of 1/p
is s which is less than k, a contradiction. Hence, the cycle length k of 1/p is the smallest
positive integer such that bk ≡ 1 mod(p) if gcd(b, p) = 1.
Now, let m be the number of bases b modulo p such that 1/p has cycle length k in base
b. It means that m is the number of solution classes of the congruence relation bk ≡ 1
mod(p). Or in other words, m is the number of elements in (Z/pZ)× with order k. We
know that, in a finite cyclic group, number of elements of order k is φ(k), where φ is the
Euler totient function. Hence, m = φ(k).
Again, for 0 ≤ x ≤ p− 2, x/(p− 1) has least denominator k iff (xk/(p− 1), k) = 1. Hence,
φ(k) gives the number of fractions in 0

p−1 ,
1

p−1 , ...,
p−2
p−1 , that have least denominator k. So,

the claim holds.

7. Given that π is a permutation of {1, 2, 3, ..., N}.

Let π be a Gilbreath permutation. Then, π is given by the interlacing of sub-permutations
A and B where A = (t+ 1, t+ 2, ..., N) and B = (t, t− 1, ..., 1) with 0 ≤ t ≤ N.
Consider, the sub-permutation P = (π((k − 1)j + 1), π((k − 1)j + 2), ..., π(kj)) for k and
j such that kj ≤ n. Define, s =| B ∩ P |≥ 0 and r =max B ∩ P if s > 0 else r := 0.
Then, r, r− 1, ..., r− s+ 1 ∈ B ∩P and (k− 1)j + r+ 1, (k− 1)j + r+ 2, ..., (k− 1)j + r+
j − s− 1, (k − 1)j + r + j − s ∈ A ∩ P. (1)
Let, a < b ∈ P.
Case 1 : a, b ∈ A
By (1), 1 ≤ b− a < j which implies b 6≡ a mod(j).
Case 2 : a, b ∈ B
Similar to Case 1.
Case 3 : a ∈ B and b ∈ A
By (1), a = r−x where 0 ≤ x ≤ s− 1 and b = (k− 1)j+ r+ y where 1 ≤ y ≤ j− s. Then,
b− a ≡ y + x mod(j) But 1 ≤ y + x ≤ j − 1. It follows that b 6≡ a mod(j).
Hence, (a)⇒(c).

If we take k = 1 then (c)⇒(b).

Assume (b). Now, (d) is true for j = 1. Let (d) be true for some j ≥ 1 i.e. {π(1), π(2), ..., π(j)} =
{a, a+ 1, ..., a+ j−1} for some a ≥ 1. We claim that π(j+ 1) is equal to a−1 or a+ j+ 1.
If not, then π(j + 1) equals a − x or a + j + x for some x > 1. If π(j + 1) = a − x then
π(j + 1) ≡ a− x+ j + x− 1 ≡ a+ j − 1 mod(j + x− 1) which contradicts (b). Similarly,
if π(j + 1) = a + j + x then π(j + 1) ≡ a + 1 + j + x − 1 ≡ a + 1 mod(j + x − 1) which
contradicts (b). Therefore, {π(1), π(2), ..., π(j), π(j + 1)} = {a, a + 1, ..., a + j} for some
a ≥ 1.
Hence, (b)⇒(d).

Assume (d). We’ve seen that π(j+1) equals max{π(1), π(2), ..., π(j)}+1 or min{π(1), π(2),
..., π(j)} − 1 where 1 ≤ j ≤ N − 1. It is then clear that either π = (1, 2, ..., N) or π can be
partitioned into two sub-permutations A = (t, t+1, t+2, ..., N) and B = (t−1, t−2, ..., 1),
where t = π(1) > 1, by adding π(j + 1) to A if π(j + 1) > t else adding π(j + 1) to B,
sequentially. In either case π is a Gilbreath permutation.
Hence, (d)⇒(a)

In total, (a)⇒(c)⇒(b)⇒(d)⇒(a).
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