Math-O-Trick: Assignment

Gaurish Korpal

Prove the following statements based on your understanding of Bachet-1, Bachet-2 and Bachet-3. Definitions and useful theorems (from arithmetic) are given on the other side of this page.

- 1. Given a deck of 2n cards, s in-riffle-shuffle will restore the original order just when $2^s \equiv 1 \pmod{2n+1}$.
- 2. If you in-riffle-shuffle 2n cards 2n times, and 2n + 1 is prime, then cards will come back to their original order.
- 3. In you out-riffle-shuffle 2n cards 2n 2 times, where 2n 1 is prime, the cards will come back to their original order.
- 4. The number of Monge's shuffles required to restore the original order is the smallest s for which $2^s \equiv \pm 1 \pmod{4n+1}$.
- 5. If 4n + 1 is prime, then 2n Monge's shuffles of a 2n card deck restore the original order.
- 6. The number of bases (like base-2=binary, base-10=decimal, etc.) modulo a prime number p in which 1/p has the cycle length k is just the same as the number of fractions

$$\frac{0}{p-1}, \frac{1}{p-1}, \dots, \frac{p-2}{p-1}$$

that have least denominator k.

- 7. For a permutation π of $\{1, 2, 3, \dots, N\}$ the following four properties are equivalent:
 - (a) π is a Gilbreath permutation, defined as: Fix a number between 1 and N, call it j. Deal the top j cards into a pile face-down on the table, reversing their order. Now, riffle shuffle (need not be perfect-riffle-shuffle) the j cards with the remaining N j cards.
 - (b) For each j, the top j cards

$$\{\pi(1), \pi(2), \ldots, \pi(j)\}$$

are distinct modulo j.

(c) For each j and k with $kj \leq N$, the j cards

$$\{\pi((k-1)j+1), \pi((k-1)j+2), \dots, \pi(kj)\}\$$

are distinct modulo j.

(d) For each j, the top j cards are consecutive in $1, 2, 3, \ldots, N$.

References

- [1] Conway, J. H. and Guy R. K. The Book of Numbers. Copernicus, Springer-Verlag: New York. 1996
- [2] Diaconis P. and Graham R. Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks. Princeton University Press: Princeton and Oxford. 2012

Hints:

- The symbol $a \equiv b \pmod{n}$ is read as "a is congruent to b, modulo n" and is equivalent to saying that both the integers a and b leave same remainder when divided by some integer n.
- If $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$, then:
 - $\circ \ a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$
 - $\circ \ a_1 a_2 \equiv b_1 b_2 \pmod{n}$
 - $\circ \ a_1 a_2 \equiv b_1 b_2 \pmod{n}$
- The symbol gcd(a, b) = 1 means that the greatest common divisor of the integers a and b is 1, i.e. a and b don't have any common divisor other than 1.
- Let the prime number p be 7, then following are the different representations of $\frac{1}{7}$:

base (b)	representation	cycle length
2	0.001001001001001	3
3	0.01021201021201	6
4	0.021021021021021	3
5	0.032412032412032	6
6	0.0505050505050505	2
7	0.1	terminating
8	0.11111111111111	1
9	0.12512512512512	3
10	0.142857142857142	6

So, the cycle length is

6 for the 2 cases when $b \equiv 3, 5 \pmod{7}$

- $3 \quad \text{for the 2 cases when} \quad b \equiv 2,4 \pmod{7}$
- 2 for the 1 case when $b \equiv 6 \pmod{7}$
- 1 for the 1 case when $b \equiv 1 \pmod{7}$

• Number of fractions among $\frac{0}{6}, \frac{1}{6}, \dots, \frac{5}{6}$ with lowest denominator

6	are the 2 fractions	$\frac{1}{6}, \frac{5}{6}$
3	are the 2 fractions	$\frac{1}{3}, \frac{2}{3}$
2	is the 1 fraction	$\frac{1}{2}$
1	is the 1 fraction	$\frac{0}{1}$

• For any positive integer $m \leq n$, the number of fractions from $\frac{0}{n}, \frac{1}{n}, \ldots, \frac{n-1}{n}$ has m as least possible denominator is given by Euler's totient function, $\phi(m)$. It's value can be calculated using the formula:

$$\phi(m) = m \times \left(1 - \frac{1}{p}\right) \times \left(1 - \frac{1}{q}\right) \times \left(1 - \frac{1}{r}\right) \times \cdots$$

where p, q, r, \ldots are the distinct prime factors of m. For example, $\phi(3) = \phi(6) = 2$ and $\phi(1) = \phi(2) = 1$.

- A group G is a finite or infinite set of elements together with a binary operation that together satisfy the four fundamental properties of closure, associativity, the identity property, and the inverse property.
- We denote the group of integers modulo n under multiplication operation by $(\mathbb{Z}/n\mathbb{Z})^{\times}$ and the number of elements in this group is $\phi(n)$. For example, $(\mathbb{Z}/7\mathbb{Z})^{\times} = \{\bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}\}.$
- Permutation of a finite set X is a bijective map from the set X to itself. The number of permutations of a set of cardinality n is $n! = 1 \times 2 \times \cdots \times (n-1) \times n$.
- [Fermat's little theorem] If p is a prime number, then for any integer a, the number $a^p a$ is an integer multiple of p. In the notation of modular arithmetic, $a^p \equiv a \pmod{p}$. For example, if a = 2 and p = 7, $2^7 = 128$ and $128 2 = 7 \times 18$ is an integer multiple of 7. And if gcd(a, p) = 1 then we can write $a^{p-1} \equiv 1 \pmod{p}$, which is a special case of: $a^{\phi(n)} \equiv 1 \pmod{n}$ for any integer n with gcd(a, n) = 1.

Answers to Math-O-Trick Assignment

Hitesh Kumar

March 9, 2017

- 1. It is a simple observation that a card moves to position $2x \mod(2n+1)$ after an inriffle-shuffle, where x is the initial position of the card in the deck of 2n cards. Say the original order is restored after s in-riffle-shuffles. This means, after s in-riffle-shuffles, card at position 1 is back to position 1 i.e. $2^s * 1 \equiv 1 \mod(2n+1)$. Conversely, if $2^s \equiv 1 \mod(2n+1)$ holds for some natural number s then $2^s x \equiv x \mod(2n+1)$ for all natural numbers x, which implies that the card at position x is back to its original position after s in-riffle-shuffles. Hence, s in-riffle-shuffles restore the order of 2n cards iff $2^s \equiv 1 \mod(2n+1)$.
- 2. We know that if p is a prime and a is an integer such that gcd(p, a) = 1 then $a^{p-1} \equiv 1 \mod(p)$. If 2n+1 is prime then by above theorem, $2^{2n} \equiv 1 \mod(2n+1)$ since gcd(2, 2n+1) = 1 for all natural numbers n. Hence, by the result in Q.1, the claim is straightforward.
- 3. In the case of out-riffle-shuffle, the position of first and last cards in the deck of 2n cards, never changes. The 2n-2 remaining cards behave as if an in-riffle-shuffle has been applied. So, by the result in Q.2, we can say that the original order will be restored after 2n-2 out-riffle-shuffles if 2n-1 is prime.
- 4. Let us label the cards from 1 to 2n where 1 is at the bottom of the deck of 2n cards. Then the Monge's shuffle corresponds to the following permutation (say p) :

$1 \mapsto 2n$	$2\mapsto 1$
$3 \mapsto 2n-1$	$4\mapsto 2$
•	
$2n-1\mapsto n+1$	$2n\mapsto n$
· · · -1	

Consider the inverse permutation p^{-1} :

$1 \mapsto 2$	$n+1\mapsto 2n-$
$2 \mapsto 4$	$n+2\mapsto 2n-$
	•
•	•
$n \mapsto 2n$	$2n\mapsto 1$

 $\frac{1}{3}$

Note that, p^{-k} takes the card originally at position x to min $\{a, b\}$ where a and b are the least positive residues mod(4n + 1) of $2^k x$ and $-2^k x$ respectively.

So, if the order of cards is restored by m applications of p^{-1} then for a given $1 \le x \le 2n$, either $2^m x \equiv x \mod(4n+1)$ or $-2^m x \equiv x \mod(4n+1)$ holds. (1) We know that m is the order of p iff m is the order of p^{-1} . Also by (1), m is the order of p^{-1} iff m is the least number such that $2^m \equiv 1 \mod(4n+1)$ or $-2^m \equiv 1 \mod(4n+1)$. It follows that order of p is m i.e. m is the minimum number of Monge's shuffles required to restore the order iff m is the least number such that $2^m \equiv \pm 1 \mod(4n+1)$.

5. We know that, if p is a prime and a is an integer such that gcd(a, p) = 1, then $a^{(p-1)/2} \equiv \pm 1 \mod(p)$. If 4n + 1 is prime then simple application of the result in Q.4 and the statement above, proves the claim.

6. Let, b be denote a base and p be a prime. Let, 1/p has a cycle of length $k \ge 1$ i.e. $1/p = 0.a_1a_2...a_ka_1...$, (where $a_1, a_2, ..., a_k$ are non-negative integers, not all zero which form the smallest repeating unit in 1/p), then $b^k/p = a_1a_2...a_k + 1/p$ which implies $b^k \equiv 1$ mod(p). Suppose, s is the smallest positive integer such that $b^s \equiv 1 \mod(p)$, then $s \le k$. Suppose s < k. Then, $b^s \equiv 1 \mod(p)$ implies $1/p = 0.a_1a_2...a_sa_1...$ i.e. cycle length of 1/pis s which is less than k, a contradiction. Hence, the cycle length k of 1/p is the smallest positive integer such that $b^k \equiv 1 \mod(p)$ if gcd(b, p) = 1.

Now, let *m* be the number of bases *b* modulo *p* such that 1/p has cycle length *k* in base *b*. It means that *m* is the number of solution classes of the congruence relation $b^k \equiv 1 \mod(p)$. Or in other words, *m* is the number of elements in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ with order *k*. We know that, in a finite cyclic group, number of elements of order *k* is $\phi(k)$, where ϕ is the Euler totient function. Hence, $m = \phi(k)$.

Again, for $0 \le x \le p-2$, x/(p-1) has least denominator k iff (xk/(p-1), k) = 1. Hence, $\phi(k)$ gives the number of fractions in $\frac{0}{p-1}, \frac{1}{p-1}, \dots, \frac{p-2}{p-1}$, that have least denominator k. So, the claim holds.

7. Given that π is a permutation of $\{1, 2, 3, ..., N\}$.

Let π be a Gilbreath permutation. Then, π is given by the interlacing of sub-permutations A and B where A = (t + 1, t + 2, ..., N) and B = (t, t - 1, ..., 1) with $0 \le t \le N$. Consider, the sub-permutation $P = (\pi((k-1)j+1), \pi((k-1)j+2), ..., \pi(kj))$ for k and j such that $kj \leq n$. Define, $s = |B \cap P| \geq 0$ and $r = \max B \cap P$ if s > 0 else r := 0. Then, $r, r-1, ..., r-s+1 \in B \cap P$ and (k-1)j+r+1, (k-1)j+r+2, ..., (k-1)j+r+2 $j - s - 1, (k - 1)j + r + j - s \in A \cap P.$ (1)Let, $a < b \in P$. Case 1 : $a, b \in A$ By (1), $1 \le b - a < j$ which implies $b \not\equiv a \mod(j)$. Case $2: a, b \in B$ Similar to Case 1. Case 3 : $a \in B$ and $b \in A$ By (1), a = r - x where $0 \le x \le s - 1$ and b = (k - 1)j + r + y where $1 \le y \le j - s$. Then, $b - a \equiv y + x \mod(j)$ But $1 \leq y + x \leq j - 1$. It follows that $b \not\equiv a \mod(j)$. Hence, (a) \Rightarrow (c).

If we take k = 1 then (c) \Rightarrow (b).

Assume (b). Now, (d) is true for j = 1. Let (d) be true for some $j \ge 1$ i.e. $\{\pi(1), \pi(2), ..., \pi(j)\} = \{a, a+1, ..., a+j-1\}$ for some $a \ge 1$. We claim that $\pi(j+1)$ is equal to a-1 or a+j+1. If not, then $\pi(j+1)$ equals a-x or a+j+x for some x > 1. If $\pi(j+1) = a-x$ then $\pi(j+1) \equiv a-x+j+x-1 \equiv a+j-1 \mod (j+x-1)$ which contradicts (b). Similarly, if $\pi(j+1) = a+j+x$ then $\pi(j+1) \equiv a+1+j+x-1 \equiv a+1 \mod (j+x-1)$ which contradicts (b). Therefore, $\{\pi(1), \pi(2), ..., \pi(j), \pi(j+1)\} = \{a, a+1, ..., a+j\}$ for some $a \ge 1$. Hence, (b) \Rightarrow (d).

Assume (d). We've seen that $\pi(j+1)$ equals $\max\{\pi(1), \pi(2), ..., \pi(j)\}+1$ or $\min\{\pi(1), \pi(2), ..., \pi(j)\}-1$ where $1 \leq j \leq N-1$. It is then clear that either $\pi = (1, 2, ..., N)$ or π can be partitioned into two sub-permutations A = (t, t+1, t+2, ..., N) and B = (t-1, t-2, ..., 1), where $t = \pi(1) > 1$, by adding $\pi(j+1)$ to A if $\pi(j+1) > t$ else adding $\pi(j+1)$ to B, sequentially. In either case π is a Gilbreath permutation. Hence, (d) \Rightarrow (a)

In total, $(a) \Rightarrow (c) \Rightarrow (b) \Rightarrow (d) \Rightarrow (a)$.