Math-O-Trick: Assignment

Gaurish Korpal

Prove the following statements based on your understanding of Bachet-1, Bachet-2 and Bachet-3.
Definitions and useful theorems (from arithmetic) are given on the other side of this page.

1. Given a deck of 2n cards, s in-riffle-shuffle will restore the original order just when 2° = 1
(mod 2n + 1).

2. If you in-riffle-shuffle 2n cards 2n times, and 2n + 1 is prime, then cards will come back to their
original order.

3. In you out-riffle-shuffle 2n cards 2n — 2 times, where 2n — 1 is prime, the cards will come back
to their original order.

4. The number of Monge’s shuffies required to restore the original order is the smallest s for which
2° = £1 (mod 4n + 1).

5. If 4n + 1 is prime, then 2n Monge’s shuffles of a 2n card deck restore the original order.

6. The number of bases (like base-2=binary, base-10=decimal, etc.) modulo a prime number p in
which 1/p has the cycle length k is just the same as the number of fractions
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that have least denominator k.
7. For a permutation 7 of {1,2,3,..., N} the following four properties are equivalent:

a) m1s a Gilbreath permutation, defined as: Fix a number between 1 an , call 1t 7. Dea

is a Gilbreath ion, defined Fi ber b 1 and N, call it j. Deal

the top j cards into a pile face-down on the table, reversing their order. Now, riffle shuffle
(need not be perfect-riffle-shuffle) the j cards with the remaining N — j cards.

(b) For each j, the top j cards

are distinct modulo j.
(c¢) For each j and k with kj < N, the j cards

{m((k=1)j+1),7((Ek—1)j+2),...,7(kj)}

are distinct modulo j.

(d) For each j, the top j cards are consecutive in 1,2,3,...  N.
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Hints:

e The symbol a = b (mod n) is read as “a is congruent to b, modulo n” and is equivalent to saying that
both the integers a and b leave same remainder when divided by some integer n.

e If a1 =b; (mod n) and ay = by (mod n), then:
o aj +as =b; + by (mod n)
o a; —ag =b; — by (mod n)
o ajaz = biby (mod n)

e The symbol ged(a,b) = 1 means that the greatest common divisor of the integers a and b is 1, i.e. a and
b don’t have any common divisor other than 1.

e Let the prime number p be 7, then following are the different representations of %:

’ base (b) \ representation \ cycle length
2 0.001001001001001. .. 3
3 0.01021201021201. .. 6
4 0.021021021021021. .. 3
5 0.032412032412032. . . 6
6 0.05050505050505. . . 2
7 0.1 terminating
8 O.11111111111111... 1
9 0.12512512512512. .. 3
10 0.142857142857142. .. 6

So, the cycle length is

6 for the 2 cases when b=3,5 (mod 7)
3 for the 2 cases when b=2,4 (mod 7)
2 for the 1 case when b=6 (mod7)
1 for the 1 case when b=1 (mod 7)

e Number of fractions among %7 %7 e % with lowest denominator
6 the 2 fracti 15
are the 2 fractions =, -
66
3 the 2 fracti 12
are the 2 fractions -, -
3°3

1

2 is the 1 fraction 3

. . 0

1 is the 1 fraction 1

e For any positive integer m < n, the number of fractions from %, %, ey ”Tfl has m as least possible

denominator is given by Euler’s totient function, ¢(m). It’s value can be calculated using the formula:

¢(m)=mx(1—;)x(l—;)x(1_i)><...

where p, g, r, ... are the distinct prime factors of m. For example, ¢(3) = ¢(6) = 2 and ¢(1) = ¢(2) = 1.

e A group G is a finite or infinite set of elements together with a binary operation that together satisfy the
four fundamental properties of closure, associativity, the identity property, and the inverse property.

e We denote the group of integers modulo n under multiplication operation by (Z/nZ)™ and the number

e Permutation of a finite set X is a bijective map from the set X to itself. The number of permutations of
a set of cardinality nisn!=1x2x--- x (n —1) x n.

e [Fermat’s little theorem] If p is a prime number, then for any integer a, the number a? — a is an integer
multiple of p. In the notation of modular arithmetic, a? = a (mod p). For example, if a =2 and p = 7,
27 = 128 and 128 —2 = 7 x 18 is an integer multiple of 7. And if gcd(a, p) = 1 then we can write a?~! =1
(mod p), which is a special case of: a?(™ =1 (mod n) for any integer n with ged(a,n) = 1.
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1. It is a simple observation that a card moves to position 2z mod(2n + 1) after an in-
rifle-shuffle, where x is the initial position of the card in the deck of 2n cards. Say the
original order is restored after s in-riffle-shuffles. This means, after s in-rifle-shuffles, card
at position 1 is back to position 1 i.e. 2% %1 = 1 mod(2n + 1). Conversely, if 2° = 1
mod(2n + 1) holds for some natural number s then 2°z = x mod(2n + 1) for all natural
numbers x, which implies that the card at position x is back to its original position
after s in-riffle-shuffles. Hence, s in-riffle-shuffles restore the order of 2n cards iff 2° = 1
mod(2n + 1).

2. We know that if p is a prime and a is an integer such that ged(p,a) = 1 then a?~! = 1
mod(p). If 2n+1 is prime then by above theorem, 22* = 1 mod(2n+1) since ged(2, 2n+1) =
1 for all natural numbers n. Hence, by the result in Q.1, the claim is straightforward.

3. In the case of out-riffle-shuffle, the position of first and last cards in the deck of 2n cards,
never changes. The 2n—2 remaining cards behave as if an in-riffle-shuffle has been applied.
So, by the result in Q.2, we can say that the original order will be restored after 2n — 2
out-riffle-shuffles if 2n — 1 is prime.

4. Let us label the cards from 1 to 2n where 1 is at the bottom of the deck of 2n cards. Then
the Monge’s shuffle corresponds to the following permutation (say p) :

1— 2n 21
3—2n—1 42
2n—1—n+1 2n —n

Consider the inverse permutation p~!:

1—2 n+1l—2n-1
24 n+2—2n—3
n— 2n 2n—1

Note that, p~* takes the card originally at position z to min{a, b} where a and b are the
least positive residues mod(4n + 1) of 282 and —2¥z respectively.

So, if the order of cards is restored by m applications of p~! then for a given 1 < z < 2n,
either 2"z = x mod(4n + 1) or —2"x = z mod(4n + 1) holds. (1)
We know that m is the order of p iff m is the order of p~!. Also by (1), m is the order of
p~ L iff m is the least number such that 2 = 1 mod(4n + 1) or —2™ =1 mod(4n + 1). It
follows that order of p is m i.e. m is the minimum number of Monge’s shuffles required to
restore the order iff m is the least number such that 2™ = £1 mod(4n + 1).

5. We know that, if p is a prime and « is an integer such that ged(a,p) = 1, then aP~1/2 = £1
mod(p). If 4n + 1 is prime then simple application of the result in Q.4 and the statement
above, proves the claim.



6. Let, b be denote a base and p be a prime. Let, 1/p has a cycle of length £ > 1 i.e.
1/p = 0.a1as...aa1..., (Where ai,as, ...,a; are non-negative integers, not all zero which
form the smallest repeating unit in 1/p), then v*/p = ayas...ar + 1/p which implies b* = 1
mod(p). Suppose, s is the smallest positive integer such that b* = 1 mod(p), then s < k.
Suppose s < k. Then, b* = 1 mod(p) implies 1/p = 0.a1az...asa;... i.e. cycle length of 1/p
is s which is less than k, a contradiction. Hence, the cycle length k of 1/p is the smallest
positive integer such that v* = 1 mod(p) if ged(b,p) = 1.

Now, let m be the number of bases b modulo p such that 1/p has cycle length k in base
b. It means that m is the number of solution classes of the congruence relation b* = 1
mod(p). Or in other words, m is the number of elements in (Z/pZ)* with order k. We
know that, in a finite cyclic group, number of elements of order k is ¢(k), where ¢ is the
Euler totient function. Hence, m = ¢(k).
Again, for 0 <z <p—2, z/(p—1) has least denominator k iff (xk/(p —1),k) = 1. Hence,
¢(k) gives the number of fractions in 1%’ zﬁ’ e %’ that have least denominator k. So,
the claim holds.

7. Given that 7 is a permutation of {1,2,3,..., N}.

Let 7 be a Gilbreath permutation. Then, 7 is given by the interlacing of sub-permutations
A and B where A= (t+1,t+2,..,N)and B = (t,t —1,...,1) with 0 <t < N.
Consider, the sub-permutation P = (w((k —1)j + 1), 7((k — 1)j + 2), ..., 7(kj)) for k and
j such that kj < n. Define, s =| BN P |> 0 and r =max BN P if s > 0 else r := 0.
Then, r,r—1,..,r—s+1e€e BNPand (k—1)j+r+1,(k—1)j+r+2,...(k—1)j+r+
j—s—1(k—=1)j+r+j—scANP. (1)
Let, a < b€ P.

Case 1 :a,be A

By (1), 1 < b—a < j which implies b # a mod(yj).

Case 2 : a,be B

Similar to Case 1.

Case 3:a€ Bandbe A

By (1),a=r—xzwhere0<z<s—landb=(k—1)j+r+y where 1 <y < j—s. Then,
b—a=y+xmod(j) But 1 <y+z <j— 1.1t follows that b # a mod(j).

Hence, (a)=(c).

If we take k = 1 then (¢)=-(b).

Assume (b). Now, (d) is true for j = 1. Let (d) be true for some j > lie. {n(1),7(2),....,7(j)} =
{a,a+1,...,a+j—1} for some a > 1. We claim that 7(j+ 1) is equal to a —1 or a+j + 1.

If not, then m(j + 1) equals a — x or a + j + = for some z > 1. If 7(j + 1) = a — = then
m(j+1l)=a—x+j+x—1=a+j—1mod(j+z — 1) which contradicts (b). Similarly,
ifr(j+1)=a+j+xthenn(j+1)=a+1+j+2—-1=a+1mod(j+ 2 —1) which
contradicts (b). Therefore, {m(1),7(2),...,7(5),7(j + 1)} = {a,a +1,...,a + j} for some
a>1.

Hence, (b)=-(d).

Assume (d). We’ve seen that w(j+1) equals max{m(1),7(2),...,7(j)}+1 or min{m (1), 7(2),
we,m(j)} —1 where 1 < j < N — 1. It is then clear that either 7 = (1,2,..., N) or 7 can be
partitioned into two sub-permutations A = (t,t+1,t+2,...., N)and B = (t—1,t—2,...,1),
where t = 7(1) > 1, by adding 7(j + 1) to A if 7(j + 1) > t else adding 7(j + 1) to B,
sequentially. In either case 7 is a Gilbreath permutation.

Hence, (d)=-(a)

In total, (a)=(c)=(b)=(d)=(a).



