
Sheaf, Cohomology and Geometry

A thesis Submitted
in Partial Fulfillment of the Requirements

for the Degree of
MASTER OF SCIENCE

by
Gaurish Korpal

to the
School of Mathematical Sciences

National Institute of Science Education and Research
Bhubaneswar
26 April 2019



DECLARATION

I hereby declare that I am the sole author of this thesis in partial fulfillment of the require-
ments for a postgraduate degree from National Institute of Science Education and Research
(NISER). I authorize NISER to lend this thesis to other institutions or individuals for the pur-
pose of scholarly research.

Signature of the Student
Date:

The thesis work reported in the thesis entitled.........................................................................
was carried out under my supervision, in the school of ...............................................................
at NISER, Bhubaneswar, India.

Signature of the thesis supervisor
School:
Date:



Abstract

Firstly, a sheaf-theoretic proof of de Rham cohomology being a topological invariant is
presented. The de Rham cohomology of a smooth manifold is shown to be isomorphic to the
Čech cohomology of that manifold with real coefficients. Then a proof of Dolbeault theorem,
analogous to that of de Rham theorem, is discussed. Finally, the utility of Dolbeault-Čech

isomorphism is illustrated by proving that every analytic hypersurface in Cn can be described
as the zero-locus of an entire function.
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Chapter 0

Introduction

0.1 Sheaf-theoretic de Rham isomorphism

A fundamental problem of topology is that of determining, for two spaces, whether or not
they are homeomorphic. Algebraic topology originated in the attempts by mathematicians to
construct suitable topological invariants. In 1895, Henri Poincaré1 introduced a certain group,
called the fundamental group of a topological space; which is by definition a topological invariant.
Enrico Betti, on the other hand, associated with each space certain sequence of abelian groups
called its homology groups [25, p. 1]. It was eventually proved that homeomorphic spaces had
isomorphic homology groups. It was not until 1935 that another sequence of abelian groups,
called cohomology groups, was associated with each space. The origins of cohomology groups
lie in algebra rather than geometry; in a certain algebraic sense they are dual to the homology
groups [25, p. 245]. There are several different ways of defining (co)homology groups, most
common ones being simplicial and singular groups2. A third way of defining homology groups
for arbitrary spaces, using the notion of open cover, is due to Eduard Čech (1932). The Čech
homology theory is still not completely satisfactory [25, p. 2]. Apparently, Čech himself did not
introduce Čech cohomology. Clifford Hugh Dowker, Samuel Eilenberg, and Norman Steenrod
introduced Čech cohomology in the early 1950’s [8, p. 24].

In 1920s, Élie Cartan’s extensive research lead to the global study of general differential forms
of higher degrees. É. Cartan, speculating the connections between topology and differential
geometry, conjectured the de Rham theorem in a 1928 paper [21, p. 95]. In 1931, in his doctoral
thesis, Georges de Rham3 showed that differential forms satisfy the same axioms as cycles and
boundaries, in effect proving a duality between what are now called de Rham cohomology and
singular cohomology with real coefficients4. De Rham cohomology is considered to be one of the
most important diffeomorphism invariant of a smooth manifold [32, p. 274].

Jean Leray, as a prisoner of war from 1940 to 1945, set himself the goal of discovering methods
which could be applied to a very general class of topological space, while avoiding the use of
simplicial approximation. The de Rham theorem and É. Cartan’s theory of differential forms
were central to Leray’s thinking [19, §2]. After the war he published his results in 1945, which
marked the birth of sheaves and sheaf cohomology5. His remarkable but rather obscure results
were clarified by Émile Borel, Henri Cartan, Jean-Louis Koszul, Jean-Pierre Serre and André

1Poincaré, Henri. “Analysis situs.” Journal de l’École Polytechnique. 2 (1895): 1-123. https://gallica.
bnf.fr/ark:/12148/bpt6k4337198

2Singular homology emerged around 1925 in the work of Oswald Veblen, James Alexander and Solomon
Lefschetz, and was defined rigorously and in complete generality by Samuel Eilenberg in 1944 [8, p. 10].

3De Rham, Georges. “Sur l’analysis situs des variétés à n dimensions.” 1931. http://eudml.org/doc/192808
4This can also be achieved directly via simplicial methods, see John Lee’s Introduction to Smooth Manifolds,

Chapter 18. In fact, this theorem has several dozens of different proofs.
5The word faisceau was introduced in the first of the announcements made by Leray in meeting of the Académie

des Sciences on May 27, 1946. In 1951, John Moore fixed on “sheaf” as the English equivalent of “faisceau”.
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Weil in the late 1940’s and early 1950’s6. In 1952, Weil7 found the modern proof of the de Rham
theorem, this proof was a vindication of the local methods advocated by Leray [1, p. 5]. Weil’s
discovery provided the light which led H. Cartan to the modern formulation of sheaf theory [19,
§2].

One can use Weil’s approach, involving generalized Mayer-Vietoris principle, to study the
relation between the de Rham theory to the Čech theory [1, p. 6]. However, we will follow the
approach due to H. Cartan, written in the early 1950’s, to give a sheaf theoretic proof of the
isomorphism between de Rham and Čech cohomology with coefficients in R [35, p. 163]. An
outline of this approach for proving de Rham cohomology to be a topological invariant can be
found in the the books by Griffiths and Harris [9, p. 44] and Hirzebruch [11, §2.9–2.12].

In chapter 1 we will discuss various concepts related to differential forms and smooth mani-
folds needed to define de Rham cohomology. We will also develop the tools like Poincaré lemma,
which will be used later to establish important sheaf theoretic results about the differential
forms. In chapter 2 we will first discuss the sheaf theory necessary for defining Čech cohomol-
ogy, and then prove the key results about Čech cohomology of paracompact Hausdorff spaces,
like “short exact sequence of sheaves induces a long exact sequence of Čech cohomology”, and
“Čech cohomology vanishes on fine sheaves”. Finally, in section 2.3 we will present the proof of
de Rham-Čech isomorphism.

In the first section of Appendix A, to supplement the discussions in the first two chapters, we
have stated few facts about paracompact spaces. In Appendix B we have discussed the theory
of direct limits needed for understanding various definitions and proofs in the second chapter.

0.2 Cousin problem for analytic hypersurface in Cn

In 1876, Karl Weierstrass asked the following three questions regarding complex valued holo-
morphic and meromorphic functions defined on an open subset U of C [33, Chapter 2]:

W1. Does there exist a holomorphic function with prescribed zeros?
W2. Is every meromorphic function on a quotient of two holomorphic functions?
W3. Does there exist a meromorphic function with prescribed poles and their principal part?

The answer to all these questions is yes. The first two questions were answered by Weierstrass
himself in 1876, and the third question was answered by Gösta Mittag-Leffler during 1876-1882.
The answer to the first and second question follows from the Weierstrass factorization theorem.
Moreover, the affirmative answer to the second question is a corollary to the first one [3, Theorem
VII.5.15, Corollary VII.5.20]. The answer to the third question is known as the Mittag-Leffler
theorem, and the Weierstrass factorization theorem can be deduced from it [3, Theorem VIII.3.2,
Exercise VIII.3.3].

W3

W1

W2

Figure 1: The relation between Weierstrass’ questions identified by Mittag-Leffler.

6Georges Elencwajg (https://math.stackexchange.com/users/3217/georges-elencwajg), Why was Sheaf
cohomology invented?, URL (version: 2016-05-24): https://math.stackexchange.com/q/1798796

7Weil, André. “Sur les théorèmes de de Rham.” Commentarii mathematici Helvetici 26 (1952): 119-145.
http://eudml.org/doc/139040.
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The close bond between these three questions motivated other mathematicians to ask these
question for complex valued holomorphic and meromorphic functions defined on open sets in
Cn. In 1883, Henri Poincaré generalized W2 by proving that every meromorphic function on C2

is a quotient of two holomorphic functions on C2 [18, Chapter 6] [2, §2]. However, there wasn’t
much progress made until 1895, when Pierre Cousin proved in his Ph.D. thesis that W1, W2 and
W3 for product domains X = U1 × U2 × · · ·Un ⊂ Cn are consequences of a single fundamental
theorem [2, §3.1].

Fundamental theorem W3

Auxiliary theorem

W1

W2

Figure 2: The relation between Weierstrass’ questions for product domains identified by Cousin.

Therefore, Cousin was successful in bringing together the three problems of Weierstrass to
make one coherent family. Moreover, the methods of Poincaré and Cousin exhibited what would
later be called the “from local to global” problem form. However, in 1913, Thomas Hakon
Grönwall and William Fogg Osgood found a counter example to W2, i.e. in the product of two
ring-shaped domains there is a meromorphic function that cannot be written as the quotient
of two holomorphic functions. Since W2 was an easy consequence of W1, they concluded that
there was some flaw8 in the proof of auxiliary theorem, which was the logarithmic variant of
Cousin’s fundamental theorem [2, §3.3]. Later, in 1934, Henri Cartan published a three-page
note to show that the three problems had not significantly changed since Cousin, and gave the
following labels [2, §3.4]:

Cousin I: Name given to Cousin’s fundamental theorem. Also known as the additive problem.
Cousin II: Name given to Cousin’s auxiliary theorem. Also known as the multiplicative prob-

lem.
Poincaré problem: Name given to the problem about the quotient representation of mero-

morphic functions.

Kyoshi Oka made a breakthrough by first solving Cousin I for bounded domains of holomor-
phy in 1937 and then an year later establishing that Cousin II for domains of holomorphy is a
problem of purely topological nature. That is, he proved that for domains of holomorphy, the
solvability of Cousin II depends only on a topological property of the zero-locus [2, §3.4.2]. To
illustrate the independence of Cousin II, he also gave an example of product domain (since every
product domain is a domain of holomorphy), in which Cousin I Y=⇒ Cousin II [15, p. 250].

Cousin I

If the zero-locus is topologically “nice”

Cousin II

Figure 3: The relation between Cousin problems for domains of holomorphy identified by Oka.

8Cousin thought he had established Fundamental theorem =⇒ Auxiliary theorem for any product domain,
but he had proved it only for those product domains in which at most one of the components is not necessarily
simply connected.
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In 1944, Cartan generalized the Cousin problems by recasting them in terms of ideals9 [2,
§4]. In particular, this theory is the new setting enabled the use of powerful abstract methods
such as Hilbert’s Nullstellensatz available in algebraic geometry [12, Proposition 1.1.29].

In the previous section we saw that during 1945-1951 the concept of sheaf and sheaf coho-
mology was developed. Fortunately, during these developments, several important questions left
pending in Cartan’s 1944 paper were also answered [2, §5]. From 1949 to 1953, Cartan organized
various seminars which were devoted to the study of fibre-spaces, homotopy theory, cohomology
theories and analytic functions in several variables. During the last three talks, the cohomology
of coherent sheaves on Stein spaces was developed and Cartan proved two results concerning
a coherent sheaf F on a Stein manifold X which were analogous to Cousin problems (called
Cartan A and Cartan B) [2, §5.5]. For more details, refer to the books by Gunning and Rossi
[10], Kaup and Kaup [14], Fritzsche and Grauert [6], Maurin [18], Krantz [15] and Taylor [31].

In 1952, Cartan’s student Jean-Pierre Serre10 gave the cohomological formulation of the
conditions for solving the Cousin problems [2, p. 62]:

LetX be a complex analytic variety11, O be the sheaf of holomorphic complex valued
functions andM be the sheaf of meromorphic complex valued functions on X. Then
Cousin I is solvable for X if and only if Ȟ

1
(X,O) → Ȟ

1
(X,M) is one to one and

onto, and Cousin II is solvable for X if and only if Ȟ
1
(X,O∗) → Ȟ

1
(X,M∗) is

one to one and onto. In particular, for Cousin I to be solvable, it is sufficient that
Ȟ

1
(X,O) = 0 and for Cousin II to be solvable, it is sufficient that Ȟ

1
(X,O∗) = 0.

Pierre Dolbeault, another student of Cartan, in 1953 introduced the ∂-cohomology12 of
the differential forms defined on complex analytic manifolds [7, §9.1.1]. He proved that this
holomorphic analogue of de Rham cohomology defined on real manifolds is isomorphic to the
sheaf cohomology of the sheaf of holomorphic differential forms [4]. Therefore, Dolbeault’s
theorem is a complex analogue of de Rham’s theorem. Using the Dolbeault-Čech isomorphism
we get that Ȟ

1
(Cn,O) = 0 (Theorem 4.8). Combining this with the purely topological fact that

Ȟ
1
(Cn,Z) = 0 (Corollary 4.2), and using the exponential sheaf sequence we can conclude that

Ȟ
1
(Cn,O∗) = 0 (Lemma 4.3). Hence proving that both the Cousin problems are solvable for Cn

[9, pp. 46-47].
In chapter 3 we will discuss various concepts related to complex differential forms and com-

plex manifolds needed to define Dolbeault cohomology. We will also develop the tools like
∂-Poincaré lemma, which will be used later to establish important sheaf theoretic results about
the complex differential forms. In chapter 4 we will first illustrate the local to global principle
by discussing the solution of Cousin problems for C. Then we will prove Dolbeault theorem and
use it to solve Cousin problem for analytic hypersurface in Cn.

In the second section of Appendix A some fundamental results about smooth partition of
unity, which will play an important role in various arguments presented in the thesis, have been
stated. In Appendix C, to supplement the discussions in the third chapter, we have stated a
few facts from linear algebra. In Appendix D we have discussed the function theory of several
complex variables, which will be used in the third and fourth chapters.

9This was actually the second half of a single work. The first half was published in 1940, but the Second
World War caused the delay in the publication of the other half.

10In 1953, he also proved that Poincaré’s problem is solvable for Stein manifold, i.e. on a Stein manifold any
meromorphic function is the quotient of two holomorphic functions.

11For example, complex manifold.
12Now called Dolbeault cohomology.
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Chapter 1

de Rham cohomology

1.1 Differential forms on Rn

In this section some basic definitions and facts from [24, Chapter 6] and [32, Chapter 1] will be
stated. All the vector spaces are over the field R of real numbers.

1.1.1 Tangent space

Definition 1.1 (Tangent vector). Given p ∈ Rn, a tangent vector to Rn at p is a pair (p; v),

where v =

[ v1
...
vn

]
∈ Rn.

Definition 1.2 (Tangent space). The set of all tangent vectors to Rn at p forms a vector space
called tangent space of Rn at p, defined by

(p; v) + (p;w) = (p; v + w) and c(p; v) = (p; cv)

It is denoted by Tp(Rn).

Definition 1.3 (Germ of smooth functions). Consider the set of all pairs (f, U), where U is a
neighborhood of p ∈ Rn and f : U → R is a smooth function. (f, U) is said to be equivalent to
(g, V ) if there is an open set W ⊂ U ∩ V containing p such that f = g when restricted to W .
This equivalence class of (f, U) is called germ of f at p.

Remark 1.1. The set of all germs of smooth functions on Rn at p is written as C∞p (Rn). The
addition and multiplication of functions induce corresponding operations of C∞p (Rn), making it
into a ring; with scalar multiplication by real numbers C∞p (Rn) becomes an algebra over R.

Definition 1.4 (Derivation at a point). A linear map Xp : C∞p (Rn)→ R satisfying the Leibniz
rule

Xp(fg) = Xp(f)g(p) + f(p)Xp(g)

is called a derivation at p ∈ Rn or a point-derivation of C∞p (Rn).

Remark 1.2. The set of all derivations at p is denoted by Dp(Rn). This set is a vector space.

Theorem 1. The linear map

φ : Tp(Rn)→ Dp(Rn)

(p; v) 7→ Dv =
n∑
i=i

vi
∂

∂xi

∣∣∣∣
p

where (p; v) = (p; v1, . . . , vn) and Dv is the directional derivative in the direction of v, is an
isomorphism.
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Remark 1.3. Under this vector space isomorphism, the standard basis {e1 . . . , en} of Tp(Rn)
corresponds to the set {∂/∂x1|p, . . . , ∂/∂xn|p} of partial derivatives.

Definition 1.5 (Pushforward of a vector). Let U be an open set in Rm, α : U → Rn be a
smooth function. The function f induces the linear transformation

α∗ : Tp(Rm)→ Tα(p)(Rn)

(p; v) 7→ (α(p);Dα(p) · v)

where Dα(p) is the total derivative of α at p. In other words, α∗(Dv)f = Dv(f ◦ α) for
f ∈ C∞α(p)(R

n). Then α∗(p; v) is called the pushforward of the vector v at p,

Theorem 2. Let U be open in Rm, and α : U → Rn be a smooth map. Let V be an open set of
Rn containing α(U), let β : V → Rk be a smooth map. Then (β ◦ α)∗ = β∗ ◦ α∗.

1.1.2 Multilinear algebra

Unlike the preceding and succeeding (sub)sections, here V and W denote real vector spaces
instead of open sets.

Definition 1.6 (k-tensor). Let V be a vector space over R. Let V k = V × · · · × V denote the
set of all k-tuples (v1, . . . , vk) of vectors of V . A function f : V k → R is said to be a k-tensor if
f is linear in the ith variable for each i.

Remark 1.4. The set of all k-tensors on V is denoted by the symbol Lk(V ). If k = 1 then
L1(V ) = V ∗, the dual space of V .

Theorem 3. Let V be a vector space of dimension n, then Lk(V ) is a vector space of dimension
nk.

Definition 1.7 (Tensor product). Let f ∈ Lk(V ) and g ∈ L`(V ), then the tensor product
f ⊗ g ∈ Lk+`(V ) is defined by the equation

(f ⊗ g)(v1, . . . , vk+`) = f(v1, . . . , vk) · g(vk+1, . . . , vk+`)

Definition 1.8 (Pullback of tensors). Let T : V →W be a linear transformation and

T ∗ : Lk(W )→ Lk(V )

be the dual transformation defined for each f ∈ Lk(W ) and v1, . . . , vk ∈ V as

(T ∗f)(v1, . . . , vk) = f(T (v1), . . . , T (vk))

Then T ∗f is called the pullback of tensor f ∈ Lk(W ).

Theorem 4. T ∗ is a linear transformation such that:

1. T ∗(f ⊗ g) = T ∗f ⊗ T ∗g

2. If S : W →W ′ is a linear transformation, then (S ◦ T )∗f = T ∗(S∗f).

Definition 1.9 (Alternating k-tensor). Let f be a k-tensor on V and σ be a permutation of
{1, · · · , k}. The k tensor fσ on V is defined by the equation

fσ(v1, . . . , vk) = f(vσ(1), . . . , vσ(k))

The tensor f is said to be alternating if fσ = (sgnσ)f for all permutations σ of {1, · · · , k}.
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Remark 1.5. The set of all alternating k-tensors on V is denoted by the symbol Ak(V ). If
k = 1 then A1(V ) = L1(V ) = V ∗, the dual space of V .

Theorem 5. Let T : V → W be a linear transformation and T ∗ : Lk(W )→ Lk(V ) be the dual
transformation. If f is an alternating tensor on W , then T ∗f is an alternating tensor on V .

Definition 1.10 (Alternating operator). The linear transformation A : Lk(V )→ Ak(V ) defined
as

Af =
∑
σ

(sgnσ)fσ

is called the alternating operator.

Remark 1.6. One can easily verify that this is a well defined linear transformation. Let τ be
any permutation and f ∈ Lk(V ) then

(Af)τ =
∑
σ

(sgnσ)(fσ)τ =
∑
σ

(sgnσ)f τ◦σ = (sgn τ)
∑
σ

(sgn τ ◦ σ)f τ◦σ = (sgn τ)Af

hence Af ∈ Ak(V ) for all f ∈ Lk(V ).

Definition 1.11 (Wedge product). Let f ∈ Ak(V ) and g ∈ A`(V ), then the wedge product
f ∧ g ∈ Ak+`(V ) is defined as

f ∧ g =
1

k!`!
A(f ⊗ g)

where A is the alternating operator.

Remark 1.7. The reason for the coefficient 1/k!`! follows from the fact that Af = k!f if
f ∈ Ak(V ).

Theorem 6. Let f, g, h be alternating tensors on V . Then the following properties hold:

1. (Associative) f ∧ (g ∧ h) = (f ∧ g) ∧ h

2. (Homogeneous) (cf) ∧ g = c(f ∧ g) = f ∧ (cg) for all c ∈ R

3. (Distributive) If f and g have the same order, then (f + g) ∧ h = f ∧ h + g ∧ h and
h ∧ (f + g) = h ∧ f + h ∧ g

4. (Anti-commutative) If f and g have orders k and `, respectively, then g ∧ f = (−1)k`f ∧ g

5. Let T : V →W be a linear transformation and T ∗ : Lk(W )→ Lk(V ) be the dual transfor-
mation. If f and g are alternating tensors on W , then T ∗(f ∧ g) = T ∗f ∧ T ∗g

Theorem 7. Let V be a vector space of dimension n, with basis {e1, . . . , en}, and {f1, . . . , fn}
be the dual basis for V ∗ = A1(V ). Then Ak(V ) is a vector space of dimension

(
n
k

)
with the set

{fI = fi1 ∧ . . . ∧ fik : I = (i1, . . . , ik)} as basis.

Remark 1.8. If k > dimV , then Ak(V ) = 0. This is because the anti-commutativity of wedge
product implies that if f ∈ V ∗ then f ∧ f = 0.

1.1.3 Differential forms

Definition 1.12 (Tensor field). Let U be an open set in Rn. A k-tensor field in U is a function
ω assigning each p ∈ U , a k-tensor ωp defined on the tangent space Tp(Rn). That is, ωp ∈
Lk(Tp(Rn)) for each p ∈ U .
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Remark 1.9. Thus ωp is a function mapping k-tuples of tangent vectors to Rn at p into R.
The tensor field ω is said to be of class Cr if it is of class Cr as a function of (p, v1, . . . , vk) for
all p ∈ U and vi ∈ Tp(Rn).

Definition 1.13 (Differential k-form). A differential form of order k, or differential k-form on
an open subset U of Rn is a k-tensor field with the additional property that ωp ∈ Ak(Tp(Rn))
for all p ∈ U .

Definition 1.14 (Differential 0-form). If U is open in Rn, and if f : U → R is a map of class
Cr, then f is called a differential 0-form in U .

Definition 1.15 (Wedge product of 0-form and k-form). The wedge product of a 0-form f and
k-form ω on the open set U of Rn is defined by the rule

(ω ∧ f)p = (f ∧ ω)p = f(p) · ωp

for all p ∈ U .

Remark 1.10. Henceforth, we restrict ourselves to differential forms of class C∞. If U is an
open set in Rn, let Ωk(U) denote the set of all smooth k-forms on U . The sum of two such
k-forms is another k-form, and so is the product of a k-form by a scalar. Hence Ωk(U) is the
vector space of k-forms on U . Also, Ω0(U) = C∞(U).

1.1.4 Exterior derivative

Definition 1.16 (Differential of a function). Let U be open in Rn and f : U → R be a smooth
real-valued function. Then the differential of f is defined to be the smooth 1-form df on U such
that for any p ∈ U and (p; v) ∈ Tp(Rn)

(df)p(p; v) = Df(p) · v

where Df(p) is the total derivative of f at p. In other words, (df)p(Xp) = Xpf for all derivations
Xp ∈ Tp(Rn).

Remark 1.11. If x denotes the general point of Rn, the ith projection function mapping Rn
to R is denoted by the symbol xi. Then dxi equals the elementary 1-from in Rn, i.e. the set
{dx1, . . . ,dxn} is a basis of Ω1(Rn). If I = (i1, . . . , ik) is an ascending k-tuple from the set
{1, . . . , n}, then

dxI = dxi1 ∧ · · · ∧ dxik

denotes the elementary k-forms in Rn, i.e. the set {dxI : I is an ascending set of k elements} is
a basis of Ωk(Rn). The general k-form ω ∈ Ωk(U) can be written uniquely in the form

ω =
∑
[I]

aI dxI

for some aI ∈ C∞(U).

Theorem 8. Let U be open in Rn and f ∈ C∞(U). Then

df =
∂f

∂x1
dx1 + . . .+

∂f

∂xn
dxn

In particular, df = 0 if f is a constant function.
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Definition 1.17 (Differential of a k-form). Let U be an open set in Rn and ω ∈ Ωk(U) such
that ω =

∑
[I] fI dxI . Then for k ≥ 0, the differential of a k-form ω is defined by the linear

transformation

d : Ωk(U)→ Ωk+1(U)

ω 7→
∑
[I]

dfI ∧ dxI

where dfI is the differential of function.

Theorem 9. Let U be an open set in Rn. If ω ∈ Ωk(U) and η ∈ Ω`(U) then

1. (Antiderivation) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

2. d ◦ d = 0

Definition 1.18 (Pullback of a k-form). Let U be open in Rm and α : U → Rn be a smooth
map. Let V be an open set in Rn containing α(U). For k ≥ 1

α∗ : Ωk(V )→ Ωk(U)

is the dual transformation defined for each ω ∈ Ωk(V ) and (p; v1), . . . , (p; vk) ∈ Tp(Rm) as

(α∗ω)p((p; v1), . . . , (p; vk)) = ωα(p)(α∗(p; v1), . . . , α∗(p; vk))

Then the k-form α∗ω ∈ Ωk(U) is called the pullback of ω ∈ Ωk(V ).

Definition 1.19 (Pullback of a 0-form). Let U be open in Rm and α : U → Rn be a smooth
map. Let V be an open set in Rn containing α(U). If f : V → R be a smooth map, then the
pullback of f ∈ Ω0(V ) is the the 0-form α∗f = f ◦ α ∈ Ω0(U), i.e. (α∗f)(p) = f(α(p)) for all
p ∈ U .

Theorem 10. Let U be open in R` and α : U → Rm be a smooth map. Let V be open in
Rm which contains α(U) and β : V → Rn be a smooth map. Then (β ◦ α)∗ = α∗ ◦ β∗, i.e.
(β ◦ α)∗ω = α∗(β∗ω) for all ω ∈ Ωk(W ) where W is an open set in Rn containing β(V ).

Theorem 11. Let U be open in Rm and α : U → Rn be a smooth map. If ω, η and θ are
differential forms defined in an open set V of Rn containing α(U), such that ω and η have same
order, then

1. (preservation of the vector space structure) α∗(aω+ bη) = a(α∗ω)+ b(α∗η) for all a, b ∈ R.

2. (preservation of the wedge product) α∗(ω ∧ θ) = α∗ω ∧ α∗θ.

3. (commutation with the differential) α∗(dω) = d(α∗ω), i.e. the following diagram commutes

Ωk(V ) Ωk+1(V )

Ωk(U) Ωk+1(U)

d

α∗ α∗

d
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1.2 Closed and exact forms on Rn

In this section the proof of Poincaré lemma following [24, Chapter 8] will be discussed.

Definition 1.20 (Closed forms). Let U be an open set in Rn and ω ∈ Ωk(U) for k ≥ 0. Then
ω is said to be closed if dω = 0.

Remark 1.12. If U is an open set in Rn, let Zk(U) denote the set of all closed k-forms on U .
The sum of two such k-forms is another closed k-form, and so is the product of a closed k-form
by a scalar. Hence Zk(U) is the vector sub-space of Ωk(U). Also, Z0(U) is the set of all locally
constant1 functions on U .

Definition 1.21 (Exact k-forms). Let U be an open set in Rn and ω ∈ Ωk(U) for k ≥ 1. Then
ω is said to be exact if ω = dη for some η ∈ Ωk−1(U).

Remark 1.13. If U is an open set in Rn, let Bk(U) denote the set of all exact k-forms on U .
The sum of two such k-forms is another exact k-form, and so is the product of a exact k-form
by a scalar. Hence Bk(U) is the vector sub-space of Ωk(U). Also, B0(U) is defined to be the set
consisting only zero.

Theorem 1.1. Every exact form is closed.

Proof. Let U be an open set in Rn and ω ∈ Bk(U) such that ω = dη for some η ∈ Ωk−1(U).
From Theorem 9 we know that dω = d(dη) = 0 hence ω ∈ Zk(U) for all k ≥ 1. For k = 0, the
statement is trivially true.

Remark 1.14. This theorem implies that Bk(U) ⊆ Zk(U) for all k ≥ 0. However, the converse
doesn’t always hold for k ≥ 1. For example, if U = R2 − 0 then the 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

is closed but not exact [24, Exercise 30.5, p. 261].

1.2.1 Differentiable homotopy

Definition 1.22 (Differentiable homotopy). Let U and V be open sets in Rm and Rn, respec-
tively; let g, h : U → V be smooth maps. Then g and h are said to be differentiably homotopic
if there is a smooth map2 H : U × [0, 1]→ V such that

H(x, 0) = g(x) and H(x, 1) = h(x)

for all x ∈ U . The map H is called differentiable homotopy between g and h.

Lemma 1.1. Let U be an open set in Rn andW be an open set in Rn+1 such that U×[0, 1] ⊂W .
Let α, β : U → W be smooth maps such that α(x) = (x, 0) and β(x) = (x, 1). Then there is a
linear transformation

L : Ωk+1(W )→ Ωk(U)

defined for all k ≥ 0, such that{
dLη + Ldη = β∗η − α∗η if η ∈ Ωk+1(W ), k ≥ 0

Ldγ = β∗γ − α∗γ if γ ∈ C∞(W ) = Ω0(W )

where α∗, β∗ : Ωk(W )→ Ωk(U) are the pullback maps defined for all k ≥ 0.
1Locally constant functions are constant on any connected component of domain.
2This means that H is smooth in some open neighborhood of U × [0, 1], like U × (−ε, 1 + ε).
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Proof. Let x = (x1, . . . , xn) denote the general point of Rn, and let t denote the general point
of R. Then, as in Remark 1.11, dx1, . . . ,dxn,dt are the elementary 1-forms in Rn+1. Also, for
any continuous function b : U × [0, 1]→ R a scalar function Γb is defined on U by the formula

(Γb)(x) =

∫ t=1

t=0
b(x, t)

Then for any η ∈ Ωk+1(W )

η =
∑
[I]

aI dxI +
∑
[J ]

bJ dxJ ∧ dt

where I is an ascending (k + 1)-tuple and J is an ascending k-tuple from the set {1, . . . , n}, we
define

L : Ωk+1(W )→ Ωk(U)

η 7→
∑
[I]

L(aI dxI) +
∑
[J ]

L(bJ dxJ ∧ dt)

where L(aI dxI) = 0 and L(bJ dxJ ∧ dt) = (−1)k(ΓbJ) dxJ .

Step 1. L is a well defined linear transformation.

We need to show that Lη ∈ Ωk(U). Clearly, Lη is a k-form on the subset U of Rn. To
prove that Lη is smooth, it’s sufficient to show that the function ΓbJ is smooth; and this
result follows from Leibniz’s rule [24, Theorem 39.1], since bJ is smooth.

Linearity of L follows from the uniqueness of the representation of η and linearity of the
integral operator Γ.

Step 2. L(a dxI) = 0 and L(bdxJ ∧ dt) = (−1)k(Γb) dxJ for any arbitrary (k + 1)-tuple I and
k-tuple J from the set {1, . . . , n}.
If the indices are not distinct, then these formulae hold trivially, since dxI = 0 and dxJ = 0
in that case. If the indices are distinct and in ascending order then these formulas hold
by definition. Since rearranging the indices changes the values of dxI and dxJ only by a
sign, the formulae hold even in that case (the signs will cancel out due to linearity).

Step 3. Ldγ = β∗γ − α∗γ if γ ∈ C∞(W )

Ldγ = L

(
n∑
i=1

∂γ

∂xi
dxi

)
+ L

(
∂γ

∂t
dt

)
= 0 + (−1)0

(
Γ

dγ

∂t

)
=

∫ t=1

t=0

∂γ

∂t
(x, t)

= γ(x, 1)− γ(x, 0)

= γ ◦ β − γ ◦ α
= β∗γ − α∗γ

Step 4. dLη + Ldη = β∗η − α∗η if η ∈ Ωk+1(W ), k ≥ 0

Since d, L, α∗ and β∗ are all linear transformations, it suffices to verify the formula for
the (k + 1)-forms η = a dxI and η = bdxJ ∧ dt. We will use Step 2 and Theorem 11 to
simplify and compare left hand side (LHS) and right hand side (RHS) of the formula for
both the cases.
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Case 1. η = a dxI for any (k + 1)-tuple I from {1, . . . , n}
Simplify the LHS:

dLη + Ldη = d0 + L (da ∧ dxI)

= L

(
n∑
i=1

∂a

∂xi
dxi ∧ dxI +

∂a

∂t
dt ∧ dxI

)

= L

(
n∑
i=1

∂a

∂xi
dxi ∧ dxI

)
+ L

(
∂a

∂t
dt ∧ dxI

)
= 0 + (−1)k+1L

(
∂a

∂t
dxI ∧ dt

)
= (−1)k+1 · (−1)k+1

(
Γ
∂a

∂t

)
dxI

=

(∫ t=1

t=0

∂a

∂t
(x, t)

)
dxI

= (a(x, 1)− a(x, 0)) dxI

= (a ◦ β − a ◦ α) dxI

Simplify the RHS:

β∗η − α∗η =β∗(a dxI)− α∗(a dxI)

=β∗(a)β∗(dxI)− α∗(a)α∗(dxI)

=(a ◦ β)β∗(dxi1 ∧ · · · ∧ dxik+1
)− (a ◦ α)α∗(dxi1 ∧ · · · ∧ dxik+1

)

=(a ◦ β)(d(β∗xi1) ∧ · · · ∧ d(β∗xik+1
))−

(a ◦ α)(d(α∗xi1) ∧ · · · ∧ d(α∗xik+1
))

=(a ◦ β)(dxi1 ∧ · · · ∧ dxik+1
)− (a ◦ α)(dxi1 ∧ · · · ∧ dxik+1

)

= (a ◦ β − a ◦ α) dxI

Case 2. η = bdxJ ∧ dt for any k-tuple J from {1, . . . , n}
Simplify the LHS:

dLη + Ldη = d
(

(−1)k(Γb) dxJ

)
+ L (db ∧ dxJ ∧ dt)

=
[
(−1)k d(Γb) ∧ dxJ

]
+L

 n∑
j=1

∂b

∂xj
dxj ∧ dxJ ∧ dt+

∂b

∂t
dt ∧ dxJ ∧ dt


=

(−1)k
n∑
j=1

∂

∂xj
(Γb) dxj ∧ dxJ

+

 n∑
j=1

L

(
∂b

∂xj
dxj ∧ dxJ ∧ dt

)
=

(−1)k
n∑
j=1

∂

∂xj
(Γb) dxj ∧ dxJ

+

 n∑
j=1

(−1)k+1

(
Γ
∂b

∂xj

)
dxj ∧ dxJ


=0

since by Leibniz’s rule [24, Theorem 39.1], ∂
∂xj

(Γb) = Γ ∂b
∂xj

for all j. Now we simplify
the RHS:

β∗η − α∗η =β∗(bdxI ∧ dt)− α∗(bdxI ∧ dt)
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= [(β∗b) d(β∗xj1) ∧ · · · ∧ d(β∗xjk) ∧ d(β∗t)]−
[(α∗b) d(α∗xj1) ∧ · · · ∧ d(α∗xjk) ∧ d(α∗t)]

= [(b ◦ β) dxj1 ∧ . . . dxjk ∧ d1]− [(b ◦ α) dxj1 ∧ . . . dxjk ∧ d0]

=0− 0 = 0

This completes the proof of the lemma.

Remark 1.15. For the special case, when k = 0 we have η =
∑n

i=1 ai dxi + bdt. In this case,
we have Lη = Γb since J is empty. Hence, just as d is in some sense a “differentiation operator”,
the operator L is in some sense an “integration operator”, one that integrates η in the direction
of the last coordinate [24, Exercise 39.4].

Proposition 1.1. Let U and V be open sets in Rn and Rm, respectively. Let g, h : U → V be
smooth maps that are differentiably homotopic. Then there is a linear transformation

T : Ωk+1(V )→ Ωk(U)

defined for all k ≥ 0, such that{
dTω + T dω = h∗ω − g∗ω if ω ∈ Ωk+1(V ), k ≥ 0

T df = h∗f − g∗f if f ∈ C∞(V ) = Ω0(V )

where g∗, h∗ : Ωk(V )→ Ωk(U) are the pullback maps defined for all k ≥ 0.

Proof. The preceding lemma was a special case of this proposition since α and β were differen-
tiably homotopic. We borrow notations from the preceding lemma.

Let H : U × [0, 1] → V be the differentiable homotopy between g and h, i.e. H(x, 0) =
H(α(x)) = g(x) and H(x, 1) = H(β(x)) = h(x). Then we have the pullback map H∗ : Ωk(V )→
Ωk(W ) defined on an open neighborhood W of U × [0, 1] and k ≥ 0. Hence for k ≥ 0 we have
the following commutative diagram:

Ωk+1(V ) Ωk+1(W )

Ωk(U)

H∗

L◦H∗
L

Claim: T = L ◦H∗
We will verify both the desired properties separately.

Step 1. dTω + T dω = h∗ω − g∗ω if ω ∈ Ωk+1(V ), k ≥ 0

Let H∗ω = η ∈ Ωk+1(W ), then using Theorem 11, Theorem 10, and the preceding lemma

dTω + T dω = d(L(H∗ω)) + L(H∗(dω))

= dLη + Ldη

= β∗η − α∗η
= β∗(H∗ω)− α∗(H∗ω)

= (H ◦ β)∗ω − (H ◦ α)∗ω

= h∗ω − g∗ω
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Step 2. T df = h∗f − g∗f if f ∈ C∞(V ) = Ω0(V )

Let H∗f = γ ∈ Ω0(W ), then using Theorem 11, Theorem 10, and the preceding lemma

T df = L(H∗ df)

= Ldγ

= β∗γ − α∗γ
= β∗(H∗f)− α∗(H∗f)

= (H ◦ β)∗f − (H ◦ α)∗f

= h∗f − g∗f

This completes the proof.

1.2.2 Poincaré lemma

Definition 1.23 (Star-convex). Let U be an open set in Rn. Then U is said to be star-convex
with respect to the point p ∈ U is for each x ∈ U , the line segment joining x and p lies in U .

Theorem 1.2 (Poincaré lemma). Let U be a star-convex open set in Rn. If k ≥ 1, then every
closed k-form on U is exact.

Proof. Let ω ∈ Zk(U) for k ≥ 1. We apply the preceding proposition. Let p be a point with
respect to which U is star-convex. We define the maps g and h as follows:

g : U → U

x 7→ p

h : U → U

x 7→ x

Since U is star-convex with respect to p, there always exists a straight line in U joining any
point x ∈ U with p. Hence we have the differentiable homotopy between g and h given by this
straight line

H : U × [0, 1]→ U

(x, t) 7→ th(x) + (1− t)g(x)

Therefore the maps g and h are differentiably homotopic.
Now we use the previous proposition, i.e. there exists T : Ωk(U) → Ωk−1(U) such that

dTω + T dω = h∗ω − g∗ω. Hence if dω = 0 then dTω = ω since pullback map corresponding
to the identity map is the identity map i.e. h∗ω = ω and pullback map corresponding to a
constant map is the zero map i.e. g∗ω = 0. Hence ω ∈ Bk(U) for all k ≥ 1. This completes the
proof3.

Remark 1.16. Being star-convex is not such a restrictive condition, since any open ball

B(p, ε) = {x ∈ Rn : ||x− p|| < ε}

is star-convex with respect to p. Hence, Poincaré lemma holds for any open ball in Rn.
3If we also use the second condition of the preceding proposition we get that if df = 0 then f is a constant

map. This is Munkres’ defintion of exact 0-form [24, p. 259].
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1.3 Differential forms on smooth manifolds

In this section some basic definitions and facts from [32, Chapter 2, 3 and 5] and [22, §1.1, 2.1,
3.2, 3.4 and 5.1] will be stated.

Definition 1.24 (Smooth manifold). A smooth manifold M of dimension n is a second countable
Hausdorff space together with a smooth structure on it. A smooth structure U is the collection
of charts {(Uα, φα)}α∈A where Uα is an open set of M and φα is a homeomorphism of Uα onto
an open set of Rn such that

1. the open sets {Uα}α∈A cover M .

2. for every pair of indices α, β ∈ A with Uα ∩ Uβ 6= ∅ the homeomrphisms

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ),

φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

are smooth maps between open subsets of Rn.

3. the family U is maximal in the sense that it contains all possible pairs (Uα, φα) satisfying
the properties 1. and 2.

Example 1.1. Following two smooth manifolds will be used throughout this thesis:

1. The Euclidean space Rn is a smooth manifold with single chart (Rn,1Rn), where 1Rn is
the identity map. In other words, (Rn,1Rn) = (Rn, x1, . . . , xn) where x1, . . . , xn are the
standard coordinates on Rn.

2. Any open subset V of a smooth manifold M is also a smooth manifold. If {(Uα, φα)} is
an atlas for M , then {(Uα ∩V, φα|Uα∩V )} is an atlas for V , where φα|Uα∩V : Uα ∩V → Rn
denotes the restriction of φα to the subset Uα ∩ V .

Theorem 12. Every smooth manifold M is paracompact4.

Definition 1.25 (Smooth function on a manifold). Let M be a smooth manifold of dimension
n. A function f : M → R is said to be a smooth function at a point p in M if there is a chart
(U, φ) about p in M such that f ◦ φ−1, a function defined on the open subset φ(U) of Rn, is
smooth at φ(p). The function f is said to be smooth on M is it is smooth at every point of M .

(U, p) (Rn, φ(p))

(R, f(p))

φ

f
f◦φ−1

Definition 1.26 (Smooth partition of unity). Let M be a smooth manifold with an open
covering U = {Uα}α∈A. Then a smooth partition of unity on M subordinate to U is a family of
smooth functions {ψα : M → R}α∈A satisfying the following conditions

1. supp(ψα) ⊆ Uα for all α ∈ A.

2. 0 ≤ ψα(p) ≤ 1 for all p ∈M and α ∈ A

3. the collection of supports {supp(ψα)}α∈A is locally finite.
4For definition and general properties of paracompact spaces, see section A.1.
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4.
∑

α∈A ψα(p) = 1 for all p ∈M

where supp(ψα) is the closure of the set of those p ∈M for which φα(p) 6= 0.

Theorem 13. Any smooth manifold M with an open covering U = {Uα}α∈A admits a smooth
partition of unity subordinate to {Uα}.

Remark 1.17. If {ψα} is a smooth partition of unity onM subordinate to {Uα}, and {fα : Uα →
R} is a family of smooth functions, then the function f : M → R defined by f(x) =

∑
α∈A φαfα

is smooth.

Definition 1.27 (Smooth map between smooth manifolds). LetM and N be smooth manifolds
of dimension m and n, respectively. A continuous map F : M → N is smooth at a point p if M
if there are charts (V, ψ) about F (p) in N and (U, φ) about p in N such that the composition
ψ ◦ F ◦ φ−1, a map from the open subset φ(F−1(V ) ∩ U) of Rm to Rn, is smooth at φ(p).

(U, p) (V, F (p))

(Rm, φ(p)) (Rn, ψ(F (p)))

F

φ ψ

ψ◦F◦φ−1

The continuous map F : M → N is said to be smooth if it is smooth at every point in M .

Remark 1.18. In the definition of smooth maps between manifolds it’s assumed that F : M →
N is continuous to ensure that F−1(V ) is an open set in M . Thus, smooth maps between
manifolds are by definition continuous.

Theorem 14. Let M and N be smooth manifolds of dimension m and n, respectively, and
F : M → N a continuous map. The following are equivalent

1. The map F : M → N is smooth

2. There are atlases U for M and V for N such that for every chart (U, φ) in U and (V, ψ)
in V the map

ψ ◦ F ◦ φ−1 : φ(F−1(V ) ∩ U)→ Rn

is smooth.

3. For every chart (U, φ) on M and (V, φ) on N , the map

ψ ◦ F ◦ φ−1 : φ(F−1(V ) ∩ U)→ Rn

is smooth.

Theorem 15. If (U, φ) is a chart on a smooth manifold M of dimension n, then the coordinate
map φ : U → φ(U) ⊂ Rn is a diffeomorphism.

Remark 1.19. One can generalize the notation for projection maps introduced in Remark 1.11.
If {U, φ} is a chart of a manifold, i.e. φ : U → Rn, then let ri = xi ◦ φ be the ith component of
φ and write φ = (r1, . . . , rn) and (U, φ) = (U, r1, . . . , rn). Thus, for p ∈ U , (r1(p), . . . , rn(p)) is
a point in Rn. The functions r1, . . . , rn are called coordinates or local coordinates on U .

Theorem 16. Let M and N be smooth manifolds of dimension m and n, respectively, and
F : M → N a continuous map. The following are equivalent

1. The map F : M → N is smooth
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2. The manifold N has an atlas such that for every chart (V, ψ) = (V, s1, . . . , sn) in the atlas5,
the components si ◦ F : F−1(V )→ R of f relative to the chart are all smooth.

3. For every chart (V, ψ) = (V, s1, . . . , sn) on N , the components si ◦ F : F−1(V ) → R of F
relative to the chart are all smooth.

1.3.1 Tangent space

Definition 1.28 (Germ of smooth functions). Consider the set of all pairs (f, U), where U is a
neighborhood of p ∈M and f : U → R is a smooth function. Then (f, U) is said to be equivalent
to (g, V ) is there is an open set W ⊂ U ∩V containing p such that f = g when restricted to W .
This equivalence class of (f, U) is called germ of f at p.

Remark 1.20. The set of all germs of smooth functions on M at p is denoted by C∞p (M). The
addition and multiplication of functions induce corresponding operations of C∞p (M), making it
into a ring; with scalar multiplication by real numbers C∞p (M) becomes an algebra over R.

Definition 1.29 (Derivation at a point). A linear map Xp : C∞p (M)→ R satisfying the Leibniz
rule

Xp(fg) = Xp(f)g(p) + f(p)Xp(g)

is called a derivation at p ∈M or a point-derivation of C∞p (M).

Definition 1.30 (Tangent vector). A tangent vector at a point p in a manifoldM is a derivation
at p.

Definition 1.31 (Tangent space). The tangent vectors at p form a real vector space TpM , called
the tangent space of M at p.

Definition 1.32 (Partial derivative). Let M be a smooth manifold of dimension n, (U, φ) =
(U, r1, . . . , rn) be a chart and f : M → R be a smooth function. For p ∈ U , the partial derivative
∂f/∂ri of f with respect to ri at p is defined to be

∂

∂ri

∣∣∣∣
p

f :=
∂f

∂ri
(p) :=

∂(f ◦ φ−1)

∂xi
(φ(p)) :=

∂

∂xi

∣∣∣∣
φ(p)

(f ◦ φ−1)

where ri = xi ◦ φ and {x1, . . . , xn} are the standard coordinates on Rn.

Definition 1.33 (Pushforward of a vector). Let F : M → N be a smooth map between two
smooth manifolds. At each point p ∈M , the map F induces a linear map of tangent spaces

F∗ : TpM → TF (p)N

such that given Xp ∈ TpM we have (F∗(Xp))f = Xp(f ◦ F ) ∈ R for f ∈ C∞F (p)(M).

Remark 1.21. The pusforward map induced by an the identity map of manifolds is the identity
map of vector spaces, i.e. (1M )∗,p = 1TpM .

Theorem 17. Let F : M → N and G : N → N ′ be smooth maps of manifolds, and p ∈ M ,
then (G ◦ F )∗,p = G∗,F (p) ◦ F∗,p

TpM TF (p)N

TG(F (p))N
′

F∗,p

(G◦F )∗,p
G∗,F (p)

5Here si = yi ◦ ψ if we consider the coordinates of Rn to be (y1, . . . , yn) and coordinates of Rm to be
(x1, . . . , xm).
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Theorem 18. Let (U, φ) = (U, r1, . . . , rn) be a chart about a point p in a manifold M of
dimension n. Then φ∗ : TpM → Tφ(p)Rn is a vector space isomorphism and TpM has the basis{

∂

∂ri

∣∣∣∣
p

, . . . ,
∂

∂rn

∣∣∣∣
p

}

where ri = xi ◦ φ and {x1, . . . , xn} the standard coordinates of Rn.

Remark 1.22. Hence one observes that if M is n dimensional manifold then TpM is a vector
space of dimension n over R.

1.3.2 Cotangent bundle

Definition 1.34 (Cotangent space). Let M be a smooth manifold and p a point in M . The
cotangent space of M at point p denoted by T ∗pM is defined to be the dual space of the tangent
space TpM , i.e. the set of all linear maps from TpM to R.

Remark 1.23. Hence, if M is n dimensional manifold then T ∗pM is a vector space of dimension
n over R.

Definition 1.35 (Cotangent bundle). The cotangent bundle T ∗M of a manifold M is the union
of the tangent spaces at all points of M

T ∗M :=
⋃
p∈M

T ∗pM

Remark 1.24. The union in the definition above is disjoint, i.e. T ∗M =
∐
p∈M T ∗pM , since for

distinct points p and q in M , the cotangent spaces T ∗pM and T ∗qM are already disjoint.

Theorem 19. Let M is a smooth manifold of dimension n, then its cotangent bundle T ∗M is
a smooth manifold of dimension 2n.

Definition 1.36 (Smooth vector bundle). A smooth vector bundle of rank n is a triple (E,M, π)
consisting of a pair of smooth manifolds E and M , and a smooth surjective map π : E → M
satisfying the following conditions

1. for each p ∈M , the inverse image Ep = π−1(p) is an n-dimensional vector space over R,

2. for each p ∈M , there is an open neighborhood U of p and a diffeomorphism φ : U ×Rn →
π−1(U) such that

(a) the following diagram commutes

U × Rn π−1(U)

U

φ

p1
π

where p1 is the projection onto the first factor,

(b) for each q ∈ U , the map φq : Rn → π−1(q), defined by φq(x) = φ(q, x), is a linear
isomorphism.

Theorem 20. The cotangent bundle T ∗M with the projection map π : T ∗M → M given by
π(α) = p if α ∈ T ∗pM , is a vector bundle of rank n over M .
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Definition 1.37 (Exterior power of cotangent bundle). Let M be a smooth manifold. Then
the kth exterior power of the cotangent bundle Λk(T ∗M) is the disjoint union of all alternating
k-tensors at all points of the manifold, i.e.

Λk(T ∗M) =
⋃
p∈M
Ak(TpM)

Theorem 21. If M is a manifold of dimension n, then the exterior power of the cotangent
bundle Λk(M) is a manifold of dimension n+

(
n
k

)
.

Theorem 22. The exterior power of cotangent bundle Λk(T ∗M) with the projection map π :
Λk(T ∗M)→M given by π(α) = p if α ∈ Ak(TpM), is a vector bundle of rank

(
n
k

)
over M .

1.3.3 Differential forms

Definition 1.38 (Smooth section). A smooth section of a vector bundle π : E →M is a smooth
map s : M → E such that π ◦ s = 1M .

Remark 1.25. The condition π ◦ s = 1M precisely means that for each p in M , s maps p into
Ep.

Definition 1.39 (Differential k-form). A differential k-form on M is a smooth section of the
vector bundle π : Λk(T ∗M)→M .

Remark 1.26. The vector space of all smooth k-forms on M is denoted by Ωk(M). If ω ∈
Ωk(M) then ω : M → Λk(T ∗M) is a smooth map such that ω assigns each point p ∈ M an
alternating k-tensor, i.e. ωp ∈ Ak(TpM) for all p ∈ M . In particular, if U is an open subset of
M , then ω ∈ Ωk(U) if ωp ∈ Ak(TpM) for all p ∈ U (view U as open neighborhood of point p).

Definition 1.40 (Differential 0-form). A differential 0-form on M is a smooth real valued
function on M , i.e. Ω0(M) = C∞(M).

Definition 1.41 (Wedge product of 0-form and k-form). The wedge product of a 0-form f ∈
C∞(M) and a k-form ω ∈ Ωk(M) is defined as the k-form fω where

(ω ∧ f)p = (f ∧ ω)p = f(p) · ωp

for all p ∈M .

Definition 1.42. The wedge product extends pointwise to differential forms on a manifold, i.e.
if ω ∈ Ωk(M) and η ∈ Ω`(M) then ω ∧ η ∈ Ωk+`(M) such that

(ω ∧ η)p = ωp ∧ ηp

at all p ∈M .

1.3.4 Exterior derivative

Definition 1.43 (Differential of a function). Let f : M → R be a smooth function, its differ-
ential is defined to be the 1-form df on M such that for any p ∈M and Xp ∈ TpM

(df)p(Xp) = Xpf

Remark 1.27. Let (U, r1, . . . , rn) be a coordinate chart on a smooth manifoldM . Then the dif-
ferentials {dr1, . . . ,drn} are 1-forms on U . At each point p ∈ U , the 1-forms {(dr1)p, . . . , (drn)p}
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form a basis6 of A1(TpM) = T ∗pM , dual to the basis {∂/∂r1|p, . . . , ∂/∂rn|p} for the tangent space
TpM . Hence, a 1-form on U is a linear combination ω =

∑n
i=1 aidri where ai are smooth func-

tions on U .
If I = (i1, . . . , ik) is an ascending k-tuple from the set {1, . . . , n}, then

drI = dri1 ∧ · · · ∧ drik

denotes the the elementary k-forms on U ⊂M , i.e. the k-forms

{(drI)p : I is an ascending set k-tuple}

form a basis of Ak(TpM) for all p ∈ U . The general k-form ω ∈ Ωk(U) can be written uniquely
in the form

ω =
∑
[I]

aI drI

for some aI ∈ C∞(U).

Theorem 23. If f is a smooth function on M , then the restriction of the 1-from df to U can
be expressed as

df =
∂f

∂r1
dr1 + . . .+

∂f

∂rn
drn

Theorem 24. ω ∈ Ωk(M) if and only if on every chart (U, φ) = (U, r1, . . . , rn) on M , the
coefficients aI of ω =

∑
[I] aI drI relative to the elementary k-forms {drI} are all smooth.

Theorem 25. Suppose ω is a smooth differential form defined on a neighborhood U of a point
p in a manifold M , i.e. ω ∈ Ωk(U). Then there exists a smooth form ω̃ on M , i.e. ω̃ ∈ Ωk(M),
that agrees with ω on a possible smaller neighborhood of p.

Remark 1.28. The extension ω̃ is not unique, it depends on p and on the choice of a bump
function at p. All this can be generalized to a family of differential forms, as in Remark 1.17,
using smooth partitions of unity.

Definition 1.44 (Differential of a k-form). Let (U, r1, . . . , rn) be a coordinate chart on a smooth
manifold M and ω ∈ Ωk(U) is written uniquely as a linear combination

ω =
∑
[I]

aI drI , aI ∈ C∞(U)

The R-linear map dU : Ωk(U)→ Ωk+1(U) defined as

dUω =
∑
[I]

daI ∧ drI

is called the exterior derivative of ω on U . Let p ∈ U , then (dUω)p is independent of the chart
containing p. Thus the differential of a k-form is defined by the linear operator

d : Ωk(M)→ Ωk+1(M)

such that for k ≥ 0 and ω ∈ Ωk(M) one has (dω)p = (dUω)p for all p ∈M .

Theorem 26. If ω ∈ Ωk(M) and η ∈ Ω`(M) then

1. (Antiderivation) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

6In the case of M = Rn the expression was much more straightforward because TpM ∼= Rn (vector space
isomorphism) for any n-dimensional manifold.
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2. d ◦ d = 0

Remark 1.29. Since the exterior derivative is an antiderivation, it is a local operator, i.e. for
all k ≥ 0,whenever a k-form ω ∈ Ωk(M) is such that ωp = 0 for all points p in an open set U of
M , then dω ≡ 0 on U . Equivalently, for all k ≥ 0, whenever two k-forms ω, η ∈ Ωk(M) agree
on an open set U , then dω ≡ dη on U [24, Proposition 19.3].

Definition 1.45 (Pullback of a k-form). Let F : M → N be a smooth map of manifolds. Then
for k ≥ 1

F ∗ : Ωk(N)→ Ωk(M)

is the pullback map defined for each ω ∈ Ωk(N) at every point p ∈M as

(F ∗ω)p(v1, . . . , vk) = ωF (p)(F∗,pv1, . . . , F∗,pvk)

where vi ∈ TpM . Then the k-form F ∗ω ∈ Ωk(M) is called the pullback of ω ∈ Ωk(N).

Definition 1.46 (Pullback of a 0-form). Let F : M → N be a smooth map and f ∈ C∞(N) =
Ω0(N), then the pullback of f is the the 0-form F ∗f = f ◦ F ∈ Ω0(M).

Remark 1.30. Pullback of the identity map is an identity map, i.e. (1M )∗ = 1Ωk(M).

Theorem 27. If F : M → N and G : N → N ′ are smooth maps, then (G ◦ F )∗ = F ∗ ◦G∗.

Ωk(N ′) Ωk(N)

Ωk(M)

G∗

(G◦F )∗
F ∗

Theorem 28. Let F : M → N be a smooth map. If ω, η and θ are differential forms on N ,
such that ω and η have same order, then

1. (preservation of the vector space structure) F ∗(aω+bη) = a(F ∗ω)+b(F ∗η) for all a, b ∈ R.

2. (preservation of the wedge product) F ∗(ω ∧ θ) = F ∗ω ∧ F ∗θ.

3. (commutation with the differential) F ∗(dω) = d(F ∗ω), i.e. the following diagram com-
mutes

Ωk(N) Ωk+1(N)

Ωk(M) Ωk+1(M)

d

F ∗ F ∗

d

1.4 Closed and exact forms on smooth manifolds

In this section the de Rham cohomology will be defined and generalization of Poincaré lemma
to smooth manifolds will be discussed following [32, §24].

Definition 1.47 (Closed forms). ω ∈ Ωk(U) for k ≥ 0 is said to be closed if dω = 0.

Remark 1.31. We denote the set of all closed k-forms on M by Zk(M). The sum of two such
k-forms is another closed k-form, and so is the product of a closed k-form by a scalar. Hence
Zk(M) is the vector sub-space of Ωk(M).
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Definition 1.48 (Exact k-forms). ω ∈ Ωk(U) for k ≥ 1 is said to be exact if ω = dη for some
η ∈ Ωk−1(U).

Remark 1.32. We denote the set of all exact k-forms on M by Bk(U). The sum of two such
k-forms is another exact k-form, and so is the product of a exact k-form by a scalar. Hence
Bk(M) is the vector sub-space of Ωk(M). Also, B0(M) is defined to be the set consisting only
zero.

Theorem 1.3. On a smooth manifold M , every exact form is closed.

Proof. Let ω ∈ Bk(M) such that ω = dη for some η ∈ Ωk−1(M). From Theorem 26 we know
that dω = d(dη) = 0 hence ω ∈ Zk(M) for all k ≥ 1. For k = 0, the statement is trivially
true.

Lemma 1.2. Let F : M → N be a smooth map of manifolds, then the pullback map F ∗ sends
closed forms to closed forms, and sends exact forms to exact forms.

Proof. Suppose ω is closed. From Theorem 28 we know that F ∗ commutes with d

dF ∗ω = F ∗ dω = 0

Hence, F ∗ω is also closed. Next suppose θ = dη is exact. Then

F ∗θ = F ∗ dη = dF ∗η

Hence, F ∗θ is exact.

1.4.1 de Rham cohomology

Definition 1.49 (de Rham cohomology of a smooth manifold). The kth de Rham cohomology
group7 of M is the quotient group

Hk
dR(M) :=

Zk(M)

Bk(M)

Remark 1.33. Hence, the de Rham cohomology of a smooth manifold measures the extent to
which closed forms are not exact on that manifold.

Proposition 1.2. If the smooth manifold M has ` connected components, then its de Rham
cohomolgy in degree 0 is H0

dR(M) = R`. An element of H0
dR(M) is specified by an ordered `-tuple

of real numbers, each real number representing a constant function on a connected component of
M .

Proof. Since there are no non-zero exact 0-forms

H0
dR(M) = Z0(M)

Suppose f is a closed 0-form onM , i.e. f ∈ C∞(M) such that df = 0. By Theorem 23 we know
that on any chart (U, r1, . . . , rn)

df =

n∑
i=1

∂f

∂ri
dri

Thus df = 0 on U if and only if all the partial derivatives ∂f/∂ri vanish identically on U . This
is equivalent to f being locally constant on U . Hence, Z0(M) is the set of all locally constant8

functions on M . Such a function must be constant on each connected component of M . If
M has ` connected components then a locally constant function of M can be specified by an
ordered set of ` real numbers. Thus Z0(M) = R`.

7which is really a vector space over R
8Locally constant functions are constant on any connected component of domain.
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Proposition 1.3. On a smooth manifold M of dimension n, the de Rham cohomology Hk
dR(M)

vanishes for k > n.

Proof. At any point p ∈ M , the tangent space TpM is a vector space of dimension n. If
ω ∈ Ωk(M), then ωp ∈ Ak(TpM), the space of alternating k-linear functions on TpM . By
Remark 1.8, if k > n then Ak(TpM) = 0. Hence for k > n, the only k-form on M is the zero
form.

1.4.2 Poincaré lemma for smooth manifolds

Definition 1.50 (Pullback map in cohomology). Let F : M → N be a smooth map of manifolds,
then its pullback F ∗ induces9 a linear map of quotient spaces, denoted by F#

F# :
Zk(N)

Bk(N)
→ Z

k(M)

Bk(M)

JωK 7→ JF ∗(ω)K

This is a map in cohomology F# : Hk
dR(N)→ Hk

dR(M) called the pullback map in cohomology.

Remark 1.34. From Remark 1.30 and Theorem 27 it follows that:

1. If 1M : M → M is the identity map, then 1
#
M : Hk

dR(M) → Hk
dR(M) is also the identity

map.

2. If F : M → N and G : N → N ′ are smooth maps, then (G ◦ F )# = F# ◦G#.

Proposition 1.4 (Diffeomorphism invariance of de Rham cohomology). Let F : M → N be a
diffeomorphism of manifolds, then the pullback map in cohomology F# : Hk

dR(N)→ Hk
dR(M) is

an isomorphism.

Proof. Since F is a diffeomorphism, F−1 : N →M is also a smooth map of manifolds. Therefore,
using Remark 1.34 we have

1Hk
dR(M) = 1

#
M = (F−1 ◦ F )# = F# ◦ (F−1)#

This implies that (F−1)# is the inverse of F#, i.e. F# is an isomorphism.

Theorem 1.4 (Poincaré lemma for smooth manifold). Let M be a smooth manifold, then for
all p ∈ M there exists an open neighborhood U such that every closed k-form on U is exact for
k ≥ 1.

Proof. Let (U, φ) be a chart on a smooth manifold M of dimension n such that p ∈ U . By
Theorem 15 we know that the coordinate map φ : U → φ(U) ⊂ Rn is a diffeomorphism. We
choose U such that φ(U) is an open ball in Rn. Then by Theorem 1.2 every closed k-form on
φ(U) is exact for k ≥ 1, i.e. Hk

dR(φ(U)) = 0 for k ≥ 1. Now we can use Proposition 1.4 to
conclude that Hk

dR(U) = 0 for k ≥ 1, i.e. every closed k-form on U is exact for k ≥ 1.

9Follows from Lemma 1.2.
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Chapter 2

Čech cohomology

2.1 Sheaf theory

Definition 2.1 (Presheaf). A presheaf 1 F of abelian groups on a topological space X consists
of an abelian group F(U) for every open subset U ⊂ X and a group homomorphism ρUV :
F(U)→ F(V ) for any two nested open subsets V ⊂ U satisfying the following two conditions:

1. for any open subset U of X one has ρUU = 1F(U)

2. for open subsets W ⊂ V ⊂ U one has ρUW = ρVW ◦ ρUV , i.e. the following diagram
commutes

F(U) F(W )

F(V )

ρUW

ρUV ρVW

Example 2.1. Let G be a non-trivial abelian group and X be a topological space. Then the
constant presheaf GX is defined to be the collection of abelian groups GX(U) = G for all non-
empty subsets U of X and GX(∅) = {0}, along with the group homomorphisms ρUV = 1G for
nested open subsets V ⊂ U . In particular, for G = R we get the constant presheaf R which is the
collection of constant real valued functions R(U) for every open subset U of X and restriction
maps ρUV for nested open subsets V ⊂ U .

Example 2.2. Let X be a topological space. For each open subset U of X we define F(U) to be
the set of (continuous/differentiable) real valued functions2, and ρUV to be the natural restriction
map for the nested open subsets V ⊂ U . Then F is a presheaf of (continuous/differentiable)
real valued functions.

Definition 2.2 (Sheaf). A presheaf F on a topologial space X is called a sheaf if for every
collection {Uα}α∈A of open subsets of X with U = ∪α∈AUα the following conditions are satisfied

1. (Uniqueness) If f, g ∈ F(U) and ρUUα(f) = ρUUα(g) for all α ∈ A, then f = g.

2. (Gluing) If for all α ∈ A we have fα ∈ F(Uα) such that ρUα,Uα∩Uβ (fα) = ρUβ ,Uα∩Uβ (fβ)
for any α, β ∈ A, then there exists a f ∈ F(U) such that ρUUα(f) = fα for all α ∈ A (this
f is unique by previous axiom).

1Presheaves and sheaves are typically denoted by calligraphic letters, F being particularly common, presum-
ably for the French word for sheaves, faisceaux.

2Note that there exists only one function from an empty set to any other set, hence F(∅) is singleton.
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Example 2.3. It is easy to observe that the gluing axiom doesn’t hold for the constant presheaf
R on X if X is disconnected. We therefore define a constant sheaf R on X to be the collection
of locally constant real valued functions R(U) corresponding to every open subset U ⊂ X and
restriction maps ρUV for nested open subsets V ⊂ U .

In general, given a non-trivial abelian group G, the constant sheaf G on X is defined by
endowing G with the discrete topology and assigning each open set U of X the set G(U) of
all continuous functions f : U → G along with the restriction maps φUV for nested open sets
V ⊂ U .

Example 2.4. If one has a presheaf of functions (or forms) on X which is defined by some
property which is a local property3, then the presheaf is also a sheaf. This is because the
agreement of functions (or forms) on the overlap intersections automatically gives a well defined
unique function (or form) on the open set U , and one must only check that it satisfies the
property [20, p. 272].

In particular, if X is a smooth manifold then Ωq is the sheaf of smooth q-forms on X such
that for every open subset U of X we have the abelian group Ωq(U) of smooth q-forms on U
(smooth sections of a exterior power of cotangent bundle, i.e. smooth maps of manifolds) along
with the natural restriction maps as the group homomorphisms ρUV for nested open subsets
V ⊂ U [37, Example II.1.9].

Remark 2.1. When defining presheaf, many authors like Liu [17, §2.2.1] and Miranda [20,
§IX.1], additionally require F(∅) = 0, i.e. the trivial group with one element. This is a necessary
condition for the sheaf to be well defined, but this follows from our sheaf axioms. Namely, note
that the empty set is covered by the empty open covering, and hence the collection fi ∈ F(Ui)
from the definition above actually form an element of the empty product which is the final object
of the category the sheaf has values in4. In other words, we don’t require this condition while
defining presheaf (see [37, §II.1] or [1, §II.10]) since from the definition of sheaf one can deduce
that that F(∅) is equal to a final object, which in the case of a sheaf of sets is a singleton.

Remark 2.2. There is another equivalent way of defining sheaf F (of abelian groups) over X
as a triple (F, π,X) which satisfies certain axioms [11, §2.1]. For a discussion on the equivalence
of both these definitions see [35, §5.7]. However, the defintion that we have adopted is useful
since for many important sheaves, particularly those that arise in algebraic geometry, the sheaf
space F is obscure, and its topology complicated [13, Remark 2.6].

Remark 2.3. The definition of sheaf can be generalized to any category like groups, rings,
modules, and algebras instead of abelian groups.

2.1.1 Stalks

Definition 2.3 (Stalk). Let F be a sheaf on X, and let x ∈ X. Then the stalk of F at x is

Fx := lim−→
U3x
F(U)

where the direct limit5 is indexed over all the open subsets containing x, with order relation
induced by reverse inclusion, i.e. U < V if V ⊂ U . Also, the image of f ∈ F(U) in Fx under

3A property P is said to be local if whenever {Uα}α∈A is an open cover of an open set U , then the property
holds on U if and only if it holds for each Uα. In other words, a local property P of functions is the one which is
initially defined at points, i.e. a function f defined in a neighborhood of a point p ∈ X has property P at p if
and only if some condition holds at the point p. For example, the preoperties like continuity and differentiability.

4The Stacks project, Tag 006U: https://stacks.math.columbia.edu/tag/006U
5For the definition of direct limit see Appendix B. To get the direct system {F(U), ρUV }, the “reverse

inclusion” is defined to be the order relation for the directed set.
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the group homomorphism induced6 by the inclusion map F(U) ↪→
∐
U3xF(U) is denoted by

fx, i.e JfK = fx.

Remark 2.4. This definition of stalks also holds for presheaves, which leads to the useful tool
of sheafification, i.e. finding sheaf associated to a given presheaf. This technique of sheafification
is very useful but we won’t need it in this thesis. For more details, see the books by Hirzebruch
[11, §2] and Liu [17, §2.2.1].

Lemma 2.1. Let F be a sheaf of abelian groups on X and f, g ∈ F(X) be such that fx = gx
for every x ∈ X. Then f = g.

Proof. Without loss of generality, we may assume g = 0. Then fx = 0 implies that fx and 0
belong to same equivalence class, i.e. for every x ∈ X there exists an open neighborhood Ux of
x such that ρXUx(f) = 0. As {Ux}x∈X covers X , we have f = 0 by the uniqueness condition of
sheaf.

2.1.2 Sheaf maps

Definition 2.4 (Map of sheaves). Let F and G be sheaves of abelian groups on a topological
space X. A maps of sheaves φ : F → G on X is given by a collection of group homomorphisms
φU : F(U)→ G(U) for any open subset U of X, which commute with the group homomorphisms
ρ for the two sheaves, i.e. for V ⊂ U the following diagram commutes

F(U) G(U)

F(V ) G(V )

φU

ρFUV ρGUV

φV

Example 2.5. The identity map 1F : F → F is always a sheaf map, and the composition of
sheaf maps is a sheaf map.

Example 2.6. As seen above, for the sheaf of functions (or forms) the natural restriction map is
the group homomorphism ρUV for nested open subsets V ⊂ U . Also, from Remark 1.29 we know
that the exterior derivative is a local operator, hence it commutes with restriction. Therefore,
d : Ωq → Ωq+1 is a map of sheaves, where Ωq and Ωq+1 are sheaves of smooth q-forms and q+ 1-
forms, respectively, defined on a smooth manifold X for q ≥ 0. In other words, Remark 1.29
implies that the following diagram commutes for V ⊂ U

Ωq(U) Ωq+1(U)

Ωq(V ) Ωq+1(V )

dU

ρUV ρUV

dV

where by abuse of notation we use the same symbol for restriction maps of both sheaves.

Definition 2.5 (Associated presheaf). Given a sheaf map φ : F → G between two sheaves
of abelian groups on X, one constructs the associated presheaves ker(φ), im(φ), and coker(φ)
which are defined in the obvious way7, i.e. ker(φ)(U) = ker(φU : F(U) → G(U)) with group
homomorphism ρ inherited from F .

6As defined in the universal property of direct limit, see Theorem B.1.
7Let U be an open subset and f ∈ ker(φU ), then for V ⊂ U we have ρFUV (f) ∈ ker(φV ) since φV ◦ ρFUV =

ρGUV ◦ φU .

28



Proposition 2.1. Let φ : F → G be a sheaf map between two sheaves of abelian groups on X,
then ker(φ) is a sheaf.

Proof. Let {Uα}α∈A be a collection of open sets ofX, and U = ∪α∈AUα be their union. It suffices
to show that if for all α ∈ A we have fα ∈ ker(φUα) such that ρFUα,Uα∩Uβ (fα) = ρFUβ ,Uα∩Uβ (fβ)

for any α, β ∈ A, then there exists a unique f ∈ ker(φU ) such that ρFUUα(f) = fα for all α ∈ A.
Since F is a sheaf, there exists a unique element f ∈ F(U) such that ρFUUα(f) = fα for all

α ∈ A. We just need to show that f ∈ ker(φU ), i.e. φU (f) = 0 in G(U).
Let gα = ρGUUα(φU (f)), then by the commutativity of φ with ρ, we have that

gα = ρGUUα(φU (f)) = φUα(ρFUUα(f)) = φUα(fα) = 0

since fα ∈ ker(φUα). Now using the uniqueness axiom for the sheaf G we conclude that φU (f) =
0, since ρGUUα(φU (f)) = 0 for all α ∈ A.

Example 2.7. Let X be a smooth manifold and d : Ωq → Ωq+1 be the exterior derivative. Then
ker(d) = Zq is the sheaf of closed q-forms on X.

Remark 2.5. There is an important subtlety here. The associated presheaves im(φ) and
coker(φ) need not be sheaves in general. Also, in general, quotient of sheaves need not be a
sheaf. In order to define the cokernel, image and quotient sheaf one need to use sheafification,
see [12, Definition B.0.26] and [9, pp. 36-37].

Definition 2.6 (Injective map of sheaves). A map of sheaves φ : F → G is called injective if for
every open subset U of X, φU is an injective group homomorphism.

Definition 2.7 (Surjective map of sheaves). A map of sheaves φ : F → G is called surjective if
for every x ∈ X the induced map of stalks8 φx : Fx → Gx is a surjective group homomorphism.

Remark 2.6. In other words, φ is surjective if for every point x ∈ X, every open set U containing
x and every g ∈ G(U), there is an open subset V ⊂ U containing x such that φV (f) = ρGUV (g)
for some f ∈ F(V ).

Proposition 2.2. The sheaf map φ : F → G is injective if and only if φx : Fx → Gx is injective
for every x ∈ X.

Proof. (⇒) This is trivial.
(⇐) Let U be any open subset of X, it suffices to show that ker(φU ) = {0F(U)}. Let

f ∈ F(U) such that φU (f) = 0G(U). Then for every x ∈ U , φx(fx) = JφU (f)K = 0Gx . Since φx is
injective, we have fx = 0Fx for every x ∈ U . By Lemma 2.1 we conclude that f = 0F(U), hence
completing the proof.

Remark 2.7. Analogous statement is not true for the surjective map of sheaves, see [17, Ex-
ample 2.2.11]

Proposition 2.3. Let φ : F → G be an injective map of sheaves. Then φ is surjective if and
only if φU : F(U)→ G(U) is surjective for all open subsets U ⊂ X.

Proof. (⇒) Let U be any open subset of X, and g ∈ G(U). We need to show that there exists a
f ∈ F(U) such that φU (f) = g. Since φx is surjective for every x ∈ X, for every gx ∈ Gx there
exists an open neighborhood V of x and f ∈ F(V ) such that φx(fx) = JφV (f)K = gx. Therefore,
we can find an open covering {Uα}α∈A of U such that each Uα is an open neighborhood of

8The map of sheaves is a map of direct systems φ : {(F(U), ρFUV )} → {(G(U), ρGUV )}, and the map of stalks
φx : Fx → Gx is the direct limit of the homomorphisms φU .
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x ∈ U such that φx(fx) = JφUα(fα)K = gx for some fα ∈ F(Uα). In other words, there exist
fα ∈ F(Uα) such that

φUα(fα) = ρGUUα(g) (2.1)

for all α ∈ A. In particular, for fα ∈ F(Uα) and fβ ∈ F(Uβ) we have

φUα∩Uβ (ρFUα,Uα∩Uβ (fα)) = ρGU,Uα∩Uβ (g) and φUα∩Uβ (ρFUβ ,Uα∩Uβ (fβ)) = ρGU,Uα∩Uβ (g)

Since φ is injective, the map φUα∩Uβ : F(Uα ∩ Uβ) → G(Uα ∩ Uβ) is injective for all α, β ∈ A.
Hence we have

ρFUα,Uα∩Uβ (fα) = ρFUβ ,Uα∩Uβ (fβ)

for all α, β ∈ A. Now by the gluing axiom of the sheaf F , there exists a f ∈ F(U) such that
ρFUUα(f) = fα for all α ∈ A. Using this in (2.1) we get

ρGUUα(g) = φUα(ρFUUα(f)) = ρGUUα(φU (f))

for all α ∈ A. By the uniqueness axiom of the sheaf G, we conclude that g = φU (f). Hence
completing the proof.

(⇐) This is trivial.

2.1.3 Exact sequence of sheaves

Definition 2.8 (Exact sequence of sheaves). A sequence of sheaves F ′ F F ′′φ ψ is

said to be exact if F ′x Fx F ′′x
φx ψx is an exact sequence of abelian groups for every

x ∈ X.

Example 2.8. By Theorem 1.3, Theorem 1.4 and Proposition 1.2 we know that for every point
x in a smooth manifold X there exists an open subset U containing x such that

0 R(U) Ω0(U) Ω1(U) Ω2(U) · · ·dU dU dU

is an exact sequence of abelian groups. In other words, for all x ∈ X we have a long exact
sequence at the level of stalks

0 Rx Ω0
x Ω1

x Ω2
x · · ·dx dx dx

Therefore, by Poincaré lemma, the sequence of sheaves of differential forms on a smooth manifold

0 R Ω0 Ω1 Ω2 · · ·d d d

is exact.

Lemma 2.2. If 0 F ′ F F ′′φ ψ is an exact sequence of sheaves over X, then
the induced sequence of abelian groups for any open set U ⊂ X

0 F ′(U) F(U) F ′′(U)
φU ψU

is also exact.

Proof. For all x ∈ X we have an exact sequence of stalks

0 F ′x Fx F ′′x
φx ψx
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Using Proposition 2.2 we conclude that φU is injective. Hence we just need to show that
im(φU ) = ker(ψU ).

ker(ψU ) ⊆ im(φU ) Let f ∈ ker(ψU ), then for all x ∈ U we have fx ∈ ker(ψx) since ψx(fx) =

JψU (f)K. Since the sequence of stalks is exact at Fx, fx = φx(gx) for some gx ∈ F ′x. Therefore,
we can find an open covering {Uα}α∈A of U such that each Uα is an open neighborhood of
x ∈ U such that φx(gx) = JφUα(gα)K = fx for some gα ∈ F ′(Uα). In other words, there exist
gα ∈ F ′(Uα) such that

φUα(gα) = ρFUUα(f) (2.2)

for all α ∈ A. In particular, for gα ∈ F ′(Uα) and gβ ∈ F ′(Uβ) we have

φUα∩Uβ (ρF
′

Uα,Uα∩Uβ (gα)) = ρFU,Uα∩Uβ (f) and φUα∩Uβ (ρF
′

Uβ ,Uα∩Uβ (gβ)) = ρFU,Uα∩Uβ (f)

Since φ is injective, the map φUα∩Uβ : F(Uα ∩ Uβ) → G(Uα ∩ Uβ) is injective for all α, β ∈ A.
Hence we have

ρF
′

Uα,Uα∩Uβ (gα) = ρF
′

Uβ ,Uα∩Uβ (gβ)

for all α, β ∈ A. Now by the gluing axiom of the sheaf F ′, there exists a g ∈ F ′(U) such that
ρF
′

UUα
(g) = gα for all α ∈ A. Using this in (2.2) we get

ρFUUα(f) = φUα(ρF
′

UUα(g)) = ρFUUα(φU (g))

for all α ∈ A. By the uniqueness axiom of the sheaf F , we conclude that f = φU (g).
im(φU ) ⊆ ker(ψU ) Let f ∈ im(φU ), i.e. there exists g ∈ F ′(U) such that φU (g) = f . Then

for all x ∈ U we have fx ∈ imφx since φx(gx) = JψU (f)K = fx. Since the sequence of stalks is
exact at Fx, ψx(fx) = 0F ′′x for all x ∈ X. Since ψx(fx) = JψU (f)K, by Lemma 2.1 we conclude
that ψU (f) = 0.

Remark 2.8. In general, given a short exact sequence of sheaves

0 F ′ F F ′′ 0
φ ψ

Then the induced sequence of abelian groups

0 F ′(X) F(X) F ′′(X) 0
φX ψX

is always exact at F ′(X) and F(X) but not necessarily at F ′′(X), see [37, §II.3] and [27, §4.1].

2.2 Čech cohomology of sheaves

Definition 2.9 (Čech cochain). Let F be sheaf of abelian groups on a topologial space X. Let
U = {Ui}i∈I be an open cover of X, and fix an integer k ≥ 0. A Čech k-cochain for the sheaf
F over the open cover U is an element of

∏
(i0,i1,...,ik)F(Ui0 ∩ Ui1 ∩ · · · ∩ Uik) where Cartesian

product is take over all collections of k + 1 indices (i0, . . . , ik) from I.

Remark 2.9. To simplify the notation, we will write

Ui0 ∩ Ui1 ∩ · · · ∩ Uik := Ui0,i1,...,ik and F(Ui0,i1,...,ik) = {fi0,i1,...,ik}

Hence a Čech k-cochain is a tuple of the form (fi0,i1,...,ik). The abelian group of Čech k-cochains
for F over U is denoted by Č

k
(U ,F); thus

Č
k
(U ,F) =

∏
(i0,i1,...,ik)

F(Ui0,i1,...,ik)
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Definition 2.10 (Coboundary operator). The coboundary operator is defined as

δ : Č
k
(U ,F)→ Č

k+1
(U ,F)

(fi0,i1,...,ik) 7→ (gi0,i1,...,ik+1
)

where

gi0,i1,...,ik+1
=

k+1∑
`=0

(−1)`ρ(fi0,i1,...,î`,...,ik+1
)

and ρ : F(Ui0,i1,...,î`,...,ik+1
) → F(Ui0,i1,...,ik+1

) is the group homomorphism for the sheaf F
corresponding to the nested open subsets Ui0,i1,...,ik+1

⊂ Ui0,i1,...,î`,...,ik+1
.

Remark 2.10. To simplify the notations above, we wrote

Ui0,i1,...,i`−1,i`+1,...,ik := Ui0,i1,...,î`,...,ik and F(Ui0,i1,...,î`,...,ik) = {fi0,i1,...,î`,...,ik}

Definition 2.11 (Čech cocycle). A Čech k-cochain f = (fi0,i1,...,ik) with δ(f) = 0 is called Čech
k-cocycle.

Remark 2.11. The abelian group of k-cocycles is denoted by Žk(U ,F), i.e. kernel of δ at the
kth level.

Proposition 2.4. Let f = (fi0,...,ik) ∈ Žk(U ,F), then

1. fi0,...,in = 0 if any two indices are equal.

2. fσ(i0),σ(i1),...,σ(ik) = sgn(σ)fi0,i1,...,ik if σ is a permutation of {i0, . . . , ik}

Proof. We will check just for the simplest case, k = 1. Let f = (fi0i1) and δ(f) = (gi0i1i2) = 0.
For any i ∈ I we have

0 = gi,i,i = ρUi,iUi,i,i(fi,i)− ρUi,iUi,i,i(fi,i) + ρUi,iUi,i,i(fi,i)

This implies that fi,i = 0 by the uniqueness axiom of sheaf. On the other hand, applied to
(i, j, i) instead, it says

0 = gi,j,i = ρUj,iUi,j,i(fj,i)− ρUi,iUi,j,i(fi,i) + ρUi,jUi,j,i(fi,j)

This implies that
ρUj,iUi,j,i(fj,i) + ρUi,jUi,j,i(fi,j) = 0 for all i ∈ I

But the {Ui,j,i}i∈I is an open cover of Ui,j , and hence indeed fi,j = −fi,j due to the uniqueness
axiom of the sheaf F .

Definition 2.12 (Čech coboundary). A Čech k-cochain f = (fi0,i1,...,ik) which is the image
of δ, i.e. there exists (k − 1)-cochain g = (gi0,i1,...,ik−1

) such that δ(g) = f , is called Čech
k-coboundary.

Remark 2.12. The abelian group of k-coboundaries is denoted by B̌k(U ,F), i.e. image of δ at
the (k − 1)th level. Also, we define B̌0(U ,F) = 0 for any sheaf F and open cover U .

Lemma 2.3. δ ◦ δ = 0
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Proof. Let {Uα}α∈A be the open cover. We will check it just for the simplest case

Č
0
(U ,F) Č

1
(U ,F) Č

2
(U ,F)

(fα) (gαβ) (hαβγ)

δ δ

By the definition of coboundary operator, for i0 = α and i1 = β, we have

gαβ = (−1)0ρUβUαβ (fβ) + (−1)1ρUαUαβ (fα)

= ρUβUαβ (fβ)− ρUαUαβ (fα)
(2.3)

Also for i0 = α, i1 = β and i2 = γ, we have

hαβγ = (−1)0ρUβγUαβγ (gβγ) + (−1)1ρUαγUαβγ (gαγ) + (−1)2ρUαβUαβγ (gαβ)

= ρUβγUαβγ (gβγ)− ρUαγUαβγ (gαγ) + ρUαβUαβγ (gαβ)
(2.4)

Using (2.3) in (2.4) we get

hαβγ = ρUβγUαβγ
(
ρUγUβγ (fγ)− ρUβUβγ (fβ)

)
− ρUαγUαβγ

(
ρUγUαγ (fγ)− ρUαUαγ (fα)

)
+ ρUαβUαβγ

(
ρUβUαβ (fβ)− ρUαUαβ (fα)

)
= ρUγUαβγ (fγ)− ρUβUαβγ (fβ)− ρUγUαβγ (fγ) + ρUαUαβγ (fα) + ρUβUαβγ (fβ)− ρUαUαβγ (fα)

= 0

Hence completing the verification.

Proposition 2.5. Every k-coboundary is a k-cocycle.

Proof. Let f = (fi0,i1,...,ik) ∈ B̌k(U ,F) such that f = δ(g) for some g = (gi0,i1,...,ik−1
) ∈

Č
k−1

(U ,F). From Lemma 2.3 we know that δ(f) = δ(δ(g)) = 0 hence f ∈ Žk(U ,F) for
all k ≥ 1. For k = 0, the statement is trivially true.

Definition 2.13 (Čech cohomology with respect to a cover). The kth Čech cohomology group
of F with respect to the open cover U is the quotient group

Ȟ
k
(U ,F) :=

Žk(U ,F)

B̌k(U ,F)

Remark 2.13. Hence, the Čech cohomology with respect to a cover measures the extent to
which cocycles are not coboundaries for a given open cover.

Lemma 2.4. For any sheaf F and open covering U of X, we have Ȟ
0
(U ,F) ∼= F(X).

Proof. Since B̌0(U ,F) = 0, we just need to show that Ž0(U ,F) ∼= F(X). Consider the following
group homomorphism

ψ : F(X)→ Č
0
(U ,F)

f 7→ (fi) = (ρXUi(f))

Then δ((fi)) = (gij), where gij = ρUjUij (fj) − ρUiUij (fi); this is zero for every i and j since
ρUiUij (ρXUi(f)) = ρUjUij (ρXUj (f)). Hence ψ maps F(X) to Ž0(U ,F). This map is injective
and surjective by the uniqueness and gluing axioms of the sheaf F , respectively.

Definition 2.14 (Refining map). Let U = {Ui}i∈I and V = {Vj}j∈J be two open coverings of
X such that V is a refinement9 of U . Then the map r : J → I such that Vj ⊂ Ur(j) for every
j ∈ J , is called the refining map for the coverings.

9For its definition see section A.1.
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Remark 2.14. The refining map is not unique. Also, the set of all open covers is a directed
set10 where the ordering is done via refinement, i.e. U < V if V is a refinement of U . The upper
bound of U and V is given by W = {U ∩ V |U ∈ U , V ∈ V} [25, §73, Example 2].

Lemma 2.5. Let U = {Ui}i∈I and V = {Vj}j∈J be two open coverings of X such that V is a
refinement of U along with the refining map r : J → I. The induced map at the level of cochains
is given by

r̃ : Č
k
(U ,F)→ Č

k
(V,F)

(fi0,...,ik) 7→ (gj0,...,jk)

where
gj0,...,jk = ρ(fr(j0),...,r(jk))

and ρ : F(Ur(j0),...,r(jk))→ F(Vj0,...,jk) is the group homomorphism for the sheaf F corresponding
to the nested open subsets Vj0,...,jk ⊂ Ur(j0),...,r(jk). This map sends cocycles to cocycles and
coboundaries to coboundaries.

Proof. We will check it just for the simplest case. We have the map

r̃ : Č
0
(U ,F)→ Č

0
(V,F)

(fi0) 7→
(
ρUr(j0)Vj0 (fr(j0))

)
Let δ((fi0)) = 0, then ρUi1Ui0i1 (fi1) = ρUi0Ui0i1 (fi0) for every pair of indices i0, i1 ∈ I. Next we

compute δ
((
ρUr(j0)Vj0 (fr(j0))

))
= (gj0,j1)

gj0,j1 = ρVj1Vj0j1

(
ρUr(j1)Vj1 (fr(j1))

)
− ρVj0Vj0j1

(
ρUr(j0)Vj0 (fr(j0))

)
= ρUr(j1)Vj0j1 (fr(j1))− ρUr(j0)Vj0j1 (fr(j0))

But, we have
ρUr(j1)Ur(j0)r(j1)(fr(j1)) = ρUr(j0)Ur(j0)r(j1)(fr(j0))

and Vj0,j1 ⊂ Ur(j0)r(j1). Therefore gj0,j1 = 0, and r̃ maps cocycle to cocycle. Since 0 is the only
coboundary in this case, it also maps coboundary to coboundary.

Lemma 2.6. Let U = {Ui}i∈I and V = {Vj}j∈J be two open coverings of X such that V is
a refinement of U along with the refining map r : J → I. The induced map at the level of
cohomology11 is given by

Hr : Ȟ
k
(U ,F)→ Ȟ

k
(V,F)

J(fi0,...,ik)K 7→ J(gj0,...,jk)K

for (fi0,...,ik) ∈ Žk(U ,F), where

gj0,...,jk = ρ(fr(j0),...,r(jk))

and ρ : F(Ur(j0),...,r(jk))→ F(Vj0,...,jk) is the group homomorphism for the sheaf F corresponding
to the nested open subsets Vj0,...,jk ⊂ Ur(j0),...,r(jk). This map is independent of the refining map
r and depends only on the two coverings U and V.

10For its definition see Appendix B.
11This map is well defined by the previous lemma.
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Proof. Suppose the r, r′ : J → I are two distinct refining maps for the refinement V of U .
Claim: Hr = Hr′

If k = 0, then Ȟ
0
(U ,F) ∼= F(X) ∼= Ȟ

0
(V,F). Therefore Hr = 1F(X) = Hr′ . Let’s assume

that k ≥ 1, and fix a cohomology class f ∈ Ȟ
k
(U ,F) represented by (fi0,i1,...,ik) ∈ Žk(U ,F), i.e.

f = J(fi0,i1,...,ik)K. Then we have

Hr(f) = J(gj0,j1,...,jk)K and Hr′(f) = J(g′j0,j1,...,jk)K

where
gj0,j1,...,jk = ρα(fr(j0),...,r(jk)) and g′j0,j1,...,jk = ρβ(fr′(j0),...,r′(jk))

where ρα and ρβ are the appropriate group homomorphism for the sheaf F . To prove our claim,
it suffices to show that (gj0,j1,...,jk − g′j0,j1,...,jk) ∈ B̌k(V,F).

Claim: δ(h) = (g′j0,j1,...,jk − gj0,j1,...,jk) where h = (hj0,j1,...,jk−1
) ∈ Č

k−1
(V,F) is such that12

hj0,j1,...,jk−1
=

k−1∑
`=0

(−1)`ρ
(
fr(j0),...,r(j`),r′(j`),...,r′(jk−1)

)
The claim follows from the fact that (fi0,i1,...,ik) ∈ Žk(U ,F) for all indices (i0, . . . , ik).

We will check the claim just for the simplest case, when k = 1. In this case we have
f = J(fi0,i1)K, since (fi0,i1) ∈ Ž1(U ,F) we have δ((fi0,i1)) = 0, that is

ρUi1,i2Ui0i1i2 (fi1,i2)− ρUi0,i2Ui0i1i2 (fi0,i2) + ρUi0,i1Ui0i1i2 (fi0,i1) = 0 (2.5)

for any triplet of indices i0, i1, i2 ∈ I. Also,

Hr(f) = J(gj0,j1)K and Hr′(f) = J(g′j0,j1)K

where

gj0,j1 = ρUr(j0),r(j1)Vj0,j1 (fr(j0),r(j1)) and g′j0,j1 = ρUr′(j0),r′(j1)Vj0,j1
(fr′(j0),r′(j1))

From this we get

g′j0,j1 − gj0,j1 = ρUr′(j0),r′(j1)Vj0,j1
(fr′(j0),r′(j1))− ρUr(j0),r(j1)Vj0,j1 (fr(j0),r(j1)) (2.6)

We have h = (hj0) =
(
ρUr(j0)r′(j0)Vj0

(
fr(j0),r′(j0)

))
. Let δ(h) = (h′j0j1), then

h′j0j1 = ρVj1Vj0j1 (hj1)− ρVj0Vj0j1 (hj0)

= ρVj1Vj0j1

(
ρUr(j1)r′(j1)Vj1

(
fr(j1),r′(j1)

))
− ρVj0Vj0j1

(
ρUr(j0)r′(j0)Vj0

(
fr(j0),r′(j0)

))
= ρUr(j1)r′(j1)Vj0j1

(
fr(j1),r′(j1)

)
− ρUr(j0)r′(j0)Vj0j1

(
fr(j0),r′(j0)

) (2.7)

To simplify the notations, we rename indices as r(j0) = i0, r(j1) = i1, r
′(j0) = i2 and

r′(j1) = i3. Since Vj0j1 ⊂ Ui0i1i2 and Vj0,j1 ⊂ Ui1,i2,i3 from (2.5) we get

ρUi1i2Vj0j1 (fi1,i2)− ρUi0i2Vj0j1 (fi1,i2) + ρUi0i1Vj0j1 (fi0,i1) = 0

ρUi2i3Vj0j1 (fi2,i3)− ρUi1i3Vj0j1 (fi1,i3) + ρUi1i2Vj0j1 (fi1,i2) = 0
(2.8)

12For a more general argument see [35, §5.33, equation (11)] and [11, Lemma 2.6.1].
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We will use (2.8) to convert (2.7) to (2.6). Hence we have

h′j0j1 = ρUi1i3Vj0j1 (fi1,i3)− ρUi0i2Vj0j1 (fi0,i2)

=
(
ρUi1i2Vj0j1 (fi1,i2)− ρUi0i2Vj0j1 (fi0,i2) + ρUi0i1Vj0j1 (fi0,i1)

)
−
(
ρUi2i3Vj0j1 (fi2,i3)− ρUi1i3Vj0j1 (fi1,i3) + ρUi1i2Vj0j1 (fi1,i2)

)
+ ρUi2,i3Vj0,j1 (fi2,i3)− ρUi0,i1Vj0,j1 (fi0,i1)

= ρUi2,i3Vj0,j1 (fi2,i3)− ρUi0,i1Vj0,j1 (fi0,i1)

= g′j0,j1 − gj0,j1

Therefore these two cocycles differ by a coboundary. Hence completing the proof.

Remark 2.15. We will therefore denote this refining map on the cohomology level by HUV for
U < V. Hence, {Ȟk

(U ,F), HUV} is a direct system13. We have HUU = 1
Ȟ
k
(U ,F)

since we can
choose refining map r to be identity, and HUW = HVW ◦HUV for U < V <W since composition
of two refining maps is again a refining map.

Definition 2.15 (Čech cohomology). Let F be a sheaf of abelian groups on X and k ≥ 0 be
an integer. Then the kth Čech cohomology group of F on X is the group

Ȟ
k
(X,F) := lim−→

U
Ȟ
k
(U ,F)

where the direct limit14 is indexed over all the open covers of X with order relation induced by
refinement, i.e. U < V if V is a refinement of U .

Proposition 2.6. For any sheaf F of X, we have Ȟ
0
(X,F) ∼= F(X).

Proof. By Lemma 2.4 we know that at the Ȟ
0 level all the groups are isomorphic to F(X).

Since all the maps HUV are compatible isomorphisms, using Proposition B.1 we conclude that
the direct limit is also isomorphic to F(X).

Remark 2.16. What we have defined here is not the true definition of either Čech or sheaf
cohomology [20, §IX.3] [9, pp. 38-40]. Čech cohomology can be defined either using the concept
of nerve [25, §73][21, §3.4(a)], or presheaf15 [1, §10]. One can prove equivalence of both these
definitions using the constant presheaf G [35, §5.33]. Also note that Čech cohomology of the
cover U is a purely combinatorial object [1, Theorem 8.9].

Sheaf cohomology can be defined either using resolution of sheaf [37, Definition 3.10] [27,
Definition 4.2.11] or axiomatically [35, §5.18]. The definition of Čech cohomology agrees with
that of sheaf cohomology for smooth manifolds since Čech cohomology is isomorphic to sheaf
cohomology for any sheaf on a paracompact Hausdorff space [35, §5.33]. This is all we need to
obtain the desired proof, hence our definition of Čech cohomology of sheaves serves the purpose.

Remark 2.17. Another way of defining Čech cohomology groups with coefficients in sheaves is
via sheafification. First step is to define the cohomology groups Ȟ

k
(U ,F) on an open covering

U = {Ui}i∈I of X with coefficients in a presheaf F . Then the cohomology groups Ȟ
k
(U , F̃) of

U with coefficients in a sheaf F̃ are defined to be the cohomology groups of U with coefficients
in the canonical presheaf F of F̃ . Finally, the cohomology groups Ȟ

k
(X,F) and Ȟ

k
(X, F̃) are

defined as the direct limit of all groups Ȟ
k
(U ,F) and Ȟ

k
(U , F̃), respectively, as U runs through

all open coverings of X (directed by refinement) [11, §2.6].
13For its definition see Appendix B.
14For the definition of direct limit see Appendix B. To get the direct system {Ȟk

(U ,F), HUV}, the “refinement”
is defined to be the order relation for the directed set.

15For a discussion on the motivation behind this definition see [13, §2] and [8, §10.2].
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2.2.1 Induced map of cohomology

Definition 2.16 (Induced map of cochains). If φ : F → G is a map of sheaves on X, then the
induced map on cochains is defined as

φ∗ : Č
k
(U ,F)→ Č

k
(U ,G)

(fi0,i1,...,ik) 7→ (φUi0,...,ik (fi0,i1,...,ik))

for any open covering U of X.

Proposition 2.7. The coboundary operator commutes with the induced map of cochains. That
is, the following diagram commutes

Č
k
(U ,F) Č

k+1
(U ,F)

Č
k
(U ,G) Č

k+1
(U ,G)

δ

φ∗ φ∗

δ

Proof. The coboundary operator δ acts on each element via the group homomorphism ρ of the
sheaf, and the induced map φ∗ acts on each element via the group homomorphism φUi0,...,ik of
the sheaf map. By Definition 2.4, we know that the group homomorphism of the sheaf and the
group homomorphism of the sheaf map commute.

Corollary 2.1. The induced map of cochains sends cocycles to cocycles, and coboundaries to
cobundaries.

Proof. Let f be a cocycle, i.e. δ(f) = 0. From the previous proposition we know that δ(φ∗(f)) =
φ∗(δ(f)) = 0. Hence φ∗(f) is also a cocycle. Next, let g be a coboundary, i.e. g = δ(h). From
the previous proposition we know that φ∗(g) = φ∗(δ(h)) = δ(φ∗(h)). Hence φ∗(g) is also a
coboundary.

Proposition 2.8. If 0 F ′ F F ′′φ ψ is an exact sequence of sheaves over X,
then the induced sequence of cochains for any open cover U of X

0 Č
k
(U ,F ′) Č

k
(U ,F) Č

k
(U ,F ′′)φ∗ ψ∗

is also exact.

Proof. We can re-write the desired exact sequence of abelian groups as

0
∏

(i0,i1,...,ik)

F ′(Ui0,i1,...,ik)
∏

(i0,i1,...,ik)

F (Ui0,i1,...,ik)
∏

(i0,i1,...,ik)

F ′′(Ui0,i1,...,ik)
φ∗ ψ∗

The exactness of the above sequence follows from Lemma 2.2, since

0 F ′(U) F(U) F ′′(U)
φU ψU

is an exact sequence of abelian groups for all open sets U of X.

Definition 2.17 (Induced map of cohomology). Let φ : F → G be a map of sheaves on X, then
the induced16 map of cohomology is defined as

Φ : Ȟ
k
(U ,F)→ Ȟ

k
(U ,G)

JfK 7→ Jφ∗(f)K

for f ∈ Žk(U ,F).
16It’s well defined because of Corollary 2.1.
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Lemma 2.7. The refining maps at the level of cohomology commute with any induced map of
cohomology. That is, the following diagram commutes

Ȟ
k
(U ,F) Ȟ

k
(U ,G)

Ȟ
k
(V,F) Ȟ

k
(V,G)

Φ

HUV HUV

Φ

Proof. The refining map HUV acts on each element via the group homomorphism ρ of the sheaf,
and the induced map Φ acts on each element via the group homomorphism φUi0,...,ik of the sheaf
map. By Definition 2.4, we know that the group homomorphism of the sheaf and the group
homomorphism of the sheaf map commute.

Remark 2.18. This lemma implies that Φ is a map of direct systems {Ȟk
(U ,F), HFUV} and

{Ȟk
(U ,G), HGUV}. Hence φ : F → G in fact induces the homomorphism at the level of Čech

cohomology of X
Φ→ : Ȟ

k
(X,F)→ Ȟ

k
(X,G)

2.2.2 Long exact sequence of cohomology

In this subsection, proof of the fact that a short exact sequence of sheaves on paracompact
Hausdorff space induces a long exact sequence of Čech cohomology will be presented following
Serre [30, §I.3] and Warner [35, §5.33].

Theorem 2.1. Let X be a paracompact Hausdorff space and

0 F ′ F F ′′ 0
φ ψ

be a short exact sequence of sheaves on X. Then there are connecting homomorphisms ∆ :

Ȟ
k
(X,F ′′) → Ȟ

k+1
(X,F ′) for every k ≥ 0 such that we have a long exact sequence of Čech

cohomology groups

· · · Ȟ
k
(X,F) Ȟ

k
(X,F ′′) Ȟ

k+1
(X,F ′) Ȟ

k+1
(X,F) · · ·

Φ→ Ψ→ ∆ Φ→ Ψ→

Proof. Given to us is a short exact sequence of sheaves

0 F ′ F F ′′ 0
φ ψ

Then by Proposition 2.8, for any open cover U of X,

0 Č
k
(U ,F ′) Č

k
(U ,F) Č

k
(U ,F ′′)φ∗ ψ∗

is an exact sequence. However, if we replace Č
k
(U ,F ′′) by imψ∗, we get a short exact sequence

of abelian groups:

0 Č
k
(U ,F ′) Č

k
(U ,F) imψ∗ 0

φ∗ ψ∗

To explicitly show the dependence of imψ∗ on U and k, let’s write Ik(U ,F ′′) = imψ∗. Hence
we have the following short exact sequence of cochain complexes17

0 Č
k
(U ,F ′) Č

k
(U ,F) Ik(U ,F ′′) 0

φ∗ ψ∗

17All these are chain complexes since δ ◦ δ = 0.
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Then by the zig-zag lemma18 we get a long exact sequence in cohomology with respect to open
cover U

· · · Ȟ
k
(U ,F) Ik(U ,F ′′) Ȟ

k+1
(U ,F ′) Ȟ

k+1
(U ,F) · · ·Φ Ψ ∂ Φ Ψ

where ∂ is the connecting homomorphism induced by the coboundary operator δ and

Ik(U ,F ′′) =
ker{δ : Ik(U ,F ′′)→ Ik+1(U ,F ′′)}
im{δ : Ik−1(U ,F ′′)→ Ik(U ,F ′′)}

Since direct limit is an exact functor19, we get the following long exact sequence in Čech coho-
mology

· · · Ȟ
k
(X,F) Ik(X,F ′′) Ȟ

k+1
(X,F ′) Ȟ

k+1
(X,F) · · ·

Φ→ Ψ→ ∂ Φ→ Ψ→

where we have20

Ik(X,F ′′) = lim−→
U
Ik(U ,F ′′)

Now to obtain the desired long exact sequence of Čech cohomology, it’s sufficient to show that

Ik(X,F ′′) ∼= Ȟ
k
(X,F ′′) . Then the map ∆ : Ȟ

k
(X,F ′′) → Ȟ

k+1
(X,F ′) can be defined as the

composition of the inverse of this isomorphism with ∂ : Ik(X,F ′′)→ Ȟ
k+1

(X,F ′).
We observe that the inclusion map Ik(U ,F ′′) ↪→ Č

k
(U ,F ′′) induces a group homomorphism

at the level of cohomology with respect to the cover (quotient group), which on passing through
the limit induces a map at the level of Čech cohomology. Consider the quotient group

Qk(U ,F ′′) :=
Č
k
(U ,F ′′)

Ik(U ,F ′′)

Then we have the following short exact sequence of cochain complexes

0 Ik(U ,F ′′) Č
k
(U ,F ′′) Qk(U ,F ′′) 0

Then by the zig-zag lemma we get a long exact sequence in cohomology with respect to open
cover U

· · · Ȟ
k
(U ,F ′′) Qk(U ,F ′′) Ik+1(U ,F ′′) Ȟ

k+1
(U ,F ′′) · · ·∂

where ∂ is the connecting homomorphism induced by the coboundary operator δ and

Qk(U ,F ′′) =
ker{δ : Qk(U ,F ′′)→ Qk+1(U ,F ′′)}
im{δ : Qk−1(U ,F ′′)→ Qk(U ,F ′′)}

Since direct limit is an exact functor, we get the following long exact sequence in Čech cohomol-
ogy

· · · Ȟ
k
(X,F ′′) Qk(X,F ′′) Ik+1(X,F ′′) Ȟ

k+1
(X,F ′′) · · ·∂

18For proof see [25, Lemma 24.1] and [32, Theorem 25.6].
19For proof see Theorem B.2.
20One needs to repeat the calculations done in Lemma 2.6 to conclude that {Ik(U ,F ′′), HUV} is a direct

system. Here also the indexing set is directed by refinement, i.e. U < V is V is a refinement of U .
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where we have
Qk(X,F ′′) = lim−→

U
Qk(U ,F ′′)

Now to obtain the desired isomorphism, it’s sufficient to show that Qk(X,F ′′) = 0 . To prove
this, we will use the fact that X is a paracompact Hausdorff space and ψ is surjective.

Claim: Let U = {Ui}i∈A be an open cover of X, and f = (fi0,...,ik) be an element of
Č
k
(U ,F ′′). Then there exists a refinement V = {Vj}j∈B along with a refining map r : B → A

such that Vj ⊂ Ur(j) and r̃(f) ∈ Ik(V,F ′′), where r̃ is the map defined in Lemma 2.5. Therefore
Qk(X,F ′′) = 0.

Since X is paracompact, without loss of generality, assume U to be locally finite. Also, by
shrinking lemma (Theorem A.1) there exists a locally finite open covering W = {Wi}i∈A of X
such that Wi ⊂ Ui for each i ∈ A. For every x ∈ X, choose an open neighborhood Vx of x such
that

1. If x ∈ Ui then Vx ⊂ Ui for all such i’s. If x ∈Wi then Vx ⊂Wi for all such i’s.

2. If Vx ∩Wi 6= ∅ then Vx ⊂ Ui for all such i’s.

3. If x ∈ Ui0,i1,...,ik then there exists a h ∈ F(Vx) such that

ψVx(h) = ρF
′′

Ui0,...,ik ,Vx
(fi0,...,ik)

where by the first condition Vx ⊂ Ui0,...,ik .

The first condition can be satisfied because U and W are point finite21. Given the first
condition, the second condition will be satisfied because Wi ⊂ Ui. The third condition will
be satisfied because U is point finite and ψ is a surjective map of sheaves, i.e. there are only
finitely many Ui0,...,ik which contain x and for every open set Ui0,...,ik containing x and every
fi0,...,ik ∈ F ′′(Ui0,...,ik), there is an open subset Vx ⊂ Ui0,...,ik containing x such that ψVx(h) =
ρF
′′

Ui0,...,ik ,Vx
(fi0,...,ik) for some h ∈ F(Vx) (Remark 2.6).

Choose a map r : X → A such that x ∈ Wr(x). Then by the first condition, Vx ⊂ Wr(x) ⊂
Ur(x) and V = {Vx}x∈X is a refinement of U . Now consider the map

r̃ : Č
k
(U ,F ′′)→ Č

k
(V,F ′′)

f = (fi0,...,ik) 7→ g = (gx0,...,xk)

where
gx0,...,xk = ρ(fr(x0),...,r(xk))

and ρ : F ′′(Ur(x0),...,r(xk)) → F ′′(Vx0,...,xk) is the group homomorphism for the sheaf F ′′ cor-
responding to the nested open subsets Vx0,...,xk ⊂ Ur(x0),...,r(xk). It remains to show that
r̃(f) ∈ Ik(V,F ′′) = ψ∗(Č

k
(V,F ′′)), i.e. there exists h ∈ F(Vx0,x1,...,xk) such that

ρ(fr(x0),...,r(xk)) = ψVx0,x1,...,xk (h) (2.9)

If Vx0,...,xk = ∅ then there is nothing to prove. If not, then we have Vx0∩Vx` 6= ∅ for all 0 ≤ ` ≤ k.
Since Vx` ⊂Wr(x`) we have Vx0 ∩Wr(x`) 6= ∅ for all 0 ≤ ` ≤ k, then by the second condition we
have Vx0 ⊂ Ur(x`) for all 0 ≤ ` ≤ k. Hence, x0 ∈ Ur(x0),...,r(xk) and we can use the third condition
to conclude that there exists h′ ∈ F(Vx0) such that

ψVx0 (h′) = ρF
′′

Ur(x0),...,r(xk),Vx0
(fr(x0),...,r(xk))

21An open cover U = {Ui}i∈A of X is point finite if each point of X is contained in Ui for only finitely many
i ∈ A. Every locally finite cover is point finite, but the converse is not true. For example, {1/n}n∈N is a point
finite cover of R, but is not locally finite at 0.
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Now let h = ρF
′′

Vx0 ,Vx0,x1,...,xk
(h′) and use the fact that ψ commutes with ρ to get (2.9). Hence

completing the proof.

Remark 2.19. By Theorem 12 we know that manifolds are paracompact. Hence the above
theorem can be applied to the sheaf of differential forms. In particular, by Example 2.7 and
Example 2.8, we have the short exact sequence of sheaves on a smooth manifold M

0 Zq Ωq Zq+1 0d

This induces the following long exact sequence

· · · Ȟ
k
(M,Ωq) Ȟ

k
(M,Zq+1) Ȟ

k+1
(M,Zq) Ȟ

k+1
(M,Ωq) · · ·∆

2.2.3 Fine sheaves

In this subsection, the condition under which Ȟ
k
(X,F) vanishes for all k ≥ 1 will be discussed

following Hirzebruch [11, §2.11] and Warner [35, §5.10, 5.33].

Definition 2.18 (Sheaf partition of unity). Let F be a sheaf of abelian groups over a paracom-
pact Hausdorff space X. Given a locally finite open cover U = {Ui}i∈I of X, the partition of
unity of F subordinate to the cover U is a family of sheaf maps {ηi : F → F} such that

1. supp(ηi) ⊂ Ui for each Ui

2.
∑

i∈I ηi = 1F (the sum can be formed because U is locally finite)

where supp(ηi) is the closure of the set of those x ∈ X for which (ηi)x : Fx → Fx is not a zero
map.

Definition 2.19 (Fine sheaf). A sheaf of abelian groups F over a paracompact Hausdorff space
X is fine if for any locally finite open cover U = {Ui}i∈I of X there exists a partition of unity
of F subordinate to the covering U .

Example 2.9. Since the multiplication by a continuous or differentiable globally defined func-
tion defines a sheaf map in a natural way. From Theorem A.2 we conclude that the sheaf of
continuous functions on a paracompact Hausdorff space is a fine sheaf. Also, by Theorem 13,
the sheaf Ωq of smooth q-forms on a smooth manifold M is a fine sheaf [37, Example II.3.4].

Theorem 2.2. Let F be a fine sheaf over a paracompact Hausdorff space X. Then Ȟ
k
(X,F)

vanishes for k ≥ 1.

Proof. Since X is paracompact, every open cover of X has a locally finite refinement, it suffices
to prove that Ȟ

k
(U ,F) = 0 for all k ≥ 1 if U = {Ui}i∈I is any locally finite open cover of X.

For k ≥ 1, we define the homomorphism

λk : Č
k
(U ,F)→ Č

k−1
(U ,F)

(fi0,i1,...,ik) 7→ (hi0,i1,...,ik−1
)

where
hi0,i1,...,ik−1

=
∑
i∈I

ηi
(
fi,i0,...,ik−1

)
and {ηi : F → F}i∈I is a partition of unity of F subordinate to the covering U . Also, let
δk : Č

k
(U ,F) → Č

k+1
(U ,F) be the coboundary operator as in Definition 2.10. Then from

Proposition 2.4 it follows that for f = (fi0,...,ik) ∈ Žk(U ,F) we have

δk−1 (λk(f)) = f for k ≥ 1

Therefore, f ∈ B̌k(U ,F) and Ȟ
k
(U ,F) = 0 for all k ≥ 1.
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We will check the claim just for the simplest case, when k = 1. For f = (fi0i1) ∈ Ž1(U ,F)
and δ(f) = (gi0i1i2) = 0 we have [9, pp. 42]

δ0 (λ1 ((fi0i1))) = δ0

((∑
i∈I

ηi(fii0)

))

=

(
ρUi1Ui0i1

(∑
i∈I

ηi (fii1)

)
− ρUi0Ui0i1

(∑
i∈I

ηi (fii0)

))

=

(∑
i∈I

ηi

(
ρUii1Uii1i0 (fii1)

)
−
∑
i∈I

ηi

(
ρUii0Uii1i0 (fii0)

))

=

(∑
i∈I

ηi

(
ρUii1Uii1i0 (fii1)− ρUii0Uii1i0 (fii0)

))

=

(∑
i∈I

ηi

(
ρUi1i0Uii1i0 (fi0i1)

))

=

(
ρUi1i0Ui1i0

(∑
i∈I

ηi(fi0i1)

))
=(fi0i1)

since sheaf map ηi commutes with ρ, ρUU is identity, {ηi} is partition of unity and by
Proposition 2.4 we have

0 = gii1i0 = ρUi1i0Uii1i0 (fi1i0)− ρUii0Uii1i0 (fii0) + ρUii1Uii1i0 (fii1)

ρUi1i0Uii1i0 (fi0i1) = −ρUii0Uii1i0 (fii0) + ρUii1Uii1i0 (fii1)

Remark 2.20. We can apply this theorem to the the sheaf of smooth q-forms on a smooth
manifold M , hence Ȟ

k
(M,Ωq) = 0 for all k ≥ 1.

2.3 de Rham-Čech isomorphism

Theorem 2.3. Let M be a smooth manifold. Then for each k ≥ 0 there exists a group isomor-
phism

Hk
dR(M) ∼= Ȟ

k
(M,R)

Proof. For k = 0, from Proposition 1.2 and Proposition 2.6, we know that both H0
dR(M) and

Ȟ
0
(M,R) are isomorphic to the group of locally constant real valued functions on M . That is

H0
dR(M) ∼= Ȟ

0
(M,R)

Now let’s restrict our attention to k ≥ 1. From Example 2.8 we know that the Poincaré
lemma implies the existence of the following long exact sequence of sheaves of differential forms

0 R Ω0 Ω1 Ω2 · · ·d d d
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Then, as noted in Remark 2.19, we get a family of short exact sequence of sheaves

0 R Ω0 Z1 0

0 Z1 Ω1 Z2 0

...
...

...
...

...

0 Zq Ωq Zq+1 0

...
...

...
...

...

d

d

d

Since a smooth manifold is a paracompact Hausdorff space, we can apply Theorem 2.1 to get a
family of long exact sequence of Čech cohomology

· · · Ȟ
k
(M,Ω0) Ȟ

k
(M,Z1) Ȟ

k+1
(M,R) Ȟ

k+1
(M,Ω0) · · ·

· · · Ȟ
k
(M,Ω1) Ȟ

k
(M,Z2) Ȟ

k+1
(M,Z1) Ȟ

k+1
(M,Ω1) · · ·

...
...

...
...

· · · Ȟ
k
(M,Ωq) Ȟ

k
(M,Zq+1) Ȟ

k+1
(M,Zq) Ȟ

k+1
(M,Ωq) · · ·

...
...

...
...

∆

∆

∆

Now let’s study one of these long exact sequence of Čech cohomology. By Proposition 2.6 we have
Ȟ

0
(M,Ωq) ∼= Ωq(M) and Ȟ

0
(M,Zq) ∼= Zq(M). Also by Remark 2.20 we have Ȟ

k
(M,Ωq) = 0

for all k ≥ 1 and q ≥ 0. Hence for any q ≥ 0 we get the exact sequence

0 Zq(M) Ωq(M) Zq+1(M) Ȟ
1
(M,Zq) 0 Ȟ

1
(M,Zq+1)

· · · 0 Ȟ
3
(M,Zq) Ȟ

2
(M,Zq+1) 0 Ȟ

2
(M,Zq)

d ∆

∆

∆

Now consider the following part of the above sequence

0 Zq(M) Ωq(M) Zq+1(M) Ȟ
1
(M,Zq) 0d ∆

Since this sequence is exact, the map ∆ : Zq+1(M) → Ȟ
1
(M,Zq) is a surjective group homo-

morphism and im{d : Ωq(M) → Zq+1(M)} = ker(∆). Hence by the first isomorphism theorem
we get

Ȟ
1
(M,Zq) ∼=

Zq+1(M)

ker(∆)
for all q ≥ 0

Since im{d : Ωq(M)→ Zq+1(M)} = im{d : Ωq(M)→ Ωq+1(M)} = Bq+1(M), we get

Ȟ
1
(M,Zq) ∼= Hq+1

dR (M) for all q ≥ 0 (2.10)

Note that Z0 = R, hence from (2.10) we get

Ȟ
1
(M,R) ∼= H1

dR(M)

Next we consider the remaining parts of the long exact sequence, i.e. for k ≥ 1 and q ≥ 0 we
have

0 Ȟ
k
(M,Zq+1) Ȟ

k+1
(M,Zq) 0∆
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The group homomorphism ∆ is an isomorphism since this is an exact sequence of abelian groups

Ȟ
k+1

(M,Zq) ∼= Ȟ
k
(M,Zq+1) for all k ≥ 1, q ≥ 0 (2.11)

Again substituting Z0 = R and restricting our attention to k ≥ 2, we apply (2.11) recursively
to get

Ȟ
k
(M,R) ∼= Ȟ

k−1 (
M,Z1

)
∼= Ȟ

k−2 (
M,Z2

)
...

∼= Ȟ
1
(
M,Zk−1

)
Then using (2.10) we get

Ȟ
k
(M,R) ∼= Hk

dR(M) for all k ≥ 2

Hence completing the proof.

Remark 2.21. One can use Weil’s method involving generalized Mayer-Vietoris principle for
the Čech-de Rham complex to directly show the isomorphism between Čech cohomology with
values in R and de Rham cohomology of smooth manifoldM , without using sheaf theory. There
are two versions of the proof depending on the definition of Čech cohomology used, see [21,
Theorem 3.19] if defined using nerve and [1, Proposition 10.6] if defined using presheaf.

Remark 2.22. In Theorem 4.7 we will see that de Rham-Čech isomorphism in fact implies that
de Rham cohomology is a topological invariant.
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Chapter 3

Dolbeault cohomology

3.1 Differential forms on Cn

This section generalizes the concepts discussed in section 1.1 and section 1.3, following the
discussion from [12, §1.3] and [37, §I.3].

3.1.1 Tangent space

Definition 3.1 (Real tangent space). Let U ⊂ Cn be an open subset. In particular, we can
consider U ⊂ R2n, to be a smooth manifold of dimension 2n. Then for w ∈ U we define the real
tangent space of U at the point w as the real vector space of R-linear derivations on the ring of
real-valued smooth functions in a neighborhood of w, i.e.

Tw,RU = {Xw : C∞w (U)→ R | Xw(fg) = Xw(f)g(w) + f(w)Xw(g)}

Remark 3.1. If we write the standard coordinates on Cn as zj = xj + iyj , then a canonical
basis of Tw,RU is given by the tangent vectors{

∂

∂x1

∣∣∣∣
w

, · · · , ∂

∂xn

∣∣∣∣
w

,
∂

∂y1

∣∣∣∣
w

, · · · , ∂

∂yn

∣∣∣∣
w

}
Clearly, dimR(Tw,RU) = 2n as seen in the case of smooth manifolds.

Definition 3.2 (Complexified tangent space). Let U ⊂ Cn be an open subset. Then we define
the complexified tangent space of U at the point w to be the complexification1 of real tangent
space of U at w

Tw,CU = Tw,RU ⊗R C

Remark 3.2. We can also use the canonical basis of real tangent space to define its complexi-
fication [28, p. 379]. We can view Tw,CU as the complex vector space of C-linear derivations in
the ring of complex-valued smooth functions2 in a neighborhood of w, i.e. Tw,CU also has the
same basis {

∂

∂x1

∣∣∣∣
w

, · · · , ∂

∂xn

∣∣∣∣
w

,
∂

∂y1

∣∣∣∣
w

, · · · , ∂

∂yn

∣∣∣∣
w

}
Hence, as expected, we have dimR(Tw,RU) = dimC(Tw,CU).

1For the definition, see Definition C.2.
2That is, they posses partial derivatives of all orders with respect to the 2n real coordinates in Cn.
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Definition 3.3 (Complex structure for Tw,RU). Each real tangent space Tw,RU admits a natural
complex structure3 defined on the basis as

J : Tw,RU → Tw,RU

∂

∂xj

∣∣∣∣
w

7→ ∂

∂yj

∣∣∣∣
w

∂

∂yj

∣∣∣∣
w

7→ − ∂

∂xj

∣∣∣∣
w

Remark 3.3. We will regard this J as a vector bundle endomorphism of the smooth vector
bundle TRU over U .

Proposition 3.1. The complexified tangent bundle TCU = TRU ⊗R C decomposes as a direct
sum of complex vector bundles

TCU = (TRU)1,0 ⊕ (TRU)0,1

such that the C-linear extension J̃ = J ⊗ 1C satisfies

J̃ |(TRU)1,0 = i · 1TCU and J̃ |(TRU)0,1 = −i · 1TCU

Proof. Fix a point w ∈ U , and substitute V = Tw,RU and VC = Tw,CU in the proof of Proposi-
tion C.7.

Remark 3.4. As seen in the proof of Proposition C.7, we can write

∂

∂xj
=

1

2

(
∂

∂xj
− iJ

(
∂

∂xj

))
+

1

2

(
∂

∂xj
+ iJ

(
∂

∂xj

))
∂

∂yj
=

1

2

(
∂

∂yj
− iJ

(
∂

∂yj

))
+

1

2

(
∂

∂yj
+ iJ

(
∂

∂yj

))
where

1

2

(
∂

∂xj
− iJ

(
∂

∂xj

))
,
1

2

(
∂

∂yj
− iJ

(
∂

∂yj

))
∈ (TRU)1,0

and
1

2

(
∂

∂xj
+ iJ

(
∂

∂xj

))
,
1

2

(
∂

∂yj
+ iJ

(
∂

∂yj

))
∈ (TRU)0,1

Next, use the definition of J to get:

∂

∂xj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
+

1

2

(
∂

∂xj
+ i

∂

∂yj

)
∂

∂yj
=
i

2

(
∂

∂xj
− i ∂

∂yj

)
− i

2

(
∂

∂xj
+ i

∂

∂yj

)
Definition 3.4 (Complex partial derivative). Based on the discussion above, we define the
operators:

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
and

∂

∂zj
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
for j = 1, . . . , n.

3For definition, see Definition C.3.
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Remark 3.5. Hence we can say that
{

∂
∂z1

∣∣
w
, . . . , ∂

∂zn

∣∣
w

}
is a basis for the complex vector space

(Tw,RU)1,0 and
{

∂
∂z1

∣∣
w
, . . . , ∂

∂zn

∣∣
w

}
is a basis for the complex vector space (Tw,RU)0,1. Therefore,

the following forms a basis of Tw,CU{
∂

∂z1

∣∣∣∣
w

, . . . ,
∂

∂zn

∣∣∣∣
w

,
∂

∂z1

∣∣∣∣
w

, . . . ,
∂

∂zn

∣∣∣∣
w

}
Proposition 3.2. Let f : U → V be a holomorphic map between open subsets U ⊂ Cn and
V ⊂ Cn. The C-linear extension of the pushforward map4 f∗ : Tw,RU → Tf(w),RV respects the
above decomposition, i.e. f̃∗

(
(Tw,RU)1,0

)
⊂ (Tw,RV )1,0 and f̃∗

(
(Tw,RU)0,1

)
⊂ (Tf(w),RV )0,1.

Proof. Follows directly from the Remark D.5.

3.1.2 Cotangent space

Definition 3.5 (Real cotangent space). Let U ⊂ Cn be an open subset. In particular, we can
consider U ⊂ R2n, to be a smooth manifold of dimension 2n. Then for w ∈ U we define the real
cotangent space of U at the point w as dual space of the real vector space Tw,RU , i.e.

T ∗w,RU = HomR(Tw,RU,R)

Remark 3.6. If we write the standard coordinates on Cn as zj = xj + iyj , then a canonical
basis of T ∗w,RU is given by the cotangent vectors{

dx1

∣∣
w
, · · · ,dxn

∣∣
w
,dy1

∣∣
w
, · · · ,dyn

∣∣
w

}
Clearly, dimR(T ∗w,RU) = 2n as seen in the case of smooth manifolds.

Definition 3.6 (Complexified cotangent space). Let U ⊂ Cn be an open subset. Then we
defined the complexified cotangent space of U at the point w to be the complexification of real
cotangent space

T ∗w,CU = T ∗w,RU ⊗R C

Remark 3.7. We can also use the canonical basis of real cotangent space to define its complex-
ification [28, p. 379]. We can view T ∗w,CU as the complex vector space with the basis{

dx1

∣∣
w
, · · · ,dxn

∣∣
w
,dy1

∣∣
w
, · · · ,dyn

∣∣
w

}
Hence, as expected, we have dimR(T ∗w,RU) = dimC(T ∗w,CU).

Remark 3.8. As in Proposition C.8, we get the complex structure J on T ∗w,RU from the complex
structure J on Tw,RU . We will regard this J as a vector bundle endomorphism of the smooth
vector bundle T ∗RU over U .

Proposition 3.3. The complexified cotangent bundle T ∗CU = T ∗RU ⊗R C decomposes as a direct
sum of complex vector bundles

T ∗CU = (T ∗RU)1,0 ⊕ (T ∗RU)0,1

such that the C-linear extension J̃ = J ⊗ 1C satisfies

J̃ |(T ∗RU)1,0 = i · 1T ∗CU and J̃ |(T ∗RU)0,1 = −i · 1T ∗CU

Proof. Fix a point w ∈ U , and substitute V = Tw,RU and VC = Tw,CU in the proof of Proposi-
tion C.8.

4It was defined in the first chapter, see Definition 1.5.
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Remark 3.9. From Corollary C.2, we have T ∗w,CU =
(
T ∗w,RU

)
C
∼= (Tw,CU)∗. Hence we can

obtain another basis for T ∗w,CU by defining the dual basis of (Tw,RU)1,0 and (Tw,RU)0,1. Observe
that:

1

2

(
∂

∂xj
− i ∂

∂yj

)
(dxk + i dyk) =

{
1 if k = j

0 if k 6= j

1

2

(
∂

∂xj
− i ∂

∂yj

)
(dxk − i dyk) = 0

and
1

2

(
∂

∂xj
+ i

∂

∂yj

)
(dxk + i dyk) = 0

1

2

(
∂

∂xj
+ i

∂

∂yj

)
(dxk − i dyk) =

{
1 if k = j

0 if k 6= j

Definition 3.7 (Complex differential). Based on the discussion above, we define the differentials:

dzj := dxj + i dyj and dzj := dxj − i dyj

for j = 1, . . . , n.

Remark 3.10. Hence we can say that
{

dz1

∣∣
w
, . . . ,dzn

∣∣
w

}
is a basis for the complex vector

space (T ∗w,RU)1,0 and
{

dz1

∣∣
w
, . . . ,dzn

∣∣
w

}
is a basis for the complex vector space (T ∗w,RU)0,1.

Therefore, the following forms a basis of T ∗w,CU{
dz1

∣∣
w
, . . . ,dzn

∣∣
w
,dz1

∣∣
w
, . . . ,dzn

∣∣
w

}
3.1.3 Differential forms

Definition 3.8 (Differential (p, q)-form). Let U ⊂ Cn be an open subset. Over U one has the
complex vector bundle5 of rank

(
n
p

)(
n
q

)
defined as∧p,q

T ∗RU :=
∧p (

(T ∗RU)1,0
)
⊗C
∧q (

(T ∗RU)0,1
)

whose fiber is
∧p,q T ∗w,RU . The smooth sections of this vector bundle are called the differential

forms of type (p, q) on U . The space of all smooth differential forms of type (p, q) on U is denoted
by Ωp,q(U).

Remark 3.11. Any (p, q)-form ω ∈ Ωp,q(U) can be written uniquely as

ω =
∑

|α|=p,|β|=q

fαβ dzα ∧ dzβ

where α = (α1, . . . , αp) and β = (β1, . . . , βq) are multi-indices with 1 ≤ αj , βk ≤ n; dzα =
dzα1 ∧ . . . ∧ dzαp and dzβ = dzβ1 ∧ . . . ∧ dzβq ; and fαβ is a complex-valued smooth function on
U , i.e. fαβ ∈ C∞(U). In particular, Ω0,0(U) = C∞(U).

Remark 3.12. Let Ωk
C(U) be the space of sections of vector bundle

∧k T ∗CU . Any element
ω ∈ Ω1

C(U) can thus be written in a unique manner in the form

ω =
n∑
j=1

fj dzj +
n∑
k=1

fk dzk

Moreover, if ω ∈ Ωr
C(U) and η ∈ Ωs

C(U) then ω ∧ η = (−1)rsη ∧ ω ∈ Ωr+s
C (U).

5That is, in the definition of smooth vector bundle, replace R by C. This will be discussed in detail later, see
Remark 3.27.
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Remark 3.13. By Remark C.12 we have∧k
T ∗CU

∼=
⊕
p+q=k

∧p,q
T ∗RU =⇒ Ωk

C(U) ∼=
⊕
p+q=k

Ωp,q(U)

Thus we have natural projection operators
∧k T ∗CU → ∧p,q T ∗RU and Ωk

C(U)→ Ωp,q(U), denoted
by Πp,q for p+ q = k.

3.1.4 Exterior derivative

Definition 3.9 (Differential of a (p, q)-form). Let U ⊂ Cn be an open subset, and d : Ωk
C(U)→

Ωk+1
C (U) be the complex linear extension of the usual exterior differential6. Then

∂ : Ωp,q(U)→ Ωp+1,q(U) and ∂ : Ωp,q(U)→ Ωp,q+1(U)

are defined as ∂ := Πp+1,q ◦ d and ∂ := Πp,q+1 ◦ d.

Remark 3.14. For any f ∈ Ω0
C(U) = C∞(U) one has

df =

n∑
j=1

∂f

∂xj
dxj +

n∑
j=1

∂f

∂yj
dyj =

n∑
j=1

∂f

∂zj
dzj +

n∑
j=1

∂f

∂zj
dzj = ∂f + ∂f

Since {dzj} are linearly independent, by Theorem D.2, f is holomorphic if and only if ∂f = 0.

Lemma 3.1. For the differential operators ∂ and ∂ one has:

1. d = ∂ + ∂

2. ∂2 = ∂ 2 = 0 and ∂∂ = −∂∂

3. They satisfy the Leibniz’s rule, i.e.

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η
∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

for ω ∈ Ωp,q(U) and η ∈ Ωr,s(U).

Proof. We will use the properties of d studied earlier in Theorem 26.

1. This follows from the local description of ∂ and ∂. Given ω =
∑

α,β fαβ dzα∧dzβ ∈ Ωp,q(U),
we have

∂ω =

n∑
j=1

∑
α,β

∂fαβ
∂zj

dzj ∧ dzα ∧ dzβ

∂ω =
n∑
j=1

∑
α,β

∂fαβ
∂zj

dzj ∧ dzα ∧ dzβ

2. Recall that d2 = 0 since the second order partial derivatives commute. Since d = ∂ + ∂,
we have

d2 = d ◦ d

= d ◦ ∂ + d ◦ ∂
6This was defined in the first chapter, see Definition 1.17.
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= ∂ ◦ ∂ + ∂ ◦ ∂ + ∂ ◦ ∂ + ∂ ◦ ∂
= ∂2 + ∂∂ + ∂∂ + ∂ 2

Moreover, each operator projects to a different summand of Ωp+q+2
C (U), we obtain

∂2 = ∂∂ + ∂∂ = ∂ 2 = 0

Therefore, ∂2 = ∂ 2 = 0 and ∂∂ = −∂∂.

3. Recall that for ω ∈ Ωp+q
C (U) and η ∈ Ωr+s

C (U) we have

d(ω ∧ η) = dω ∧ η + (−1)p+qω ∧ dη ∈ Ωp+q+r+s+1
C (U)

Since ∂ := Πp+r+1,q+s ◦ d, taking the (p+ r + 1, q + s)-parts on both sides one obtains

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

Similarly, taking the (p+ r, q + s+ 1)-parts one obtains

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

Remark 3.15. As noted in Remark C.13, Ωk
C(U) does not reflect the complex structure J ,

whereas its decomposition into subspaces Ωp,q(U) does.

3.2 ∂-closed and exact forms on Cn

In this section the proof of ∂-Poincaré lemma will be discussed, following [10, §I.D] and [31, §1.4,
10.1].

Definition 3.10 (∂-closed forms). Let U ⊂ Cn be an open subset. Then a differential form
ω ∈ Ωp,q(U) is called ∂-closed if ∂ω = 0.

Remark 3.16. If U is an open set in Cn, let Zp,q(U) denote the set of all ∂-closed (p, q)-forms
on U . The sum of two such (p, q)-forms is another ∂-closed (p, q)-form, and so is the product
of a ∂-closed (p, q)-form by a scalar. Hence Zp,q(U) is the vector sub-space of Ωp,q(U). Also,
from Theorem D.2 it follows that Zp,0(U) is the space of (p, 0)-forms whose coefficients are
complex-valued holomorphic functions in U . In particular, note that Z0,0(U) = O(U), the space
of complex-valued functions holomorphic in U .

Definition 3.11 (∂-exact forms). Let U ⊂ Cn be an open subset. Then a differential form
ω ∈ Ωp,q(U), for q > 0, is called ∂-exact if ω = ∂η for some differential form η ∈ Ωp,q−1(U).

Remark 3.17. If U is an open set in Cn, let Bp,q(U) denote the set of all ∂-exact (p, q)-forms
on U . The sum of two such (p, q)-forms is another ∂-exact (p, q)-form, and so is the product of
a ∂-exact (p, q)-form by a scalar. Hence Bp,q(U) is the vector sub-space of Ωp,q(U). Moreover,
the trivial form ω ≡ 0 is the only (p, 0)-form which is ∂-exact for any value of p = 0, 1, . . . , n.
That is, Bp,0(U) consists only of zero.

Theorem 3.1. Every ∂-exact form is ∂-closed.

Proof. Let U be an open set in Cn and ω ∈ Bp,q(U) such that ω = ∂η for some η ∈ Ωp,q−1(U).
From Lemma 3.1 we know that ∂ω = ∂(∂η) = 0 hence ω ∈ Zp,q(U) for all q ≥ 1. For q = 0, the
statement is trivially true.
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Remark 3.18. This theorem implies that Bp,q(U) ⊂ Zp,q(U) for all q ≥ 1. However, the
converse doesn’t always hold. For example, if U = C2 \ {0}, then the (0, 1)-form

ω =


∂

(
z2

z1r2

)
when z1 6= 0

−∂
(
z1

z2r2

)
when z2 6= 0

where (z1, z2) ∈ U and r2 =
∣∣z2

1

∣∣+
∣∣z2

2

∣∣, is ∂-closed but not ∂-exact [10, pp. 30–31].

3.2.1 Cauchy integral formula

Proposition 3.4 (Generalized Cauchy integral formula). Let U be a region7 in C bounded by
a simple closed rectifiable curve8 γ, and f be complex-valued smooth function in some open
neighborhood V of U . Then for any point z ∈ U ,

f(z) =
1

2πi

∫
γ

f(w)
dw

w − z
+

1

2πi

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z

Proof. For any point z ∈ U select a disc ∆(z; r) with closure contained in U . Let γr be the
boundary of the ∆(z; r), a circle of radius r centered at z. Furthermore, let Ur = U \ ∆(z; r)
and observe that this is an open region bounded by γ − γr.

Now note that as a function of w, for a fixed z,

∂f(w)

∂w

dw ∧ dw

w − z
=

∂

∂w

(
f(w)

w − z

)
dw ∧ dw = d

(
f(w)

dw

w − z

)
whenever the functions involved are well defined9. Therefore, by the Stokes theorem10 in the
plane we get∫∫

Ur

∂f(w)

∂w

dw ∧ dw

w − z
=

∫∫
Ur

d

(
f(w)

dw

w − z

)
=

∫
γ

f(w)
dw

w − z
−
∫
γr

f(w)
dw

w − z
(3.1)

7A region is an open connected subset of the complex plane [3, p. 40].
8A rectifiable curve is a curve having finite length. In other words, the measure (for example, arc length or

distance) between any two points of this curve is finite. For more details, see [3, p. 62].
9Note the abuse of notations. Here f(w) is a function of w and w which are linearly independent “variables”.

The better notation would have been f(w,w) just like we have f(x, y) in R2. Hence ∂/∂w treats w as a constant.
Moreover, the differential is well defined whenever w 6= z, which will hold when we apply the Stokes theorem.

10This is the standard Stokes theorem expressed in the complex notation [15, Theorem 1.1.1]: Let U ⊂ Cn be
a bounded open set with rectifiable boundary and ω ∈ Ωp,q(U) with p+ q = 2n. Then∫

∂U

ω =

∫
U

dω =

∫
U

∂ω + ∂ω
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Note that the integral of (w − z)−1 dw ∧ dw exists on a bounded region, as seen by integrating
it using polar coordinates centered at z. That is, substituting w = z +Reiθ and

dw ∧ dw = (dx+ i dy) ∧ (dx− idy)

= −2i dx ∧ dy

= −2i(cos θ dR−R sin θ dθ) ∧ (sin θ dR+R cos θ dθ)

= 2iR dθ ∧ dR

for w = x+ iy, x = R cos θ, and y = R sin θ. We get∫∫
Ur

dw ∧ dw

w − z
= 2i

∫∫
Ur

e−iθ dθ dR

Therefore, as r → 0, the surface integral over Ur converges to the surface integral over U

lim
r→0

∫∫
Ur

∂f(w)

∂w

dw ∧ dw

w − z
=

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z
(3.2)

Moreover, since γr is defined by w = z + reit with 0 ≤ t ≤ 2π, we have

lim
r→0

∫
γr

f(w)
dw

w − z
= lim

r→0

∫ 2π

t=0
f
(
z + reit

)
idt = if (z)

∫ 2π

t=0
dt = 2πif(z) (3.3)

Letting r → 0 in (3.1), and using (3.2) and (3.3) we get∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z
=

∫
γ

f(w)
dw

w − z
− 2πif(z)

=⇒f(z) =
1

2πi

∫
γ

f(w)
dw

w − z
+

1

2πi

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z

Hence completing the proof.

Remark 3.19. If f is holomorphic then ∂f(w)
∂w = 0 and we get the familiar Cauchy integral

formula [3, Theorem IV.5.4]:

f(z) =
1

2πi

∫
γ

f(w)
dw

w − z

Corollary 3.1. Let U be a region in C bounded by a simple closed rectifiable curve γ, and f be
complex-valued smooth function in some open neighborhood V of U . Then for any point z ∈ U ,

f(z) = − 1

2πi

∫
γ

f(w)
dw

w − z
+

1

2πi

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z

Proof. Note that as a function of w, for a fixed z,

∂f(w)

∂w

dw ∧ dw

w − z
=

∂

∂w

(
f(w)

w − z

)
dw ∧ dw = d

(
f(w)

dw

w − z

)
whenever the functions involved are well defined. Now repeat the steps performed in the proof
of previous result.
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Proposition 3.5. Let U be an open subset of C bounded by a simple closed rectifiable curve γ,
and f be complex-valued smooth function in an open neighborhood V of U . Then there exists a
complex-valued smooth function g ∈ C∞(U) such that

∂g(z)

∂z
= f(z)

Proof. For any point z ∈ U select a disc ∆(z; r) with closure contained in U . Let γr be the
boundary of the ∆(z; r), a circle of radius r centered at z. Furthermore, let Ur = U \ ∆(z; r)
and observe that this is an open region bounded by γ − γr.

Now note that as a function of w, for a fixed z,

d log |w − z|2 = d(log(w − z) + log(w − z)) =
dw

w − z
+

dw

w − z

whenever the functions involved are well defined11. Therefore, by the Stokes theorem in the
plane we get∫
γ

f(w) log |w − z|2 dw −
∫
γr

f(w) log |w − z|2 dw =

∫∫
Ur

d
(
f(w) log |w − z|2 dw

)
=

∫∫
Ur

∂f(w)

∂w
log |w − z|2 dw ∧ dw +

∫∫
Ur

f(w)
dw ∧ dw

w − z

(3.4)

Observe that, as r → 0, the surface integral over Ur converges to the surface integral over U

lim
r→0

∫∫
Ur

∂f(w)

∂w
log |w − z|2 dw ∧ dw =

∫∫
U

∂f(w)

∂w
log |w − z|2 dw ∧ dw (3.5)

and

lim
r→0

∫∫
Ur

f(w)
dw ∧ dw

w − z
=

∫∫
U

f(w)
dw ∧ dw

w − z
(3.6)

11Note that ∂/∂w and ∂/∂w treat w and w as constants, respectively. Also recall that we can define the
logarithm in every simply connected open set not containing 0 [3, Corollary IV.6.17]. In every of these open sets we
can compute the differentials. It turns out that on the overlaps these differentials agree because different branches
of the logarithm differ locally by a constant which is killed by taking a derivative [3, Corollary III.2.21]. Therefore,
even though logarithm is not a globally defined function, its derivative is defined and smooth everywhere in C\{0}.
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Moreover, since γr is defined by w = z + reit with 0 ≤ t ≤ 2π, we have

lim
r→0

∫
γr

f(w) log |w − z|2 dw = lim
r→0

∫ 2π

t=0
f
(
z + reit

)
(−2r)(log r)ie−it dt

≤ lim
r→0

∫ 2π

t=0

∣∣f (z + reit
)

(−2r)(log r)ie−it dt
∣∣

≤ lim
r→0

2Mr(log r)

∫ 2π

t=0
dt

= 4πM lim
r→0

r log r = 0

(3.7)

where M = supz∈U |f(z)| and |ie−it| = 1. Letting r → 0 in (3.4), and using (3.5), (3.6) and
(3.7) we get∫

γ

f(w) log |w − z|2 dw =

∫∫
U

∂f(w)

∂w
log |w − z|2 dw ∧ dw +

∫∫
U

f(w)
dw ∧ dw

w − z (3.8)

Next, we apply the operator ∂/∂z to each integral in (3.8). We can use Leibniz’s differentiation
under the integral sign12 for the integrals where the integrand obtained after differentiation is
still integrable. Hence we have

∂

∂z

∫
γ

f(w) log |w − z|2 dw =

∫
γ

∂ log |w − z|2

∂z
f(w) dw = −

∫
γ

f(w)
dw

w − z

∂

∂z

∫∫
U

∂f(w)

∂w
log |w − z|2 dw ∧ dw =

∫∫
U

∂ log |w − z|2

∂z

∂f(w)

∂w
dw ∧ dw = −

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z

Hence by applying ∂/∂z to (3.8), we get:

−
∫
γ

f(w)
dw

w − z
= −

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z
+

∂

∂z

∫∫
U

f(w)
dw ∧ dw

w − z

⇒ ∂

∂z

∫∫
U

f(w)
dw ∧ dw

w − z
= −

∫
γ

f(w)
dw

w − z
+

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z
= 2πif(z) (Corollary 3.1)

Therefore, we have

g(z) =
1

2πi

∫∫
U

f(w)
dw ∧ dw

w − z
=⇒ ∂g(z)

∂z
= f(z)

Observe that from (3.8) it follows that g ∈ C1(U) since

g(z) =
1

2πi

∫
γ

f(w) log |w − z|2 dw − 1

2πi

∫∫
U

∂f(w)

∂w
log |w − z|2 dw ∧ dw

and the differential equation shows that ∂g/∂z ∈ C∞(U). In particular, g ∈ C∞(U), as desired.

Corollary 3.2. Let V be an open neighborhood of the closure of a disc ∆ ⊂ ∆ ⊂ V ⊂ C. For
f ∈ C∞(V ), the function

g(z) :=
1

2πi

∫∫
∆

f(w)

w − z
dw ∧ dw

satisfies ∂g(z)/∂z = f(z) for z ∈ ∆.

Corollary 3.3. Let f ∈ C∞(V ) on an open set V of C. Then, locally13 on this open set, there
12The proof of this result is an application of Dominated Convergence Theorem [5, Theorem 2.27].
13Here “locally” means that for any point z ∈ V there is some open neighborhood U of z where ∂g/∂z = f .
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exists a complex-valued smooth function g such that ∂g/∂z = f .

Corollary 3.4. If f ∈ C∞(V ), for an open set V ⊂ C containing a compact set K, then there
exists an open set U , with K ⊂ U ⊂ V , and a g ∈ C∞(U), such that ∂g/∂z = f in U .

Remark 3.20. We can prove the above three corollaries directly: Huybrechts [12, Proposition
1.3.7] and Kaup and Kaup [14, Lemma 61.6] prove Corollary 3.2 using Lemma A.3, Proposi-
tion D.4 and Stokes theorem; Voisin [34, Theorem 1.28] proves Corollary 3.3 by assuming that
f has a compact support since we want to prove a local statement and using Stokes theorem;
and Taylor [31, Proposition 1.4.2] proves Corollary 3.4 by using Lemma A.3 and the generalized
Cauchy integral formula. The proof discussed here is by Gunning and Rossi [10, Lemma I.D.2].

Theorem 3.2. If U is any open subset of C and f ∈ C∞(U), then there exists g ∈ C∞(U) such
that ∂g/∂z = f .

Proof. From Lemma A.2 we know that there exists a sequence {Kn} of compact subsets of U
such that

1. Kn ⊂ int(Kn+1) for each n;

2.
⋃
n∈N

int(Kn) = U ; and

3. each bounded component of the complement of Kn meets the complement of U .

First we will prove by induction that there exists a sequence of complex-valued smooth
functions {gn} satisfying ∂gn/∂z = f on an open neighborhood of Kn, such that

|gn(z)− gn−1(z)| < 1

2n−1
for all z ∈ Kn−1 if n > 1

For the base case we get g1 by Corollary 3.4. Next, as the induction hypothesis, assume
that there exist complex-valued smooth functions {g1, . . . , gm} satisfying the desired conditions.
We again apply Corollary 3.4 to get a function h which is smooth in an open neighborhood
of Km+1 and satisfies ∂h/∂z = f on this neighborhood. Since Km ⊂ int(Km+1), on an open
neighborhood of Km we have

∂(h− gm)

∂z
= 0

So, by Theorem D.2, h− gm is holomorphic on this neighborhood of Km. By Runge’s theorem
[3, Theorem VIII.1.7], we can choose a rational function r, with poles in C \ U , such that

|h(z)− gm(z)− r(z)| < 1

2m
for all z ∈ Km

If we set gm+1 = h− r , then ∂gm+1/∂z = f on an open neighborhood on Km+1 and

|gm+1(z)− gm(z)| < 1

2m
for all z ∈ Km

By induction, a sequence {gn} with the required properties exists.
Next, we note that14 the sequence {gn} of complex-valued smooth functions converges uni-

formly on each compact set Kn to a function g defined on U . Moreover, gn− gm is holomorphic
on an open neighborhood of Km for each n > m. Thus for each fixed m, {gn−gm} is a sequence

14Recall the following three facts from real analysis: (1). If a sequence (xn)∞n=1 in Rn satisfies
∑
n≥1 |xn+1 −

xn| <∞, then it is Cauchy.; (2). A sequence {fn} converges uniformly if and only if {fn} is uniformly Cauchy;
(3). A sequence of functions {fn} from a set A to a metric space X is said to be uniformly Cauchy if for all
ε > 0, there exists N > 0 such that for all a ∈ A we have |fn(a)− fm(a)| < ε whenever m,n > N .
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of complex-valued holomorphic functions on an open neighborhood of Km which is uniformly
convergent on Km. Therefore, by Morera’s theorem [3, Exercise IV.5.8], the limit function g−gm
is holomorphic on int(Km). Hence, g is smooth on int(Km). Since this is true for each m and⋃
m int(Km) = U , we conclude that g is a complex-valued smooth function on the whole of U .

Clearly, ∂g/∂z = f in U .

Remark 3.21. In particular, if U is simply connected and f : U → C is holomorphic, then f
has a primitive in U [3, Corollary IV.6.16].

3.2.2 ∂-Poincaré lemma

Lemma 3.2. Let ∆ ⊂ Cn be a compact polydisc15, and ω ∈ Ωp,q(V ) for some open neighborhood
V of ∆. If q > 0 and ∂ω = 0, then there is η ∈ Ωp,q−1(∆) such that ω = ∂η.

Proof. Consider the following explicit representation of ω ∈ Ωp,q(V )

ω =
∑

|α|=p,|β|=q

fαβ dzα ∧ dzβ

Let ` be the least integer such that the expression for ω involves no conjugate differential dzj
with j > `; i.e. ω can be written in terms of the conjugate differentials dz1, . . . ,dz` and the
differentials dz1, . . . ,dzn. We will proceed by induction on `.

For the base case there is nothing to prove since for ` = 0 we have ω = 0 because by
hypothesis q > 0. Next, as the induction hypothesis, assume that for 0 < ` < k, every ∂-closed
(p, q)-form in an open neighborhood of ∆ is ∂-exact on ∆. In general, for the induction step,
we write

ω = dzk ∧ θ + ξ

where θ and ξ involve only the conjugate differentials dz1, . . . ,dzk−1. Since ω is ∂-closed, we
have

0 = ∂ω = ∂(dzk ∧ θ) + ∂ξ

=
(
∂(dzk) ∧ θ + (−1)0+1 dzk ∧ ∂θ

)
+ ∂ξ

=
(
−dzk ∧ ∂θ

)
+ ∂ξ

It follows, by Theorem D.2, that the coefficients of the forms θ and ξ are holomorphic in
zk+1, . . . , zn since the partial derivatives ∂/∂zk+1, . . . , ∂/∂zn for any such coefficient are all
zero. Consider the following explicit representation of θ

θ =
∑
|α|=p

βj∈{1,...,k−1}

gαβ dzα ∧ dzβ

Observe that any coefficient gαβ of θ is a complex-valued smooth function of the variable zk in
an open neighborhood of ∆k, where the original polydisc has the product decomposition16

∆ = ∆1 × · · · ×∆n

where ∆j is a disc in C. The function gαβ is also a complex-valued smooth function of z1, . . . , zk−1

and a holomorphic function of zk+1, . . . , zn in the corresponding domains. By Corollary 3.2 there
exists a function hαβ which is smooth in zk ∈ ∆k:

hαβ(z) = hαβ(z1, . . . , zn) =
1

2πi

∫∫
∆k

gαβ(z1, . . . , zk−1, w, zk+1, . . . , zn)

w − zk
dw ∧ dw

15For its definition see Definition D.1.
16In this argument it is important that ∆ is a Cartesian product of some compact sets ∆1, . . . ,∆n in C, since

it enables us to apply Corollary 3.4 in each variable separately, while treating the other variables as parameters
[31, p. 241].
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such that
∂hαβ
∂zk

= gαβ

Note that hαβ is also17 smooth in z1, . . . , zk−1 and holomorphic in zk+1, . . . , zn in the same
regions as gαβ is. Replacing each coefficient gαβ in the differential form θ by such a function hαβ
yields a new (p, q − 1)-form

σ =
∑
|α|=p

βj∈{1,...,k−1}

hαβ dzα ∧ dzβ

which by this construction satisfies the equation

∂σ = dzk ∧ θ + ρ

for some differential form ρ involving only the conjugate differentials dz1, . . . ,dzk−1. Now con-
sider the differential form

ν = ω − ∂σ = ξ − ρ

Note that ν is a ∂-closed form since

∂ν = ∂ω − ∂2
σ = 0

and it involves only the conjugate differentials dz1, . . . ,dzk−1 since ξ and ρ do. The induction
hypothesis implies that ν is ∂-exact on ∆, i.e. ν = ∂λ for some λ ∈ Ωp,q−1(∆). Hence, for
η = σ + λ we have ω = ∂η, completing the proof.

Corollary 3.5. Let ω be a (p, q)-form such that ∂ω = 0 and q > 0, then it is locally18 expressible
as ∂η for some (p, q − 1)-form η.

Proof. The open polydiscs form a basis for the product topology on Cn. Therefore, this result
follows from the previous one.

Theorem 3.3 (∂-Poincaré lemma). Let ∆ be an open polydisc in the space Cn, not necessarily
having a compact closure, and ω ∈ Ωp,q(∆). If q > 0 and ∂ω = 0, then there is η ∈ Ωp,q−1(∆)
such that ω = ∂η.

Proof. Let {∆j} be a sequence of open polydiscs in Cn which have same center as ∆ and satisfy
the following conditions:

1. ∆j ⊂ ∆j+1; and

2. ∆ =
⋃
j

∆j

We will divide the proof into two cases:

Case 1. If q > 1.

We will inductively construct a sequence of (p, q − 1)-forms {ηj} such that

(a) ηj ∈ Ωp,q−1(Vj) for some open neighborhood Vj of ∆j ;

(b) ∂ηj = ω on ∆j ; and

(c) ηj
∣∣
∆j−1

= ηj−1 if j > 1.

17From the proof of Proposition 3.5 it is clear that the function g constructed in holomorphic or smooth in any
additional parameters in which f is holomorphic or smooth [10, Lemma I.D.2].

18Suppose V is an open set Cn and ω ∈ Ωp,q(U) such that q > 0 and ∂ω = 0, and for any point z ∈ U , then in
some open neighborhood U of z such that ω = ∂η for some η ∈ Ωp,q−1(U).
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For the base case we get η1 ∈ Ωp,q−1(V1) by Lemma 3.2. Next, as the induction hypothesis,
assume that there exist (p, q − 1)-forms {η1, . . . , ηk} satisfying the desired conditions. We
again apply Lemma 3.2 to get a (p, q − 1)-form θ on an open neighborhood V of ∆k+1

such that ∂θ = ω on this neighborhood. Since ∆k ⊂ ∆k+1, on an open neighborhood of
∆k we have

∂(θ − ηk) = 0

So, θ − ηk is a ∂-closed (p, q − 1)-form with q − 1 > 0. By yet another application of
Lemma 3.2 there exits a (p, q − 2)-form ξ on an open neighborhood U of ∆k such that
∂ξ = θ−ηk on this neighborhood. From Lemma A.3 we know that there exits a real-valued
smooth function F in Cn such that

(a) 0 ≤ F (z) ≤ 1 for all z ∈ Cn;
(b) F (z) = 1 for z ∈ ∆k; and
(c) F (z) = 0 for z ∈ Cn \ U .

Hence we have Fξ ∈ Ωp,q−2(Cn). Then we get the (p, q − 1)-form ηk+1 = θ − ∂(Fξ)

defined on the open neighborhood V of ∆k+1, which satisfies the desired conditions:

∂ηk+1 = ω on ∆k+1 and ηk+1

∣∣
∆k

= θ − ∂ξ = ηk

As a result of the above construction there is η ∈ Ωp,q−1(∆) such that η
∣∣
∆j

= ηj and

∂η = ω, which concludes the proof of this case.

Case 2. If q = 1.

First we will inductively construct a sequence of (p, 0)-forms {ηj} such that

(a) ηj ∈ Ωp,q−1(Vj) for some open neighborhood Vj of ∆j ;
(b) ∂ηj = ω on ∆j ; and

(c) If ηj =
∑
α
f

(j)
α dzα for α = (α1, . . . , αp) and dzα = dzα1 ∧ · · · ∧ dzαp , then∣∣∣f (j)
α (z)− f (j−1)

α (z)
∣∣∣ < 1

2j−1
for all α and z ∈ ∆j−1 if j > 1

For the base case we get η1 ∈ Ωp,q−1(V1) by Lemma 3.2. Next, as the induction hypothesis,
assume that there exist (p, 0)-forms {η1, . . . , ηk} satisfying the desired conditions. We again
apply Lemma 3.2 to get a (p, 0)-form θ on an open neighborhood V of ∆k+1 such that
∂θ = ω on this neighborhood. Let the following be the explicit representation of θ

θ =
∑
α

gα dzα

Then on an open neighborhood of ∆k all the coefficients of the form θ−ηk are holomorphic
by Remark 3.16 since ∂(θ − ηk) = 0. Observe that each coefficient has a power series
expansion centered at the common center of all the polydiscs and converging uniformly in
∆k. Hence choosing suitable partial sums, we find polynomial terms rα(z) such that∣∣∣gα(z)− f (k)

α (z)− rα(z)
∣∣∣ < 1

2k
for all α and z ∈ ∆k

Let ξ be the (p, 0)-form with the polynomials rα as coefficients

ξ =
∑
α

rα dzα
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Note that ∂ξ = 0 since the coefficients are holomorphic. Then we get the (p, 0)-form
ηk+1 = θ − ξ defined on the open neighborhood V of ∆k+1, which satisfies the desired
conditions:

∂ηk+1 = ω on ∆k+1 and
∣∣∣f (k+1)
α (z)− f (k)

α (z)
∣∣∣ < 1

2k
for all α and z ∈ ∆k

Next, fix one α. Then we note that19 the sequence
{
f

(j)
α

}
of smooth functions converges

uniformly on each ∆j to a function fα defined on ∆. Moreover, f (j)
α − f (k)

α is holomorphic
on an open neighborhood of ∆k for each j > k since ∂(ηj − ηk) = 0. Thus for each fixed
k,
{
f

(j)
α − f (k)

α

}
is a sequence of holomorphic functions on an open neighborhood of ∆k

which is uniformly convergent on ∆k. Therefore, by Morera’s theorem [3, Exercise IV.5.8],
the limit function fα − f (k)

α is holomorphic on ∆k. Hence, fα is smooth on ∆k. Since
this is true for each k and

⋃
k ∆k = ∆, we conclude that fα is a complex-valued smooth

function on the whole of ∆.

Finally we define the (p, 0)-form

η =
∑
α

fα dzα = lim
j→∞

ηj

Note that for a fixed k we have

η − ηk = lim
j→∞

(ηj − ηk)

Since ηj − ηk have coefficients holomorphic in ∆k, it follows that in ∆k, η = ηk + σk for
some holomorphic form σk given by

σk =
∑
α

(
fα − f (k)

α

)
dzα

Hence ∂η = ∂ηk = ω in each ∆k, which completes the proof.

Remark 3.22. If we consider ω = f dz ∈ Ω0,1(U) for some open set U ⊂ C, then Theorem 3.2
gives us the “∂-Poincaré lemma in one variable.” However, due to the lack of purely topological
or intrinsic analytical description of the domains in Cn for n ≥ 2 on which approximation
theorems (like Runge’s theorem) hold, we confine ourselves to the simple case of polydiscs [10,
§I.F].

Remark 3.23. Unlike the Poincaré lemma we proved earlier (Theorem 1.2), we cannot give a
simple topological condition on the domain which will ensure that the ∂-closed forms are also
∂-exact. This is because the failure of Riemann mapping theorem in Cn for n ≥ 2 implies that
there is no canonical topologically trivial domain in Cn for n ≥ 2, as there is in C (namely, the
disc) [15, §0.3.2].

19Recall the following three facts from real analysis: (1). If a sequence (xn)∞n=1 in Rn satisfies
∑
n≥1 |xn+1 −

xn| <∞, then it is Cauchy.; (2). A sequence {fn} converges uniformly if and only if {fn} is uniformly Cauchy;
(3). A sequence of functions {fn} from a set A to a metric space X is said to be uniformly Cauchy if for all
ε > 0, there exists N > 0 such that for all a ∈ A we have |fn(a)− fm(a)| < ε whenever m,n > N .
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3.3 Differential forms on complex manifolds

In this section some basic definitions and facts from [12, §2.1, 2.2 and 2.6], [37, §I.2, I.3], [34,
§2.1, 2.2, 2.3] and [6, §IV.1] will be stated.

Definition 3.12 (Complex manifold). A complex manifold M of dimension n is a second count-
able Hausdorff space together with a holomorphic structure on it. A holomorphic structure U is
the collection of charts {(Uα, φα)}α∈A where Uα is an open set ofM and φα is a homeomorphism
of Uα onto an open set of Cn such that

1. the open sets {Uα}α∈A cover M .

2. for every pair of indices α, β ∈ A with Uα ∩ Uβ 6= ∅ the homeomorphisms

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ),

φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

are holomorphic maps20 between open subsets of Cn.

3. the family U is maximal in the sense that it contains all possible pairs (Uα, φα) satisfying
the properties 1. and 2.

Example 3.1. Following two complex manifolds will be used throughout this thesis:

1. The complex space Cn is a complex manifold with single chart (Cn,1Cn), where 1Cn is
the identity map. In other words, (Cn,1Cn) = (Cn, z1, . . . , zn) where z1, . . . , zn are the
standard coordinates on Cn.

2. Any open subset V of a complex manifold M is also a smooth manifold. If {(Uα, φα)} is
an atlas for M , then {(Uα ∩V, φα|Uα∩V )} is an atlas for V , where φα|Uα∩V : Uα ∩V → Cn
denotes the restriction of φα to the subset Uα ∩ V .

Remark 3.24. Every complex manifold M is paracompact [6, §IV.1].

Definition 3.13 (Holomorphic function on a manifold). Let M be a complex manifold of
dimension n. A function f : M → C is said to be a holomorphic function at a point w in M if
there is a chart (U, φ) about w in M such that f ◦ φ−1, a function defined on the open subset
φ(U) of Cn, is holomorphic21 at φ(w). The function f is said to be holomorphic in M if it is
holomorphic at every point of M .

(U,w) (Cn, φ(w))

(C, f(w))

φ

f
f◦φ−1

Definition 3.14 (Holomorphic map between complex manifolds). Let M and N be complex
manifolds of dimension m and n, respectively. A continuous map F : M → N is said to be
holomorphic at a point w of M if there are charts (V, ψ) about F (w) in N and (U, φ) about w
in M such that the composition ψ ◦F ◦φ−1, a map from the open subset φ(F−1(V )∩U) of Cm
to Cn, is holomorphic at φ(w).

(U,w) (V, F (w))

(Cm, φ(w)) (Cn, ψ(F (w)))

F

φ ψ

ψ◦F◦φ−1

20For the definition of several complex variables holomorphic mapping, see Definition D.8.
21For the definition of complex-valued holomorphic function, see Definition D.3.
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The continuous map F : M → N is said to be holomorphic if it is holomorphic at every point
in M .

Definition 3.15 (Biholomorphic manifolds). Two complex manifolds M and N are called bi-
holomorphic if there exists a holomorphic homeomorphism22 f : X → Y .

Theorem 3.4. If (U, φ) is a chart on a complex manifold M of dimension n, then U is biholo-
morphic to φ(U) ⊂ Cn.

Remark 3.25. If (U, φ) is a chart of a manifold, i.e. φ : U → Cn, then let rj = zi ◦ φ be the
jth component of φ and write φ = (r1, . . . , rn) and (U, φ) = (U, r1, . . . , rn). Thus, for w ∈ U ,
(r1(w), . . . , rn(w)) is a point in Cn. The functions r1, . . . , rn are called coordinates or local
coordinates on U .

3.3.1 Complex differential forms

Definition 3.16 (Complex vector bundle). A complex vector bundle of rank k over a smooth
manifold M is a smooth manifold E equipped with a smooth surjective map π : E → M such
that for an open cover {Uα} of M , there is a local trivialization diffeomorphism

τα : π−1(Uα)→ Uα × Ck

satisfying the following conditions:

1. the following diagram commutes

π−1(Uα) Uα × Ck

Uα

τα

π
p1

where p1 is the projection onto the first factor,

2. the composite maps

τα ◦ τ−1
β : τβ

(
π−1(Uα ∩ Uβ)

)
→ τα

(
π−1(Uα ∩ Uβ)

)
are C-linear for each w ∈ Uα ∩ Uβ .

Remark 3.26. For a fixed w ∈ Uα ∩ Uβ , the linear transformation(
τα ◦ τ−1

β

)
w

: {w} × Ck → {w} × Ck

must respect the projection onto the first factor, by the first condition above, and is thus
described by a complex k × k-matrix, whose coefficients are smooth functions of w. These
matrices are called transition matrices. In particular, the map ταβ = τα ◦ τ−1

β is given by

ταβ(w, v) = (w, σαβ(w)v) ∀w ∈ Uα ∩ Uβ, v ∈ Ck

and is completely determined by the map σαβ : Uα ∩Uβ → GL(k,C), called the transition map.
Since ταβ is smooth, so is σαβ . From now on, we will assume that the transition maps can in
fact be used to define a vector bundle. For proof, see [38, §9] and [37, §I.2].

Definition 3.17 (Fiber of a complex vector bundle). If π : E →M is a complex vector bundle
and w ∈M , then Ew = π−1(w) is called the fiber of E at the point w. It is canonically a vector
space, with structure given by any of the trivializations of E in the neighborhood of w.

22Note that the inverse of a holomorphic homeomorphism is holomorphic by Proposition D.5.
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Remark 3.27. A complex vector bundle is a smooth vector bundle whose fibers are complex
vector spaces and the transition maps are complex linear.

Definition 3.18 (Almost complex structure). An almost complex structure on a smooth mani-
foldM is a vector bundle endomorphism J of (real) tangent bundle TRM , such that J2 = −1TRM ,
i.e. for all w ∈M , the linear map Jw : Tw,RM → Tw,RM is a linear complex structure for Tw,RM .

Remark 3.28. Equivalently, the almost complex structure is the structure of a complex vector
bundle on TRM [34, Definition 2.11]. Also, if an almost complex structure exists, then the real
dimension of M is even [12, Definition 2.6.1]. However, not every smooth manifold of even
dimension admits an almost complex structure [12, Remark 2.6.3].

Definition 3.19 (Almost complex manifold). An almost complex manifold is a smooth manifold
together with an almost complex structure.

Proposition 3.6. Let M be an almost complex manifold. Then there exists a direct sum de-
composition of the complexified tangent bundle TCM = TRM ⊗R C into complex vector bundles

TCM = (TRM)1,0 ⊕ (TRM)0,1

such that the C-linear extension J̃ = J ⊗ 1C satisfies

J̃ |(TRM)1,0 = i · 1TCM and J̃ |(TRM)0,1 = −i · 1TCM

Proposition 3.7. Let M be an almost complex manifold. Then the dual of complexified tangent
bundle T ∗CM = T ∗RM ⊗R C decomposes as a direct sum of complex vector bundles

T ∗CM = (T ∗RM)1,0 ⊕ (T ∗RM)0,1

such that the C-linear extension J̃ = J ⊗ 1C satisfies

J̃ |(T ∗RM)1,0 = i · 1T ∗CM and J̃ |(T ∗RM)0,1 = −i · 1T ∗CM

Remark 3.29. As in Proposition C.8, we get the almost complex structure J on T ∗w,RM from the
almost complex structure J on Tw,RM . We will regard this J as a vector bundle endomorphism
of the smooth vector bundle T ∗RM over M .

Definition 3.20 (Differential (p, q)-form). Let M be an almost complex manifold. Over M we
define the complex vector bundle of rank

(
n
p

)(
n
q

)
∧p,q

T ∗RM :=
∧p (

(T ∗RM)1,0
)
⊗C
∧q (

(T ∗RM)0,1
)

whose fiber is
∧p,q T ∗w,RM . The smooth sections of this vector bundle are called the differential

forms of type (p, q) on M . The space of all smooth differential forms of type (p, q) on M is
denoted by Ωp,q(M).

Remark 3.30. Let Ωk
C(M) be the space of sections of vector bundle

∧k T ∗CM . By Remark C.12
we have ∧k

T ∗CM
∼=
⊕
p+q=k

∧p,q
T ∗RM =⇒ Ωk

C(M) ∼=
⊕
p+q=k

Ωp,q(M)

Thus we have natural projection operators
∧k T ∗CM →

∧p,q T ∗RM and Ωk
C(M) → Ωp,q(M),

denoted by Πp,q for p+ q = k.
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Definition 3.21 (Differential of a (p, q)-form). Let M be an almost complex manifold, and
d : Ωk

C(M)→ Ωk+1
C (M) be the complex linear extension of the usual exterior differential (Defi-

nition 1.44). Then

∂ : Ωp,q(M)→ Ωp+1,q(M) and ∂ : Ωp,q(M)→ Ωp,q+1(M)

are defined as ∂ := Πp+1,q ◦ d and ∂ := Πp,q+1 ◦ d.

Lemma 3.3. For an almost complex manifold M , the differential operators ∂ and ∂ satisfy the
Leibniz’s rule, i.e.

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η
∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

for ω ∈ Ωp,q(M) and η ∈ Ωr,s(M).

Proof. As in Lemma 3.1, we will use the properties of d studied earlier. Recall that for ω ∈
Ωp+q
C (M) and η ∈ Ωr+s

C (M) we have

d(ω ∧ η) = dω ∧ η + (−1)p+qω ∧ dη ∈ Ωp+q+r+s+1
C (U)

Since ∂ := Πp+r+1,q+s ◦ d, taking the (p+ r + 1, q + s)-parts on both sides one obtains

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

Similarly, taking the (p+ r, q + s+ 1)-parts one obtains

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

Hence completing the proof.

Definition 3.22 (Integrable almost complex structure). An almost complex structure J on M
is called integrable if dω = ∂ω + ∂ω for all ω ∈ Ωk

C(M).

Remark 3.31. By Lemma 3.1 we know that the almost complex structures on the open sets
in Cn are integrable. For more details about this definition, see [12, Proposition 2.6.15], [37, p.
34] and [34, Theorem 2.24].

Definition 3.23 (Complex manifold). A complex manifold M of dimension n is a smooth
manifold of dimension 2n equipped with a holomorphic structure, i.e. if M is covered by open
sets Uα which are diffeomorphic via maps called φα to open sets in Cn, in such a way that the
transition diffeomorphisms

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ)

are holomorphic.

Proposition 3.8. A complex manifold M induces an almost complex structure on its underlying
smooth manifold.

Proof. This follows from Definition C.4 and Remark C.5. For details, see [37, Proposition
I.3.4].

Theorem 3.5. The induced almost complex structure on a complex manifold is integrable.

Proof. This follows by looking at the local coordinates as in Lemma 3.1. For details, see [37,
Theorem I.3.7].
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Corollary 3.6. If M is a complex manifold, then ∂2
= 0.

Definition 3.24 (Pullback of a k-form). Let F : M → N be a holomorphic map between
complex manifolds. Then the C-linear extension of the pullback map defined on the underlying
smooth manifolds (Definition 1.45)

F ∗ : Ωk
C(N)→ Ωk

C(M)

is called the pullback of a complex k-form

Remark 3.32. Pullback of the identity map is an identity map, i.e. (1M )∗ = 1ΩkC(M).

Proposition 3.9. If F : M → N and G : N → N ′ are holomorphic maps between complex
manifolds, then (G ◦ F )∗ = F ∗ ◦G∗.

Ωk
C(N ′) Ωk

C(N)

Ωk
C(M)

G∗

(G◦F )∗
F ∗

Proposition 3.10. Let F : M → N be a holomorphic map between complex manifolds. If ω is
a differential form on N , then F ∗(dω) = d(F ∗ω), i.e. the following diagram commutes

Ωk
C(N) Ωk+1

C (N)

Ωk
C(M) Ωk+1

C (M)

d

F ∗ F ∗

d

Theorem 3.6. Let F : M → N be a holomorphic map between complex manifolds. Then
the pullback of differential forms F ∗ : Ωk

C(N) → Ωk
C(M) induces natural C-linear maps F ∗ :

Ωp,q(N)→ Ωp,q(M). These maps are compatible with ∂ and ∂.

Proof. If F is holomorphic then F ∗ is compatible with the decomposition [12, Proposition 2.6.10]

Ωk
C(M) ∼=

⊕
p+q=k

Ωp,q(M)

In particular, F ∗ (Ωp,q(N)) ⊂ Ωp,q(M) and Πp+1,q ◦ F ∗ = F ∗ ◦ Πp+1,q. Thus, for ω ∈ Ωp,q(M)
we have

∂ (F ∗ (ω)) = Πp+1,q (d (F ∗ (ω))) = Πp+1,q (F ∗ (d (ω))) = F ∗
(
Πp+1,q (d (ω))

)
= F ∗

(
∂ (ω)

)
where, as usual, we are abusing the notations ∂ and d. Analogously, we can show that ∂ ◦F ∗ =
F ∗ ◦ ∂.

3.3.2 Holomorphic differential forms

Definition 3.25 (Holomorphic vector bundle). A holomorphic vector bundle of rank k is a triple
(E,M, π) consisting of a pair of complex manifolds E andM , and a holomorphic surjective map
π : E →M satisfying the following conditions

1. for each w ∈M , the inverse image Ew = π−1(w) is an k-dimensional vector space over C,
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2. for each w ∈ M , there is an open neighborhood U of w and a biholomorphic map τ :
π−1(U)→ U × Ck such that

(a) the following diagram commutes

π−1(U) U × Ck

U

τ

π
p1

where p1 is the projection onto the first factor,

(b) for each v ∈ U , the induced map τv : π−1(v)→ Ck, defined by τ(z) = (v, τv(z)), is a
C-linear isomorphism.

Remark 3.33. We can also define it the way we defined the complex vector bundle in Re-
mark 3.26. That is, we have biholomorphic local trivializations

τα : π−1
α (Uα)→ Uα × Ck

such that the transition maps σαβ = Uα ∩ Uβ → GL(k,C) are holomorphic.

Definition 3.26 (Pullback of holomorphic vector bundle). Let f : M → N be a holomorphic
map between complex manifolds and let E be a holomorphic vector bundle on N given by
transition maps σαβ corresponding to an open cover {Uα}. Then the pullback f∗E of E is the
holomorphic vector bundle over M that is given by the transition maps σαβ ◦ f corresponding
to an open cover {f−1 (Uα)}.

Definition 3.27 (Holomorphic tangent bundle). Let M be a complex manifold of dimension
n which is covered by open sets Uα biholomorphic, via maps called φα, to open sets Vα of Cn.
Then the holomorphic tangent bundle TM of M is a holomorphic vector bundle of rank n with
the transition maps σαβ given by

σαβ(w) := Jac(φαβ)(w) =

[
∂φ`αβ

∂zj

∣∣∣∣
w

]
1≤`≤n
1≤j≤n

is the Jacobian matrix at the point w (see Definition D.10).

Remark 3.34. In this definition, if we replace the complex manifold with the smooth manifold,
and the holomorphic Jacobian matrix with the real Jacobian matrix, we will get the definition
of smooth tangent bundle [34, §2.1.2]. This definition is equivalent to the one given earlier in
Definition 1.31 using derivations.

Theorem 3.7. IfM is a complex manifold, then (TRM)1,0 is naturally isomorphic (as a complex
vector bundle) to the holomorphic tangent bundle TM .

Proof. Let U, V ⊂ Cn be open subsets and f : U → V be a biholomorphic map. Then by
Proposition 3.2 we get the linear isomorphism

f̃∗ : (Tw,RU)1,0 ⊕ (Tw,RU)0,1 →
(
Tf(w),RV

)1,0 ⊕ (Tf(w),RV
)0,1

Also, from Remark D.10 we know that

f̃∗(w) =

[
Jac(f)(w) 0

0 Jac(f)(w)

]
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Let {(Uα, φα)} be a holomorphic atlas of M , i.e. Uα is biholomorphic to φα(Uα) = Vα ⊂
Cn. Then

(
φ−1
α

)∗ (
(TRUα)1,0

)
∼= (TRVα)1,0. With respect to the canonical trivialization the

induced isomorphisms
(
Tφβ(w),RVβ

)1,0 ∼=
(
Tφα(w),RVα

)1,0 are given by the transition maps of TM
[12, Definition 2.2.14, Proposition 2.6.4(ii)]. Therefore, both (TRM)1,0 and TM are naturally
isomorphic.

Remark 3.35. We call the bundles (TRM)1,0 and (TRM)1,0 the holomorphic and antiholomor-
phic tangent bundle of the complex manifold M .

Definition 3.28 (Holomorphic cotangent bundle). The holomorphic cotangent bundle T ∗M is
the dual of TM . That is, for all w ∈M we have T ∗wM = HomC(TwM,C).

Definition 3.29 (Holomorphic p-forms). Over M we consider the holomorphic vector bundle∧p T ∗M whose fiber is
∧p T ∗wM . The holomorphic sections23 of this vector bundle are called the

holomorphic p-forms on M . The space of all holomorphic p-forms on M is denoted by Op(M).

Remark 3.36. We note that holomorphic 0-forms on M are the holomorphic complex-valued
functions onM , i.e. O0(M) = O(M). As in Remark 3.25, let (U, r1, . . . , rn) be a coordinate chart
of M . Then the differentials {dr1, . . . ,drn} are 1-forms on U . At each point w ∈ U , the 1-forms
{dr1

∣∣
w
, . . . ,drn

∣∣
w
} form a basis of

∧1(T ∗wM) = T ∗wM , dual to the basis {∂/∂r1|w, . . . , ∂/∂rn|w}
for the tangent space TwM . Hence, a 1-form on U is a linear combination ω =

∑n
α=1 fαdrα

where fα are complex-valued holomorphic functions on U . In general24, any holomorphic p-form
ω ∈ Op(M) can be written uniquely as

ω =
∑
|α|=p

fα drα

where α = (α1, . . . , αp) are multi-indices with 1 ≤ αj ≤ n, drα = drα1 ∧ . . . ∧ drαp and fα is a
complex-valued holomorphic function on U , i.e. fα ∈ O(U).

3.4 ∂-closed and exact forms on complex manifolds

In this section some basic definitions and facts from [9, p. 25], [34, §2.3.3], [12, §2.6] and [15,
§6.3] will be stated.

Definition 3.30 (∂-closed forms). Let M be a complex manifold. Then a differential form
ω ∈ Ωp,q(M) is called ∂-closed if ∂ω = 0.

Remark 3.37. Given a complex manifoldM , denote the set of all ∂-closed (p, q)-forms onM by
Zp,q(M). The sum of two such (p, q)-forms is another ∂-closed (p, q)-form, and so is the product
of a ∂-closed (p, q)-form by a scalar. Hence Zp,q(M) is the vector sub-space of Ωp,q(M). Also, if
we write the elements of Zp,0(M) is terms of local coordinates, then from Theorem D.2 it follows
that it is the space of (p, 0)-forms whose coefficients are complex-valued holomorphic functions
in M , i.e. Op(M) = Zp,0(M) by Remark 3.36. In particular, note that Z0,0(M) = O(M), the
space of complex-valued functions holomorphic in M .

Definition 3.31 (∂-exact forms). Let M be a complex manifold. Then a differential form
ω ∈ Ωp,q(M), for q > 0, is called ∂-exact if ω = ∂η for some differential form η ∈ Ωp,q−1(M).

23Replace “smooth” by “holomorphic” in Definition 1.38.
24In the case of M = Cn the expression was much more straightforward because TwM ∼= Cn (vector space

isomorphism) and we could replace rj by zj .
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Remark 3.38. Given a complex manifoldM , denote the set of all ∂-exact (p, q)-forms onM by
Bp,q(M). The sum of two such (p, q)-forms is another ∂-exact (p, q)-form, and so is the product of
a ∂-exact (p, q)-form by a scalar. Hence Bp,q(M) is the vector sub-space of Ωp,q(M). Moreover,
the trivial form ω ≡ 0 is the only (p, 0)-form which is ∂-exact for any value of p = 0, 1, . . . , n.
That is, Bp,0(M) consists only of zero.

Theorem 3.8. On a complex manifold M , every ∂-exact form is ∂-closed.

Proof. LetM be a complex manifold and ω ∈ Bp,q(M) such that ω = ∂η for some η ∈ Ωp,q−1(M).
From Corollary 3.6 we know that ∂ω = ∂(∂η) = 0 hence ω ∈ Zp,q(M) for all q ≥ 1. For q = 0,
the statement is trivially true.

Lemma 3.4. Let F : M → N be a holomorphic map of complex manifolds, then the pullback
map F ∗ sends ∂-closed forms to ∂-closed forms, and ∂-exact forms to ∂-exact forms.

Proof. Suppose ω is ∂-closed. From Theorem 3.6 we know that F ∗ commutes with ∂

∂F ∗ω = F ∗∂ω = 0

Hence, F ∗ω is also ∂-closed. Next suppose θ = ∂η is ∂-exact. Then

F ∗θ = F ∗∂η = ∂F ∗η

Hence, F ∗θ is ∂-exact.

3.4.1 Dolbeault cohomology

Definition 3.32 (Dolbeault cohomology of a complex manifold). The (p, q)th Dolbeault coho-
mology group25 of a complex manifold M is the quotient group

Hp,q

∂
(M) :=

Zp,q(M)

Bp,q(M)

Remark 3.39. Hence, the Dolbeault cohomology of a complex manifold measures the extent
to which ∂-closed forms are not ∂-exact on that manifold.

Proposition 3.11. If M is a complex manifold then its Dolbeault cohomology group in degree
(p, 0) is the group of holomorphic p-forms on M .

Proof. Since there are no non-zero ∂-exact (0, p)-forms

Hp,0

∂
(M) = Zp,0(M) = Op(M)

Remark 3.40. Though the definitions of de Rham and Dolbeault cohomology are similar, they
measure different things. The de Rham cohomology is a topological invariant, whereas the
Dolbeault cohomology measures the holomorphic complexity26.

Proposition 3.12. On a complex manifold M of dimension n, the Dolbeault cohomology
Hp,q

∂
(M) vanishes for q > n.

Proof. It follows from the fact that if q > n then
∧p,q(T ∗RM) = 0. Hence for q > n, the only

(p, q)-form on M is the zero form.
25It is also a vector space over C.
26Donu Arapura, “de Rham vs Dolbeault Cohomology”, https://mathoverflow.net/q/95432, 28 April 2012.
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3.4.2 ∂-Poincaré lemma for complex manifolds

Definition 3.33 (Pullback map in cohomology). Let F : M → N be a holomorphic map of
complex manifolds, then its pullback F ∗ induces27 a linear map of quotient spaces, denoted by
F#

F# :
Zp,q(N)

Bp,q(N)
→ Z

p,q(M)

Bp,q(M)

JωK 7→ JF ∗(ω)K

This is a map in cohomology F# : Hp,q

∂
(N)→ Hp,q

∂
(M) called the pullback map in cohomology.

Remark 3.41. From Remark 3.32 and Proposition 3.9 it follows that:

1. If 1M : M → M is the identity map, then 1
#
M : Hp,q

∂
(M) → Hp,q

∂
(M) is also the identity

map.

2. If F : M → N and G : N → N ′ are holomorphic maps, then (G ◦ F )# = F# ◦G#.

Proposition 3.13 (Invariance of Dolbeault cohomology for biholomorphic manifolds). Let F :
M → N be a biholomorphic map of manifolds, then the pullback map in cohomology F# :
Hp,q

∂
(N)→ Hp,q

∂
(M) is an isomorphism.

Proof. Since F is a biholomorphic map, F−1 : N →M is also a holomorphic map of manifolds.
Therefore, using Remark 3.41 we have

1Hp,q

∂
(M) = 1

#
M = (F−1 ◦ F )# = F# ◦ (F−1)#

This implies that (F−1)# is the inverse of F#, i.e. F# is an isomorphism.

Theorem 3.9 (∂-Poincaré lemma for complex manifolds). Let M be a complex manifold, then
for all w ∈M there exists an open neighborhood U such that every ∂-closed (p, q)-form on U is
∂-exact for q ≥ 1.

Proof. Let (U, φ) be a chart on the complex manifold M of dimension n such that w ∈ U . By
Theorem 3.4 we know that the coordinate map φ : U → φ(U) ⊂ Cn is biholomorphic. We choose
U such that φ(U) is an open polydisc in Cn. Then by Theorem 3.3 every ∂-closed (p, q)-form
on φ(U) is exact for q ≥ 1, i.e. Hp,q

∂
(φ(U)) = 0 for q ≥ 1. Now we can use Proposition 3.13

to conclude that Hp,q

∂
(U) = 0 for q ≥ 1, i.e. every ∂-closed (p, q)-form on U is ∂-exact for

q ≥ 1.

27Follows from Lemma 3.4.
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Chapter 4

Cousin problems

4.1 Cousin problems for C

In this section some basic definitions and facts from [31, §1.6], [16, §13.1], [15, §0.3.4] and [3,
§VII.5, VIII.3] will be stated.

4.1.1 Mittag-Leffler theorem

Consider the following problem:

Let U be an open subset of C and {ak} be a sequence of distinct points in U such
that {ak} has no limit points in U . For each integer k ≥ 1 consider the rational
function

Sk(z) =

mk∑
j=1

Ajk
(z − ak)j

where mk is some positive integer and A1k, . . . , Amkk are arbitrary complex coeffi-
cients. Is there a meromorphic function f on U whose poles are exactly the points
{ak} and such that the singular part1 of f at z = ak is Sk(z)?

The answer to this problem is yes and was solved by Gösta Mittag-Leffler during 1876-1884,
building on the work of his mentor Karl Weierstrass [33]. Here we will discuss a proof which
will illustrate the general method for solving the Cousin problems.

Theorem 4.1 (Single variable Cousin I). Let U ⊂ C be an open set with an open covering
{Uα}. Suppose that for each Uα, Uβ with nonempty intersection there is a holomorphic function
gαβ ∈ O(Uα ∩ Uβ) satisfying

1. gαβ + gβα = 0 for each pair (α, β);

2. gαβ + gβγ + gγα = 0 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then there exist fα ∈ O(Uα) for each α such that gαβ = fβ − fα on Uα ∩ Uβ whenever the
intersection is nonempty.

Proof. As in Theorem A.3, let {Vk} be a locally finite refinement of {Uα} and {ψk} be a smooth
partition of unity of U subordinate to the open cover {Vk} . Then for a fixed k, ψk has a compact

1Let f has a pole of order m at z = a such that f has the Laurent series expansion in an open neighborhood
V of a give by

f(z) =
Am

(z − a)m
+ . . .+

Am−1

(z − a)m−1
+ . . .+

A1

(z − a)
+ g(z)

where g is analytic in V and Am 6= 0. Then
∑m
j=1

Aj

(z−a)j is called singular part or principal part of f at z = a.
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support contained in Vk ⊂ Ur(k). We can then define the smooth functions {hkα} in the open
sets {Uα} by

hkα(z) =

{
ψk(z)gr(k)α(z) if z ∈ Vk ∩ Uα
0 if z ∈ Uα \ (Vk ∩ Uα)

Since ψk vanishes in an open neighborhood of U \Vk, ψk will also vanish in an open neighborhood
of Uα \ (Uα ∩ Vk). Therefore, the function hkα = ψkgr(k)α is a smooth function Uα, and for
each α we have the smooth function

hα :=
∑
k

hkα on Uα

Then, on Uα ∩ Uβ , using the properties of {gαβ} we get

hβ − hα =
∑
k

(hkβ − hkα) =
∑
k

ψk
(
gr(k)β − gr(k)α

)
=
∑
k

ψk
(
−gβr(k) − gr(k)α

)
=
∑
k

ψk (gαβ) = gαβ

since
∑

k ψk = 1. This gives us a smooth solution {hα} to the first Cousin problem.
Next, since gαβ is holomorphic, by Theorem D.2 we have

∂hα
∂z

=
∂hβ
∂z

on Uα ∩ Uβ

Hence there exists a function h ∈ C∞(U) such that

h =
∂hα
∂z

on Uα for each α (4.1)

Also, from Theorem 3.2 we get f ∈ C∞(U) such that

∂f

∂z
= h (4.2)

Comparing (4.1) and (4.2) we get that

fα = hα − f ∈ O(Uα) for each α

Since fβ−fα = gαβ , the set {fα} is the required holomorphic solution to the Cousin problem.

Theorem 4.2 (Mittag-Leffler theorem). Let U be an open subset of C and {ak} be a sequence
of distinct points in U such that {ak} has no limit points in U . For each integer k ≥ 1 consider
the rational function

Sk(z) =

mk∑
j=1

Ajk
(z − ak)j

where mk is some positive integer and A1k, . . . , Amkk are arbitrary complex coefficients. Then
there is a meromorphic function f on U whose poles are exactly the points {ak} and such that
the singular part of f at z = ak is Sk(z).

Proof. Choose an open cover {Uα} of U with the property that each Uα contains at most one
point of {ak}. Assign a meromorphic function hα on Uα for each α such that hα = Sk if Uα
contains ak, otherwise fα ≡ 0. We can then define the Cousin data for the cover {Uα} by setting

gαβ = hβ − hα on Uα ∩ Uβ (4.3)

Note that for each Uα, Uβ with nonempty intersection gαβ ∈ O(Uα ∩ Uβ) since there doesn’t
exist any pole ak ∈ Uα ∩ Uβ . Moreover, {gαβ} satisfies the conditions
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1. gαβ + gβα = 0 for each pair (α, β);

2. gαβ + gβγ + gγα = 0 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Therefore, by Theorem 4.1, there exist fα ∈ O(Uα) for each α such that

gαβ = fβ − fα on Uα ∩ Uβ (4.4)

Comparing (4.3) and (4.4) we get that

hβ − hα = fβ − fα on Uα ∩ Uβ

for each pair (α, β). Hence, we can define a meromorphic function f on U such that

f(z) = hα(z)− fα(z) for z ∈ Uα

for each α. Since subtracting a holomorphic function fα from hα doesn’t affect the poles and
singular parts, f is the desired meromorphic function on U whose poles are exactly the points
{ak} and the singular part at z = ak is Sk.

4.1.2 Weierstrass theorem

Consider the following problem:

Let U be an open subset of C and {ak} be a sequence of distinct points in U such
that {ak} has no limit points in U . Given a sequence of integers {mk}, is there a
function f which is holomorphic on U such that the only zeros of f are the points
ak with multiplicity mk?

The answer to this problem is yes and was solved by Karl Weierstrass in 1876. Though this
problem was solved before Mittag-Leffler theorem, we will deduce it from Cousin I following [16,
Theorem 13.1.6].

Lemma 4.1. Let U ⊂ C be simply connected open set and f : U → C be a holomorphic and
non-vanishing function.Then there is a holomorphic function g on U such that exp(g) = f .

Proof. This is a standard result in single variable complex analysis, see [3, Theorem VIII.2.2(g)]
or [16, Lemma 13.1.5].

Theorem 4.3 (Single variable Cousin II). Let U ⊂ C be an open set with an open covering {Uα}.
Suppose that for each Uα, Uβ with nonempty intersection there is a non-vanishing holomorphic
function gαβ ∈ O∗(Uα ∩ Uβ) satisfying

1. gαβ · gβα = 1 for each pair (α, β);

2. gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then there exist fα ∈ O∗(Uα) for each α such that gαβ =
fβ
fα

on Uα∩Uβ whenever the intersection
is nonempty.

Proof. Let {Vj} be a refinement of {Uα} such that for each j, Vj is an open ball and Vj ⊂ Ur(j).
Next, we define hjk : Vj ∩ Vk → C by hjk(z) = gr(j)r(k)(z). Then {hjk} is a set of holomorphic
functions satisfying

1. hjk · hkj = 1 for each pair (j, k);

2. hjk · hk` · h`j = 1 on Vj ∩ Vk ∩ V` for each triple (j, k, `).
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Step 1: There exist uj ∈ O∗(Vj) for each j such that hjk = uk/uj on Vj ∩ Vk whenever the
intersection is nonempty.

Since each open ball Vj is simply connected, by Lemma 4.1, there exists h̃jk ∈ O(Vj ∩ Vk)
such that hjk = exp(h̃jk). Then {h̃jk} satisfies the condition of Cousin I data for the covering
{Vj}, and by Theorem 4.1 there exist ũj ∈ O(Vj) for each j such that h̃jk = ũk − ũj on Vj ∩ Vk
whenever the intersection is nonempty. Then the set {uj} for uj = exp(ũj) is the required
holomorphic solution to the Cousin problem.

Step 2: There exist fα ∈ O∗(Uα) for each α such that gαβ = fβ/fα on Uα ∩ Uβ whenever
the intersection is nonempty.

Note that, for z ∈ Uα ∩ Vj ∩ Vk we have(
uk
uj
gr(k)αgαr(j)

)
(z) =

(
uk
uj

1

gr(j)r(k)

)
(z)

=

(
uk
uj
gr(k)r(j)

)
(z)

=

(
uk
uj
hkj

)
(z)

= 1

Therefore, we have ukgr(k)α(z) = ujgr(j)α(z) on Uα ∩ Vj ∩ Vk. Since this is true for any pair
(j, k), for any α we define non-vanishing holomorphic function fα ∈ O∗(Uα) such that

fα(z) = ujgr(j)α(z) for z ∈ Uα ∩ Vj

Finally, {fα} is the required holomorphic solution to the Cousin problem since

fβ
fα

(z) =
ujgr(j)β

ujgr(j)α
(z) =

1

gβr(j)gr(j)α
(z) = gαβ(z) for z ∈ Uα ∩ Uβ ∩ Vj

where j is arbitrary.

Theorem 4.4 (Weierstrass theorem). Let U be an open subset of C and {ak} be a sequence of
distinct points in U such that {ak} has no limit points in U . Given a sequence of integers {mk},
there is a function f which is holomorphic on U such that the only zeros of f are the points ak
with multiplicity mk.

Proof. Choose an open cover {Uα} of U with the property that each Uα contains at most one
point of {ak}. Assign a holomorphic function hα on Uα for each α such that hα = (z − ak)mk if
Uα contains ak, otherwise hα ≡ 1. We can then define the Cousin data for the cover {Uα} by
setting

gαβ =
hβ
hα

on Uα ∩ Uβ (4.5)

Note that for each Uα, Uβ with nonempty intersection gαβ ∈ O∗(Uα ∩ Uβ) since there doesn’t
exist any zero ak ∈ Uα ∩ Uβ , and {gαβ} satisfies the conditions

1. gαβ · gβα = 1 for each pair (α, β);

2. gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Therefore, by Theorem 4.3, there exist fα ∈ O∗(Uα) for each α such that

gαβ =
fβ
fα

on Uα ∩ Uβ (4.6)
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Comparing (4.5) and (4.6) we get that

hβ
hα

=
fβ
fα

on Uα ∩ Uβ

for each pair (α, β). Hence, we can define a holomorphic function f on U such that

f(z) =
hα(z)

fα(z)
for z ∈ Uα

for each α. Since dividing hα by a non-vanishing holomorphic function fα doesn’t affect the
zeros of hα and their multiplicities, f is the desired holomorphic function on U whose only zeros
are the points ak with multiplicity mk.

Corollary 4.1. Let U ⊂ C be any open set. Let Y ⊂ U be a discrete set. Then there is a
holomorphic function f on all of U such that Y = {z ∈ U : f(z) = 0}.

4.2 Cousin problems for Cn

In this section some basic definitions and facts from [15, §6.1] and [10, §I.E] will be stated.

4.2.1 Cousin I

Consider the following problem:

Let U ⊂ Cn be an open set with an open covering {Uα}. Suppose that for each
Uα, Uβ with nonempty intersection there is a holomorphic function gαβ ∈ O(Uα∩Uβ)
satisfying

1. gαβ + gβα = 0 for each pair (α, β);

2. gαβ + gβγ + gγα = 0 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then does there exist fα ∈ O(Uα) for each α such that gαβ = fβ − fα on Uα ∩ Uβ
whenever the intersection is nonempty?

The answer to this problem is yes when U is a polydisc. Moreover, in general, this is true when U
is a domain of holomorphy2, for details see [15, Proposition 6.1.8]. In fact, the solution to Cousin
I is exactly same as the single variable case since in the theory of single variable holomorphic
functions, every open set is a domain of holomorphy.

Theorem 4.5 (Cousin I for a polydisc). Let ∆ ⊂ Cn be an open polydisc with an open covering
{Uα}. Suppose that for each Uα, Uβ with nonempty intersection there is a holomorphic function
gαβ ∈ O(Uα ∩ Uβ) satisfying

1. gαβ + gβα = 0 for each pair (α, β);

2. gαβ + gβγ + gγα = 0 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then there exist fα ∈ O(Uα) for each α such that gαβ = fβ − fα on Uα ∩ Uβ whenever the
intersection is nonempty.

2An open set U ⊂ Cn is called a domain of holomorphy is there doesn’t exist non-empty open sets U1, U2 with
U2 connected, U2 6⊂ U1, U1 ⊂ U2 ∩ U , such that for every holomorphic function f on U there is a holomorphic
function f2 on U2 such that h = h2 on U1, see [15, §0.3.1] and [31, §2.5].
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Proof. As in Theorem A.3, let {Vk} be a locally finite refinement of {Uα} and {ψk} be a smooth
partition of unity of ∆ subordinate to the open cover {Vk} . Then for a fixed k, ψk has a compact
support contained in Vk ⊂ Ur(k). We can then define the smooth functions {hkα} in the open
sets {Uα} by

hkα(z) =

{
ψk(z)gr(k)α(z) if z ∈ Vk ∩ Uα
0 if z ∈ Uα \ (Vk ∩ Uα)

Since ψk vanishes in an open neighborhood of ∆\Vk, ψk will also vanish in an open neighborhood
of Uα \ (Uα ∩ Vk). Therefore, the function hkα = ψkgr(k)α is a smooth function Uα, and for
each α we have the smooth function

hα =
∑
k

hkα on Uα

Then, on Uα ∩ Uβ , using the properties of {gαβ} we get

hβ − hα =
∑
k

(hkβ − hkα) =
∑
k

ψk
(
gr(k)β − gr(k)α

)
=
∑
k

ψk
(
−gβr(k) − gr(k)α

)
=
∑
k

ψk (gαβ) = gαβ

since
∑

k ψk = 1. This gives us a smooth solution {hα} to the first Cousin problem.
Next, for each set Uα consider the differential form ωα ∈ ∂hα ∈ Ω0,1(Uα). In each intersection

Uα ∩Uβ we note that ωα = ∂(hβ + gαβ) = ωβ , since gαβ are holomorphic functions. Hence there
exists a global differential form ω ∈ Ωp,q(∆) such that

ω = ∂hα on Uα for each α (4.7)

Also, since ∂ω = 0, from Theorem 3.3 we get f ∈ Ω0,0(∆) = C∞(∆) such that

∂f = ω (4.8)

Comparing (4.7) and (4.8) we get that

fα = hα − f ∈ O(Uα) for each α

Since fβ−fα = gαβ , the set {fα} is the required holomorphic solution to the Cousin problem.

4.2.2 Cousin II

Consider the following problem:

Let U ⊂ Cn be an open set with an open covering {Uα}. Suppose that for each
Uα, Uβ with nonempty intersection there is a non-vanishing holomorphic function
gαβ ∈ O∗(Uα ∩ Uβ) satisfying

1. gαβ · gβα = 1 for each pair (α, β);

2. gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then does there exist fα ∈ O∗(Uα) for each α such that gαβ =
fβ
fα

on Uα ∩ Uβ
whenever the intersection is nonempty?

The answer to this problem is yes when U is a polydisc. However, in general, this is not true
when U is any domain of holomorphy. Unlike the single variable case, Cousin I doesn’t imply
Cousin II for n ≥ 2. For the counterexample given by Kiyoshi Oka, see [15, pp. 250-253].
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Lemma 4.2. Let U ⊂ Cn be simply connected open set and f : U → C be a holomorphic and
non-vanishing function.Then there is a holomorphic function g on U such that exp(g) = f .

Proof. Since this is a topological fact, we are able to generalize the proof of Lemma 4.1. For
details, see [16, Lemma 13.1.5] and [15, Lemma 6.1.10].

Theorem 4.6 (Cousin II for a polydisc). Let ∆ ⊂ Cn be an open polydisc with an open cov-
ering {Uα}. Suppose that for each Uα, Uβ with nonempty intersection there is a non-vanishing
holomorphic function gαβ ∈ O∗(Uα ∩ Uβ) satisfying

1. gαβ · gβα = 1 for each pair (α, β);

2. gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then there exist fα ∈ O∗(Uα) for each α such that gαβ =
fβ
fα

on Uα∩Uβ whenever the intersection
is nonempty.

Instead of proving this theorem3, we will directly prove the generalization of Corollary 4.1
in the next section.

4.3 Cousin problem for analytic hypersurface in Cn

Consider the following problem:

Is any analytic subvariety Y of a complex manifold M the zero-locus of some global
holomorphic functions defined on M?

The answer to this problem is yes when Y is a hypersurface and M is Cn.

4.3.1 Analytic subvariety of a complex manifold

In this subsection some definitions and properties from [12, §2.1, 2.3] and [6, §I.8, IV.1] will be
discussed.

Definition 4.1 (Analytic subvariety). LetM be a n-dimensional complex manifold. An analytic
subvariety of M is a closed subset Y ⊂M such that for every point w ∈ Y there exists an open
neighborhood w ∈ U ⊂M and f1, . . . , fm ∈ O(U) with

U ∩ Y = {z ∈ U : fj(z) = 0 for j = 1, . . . ,m}

Remark 4.1. A more natural definition of an analytic subvariety of M is that it is a subset
Y ⊂ M such that for every point w ∈ M there exists an open neighborhood w ∈ U ⊂ M and
f1, . . . , fm ∈ O(U) with

U ∩ Y = {z ∈ U : fj(z) = 0 for j = 1, . . . ,m}

This definition is equivalent to the earlier one because we can prove that w ∈M \ Y if and only
if Y is a closed subset of M [6, p. 36].

Definition 4.2 (Analytic hypersurface). An analytic subvariety Y of M is called analytic hy-
persurface if we can always take m = 1, i.e. for every point w ∈ Y there exists an open
neighborhood w ∈ U ⊂M and f ∈ O(U) with

U ∩ Y = {z ∈ U : f(z) = 0}
3For an outline of the proof, see [10, pp. 33-36]. Here, unlike the single variable case, we also need to show

the existence of non-vanishing continuous solution before proving the existence of non-vanishing smooth solution.
For details, see [15, Proposition 6.1.11(Part I)].
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Remark 4.2. In general, analytic subvariety cannot be given by global equations. For example,
if M is compact and connected, there are no non-constant holomorphic functions on M . For
an example in which the ambient manifold M is not compact, consider the complex manifold
M := U1 ∪ U2 with

U1 =

{
(z1, z2) ∈ C2 : |z1| <

1

2
and |z2| < 1

}
U2 =

{
(z1, z2) ∈ C2 : |z1| < 1 and

1

2
< |z2| < 1

}
Next, consider the closed subset4 Y = {(z1, z2) ∈ U2 : z1 = z2} ⊂ M . Note that U1 and U2

give an open covering of M with Y ⊂ U2, i.e. for all p ∈ Y we can use U2 since Y ∩ U2 =
{(z1, z2) ∈ U2 : f(z1, z2) = z1 − z2 = 0} where f ∈ O(U2). Therefore, Y is an analytic hypersur-
face of M .

Claim: There does not exist g ∈ O(M) such that Y = {(z1, z2) ∈M : g(z1, z2) = 0}.
On the contrary, let there exist g ∈ O(M) such that g vanishes exactly on Y . Note that

M ⊂ ∆(0; 1). Hence, by Theorem D.4, there exists G ∈ O(∆(0; 1)) such that G|M = g. In
particular, for z1 = z2 = z, G(z, z) = h(z) is a single variable holomorphic functions which
vanishes for 1

2 < |z| < 1 in M . Since zero function is the only single variable holomorphic
function with uncountably many zeros, h(z) vanishes for 0 ≤ |z| < 1 in ∆(0; 1), i.e. G|M = g
vanishes on Z = {(z1, z1) ∈M : z1 = z2} ⊃ Y . Contradiction.

The region corresponding to M The regions corresponding to U1 and U2.

The analytic subvariety Y of X The vanishing set Z of G in M

4Recall that for a continuous function the inverse image of a closed set is closed. In particular, the set of zeros
of a continuous function is closed.
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4.3.2 Sheaf theory and Čech cohomology

In this subsection we will revisit the results from sheaf theory and Čech cohomology that were
discussed in section 2.1 and section 2.2.

Example 4.1 (Sheaves on complex manifold). In Example 2.4 we saw that if one has a presheaf
of functions (or forms) on a topological space M which is defined by some local property, then
the presheaf is also a sheaf. In particular, if M is a complex manifold then:

• O is the sheaf of holomorphic functions on M such that for every open subset U of M
we have the additive abelian group O(U) of holomorphic functions on U along with the
natural restriction maps as the group homomorphisms for the nested open subsets.

• O is the sheaf of non-vanishing holomorphic functions onM such that for every open subset
U of M we have the multiplicative abelian group O∗(U) of non-vanishing holomorphic
functions on U along with the natural restriction maps as the group homomorphisms for
the nested open subsets.

• Ωp,q is the sheaf of complex (p, q)-forms on M such that for every open subset U of M we
have the additive abelian group Ωp,q(U) of smooth (p, q)-forms on U (smooth sections of a
exterior power of a vector bundle, i.e. smooth maps of manifolds) along with the natural
restriction maps as the group homomorphisms for the nested open subsets.

• Op is the sheaf of holomorphic p-forms on M such that for every open subset U of M we
have the additive abelian group Op(U) of holomorphic p-forms on U (holomorphic sections
of an exterior power of holomorphic cotangent bundle, i.e. holomorphic maps of manifolds)
along with the natural restriction maps as the group homomorphisms for the nested open
subsets.

Example 4.2 (Sheaf maps). Recall that a sheaf map is collection of group homomorphisms
which commute with the restriction maps. Then for a complex manifold M we have:

• The exponential map exp : O → O∗ defined by the collection of group homorphisms
{expU : O(U) → O∗(U)}U⊂M where expU (f) = exp(f) is defined via charts. This is a
sheaf map since for U ⊂ V ⊂M , expU and expV commute with the restriction maps.

• In Remark 1.29 we saw that the exterior derivative is a local operator, it commutes with
restriction. Therefore, as in Example 2.6, d : Ωk

C → Ωk+1
C is a map of sheaves. In

particular, ∂ : Ωp,q → Ωp+1,q is a sheaf map between the sheaf of complex differential
forms on a complex manifold M .

Example 4.3 (Kernel sheaf). For a complex manifoldM we have the sheaf of closed (p, q)-forms
on M given by ker(∂) = Zp,q corresponding to the sheaf map ∂ : Ωp,q → Ωp,q+1. In particular,
Zp,0 = Op is the sheaf of holomorphic p-forms on M .

Example 4.4 (Exact sequence of sheaves). For a complex manifold M we have:

• The short exact sequence, called exponential sheaf sequence

0 Z O O∗ 02πi exp

Note that the sheaf map exp is surjective by Lemma 4.2, since locally M is biholomorphic
to an open set in Cn and for every point w ∈ Cn we can find a simply connected open
neighborhood U such that every f ∈ O∗(U) can be written as exp(g) = f for some
g ∈ O(U).
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• The exact sequence of sheaves of differential forms

0 Op Ωp,0 Ωp,1 Ωp,2 · · ·∂ ∂ ∂

where the exactness follows from Theorem 3.8, Theorem 3.9, and Remark 3.37.

Remark 4.3 (Long exact sequence of Čech cohomology). By Remark 3.24 we know that complex
manifolds are paracompact. Hence we can use Serre’s theorem (Theorem 2.1) to get the long
exact sequence of Čech chohomology corresponding to a short exact sequence of sheaves of a
complex manifold.

• The exponential sheaf sequence on M will induce the following long exact sequence of
cohomology

· · · Ȟ
q
(M,O) Ȟ

q
(M,O∗) Ȟ

q+1
(M,Z) Ȟ

q+1
(M,O) · · ·∆

• Using Example 4.3 and Example 4.4 we get the following short exact sequence of sheaves
on a complex manifold M

0 Zp,` Ωp,` Zp,`+1 0∂

for every ` ≥ 0. This induces the following long exact sequence of cohomology

· · · Ȟ
q
(M,Ωp,`) Ȟ

q
(M,Zp,`+1) Ȟ

q+1
(M,Zp,`) Ȟ

q+1
(M,Ωp,`) · · ·∆

for each `.

Remark 4.4 (Fine sheaves). Note that, for p, ` ≥ 0, Ωp,` are smooth sections of vector bundles
and hence are fine sheaves. Therefore we can use Theorem 2.2 to get Ȟ

q
(M,Ωp,`) = 0 for all

q ≥ 1.

Theorem 4.7 (Homotopy invariance of Čech cohomology). Let M and N be two smooth man-
ifolds, and assume that f : M → N is a homotopy equivalence. If G is a constant sheaf on N ,
then Ȟ

q
(M,f−1G) ∼= Ȟ

q
(N,G) for all q ≥ 0. In other words, the Čech cohomology of locally

constant sheaves on smooth manifolds is a homotopy invariant.

Proof. From Theorem 2.1 and Theorem 2.2 it follows that Čech cohomology of a manifold is
isomorphic to its sheaf cohomology [35, §5.18, 5.33]. Moreover, it is a well known fact that sheaf
cohomology of locally constant sheaves is a homotopy invariant [36, §10.2, 11.3]. Therefore,
sheaf cohomology of locally constant sheaves is a homotopy invariant [29, §6.3].

Corollary 4.2. If a smooth manifold M is contractible and G is a constant sheaf on M , then
Ȟ

0
(M,G) ∼= G(M) and Ȟ

q
(M,G) ∼= 0 for q > 0.

Proof. Since M ' {∗}, for some point ∗ ∈ M , we know that Ȟ
q

(M,G) ∼= Ȟ
q ({∗}, f−1G

)
for

all q ≥ 0. From Proposition 2.6, we know that Ȟ
0

(M,G) ∼= G(M). Therefore, we just need
to show that Ȟ

q
({∗}, G) = 0 for q > 0. Fortunately, when we calculate Čech cohomology of

a point we don’t need to take direct limit because the system is trivial, i.e. there is only one
covering with only one open subset:

Ȟ
q

({∗}, G) =
Žq({{∗}}, G)

B̌q({{∗}}, G)
=

ker{δ : Č
q
({{∗}}, G)→ Č

q+1
({{∗}}, G)}

im{δ : Č
q−1

({{∗}}, G)→ Č
q
({{∗}}, G)}

78



Note that Č
q
({{∗}}, G) = {f |f : {∗} → G is a constant map}. Hence for q > 0 we have

Žq({{∗}}, G) =

{
Č
q
({{∗}}, G) if q is odd

{f |f ≡ 0 where 0 is the identity element of G} if q is even

and

B̌q({{{∗}}, G) =

{
{f |f ≡ 0 where 0 is the identity element of G} if q − 1 is odd
Č
q
({{∗}}, G) if q − 1 is even

Therefore, Žq({{∗}}, G) = B̌q({{∗}}, G) for all q > 0. Hence completing the proof.

Remark 4.5. In section 2.3 we proved de Rham-Čech isomorphism, which says that if M is a
smooth manifold then for each k ≥ 0 there exists a group isomorphismHk

dR(M) ∼= Ȟ
k
(M,R). By

the above theorem we can conclude that de Rham cohomology is in fact a homotopy invariant.

4.3.3 Dolbeault isomorphism

In this subsection we will prove Dolbeault’s theorem, following [15, §6.3] and [9, p. 45]. This
is a complex analogue of de Rham’s theorem (Theorem 2.3), and asserts that the Dolbeault
cohomology is isomorphic to the Čech cohomology of the sheaf of holomorphic differential forms.

Theorem 4.8. Let M be a complex manifold. Then for each p, q ≥ 0 there exists a group
isomorphism

Hp,q

∂
(M) ∼= Ȟ

q
(M,Op)

Proof. For q = 0, from Proposition 3.11 and Proposition 2.6, we know that both Hp,0

∂
(M) and

Ȟ
0
(M,Op) are isomorphic to the group of holomorphic p-forms on M . That is

Hp,0

∂
(M) ∼= Ȟ

0
(M,Op)

Now let’s restrict our attention to q ≥ 1. From Example 4.4 we know that the ∂-Poincaré
lemma implies the existence of the following long exact sequence of sheaves of differential forms

0 Op Ωp,0 Ωp,1 Ωp,2 · · ·∂ ∂ ∂

Then, as noted in Remark 4.3, we have a family of short exact sequence of sheaves

0 Op Ωp,0 Zp,1 0

0 Zp,1 Ωp,1 Zp,2 0

...
...

...
...

...

0 Zp,` Ωp,` Zp,`+1 0

...
...

...
...

...

∂

∂

∂

which will induce the respective long exact sequences of Čech cohomology

· · · Ȟ
q
(M,Ωp,0) Ȟ

q
(M,Zp,1) Ȟ

q+1
(M,Op) Ȟ

q+1
(M,Ωp,0) · · ·

· · · Ȟ
q
(M,Ωp,1) Ȟ

q
(M,Zp,2) Ȟ

q+1
(M,Zp,1) Ȟ

q+1
(M,Ωp,1) · · ·

...
...

...
...

· · · Ȟ
q
(M,Ωp,`) Ȟ

q
(M,Zp,`+1) Ȟ

q+1
(M,Zp,`) Ȟ

q+1
(M,Ωp,`) · · ·

...
...

...
...

∆

∆

∆
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Now let’s study one of these long exact sequence of Čech cohomology. By Proposition 2.6
we have Ȟ

0
(M,Ωp,`) ∼= Ωp,`(M) and Ȟ

0
(M,Zp,`) ∼= Zp,`(M). Also by Remark 4.4 we have

Ȟ
q
(M,Ωp,`) = 0 for all q ≥ 1 and ` ≥ 0. Hence for any ` ≥ 0 we get the exact sequence

0 Zp,`(M) Ωp,`(M) Zp,`+1(M) Ȟ
1
(M,Zp,`) 0 Ȟ

1
(M,Zp,`+1)

· · · 0 Ȟ
3
(M,Zp,`) Ȟ

2
(M,Zp,`+1) 0 Ȟ

2
(M,Zp,`)

∂ ∆

∆

∆

Now consider the following part of the above sequence

0 Zp,`(M) Ωp,`(M) Zp,`+1(M) Ȟ
1
(M,Zp,`) 0∂ ∆

Since this sequence is exact, the map ∆ : Zp,`+1(M) → Ȟ
1
(M,Zp,`) is a surjective group

homomorphism and im{∂ : Ωp,`(M) → Zp,`+1(M)} = ker(∆). Hence by the first isomorphism
theorem we get

Ȟ
1
(M,Zp,`) ∼=

Zp,`+1(M)

ker(∆)
for all ` ≥ 0

Since im{∂ : Ωp,`(M)→ Zp,`+1(M)} = im{∂ : Ωp,`(M)→ Ωp,`+1(M)} = Bp,`+1(M), we get

Ȟ
1
(M,Zp,`) ∼= Hp,`+1

∂
(M) for all ` ≥ 0 (4.9)

Note that Zp,0 = Op, hence from (4.9) we get

Ȟ
1
(M,Op) ∼= Hp,1

∂
(M)

Next we consider the remaining parts of the long exact sequence, i.e. for q ≥ 1 and ` ≥ 0 we
have

0 Ȟ
q
(M,Zp,`+1) Ȟ

q+1
(M,Zp,`) 0∆

The group homomorphism ∆ is an isomorphism since this is an exact sequence of abelian groups

Ȟ
q+1

(M,Zp,`) ∼= Ȟ
q
(M,Zp,`+1) for all q ≥ 1, ` ≥ 0 (4.10)

Again substituting Zp,0 = Op and restricting our attention to q ≥ 2, we apply (4.10) recursively
to get

Ȟ
q
(M,Op) ∼= Ȟ

q−1 (
M,Zp,1

)
∼= Ȟ

q−2 (
M,Zp,2

)
...
∼= Ȟ

1 (
M,Zp,q−1

)
Then using (4.9) we get

Ȟ
q
(M,Op) ∼= Hp,q

∂
(M) for all q ≥ 2

Hence completing the proof.
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4.3.4 Solution of the problem

We can now solve the Cousin problem, following the solution outlined in [9, p. 47].

Lemma 4.3. Ȟ
q
(Cn,O∗) = 0 for q > 0.

Proof. Consider the long exact sequence associated to the exponential sheaf sequence on Cn

· · · Ȟ
q
(Cn,O) Ȟ

q
(Cn,O∗) Ȟ

q+1
(Cn,Z) Ȟ

q+1
(Cn,O) · · ·∆

By the ∂-Poincaré lemma (Theorem 3.3), we get Hp,q

∂
(Cn) = 0 for all p ≥ 0 and q > 0.

Then using Dolbeault isomorphism (Theorem 4.8) for p = 0, we get Ȟ
q
(Cn,O) = 0 for q > 0.

Moreover, since Cn is contractible, we can use Corollary 4.2 to get Ȟ
q
(Cn,Z) = 0 for q > 0.

Substituting these in the sequence and using exactness, we conclude that Ȟ
q
(Cn,O∗) = 0 for

q > 0.

Theorem 4.9. Any analytic hypersurface in Cn is the zero locus of an entire function f : Cn →
C.

Proof. Let H be the analytic hypersurface in Cn, then H ⊂ Cn such that for every point w ∈ Cn
there exists an open neighborhood w ∈ U ⊂ Cn and f ∈ O(U) with

U ∩H = {z ∈ U : h(z) = 0}

By Theorem D.7 we know that Ow is a unique factorization domain. Therefore, if h is a
representative element of the equivalence classes in Ow, then h = h1 · · ·hk for some irreducible
representative functions in Ow. Hence we can choose h such that it is not divisible by the square
of any non-unit5 in Ow.

Next, choose an open cover U = {Uα} of Cn and functions hα ∈ O(Uα) such that

Uα ∩H = {z ∈ U : hα(z) = 0}

where hα is not divisible by the square of any non-unit. We can then define the Cousin data for
the cover U = {Uα} by setting

gαβ =
hβ
hα

on Uα ∩ Uβ (4.11)

Note that for each Uα, Uβ with nonempty intersection gαβ ∈ O∗(Uα ∩ Uβ) since6 hα and hβ
vanish at the same points in Uα ∩ Uβ , and {gαβ} satisfies the conditions

1. gαβ · gβα = 1 for each pair (α, β);

2. gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Therefore, (gαβ) ∈ Ž1(U ,O∗). But since Ȟ
1
(Cn,O∗) = 0 by Lemma 4.3, after some refinement

of U if necessary7, there exists a cochain (fα) ∈ Č
0
(U ,O∗) such that

gαβ = δ(fα) =
fβ
fα

on Uα ∩ Uβ (4.12)

5Recall that the non-vanishing functions at w ∈ Cn are the unit elements in Ow.
6We can prove this by contradiction. On the contrary assume that there exists z ∈ Uα∩Uβ such that hα(z) = 0

but hβ(z) 6= 0. Then z ∈ Uα ∩H but z 6∈ Uβ ∩H. Which contradicts our assumption that z ∈ Uα ∩ Uβ .
7If we need a refinement V of U , then just start whole argument with the open cover V instead of U .
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Comparing (4.11) and (4.12) we get that

hβ
hα

=
fβ
fα

on Uα ∩ Uβ

for each pair (α, β). Hence, we can define a global holomorphic function f on Cn such that

f(z) =
hα(z)

fα(z)
for z ∈ Uα

for each α. Since dividing hα by a non-vanishing holomorphic function fα doesn’t affect the
vanishing set of hα, f is the desired holomorphic function on Cn whose vanishing set is H.
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Future work

In the Remark 3.26 and Remark 3.33 we noted that transition maps can be used to define vector
bundles. Following is the more precise statement:

Theorem 29. If M be a smooth manifold and π : E → M is a complex8 vector bundle of
rank k. Then there exists an open cover {Uα} of M and a collection of smooth transition maps
{σαβ : Uα ∩ Uβ → GL(k,C)} such that

1. σαα = Ik

2. σαβ · σβγ · σγα = Ik

where Ik is a k× k identity matrix. This collection {gαβ} is called transition data. Conversely,
given an open cover {Uα} of M and a collection of smooth maps {σαβ : Uα ∩ Uβ → GL(k,C)}
satisfying the above two conditions, there exists a complex rank k vector bundle π′ : E′ → M
whose transition data is given by {σαβ}. Moreover, these two processes are well-defined and are
inverses of each other when applied to the set of equivalence classes of vector bundles9 and the
set of equivalence classes of transition data10.

Now, if we use this result to define vector bundles using transition data, then we get the
following [37, Lemma III.4.4]:

Theorem 30. There is one-to-one correspondence between the equivalence classes of holomor-
phic line bundles on a complex manifold M and the elements of the cohomology group Ȟ

1
(M,O∗)

where O∗ is the sheaf of non-vanishing holomorphic functions.

Also, by considering the underlying complex vector bundle of rank 1, we get:

Theorem 31. There is one-to-one correspondence between the equivalence classes of complex
line bundles on a smooth manifoldM and the elements of the cohomology group Ȟ

1
(M, E∗) where

E∗ is the sheaf of non-vanishing smooth functions.

We can generalize this result by generalizing the definition of Čech cohomology. In section 2.2
we defined Čech cohomology for a sheaf of abelian groups. Note that we can’t define Čech
cohomology in a similar way if F is a sheaf of non-abelian groups, since δ ◦ δ 6= 0 if the sheaf
is not abelian. However, we have the following general definition of the zeroth and first Čech
cohomolgy [27, Remark 5.5(2)]:

(a). Ȟ
0
(X,F) := F(X)

8Same argument is valid for smooth and holomorphic vector bundles. For the case of smooth vector bundles,
replace C by R, and for the case of holomorphic vector bundles consider holomorphic transition maps and
holomorphic isomorphism of vector bundles.

9Two vector bundles over M are said to be equivalent if they are isomorphic as vector bundles over M .
10Two sets of transition data {σαβ} and {σ′αβ} are said to be equivalent if there exists a collection of smooth

functions {ρα : Uα → GL(k,C)} such that σ′αβ = ρα · σαβ · ρ−1
β for all α, β.
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(b). Ȟ
1
(X,F) := lim−→

U
Ȟ

1
(U ,F) where the direct limit is indexed over all the open covers of X

with order relation induced by refinement, i.e. U < V if V is a refinement of U , and
Ȟ

1
(U ,F) is a pointed set11 defined as

Ȟ
1
(U ,F) := ker{δ : Č

1
(U ,F)→ Č

2
(U ,F)}

/
∼

(gαβ) ∼ (hαβ)⇔ ∃(fα) ∈ Č
0
(U ,F) such that fα ∗ gαβ = hαβ ∗ fβ on Uα ∩ Uβ

with ∗ being the group operation. Therefore, Ȟ
1
(X,F) is a group if and only if F is an

abelian sheaf.

Using this new definition we get the following more general correspondence between vector
bundles and Čech cohomology [38, §24]:

Theorem 32. Let M be a smooth manifold, then

(a). there is one-to-one correspondence between the equivalence classes of rank k smooth vector
bundles over M and the elements of the first cohomology set Ȟ

1
(M,O(k)) where O(k) is

the sheaf of smooth functions to the Lie group O(k) of orthogonal matrices.

(b). there is one-to-one correspondence between the equivalence classes of rank k complex vector
bundles over M and the elements of the first cohomology set Ȟ

1
(M,U(k)) where U(k) is

the sheaf of smooth functions to the Lie group U(k) of unitary matrices.

Clearly this is a generalization of the previous result, since for k = 1 we get Ȟ
1
(M,U(1)) =

Ȟ
1
(M,S1) = Ȟ

1
(M, E∗).

Definition (Picard group). The set of isomorphic classes of line bundles on a manifold M form
a group under the tensor product12 operation, where the inverse of a line bundle is its dual
bundle13. This group of isomorphism classes of holomorphic line bundles on M is called the
Picard group of M , denoted by Pic(M).

In fact, the one-to-one correspondence that we get in Theorem 30 is a group isomorphism, i.e.
Pic(M) ∼= Ȟ

1
(M,O∗) [9, p. 133]. This enables us to define the first Chern class of holomorphic

line bundles as follows [12, Definition 2.2.13]:

Definition (First Chern class of holomorphic line bundle). The exponential sheaf sequence on
a complex manifold M

0 Z O O∗ 02πi exp

gives a long exact sequence in cohomology

· · · Ȟ
q
(M,O) Ȟ

q
(M,O∗) Ȟ

q+1
(M,Z) Ȟ

q+1
(M,O) · · ·∆

Therefore, we have the connecting homomorphism

∆ : Ȟ
1
(M,O∗)→ Ȟ

2
(M,Z)

JLK 7→ c1(L)

where c1(L) is called the first Chern class of the holomorphic line bundle L on M .
11For details regarding its construction, refer to the lecture notes by Zinger [38, §24].
12If π : L → M and π′ : L′ → M are smooth line bundles, then their tensor product, L ⊗ L′ is defined such

that (L⊗ L′)w = Lw ⊗ L′w for all w ∈M [38, §13].
13If π : L → M is a smooth line bundles of rank k, the dual bundle of L∗ is a line bundle L∗ → M such that

(L∗)w = L∗w = HomR(Lw,R) for all w ∈M . For complex and holomorphic line bundles, replace R by C [38, §12].
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The immediate consequences of this definition are [9, p. 139]:

c1(L⊗ L′) = c1(L) + c1(L′) and c1(L∗) = −c1(L)

Note that, in Theorem 2.1 we only proved the existence of connecting homomorphism ∆. How-
ever, to be able to calculate the first Chern class of a holomorphic line bundle we must know
the exact definition of ∆, which turns out to be a challenging task [37, p. 104].

Similarly, the one-to-one correspondence that we get in Theorem 31 is a group isomorphism.
This enables us to define the first Chern class of complex line bundles as follows [37, p. 105]:

Definition (First Chern class of complex line bundle). The exponential sheaf sequence on a
smooth manifold M

0 Z E E∗ 02πi exp

gives a long exact sequence in cohomology

· · · Ȟ
q
(M, E) Ȟ

q
(M, E∗) Ȟ

q+1
(M,Z) Ȟ

q+1
(M, E) · · ·∆

Therefore, we have the connecting homomorphism

∆ : Ȟ
1
(M, E∗)→ Ȟ

2
(M,Z)

JLK 7→ c1(L)

where c1(L) is called the first Chern class of the complex line bundle L on M .

Since E is a fine sheaf, by Theorem 2.2, Ȟ
k
(M, E) = 0 for k > 0. Therefore, the connecting

homomorphism ∆ : Ȟ
1
(M, E∗)→ Ȟ

2
(M,Z) is a group isomorphism, and the equivalence classes

of complex line bundles are determined by their first Chern class in Ȟ
2
(M,Z) [9, p. 140].

Theorem 33. There is a natural group isomorphism between the equivalence classes of complex
line bundles on a smooth manifold M and the elements of the cohomology group Ȟ

2
(M,Z). That

is, a complex line bundle is determined upto smooth vector bundle isomorphism by its first Chern
class.

In Theorem 2.3 we proved that Hk
dR(M) ∼= Ȟ

k
(M,R) for k ≥ 0. Also note that there is a

natural homomorphism j : Ȟ
2
(M,Z)→ Ȟ

2
(M,R) induced by the inclusion of constant sheaves

Z ↪→ R. Combining these with the fact that Ȟ
1
(M, E∗) ∼= Ȟ

2
(M,Z), we can compute the Chern

classes of complex line bundles using differential forms [37, Theorem III.4.5].

c1 : {isomorphism classes of complex line bundles over M} → H2
dR(M)

JLK 7→ c1(L)

Since a complex vector bundle L of rank 1 over a smooth manifold M can be thought of as
a smooth vector bundle L of rank 2 over M , we can use the following result for computing the
first Chern class of a complex line bundle [1, pp. 71-73]:

Theorem 34. Let π : L→M be an oriented smooth oriented rank 2 vector bundle over M , and
{Uα} be a coordinate open cover of M that trivializes E. If {σαβ : Uα ∩ Uβ → SO(2)} are the
transition functions14 of L and {ηγ} is a parition of unity of M subordinate to {Uγ}, then

c1(L) = − 1

2πi

∑
γ

d (ηγ d log(σγα)) on Uα for each α

where σαβ are thought of as complex valued functions by identifying SO(2) with S1 via[
cos θ − sin θ
sin θ cos θ

]
= eiθ and c1(L) is a closed form representing a cohomology class in H2

dR(M).

14The structure group of every smooth rank k vector bundle π : E → M can be reduced to the orthogonal
group O(k) using Gram-Schmidt process. This is also a key step of the proof of Theorem 32(a). Moreover, if the
vector bundle is orientable then the structure group can be further reduced to SO(k) [1, Proposition 6.4].
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Appendix A

Topology

A.1 Paracompact spaces

In this section some definitions and facts from [23, §39 and 41] will be stated. Here X denotes
a topological space.

Definition A.1 (Locally finite collection). Let X be a topological space. A collection U of
subsets of X is said to be locally finite in X if every point of X has a neighborhood that
intersects only finitely many elements of U .

Lemma A.1. Let U = {Uα}α∈A be a locally finite collection of subsets of X. Then

1. any subcollection of U is locally finite.

2. the collection V =
{
Uα
}
α∈A of the closures of the elements of U is locally finite.

3.
⋃
α∈A Uα =

⋃
α∈A U

Definition A.2 (Refinement of a collection). Let U = {Uα}α∈A be a collection of subsets of X.
A collection V = {Vβ}β∈B of subsets of X is said to be a refinement of U if for each element Vβ
of V, there is an element Uα of U containing Vβ .

Remark A.1. If elements of V are open sets, the V is called an open refinement of U ; if they
are closed, V is called a closed refinement.

Definition A.3 (Paracompact space). The space X is paracompact is every open covering U of
X has a locally finite open refinement V that covers X.

Remark A.2. In most algebraic geometry textbooks, following the lead of Bourbaki, the re-
quirement that the space be Hausdorff is included as part of the definition of the term compact
and paracompact. We shall not follow this convention.

Theorem A.1 (Shrinking lemma). Let X be a paracompact Hausdorff space; let U = {Uα}α∈A
be an indexed family of pen sets covering X. Then there exists a locally finite indexed family
V = {Vα}α∈A of open sets covering X such that Vα ⊆ Uα for each α.

Definition A.4 (Continuous partition of unity). Let U = {Uα}α∈A be an indexed open covering
of X. An indexed family of continuous functions {φα : X → [0, 1]} is said to be a continuous
partition of unity on X, dominated by {Uα}, if

1. supp(φα) ⊆ Uα for each α

2. the indexed family {supp(φα)}α∈A is locally finite
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3.
∑

α∈A φα(x) = 1 for each x ∈ X.

where supp(φα) is the closure of the set of those x ∈ X for which φα(x) 6= 0.

Theorem A.2. Let X be a paracompact Hausdorff space; let U = {Uα}α∈A be an indexed open
covering of X. Then there exists a continuous partition of unity on X dominated by {Uα}

A.2 Topological results for Cn

In this section, for the sake of completeness, the proofs of a few simple standard results1 for Cn
have been discussed.

Lemma A.2. If U is an open set in C, then there exists a sequence {Kn} of compact subsets
of U such that

1. Kn ⊂ int(Kn+1) for each n;

2.
⋃
n∈N

int(Kn) = U ; and

3. each bounded component of the complement of Kn contains a point of the complement of
U .

Proof. For each n ∈ N, define the open set,

Vn := ∆(∞;n) ∪
⋃

z∈C\U

∆

(
z;

1

n

)

where ∆(z; 1
n) = {w ∈ C : |z − w| < 1

n}, and ∆(∞, n) = {w ∈ C : |w| > n} is the “disk at ∞”.
Then we define

Kn := C \ Vn
which is a closed and bounded (hence compact2) subset of U for all n. Now we will verify the
three desired properties:

1. If z ∈ Kn and r = 1
n −

1
n+1 , then ∆(z; r) ⊂ Kn+1. The interior of Kn+1 is, by definition,

the largest open subset of Kn+1. Therefore, Kn ⊂
⋃
z∈Kn ∆(z; r) ⊂ int(Kn+1).

2. As n → ∞ we get Vn → C \ U . Therefore,
⋃
n∈N

Kn = U . Now since Kn ⊂ int(Kn+1), we

have
⋃
n∈N

int(Kn) = U .

3. We need to show that every bounded connected component C of Vn meets C\U . To prove
this, pick a w ∈ C. Note that w, being an element of Vn, must be contained in ∆(z; 1

n)
for some z ∈ C \ U or in ∆(∞;n). Since C is bounded, we have3 w ∈ ∆(z; 1

n) for some
z ∈ C \ U . Observe that C ∪ ∆(z; 1

n) is a connected subset of Vn, since it is the union
of two connected open subsets of Vn with non-empty intersection. Since C is a connected
component of Vn, we know that C is a maximal connected set of Vn. Therefore, ∆(z, 1

n)
must be contained in C. Hence C contains z, which is in C \ U .

1These results are also true for Rn.
2Note that Kn can be empty also.
3If C \ U 6= ∅ then there is no bounded component of Vn to begin with.
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Remark A.3. We can’t guarantee that the third property will hold for an unbounded compo-
nent, unless we replace C by the Riemann sphere4 C∪ {∞}. For example, if U = {z ∈ C : |z| >
1/2} then for n = 1 the unbounded connected component C = ∆(∞; 1) doesn’t intersect with
C \ U .

Lemma A.3. Let K be a compact subset of an open set U ⊂ Cn. Then there exists a real-valued
smooth function F (z) in Cn such that

1. 0 ≤ F (z) ≤ 1 for all z ∈ Cn;

2. F (z) = 1 for z ∈ K; and

3. F (z) = 0 for z ∈ Cn \ U .

Proof. Consider the following smooth5 function defined on R:

h(x) =

{
e
−1

(x−r) e
−1

(x−R) for r < x < R

0 otherwise

Consequently the function defined as6

g(x) =

∫ R
x
h(t) dt∫ R

r
h(t) dt

is a smooth function such that

1. 0 ≤ g(x) ≤ 1 for all x ∈ R;

2. g(x) = 1 for x ≤ r; and

3. g(x) = 0 for x ≥ R.

Next, consider the special case in which K is a closed ball of radius r centered at origin, and U
is an open ball of radius R > r, i.e.

K = {z ∈ Cn : |z| ≤ r} and U = {z ∈ Cn : |z| < R}

Then for z = (z1, . . . , zn) ∈ Cn, the function

f(z) = g(‖z‖) = g
(√
|z1|2 + · · ·+ |zn|2

)
satisfies the required conditions

1. 0 ≤ f(z) ≤ 1 for all z ∈ Cn;

2. f(z) = 1 for ‖z‖ ≤ r; and

3. f(z) = 0 for ‖z‖ ≥ R.
4The same construction works for the case of Riemann sphere. In fact we can prove a stronger statement: for

each n ∈ N, every connected component of C ∪ {∞} \Kn contains a connected component of C ∪ {∞} \ U . For
details, see [3, Proposition VII.1.2], there this theorem is used to prove Runge’s theorem.

5This is a standard exercise in real analysis, for example, see [32, Problem 1.2].
6The same construction can be used for bump functions on smooth manifolds, see [22, Lemma 2.1.8].
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Now for the general case, select a finite number of pairs of concentric balls Kj ⊂ Uj such that
K ⊂

⋃
Kj and Uj ⊂ U . Let fj(z) be the functions satisfying the desired conditions on these

pairs of balls, as constructed for the special case. Then the function

F (z) = 1−
∏
j

(1− fj(z))

is the desired function, hence completing the proof.

Theorem A.3. Let {Uα}α∈A be an open cover of an open subset U ⊂ Cn, then there is a
smooth partition of unity {ψk}∞k=1 with every ψk having compact support such that for each k,
supp(ψk) ⊂ Uα for some α ∈ A.

Proof. Since any open subset U ⊂ Cn is paracompact, every open covering {Uα} has a locally
finite refinement {Vk}. Then the smooth partition of unity {ψk} of U subordinate to {Vk} will
have compact support. For details, see [10, Appendix A].

Remark A.4. This result has also been used in Theorem 13. However, there we don’t require
the support to be compact.
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Appendix B

Direct limit

In this appendix some definitions and facts from [25, §73] and [26, §IV.2] will be stated.

Definition B.1 (Directed set). A directed set A is a set with relation < such that

1. α < α for all α ∈ A

2. α < β and β < γ implies α < γ

3. Given α and β, there exists δ such that α < δ and β < δ. The element δ is called an upper
limit for α and β.

Definition B.2 (Direct system). A direct system of abelian groups and group homomorphisms,
corresponding to the directed set A, is an indexed family {Gα}α∈A of abelian groups, along with
the family of homomorphisms {fαβ : Gα → Gβ}α,β∈A, α<β such that

1. fαα : Gα → Gα is identity

2. If α < β < γ then fβγ ◦ fαβ = fαγ ; i.e. the following diagram commutes:

Gα Gγ

Gβ

fαγ

fαβ fβγ

Definition B.3 (Direct limit). Given a directed set A and the associated direct system of
abelian groups and homomorphisms {(Gα, fαβ)}, the direct limit is defined to be the quotient

lim−→
α∈A

Gα =
∐
α∈A

Gα

/
∼

where, given gα ∈ Gα and gβ ∈ Gβ , gα ∼ gβ if there exists an upper bound δ of α and β such
that fαδ(gα) = fβδ(gβ). Also, gα ∼ gβ implies that they belong to same equivalence class, i.e.
JgαK = JgβK. The direct limit is again an abelian group under addition defined as

JgαK + JgβK := Jfαδ(gα) + fβδ(gβ)K

for some upper bound δ of α and β.

Remark B.1. Just as in case of definition of sheaf, the definition of direct limit can be gener-
alized to any category like groups, rings, modules, and algebras instead of abelian groups.
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Proposition B.1. Given a directed set A and the associated direct system {(Gα, fαβ)} of abelian
groups and homomorphisms such that all the maps fαβ are isomorphisms, then lim−→Gα is iso-
morphic to any one of the groups Gα.

Proposition B.2. Given a directed set A and the associated direct system {(Gα, fαβ)} of abelian
groups and homomorphisms such that all the maps fαβ are zero-homomorphisms, then lim−→Gα
is the trivial group. More generally, if for each α there is a β such that α < β and fαβ is the
zero homomorphism, then lim−→Gα is the trivial group.

Definition B.4 (Map of direct systems). Let A and B be two directed sets. Let {(Gα, fαβ)} and
{(G′γ , f ′γδ)} be the associated direct systems of abelian groups and homomorphisms, respectively.
A map of direct systems Φ = (φ, {φα}) : {(Gα, fαβ)} → {(G′γ , f ′γδ)} is a collection of maps such
that

1. the set map φ : A→ B that preserves order relation

2. for each α ∈ A, φα : Gα → G′φ(α) is a group homomorphism such that the following
diagram commutes

Gα G′γ

Gβ G′δ

φα

fαβ f ′γδ

φβ

for α < β, γ = φ(α) and δ = φ(β)

Definition B.5 (Direct limit of direct system homomorphisms). The map of direct systems
Φ : {(Gα, fαβ)} → {(G′γ , f ′γδ)} induces a homomorphism, called the direct limit of the homo-
morphisms φα

Φ→ : lim−→
α∈A

Gα → lim−→
γ∈B

G′γ

It maps the equivalence class of gα ∈ Gα to the equivalence class of φα(gα).

Theorem B.1 (Universal property of direct limits). Let A be a directed set and {(Gα, fαβ)} be
the associated direct system of abelian groups and homomorphisms. If G = lim−→α∈AGα, then the
inclusion iα : Gα ↪→

∐
α∈AGα induces a family of group homomorphisms {χα : Gα → G}α∈A.

If H is an abelian group such that for each α ∈ A there is a group homomorphism ψα : Gα → H
satisfying ψα = ψβ ◦ fαβ, whenever α < β. Then there exists a unique group homomorphism

Ψ : G→ H

satisfying ψα = Ψ ◦ χα for all α ∈ A.

Remark B.2. We observe that this universal property is a special case of the preceding con-
struction, in which second direct system consists of the single group H. Hence, we have Ψ = Ψ→.
One can also observe that the family of group homomorphisms {χα : Gα → G}α∈A satisfies the
condition χα = χβ ◦ fαβ for all α < β since the following diagram commutes

Gα G

Gβ G

χα

fαβ 1G

χβ
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Theorem B.2 (Direct limit is as an exact functor). Let A be a directed set1. Let {(G′α, f ′αβ)},
{(Gα, fαβ)} and {(G′′α, f ′′αβ)} be three direct systems of abelian groups and homomorphisms as-
sociated with A, with the maps of direct systems

Φ : {(G′α, f ′αβ)} → {(Gα, fαβ)} and Ψ : {(Gα, fαβ)} → {(G′′α, f ′′αβ)}

such that the sequence of abelian groups

G′α Gα G′′α
φα ψα

is exact for every α ∈ A. Then the induced sequence

lim−→
α∈A

G′α lim−→
α∈A

Gα lim−→
α∈A

G′′α
Φ→ Ψ→

is also exact.

Proof. Let G′ = lim−→
α∈A

G′α, G = lim−→
α∈A

Gα and G′′ = lim−→
α∈A

G′′α. We consider the commutative diagram,

for all α ∈ A
G′α Gα G′′α

G′ G G′′

φα

χ′α

ψα

χα χ′′α

Φ→ Ψ→

where χ′α, χα and χ′′α are the homomorphisms induced by the inclusion maps into the respective
disjoint union (as in Theorem B.1). Given to us is that imφα = kerψα for all α ∈ A.

Claim: im Φ→ = ker Ψ→
(ker Ψ→ ⊆ im Φ→) Let g ∈ G, then by the definition of direct limit there exists α ∈ A such that

for some gα ∈ Gα we have χα(gα) = g. Also, let Ψ→(g) = 0G′′ . By the commutative diagram
above, we have

χ′′α(ψα(gα)) = Ψ→(χα(gα)) = Ψ→(g) = 0G′′

The direct limit is a collection of equivalence classes, hence we have

χ′′α(ψα(gα)) = Jψα(gα)K = J0G′′αK

Since ψα(gα), 0G′′α ∈ G
′′
α, we have f ′′αδ(ψα(gα)) = f ′′αδ(0G′′α) = 0G′′δ for some δ such that α < δ.

But ψδ ◦ fαδ = f ′′αδ ◦ ψα, hence we have ψδ(fαδ(gα)) = 0G′′δ . Hence fαδ(gα) ∈ kerψδ = imφδ.
So there exist hδ ∈ G′δ such that φδ(hδ) = fαδ(gα). Using χα = χδ ◦ fαδ and commutativity of
diagram we get we get

g = χα(gα) = χδ(fαδ(gα)) = χδ(φδ(hδ)) = Φ→(χ′δ(hδ))

(im Φ→ ⊆ ker Ψ→) Suppose g ∈ im Φ→. Then g = Φ→(h), and by definition of direct limit we have
h = χ′α(hα) for some hα ∈ G′α. Now by the commutativity of diagram we have

g = Φ→(χ′α(hα)) = χα(φα(hα))

Since ψα ◦ φα = 0G′′α by exactness, we have

Ψ→(g) = Ψ→(χα(φα(hα))) = χ′′α(ψα(φα(hα))) = χ′′α(0G′′α) = 0G′′

Hence completing the proof.

1To avoid too many new symbols, let all the direct systems be associated with the same directed set, i.e.
A = B = C and φ = 1A.
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Appendix C

Algebra

C.1 Complexification of vector space

In this section some definitions and facts from [28, Chapter 14] will be stated.

Definition C.1 (Tensor product of vector spaces). Let U and V be vector spaces over a field F .
The tensor product U ⊗F V is a vector space over F equipped with a bilinear map f : U ×V →
U ⊗F V such that for each bilinear map from U × V to any vector space W over F there is a
unique linear map h : U ⊗ V →W making the following diagram commute.

U × V U ⊗F V

W

f

g
h

Remark C.1. We use the symbol ⊗ to denote the image of any ordered pair (u, v) under the
tensor map, i.e. u ⊗ v = f(u, v) for any u ∈ U and v ∈ V . Not all members of U ⊗F V are of
this form. In general, if {ui : i ∈ I} is a basis for U and {vj : i ∈ J} is a basis for V , then any
vector w ∈ U ⊗F V has a unique expression as a sum

w =
∑
i∈I

∑
j∈J

ri,j(ui ⊗ vj)

where only a finite number of the coefficients ri,j are non-zero.

Proposition C.1. For finite dimensional vector spaces U and V over a field F

dimF (U ⊗F V ) = dimF (U) dimF (V )

Proposition C.2 (Bilinearity on U×V equals linearity on U⊗F V ). Let U , V and W be vector
spaces over a field F . Let HomF (U, V ;W ) be the set of all bilinear maps from U ×V to W , and
HomF (U ⊗ V ;W ) be the set of all linear maps from U ⊗ V to W . Then the mediating map

φ : HomF (U, V ;W )→ HomF (U ⊗F V ;W )

g 7→ h

where h is the unique linear map satisfying g = h ◦ f for the tensor map f : U × V → U ⊗F V ,
is an isomorphism.

Proposition C.3 (Linear functionals on tensor product). Let U and V be finite dimensional
vector spaces over a field F . Then the linear transformation

ψ : U∗ ⊗F V ∗ → (U ⊗F V )∗
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defined by ψ(f ⊗ g)(u ⊗ v) = f(u)g(v), is an isomorphism. Thus, the tensor product of linear
functionals is a linear functional on tensor products.

Corollary C.1. For a finite dimensional vector spaces U and V over a field F , we have

U∗ ⊗F V ∗ ∼= HomF (U, V ;F )

Proof. From Proposition C.3 we know that U∗ ⊗F V ∗ ∼= (U ⊗F V )∗. Note that (U ⊗F V )∗ =
HomF (U⊗F V ;F ), hence we can use Proposition C.2 to conclude that U∗⊗F V ∗ ∼= (U⊗F V )∗ ∼=
HomF (U, V ;F )

Theorem C.1 (Extending the base field). Let V be vector space over a field F and K be a
finite extension of F . Then W = V ⊗F K is a vector space over K such dimK(W ) = dimF (V ).
Moreover, if WF is the vector space obtained by restricting the the scalar multiplication for W
to scalars from F , then WF contains an isomorphic copy of V .

Proof. Since K is a vector space over F , we can form the tensor product

WF = V ⊗F K

where all relevant maps are F -bilinear and F -linear. By definition of tensor product WF is a
vector space over F . However, since V is not a K-space, we can’t have a K-tensor product. We
just need to show that WF can be made into a vector space over K.

Claim: For α ∈ K, the scalar multiplication operation α(v ⊗ β) = v ⊗ (αβ) is well defined.
To prove the claim, we need to check that

v ⊗ β = w ⊗ γ ⇒ v ⊗ (αβ) = w ⊗ (αγ)

Note that for a fixed α, the map

g : V ×K → V ⊗F K
(v, β) 7→ v ⊗ (αβ)

is F -bilinear. Now the definition of tensor product implies that there exists a unique F -linear
map

h : V ⊗F K → V ⊗F K
v ⊗ β 7→ v ⊗ (αβ)

since the following diagram commutes

V ×K V ⊗F K

V ⊗F K

f

g
h

We define this map h to be scalar multiplication by α, under which W = V ⊗F K is a vector
space over the field K. Note that WF and W are identical as sets and as abelian groups, only
the scalar multiplication operation is different. Moreover, we recover WF from W simply by
restricting scalar multiplication to scalars from F .

If K is a degree d field extension of F , then using Proposition C.1 we get

dimF (WF ) = dimF (V ⊗F K) = dimF (V ) · d

Hence, if {vi : i ∈ I} is a basis for V , then {vi ⊗ 1} is a basis for W , that is,

dimK(W ) = dimF (V )

The map µ : V →WF defined by µ(v) = v ⊗ 1 is an injective F -linear map, so WF contains
an isomorphic copy of V .
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Remark C.2. We can also think of µ as mapping of V into W , in which case µ is called the
K-extension map of V .

Theorem C.2 (Extending the linear map). Let U and V be two vector spaces over the field F ,
with K-extension maps µU and µV , respectively. Then for any F -linear map τ : U → V , the
map τ ⊗ 1K : U ⊗F K → V ⊗F K is the unique K-linear map that makes the following diagram
commute

U V

U ⊗F K V ⊗F K

τ

µU µV

τ⊗1K

Thus, τ ⊗ 1K is the extension of the F -linear map τ to a K-linear map.

Definition C.2 (Complexification of a real vector space). To each real vector space V , we can
associate a complex vector space VC = V ⊗R C called the complexification of V .

Proposition C.4. Let V be a real vector space, and Ṽ = V ⊕ V be a complex vector space with
multiplication law (a+ ib) (v1, v2) = (av1 − bv2, bv1 + av2). Then there is a unique isomorphism
φ : Ṽ → VC of C-vector spaces which makes the diagram

V

Ṽ VC

µ

φ

commute. Explicitly,
φ(v1, v2) = v1 ⊗ 1 + v2 ⊗ i

Proof. Firstly we will verify that φ is C-linear

φ ((a+ ib)(v1, v2)) = φ (av1 − bv2, bv1 + av2)

= (av1 − bv2)⊗ 1 + (bv1 + av2)⊗ i
= a(v1 ⊗ 1)− b(v2 ⊗ 1) + b(v1 ⊗ i) + a(v2 ⊗ i)
= a(v1 ⊗ 1) + ib(v2 ⊗ i) + ib(v1 ⊗ 1) + a(v2 ⊗ i)
= a (v1 ⊗ 1 + v2 ⊗ i) + ib (v2 ⊗ i+ v1 ⊗ 1)

= (a+ ib) φ(v1, v2)

To show that φ is an isomorphism, we will write down the inverse map:

ψ : VC → Ṽ

v ⊗ α 7→ α(v, 0)

which is extended by linearity. Using the definition of scalar multiplication for VC we verify that
ψ is C-linear. Let β ∈ C then

ψ(β(v ⊗ α)) = ψ(v ⊗ βα)

= βα(v, 0)

= β ψ(v ⊗ α)

Finally, we show that φ and ψ are inverse of each other:

ψ (φ (v1, v2)) = ψ (v1 ⊗ 1 + v2 ⊗ i) = (v1, 0) + i (v2, 0) = (v1, 0) + (0, v2) = (v1, v2)

φ(ψ(v ⊗ α)) = φ(α(v, 0)) = αφ(v, 0) = α(v ⊗ 1) = v ⊗ α
Note that it suffices to verify φ ◦ ψ = 1VC for elementary tensors.
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Proposition C.5. The complexification of the dual space V ∗ of a real vector space V is naturally
isomorphic to the space of all R-linear maps from V to C. That is, (V ∗)C = V ∗ ⊗R C ∼=
HomR(V,C).

Proof. The isomorphism is given by

Φ : (V ∗)C → HomR(V,C)

ϕ1 ⊗ 1 + ϕ2 ⊗ i 7→ ϕ1 + iϕ2

where ϕ1 and ϕ2 are elements of V ∗ = HomR(V,R).

Corollary C.2. The complexification of the dual space V ∗ of a real vector space V is naturally
isomorphic to the dual of the dual space of VC. That is, (V ∗)C = (VC)∗.

Proof. Given a R-linear map ϕ : V → C, we can extend by linearity to obtain a C-linear map

ϕ̃ : VC → C
v ⊗ α 7→ αϕ(v)

This extension gives an isomorphism from HomR(V,C) to HomC(VC,C). The latter is just the
complex dual space to VC, hence giving the isomorphism (V ∗)C ∼= HomR(V,C) ∼= (VC)∗.

Remark C.3. More generally, given real vector spaces V andW there is a natural isomorphism

HomR(V,W )C ∼= HomC(VC,WC)

Proposition C.6. Complexification commutes with the operations of taking tensor products.
That is, if V and W are real vector spaces then there is a natural isomorphism (V ⊗R W )C ∼=
VC ⊗CWC, where the left-hand tensor product is taken over R while the right-hand one is taken
over C.

C.2 Linear complex structure

In this section some definitions and facts from [37, §I.3] and [12, §1.2] will be stated.

Definition C.3 (Complex structure). Let V be a real vector space and suppose that J is an
R-linear endomorphism J : V → V such that J2 = −1V . Then J is called a complex structure
on V .

Lemma C.1. If J is a complex structure on a real vector space V , then V admits in a natural
way the structure of a complex vector space.

Proof. We can equip V with the structure of a complex vector space in the following manner:

(α+ iβ)v := αv + βJ(v), α, β ∈ R, i =
√
−1

Thus scalar multiplication on V by complex numbers is well defined, and V becomes a complex
vector space.

Lemma C.2. If V is a complex vector space, then we can define a complex structure J on V
when it is considered as a real vector space.

Proof. Since V is a complex vector space and R ⊂ C, it can also be considered as a vector space
over R, and the operation of multiplication by i =

√
−1 is an R-linear endomorphism of V onto

itself, which we can call J ,

J : V → V

v 7→ iv

This is a complex structure.
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Remark C.4. Moreover, if {v1, . . . , vn} is a basis for V over C, then

{v1, . . . , vn, J(v1), . . . , J(vn)}

will be a basis for V over R, i.e. dimR(V ) = 2 dimC(V ). Hence a complex structure can only
exist on an even dimensional real vector space.

Definition C.4 (Standard complex structure on R2n). Let Cn be the usual Euclidean space of
n-tuples of complex numbers, {(z1, . . . , zn)}, and let zj = xj + iyj , j = 1, . . . , n, where xj , yj
are the real and imaginary parts. Then Cn can be identified with R2n = {(x1, y1, . . . , xn, yn)}.
Scalar multiplication by i in Cn induces a mapping J : R2n → R2n given by

J(x1, y1, . . . , xn, yn) = (−y1, x1, . . . ,−yn, xn)

and, with J2 = −1. This is the standard complex structure on R2n.

Remark C.5. Given a basis {e1, e2, . . . , en} for the complex space Cn, this set, together with
these vectors multiplied by i namely {ie1, ie2, . . . , ien} , form a basis for the real space R2n.
There are two natural ways to order this basis:

1. If one orders the basis as {e1, ie1, e2, ie2, . . . , en, ien} , then the matrix for the standard
complex structure J on R2n takes the block diagonal form:

J =



0 −1
1 0

0 −1
1 0

. . .
. . .

0 −1
1 0


2n×2n

2. On the other hand, if one orders the basis as {e1, e2, . . . , en, ie1, ie2, . . . , ien} , then the
matrix for the standard complex structure J on R2n takes the block-antidiagonal form:

J =

[
0 −In
In 0

]
2n×2n

Remark C.6. If J is a complex structure on V , then J ∈ GL(V ) where GL(V ) is the general
linear group1 of V . Moreover, the coset space2 GL(2n,R)/GL(n,C) determines all complex
structures on R2n by the mapping [A] 7→ A−1JA, where [A] is the equivalence class of A ∈
GL(2n,R).

Proposition C.7. Let V be a real vector space with a complex structure J . Then we have

VC = V 1,0 ⊕ V 0,1

where

V 1,0 = {w ∈ VC : (J ⊗ 1C)(w) = i · w} and V 0,1 = {w ∈ VC : (J ⊗ 1C)(w) = −i · w}

Moreover, the complex conjugation on VC, defined as v ⊗ α = v ⊗ α for v ∈ V and α ∈ C,
induces R-linear isomorphism V 1,0 ∼= V 0,1.

1If V is a vector space over the field F , GL(V ) or Aut(V ) is the group of all automorphisms of V , i.e. the set
of all bijective linear transformations from V onto V , together with functional composition as group operation.
If V has finite dimension n, then GL(V ) and GL(n, F ) are isomorphic.

2GL(n,C), is a complex Lie group of complex dimension n2. As a real Lie group (through realification) it
has dimension 2n2. In fact, we have GL(n,R) < GL(n,C) < GL(2n,R), which have real dimensions n2, 2n2 and
(2n)2 = 4n2. See, John Lee’s Introduction to Smooth Manifolds (2nd Edition), Example 7.18(d), p. 158.
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Proof. Note that J̃ = J ⊗ 1C is the C-linear extension of the R-linear map J , which still has
the property that J̃2 = −1VC . It follows that J̃ has two eigenvalues {i,−i}. Also, V 1,0 is
the eigenspace corresponding to the eigenvalue i and V 0,1 is the eigenspace corresponding to
−i. Since the minimal polynomial p(t) = t2 + 1 of J̃ is product of distinct linear factors, J̃ is
diagonalizable [28, Theorem 8.11]. Hence VC is the direct sum of eigenspaces corresponding to
the distinct eigenvalues [28, Theorem 8.10].

In particular, every vector w of VC can be written as :

w =
w − iJ̃(w)

2
+
w + iJ̃(w)

2

where (w − iJ̃(w))/2 is an eigenvector with eigenvalue i while (w + iJ̃(w))/2 is an eigenvector
with eigenvalue −i. Note that (

w − iJ̃(w)

2

)
=
w + iJ̃(w)

2

Hence, complex conjugation interchanges the two factors, and induces R-linear isomorphism
V 1,0 ∼= V 0,1.

Remark C.7. Note that the complex vector space obtained from V by means of the complex
structure J , denoted by VJ , is C-linear isomorphic to V 1,0. Hence we can identify VJ with V 1,0.

Proposition C.8. Let V be a real vector space endowed with a complex structure J . Then the
dual space V ∗ = HomR(V,R) has a natural complex structure given by J (f)(v) = f(J(v)) for
all f ∈ V ∗ and v ∈ V . The induced decomposition on (V ∗)C ∼= HomR(V,C) ∼= (VC)∗ is given by

(V ∗)C = (V ∗)1,0 ⊕ (V ∗)0,1

where

(V ∗)1,0 ∼= {f ∈ HomR(V,C) | f(J(v)) = if(v)} ∼= (V 1,0)∗

(V ∗)0,1 ∼= {f ∈ HomR(V,C) | f(J(v)) = −if(v)} ∼= (V 0,1)∗

C.3 Exterior algebra

By replacing bilinearity with multilinearity in Definition C.1, we can extend the definition of
tensor product to more than two vector spaces. In this section some facts about tensor spaces
will be stated from [28, Chapter 14] and [12, §1.2]. Unlike the rest of the thesis, here the letter
T denote “tensor” space instead of “tangent” space.

Definition C.5 ((p, q)-tensor). Let V be a finite dimensional vector space over a field F . For
non-negative integers p and q, the tensor product

T pq (V ) = V ⊗F · · · ⊗F V︸ ︷︷ ︸
p factors

⊗F V ∗ ⊗F · · · ⊗F V ∗︸ ︷︷ ︸
q factors

= V ⊗p ⊗ (V ∗)⊗q

where V ⊗k is k-fold tensor product of V with itself, is called the space of tensors of type (p, q),
where p is the contravariant type and q is the covariant type. If p = q = 0, then T pq (V ) = F .

Remark C.8. For a finite dimensional vector space V over a field F , we have V ∼= V ∗∗, hence
we can generalize Corollary C.1 to get:

T pq (V ) = V ⊗p ⊗F (V ∗)⊗q ∼= ((V ∗)⊗p ⊗F V ⊗q)∗ ∼= HomF

(
(V ∗)×p × V ×q, F

)
where V ×k is k-fold cartesian product of V with itself. Therefore, the k-tensor defined in
Definition 1.6 is in fact a (0, k)-tensor, i.e. a vector belonging to (V ∗)⊗k. In other words, as
seen in Remark 1.4, T 0

k (V ) = T k0 (V ∗) = Lk(V ).
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Proposition C.9. Let V be a finite dimensional vector space over a field F . Then

1. dimF (T pq (V )) = (dimF (V ))p+q

2. T pq (V )⊗ T rs (V ) ∼= T p+rq+s (V )

Definition C.6 (Tensor algebra). The external direct sum

T (V ) =

∞⊕
p=0

T p0 (V )

is a graded algebra, where T p0 (V ) are the elements of grade p. This graded algebra T (V ) is
called the tensor algebra over V .

Remark C.9. Since
T 0
q (V ) = (V ∗)⊗q = T q0 (V ∗)

there is no need to look separately at T 0
q (V ).

Definition C.7 (Antisymmetric tensor). Let V be a finite dimensional vector space and τ ∈
T p0 (V ). For each σ ∈ Sp, we have the isomorphism on T p0 (V ) defined as

λσ : T p0 (V )→ T p0 (V )

x1 ⊗ · · · ⊗ xp 7→ xσ(1) ⊗ · · · ⊗ xσ(p)

which we extend by linearity. A tensor τ ∈ T p0 (V ) is said to be antisymmetric (p, 0)-tensor if
λσ(τ) = (sgnσ)τ for all permutations σ ∈ Sp.

Remark C.10. The set of all antisymmetric (p, 0)-tensors∧p
(V ) := {τ ∈ T p0 (V ) | λσ(τ) = (sgnσ)τ for all σ ∈ Sp}

is a subspace of T p0 (V ), called the antisymmetric tensor space or exterior product space of degree
(p, 0) over V .

Remark C.11. Note that if char(F ) 6= 2 then alternating and skew symmetric tensors are
the same [28, pp. 391, 398]. Since we have F = R or C, the alternating k-tensor defined in
Definition 1.9 is in fact an antisymmetric (0, k)-tensor, i.e. a vector belonging to

∧k(V ∗). In
other words, as seen in Definition 1.37,

∧k(V ∗) = Ak(V ). Hence the definition and properties
of wedge product (or exterior product) stated in subsection 1.1.2, like dimF (

∧p(V )) =
(
n
p

)
and∧p(V ) = 0 for p > n where n = dimF (V ), hold here also.

Definition C.8 (Antisymmetric tensor algebra). The graded algebra

∧
(V ) =

n⊕
p=0

∧p
(V )

where dimF (V ) = n, is called antisymmetric tensor algebra or exterior algebra of V .

Proposition C.10. The exterior algebra of a direct sum is isomorphic to the tensor product of
the exterior algebras. That is, if V and W are vector spaces over a field F , then∧

(V ⊕W ) ∼=
∧

(V )⊗F
∧

(W )

This is a graded isomorphism; i.e.,∧k
(V ⊕W ) ∼=

⊕
p+q=k

∧p
(V )⊗F

∧q
(W )
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Proposition C.11. Complexification commutes with the operations of taking exterior powers.
That is, if V is a real vector space there is a natural isomorphism

(∧p
R V
)
C
∼=
∧p

C (VC), where
the left-hand exterior power is taken over R while the right-hand one is taken over C.

Remark C.12. If V is endowed with a complex structure J , then we introduce the notation∧p,q
V :=

∧p
(V 1,0)⊗C

∧q
(V 0,1)

where VC = V 1,0 ⊕ V 0,1 as shown in Proposition C.7. Hence we have∧k
VC ∼=

⊕
p+q=k

∧p,q
V

Definition C.9 (Natural projection). With respect to the direct sum decomposition of
∧
VC =⊕n

k=0

∧k VC one defines the natural projections

Πk :
∧

VC →
∧k

VC and Πp,q :
∧

VC →
∧p,q

V

Remark C.13. The operator Πk does not depend on the complex structure J , but the operator
Πp,q certainly do.
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Appendix D

Analysis

D.1 Several variable holomorphic functions

In this section some definitions and facts from [10, §I.A], [12, §1.1] and [15, §1.2] will be stated.

Definition D.1 (Open polydisc). An open polydisc or open polycylinder in Cn is a subset
∆(z; r) ⊂ Cn of the form

∆(z; r) = ∆(z1, . . . , zn; r1, . . . , rn) = {w ∈ Cn : |wj − zj | < rj , 1 ≤ j ≤ n}

Definition D.2 (Closed polydisc). The closure of ∆(z; r) is called the closed polydisc with
center z and polyradius r, and is denoted by ∆(z; r).

Remark D.1. The open polydiscs form a basis for the product topology on Cn. Considered
only as a topological space (or as a real vector space), Cn is the same as R2n, the ordinary
Euclidean space of 2n dimensions.

Definition D.3 (Several variable holomorphic function). A complex-valued function f defined
on an open subset U ⊂ Cn is called holomorphic in U if each point w = (w1, . . . , wn) ∈ U has
an open neighborhood W , w ∈W ⊂ U , such that the function f has a power series expansion

f(z) = f(z1, . . . , zn) =
∞∑

j1,...,jn=0

aj1...jn(z1 − w1)j1 · · · (zn − wn)jn

which converges for all z ∈W .

Remark D.2. The set of all complex-valued functions holomorphic in U is denoted by O(U).
Clearly, if f is holomorphic in U ⊂ Cn, then f is smooth in U , i.e. f ∈ O(U) implies that
f ∈ C∞(U).

Proposition D.1. If a complex-valued function f is holomorphic in an open subset U ⊂ Cn,
then it is continuous in U and is holomorphic in each variable separately.

Proof. The function f has a power series expansion of the form

f(z) = f(z1, . . . , zn) =
∞∑

j1,...,jn=0

aj1...jn(z1 − w1)j1 · · · (zn − wn)jn

which is absolutely uniformly convergent in all suitably small open polydiscs ∆(w; r) [3, The-
orem III.1.3]. Therefore, the function f is continuous in such polydiscs ∆(w; r), and hence
any function holomorphic in U is also continuous in U . Moreover, the power series can be
rearranged arbitrarily and will still represent the function f . In particular, if the coordinates

101



z1, . . . , zj−1, zj+1, . . . , zn are given any fixed values a1, . . . , aj−1, aj+1, . . . , an, then this power
series can be rearranged as a convergent power series in the variable zj alone, for zj sufficiently
close to wj and each ak sufficiently close to zk for k = 1, . . . , j − 1, j + 1, . . . , n. Therefore,
the function f is holomorphic in each variable separately throughout the domain in which it is
analytic.

Definition D.4 (Complex partial differential operators). As in Definition 3.4, we define the
following two first-order linear partial differential operators

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
and

∂

∂zj
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
for zj = xj + iyj and j = 1, . . . , n.

Remark D.3. The previous result implies that the operation ∂/∂zj is well-defined for each
complex-valued holomorphic function. Therefore, when applied to holomorphic functions, the
operator ∂/∂zj coincides with the ordinary complex derivative with respect to one of the variables
zj . For example,

∂

∂zj
znj =

1

2

(
∂

∂xj
− i ∂

∂yj

)
(xj + iyj)

n

=
1

2

(
∂

∂xj
(xj + iyj)

n − i ∂
∂yj

(xj + iyj)
n

)
=

1

2

(
n(xj + iyj)

n−1 − i · n(xj + iyj)
n−1i

)
= n(xj + iyj)

n−1

= nzn−1
j

Proposition D.2 (Cauchy formula for polydisc). Let w ∈ Cn and f be a complex-valued
holomorphic function in an open neighborhood of a closed polydisc ∆(w; r). Then, for any
z ∈ ∆(w; r), it holds that

f(z) =
1

(2πi)n

∫
|ζn−wn|=rn

· · ·
∫

|ζ1−w1|=r1

f(ζ)dζ1 · · · dζn
(ζ1 − z1) · · · (ζn − zn)

Proof. From the previous result we know that f is holomorphic in each variable in an open
neighborhood of ∆(w; r). By repeated application of Cauchy integral formula for functions of
one variable leads to the formula

f(z) =
1

2πi

∫
|ζn−wn|=rn

f(z1, . . . , zn−1, ζn)

ζn − zn
dζn

=
1

(2πi)2

∫
|ζn−wn|=rn

dζn
ζn − zn

∫
|ζn−1−wn−1|=rn−1

f(z1, . . . , ζn−1, ζn)

ζn−1 − zn−1
dζn−1

...

...

=
1

(2πi)n

∫
|ζn−wn|=rn

dζn
ζn − zn

· · · · · ·
∫

|ζ1−w1|=r1

f(ζ1, . . . , ζn−1, ζn)

ζ1 − z1
dζ1

102



for all z ∈ ∆(w; r). For any fixed point z = (z1, . . . , zn), from the the previous result, it follows
that this integrand is continuous on the compact domain of integration. Hence the iterated
integral can be replaced by a single multiple integral

f(z) =
1

(2πi)n

∫
|ζn−wn|=rn

· · ·
∫

|ζ1−w1|=r1

f(ζ)dζ1 · · · dζn
(ζ1 − z1) · · · (ζn − zn)

completing the proof.

Theorem D.1 (Osgood’s lemma). If a complex-valued function f is continuous in an open set
U ⊂ Cn and is holomorphic in each variable separately, then it is holomporphic in U .

Proof. Select any point w ∈ U and any closed polydisc ∆(w; r) ⊂ U . Since f is holomorphic in
each variable separately in an open neighborhood of ∆(w; r), a repeated application of Cauchy
integral formula leads to the formula

f(z) =
1

(2πi)n

∫
|ζ1−w1|=r1

dζ1

ζ1 − z1
· · · · · ·

∫
|ζn−wn|=rn

dζn
ζn − zn

f(ζ)

for all z ∈ ∆(w; r). For any fixed point z = (z1, . . . , zn), this integrand is continuous on the
compact domain of integration. Hence the iterated integral can be replaced by a single multiple
integral

f(z) =
1

(2πi)n

∫
|ζ1−w1|=r1

· · ·
∫

|ζn−wn|=rn

f(ζ)dζ1 · · · dζn
(ζ1 − z1) · · · (ζn − zn)

(D.1)

Note that |zj − wj | < |ζj − wj | for all j = 1, . . . , n. Therefore, we have

∞∑
k=0

(
zj − wj
ζj − wj

)k
=

1

1− zj−wj
ζj−wj

=
ζj − wj
ζj − zj

∀j = 1, . . . , n

Hence for a fixed z ∈ ∆(w; r), we have the following absolutely uniformly convergent series
expansion for all points ζ on the domain of integration

1

(ζ1 − z1) · · · (ζn − zn)
=

∞∑
k1,...,kn=0

(z1 − w1)k1 · · · (zn − wn)kn

(ζ1 − w1)k1+1 · · · (ζn − wn)kn+1
(D.2)

Using (D.2) in (D.1), and interchanging the orders of summation and integration, we get the
power series expansion of f

f(z) =
1

(2πi)n

∫
|ζ1−w1|=r1

· · ·
∫

|ζn−wn|=rn

f(ζ)dζ1 · · · dζn
∞∑

k1,...,kn=0

(z1 − w1)k1 · · · (zn − wn)kn

(ζ1 − w1)k1+1 · · · (ζn − wn)kn+1

=
∞∑

k1,...,kn=0

ak1...kn(z1 − w1)k1 · · · (zn − wn)kn

where ak1...kn =
1

(2πi)n

∫
|ζ1−w1|=r1

· · ·
∫

|ζn−wn|=rn

f(ζ)dζ1 · · · dζn
(ζ1 − w1)k1+1 · · · (ζn − wn)kn+1

Therefore, f is a holomorphic function in U .

Remark D.4. The hypothesis that the function f be continuous in U is not required, i.e.
Goursat’s theorem [3, §IV.8] can be generalized to several variables. However, this stronger
result, called Hartogs’s theorem, is much more difficult to prove [15, Theorem 1.2.5].
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Corollary D.1. The power series expansion of a holomorphic function f : U → C at w ∈ U ⊂
Cn is uniquely determined by that function and it converges within the polydisc ∆(w; r) contained
in U .

Proof. By differentiating (D.1) it follows that

∂k1+···+knf(z)

∂zk11 · · · ∂z
kn
n

=
k1! · · · kn!

(2πi)n

∫
|ζ1−w1|=r1

· · ·
∫

|ζn−wn|=rn

f(ζ)dζ1 · · · dζn
(ζ1 − z1)k1+1 · · · (ζn − zn)kn+1

Comparing this with the final statement of the above theorem, we get

ak1...kn =
1

k1! · · · kn!

∂k1+···+knf(w)

∂wk11 · · · ∂w
kn
n

Therefore, all the power series expansion convergent within any fixed compact subset of ∆(w; r)
must coincide.

Theorem D.2 (Cauchy-Riemann criterion). A complex-valued smooth1 function f defined in
an open subset U ⊂ Cn is holomorphic in U if and only if it satisfies the system of partial
differential equations

∂

∂zj
f(z) = 0, ∀ j = 1, . . . , n

Proof. At any point in U , we consider f(z) to be a function of the single variable zj , holding
the other variables constant. Next, we decompose f into its real and imaginary parts by writing
f(z) = u(z) + iv(z), and observe that

∂

∂zj
f(z) =

1

2

(
∂

∂xj
+ i

∂

∂yj

)
(u(z) + iv(z)) =

1

2

(
∂u

∂xj
− ∂v

∂yj

)
+
i

2

(
∂u

∂yj
+

∂v

∂xj

)
Therefore, ∂f(z)/∂zj = 0, for all j = 1, . . . , n is equivalent to the classical Cauchy-Riemann
equations for each variable separately. This is equivalent to the function f being holomorphic in
each variable separately. The desired result follows from Proposition D.1 and Theorem D.1.

Remark D.5. The transition from the real partial differentials to the complex partial differen-
tials can be illustrated for the simplest case. For some open set U ⊂ C = R2, consider the differ-
entiable map f : U → R2 such that f(x, y) = (u(x, y), v(x, y)). Then the total derivative2 Df(w)
at point w = (r, s) ∈ U is a R-linear map between tangent spaces Df(w) : TwR2 → Tf(w)R2.
With respect to the standard basis we get the real Jacobian matrix

Df(w) =


∂u

∂x

∣∣∣∣
w

∂u

∂y

∣∣∣∣
w

∂v

∂x

∣∣∣∣
w

∂v

∂y

∣∣∣∣
w


Next, we extend Df(w) to a C-linear map D̃f(w) : TwR2 ⊗R C→ Tf(w)R2 ⊗R C. If we consider
f = u+ iv and z = x+ iy, then with respect to the new basis we get the complexified Jacobian
matrix

D̃f(w) =


∂f

∂z

∣∣∣∣
w

∂f

∂z

∣∣∣∣
w

∂f

∂z

∣∣∣∣
w

∂f

∂z

∣∣∣∣
w

 =


∂f

∂z

∣∣∣∣
w

∂f

∂z

∣∣∣∣
w(

∂f

∂z

∣∣∣∣
w

) (
∂f

∂z

∣∣∣∣
w

)


1That is, continuously differentiable in the underlying real coordinates of Cn. In other words, f ∈ C∞(U).
2This is same as what we defined as pushforward of a vector in Definition 1.5.
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Therefore, if f is holomorphic, then the differential in the new base system is given by the
diagonal matrix 

∂f

∂z

∣∣∣∣
w

0

0
∂f

∂z

∣∣∣∣
w


Proposition D.3. Let U be an open set in Cn. Then:

1. O(U) is a ring under the operations (f + g)(z) = f(z) + g(z) and (fg)(z) = f(z)g(z).

2. If f ∈ O(U) and is nowhere vanishing, then 1/f ∈ O(U)

3. If f ∈ O(U) and is real-valued or has constant modulus, then f is constant.

Theorem D.3 (Identity theorem). Let U be a connected open set in Cn and f, g ∈ O(U). If
f(z) = g(z) for all points z in an open subset V ⊂ U , then f(z) = g(z) for all points z ∈ U .

Proof. This is a straight-forward generalization of the single-variable identity theorem, see [10,
Theorem I.A.6] for the proof.

Theorem D.4 (Hartogs’s extension theorem). Let U ⊂ Cn for n > 1 be a bounded open set and
K be a compact subset U with the property that U \ K is connected. If f is a complex-valued
holomorphic function on U \K, then there is a unique complex-valued holomorphic function F
on U such that F |U\K = f .

Proof. The proof involves a typical ∂-argument as seen in the proof of ∂-Poincaré lemma, see
[15, Theorem 1.2.6] and [31, §2.2].

Remark D.6. This extension does not hold when n = 1. For example, consider the function
f(z) = 1/z, which is clearly holomorphic in C \ {0}, but cannot be continued as a holomorphic
function on the whole C.

This extension also does not hold when U \K is not connected. For example, consider the
open ball U = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1} and the compact set K = {(z1, z2) ∈ C2 :
|z1|2 + |z2|2 = 1/2}. Then U \K = U1 ∪ U2 where

U1 := {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1/2}
U2 := {(z1, z2) ∈ C2 : 1/2 < |z1|2 + |z2|2 < 1}

such that U1 ∩ U2 = ∅. Now consider the holomorphic function f defined on U \K as

f(z) =

{
0 if z ∈ U1

1 if z ∈ U2

But this clearly can’t be extended to a holomorphic function on U .

D.2 Algebraic properties of Ow
In this section some definitions and facts from [15, §6.4], [10, §II.A, II.B] and [12, §1.1] will be
stated.

Definition D.5 (Ring of germs of holomorphic functions). For w ∈ Cn, consider the set

Ow := {(U, f)|w ∈ U ⊂ Cnopen , f ∈ O(U)}/ ∼

where (U, f) ∼ (V, g) if ∃W open, w ∈ W such that W ⊂ V ∩ U and f |W = g|W . The
representative function of an equivalence class is called a germ of holomorhic functions at w and
Ow is called the ring of germs of holomorphic functions at w ∈ Cn with the following operations:
[(U, f)] + [(V, g)] := [(U ∩ V, f + g)] and [(U, f)] · [(V, g)] := [(U ∩ V, fg)].
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Remark D.7. The ring Ow is a commutative ring with an identity element. The zero of this
ring is the germ of the function which vanishes identically, and the identity of the ring is the
germ of the function which is identically one.

Lemma D.1. Ow is an integral domain.

Proof. Consider two arbitrary germs [(U, f)] and [(V, g)] such that

[(U, f)] · [(V, g)] = [(U ∩ V, fg)] = [(W, 0)]

for some open neighborhoodW of w. Hence f(z)g(z) = 0 in some connected open neighborhood
W ′ ⊂W ∩V ∩U of w. If f(z0) 6= 0 for a single point z0 ∈W ′, then by continuity f(z) 6= 0 in an
open neighborhood of z0 and therefore g(z) = 0 in that open neighborhood. By Theorem D.3,
therefore, it follows that g(z) = 0 in W ′, hence that (V, g) ∼ (W ′, 0).

Lemma D.2. A germ [(U, f)] ∈ Ow is a unit if and only if f(w) 6= 0.

Proof. We need to show that the multiplicative inverse of [(U, f)] exists if and only if f does
not vanish at w. Suppose that [(U, f)] ∈ Ow such f(w) 6= 0. By continuity, f(z) 6= 0 in an open
neighborhood V ⊂ U of w; and hence 1/f(z) is continuous in V and is holomorphic in each
variable separately in V . An application of Proposition D.3(2) shows that 1/f(z) is holomorphic
in V , hence [(V, 1/f)] ∈ Ow.

Lemma D.3. Ow is a local ring.

Proof. Since a germ [(U, f)] is a unit if and only if f(w) 6= 0, any proper ideal a of Ow consists
only of germs which vanish at w. So the unique maximal ideal in Ow is

m := {[(U, f)] ∈ Ow|f(w) = 0}

Therefore, Ow is a local ring.

Definition D.6 (Order of a holomorphic function). Let f be a holomorphic function in a
neighborhood of w in Cn such that

f(z) = f(z1, . . . , zn) =

∞∑
j1,...,jn=0

aj1...jn(z1 − w1)j1 · · · (zn − wn)jn

Then the order of f is defined to be the least value of j1 + . . .+ jn for which aj1...jn 6= 0, i.e.

ord(f) := min{j1 + . . .+ jn|aj1...jn 6= 0}

Remark D.8. If ord(f) = k, then there exists a non-singular linear change of coordinates so
that in the new coordinates, the coefficient of zkn is 1. When f is of this form it is said to be
normalized (with respect to the variable zn) of order k.

Definition D.7 (Weierstrass polynomial). A function W , holomorphic in a neighborhood of
w ∈ Cn is called a Weierstrass polynomial of degree m, if we have

W (z1, . . . , zn) = W (z′, zn) = zmn + am−1(z′)zm−1
n + . . .+ a1(z′)zn + a0(z′)

where z′ = (z1, . . . , zn−1) and aj are holomorphic functions in a neighborhood of
w′ = (w1, . . . , wn−1) ∈ Cn−1 and aj(0) = 0 for j = 0, . . . ,m− 1.

Remark D.9. If we denote the ring of germs of holomorphic functions in the variables
z1, . . . , zn−1 by Ow′ , then3 the Weierstrass polynomial W ∈ Ow′ [zn] such that the coefficients
are non-unit elements of Ow′ . Note that Ow′ ⊂ Ow′ [zn] ⊂ Ow.

3From now onwards we will abuse the notation for germs, i.e. instead of writing [(U, f)] ∈ Ow we will simply
write f ∈ Ow such that f is an holomorphic function in an open neighborhood of w.
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Theorem D.5 (Weierstrass preparation theorem). Let f be a normalized holomorphic function
of order k in a neighborhood of w ∈ Cn. Then in a small neighborhood of w, f can be written
uniquely as

f(z) = u(z) ·W (z)

where u ∈ Ow is a unit and W ∈ Ow′ [zn] is a Weierstrass polynomial of degree k.

Proof. To prove this we will need Hartogs’s extension theorem [15, Theorem 6.4.5] or Riemann
extension theorem [10, Theorem II.B.2].

Theorem D.6 (Weierstrass division theorem). Let W ∈ Ow′ [zn] be a Weierstrass polynomial in
zn of degree k. Then any f ∈ Ow can be written in a unique manner in the form f = g ·W + r,
for some g ∈ Ow and r ∈ Ow′ [zn] a polynomial of degree less than k. Moreover, if f ∈ Ow′ [zn]
then necessarily g ∈ Ow′ [zn].

Proof. For a proof, see [10, Theorem II.B.3].

Lemma D.4. A Weierstrass polynomial W ∈ Ow′ [zn] is reducible over Ow if and only if it
is reducible over Ow′ [zn]. Moreover, if W is reducible, then all of its non-unit factors are
Weierstrass polynomials of Ow′ [zn].

Proof. (⇒) Suppose that W is reducible over Ow, and write W = f1f2 for some non-units
f1, f2 ∈ Ow. Since W is a Weierstrass polynomial, it is normalized and hence both f1 and f2

are also normalized. Applying Theorem D.5, we get f1 = u1W1 and f2 = u2W2 for some units
u1, u1 ∈ Ow and Weierstrass polynomials W1,W2 ∈ Ow′ [zn]. Thus W = (u1u2)(W1W2). But
since W1W2 is also a Weierstrass polynomial, the uniqueness part of the Theorem D.5 implies
that4 u1u1 = 1 and W1W2 = W . Therefore W is reducible in the ring of polynomials Ow′ [zn]
as well, and its factors are Weierstrass polynomials.

(⇐) Suppose that W is reducible over Ow′ [zn], and write W = g1g2 for some non-units
g1, g2 ∈ Ow′ [zn]. If g1 was a unit in Ow, then W/g1 = g2 and by the application of Theorem D.6
it would follow that 1/g1 ∈ Ow′ [zn]. This is impossible, since g1 is a non-unit element of Ow′ [zn].
Therefore g1 is a non-unit element of Ow. Similarly, g2 is non-unit element of Ow. Therefore,
W is reducible in Ow as well.

Theorem D.7. The local ring Ow is a unique factorization domain.

Proof. Note that for any fixed point w ∈ Cn the linear change of variable ζj = zj −wj induces a
canonical isomorphism between the rings Ow and O0. Hence, for the local theory, it is sufficient
to consider only the ring O0 for 0 ∈ Cn. We will proceed by induction on n.

For n = 1, the theorem is trivial: if f ∈ O0 has order k then f(z) = zkg(z) where g(0) 6= 0,
so that g is a unit in O0.

Let On−1
0 denote the ring of germs of holomorphic functions at 0 ∈ Cn−1. We will continue

the abuse of notations by writing g ∈ On−1
0 instead of [(U, g)] ∈ On−1

0 . Now assume that the
result is true for n − 1, i.e. On−1

0 is a unique factorization domain. Let f ∈ On0 . Without loss
of generality, we can assume that f is normalized of order k. Then by Theorem D.5 we have
f = u ·W , where W ∈ On−1

0 [zn]. From Gauss Lemma5 it follows that On−1
0 [zn] is a unique

factorization domain, and W = W1 · · ·Wm where Wj ∈ On−1
0 [zn] are irreducible elements. By

Lemma D.4, it follows that the Wj ’s are Weierstrass polynomials. Therefore, f = u ·W1 · · ·Wm.
If f could also be written as f = V1 · · ·V`, then we apply Theorem D.5 to each Vj ∈ On0 to obtain
Vj = u′j ·W ′j , that is, f = u′ ·W ′1 · · ·W ′`, where u′ is a unit and W ′j ∈ O

n−1
0 [zn] are Weierstrass

4Here again we are abusing notations. Actually, the constant function 1 and u1u2 will represent the same
equivalence class in Ow, and W1W2 and W will represent same equivalence class in Ow′ [zn]. That is, in some
small enough neighborhood of w, all these equalities, like W = f1f2, will hold.

5It implies that R is a unique factorization domain if and only if R[x] is a unique factorization domain. For
proof, see Theorem 9.3.7 on p. 304 of Dummit and Foote’s book “Abstract Algebra”.
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polynomials. Since there is only one way to write f as a unit times a Weierstrass polynomial,
we conclude that

W1 · · ·Wm = W ′1 · · ·W ′`
By induction hypothesis On−1

0 [zn] is a unique factorization domain, and hence {W1, . . . ,Wm} =
{W ′1, . . . ,W ′`}.

D.3 Several variable holomorphic mappings

In this section some definitions and facts from [10, §I.A, I.B], [12, §1.1] and [6, §I.7] will be
stated.

Definition D.8 (Several varaible holomorphic mapping). Let U ⊂ Cn be an open set, and
g : U → Cm be any mapping such that

g(z) = g(z1, . . . , zn) = (g1(z), . . . , gm(z))

where gj : U → C for all j = 1, . . . ,m. The mapping g is called a holomorphic mapping if the
m complex-valued functions g1, . . . , gm are holomorphic in U .

Proposition D.4 (Chain rule). Let U ⊂ Cn and V ⊂ Cm be open subsets. If g : U → V is a
holomorphic mapping and f : V → C is a holomorphic function, then

∂(f ◦ g)

∂zj
=

m∑
k=1

(
∂f

∂wk

∂gk
∂zj

+
∂f

∂wk

∂gk
∂zj

)
and

∂(f ◦ g)

∂zj
=

m∑
k=1

(
∂f

∂wk

∂gk
∂zj

+
∂f

∂wk

∂gk
∂zj

)
where wk = gk(z1, . . . , zn) for k = 1, . . . ,m.

Proof. We have the following composite maps

U V C

(z1, . . . , zn) (w1, . . . , wm) f(w)

g f

where wk = gk(z1, . . . , zn) for k = 1, . . . ,m. We can separate each gk into real and imaginary
parts by writing gk(z) = uk(z) + ivk(z). Since all the functions involved are differentiable in the
underlying real coordinates, the usual chain rule for differentiation can be applied as follows:

∂(f ◦ g)

∂zj
=

m∑
k=1

(
∂f

∂uk

∂uk
∂zj

+
∂f

∂vk

∂vk
∂zj

)

=
m∑
k=1

1

2

(
∂f

∂uk
− i ∂f

∂vk

)
∂gk
∂zj

+
m∑
k=1

1

2

(
∂f

∂uk
+ i

∂f

∂vk

)
∂gk
∂zj

=
m∑
k=1

(
∂f

∂wk

∂gk
∂zj

+
∂f

∂wk

∂gk
∂zj

)
Similarly we can prove for ∂/∂z.

Corollary D.2. Let U ⊂ Cn and V ⊂ Cm be open subsets. If g : U → V is a holomorphic
mapping and f : V → C is a holomorphic function, then the composition f ◦ g ∈ O(U).

Definition D.9 (Several complex variables biholomorphic mapping). Let U, V ⊂ Cn be two
open sets. A holomorphic mapping f : U → V is called biholomorphic if it is bijective and its
inverse f−1 : V → U is also holomorphic.
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Definition D.10 (Jacobian matrix of a holomorphic mapping). Let g : U → Cm be a holomor-
phic mapping, where U is an open subset of Cn. The Jacobian matrix of the mapping g at a
point w ∈ U is defined to be the matrix

Jac(g)(w) :=

[
∂gj

∂zk

∣∣∣∣
w

]
1≤j≤m
1≤k≤n

Remark D.10. This Jacobian matrix is also related to the complexified Jacobian matrix for
total derivative discussed in Remark D.5. For some open set U ⊂ Cn = R2n, consider the
differentiable map f : U → Cm = R2m such that

g(z) = g(z1, . . . , zn) = g(x, y) =
(
u1(x, y), . . . , um(x, y), v1(x, y), vm(x, y)

)
where x = (x1, . . . , xn), y = (y1, . . . , yn). Then the total derivativeDg(z) at point w = (r, s) ∈ U
is a R-linear map between tangent spaces Dg(w) : TwR2n → Tf(w)R2m. With respect to the
standard basis we get the real Jacobian matrix

Dg(w) =


[
∂uj

∂xk

∣∣∣∣
w

]
j,k

[
∂uj

∂yk

∣∣∣∣
w

]
j,k[

∂vj

∂xk

∣∣∣∣
w

]
j,k

[
∂vj

∂xk

∣∣∣∣
w

]
j,k


Next, we extend Dg(w) to a C-linear map D̃g(w) : TwR2n⊗RC→ Tf(w)R2m⊗RC. If we consider
gj = uj + ivj for all j = 1, . . . ,m and zk = xk + iyk for k = 1, . . . , n, then with respect to the
new basis we get the complexified Jacobian matrix

D̃g(w) =


[
∂gj

∂zk

∣∣∣∣
w

]
j,k

[
∂gj

∂zk

∣∣∣∣
w

]
j,k[

∂gj

∂zk

∣∣∣∣
w

]
j,k

[
∂gj

∂zk

∣∣∣∣
w

]
j,k


Therefore, if g is holomorphic, then the differential in the new base system is given by the
diagonal matrix [

Jac(g)(w) 0

0 Jac(g)(w)

]
In particular, for a holomorphic function g we have

det (Dg(w)) = det (Jac(g)(w)) det
(

Jac(g)(w)
)

= |det (Jac(g)(w))|2 ≥ 0

Proposition D.5. Let g : U → V be a bijective holomorphic map between two open subsets U
and V of Cn. Then Jac(g)(w) 6= 0 for all w ∈ U . In particular, g is biholomorphic.

Proof. The proof involves the use of Implicit Function Theorem6. For complete proof, see [12,
Proposition 1.1.13].

Remark D.11. Recall that the product topology on Cn = R2n is equivalent to the metric
topology, i.e. topology generated by open polydiscs is same as the one generated by open balls.
Next, observe that the unit open ball B(0, 1) and unit open polydisc ∆(0; 1) are diffeomorphic:

6For the exact statement and proof, see [10, Theorem I.B.5], [12, Proposition 1.1.11] and [6, Theorem I.7.6].
The proof of the implicit function theorem is a special case of the Weierstrass preparation theorem, discussed in
the previous section.
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1. B(0, 1) is diffeomorphic to R2n and the diffeomorphism is given by the map

φ : B(0, 1)→ R2n

x 7→ x√
1− ‖x‖2

2. If g : (−1, 1)→ R is any diffeomorphism, then

ψ : ∆(0; 1)→ R2n

(x1, . . . , x2n) 7→ (g(x1), . . . , g(x2n))

is a smooth map with smooth inverse. Hence ∆(0; 1) is also diffeomorphic to R2n.

However, they are not biholomorphic for n > 1 [15, §0.3.2].
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