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Lemma. For n a positive integer, the largest of the binomial coefficients(
n

0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n

)
is (

n

bn/2c

)
=

(
n

dn/2e

)
Proof. Consider the quotient of successive binomial coefficients in the sequence. Let k be an integer
with 1 ≤ k ≤ n. Then (

n
k

)(
n

k−1
) =

n− k + 1

k

Hence we have three cases:

Case 1:
(

n
k−1
)
<
(
n
k

)
if k < n− k + 1

Now, k < n− k + 1 if and only if k < (n+ 1)/2.
If n is even, then, since k is an integer, k < (n+ 1)/2 is equivalent to k ≤ n/2. Thus(

n

0

)
<

(
n

1

)
< . . . <

(
n

n/2

)
If n is odd, then k < (n+ 1)/2 is equivalent to k ≤ (n− 1)/2.(

n

0

)
<

(
n

1

)
< . . . <

(
n

(n− 1)/2

)
Case 2:

(
n

k−1
)

=
(
n
k

)
if k = n− k + 1

Observe that k = n− k + 1 if and only if 2k = n+ 1. If n is even, 2k 6= n+ 1 for any k. Thus,
for n even, no two consecutive binomial coefficients in the sequence are equal.
If n is odd, then 2k = n + 1, for k = (n + 1)/2. For n odd, the only two consecutive binomial
coefficients of equal value are(

n

(n− 1)/2

)
and

(
n

(n+ 1)/2

)
Case 3:

(
n

k−1
)
>
(
n
k

)
if k > n− k + 1

Now, k > n− k + 1 if and only if k > (n+ 1)/2.
If n is even, then, since k is an integer, k > (n+ 1)/2 is equivalent to k ≥ n/2. Thus(

n

n/2

)
> . . . >

(
n

n− 1

)
>

(
n

n

)
If n is odd, then k > (n+ 1)/2,(

n

(n+ 1)/2

)
> . . . >

(
n

n− 1

)
>

(
n

n

)
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Now combining the above three cases, if n is even,(
n

0

)
<

(
n

1

)
< . . . <

(
n

n/2

)
and

(
n

n/2

)
> . . . >

(
n

n− 1

)
>

(
n

n

)
and if n is odd,(
n

0

)
<

(
n

1

)
< . . . <

(
n

(n− 1)/2

)
=

(
n

(n+ 1)/2

)
and

(
n

(n+ 1)/2

)
> . . . >

(
n

n− 1

)
>

(
n

n

)
We have following properties of floor and ceiling functions,

bn/2c = dn/2e = n/2 if n is even

and
bn/2c = (n− 1)/2 and dn/2e = (n+ 1)/2 if n is odd

Using these observations about the floor and ceiling functions, for any n,(
n

0

)
<

(
n

1

)
< . . . <

(
n

bn/2c

)
=

(
n

dn/2e

)
and

(
n

dn/2e

)
> . . . >

(
n

n− 1

)
>

(
n

n

)
Thus, the largest of the binomial coefficients is(

n

bn/2c

)
=

(
n

dn/2e

)

Definition (Poset). A partially ordered set (also poset) is a set S with a binary relation ≤ (sometimes
⊆ is used) such that:

1. a ≤ a for all a ∈ S (reflexivity),

2. if a ≤ b and b ≤ c then a ≤ c (transitivity),

3. if a ≤ b and b ≤ a then a = b (antisymmetry).

Definition (Total Order). If for any a and b in S, either a ≤ b or b ≤ a, then the partial order is
called a total order, or a linear order.

Definition (Chain). A collection C of subsets of S is a chain, provided that for each pair of subsets
in C, one is contained in the other:

A1, A2 ∈ C, A1 6= A2 implies A1 ⊂ A2 or A2 ⊂ A1

In other words, if a subset of S is totally ordered, it is called a chain.
Example: If n = 5 and S = {1, 2, 3, 4, 5}, example of chain is : C = {{2}, {2, 3, 5}, {1, 2, 3, 5}}.

Definition (Maximal Chain). If S = {1, 2, . . . , n}, a maximal chain is a chain with

A0 = φ ⊂ A1 ⊂ . . . ⊂ An

where |Ai| = i for i = 0, 1, 2 . . . , n.
Example: If n = 5 and S = {1, 2, 3, 4, 5}, then M = {φ, {3}, {3, 4}, {1, 3, 4}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}}
is a maximal chain.

Definition (Antichain). Let S be a set of n elements. An antichain of S is a collection A of subsets
of S with the property that no subset in A is contained in another.
In other words, an antichain is a set of elements that are pairwise incomparable.
Example: If S = {a, b, c, d}, then A = {{a, b}, {b, c, d}, {a, d}, {a, c}} is an antichain.
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Theorem (Sperner’s Theorem). Let S be a set of n elements. Then an antichain on S contains at

most

(
n

bn/2c

)
sets.

Proof. Consider the poset of subsets of S = {1, 2, . . . , n}. A = {A1, . . . , Am} is an antichain in this
poset.

A maximal chain C in this poset will consist of one subset of each cardinality 0, 1, . . . , n, and
is obtained by starting with the empty set, then any singleton set (n choices), then any 2-subset
containing the singleton (n−1 choices), then any 3-subset containing the 2-subset (n−2 choices), etc.
Thus there are n! maximal chains.

Similarly, there are exactly k!(n− k)! maximal chains which contain a given k-subset A of S .
Now we count in two different ways the number β of ordered pairs (A,C) such that A is in A, and

C is a maximal chain containing A.
Focusing first on one maximal chain C, since each maximal chain contains at most one subset in

the antichain A, β is at most the number of maximal chains; that is, β ≤ n!.
Focusing now on one subset A in the antichain A, we know that, if |A| = k, there are at most

k!(n− k)! maximal chains C containing A. Let αk be the number of subsets in the antichain A of size
k so that |A| = m =

∑n
k=0 αk. Then

β =
n∑

k=0

αkk!(n− k)!

and, since β ≤ n!,
n∑

k=0

αkk!(n− k)! ≤ n!

n∑
k=0

αk
k!(n− k)!

n!
≤ 1

n∑
k=0

αk(
n
k

) ≤ 1

By above Lemma,
(
n
k

)
is maximum when k = bn/2c, thus:

n∑
k=0

αk(
n
bn/2c

) ≤ n∑
k=0

αk(
n
k

) ≤ 1

⇒
n∑

k=0

αk ≤
(

n

bn/2c

)

⇒ |A| ≤
(

n

bn/2c

)
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