Sperner's Theorem

Gaurish Korpal*

Roll. No. 1411040
September 16, 2015

Lemma. For n a positive integer, the largest of the binomial coefficients

$$
\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}
$$

is

$$
\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{\lceil n / 2\rceil}
$$

Proof. Consider the quotient of successive binomial coefficients in the sequence. Let k be an integer with $1 \leq k \leq n$. Then

$$
\frac{\binom{n}{k}}{\binom{n}{k-1}}=\frac{n-k+1}{k}
$$

Hence we have three cases:
Case 1: $\binom{n}{k-1}<\binom{n}{k} \quad$ if $\quad k<n-k+1$
Now, $k<n-k+1$ if and only if $k<(n+1) / 2$.
If n is even, then, since k is an integer, $k<(n+1) / 2$ is equivalent to $k \leq n / 2$. Thus

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{n / 2}
$$

If n is odd, then $k<(n+1) / 2$ is equivalent to $k \leq(n-1) / 2$.

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{(n-1) / 2}
$$

Case 2: $\binom{n}{k-1}=\binom{n}{k} \quad$ if $\quad k=n-k+1$
Observe that $k=n-k+1$ if and only if $2 k=n+1$. If n is even, $2 k \neq n+1$ for any k. Thus, for n even, no two consecutive binomial coefficients in the sequence are equal.
If n is odd, then $2 k=n+1$, for $k=(n+1) / 2$. For n odd, the only two consecutive binomial coefficients of equal value are

$$
\binom{n}{(n-1) / 2} \quad \text { and } \quad\binom{n}{(n+1) / 2}
$$

Case 3: $\binom{n}{k-1}>\binom{n}{k} \quad$ if $\quad k>n-k+1$
Now, $k>n-k+1$ if and only if $k>(n+1) / 2$.
If n is even, then, since k is an integer, $k>(n+1) / 2$ is equivalent to $k \geq n / 2$. Thus

$$
\binom{n}{n / 2}>\ldots>\binom{n}{n-1}>\binom{n}{n}
$$

If n is odd, then $k>(n+1) / 2$,

$$
\binom{n}{(n+1) / 2}>\ldots>\binom{n}{n-1}>\binom{n}{n}
$$

[^0]Now combining the above three cases, if n is even,

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{n / 2} \quad \text { and } \quad\binom{n}{n / 2}>\ldots>\binom{n}{n-1}>\binom{n}{n}
$$

and if n is odd,

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{(n-1) / 2}=\binom{n}{(n+1) / 2} \quad \text { and } \quad\binom{n}{(n+1) / 2}>\ldots>\binom{n}{n-1}>\binom{n}{n}
$$

We have following properties of floor and ceiling functions,

$$
\lfloor n / 2\rfloor=\lceil n / 2\rceil=n / 2 \quad \text { if } n \text { is even }
$$

and

$$
\lfloor n / 2\rfloor=(n-1) / 2 \quad \text { and } \quad\lceil n / 2\rceil=(n+1) / 2 \quad \text { if } n \text { is odd }
$$

Using these observations about the floor and ceiling functions, for any n,

$$
\binom{n}{0}<\binom{n}{1}<\ldots<\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{\lceil n / 2\rceil} \quad \text { and } \quad\binom{n}{\lceil n / 2\rceil}>\ldots>\binom{n}{n-1}>\binom{n}{n}
$$

Thus, the largest of the binomial coefficients is

$$
\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{\lceil n / 2\rceil}
$$

Definition (Poset). A partially ordered set (also poset) is a set S with a binary relation \leq (sometimes \subseteq is used) such that:

1. $a \leq a$ for all $a \in S$ (reflexivity),
2. if $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity),
3. if $a \leq b$ and $b \leq a$ then $a=b$ (antisymmetry).

Definition (Total Order). If for any a and b in S, either $a \leq b$ or $b \leq a$, then the partial order is called a total order, or a linear order.

Definition (Chain). A collection \mathcal{C} of subsets of S is a chain, provided that for each pair of subsets in \mathcal{C}, one is contained in the other:

$$
A_{1}, A_{2} \in \mathcal{C}, A_{1} \neq A_{2} \quad \text { implies } \quad A_{1} \subset A_{2} \quad \text { or } \quad A_{2} \subset A_{1}
$$

In other words, if a subset of S is totally ordered, it is called a chain.
Example: If $n=5$ and $S=\{1,2,3,4,5\}$, example of chain is : $\mathcal{C}=\{\{2\},\{2,3,5\},\{1,2,3,5\}\}$.
Definition (Maximal Chain). If $S=\{1,2, \ldots, n\}$, a maximal chain is a chain with

$$
A_{0}=\phi \subset A_{1} \subset \ldots \subset A_{n}
$$

where $\left|A_{i}\right|=i$ for $i=0,1,2 \ldots, n$.
Example: If $n=5$ and $S=\{1,2,3,4,5\}$, then $\mathcal{M}=\{\phi,\{3\},\{3,4\},\{1,3,4\},\{1,3,4,5\},\{1,2,3,4,5\}\}$ is a maximal chain.

Definition (Antichain). Let S be a set of n elements. An antichain of S is a collection \mathcal{A} of subsets of S with the property that no subset in \mathcal{A} is contained in another.
In other words, an antichain is a set of elements that are pairwise incomparable.
Example: If $S=\{a, b, c, d\}$, then $\mathcal{A}=\{\{a, b\},\{b, c, d\},\{a, d\},\{a, c\}\}$ is an antichain.

Theorem (Sperner's Theorem). Let S be a set of n elements. Then an antichain on S contains at $\operatorname{most}\binom{n}{\lfloor n / 2\rfloor}$ sets.
Proof. Consider the poset of subsets of $S=\{1,2, \ldots, n\} . \mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ is an antichain in this poset.

A maximal chain C in this poset will consist of one subset of each cardinality $0,1, \ldots, n$, and is obtained by starting with the empty set, then any singleton set (n choices), then any 2 -subset containing the singleton ($n-1$ choices), then any 3 -subset containing the 2 -subset ($n-2$ choices), etc. Thus there are n ! maximal chains.

Similarly, there are exactly $k!(n-k)!$ maximal chains which contain a given k-subset A of S.
Now we count in two different ways the number β of ordered pairs (A, C) such that A is in \mathcal{A}, and C is a maximal chain containing A.

Focusing first on one maximal chain C, since each maximal chain contains at most one subset in the antichain \mathcal{A}, β is at most the number of maximal chains; that is, $\beta \leq n!$.

Focusing now on one subset A in the antichain \mathcal{A}, we know that, if $|A|=k$, there are at most $k!(n-k)!$ maximal chains C containing A. Let α_{k} be the number of subsets in the antichain \mathcal{A} of size k so that $|\mathcal{A}|=m=\sum_{k=0}^{n} \alpha_{k}$. Then

$$
\beta=\sum_{k=0}^{n} \alpha_{k} k!(n-k)!
$$

and, since $\beta \leq n$!,

$$
\begin{gathered}
\sum_{k=0}^{n} \alpha_{k} k!(n-k)!\leq n! \\
\sum_{k=0}^{n} \alpha_{k} \frac{k!(n-k)!}{n!} \leq 1 \\
\sum_{k=0}^{n} \frac{\alpha_{k}}{\binom{n}{k}} \leq 1
\end{gathered}
$$

By above Lemma, $\binom{n}{k}$ is maximum when $k=\lfloor n / 2\rfloor$, thus:

$$
\begin{gathered}
\sum_{k=0}^{n} \frac{\alpha_{k}}{\binom{n}{\lfloor n / 2\rfloor}} \leq \sum_{k=0}^{n} \frac{\alpha_{k}}{\binom{n}{k}} \leq 1 \\
\Rightarrow \sum_{k=0}^{n} \alpha_{k} \leq\binom{ n}{\lfloor n / 2\rfloor} \\
\Rightarrow|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}
\end{gathered}
$$

References

[1] Richard A. Brualdi, Introductory Combinatorics, Fifth Edition, Pearson Education Inc.,, pp. 139-143, ISBN 978-0-13-602040-0 (2010)
[2] J. H. Van Lint \& R. M. Wilson, A course in Combinatorics, Second Edition, Cambridge University Press, pp. 54-55, ISBN 978-0-511-67289-7 (2001)
[3] E. Sperner, Ein Satz über Untermengen einer endlichen Menger [A theorem about subsets of finite sets], Math. Zeitschrift, 27, pp. 544-548 (1928)
[4] D. Lubell, A Short Proof of Sperner's Theorem, J. Combinatorial Theory, 1, pp. 299 (1966)

[^0]: *2nd year Int. MSc. student, National Institute of Science Education and Research (Odisha)

