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Abstract

The solution in integers of algebraic equations in more than one unknown with integral coefficients is one
of the most difficult problem in the theory of numbers. The most eminent mathematicians like Diophantus

(3rd century), Brahmagupta (7th century), Bhaskaracharya (12th century), Fermat (17th century), Euler
(18th century), Lagrange (18th century) and many others devoted much attention to these problems. The
efforts of many generations of eminent mathematicians notwithstanding, this branch of theory of numbers

lacks mathematical methods of generality. So, I have tried to list out some basic tactics, and prove
elementary theorems which we can encounter while dealing with diophantine equations. The study of

diophantine equations involves an interplay among number theory, calculus, combinatorics, algebra and
geometry.
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Introduction

A diopantine equation is an expression of form:

f(x1, x2, . . . , xn) = 0

where f is an n−variable function with n ≥ 2.1 If f is a polynomial with integral coefficients, then this
equation is called algebraic diophantine equation.
If we call F to be the algebraic system2 (like Z, Z+, Q, R, C etc.) in which we will solve our equation, then
an n−tuple (x0

1, x
0
2, . . . , x

0
n) ∈ Fn satisfying the equation is called a solution of the equation. An equation

having atleast one solution is called solvable.
The theory of diophantine equations is that branch of number theory which deals with finding non-trivial

solutions of polynomial equations in non-negative integers (a monoid), Z (a ring) or Q (a non-algebraically
closed field).

While dealing with Diophantine Equations we ask the following question:

Is the equation solvable? If it is solvable, determine all of its solutions (finite or infinite).

A complete solution of equations is possible only for a limited types of equation. Also we will see that for
equation of degree higher than the second in two or more unknowns the problem becomes rather complicated.
Even the more simple problem of establishing whether the number of integral solutions is finite or infinite
present extreme difficulties.

The theoretical importance of equations with integral coefficients is great as they are closely connected
with many problems of number theory. Many puzzles involving numbers lead naturally to a quadratic
Diophantine equation. So far there is not a clean theory for higher degree analogues of equations of second
degree in three unknowns. Even at the specific level of quadratic diophatine equations, there are unsolved
problems, and the higher degree analogues of some specific quadratic diophatine equations, particularly
beyond third, do not appear to have been well studied.

There is interesting role of Descartes’ Coordinate Geometry in solving diophantine equations, since it
allows algebraic problems to be studied geometrically and vice versa. As in case of finding Pythagorean
Triples (integer solutions of Pythagoras Theorem), finding non-trivial primitive i.e. pairwise relatively prime
integer solutions of X2 + Y 2 = Z2 is equivalent to finding rational points on unit circle centred at origin
i.e. x2 + y2 = 1 (a conic section). Similarly the problem of finding rational solutions for the diophantine
equation: y2 = x3 + c, c ∈ Z \ {0}, can be solved using Bachet’s duplication formula (rather complicated)
which can be derived easily using geometry. Bachet’s complicated algebraic formula has a simple geometric
interpretation in terms of intersection of a tangent line with an elliptic curve (a cubic curve).

While discussing Unique Factorization Domains we will review ring theory. Also, in order to prove a
special case of Mordell’s Theorem we will define a geometric operation which will take the set of rational
solutions to cubic equation and turn it into abelian group. Thus we will also have to deal with algebra!

In Chapter - 1, I have tried to present some tactics which we can follow to handle diophantine equations.
Then in Chapter - 2, I will discuss some of the well studied types of diophantine equations.

I believe that the reader will find this report interesting since I have tried to deal, in details, with number
of aspects of dioiphantine equations, right from modular arithmetic to elliptic curves.

1Equations in one variable are very easy to solve in integers. If we denote nth degree equation as: anx
n + an−1x

n−1 + . . .+
a1x+ a0 (n ≥ 1) then only divisors of a0 can be integral root of our equation. For proof see [7] or [10]

2In Russian- speaking countries algebraic systems are called algebraic structures, see [18].
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Chapter 1

Tools to Deal with Diophantine Equations

Here I will describe the general tools one can use to approach a diophantine equation. This idea of classifi-
cation of methods have been taken from [5] and [17].

1.1 Modular Arithmetic & Parity

This is one of the most useful technique. Simple modular arithmetic considerations (like parity) help to
drastically reduce the range of the possible solutions. This technique is most successful in proving a given
diophantine equation is not solvable.1 Consider the following example:

Example 1.1.1. Find all rational solutions of x2 + y2 = 3 .

Solution. Since x and y are rational numbers we can write them as: x = X
Z and y = Y

Z , such that X,Y, Z ∈ Z,
Z 6= 0 and gcd(X,Y, Z) = 1. Thus we can restate given problem as:

Find all non-zero integer solutions of X2 + Y 2 = 3Z2, such that gcd(X,Y, Z) = 1.
We know that any perfect square leaves a residue of 1 or 0 modulo 3. Let(X0, Y0, Z0) be a solution to this
equation such that gcd(X0, Y0, Z0) = 1. Thus in modulo 3:

⇒ X2
0 + Y 2

0 ≡ 3Z2
0 (mod 3)

⇒ X2
0 + Y 2

0 ≡ 0 (mod 3)

⇒ X2
0 ≡ 0 (mod 3) & Y 2

0 ≡ 0 (mod 3)

⇒ X0 ≡ 0 (mod 3) & Y0 ≡ 0 (mod 3) (1.1)

⇒ X2
0 ≡ 0 (mod 9) & Y 2

0 ≡ 0 (mod 9)

⇒ X2
0 + Y 2

0 ≡ 0 (mod 9)

⇒ 3Z2
0 ≡ 0 (mod 9)

⇒ Z2
0 ≡ 0 (mod 3)

⇒ Z0 ≡ 0 (mod 3) (1.2)

From (1.1) and (1.2) we get gcd(X0, Y0, Z0) = 3. Contradiction to our assumption that gcd(X0, Y0, Z0) = 1.
Hence the given equation has no solution in rational numbers.

Remark: Similarly you can prove that x3 + 2y3 + 4z3 = 9w3 has no non-trivial solution, since perfect
cubes are ≡ 0,±1 (mod 9)

Example 1.1.2. Show that the equation

99∑
t=1

(x+ t)2 = yz

is not solvable in integers x,y,z, with z > 1.

Solution. Simplify LHS and check for residues in appropriate modulo. Important point to note is that z ≥ 2.

1For more examples refer Chapter - 2 of [5]
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1.2 Inequalities

Sometimes we are able to restrict the intervals in which we should search for solutions by using appropriate
inequalities.

Example 1.2.1. Find all integer solutions of x3 + y3 = (x+ y)2

Solution. The given equation is equivalent to:

(x− y)2 + (x− 1)2 + (y − 1)2 = 2

Now since RHS and LHS are positive we get following inequalities:

(x− 1)2 ≤ 1, (y − 1)2 ≤ 1

Thus x, y ∈ [0, 2]. Hence the solutions are (0, 1), (1, 0), (1, 2), (2, 1), (2, 2)

Example 1.2.2. Find all positive integers n, k1, k2, . . . , kn such that

n∑
i=1

ki = 5n− 4 and
n∑
i=1

1

ki
= 1

(Putnam Mathematical Competition)

Solution. By the arithmetic-harmonic mean(AM-HM) inequality

(k1 + k2 . . .+ kn)

(
1

k1
+

1

k2
+ . . .+

1

kn

)
≥ n2

We must thus have 5n− 4 ≥ n2 , so n ≤ 4. Without loss of generality, we may suppose that k1 ≤ . . . ≤ kn
If n = 1, we must have k1 = 1, and hereinafter we cannot have k1 = 1.
If n = 2, then (k1, k2) ∈ {(2, 4), (3, 3)}, neither of which works.
If n = 3, then k1+k2+k3 = 11, so 2 ≤ k1 ≤ 3. Hence (k1, k2, k3) ∈ {(2, 2, 7), (2, 3, 6), (2, 4, 5), (3, 3, 5), (3, 4, 4)},

and only (2, 3, 6) works.
If n = 4, we must have equality in the AM-HM inequality, which happens only when k1 = k2 = k3 =

k4 = 4.
Hence the solutions are:

n = 1 and k1 = 1,

n = 3 and (k1, k2, k3) is a permutation of (2, 3, 6),

n = 4 and (k1, k2, k3, k4) = (4, 4, 4, 4).

1.3 Parametrization

If given diophantine equation has infinite number of solutions then we can represent given diophantine
equation in parametric form as: 

x1 = g1(k1, k2, . . . , kt1),

x2 = g2(k1, k2, . . . , kt2)
...

xn = gn(k1, k2, . . . , ktn)

where ki ∈ F [i.e. the algebraic system in which we are searching for solution]

Example 1.3.1. Find all positive integral solutions of:

x2 + 2y2 = z2

if the numbers x,y,z are pairwise relatively prime.
(A. O. Gelfond)
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Solution. Note that if the triplet x, y, z is a solution of given equation and the numbers x, y and z possess
no common divisors (except, of course, unity), then they are pairwise relatively prime. Indeed, let x and y
be multiples of a prime number p (p > 2).Then from equality(

x

p

)2

+ 2

(
y

p

)2

=

(
z

p

)2

with an integral left-hand side it follows that z is a multiple of p. The same conclusion holds if x and z, or
y and z are multiples of p.

Notice that x must be an odd number for the gcd(x, y, z) = 1. For if x is even, then the left-hand side
(LHS) of given equation is an even number so that z is also even. But then x2 and z2 are multiples of 4.
From this it follows that 2y2 is divisible by 4, in other words that y must also be an even number. Thus,
if x is even then all three numbers x, y, z must be even. Thus, in a solution not having a common divisor
different from unity x must be odd. From this it immediately follows that z must also be odd. Transferring
x2 into the right-hand side (RHS) of given equation equation we get

2y2 = z2 − x2 = (z + x)(z − x) (1.3)

But (z + x) and (z− x) have the greatest common divisor 2. Let their greatest common divisor be d. Then

z + x = kd, z − x = ld

where k and l are integers. Adding together these equalities, then subtracting the second one from the first
we arrive at

2z = d(k + l), 2x = d(k − l)

But z and x are odd and relatively prime. Therefore the greatest common divisor of 2x and 2z must be
equal to 2, that is d = 2.

Thus, either z+x
2 or z−x

2 is odd. Therefore either z + x and z−x
2 are relatively prime or z − x and z+x

2
are relatively prime.

In the first case (1.3) leads to: {
z + x = n2,

z − x = 2m2

while in second case (1.3) leads to: {
z + x = 2m2,

z − x = n2

where n and m are positive integers and m is odd.
Solving these two systems of equations we get:

x = n2−2m2

2 ,

y = mn

z = n2+2m2

2

or


x = 2m2−n2

2 ,

y = mn

z = n2+2m2

2

respectively, where m is odd.
Now combine above two expressions and replace n = a and m = 2b + 1 where a, b ∈ Z+ to get general
parametric form as: 

x = ±a2−8b2−8b−2
2 ,

y = a(2b+ 1)

z = a2+8b2+8b+2
2

Remark: Notice that we also used parity technique to reduce the number of cases to two only.

Example 1.3.2. Prove that equation:
x2 = y3 + z5

has infinite number of solutions in positive integers.
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Solution. Observe that if n ∈ Z+ is our parameter and since there is sum on RHS, there should be a power
of (n+ 1) , thus x, y, z should look like: 

x = nα(n+ 1)a,

y = nβ(n+ 1)b

z = nγ(n+ 1)c

Now degree of (n+ 1) (in initial state), in RHS (i.e. y, z) should be one less than that in LHS (i.e. x). Also
since gcd(3,5)=1 we get lcm(3, 5) = 3× 5 = 15 and 15 + 1 = 2× 8 so, we can set a = 8, b = 5, c = 3 thus:

⇒ n2α(n+ 1)16 = n3β(n+ 1)15 + n5γ(n+ 1)15

⇒ n2α(n+ 1) = n3β + n5γ

Now equating exponents we get following linear diophantine equations:{
2α+ 1 = 3β

2α = 5γ
or

{
2α+ 1 = 5γ

2α = 3β

we get a solution: 
α = 10

β = 7

γ = 4

or


α = 12

β = 8

γ = 5

Finally we get our solutions for all n ∈ Z+ as:
x = n10(n+ 1)8,

y = n7(n+ 1)5

z = n4(n+ 1)3

or


x = n12(n+ 1)8,

y = n8(n+ 1)5

z = n5(n+ 1)3

1.4 Method of Infinite Descent

Let P be a property concerning non-negative integers and let {P (n)}n≥1 be the sequence of propositions,
then:

P (n) : n satisfies property P

Then following methods can be used to prove that proposition P (n) is false for all large enough n:

1. Method of Finite Descent
Let k be a non-negative integer, suppose that:

• P (k) is not true;

• whenever P (m) is true for a positive integer m > k, then there must be some smaller j, m > j > k
for which P (j) is true

Then P (n) is false for all n ≥ k
Remark: This method is just contrapositive of Principle of Mathematical Induction (strong form).

2. Method of Infinite Descent
Let k be a non-negative integer, suppose that:

• whenever P (m) is true for a positive integer m > k, then there must be some smaller j, m > j > k
for which P (j) is true

Then P (n) is false for all n > k
Remark: Bhaskaracharya extended Brahmagupta’s work on equations of form x2−Dy2 = A (where D
is not a perfect square), by describing this method of infinite descent and called his method chakravala.

The method of infinite descent implies following two statements which we will use for solving diophantine
equations:

6



MID1 There is no infinite decreasing sequence of non-negative integers

MID2 If n0 is the smallest positive integer n for which P (n) is true, then P (n) is false for all n < n0 .

MID3 If the sequence of non–negative integers (ni)i≥1 satisfies the inequalities n1 ≥ n2 ≥ . . ., then there
exists i0 such that ni0 = ni0+1 = . . . .

We apply this method when we have found a solution of given diophantine equation and want to prove that
this is the only solution of given equation.

Example 1.4.1. Solve in non-negative integers the equation:

x3 + 2y3 = 4z3

Solution. We can observe that (0, 0, , 0) is a solution of given equation. Now let’s check whether this is only
solution. Let’s try to validate MID1 for this case.

Let (x1, x2, x3) be the non-trivial solutions,

⇒ x3
1 + 2y3

1 = 4z3
1

Now we will apply parity argument. Since RHS is even, LHS should also be even, thus x3
1 is even. This

implies that 2|x1, thus x1 = 2x2 for some x1 > x2.
Now substitute this in above equation to get:

⇒ 4x3
2 + y3

1 = 2z3
1

Now again by parity argument, y1 = 2y2 for some y1 > y2.
Now substitute this in above equation to get:

⇒ 2x3
2 + 4y3

2 = z3
1

Now again by parity argument, z1 = 2z2 for some z1 > z2.
Now substitute this in above equation to get:

⇒ x3
2 + 2y3

2 = 4z3
2

Thus we have generated a new solution (x2, y2, z2) which is smaller than earlier solution. Hence by repeating
above method we can generate infinite decreasing sequence x1 > x2 > . . . such that (xn, yn, zn)n≥1 is a
solution of given equation.
But xn is a non-negative integer. Thus this contradicts MID1. Thus (0, 0, 0) is only non-negative solution
of the given equation.

Example 1.4.2. Find all pairs of positive integers (a, b) such that ab+ a+ b divides a2 + b2 + 1
(Mathematics Magazine)

Solution. The divisibility condition can be written as following diophantine equation

k(a+ b+ ab) = a2 + b2 + 1

for some positive integer k. Then by trial and error method we find that permutations of (a, b) = (1, 1),
(1, 4), (4, 9), (9, 16) satisfy this diophantine equation. Based on this we conjecture that : either a = b = 1 or
a and b are consecutive squares are “only” possible solutions.

If k = 1, then our diophantine equation is equivalent to:

(a− b)2 + (a− 1)2 + (b− 1)2 = 0,

from which by suitable inequalities we get a = b = 1.
If k = 2, then our diophantine equation can be written as

4a = (b− a− 1)2

forcing a to be a square, say a = d2 . Then b− d2 − 1 = ±2d, so b = (d± 1)2 , and a and b are consecutive
squares.
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Thus we have proved that our conjecture is half true. Now what remains to prove is that these are the
“only” solutions.

Now assume that there is a solution with k ≥ 3, and let (a, b) be the solution with a being “minimal”
and a ≤ b. Write our diophantine equation as a quadratic in b:

b2 − k(a+ 1)b+ (a2 − ka+ 1) = 0.

Because one root, b, is an integer, the other root, call it r, is also an integer.
Since our diophantine equation must be true with r in place of b, we conclude that r > 0. Because a ≤ b
and the product of the roots, a2 − ka + 1 < a2 , we must have r < a. But then (r, a) is also a solution to
given diophantine equation, contradicting the minimality of a. Hence for k ≥ 3 there is no solution for our
diophantine equation.
Thus our conjecture was true and for either a = b = 1 or a and b being consecutive squares provide all pairs
of positive integers (a, b) such that ab+ a+ b divides a2 + b2 + 1.

Remark: The most important application of method of infinite descent is to bring a contradiction about
minimality of our selected solution thus leading to non-existence of all those “conjectured solutions”. More
application of this method will be seen in Section 2.4

1.5 Quadratic Reciprocity

Let’s firstly review certain definitions:

Definition 1.5.1 (Quadratic residue and non-residue modulo p). Consider a algebraic congruence of form:

xk ≡ c (mod p)

where p is a prime number and k ∈ Z+, to be solved for x. For a given number c (not zero modulo p),then:

• If this equation is solvable, then c is called a kth power residue to modulus p

• If this equation is not solvable, then c is called a kth power non-residue to modulus p

For k = 2, we get quadratic residues and quadratic non-residues modulo p.
Illustration: For p = 13, we get {1, 3, 4, 9, 10, 12} as quadratic residues and remaining residues, {2, 5, 6, 7, 8, 11},
as quadratic non-residues modulo 13.

Definition 1.5.2 (Order of a modulo p). If gcd(a, p) = 1, then we define order2 of a modulo p as the
smallest exponent e ≥ 1 for which ae ≡ 1 (mod p). It is denoted by ep(a).
Illustration: Order of 2 modulo 7 is 3, thus e7(2) = 3.

Definition 1.5.3 (Primitive root modulo p). For given prime p, a number g with ep(g) = p − 1, is called
primitive root modulo p.
Illustration: Since, e7(3) = e7(5) = 6, thus g = 3, 5 are primitive roots modulo 7 .

Definition 1.5.4 (Index of b modulo p). If g is primitive root modulo prime p, thenm ∈ {1, 2, . . . , p−2, p−1}
is called index 3 of b modulo p if b ≡ gm (mod p). It is denoted by Igp (b).
Illustration: 2 is primitive root modulo 19, and 13 ≡ 32 ≡ 25 (mod 19), thus index of 13 modulo 19 with
respect to primitive root 2 is 5 or I2

19(13) = 5.

2Note that as per Fermat’s Little Theorem (p− 1) is the maximum possible order of a modulo p.
3Indices satisfy usual laws of exponents like

• Igp (ab) ≡ Igp (a) + Igp (b) mod (p− 1)

• Igp (ka) ≡ kIgp (a) mod (p− 1)
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Definition 1.5.5 (Legendre symbol). If p is a prime number, then we can write quadratic character4 of
x2 ≡ a (mod p), in a form called as Legendre Symbol, defined as5

(
a

p

)
=

{
1 if a is a quadratic residue modulo p

−1 if a is a quadratic non-residue modulo p

Also note that, as per this definition,

a ≡ b (mod p) ⇒
(
a

p

)
=

(
b

p

)
Now let’s will prove some elementary theorems which we will be using to tackle diophantine equations.

Theorem 1.5.1 (Euler’s Criterion). Let p be an odd prime. Then:

a
(p−1)

2 ≡
(
a

p

)
(mod p)

Proof. Let g be a primitive root modulo p. Then any number6 not congruent to 0 (mod p) is congruent to
some power of g, and we know that a is a quadratic residue precisely when it is congruent to even power of
g (which is one of the numbers in the series g, g2, g3, . . . , gp−1.) Now following cases are possible:

Case 1: a is a quadratic residue

⇒
(
a

p

)
= 1

Also it means that a is congruent to an even power of g, then for some k ∈ Z+,

⇒ a ≡ g2k (mod p)

Since a, g are not a multiple of p and p−1
2 is an integer, we can raise power p−1

2 on both sides:

⇒ a
p−1
2 ≡ g(p−1)k (mod p)

Since g is the primitive root modulo p, gp−1 ≡ 1 (mod p), thus:

⇒ a
p−1
2 ≡ 1 (mod p)

Which is equivalent to stating:

⇒ a
p−1
2 ≡

(
a

p

)
(mod p)

Case 2: a is a quadratic non-residue

⇒
(
a

p

)
= −1

Also it means that a is congruent to an odd power of g, then for some k ∈ Z+,

⇒ a ≡ g2k+1 (mod p)

Since a, g are not a multiple of p and p−1
2 is an integer, we can raise power p−1

2 on both sides:

⇒ a
p−1
2 ≡ g(p−1)k+ p−1

2 (mod p)

4Property of being quadratic residue or quadratic non-residue
5Since the quadratic residues are the numbers with even indices and the quadratic non-residues are the numbers with odd

indices we can write (for proof see [15]) :(
a

p

)
= (−1)α where α is index of a modulo p for some primitive root g

6The numbers g, g2, g3, . . . , gp−1 are all in-congruent, since gp−1 is the first power of g which is congruent to 1. Also none of
these numbers is ≡ 0. Hence they must be congruent to the numbers 1, 2, . . . , p− 1 in some order.
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Since g is the primitive root modulo p, gp−1 ≡ 1 (mod p), thus:

⇒ a
p−1
2 ≡ g

p−1
2 (mod p)

Now, observe that:

g
p−1
2 ≡ k (mod p) ⇒ gp−1 ≡ k2 (mod p) ⇒ k = ±1 (1.4)

But since index is (p − 1), no power of g lesser than (p − 1) can be congruent to 1, hence, k = −1,
thus:

⇒ a
p−1
2 ≡ −1 (mod p)

Which is equivalent to stating:

⇒ a
p−1
2 ≡

(
a

p

)
(mod p)

Finally combining both cases we prove the statement.

Theorem 1.5.2 (Quadratic Residue Multiplication Rule). Let p be an odd prime. Then:(
a

p

)(
b

p

)
=

(
ab

p

)
Remark: Basically this is inheritance of exponential law by indices.

Proof. From Euler’s Criterion:

(ab)
(p−1)

2 ≡
(
ab

p

)
(mod p)

Also,

(ab)
(p−1)

2 = a
(p−1)

2 b
(p−1)

2 ≡
(
a

p

)(
b

p

)
(mod p)

Combining both we get (since Left Hand Side is same in both) :(
ab

p

)
=

(
a

p

)(
b

p

)

Theorem 1.5.3. Let p be an odd prime, then:(
−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)

Proof. As per Euler’s Criterion:

(−1)
(p−1)

2 ≡
(
−1

p

)
(mod p)

Now consider both cases:

Case 1: p = 4k + 1, k ∈ Z+

(−1)2k ≡ 1 (mod p)

But,

(
−1

p

)
can be ±1 only. So,

(
−1

p

)
= 1

Case 2: p = 4k + 3, k ∈ Z+

(−1)2k+1 ≡ −1 (mod p)

But,

(
−1

p

)
can be ±1 only. So,

(
−1

p

)
= −1

10



Combining both cases we prove our statement.

Theorem 1.5.4 (Gauss’s Lemma). Let p be an odd prime, then:

i. (
2

p

)
=

{
1 if p ≡ 1 (mod 8) or p ≡ 7 (mod 8)

−1 if p ≡ 3 (mod 8) or p ≡ 5 (mod 8)

ii. (
3

p

)
=

{
1 if p ≡ 1 (mod 12) or p ≡ 11 (mod 12)

−1 if p ≡ 5 (mod 12) or p ≡ 7 (mod 12)

Proof. i. Here we can’t apply Euler’s Criterion in any obvious way, since there doesn’t seem to be an

easy method to calculate 2
p−1
2 (mod p). Instead we will follow an approach designed by Gauss, which

is similar to what we do to prove Fermat’s Little Theorem.7 Here in order to get factor 2
p−1
2 we

will multiply each of 1, 2, 3, . . . , p−1
2 with 2 and then multiply them all together. Then we will take

each one of the double numbers, {2, 4, 6, 8, . . . , (p − 1)}, that we have generated and calculate their
modulo p lying between −p−1

2 and p−1
2 . Then multiply these numbers together and compare with

earlier equivalent form to get −1 or +1 as answer. Notice that the number of minus signs introduced
is exactly the number of times we need to subtract p from residue so as to bring it in our desired range.
Hence:8

2
p−1
2 ≡ (−1)Number of integers in list of double numbers that are larger than p−1

2 (mod p)

Case 1: p = 8k + 1, k ∈ Z+

The list of double integers is: {2, 4, 6, . . . , 4k, 4k + 2, 4k + 4, . . . , 8k}, hence:
Number of integers in list of double numbers that are larger than 4k = Number of even integers9

between 4k + 2 and 8k (both included) = 2k

2
p−1
2 ≡ (−1)2k ≡ 1 (mod p)

So, by Euler’s Criterion, (
2

p

)
= 1

Case 2: p = 8k + 3, k ∈ Z+

The list of double integers is: {2, 4, 6, . . . , 4k, 4k + 2, 4k + 4, . . . , 8k + 2}, hence:
Number of integers in list of double numbers that are larger than 4k + 1 = Number of even
integers between 4k + 2 and 8k + 2 (both included) = 2k + 1

2
p−1
2 ≡ (−1)2k+1 ≡ −1 (mod p)

So, by Euler’s Criterion, (
2

p

)
= −1

Case 3: p = 8k + 5, k ∈ Z+

The list of double integers is: {2, 4, 6, . . . , 4k, 4k + 2, 4k + 4, . . . , 8k + 4}, hence:
Number of integers in list of double numbers that are larger than 4k + 2 = Number of even
integers between 4k + 4 and 8k + 4 (both included) = 2k + 1

2
p−1
2 ≡ (−1)2k+1 ≡ −1 (mod p)

So, by Euler’s Criterion, (
2

p

)
= −1

7To prove ap−1 ≡ 1 (mod p), we multiply each of 1, 2, 3, . . . , p− 1 with a and then multiply them all together, it gives us a
factor ap−1.

8For illustrations about this method refer pp.171-172 of [16]
9This can be calculated by analysis of Arithmetic Progression so formed.
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Case 4: p = 8k + 7, k ∈ Z+

The list of double integers is: {2, 4, 6, . . . , 4k, 4k + 2, 4k + 4, . . . , 8k + 6}, hence:
Number of integers in list of double numbers that are larger than 4k + 3 = Number of even
integers between 4k + 4 and 8k + 6 (both included) = 2k + 2

2
p−1
2 ≡ (−1)2k+2 ≡ 1 (mod p)

So, by Euler’s Criterion, (
2

p

)
= 1

Combining all 4 cases we prove our statement.

ii. Following the same approach as stated in above part we get, list of triple numbers: {3, 6, 9, . . . , 3(p−1)
2 }

3
p−1
2 ≡ (−1)Number of integers in list of triple numbers that are more than p−1

2
but less than p (mod p)

Case 1: p = 12k + 1, k ∈ Z+

The list of triple integers is: {3, 6, . . . , 9k, 9k + 3, 9k + 6, . . . , 18k}, hence:
Number of integers in list of triple numbers that are more than 6k but less than 12k+1 = Number
of multiples10 of 3 between 6k + 3 and 12k (both included) = 2k

3
p−1
2 ≡ (−1)2k ≡ 1 (mod p)

So, by Euler’s Criterion, (
3

p

)
= 1

Case 2: p = 12k + 5, k ∈ Z+

The list of triple integers is: {3, 6, . . . , 9k, 9k + 3, 9k + 6, . . . , 18k + 6}, hence:
Number of integers in list of triple numbers that are more than 6k + 2 but less than 12k + 5 =
Number of multiples of 3 between 6k + 3 and 12 + 3k (both included) = 2k + 1

3
p−1
2 ≡ (−1)2k+1 ≡ −1 (mod p)

So, by Euler’s Criterion, (
3

p

)
= −1

Case 3: p = 12k + 7, k ∈ Z+

The list of triple integers is: {3, 6, . . . , 9k, 9k + 3, 9k + 6, . . . , 18k + 9}, hence:
Number of integers in list of triple numbers that are more than 6k + 3 but less than 12k + 7 =
Number of multiples of 3 between 6k + 6 and 12k + 6 (both included) = 2k + 1

3
p−1
2 ≡ (−1)2k+1 ≡ −1 (mod p)

So, by Euler’s Criterion, (
3

p

)
= −1

Case 4: p = 12k + 11, k ∈ Z+

The list of triple integers is: {3, 6, . . . , 9k, 9k + 3, 9k + 6, . . . , 18k + 15}, hence:
Number of integers in list of triple numbers that are more than 6k + 5 but less than 12k + 11 =
Number of multiples of 3 between 6k + 6 and 12k + 9 (both included) = 2k + 2

3
p−1
2 ≡ (−1)2k+2 ≡ 1 (mod p)

So, by Euler’s Criterion, (
3

p

)
= 1

10This can be calculated by analysis of Arithmetic Progression so formed.
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Combining all 4 cases we prove our statement.

Theorem 1.5.5 (Weak Law of Quadratic Reciprocity). Let a be any natural number, and express p as
4ak + r , where 0 < r < 4a.

i. Then the quadratic character of a (mod p) is the same for all primes p for which r has the same value.

ii. Moreover the quadratic character of a (mod p) is the same for r and for 4a− r.

Proof. i. We have to generalize Gauss’s Lemma. Consider how many of the numbers:

{a, 2a, 3a, 4a, . . . , (p− 1)a

2
}

lie between p
2 and p, or between 3p

2 and 2p, and so on. Since (p−1)a
2 is the largest multiple of a that is

less than pa
2 , the last interval in the series which we have to consider is the interval from (b − 1

2)p to
bp, where b is a

2 or a−1
2 , whichever is an integer.

Thus we have to consider how many multiples of a lie in the intervals:(p
2
, p
)
,
(3p

2
, 2p
)
, . . . ,

((
b− 1

2

)
p, bp

)
None of the numbers occurring here is itself a multiple of a, and so no question arises as to whether
any of the endpoints of the intervals is to be counted or not. Dividing throughout by a, we see that
the number in question is the total number of integers in all the intervals:( p

2a
,
p

a

)
,
(3p

2a
,
2p

a

)
, . . . ,

((2b− 1)p

2a
,
bp

a

)
Now write p = 4ak + r .
Since the denominators are all a or 2a, the effect of replacing p by 4ak + r is the same as that of
replacing p by r , except that certain even numbers are added to the endpoints of the various intervals.
As before, we can ignore these even numbers. It follows that if α is the total number of integers in all
the intervals: ( r

2a
,
r

a

)
,
(3r

2a
,
2r

a

)
, . . . ,

((2b− 1)r

2a
,
br

a

)
(1.5)

then a is a quadratic residue or non-residue modulo p according as α is even or odd. The number α
depends only on r , and not on the particular prime p which leaves the remainder r when divided by
4a. This proves first part.

ii. Consider the effect of changing r into 4a− r . This changes the series of intervals obtained in previous
part into the series:(

2− r

2a
, 4− r

a

)
,
(

6− 3r

2a
, 8− 2r

a

)
, . . . ,

(
4b− 2− (2b− 1)r

2a
, 4b− br

a

)
(1.6)

If β denotes the total number of integers in these intervals, we have to prove that α and β are of the
same parity.

Observe that intervals
(

2− r

2a
, 4− r

a

)
and

( r
2a
,
r

a

)
are equivalent as far as parity is concerned.

Now we subtract both numbers of our new interval from 4, we get :
(r
a
, 2 +

r

2a

)
.

Together with the earlier interval
( r

2a
,
r

a

)
, this just makes up an interval of length 2, and such an

interval contains exactly 2 integers.
A similar consideration applies to the other intervals in the two series of intervals (1.5) and (1.6), and
it follows that α+ β is even, which proves the result.

Theorem 1.5.6 (Law of Quadratic Reciprocity). If p and q are distinct odd primes of the form 4k + 3,
then one of the congruences x2 ≡ p (mod q) and x2 ≡ q (mod p), is solvable and the other is not; but if
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atleast one of the primes is of form 4k + 1, then both congruences are solvable or both are not.
Symbolically: If p and q are distinct odd primes then:(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

ALTER: If p and q are distinct odd primes then:

(
p

q

)
=


(
q

p

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

−
(
q

p

)
if p ≡ 3 (mod 4) and q ≡ 3 (mod 4)

Proof. The exponent of −1 on the right is even unless p and q are both of the form 4k + 3.
In previous theorem we proved the quadratic character of a fixed number a to various prime moduli. So we
will make use of it here.

Case 1: p ≡ q (mod 4)
We can suppose without loss of generality that p > q, and we write p−q = 4a. Then, since p = 4a+q,
we have : (

p

q

)
=

(
4a+ q

q

)
=

(
4a

q

)
=

(
a

q

)
Similarly: (

q

p

)
=

(
p− 4a

p

)
=

(
−4a

p

)
=

(
−1

p

)(
a

p

)
Now

(
p

q

)
and

(
q

p

)
are the same, because p and q leave the same remainder on division by 4a (and

square of both 1 and -1 is 1), hence [see Theorem 1.6.3]:(
p

q

)(
q

p

)
=

(
−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)

ii. p 6≡ q (mod 4)
In this case p ≡ −q (mod 4). Put p+ q = 4a. Then, we obtain:(

p

q

)
=

(
4a− q
q

)
=

(
4a

q

)
=

(
a

q

)
Similarly: (

q

p

)
=

(
4a− p
p

)
=

(
4a

p

)
=

(
a

p

)
Thus

(
p

q

)
and

(
q

p

)
are the same, because p and q leave the opposite remainder on division by 4a

(and square of both 1 and -1 is 1), hence: (
p

q

)(
q

p

)
= 1

Combining both cases, we prove the theorem.

Now let’s consider examples involving diophantine equations:

Example 1.5.1. Find the solutions of x2 − 17y2 = 12 in integers.

Solution. Looking modulo 17 we have
x2 ≡ 12 (mod 17)

By Quadratic Residue Multiplication Rule:(
12

17

)
=

(
3

17

)(
4

17

)
=

(
3

17

)(
2

17

)(
2

17

)
=

(
3

17

)
14



Now 3 ≡ 3 (mod 4) and 17 ≡ 1 (mod 4), thus as per the law of quadratic reciprocity, we have:(
3

17

)
=

(
17

3

)
This we can calculate easily by reducing 17 modulo 3:(

17

3

)
=

(
2

3

)
Now we have reduced the solvability of x2 ≡ 12 (mod 17) to solvability of x2 ≡ 2 (mod 3), now clearly this
is not solvable11 since 2 is quadratic non-residue modulo 3, hence:(

12

17

)
=

(
2

3

)
= −1

Hence given diophantine equation is not solvable in integers.

Example 1.5.2. Let prime p be of form 4k + 3 . Prove that exactly one of equations x2 − py2 = ±2 is
solvable.

Solution. Apply Law of Quadratic Reciprocity to reach conclusion that at most one of given equations is
solvable. Then apply modular arithmetic by observing the residue modulo 4 to deduce that atleast one of
given equations is solvable.

1.6 Factorization

This method works when we are able to rewrite given diophantine equation as:

f1(x1, x2, x3, . . . , xn1)f2(x1, x2, x3, . . . , xn2) . . . fk(x1, x2, x3, . . . , xnk) = a

where a ∈ Z. Then given prime factorization of a we can obtain finitely many decompositions (all combi-
nations), which we can solve as system of diophantine equations. It is generally easier to solve system of
diophantine equations rather than single equation because they impose further restrictions on each other
apart from having integer or rational number solutions.

Example 1.6.1. Determine all non-negative integer solutions for:

(xy − 7)2 = x2 + y2

Solution. Since there are lot’s of squares let’s start manipulating given equation:

⇒ x2y2 − 14xy + 49 = x2 + y2

⇒ (xy − 6)2 + 13 = (x+ y)2

⇒ (x+ y)2 − (xy − 6)2 = 13

⇒ (x+ y − xy + 6)(x+ y + xy − 6) = 13

yielding the system: {
x+ y − xy + 6 = 1,

x+ y + xy − 6 = 13.

{
x+ y − xy + 6 = 13,

x+ y + xy − 6 = 1.{
x+ y − xy + 6 = −1,

x+ y + xy − 6 = −13.

{
x+ y − xy + 6 = −13,

x+ y + xy − 6 = −1.

Then the non-negative solutions will be : (3, 4), (4, 3), (0, 7), (7, 0) [only first two system are useful].

Example 1.6.2. Find all integral solutions to the equation:

(x2 + 1)(y2 + 1) + 2(x− y)(1− xy) = 4(1 + xy)

(Titu Andreescu)

Solution. Take everything to one side, multiply and factorize to get:

[xy − 1− (x− y)]2 = 4

Now obtain all possible system of equations. The solutions will be (1, 0), (−3,−2), (0,−1), (−2, 3).

11Square all integers from 1 to 2 and find their residues. We get {1} as quadratic residue and thus {2} as quadratic non-residue.
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1.7 Unique Factorization Domains

Here, we will observe some elegant ways of solving diophantine equations using algebra. Firstly let’s recall
some definitions from algebra:

Definition 1.7.1 (Commutative Ring). A non-empty set R is said to an commutative ring if in R there
are defined two operations, denoted by + and ∗ respectively such that for all a, b in R:

1. a+ b is in R

2. a+ b = b+ a

3. (a+ b) + c = a+ (b+ c)

4. There is an element 0 in R such that a+ 0 = a

5. There exists an element −a in R such that a+ (−a) = 0 for every a in R.

6. a ∗ b is in R

7. a ∗ b = b ∗ a

8. a ∗ (b ∗ c) = (a ∗ b) ∗ c

9. a ∗ (b+ c) = (a ∗ b) + (a ∗ c) and (b+ c) ∗ a = (b ∗ a) + (c ∗ a) for all a, b, c in R

Illustration: R is set of even integers under the usual operation of addition and multiplication, R is a
commutative ring.

Definition 1.7.2 (Zero-divisor). If R is a commutative ring, then a 6= 0, a ∈ R is said to a zero-divisor if
there exists a b 6= 0, b ∈ R, such that ab = 0.
Illustration: Z6 is a commutative ring with zero-divisors, 2, 3 since 2̂ ∗ 3̂ = 0̂.[In general, Zn for n not
prime has zero-divisors.]

Definition 1.7.3 (Integral Domain). A commutative ring is an integral domain if it has no zero-divisors.
Illustration: Z is an integral domain.

Definition 1.7.4 (Unique Factorization Domain). An integral domain, R, with unit element12 is a unique
factorization domain if:

1. Any non-zero element in R is either a unit or can be written as the product of a finite number of
irreducible elements13 in R

2. The decomposition (done in previous part) is unique upto the order and associates of the irreducible
elements.

1.7.1 Gaussian Integers

A class of domains occurring in modern number theory is the class of rings Z[
√
d]; this consists of all complex

numbers of the form a+ b
√
d, where a, b are integers and d is any fixed integer (positive or negative) which

is not a perfect square and
√
d is a fixed square root of d in C. When d = −1, one calls this the ring of

Gaussian integers denoted by Z[i] where i is a fixed square root of −1 in C. Set of Gaussian integers is:

Z[i] = {a+ bi | a, b ∈ Z}

Gaussian integers have many properties in common with ordinary integers. If α, β ∈ Z[i], then:

1. α+ β is in Z[i]

2. α− β is in Z[i]

12An element in ring R with a multiplicative inverse is called a unit element.
13An element a which is not unit in R is called irreducible (or prime element) if, whenever a = bc with b, c ∈ R, then one of

b, c must be a unit in R.
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3. αβ is in Z[i]

4.
α

β
is NOT always in Z[i]

Note that like ordinary integers, Gaussian integers also form a commutative ring, and due to absence on
zero-divisor, form an integral domain. Now we will prove that this is indeed an unique factorization domain.
In fact we can prove that Z[

√
−d], d ≥ 3 is not a Unique Factorization Domain. For proof refer [13].

Definition 1.7.5 (Gaussian Prime). A Gaussian integer α is called Gaussian prime if the only integers
dividing α are units and α times a unit.

Definition 1.7.6 (Norm). The norm of a complex number α = x+ yi is defined as, x2 + y2. Symbolically:

N(α) = x2 + y2

Theorem 1.7.1 (Gaussian Unit Theorem). The only units in the Gaussian integers are 1,−1, i and −i.
That is, these are the only Gaussian integers that have Gaussian integer multiplicative inverses.

Proof. Suppose that a+ bi is a unit in the Gaussian integer. Thus, it has a multiplicative inverse, so there
is another Gaussian integer c+ di such that

⇒ (a+ bi)(c+ di) = 1

⇒ (ac− bd) + (ad+ bc)i = 1

Now equating real and imaginary parts we get:{
ac− bd = 1,

ad+ bc = 0

We will look for integer a, b which satisfy this set of equations. Consider three cases:

Case 1: a = 0

⇒ bd = −1 ⇒ b = ±1

Thus, a+ bi = ±i

Case 2: b = 0

⇒ ac = 1 ⇒ a = ±1

Thus, a+ bi = ±1

Case 3: a, b 6= 0

⇒ c =
1 + bd

a

Using this in second equation of our set:

⇒ a2d+ b+ b2d

a
= 0

Thus any solution with a 6= 0 must satisfy:

(a2 + b2)d = −b

Thus, a2 + b2 divides b, which is absurd, since a2 + b2 is larger than b (since neither a nor b is 0). This
means that Case 3 yields no new units, so we have completed the proof.
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Theorem 1.7.2 (Norm Multiplication Property). Let α and β be any complex numbers. Then:

N(αβ) = N(α)N(β)

Proof. Let: {
α = a+ bi

β = c+ di

where, a, b, c, d ∈ Z. Then:

αβ = (ac− bd) + ad+ bc)i

Further:
N(α) = a2 + b2 and N(β) = c2 + d2

Also:
N(αβ) = (ac− bd)2 + (ad+ bc)2 = (a2 + b2)(c2 + d2)

Remark: This also proves that a Gaussian integer α is a unit if and only if N(α) = 1.

Theorem 1.7.3 (Gaussian Prime Theorem). The Gaussian primes can be described as follows:

(i) 1 + i is a Gaussian prime.

(ii) Let p be an ordinary prime14 with p ≡ 3 (mod 4). Then p is a Gaussian prime.

(iii) Let p be an ordinary prime with p ≡ 1 (mod 4) and write p as a sum of two squares15, p = u2 + v2.
Then u+ vi is a Gaussian prime.

Proof. Firstly, we define a method for factoring a Gaussian integer, α as:
Set, α as product of two Gaussian integers:

α = (a+ bi)(c+ di)

Now take norm of both sides:
N(α) = (a2 + b2)(c2 + d2)

This is an equation in integers, and we want a non-trivial solution, i.e. neither a2 + b2 nor c2 + d2 equals 1.
Thus: {

a2 + b2 = A

c2 + d2 = B

where A,B 6= 1, and we need to solve these diophantine equations in order to factorize Gaussian integer.

(i) Put, α = 1 + i to get, 2 = AB, with ordinary integers A,B > 1. But 2 can’t be factored in this way.
Thus, α has no non-trivial factorizations in the Gaussian integers, so it is prime.

(ii) Let α = p be an ordinary prime with p ≡ 3 (mod 4). Then p2 = AB and{
a2 + b2 = A = p

c2 + d2 = B = p

But p can be written as a sum of two squares exactly when p ≡ 1 (mod 4) [proof of this statement
comes from quadratic reciprocity and infinite descent method]. Since, p ≡ 3 (mod 4) it can’t be
written as sum of two square, so there are no solutions. Therefore, p cannot be factored, so it is a
Gaussian prime.

(iii) Let u + iv = α. Then N(α) = p = AB, with ordinary integers A,B > 1. But p can’t be factored in
this way. Thus, α has no non-trivial factorizations in the Gaussian integers, so it is prime.

14Ordinary primes are the primes integers like 2, 3, 5, 7, 11, . . . , 101, . . .
15Let p be a prime, then p is a sum of two squares exactly when p ≡ 1 (mod 4) or p = 2. For proof see pp. 188 of [16]
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Theorem 1.7.4 (Gaussian Integer Division Theorem). For any α, β ∈ Z[i] with β 6= 0, there are γ, δ ∈ Z[i]
such that:

α = βγ + δ and N(δ) < N(β)

Proof. Divide the equation we’re trying to prove by β to get:

α

β
= γ +

δ

β
and N

(
δ

β

)
< 1

The norm on Z[i] is closely related to the absolute value on C, N(a + bi) = |a + bi|2 . The absolute value
on C is a way of measuring distances in C.
In C, the farthest a complex number can be from an element of Z[i] is 1/

√
2, since the center points of 1× 1

squares with vertices in Z[i] are at distance 1/
√

2 from the vertices.
Now consider the ratio α/β as a complex number and place it in a 1× 1 square having vertices in Z[i].
Let γ ∈ Z[i] be the vertex of the square that is nearest to α/β, so∣∣∣∣αβ − γ

∣∣∣∣ ≤ 1√
2

⇒
∣∣∣∣ δβ
∣∣∣∣ ≤ 1√

2

Squaring both sides and recalling that the squared complex absolute value on Z[i] is the norm, we obtain:

N

(
δ

β

)
≤ 1

2
< 1

Theorem 1.7.5 (Gaussian Integer Common Divisor Property). Let α and β be Gaussian integers, then
consider following sets:

A = {a : a ∈ Z[i]} and B = {b : b ∈ Z[i]}

We define:
S = Aα+Bβ = {s = aα+ bβ : a ∈ A, b ∈ B}

Then among all the Gaussian integers in S, let, g = aα + bβ be an element having the smallest non-zero
norm. Then g divides both α and β.

Proof. According to Gaussian Integer Division Theorem we can divide α by g:

α = gγ + δ with 0 ≤ N(δ) < N(g)

Substituting: g = aα+ bβ, we get:
⇒ α = aαγ + bβγ + δ

Rearranging terms we get:
⇒ δ = (1− aγ)α+ (−bγ)β

Thus, δ ∈ S. But, N(δ) < N(g) and N(g) > 0 is smallest possible norm in S. Thus, N(δ) = 0 and δ 6∈ S.
Hence,

α = gγ ⇒ g
∣∣α

Similar argument shows, g
∣∣β

Theorem 1.7.6 (Gaussian Prime Divisibility Theorem). Let π be a Gaussian prime, if π divides a product
α1α2α3 . . . αn of Gaussian integers, then it divides atleast one of the factors α1α2α3 . . . αn.
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Proof. We will prove it by induction.
Consider, n = 2. Thus, π

∣∣AB. Apply the Gaussian Integer Common Divisor Property to the two numbers
A and π. Thus we can find Gaussian integers a and b such that:

g = aA+ bπ (1.7)

divides both A and π. But π is a prime, thus:

g
∣∣π ⇒ g = uπ or g = u

where u in Gaussian unit. Thus we have two cases:

Case 1: g = uπ
Since, u = {1,−1, i,−i}, and g

∣∣A, so π clearly divides A and given theorem is proved for this case.

Case 2: g = u
Multiply the equation (1.7) by another Gaussian integer B to get:

gB = aAB + bπB

But, we are given that, π
∣∣AB, and g is unit, so

π
∣∣gB ⇒ π

∣∣B
This proves given theorem for Case 2.

Combining Case 1 and Case 2, we prove given theorem for n = 2.
Now suppose that we have proved the Gaussian Prime Divisibility Theorem for all products having fewer
than n factors, and suppose that π divides a product α1α2α3 . . . αn having n factors.
Let A = α1 . . . αn−1 and B = αn, then π divides AB, so we know from above that either π divides A or π
divides B.
If π divides B, then we’re done, since B = an.
On the other hand, if π divides A, then π divides the product α1α2α3 . . . αn−1 consisting of n − 1 factors,
so by the induction hypothesis we know that π divides one of the factors α1α2α3 . . . αn−1.
This completes the proof of the theorem.

Theorem 1.7.7 (Unique Factorization of Gaussian Integers). Every Gaussian integer α 6= 0 can be factored
into a unit u multiplied by a product of normalized Gaussian primes in exactly one way.

α = uπe11 π
e2
2 π

e3
3 . . . πenn = u

n∏
r=1

πerr

where π1, π2, . . . , πn are distinct Gaussian primes and e1, e2, . . . , en > 0 are exponents. Thus if α is itself a
unit then, factorization of α will be simply, α = u.

Proof. The proof is in two parts:

Part 1: Every Gaussian integers has some factorization into primes

Let, there exist at least one non-zero Gaussian integer that doesn’t factor into primes.
Among the non-zero Gaussian integers with this property, choose the Gaussian integer having smallest
norm, call it α. We can do this, since the norms of non-zero Gaussian integers are positive integers,
and any collection of positive integers has a smallest element.
Note that α cannot itself be prime, since otherwise α = α is already a factorization of a into primes.
Similarly, α cannot be a unit, since otherwise α = α would again be a factorization into primes (in
this case, into zero primes).
But if α is neither prime nor a unit, then it must factor into a product of two Gaussian integers β, γ,
neither of which is a unit:

α = βγ
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Now consider the norms of β and γ Since β and γ are not units, we know that N(β) > 1 and N(γ) > 1.
We also have the multiplication property N(β)N(γ) = N(α), so

N(β) =
N(α)

N(γ)
< N(α) and N(γ) =

N(α)

N(β)
< N(α)

But we chose α to be the Gaussian integer of smallest norm that does not factor into primes, so both
β and γ do factor into primes:

β = u
n∏

r=m

πerr and γ = u′
j∏
r=i

πerr

for certain Gaussian primes, πm, πm+1, . . . , πn, πi, πi+1, . . . , πj . But then:

α = uπe11 π
e2
2 π

e3
3 . . . π

ep
p = u

p∏
r=1

πerr

is also a product of primes, which contradicts the choice of α as a number that cannot be written as
a product of primes.
Thus, every non-zero Gaussian integer does factor into primes.

Part 2: The factorization into primes can be done in only one way.

Let, there exists at least one non-zero Gaussian integer with two distinct factorizations into primes.
Among the non-zero Gaussian integers with this property, choose the Gaussian integer having smallest
norm, call it α. We can do this, since the norms of non-zero Gaussian integers are positive integers,
and any collection of positive integers has a smallest element.
Thus, α has two factorizations:

α = u

n∏
r=m

πerr = u′
j∏
r=i

πerr

Clearly, α can’t be unit, since otherwise, α = u = u′, so the factorization wouldn’t be different.
This means that: n−m+ 1 ≥ 1, so there is a prime πm in the first factorization. Then:

πm
∣∣α ⇒ πm

∣∣∣∣u′ j∏
r=i

πerr

The Gaussian Prime Divisibility Theorem tells us that πm divides at least one of the numbers,
u′, πi, πi+1, . . . , πj . It certainly doesn’t divide the unit, u′, so it divides one of the factors. Rear-
ranging the order of these other factors, we may assume that πm divides πi. However, the number πi
is a Gaussian integer prime, so its only divisors are units and itself times units. Since πm is not a unit:

πm = (unit)× πi

Further, both πm and πi are normalized,so the unit must equal 1 and πm = πi.
Let,

β =
α

πm
=
α

πi
Cancelling πm and πi from two factorizations of α yield:

β = u
n∏

r=m+1

πerr = u′
j∏

r=i+1

πerr

Thus, β has two distinct factorizations into prime. But,

N(β) =
N(α)

N(πm)
< N(α)

This contradicts our assumption that α is the Gaussian integer with smallest norm having two different
factorizations into primes, hence our original statement must be false. So every Gaussian integer has
a unique such factorization.
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Example 1.7.1. Solve the equation in positive integers:

x2 + y2 = z2

where x, y, z are pairwise prime (non-trivial primitive solutions).

Solution. Suppose that (x1, y1, z1) is a non-trivial primitive solution to given equation with gcd(x1, y1) = 1.
Thus one of x1 and y1 is odd and hence z1 is odd. We can rewrite given equation in Z[i] as:

(x1 + iy1)(x1 − iy1) = z2
1

Now, let, gcd(x1 + iy1, x1 − iy1) = d, where, d ∈ Z[i] be irreducible. Then,

d
∣∣∣((x1 + iy1)− (x1 − iy1)

)
⇒ d

∣∣∣2iy1

Similarly,

d
∣∣∣((x1 + iy1) + (x1 − iy1)

)
⇒ d

∣∣∣2x1

But, since, z1 is odd, d 6
∣∣∣2, so,

d
∣∣∣iy1 and d

∣∣∣x1

Taking norms we can say:

N(d)
∣∣∣y2

1 and N(d)
∣∣∣x2

1

But, gcd(x1, y1) = 1, and a Gaussian integer is a unit if and only if its norm is one [see “Norm Multiplication
Property”]. Thus d = u where u is unit Gaussian integer. Hence x1 + iy1 and x1 − iy1 are relatively prime
in Z[i].
Hence both x1 + iy1 and x1 − iy1 are perfect squares, consider any one:

x1 + iy1 = u(a+ ib)2 = u
((
a2 − b2

)
+ i
(
2ab
))

for some unit u ∈ {−1, 1, i,−i} and some positive integers a, b.
Since we are solving for positive integers, let u = 1, [by taking other values of u you will get similar
expressions for x1, y1, z1] thus: {

x1 = a2 − b2

y1 = 2ab

therefore, z1 = a2 + b2, but since z1 is odd, so a and b are of different parity.

Example 1.7.2. Solve the equation in integers:

x2 + 4 = y3

Solution. We will consider two cases based on parity of x.

Case 1: x is odd.

The equation can be written in Z[i] as:

(2 + ix)(2− ix) = y3 (1.8)

Let z = gcd(2 + ix, 2− ix), z = c+ di ∈ Z[i]. Then:

z
∣∣∣((2 + ix) + (2− ix)

)
⇒ z

∣∣∣4 ⇒ (c+ id)
∣∣∣4

Further, then:

(c− id)
∣∣∣4 ⇒ z̄

∣∣∣4
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Thus:
z · z̄

∣∣∣16 ⇒ (c2 + d2)
∣∣∣16 (1.9)

On the other hand16

z
∣∣∣(2 + ix) ⇒ z̄

∣∣∣(2− ix)

Thus:
z · z̄

∣∣∣4 + x2 ⇒ (c2 + d2)
∣∣∣(4 + x2) (1.10)

Now since x is odd, so comparing (1.10) and (1.9) we get,

c2 + d2 = 1

Hence, z = u, where u is a unit Gaussian integer. Thus, (2 + ix) and (2− ix) are relatively prime in
Z[i].
Because (2 + ix) and (2− ix) are relatively prime, from (1.8) it follows that

2 + ix = (a+ bi)3

for some integers a and b.[let unit Gaussian integer to be 1, as did in previous example]
Identifying the real and imaginary parts, we get{

a(a2 − 3b2) = 2

3a2b− b3 = x

The first equation leads to our general factorization method illustrated in Section 1.6, thus giving
system of equations {

a = 1

a2 − 3b2 = 2

{
a = −1

a2 − 3b2 = −2{
a = 2

a2 − 3b2 = 1

{
a = −2

a2 − 3b2 = −1

gives a = −1, b = ±1 or a = 2, b = ±1, yielding x = ±2,±11 but x is odd, thus we consider, x = ±11
only, and y = 5.

Case 2: x is even.

Then y is even.
Let x = 2u and y = 2v. The equation becomes:

u2 + 1 = 2v3 ⇒ (u+ i)(u− i) = 2v3

By similar argument as used above, gcd(u+ i, u− i) = 1 and 2 = (1 + i)(1− i). Now using again the
uniqueness of prime factorization in Z[i], we obtain:

u+ i = (1 + i)(a+ bi)3

for some integers a and b.
Identifying the real and imaginary parts, we get:{

a3 − 3a2b− 3ab2 + b3 = u,

a3 + 3a2b− 3ab2 − b3 = 1.

The second relation can be written as:

(a− b)(a2 + 4ab+ b2) = 1,

16Recall that if x, y are complex numbers then :
x

y
=

xȳ

|y|2
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leading to our general factorization method illustrated in Section 1.6, thus yielding system of equations:{
a− b = 1

a2 + 4ab+ b2 = 1

{
a− b = −1

a2 + 4ab+ b2 = 1

gives a = 1, b = 0 and a0, b = −1 [second system have no solution by modular arithmetic argument,
modulo 3], yielding x = 2, y = 2 and x = −22, y = 2
Thus all solutions are (−11, 5), (−2, 2), (2, 2), (11, 5).

1.7.2 Ring of integers of Q[
√
d]

In previous section we saw a special case of the rings Z[
√
d] for square-free d. Note that any element of this

kind of ring is u = a+ b
√
d which is a root of the polynomial (X − a)2− db2; this is a polynomial which has

integer coefficients and is monic (i.e., has top coefficient 1). Such complex numbers go under the name of
algebraic integers. Thus, elements of Z[

√
d] are algebraic integers.

But we need to study the set of all the algebraic integers in a particular number field like Q[
√
d].

Q[
√
d] = {m+ n

√
d : m,n ∈ Q}

where d is a non-zero square free integer.
In Q[

√
d], the ring of all algebraic integers may be larger than Z[

√
d].For instance, for d = −3, the number

1
2 +

√
−3
2 is also an algebraic integer (note that −3 ≡ 1 (mod 4)) . One calls the set of all algebraic integers

in K = Q[
√
d] the ring of integers of K.

Let’s define certain terms before we proceed:

Definition 1.7.7 (Conjugate). If µ ∈ Q[
√
d], such that, µ = a + b

√
d, then another element of Q[

√
d],

a− b
√
d, is called conjugate of µ, denoted by µ̄.

Definition 1.7.8 (Norm Function). A function, N : Q[
√
d]→ Z is called norm Function in Q[

√
d], if for all

µ ∈ Q[
√
d], N(µ) = µ · µ̄. Thus,

µ = a+ b
√
d

N(µ)7−→ a2 − db2

Theorem 1.7.8. If d ≡ 2, 3 (mod 4), then the ring of integers of Q[
√
d] is

Z[
√
d] = Z + Z

√
d

If d ≡ 1 (mod 4), then the ring of integers of Q[
√
d] is

Z
[

(−1 +
√
d)

2

]
= Z + Z

(−1 +
√
d)

2

Proof. Consider an algebraic integer:

µ =
a+ b

√
d

c

where, a, b, c ∈ Z, c > 0 and gcd(a, b, c) = 1.
If b = 0, then: µ = a/c is rational, then c = 1 and we get a rational integer.17

If, b 6= 0, then µ is root of following quadratic equation:

(cx− a)2 = db2 ⇒ c2x2 − 2acx+ a2 − db2 = 0

Divide this equation by c2 to get monic polynomial:

⇒ x2 − 2a

c
x+

a2 − db2

c2
= 0

In, the field Q[
√
d], we get:

c2
∣∣(a2 − db2) and c

∣∣2a
17Rational integer is another name for Z.
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Consider the first result and let gcd(a, c) = r, then we get:

r2
∣∣a2 and r2

∣∣c2 ⇒ r2
∣∣(a2 − db2) ⇒ r2

∣∣db2 ⇒ r
∣∣b

Since, d is a non-square integer. But, gcd(a, b, c) = 1, thus r = 1.
Now, consider the second result. Since c

∣∣2a, we have c = 1 or c = 2.
If, c = 2, then a is odd since gcd(a, c) = 1 and

db2 ≡ a2 ≡ 1 (mod 4)

so, b is odd and d ≡ 1 (mod 4).
Now we can consider two cases:

Case 1: d 6≡ 1 (mod 4) or d ≡ 2, 3 (mod 4) [since d is square free]

Then, c = 1 and the integers of Q[
√
d] are:

µ = a+ b
√
d

with rational integral a, b.

Case 2: d ≡ 1 (mod 4)

An algebraic integer of Q[
√
d] is:

η =
−1 +

√
d

2

and all algebraic integers can be expressed simply in terms of this η.
If c = 2, then a, b are odd and

µ =
a+ b

√
d

2
=
a+ b

2
+ bη = a1 + (2b1 + 1)η

where a1, b1 are rational integers.
If c = 1, then

µ = a+ b
√
d = (a+ b) + 2bη = a1 + 2b1η

where a1, b1 are rational integers.
Thus, if we change our notation a little, the integers of Q[

√
d] are the numbers a + bη, with rational

integral a, b.

Combining both cases we prove our theorem.

Theorem 1.7.9. The ring of integers in Q[
√
d] with d < 0 and square-free is a Unique Factorization Domain

(UFD) exactly when d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}

Remark about Proof. It was proved by Gauss that the ring of integers of quadratic field Q[
√
−d] is a UFD

for d = {1, 2, 3, 7, 11, 19, 43, 67, 163}. Gauss also conjectured that for no other positive square-free d is the
ring of integers of Q[

√
−d] a UFD. This conjecture was proved, after about 150 years, in 1966 by A. Baker

and H. M. Stark independently.
For proof of this theorem refer [3]. Since it uses advance concepts from analysis, it is out of scope of this
project to discuss its proof.

Theorem 1.7.10. Let d < 0 be a square-free integer, and Ud denote the set of units in corresponding ring
of integers of Q[

√
d] then:

1. Us = {1,−1}, for s = {−2,−7,−11,−19,−43,−67,−163}.

2. U1 = {1,−1, i,−i}

3. U3 = {1,−1, ω,−ω, ω2,−ω2} where ω = −1+
√
−3

2 is cube root of unity.
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Sketch of Proof. .

1. Prove and use the multiplicative property of norm function. And get ±1 as units of all values of d

2. Since, −1 ≡ 3 (mod 4), we get ring of integers of Q[
√
−1] as Z[i], thus proof is same as that of Gaussian

Unit Theorem.

3. −3 ≡ 1 (mod 4) so, use Theorem 1.7.8 and generate appropriate diophantine equations. You will find
for d ≡ 1 (mod 4) that equation will be solvable only for d = −3. Solve that equation and get the

other units (apart from ±1) of Z[−1+
√
−3

2 ].

Example 1.7.3. Solve the equation in integers18

x3 − 2 = y2

Solution. Re-write given equation as:

x3 = y2 + 2 = (y +
√
−2)(y −

√
−2)

Note that both x and y must be odd (since x, y should be of same parity and if y is even y2 +2 ≡ 2 (mod 4),
and no cube is ≡ 2 (mod 4)).
Now let r = gcd

(
(y +

√
−2), (y −

√
−2)

)
.

⇒ r
∣∣((y +

√
−2)− (y −

√
−2)

)
⇒ r

∣∣2√−2

Thus r is a power of
√
−2.

On the other hand, if
√
−2
∣∣(y ±√−2), then

r
∣∣(y +

√
−2)(y −

√
−2) ⇒ r

∣∣(y2 + 2) ⇒ r
∣∣x3

But x is odd; hence
√
−2 6 |r.

We have seen that (y +
√
−2) and (y −

√
−2) are relatively prime and that their product is a cube. Since

the ring of integers of Q[
√
−2] i.e. Z[

√
−2] is a UFD (since −2 ≡ 2 (mod 4)), this implies that the factors

are cubes up to units.
Since the only units are ±1 and these are cubes, it follows that

y +
√
−2 =

(
a+ b

√
−2
)3

Comparing real and imaginary parts, we obtain:{
y = a3 − 6ab2

1 = 3a2b− 2b3

Now we will apply Factorization method of Section 1.6 to second equation and get the system of equations:{
b = 1

3a2 − 2b2 = 1

{
b = −1

3a2 − 2b2 = −1

Thus yielding a = ±1, b = 1 as solution.
Substitute this in first equation to get: y = ±5
Further, use this in given equation to get: x = 3.
Thus, (3,−5) and (3, 5) are only integer solutions of this equation.

Example 1.7.4. Solve the equation in integers:

x2 + x+ 2 = y3

Solution. Factorize the quadratic part, observe that the greatest common factor of these factors is 1 (lengthy
argument). Now use uniqueness of the prime factorization in the ring of integers of Q[

√
−7]. Follow the

approach used in previous example and get (2, 2) and (−3, 2) as only solutions of the given equation.

18An interesting account on this problem can be found on pp. 77 of [2]
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1.8 Rational Points on Elliptic Curves

Once a single solution has been identified for given equation, by using concept of Rational Points on Curves
all other solutions can be identified.19. In this section we will concentrate only on non-singular cubic curves.
Let’s start we some definitions:

Definition 1.8.1 (Rational Point). A point with both of it’s coordinates as rational numbers is called a
rational point.

Definition 1.8.2 (Homogeneous Coordinates). Two triples [a, b, c] and [a′, b′, c′] are considered to be same
point, if there is a non-zero t such that a = ta′, b = tb′, c = tc′. Then the number a, b, c are caled homogeneous
coordinates for point [a, b, c].

Definition 1.8.3 (Projective Plane (Algebraic Definition)). We denote projective plane by P2 and define
an equivalence relation ∼ such that, [a, b, c] ∼ [a′, b′, c′] if there is non-zero t so that a = ta′, b = tb′, c = tc′.
Thus P2 consists of the set of all equivalence classes of triples [a, b, c] except [0, 0, 0]. Symbolically:

P2 =
{[a, b, c] : a, b, c are not all zero}

∼

Definition 1.8.4 (Line in Projective Plane). The set of points [a, b, c] ∈ P2 whose coordinates satisfy an
equation of form:

αX + βY + γZ = 0

where α, β, γ are all non-zero constants and [X,Y, Z] are any homogeneous coordinates for the point.

Definition 1.8.5 (Affine Plane). An ordinary plane of elementary plane geometry, in which two lines are
said to be parallel if they do not meet. It is denoted by A2.

Definition 1.8.6 (Set of Directions in A2). Every set of line in A2 is parallel to a unique line through
the origin, thus the set of lines in A2 going through origin are defined as set of directions in A2 . This set
denoted by P1, since set of directions in A2 is [a, b] of the projective line P1.

Definition 1.8.7 (Projective Plane (Geometric Definition)). Projective plane, P2, is union of affine plane,
A2, and the set of directions in affine plane, P1. This can be represented as:

P2 = A2 ∪ P1 =


(
a

c
,
b

c

)
∈ A2 if c 6= 0

[a, b] ∈ P1 if c = 0

where [a, b, c] is a triple on P2.
Remark: Thus in P2 there are no parallel lines.

Definition 1.8.8 (Points at infinity). The extra points in P2 associated to directions, i.e. the points in P1

are called points at infinity.

Definition 1.8.9 (Algebraic Curve in A2). The set of real solutions of an equation f(x, y) = 0 forms a
curve in A2, called algebraic curve in A2.

Definition 1.8.10 (Projective Curve). Set of solutions of polynomial equation C : F (X,Y, Z) = 0 where F
is a non-constant homogeneous polynomial20 forms a curve in P2, called algebraic curve in P2 or projective
curve.

Definition 1.8.11 (Affine part of projective curve). Define a non-homogeneous polynomial f(x, y) from
given homogeneous polynomial F (X,Y, Z) such that:

C0 : f(x, y) = F (x, y, 1)

Then the curve f(x, y) = 0 in A2 is called affine part of projective curve.

19I will briefly discuss in Section 2.3.4, what happens when the curves are conic sections.
20A polynomial F (X,Y, Z) is called a homogeneous polynomial of degree d, if it satisfies the identity: F (tX, tY, tZ) =

tdF (X,Y, Z), where t 6= 0.
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Definition 1.8.12 (Dehomogenization). The process of replacing the homogeneous polynomial F (X,Y, Z)
by the inhomogeneous polynomial f(x, y) = F (x, y, 1) is called dehomogenization, with respect to variable
Z.

Definition 1.8.13 (Homogenization). The process of replacing the inhomogeneous polynomial f(x, y) of
degree d by the homogeneous polynomial F (X,Y, Z) of degree d is called homogenization. Symbolically:

f(x, y) =
∑
i,j

aijx
iyj

Homogenization
=⇒ F (X,Y, Z) =

∑
i,j

aijX
iY jZd−i−j

where d is degree of f(x, y).

Definition 1.8.14 (Singular & Non-Singular Point). A point P is singular point of curve C : f(x, y) = 0,
if:

∂f

∂x

∣∣∣∣
P

=
∂f

∂y

∣∣∣∣
P

= 0

else it is called non-singular point.
Remark: For projective curve we check singularity of its affine part.

Definition 1.8.15 (Non-Singular Curve). If every point on a curve is non-singular point then the curve is
called non-singular curve.
Remark: Non-singular curves are smooth curves, thus we can define a tangent at every point. Also singular
curves are just like conics, we can project them from the point of singularity.

Definition 1.8.16 (Weierstrass Normal Form). Any cubic curve with a rational point can be transformed
into a certain special form by a set of projective transformations (i.e. placing the curve in projective plane
and choosing it’s axis in projective plane) called Weierstrass Normal Form, represented as:

y2 = f(x) = x3 + ax2 + bx+ c

where a, b, c are rational numbers.

Definition 1.8.17 (Elliptic Curve). Any curve birationally equivalent to a non-singular cubic curve in
Weierstrass normal form is called an elliptic curve.
Remark: Since curve is non-singular, there is no point on the curve at which partial derivatives vanish
simultaneously, thus f(x) can’t have double roots. In other words, there can be either one real root of f(x)
or three distinct real roots of f(x).

Figure 1.1: These are the possible shapes of elliptic curves. Equation of the curve on left and right hand
side is: y2 = x3 + 25 and y2 = x3− 6x2 + 11x− 6 respectively. [Curves plotted using SageMath Version 6.6]
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Commentary on group structure of rational points on a general cubic curve with addition
as binary operation21

• What is identity in this group?
Any point O on curve which we use to define : P +Q = O ∗ (P ∗Q) is our identity element. (Nothing
special about choice of O)

• What is the inverse ?
By drawing tangent at O and if L is point of intersection of that tangent with curve then O ∗ L = O
since we had allowed multiplicities of intersections (counting points of tangency as intersections of
multiplicity greater than one). Using this fact we can find inverses.

• Is the group commutative?
The operation ∗ could not form a group just because it didn’t have an identity element (since identity
element for ∗ exists only in special cases when one of points in consideration is tangent point). But
∗ operation is commutative (since it doesn’t matter from which point we start drawing a line), so the
composition of commutative operation will also yield a commutative operation i.e. + is a commutative
operation.

• How to prove associative property?
Showing P+(Q+R) = (P+Q)+R is equivalent to showing O∗(P ∗(O∗(Q∗R))) = O∗((O∗(P ∗Q))∗R)
i.e. P ∗ (Q+R) = (P +Q) ∗R. Geometrically this leads to two set of lines consisting of 3 lines each
and total of nine points (counting final point of intersection). Each set of three lines defines a cubic.
So we have two cubics C1 and C2 intersecting at nine points and we know that our conic surely passes
through 8 of these points (leaving final point of intersection). Now to see that finally both points
(RHS and LHS) pass through same point we need to use the theorem : “Let C,C1, C2 be three cubic
curves. Then if C goes through 8 of 9 intersection points of C1 and C2 , then C goes through ninth
intersection point also”. Hence our conic passes through the final point of intersection. Hence LHS =
RHS.

Theorem 1.8.1 (Group Law for points on elliptic curve). Consider an elliptic curve:

y2 = x3 + ax2 + bx+ c

Then:

(i) There is only one point at infinity. (call it O)

(ii) If the points on our cubic consists of the ordinary points in the ordinary affine xy plane together with
O, counting O as a rational point and taking it as zero element we make the set of rational points
into a (abelian) group with + as binary operation which is composition of ∗ operation. [as defined for
addition law of points on general cubic equation]

(iii) If P1, P2, are distinct rational points on our curve with P1 = (x1, y1), P2 = (x2, y2), P1 ∗ P2 =
(x3, y3), P1 + P2 = (x3,−y3), then: {

x3 = λ2 − a− x1 − x2

−y3 = −(λx3 + ν)

where, λ =
y2 − y2

x2 − x1
and ν = y1 − λx1 = y2 − λx2

(iv) If P0 = (x0, y0) is a rational point on curve then, P0 + P0 = 2P0 = (x′, y′), duplication formula, is
given by: x′ =

x4
0 − 2bx2

0 − 8cx0 + b2 − 4ac

4x3
0 + 4ax2

0 + 4bx0 + 4c

y′ = −(λx′ + ν)

where, λ =
3x20+2ax0+b

2y0
and ν = y0 − λx0

21Refer pp. 15-22 of [10] for proof of group structure of addition law for general cubic curve .
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Proof. The proof needs elementary concepts of projective geometry and high-school algebra.

(i) We can homogenize the given equation by getting: x = X
Y and y = Y

Z , yielding:

Y 2Z = X3 + ax2Z + bXZ2 + cZ2

Now to find the intersection of this point cubic with line at infinity, Z = 0, substitute Z = 0 into the
equation to get:

X3 = 0

which has triple root X = 0.
This means that the cubic meets the line at infinity in three points, and all these three points are
same. So the cubic has exactly one point at infinity, namely, the point at infinity where vertical line
(x = k, where k is a constant) meet.
The point at infinity is an inflection point of the cubic, and the tangent at that point is the line at
infinity, which meets it with multiplicity three.
Also this point is non-singular by the partial derivative test. So for a cubic in given form (Weierstrass
form) there is one point at infinity.

(ii) As per given condition every line meets cubic at point O three times. A vertical line meets the cubic
at two points in the xy plane and also at the point O. And a non vertical line meets the cubic in three
points in xy plane [allowing x, y to be complex numbers].
Now we can make the general addition law of points on a cubic curve to work on elliptic curves. We
are given an equation in Weierstrass form.
Consider two points P,Q on this cubic equation. First we draw the line through P and Q and find
the third intersection point P ∗ Q. Then we draw the line through P ∗ Q and O, which is just the
vertical line through P ∗Q. Since a cubic curve in Weierstrass form is symmetric about x axis, so to
find P +Q just take P ∗Q and reflect it about x axis.

(iii) The equation of line joining (x1, y1) and (x2, y2) is:

y = λx+ ν

where λ =
y2 − y2

x2 − x1
and ν = y1 − λx1 = y2 − λx2.

By construction, the line intersects the cubic in two points (x1, y1) and (x1, y2). Now to find the third
point (x3, y3), substitute the equation of line in the given cubic equation to get:

(λx+ ν)2 = x3 + ax2 + bx+ c

Simplify to get:
⇒ x3 + (a− λ2)x2 + (b− 2λν)x+ (c− ν2) = 0

Now x1, x2, x3 are roots of this equation, and their sum is equal to negative of coefficient of x2:

⇒ x3 = λ2 − a− x1 − x2

Substituting this in equation of line we get:

⇒ y3 = λx3 + ν

(iv) In the formula derived above slope of line at a given point is used instead of two point form, thus
replacing:

λ =
dy

dx
=
f ′(x)

2y
=

3x2 + 2ax+ b

2y

we get desired result.
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Theorem 1.8.2 (Points of Order22 Two and Three). Let C be the non-singular cubic curve:

C : y2 = f(x) = x3 + ax2 + bx+ c

(i) A point P = (x, y) 6= O on C has order two if and only if y = 0.

(ii) C has exactly four points of order 2. These four points form a group which is a product of two cyclic
groups of order two.

(iii) A point P = (x, y) 6= O on C has order three if and only if x is a root of polynomial:

ψ3(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ (4ac− b2)

(iv) C has exactly nine points of order dividing 3. These nine points form a group which is product of two
cyclic groups of order three.

Proof. (i) We need to find points in our group which satisfy 2p = O, but P 6= O. Instead of 2p = O it is
easier to look at equivalent condition P = −P .
Since in our group, −(x, y) = (x,−y) [reflection about x axis], these are the points with y = 0:

P1 = (α1, 0), P2 = (α2, 0), P3 = (α3, 0)

where α1, α2, α3 are roots of given cubic polynomial f(x).
If we allow complex coordinates, there are exactly three points of order 2, because non-singularity of
curve ensures that f(x) has distinct roots.

(ii) If we take all points satisfying 2p = O, including O, then we get the set {O.P1, P2, P3}.
Since group of rational points on elliptic curve is abelian, the set of solutions of 2P = O forms a
subgroup. So we have a group of order 4. Since every element has order one or two, it is obvious that
this group is a Four Group23, a direct product of two groups of order two.

(iii) Again instead of 3P = O we will look at 2P = −P . Now if we denote the x coordinate of point P by
x(P ) then, a point of order 3 must satisfy: x(2P ) = x(−P ) = x(P ). Since P 6= O, we get: 2P = ±P ,
so either P = O or 3P = O. But since it is given that P 6= O only possibility is 3P = O. Thus the
points of order 3 are the points satisfying x(2P ) = x(P ), now using our duplication formula:

x =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c

Now cross multiply and rearrange terms to get:

3x4 + 4ax3 + 6bx2 + 12cx+ (4ac− b2) = 0

Thus x is root of ψ3(x).

(iv) Observe that:

x(2P ) =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
=

(x3 + 2ax+ b)2

4(x3 + ax2 + bx+ c)
− a− 2x =

(
f ′(x)

)2
4f(x)

− a− 2x

Thus, we can rewrite ψ3(x) as:

ψ3 = 2(6x+ 2a)f(x)−
(
f ′(x)

)2
= 2f(x)f ′′(x)−

(
f ′(x)

)2
22An element P of any group is said to have order m if: mP = P + . . .+ P︸ ︷︷ ︸

m summands

= O, but m′P 6= O for all integers 1 ≤ m′ < m.

23The Klein four group (Viergruppe), V4, is the group of order 4 and multiplication table:

∗ 1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

.

It is abelian and the simplest group which is not cyclic.

31



Now we claim that ψ3(x) has four distinct (complex) roots since ψ3(x) and ψ′3(x) have no common
roots. Because if

ψ′3(x) = 2f(x)f ′′′(x) = 2f(x)× 6 = 12f(x)

and ψ3(x) has a common root, then f(x) and f ′(x) should also have a common root, but since C is
non-singular, f(x) and f ′(x) have no common root. Hence our claim is true.
Let, β1, β2, β3, β4 be the four complex roots of ψ3(x) and for each βi, let δi =

√
f(βi). Then as proved

in last part, the set:

{(β1,−δ1), (β2,−δ2), (β3,−δ3), (β4,−δ4), (β1, δ1), (β2, δ2), (β3, δ3), (β4, δ4)}

is the complete set of distinct points of order 3 on C.
Also, δi 6= 0, otherwise the point will be of order 2, contradicting the fact that the point is of order 3.
The only other point on C with order dividing 3 is the point of order one, namely O. Thus, C has
exactly nine points of order dividing 3.
Note that there is only one (abelian) group with nine elements such that every element has order
dividing 3, namely the product of two cyclic groups of order 3.

Remark: Geometrically the points of order 3 are points of inflection of our elliptic curve.

A method of changing coordinates to move point at infinity to a finite place

Recall that we converted any cubic to Weierstrass form by doing a set of rational transformations, now
we will convert the curve in Weierstrass form to another form, where the point at infinity will be at finite
place. Consider the curve:

y2 = x3 + ax2 + bx+ c

Now, substitute:

x =
t

s
and y =

1

s

to get our new equation:
s = t3 + at2s+ bts2 + cs3

Now this curve when plotted in ts plane, have all points of old xy plane except the points where y = 0, and
zero element of our curve O is now at origin (0, 0) in ts plane.

Figure 1.2: ILLUSTRATION: Here I have transformed the curves shown in Figure 1.1, equation of the curve
on left and right hand side transforms to: s = t3 + 25s3 and s = t3− 6t2s+ 11ts2− 6s3 respectively. [Curves
plotted using SageMath Version 6.6]
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Also, a line y = λx+ ν in the (x, y) plane corresponds to a line in the (t, s) plane. If we divide y = λx+ ν
by νy, we get:

s = −λ
ν
t+

1

ν

Thus we can add points in (t, s) plane by same procedure as in (x, y) plane.

Theorem 1.8.3. Let C be a non-singular cubic curve:

C : y2 = f(x) = x3 + ax2 + bx+ c

Now, let p be a prime, R the ring24 of rational numbers with denominator prime to p, and let C(pΩ) be the
set of rational points (x, y) on our curve for which x has a denominator divisible by p2Ω, plus the point O.

(i) C(p) consists of all rational points (x, y)for which the denominator of either x or y is divisible by p.

(ii) For every Ω ≥ 1, the set C(pΩ) is a subgroup of group of rational points C(Q).

(iii) The map:
C(pΩ)

C(p3Ω)
−→ pΩR

p3ΩR

P = (x, y) 7−→ t(P ) =
x

y

is a one-to-one homomorphism25. (By convention, O 7→ 0).

(iv) For every prime p, the subgroup C(p) contains no points of finite order (other than O).

Proof. (i) Put Ω = 1 to get desired result. Since a number divisible by p2 is also divisible by p.

(ii) Let’s look at the divisibility of new coordinates (s, t), described above, by powers of p. Let (x, y) be
a rational point of our curve in the xy plane lying in C(pΩ). Since every non-zero rational number

can be written in the form
m

n
pΩ, where m,n are integers prime to p, n > 0, and the fraction

m

n
is in

lowest form. We define the power of such a rational number to be the integer Ω, and write:

pow

(
m

n
pΩ

)
= Ω

Consider a point (x, y) on given cubic curve, where p divides the denominator of x, say:

x =
m

npµ
and y =

u

wpσ

where µ > 0 and p does not divide m,n, u, w. Now substitute this value of point in equation of curve:

u2

w2p2σ
=
m3 + am2npµ + bmn2p2µ + cn3p3µ

n3p3µ

Since p 6 |u2 and p 6 |w2, so

pow

(
u2

w2p2σ

)
= −2σ

Also, µ > 0 and p 6 |m, it follows that:

p 6
∣∣∣(m3 + am2npµ + bmn2p2µ + cn3p3µ)

hence:

pow

(
m3 + am2npµ + bmn2p2µ + cn3p3µ

n3p3µ

)
= −3µ

24It is a beautiful ring in the sense that it has unique unique factorization and it has only one prime, the prime p. The units
of R are just the rational numbers with numerator and denominator prime to p.

25A mapping from one algebraic system to a like algebraic system which preserves structure.
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Thus, 2σ = 3µ.
In particular, σ > 0, ad so p divides the denominator of y. Further, the relation 2σ = 3µ, means that
2|µ and 3|σ, so we have µ = 2Ω and σ = 3Ω for some integer Ω > 0. Similar result will be obtained
when we assume that p divides the denominator of y.
Thus we can write given condition of C(pΩ) as:

C(pΩ) = {(x, y) ∈ C(Q) : pow(x) ≤ −2Ω and pow(y) ≤ −3Ω}

Thus,
C(Q) ⊃ C(p) ⊃ C(p2) ⊃ C(p3) ⊃ . . .

By convention we will also include the zero element O in C(pΩ).
So we can write:

x =
m

np2(Ω+i)
and y =

u

wp3(Ω+i)

for some i ≥ 0. Then:

t =
x

y
=
mw

nu
pΩ+i and s =

1

y
=
w

u
p3(Ω+i)

Thus our point (t, s) is in C(pΩ) if and only if t ∈ pΩR and s ∈ p3ΩR. This means that pΩ divides the
numerator of t and p3Ω divides numerator of s.
Now to prove given statement, we have to add points and show that if a high power of p divides the t
coordinate of two points, then the same power of p divides the t coordinate of their sum.
If, given to us are points P1 = (t1, s1) and P2 = (t2, s2), we need to find coordinates of P1 ∗P2 = P3 =
(t3, s3), following same method as in Theorem 1.8.126, we get:

t3 = −αβ + 2bαβ + 3cα2β

1 + aα+ bα2 + cα3
− t1 − t2 and s3 = αt3 + β

where,

α =
s2 − s1

t2 − t1
=

t22 + t1t2 + t21 + a(t2 + t1)s2 + bs2
2

1− at21 − bt1(s2 + s1)− c(s2
2 + s1s2 + s2

1)
and β = s1 − αt1 = s2 − αt2

Note that, if P1 = P2, then substitute t2 = t1 and our above formula still works (duplication formula).
Now to find P1 + P2, we draw the line through (t3, s3) and the zero element (0, 0), and take the third
intersection with the curve. Clearly, the third point of intersection will be (−t3,−s3).
Observe that the numerator of α lies in p2ΩR, because each of t1, s1, t2, s2 is in pΩR [since C(pΩ) ⊃
C(p3Ω)]. For the same reason, the quantity −at21 − bt1(s2 + s1)− c(s2

2 + s1s2 + s2
1) is in p2ΩR, so the

denominator in α is a unit in R. This all has been possible due to presence of 1 in denominator. It
follows that α ∈ p2ΩR.
Since, s1 ∈ p3ΩR and α ∈ p2ΩR, and t1 ∈ pΩR, it follows from the formula, β = s1 − αt1, that
β ∈ p3ΩR. Further, since denominator of t3 is also a unit in R. Looking at expression for t1 + t2 + t3
in formula for t3 we get:

t1 + t2 + t3 ∈ p3ΩR ∈ pΩR

Since, t1, t2 ∈ pΩR, it follows that t3 ∈ pΩR, and so −t3 ∈ pΩR.
This proves that if t coordinates of P1 and P2 lie in pΩR, then t coordinates of P1 +P2 also lies in pΩR,
Further, if the t coordinate of P = (t, s) lies in pΩR, then it is clear that t coordinate of −P = (−t,−s)
also lies in pΩR. This shows that C(pΩ) is closed under addition and taking negatives; hence it is a
subgroup of C(Q).

(iii) In last part we have proven something a bit stronger, if P1, P2 ∈ C(PΩ), then:

t(P1) + t(P2)− t(P1 + P2) ∈ p3ΩR

where t(P ) denotes the t coordinate of point P .
This last formula tells us more than the mere fact that C(PΩ) is a subgroup. We can rewrite above
equation as:

t(P1 + P2) ≡ t(P1) + t(P2) (mod p3ΩR)

26For full calculations refer pp. 52-53 of [10]
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Note that the + in t(P1 +P2) indicates addition on cubic curve, where as + in t(P1)+ t(P2) is addition
in R, which is just addition of rational numbers.
So the map, P 7→ t(P ), is a not an homomorphism from C(pΩ) into the additive group of rational
numbers because they are equivalent but not equal.

But we get a homomorphism from C(pΩ) to quotient group
pΩR

p3ΩR
, by sending P to t(P ); and kernel

of this homomorphism consists of all points P with t(P ) ∈ p3ΩR. Thus, the kernel is just C(p3Ω), so
we obtain the one-to-one homomorphism,

C(pΩ)

C(p3Ω)
−→ pΩR

p3ΩR

P = (x, y) 7−→ t(P ) =
x

y

(iv) Let the order of P be m. Since P 6= O, we know m 6= 1. Consider any prime p. Suppose, P ∈ C(p)
The point P = (x, y) may be contained in a smaller group C(pΩ) but it can’t be contained in all of
the groups C(pΩ) because the denominator of x can’t be divisible by arbitrarily high powers of p. So
we can find some Ω > 0, such that, P ∈ C(pΩ), but P 6∈ C(pΩ+1).
Now consider two cases:

Case 1: p 6
∣∣m

Using the congruence relation derived in previous part again and again we will get,

t(mP ) ≡ mt(P ) (mod p3ΩR)

Since, mP = O, we have t(mP ) = t(O) = 0. On the other hand, since m is prime to p, it is a
unit in R. Therefore,

0 ≡ t(P ) (mod p3ΩR)

This means that P ∈ C(p3Ω), contradicting the fact that, P 6∈ C(pΩ+1).

Case 2: p
∣∣m

Let, m = pn, and look at point P ′ = nP . Since P has order m, it is clear that P ′ has order
m/n = p. Further, since P ∈ C(p) and C(p) is a subgroup, we see that P ′ ∈ C(p). As above,

0 ≡ pt(P ′) (mod p3ΩR)

⇒ t(P ′) ≡ 0 (mod p3Ω−1R)

Since, 3Ω− 1 ≥ Ω + 1, we again get a contradiction to fact that P ′ 6∈ C(pΩ+1).

Combining both cases we complete our proof.

Theorem 1.8.4 (Nagell-Lutz Theorem). Let C be a non-singular cubic curve:

C : y2 = f(x) = x3 + ax2 + bx+ c

with integer coefficients a, b, c; let D be the discriminant27 of the cubic polynomial f(x),

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2

Let P = (x, y) be a rational point of finite order. Then x, y are integers and either y = 0, in which case P
has order two, or else y divides D.

Proof. We will divide proof in two parts (first one is difficult and second one is easy):

Part 1: Let P = (x, y) 6= O be a rational point of finite order. Then x and y are integers.

If P = (x, y) is a point of finite order, then from Theorem 1.8.3, we know that P 6∈ C(p) for all primes
p. This means that the denominators of x and y are divisible by no primes, hence x and y are integers.

27If we factor f over the complex numbers, f(x) = (x−α1)(x−α2)(x−α3), then D = (α1−α2)2(α1−α3)2(α2−α3)2 so the
non-vanishing of D implies that the roots of f(x) are distinct.
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Part 2: Let P = (x, y) be a point on our cubic curve such that both P and 2P have integer coordinates. Then
either y = 0 or y

∣∣D.

If P has order 2, we know that in this case, y = 0 and we are done.
Let y 6= 0. Then, 2P 6= O, from previous theorem. Write 2P = (X,Y ). By assumption, x, y,X, Y are
all integers. As per duplication formula:

X =

(
f ′(x)

)2
4y2

− a− 2x

Since x,X, a all are integers, it follows that,

4y2
∣∣∣(f ′(x)

)2 ⇒ y
∣∣f ′(x) (1.11)

But,
y2 = f(x) ⇒ y

∣∣f(x) (1.12)

Now from general theorem of discriminants, for f(x) = x3 + ax2 + bx+ c, we get:

D = [(18b−6a2)x− (4a3−15ab+27c)]f(x)+[(2a2−6b2)x2 +(2a3−7ab+9c)x+(a2b+3ac−4b2)]f ′(x)

Thus, there are polynomials r(x) and s(x) with integer coefficients so that D can be written as:

D = r(x)f(x) + s(x)f ′(x)

Now, since the coefficients of r(x) and s(x) are integers, these functions also take on integer values
when evaluated at an integer x.
Thus from (1.11) and (1.12) it follows that y

∣∣D.

Remark: A consequence of this theorem is that a cubic curve has only a finite number of rational points
of finite order.

Definition 1.8.18 (Height). Let, x =
m

n
be a rational number written in lowest terms. Then, the height

H(x) is defined as maximum of the absolute values of the numerator and the denominator.

H(x) = H

(
m

n

)
= max{|m|, |n|}

Definition 1.8.19 (Height of a point). If, y2 = f(x) = x3 + ax2 + bx+ c is a non-singular cubic curve with
integer coefficients a, b, c, and if P = (x, y) is a rational point on the curve, then height of P is simply height
of its x coordinate.

H(P ) = H(x)

For the point at infinity, O, H(O) = 1.

Definition 1.8.20 (Height Logarithm). Height logarithm is a non-negative number defined as logarithm of
height of a point.

h(P ) = logH(P )

Hence for the point at infinity, O, h(O) = 0.

Theorem 1.8.5. Let C and C be the elliptic curves, given by the equations:

C : y2 = x3 + ax2 + bx and C : y2 = x3 + ax2 + bx

where, a = −2a and b = a2 − 4b. Let T = (0, 0) ∈ C.

(i) There is a homomorphism φ : C → C defined by:

φ(P ) =

{(
y2

x2
, y(x2−b)

x2

)
, if P = (x, y) 6= O, T

O, if P = O or P = T

The kernel of φ is {O, T}.
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(ii) Applying the same process to C gives a map φ : C → C. Where:

C : y2 = x3 + ax2 + bx

The curve C is isomorphic to C via map (x, y)→ (x/4, y/8).
There is thus a homomorphism ψ : C → C defined by:

ψ(P ) =

{(
y2

4x2
, y(x2−b)

8x2

)
, if P = (x, y) 6= O, T

O, if P = O or P = T

The composition ψ ◦ φ : C → C is multiplication by two: (ψ ◦ φ)(P ) = 2P .

(iii) If we apply the map φ to rational points Γ, we get a subgroup of the set of rational points Γ, we denote
this subgroup by φ(Γ), and call it the image of Γ by φ. Then:

(a) O ∈ φ(Γ)

(b) T = (0, 0) ∈ φ(Γ) if and only if b = a2 − 4b is a perfect square.

(c) Let P = (x, y) ∈ Γ with x 6= 0. Then P ∈ φ(Γ) if and only if x is the square of a rational number.

Sketch of Proof. (i) Firstly check that, φ maps points of C to points of C, by replacing the values of x in
the equation of C. To prove this is a homomorphism, we need to prove that φ(P1 +P2) = φ(P1)+φ(P2)
for all P1, P2 ∈ C. [Note that the first plus sign is addition on C, whereas the second one is addition
on C.] Make different cases like,

(a) P1 or P1 is O [trivial]

(b) P1 or P2 is T [use explicit formula from addition law]

(c) P1 + P2 + P3 = O, then φ(P1) + φ(P2) + φ(P3) = O [observe that φ takes negatives to negatives
and this statement is equivalent to proving P1, P2, P3 are collinear]

(ii) Note that a = −2a = 4a and b = a2 − 4b = 16b, thus:

C : y2 = x3 + 4ax2 + 16bx

Hence it is clear the the map, (x, y) → (x/4, y/8) is an isomorphism from C to C. Since the map

ψ : C → C is the composition of φ : C → C with the isomorphism C → C, we get that ψ is a well
defined homomorphism from C to C.
To verify that ψ ◦ φ is multiplication by two, use the duplication formula derived earlier, to get:
(ψ ◦ φ)(x, y) = 2(x, y) and (φ ◦ ψ)(x, y) = 2(x, y). And then check that (ψ ◦ φ)(P ) = O in the cases
that P is a point of order two [our duplication formula won’t work here, since x = y = 0 in this case.]

(iii) (a) O = φ(O) [trivial]

(b) From formula for φ, T ∈ φ(Γ) if and only if there is a rational point (x, y) ∈ Γ such that
y2

x2
= 0, x 6= 0 [because then, φ(T ) = O not T ]. Thus put y = 0 in the equation of Γ.

(c) If (x, y) ∈ φ(Γ) is a point with x 6= 0 then the defining formula for φ shows that x = y2

x2
is a

square of a rational number. Suppose conversely that x = w2 for some rational number w. Now
we have to find a rational point on C that maps to (x, y).
The homomorphism φ has two elements in its kernel, O and T . Thus if (x, y) lies in φ(Γ),

there will be two points of Γ that map to it. Let: x1 = 1
2

(
w2 − a+ y

w

)
, y1 = x1w and x2 =

1
2

(
w2 − a− y

w

)
, y2 = −x2w. Then verify that the points Pi = (xi, yi) are on C, and that

φ(Pi) = (x, y) for i = 1, 2. Since P1 and P2 are rational points this will prove that (x, y) ∈ φ(Γ)

Theorem 1.8.6 (Mordell’s Theorem for curves with a Rational Point of Order Two). Let C be a non-
singular cubic curve given by equation:

C : y2 = f(x) = x3 + ax2 + bx

where a, b are integers. Then group of rational points C(Q) is a finitely generated abelian group.
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Proof. Firstly, to ease notation let, Γ = C(Q). We will divide the proof of this theorem into 5 parts.

Part 1: For every real number M , the set {P ∈ Γ : h(P ) ≤M} is finite.

Consider point, P = (x, y), now, H(P ) = H(x). Let, x =
m

n
, so, H(P ) = max{|m|, |n|}. Now if the

height of P is less than some fixed constant, say M ′, then both |m| and |n| are less than that finite
constant, so there are only finitely many possibilities for m and n. Thus the set {P ∈ Γ : H(P ) ≤M ′}
is finite. Since, h(P ) = logH(P ), the same will hold if we use h(P ) in place of H(P ). Hence the set
{P ∈ Γ : h(P ) ≤M} is finite, for given fixed constant M .

Part 2: Let P0 be a fixed rational point on C. There is a constant ε0 depending on P0 and on a, b, so that
h(P + P0) ≤ 2h(P ) + ε0 for all P ∈ Γ

This is trivial if P0 = O; so let, P0 = (x0, y0) 6= O. To prove existence of ε0 it is enough to prove that
the inequality holds for all P except those in some fixed finite set. This is true because, for nay finite
number P , we just look at the differences h(P +P0)− h(P ) and take ε0 larger than the finite number
of values that occur. Thus we will prove this proposition for P 6∈ {P0,−P0,O}, since if P = (x, y) and
x = x0 which you can prove using duplication formula and repeating same argument.
Let, P = (x, y) and x 6= x0. We can write:

P + P0 = P ′ = (δ, η)

Now, h(P + P0) = h(δ), from addition formula derived in Theorem 1.8.1 (with c = 0),

δ = λ2 − a− x− x0 where λ =
y − y0

x− x0

⇒ δ =
(y − y0)2 − (x− x0)2(x+ x0 + a)

(x− x0)2

⇒ δ =
(y2 − x3) + (−2y0)y + (x0 − a)x2 + (x2

0 + 2ax0)x+ (y2
0 − ax2

0 − x3
0)

x2 + (−2x0)x+ x2
0

But, y2 − x3 = ax2 + bx, thus for some integers, A,B,C,D,E, F,G we can rewrite above statement
as:

⇒ δ =
Ay +Bx2 + Cx+D

Ex2 + Fx+G
(1.13)

Thus, we have integers A,B,C,D,E, F,G, which depend only on a, b, x0, y0. Once the curve and the
point P0 are fixed, then the expression is correct fol all points P 6∈ {P0,−P0,O}. So it will be all right
for our constant ε0 to depend on A,B,C,D,E, F,G as long as it doesn’t depend on (x, y).
Now, if P = (x, y) is a rational point on our curve then suppose we write:

x =
m

M
and y =

n

N

in lowest terms with M > 0 and N < 0. Substituting these into the equation of curve, we get:

⇒ n2

N2
=
m3

M3
+ a

m2

M2
+ b

m

M

⇒M3n2 = N2m3 + aN2Mm2 + bN2M2m

Since, N2 is a factor of all terms on the right hand side, we see that N2|M3n2, but gcd(n,N) = 1, so
N2|M3.
Also, M |N2m3 since it occurs in all factors of right hand side, and since gcd(m,M) = 1, we find
M |N2. Using this fact again in the equation obtained above, we find that M2|N2m3, so M |N . Finally
using above equation again, we get, M3|N2m3, so M3|N2.
Thus we have shown that, N2|M3 and M3|N2, so M3 = N2. Further, we also showed that M |N , thus

if we let e =
N

M
and we use it in M3 = N2, we get:

e2 = M and e3 = N
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Therefore,

x =
m

e2
and y =

n

e3

Now substitute this value on x, y in (1.13), we get:

⇒ δ =
Ane+Bm2 + Cme2 +De4

Em2 + Fme2 +Ge4

Thus we have an expression for δ as an integer divided by an integer. We don’t know that it is in
lowest terms, but cancellation will only make the height smaller. Thus,

H(δ) ≤ max{|Ane+Bm2 + Cme2 +De4|, |Em2 + Fme2 +Ge4|} (1.14)

Further, since now, P =

(
m

e2
,
n

e3

)
, then the height of P is the maximum of |m| and e2. In particular,

{
|m| ≤ H(P )

e2 ≤ H(P ) ⇒ e ≤ [H(P )]1/2
(1.15)

. But these coordinate of P also satisfy the equation of given curve, so:

n2 = m3 + ae2m2 + be4m

Now take absolute values and apply triangle inequality to get:

|n2| ≤ |m3|+ |ae2m2|+ |be4m| ≤ [H(P )]3 + |a|[H(P )]3 + |b|[H(P )]3

so, if we take k =
√

1 + |a|+ |b|, we get:

|n| ≤ k[H(P )]3/2 (1.16)

Now using (1.15) and (1.16) in (1.14) and applying triangle inequality we get:
|Ane+Bm2 + Cme2 +De4| ≤

(
|Ak|+ |B|+ |C|+ |D|

)
[H(P )]2

|Em2 + Fme2 +Ge4| ≤
(
|E|+ |F |+ |G|

)
[H(P )]2

Therefore,

H(P + P0) = H(δ) ≤ max

{(
|Ak|+ |B|+ |C|+ |D|

)
,
(
|E|+ |F |+ |G|

)}
[H(P )]2

Taking logarithms on both sides gives:

h(P + P0) ≤ 2h(P ) + log

(
max

{(
|Ak|+ |B|+ |C|+ |D|

)
,
(
|E|+ |F |+ |G|

)})

Let, ε0 = log

(
max

{(
|Ak|+|B|+|C|+|D|

)
,
(
|E|+|F |+|G|

)})
. Thus, ε0 depends only on a, b, x0, y0

and does not depend on P = (x, y), thus we get:

h(P + P0) ≤ 2h(P ) + ε0

Part 3: There is a constant ε, depending on a, b so that h(2P ) ≥ 4h(P )− ε for all P ∈ Γ.

Let P = (x, y), and write 2P = (δ, η). Then by duplication formula derived in Theorem 1.8.1 (with
c = 0) we get:

δ = λ2 − a− 2x where λ =
f ′(x)

2y
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Using f(x) = y2, we get:

δ =

(
f ′(x)

)2
− (8x+ 4a)f(x)

4f(x)
=

x4 − 2bx2 + b2

4x3 + 4ax2 + 4bx

Note that just as done in our proof of Part - 2, above, it is all right to ignore any finite set of points,
since we can always ε larger than 4h(P ) for all points in that finite set. So we will discard the finitely
many points of order 2, i.e. satisfying 2P = O. Thus f(x) 6= 0 because 2P 6= O.
Thus δ is the quotient of two polynomials in x with integer coefficients. Since the cubic y2 = f(x) is
non-singular by assumption, we know that f(x) and f ′(x) have no common (complex) roots. Thus,
the polynomials in numerator and denominator have no common roots.

Since, h(P ) = h(x) and h(2P ) = h(δ). Let, δ =
Φ(x)

Ψ(x)
, where,

Φ(x) = x4 − 2bx2 + b2 and Ψ(x) = 4x3 + 4ax2 + 4bx

Thus,

h(2P ) = log
(
max{|Φ(x)|, |Ψ(x)|}

)
Hence what we have prove is:

4h(x)− ε ≤ h
(

Φ(x)

Ψ(x)

)
Now, Φ(x) and Ψ(x) are polynomials with integer coefficients and no common (complex) roots. Also,
the maximum of the degrees of Φ and Ψ is 4. Now we will prove two propositions28

Proposition 1: There is an integer Λ ≥ 1, depending on Φ and Ψ, so that for all rational numbers
m

n
, the

gcd

(
n4Φ

(m
n

)
, n4Ψ

(m
n

))
divides Λ.

Firstly, observe that since Φ(x) and Ψ(x) have no common roots, they are relatively prime in
Euclidean ring Q[x]. Thus we can apply Euclidean algorithm to compute, polynomials with
rational coefficients, F (x) and G(x), such that,

F (x)Φ(x) +G(x)Ψ(x) = 1 (1.17)

Now, we apply Euclid’s division algorithm to get:

x4 − 2bx2 + b2 = (4x3 + 4ax2 + 4bx)

(
x− a

4

)
+
(

(a2 − 3b)x2 + abx+ b2
)

4x3+4ax2+4bx =
(

(a2−3b)x2+abx+b2
)(4(a2 − 3b)x− 4a(a2 − 4b)

(a2 − 3b)2

)
+

(
12b2(4b− a2)

(a2 − 3b)2
x+

4ab2(4b− a2)

(a2 − 3b)2

)

(a2−3b)x2+abx+b2 =

(
4b2(4b− a2)(3x+ a)

(a2 − 3b)2

)(
(a2 − 3b)2

(
3(a2 − 3b)x+ (6b− a2)a

)
36b2(4b− a2)

)
+
a4 − 6a2b+ 9b2

9

Now following the Remainder Substitution & Isolation method, that we follow to solve linear
diophantine equation, [Section 2.1.1], we get:

a4 − 6a2b+ 9b2

9
=

(
Φ(x)−Ψ(x)

(
x− a

4

))
−
(

Ψ(x)−
(

Φ(x)−Ψ(x)

(
x− a

4

))
P (x)Q(x)

)
where,

P (x) =

(
4(a2 − 3b)x− 4a(a2 − 4b)

(a2 − 3b)2

)
Q(x) =

(a2 − 3b)2
(
3(a2 − 3b)x+ (6b− a2)a

)
36b2(4b− a2)

28These propositions are actually true for any such polynomials, for general proof refer pp. 72-75 of [10].
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⇒ a4 − 6a2b+ 9b2

9
=

(
Φ(x)−Ψ(x)

(
x− a

4

))
−
(

Ψ(x)− P (x)Q(x)Φ(x) + P (x)Q(x)Ψ(x)

(
x− a

4

))
⇒ a4 − 6a2b+ 9b2

9
= Φ(x)−Ψ(x)

(
x− a

4

)
−Ψ(x) + P (x)Q(x)Φ(x)− P (x)Q(x)Ψ(x)

(
x− a

4

)
⇒ a4 − 6a2b+ 9b2

9
=
(

1 + P (x)Q(x)
)

Φ(x) +
(a− x

4

(
1 + P (x)Q(x)

)
− 1
)

Ψ(x)

Thus we get:

F (x) =

(
1 +

(
4(a2−3b)x−4a(a2−4b)

(a2−3b)2

)(
(a2−3b)2

(
3(a2−3b)x+(6b−a2)a

)
36b2(4b−a2)

))
9

a4 − 6a2b+ 9b2

G(x) =

(
a−x

4

(
1 +

(
4(a2−3b)x−4a(a2−4b)

(a2−3b)2

)(
(a2−3b)2

(
3(a2−3b)x+(6b−a2)a

)
36b2(4b−a2)

))
− 1

)
9

a4 − 6a2b+ 9b2

Let A be a large enough integer so that AF (x) and AG(x) have integer coefficients. Further, now
3 is the maximum degree of F and G. Now we will evaluate (1.17) for x = m/n:

F
(m
n

)
Φ
(m
n

)
+G

(m
n

)
Ψ
(m
n

)
= 1

Now to make left hand side integer multiply by An3+4 on both sides:

An3F
(m
n

)
n4Φ

(m
n

)
+An3G

(m
n

)
n4Ψ

(m
n

)
= An7

Note that, n4Φ
(
m
n

)
and n4Ψ

(
m
n

)
are surely integers. So, we can calculate their gcd. Let

gcd
(
n4Φ

(m
n

)
, n4Ψ

(m
n

))
= γ (1.18)

Now, since An3F
(
m
n

)
and An3G

(
m
n

)
are also integers, so, γ divides the right hand side, thus

γ
∣∣An7 (1.19)

But γ should divide one fixed number.
Now, observe that:

n4Φ
(m
n

)
= m4 − 2Abm2n2 +Ab2n4

Now to be able to use, (1.19), we multiply by An4+3−1 to get:(
An7

)
n3Φ

(m
n

)
= Am4n6 − 2Abm2n8 +Ab2n10 = Am4n6 −An7(2bm2n) +An7(b2n3)

Thus since γ divides left hand side and all quantities are integers, it should also divide right hand
side, thus:

γ
∣∣Am4n6

But, m,n are relatively prime, so (1.19) implies that, γ
∣∣An6.

Now repeating this process 6 more times we will get: γ
∣∣A, thus proving our proposition.

Proposition 2: There are constants ε1 and ε2, depending on Φ and Ψ, so that for all rational numbers
m

n
which

are not roots of Ψ, 4h
(m
n

)
− ε1 ≤ h

(
Φ(m/n)

Ψ(m/n)

)
≤ 4h

(m
n

)
+ ε2.

Here we need to prove two inequalities, upper bound can be proved as in Part - 2 [just need to
use duplication formula instead of general formula].
To prove lower bound, as done earlier, we will exclude some finite set of rational numbers. We

assume that the rational number
m

n
is not root of Φ(x). [in starting of proof of this part, we have

already excluded all those points for which Ψ(x) = 4f(x) is zero]. If r is any non-zero rational

number, it is clear from definition that h(r) = h

(
1

r

)
. So we can reverse the role of Φ and Ψ if
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necessary.
Thus, we can say:

δ =
Φ
(
m
n

)
Ψ
(
m
n

) =
n4Φ

(
m
n

)
n4Ψ

(
m
n

)
This gives an expression for δ as a quotient of integers, so:

H(δ) = max

{∣∣∣n4Φ
(m
n

) ∣∣∣, ∣∣∣n4Ψ
(m
n

) ∣∣∣}
except for the possibility that they may have common factors.
We proved in previous proposition that there is some integer, Λ ≥ 1, independent of m and n,
so that the greatest common divisor of n4Φ

(
m
n

)
and n4Ψ

(
m
n

)
divides Λ. This bounds possible

cancellation, and we find that:

H(δ) ≥ 1

Λ
max

{∣∣∣n4Φ
(m
n

) ∣∣∣, ∣∣∣n4Ψ
(m
n

) ∣∣∣}
Since,

max(a, b) =
a+ b+ |a− b|

2
≥ a+ b

2

We get:

⇒ H(δ) ≥

∣∣∣n4Φ
(
m
n

) ∣∣∣+
∣∣∣n4Ψ

(
m
n

) ∣∣∣
2Λ

To compare 4h(x) and h(δ) is equivalent to comparingH(δ) to the quantityH
(
m
n

)4
= max{|m|4, |n|4},

so we consider quotient:

H(δ)

H
(
m
n

)4 ≥
∣∣∣n4Φ

(
m
n

) ∣∣∣+
∣∣∣n4Ψ

(
m
n

) ∣∣∣
2Λ max{|m|4, |n|4}

Now, if we substitute back values of functions, we get:

H(δ)

H
(
m
n

)4 ≥
∣∣∣m4 − 2bm2n2 + b2n4

∣∣∣+
∣∣∣4m3n+ 4am2n2 + 4bmn3

∣∣∣
2Λ max{|m|4 , |n|4}

H(δ)

H
(
m
n

)4 ≥
∣∣∣m2 − bn2

∣∣∣2 +
∣∣∣4m3n+ 4am2n2 + 4bmn3

∣∣∣
2Λ max{|m|4 , |n|4}

> 0

This quantity is strictly positive, so it must have a positive minimum value, because we have
excluded all the points where Φ and Ψ are zero.
Call that minimum value, C , then:

H(δ)

H
(
m
n

)4 ≥ C
Taking logarithm both sides:

h(δ) ≥ 4H
(m
n

)
+ log(C)

Now, put, ε = − log(C), to get desired result.

This completes the proof of this part.

Part 4: The subgroup 2Γ has a finite index29 in Γ.

In this part we will make use of fact that, given elliptic curve has a rational point of order 2, namely
T = (0, 0), since, 2T = O. Also since the curve is non-singular, the discriminant, D = b2(a2 − 4b)
is non-zero. To prove this part firstly we will borrow all the notations from Theorem 1.8.5 (to save

29Number of distinct right cosets of 2Γ in Γ.
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space). Now if we can prove that the index
(
Γ : φ(Γ)

)
is finite and also the index

(
Γ : ψ(Γ)

)
is finite,

then using this we can prove that the subgroup 2Γ has a finite index in Γ.
Now, proving any one of statements, the index

(
Γ : φ(Γ)

)
is finite or the index

(
Γ : ψ(Γ)

)
is finite is

enough. So we will just prove the second one. Thus we will prove following 5 propositions to prove
this part:

Proposition 1: Let Q∗ be the multiplicative group of non-zero rational numbers, and Q∗2 be the subgroup of
squares of elements of Q∗. Then a map α : Γ → Q∗/Q∗2, defined by: α(O) = 1 mod Q∗2 ,
α(T ) = b mod Q∗2 and α(x, y) = x mod Q∗2 if x 6= 0; is a homomorphism.
Observe that, α sends inverses to inverses, because: x ≡ 1

x (mod Q∗2)

α(−P ) = α(x,−y) = x mod Q∗2 and α(P )−1 = α

(
1

x
,

1

y

)
=

1

x
mod Q∗2

Thus to prove this proposition, it is enough to show that whenever P1 + P2 + P3 = O, then
α(P1)α(P2)α(P3) ≡ 1 (mod Q∗2).
The triples of points which add to zero consist of the intersections of the curve with the line. If
the line is y = λx + ν and the x coordinates of the points of intersection are roots of following
equation [put c = 0 in Theorem 1.8.1]

x3 + (a− λ2)x2 + (b− 2λν)x− ν2 = 0

Thus, from the product of roots relation:

x1x2x3 = ν2 ∈ Q∗2

Therefore,
α(P1)α(P2)α(P3) = x1x2x3 = ν2 ≡ 1 (mod Q∗2)

This proves the case that P1, P2, P3 are distinct from O and T .
For other cases, proceed similar to Theorem 1.8.5(i).

Proposition 2: The kernel of α is the image ψ(Γ). Hence α induces a one-to-one homomorphism: Γ
ψ(Γ)

↪→ Q∗
Q∗2

From Theorem 1.8.5(iii), ψ(Γ) is the set of points (x, y) ∈ Γ such that x is a non-zero rational
square, together with O and also T if b is a perfect square. Now comparing the definition of α
with this description of ψ(Γ), it is clear that the kernel of α is precisely ψ(Γ).

Proposition 3: Let p1, p2, . . . pt be the distinct primes dividing b. Then the image of α is contained in the subgroup
of Q∗/Q∗2 consisting of the elements: {±pσ11 pσ22 . . . pσtt : each σi equals 0 or 1}.
As seen in Part-2, we know that rational points have coordinates of the form x = m/e2 and
y = n/e2. Substituting this into given equation of curve we get:

n2 = m3 + am2e2 + bme4 = m(m2 + ame2 + be4)

This equation expresses the square n2 as a product of two integers. In general case let

d = gcd(m,m2 + ame2 + be4)

Then d divides both m and be4. But, m and e are relatively prime, since we assumed that x was
written in lowest terms. Therefore, d

∣∣b.
Since, also n2 = m(m2 + ame2 + be4) we deduce that every prime dividing m appears to an even
power except possibly for primes dividing b. Therefore:

m = ±W 2 · pσ11 pσ22 . . . pσtt

where W is some integer, each σi equals 0 or 1 and p1, p2, . . . pt are distinct primes dividing b.
Thus:

α(P ) = x =
m

e2
≡ ±pσ11 pσ22 . . . pσtt (mod Q∗2)

Thus proves the proposition for x 6= 0. But if x = 0, and hence m = 0, then by definition,
α(T ) = b mod Q∗2, shows the conclusion is still valid because b = ·pσ11 pσ22 . . . pσtt as indicated
above.
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Proposition 4: The index (Γ : ψ(Γ)) is at most 2t+1.
The subgroup described in previous proposition has precisely 2t+1 elements. On the other hand
proposition 2 says that quotient group Γ/ψ(Γ) maps one-to-one into this subgroup. Hence index
of ψ(Γ) inside Γ is at most 2t+1.

Proposition 5: Since, ψ(Γ) has a finite index in Γ, we can find elements P1, P2, . . . , Pn representing the finitely
many cosets. Similarly, since φ(Γ) has a finite index in Γ, we can choose elements P 1, P 2, . . . , Pm
representing the finitely many cosets. Then the set, {Pi +ψ(P j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} includes
complete set of representatives for the cosets of 2Γ inside Γ.
We know that Γ and Γ are abelian groups and in Theorem 1.8.5, we proved that for two homo-
morphisms φ : Γ→ Γ and ψ : Γ→ Γ:{

(ψ ◦ φ)(P ) = 2P for all P ∈ Γ

(φ ◦ ψ)(P ) = 2P for all P ∈ Γ

Further in previous proposition we proved that, ψ(Γ) has a finite index in Γ, which as stated
earlier, also proves that, φ(Γ) has a finite index in Γ.
Let, P ∈ Γ. We need to show that P can be written as the sum of an element of this set plus an
element of 2Γ.
Since, P1, P2, . . . , Pn are representatives for the cosets of ψ(Γ) inside Γ, we can find some Pi so
that P − Pi ∈ ψ(Γ), say P − Pi = ψ(P ).
Also, P 1, P 2, . . . , Pn are representatives for the cosets of φ(Γ) inside Γ, we can find some P i so
that P − P i ∈ ψ(Γ), say P − P j = φ(P ′).
Then,

P = Pi + ψ(P ) = Pi + ψ(P j + φ(P ′))

Now using Theorem 1.8.5

P = Pi + ψ(P j) + (ψ ◦ φ)(P ′) = Pi + ψ(P j) + 2P ′

This completes proof of this part.

Part 5: The above four parts imply that Γ is finitely generated.
We know that there are only finitely many cosets of 2Γ in Γ, say n of them. Let Q1, Q2, . . . , Qn be
representatives for these cosets. Thus for any element P ∈ Γ, there is an index i1, depending on P ,
such that, P −Qi1 ∈ 2Γ. But, P has to be in one of the cosets, thus we can write P −Qi1 = 2P1.
Continuing this process, we can write:

P1 −Qi2 = 2P2

P2 −Qi3 = 2P3

...

Pm−1 −Qim = 2Pm

where Qi1 , Qi2 , . . . , Qim are chosen from the coset representatives Q1, Q2, . . . , Qn and P1, P2, . . . , Pm
are elements of Γ.
Since we have, P = Qi1 + 2P1, now substitute the second equation, P = Qi1 + 2Qi2 + 4P2, continuing
in this way we get:

P = Qi1 + 2Qi2 + 4Qi3 + . . .+ 2m−1Qim + 2mPm

This, implies that P is in the subgroup of Γ generated by Qi’s and Pm.
In Part-2, replace P0 with −Qi, to get a constant, εi such that:

h(P −Qi) ≤ 2h(P ) + εi for all P ∈ Γ

Now, do this for each Qi, 1 ≤ i ≤ n. Let ε′ be the largest of all εi’s. Then:

h(P −Qi) ≤ 2h(P ) + ε′ for all P ∈ Γ and all 1 ≤ i ≤ n
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We can do this because there are only finitely many Qi’s, from Part-4.
Let, ε be the constant from Part-3. Then we can calculate:

4h(Pj) ≤ h(2Pj) + ε = h(Pj−1 −Qij ) + ε ≤ 2h(Pj−1) + ε′ + ε

⇒ h(Pj) ≤
1

2
h(Pj−1) +

ε+ ε′

4
=

3

4
h(Pj−1)− 1

4

(
h(Pj−1)− (ε+ ε′)

)
Now, if h(Pj−1) ≥ ε+ ε′

⇒ h(Pj) ≤
3

4
h(Pj−1)

So, in the sequence of points P, P1, P2, P3, . . ., as long as the point Pj satisfies the condition h(Pj) ≥
ε+ ε′, then the next point in the sequence has much smaller height, namely, h(Pj+1) ≤ 3

4h(Pj).
But, if we start with a number and keep multiplying it by 3/4, then it approaches zero. So eventually
we will find an index m such that, h(Pm) ≤ ε+ ε′.
Thus we have shown that every element P ∈ Γ can be written in the form:

P = a1Q1 + a2Q2 + . . .+ anQn + 2mR

for certain integers a1, a2, . . . , an and some point R ∈ Γ satisfying the inequality h(R) ≤ ε+ ε′.
Hence the set:

{Q1, Q2, . . . , Qn} ∪ {R ∈ Γ : h(R) ≤ ε′ + ε}

generates Γ.
From Part-1 and Part-4, this set is finite, which completes the proof that Γ is finitely generated.

Remark: There is no known method to determine in a finite number of steps whether a given rational
cubic has rational point.

Example 1.8.1. Solve
y2 = x3 − x

in rational numbers.

Solution. Let us denote given curve by C, so

C : y2 = x3 − x

Now we will borrow all notations from proof of Theorem 1.8.6, and we get: a = 0, b = −1.
Next task is to determine the rank of C(Q) = Γ denoted by r. The group Γ will be finite if and only if it
has rank, r, equal to zero30. Thus we will use following formula to calculate rank of Γ:

2r =
#α(Γ) ·#α(Γ)

4
(1.20)

Where, (Γ : ψ(Γ)) = #α(Γ) and (Γ : ψ(Γ)) = #α(Γ). Also, α is defined similar to α, as, α : Γ → Q∗/Q2 ,
such that by: 

α(O) = 1 mod Q2,

α(T ) = b mod Q2,

α(x, y) = x mod Q2 if x 6= 0

To determine, #α(Γ) ( called order of α(Γ)), we will write down several equations of form:

N2 = b1M
4 + aM2e2 + b2e

4

one for each factorization b = b1b2.We will decide whether or not each of these equations has a solution in
integers with M 6= 0 and each time we find an equation with a solution (M, e,N), then we get a new point
on the curve by the formula:

x =
b1M

2

e2
, y =

b1MN

e3

30For proof refer pp. 89-91 of [10]
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Thus for each b1, b2, either exhibit a solution or show that the equation has no solution by using Modulo
Arithmetic & Parity or as an equation in real numbers.

The first step is to factor b in all possible ways. There are two factorizations in this case:

−1 = −1× 1 and − 1 = 1×−1

Thus b1 can be only ±1. Since α(O) = 1 and α(T ) = b = −1, we see that:

α(Γ) = {±1 mod Q∗2}

is a group of two elements or #α(Γ) = 2.
Next we have to compute, α(Γ), so we need to apply above procedure to:

C : y2 = x3 + 4x

Now, b = 4, has lots of factorizations; we can choose:

b1 = 1,−1, 2,−2, 4,−4

But, 4 ≡ 1 (mod Q∗2) and −4 ≡ −1 (mod Q∗2), so α(Γ) consists of at most the four elements {1,−1, 2,−2}.
Clearly we have b ∈ α(Γ), but in this case, b = 4 is a square, so this doesn’t help us in this case.
Hence the four equations we must consider are:

(i) N2 = M4 + 4e4 (ii) N2 = −M4 − 4e4

(iii) N2 = 2M4 + 2e4 (iv) N2 = −2M4 +−2e4

Since, N2 ≥ 0, and we do not allow solutions with M = 0, we see that equations (i) and (iv) have no
solutions in integers (in fact they have no solutions in real numbers with M 6= 0).
Equation (i) has trivial solution (M, e,N) = (1, 0, 1), which corresponds to the fact that 1 ∈ α(Γ).
Also (1.20), tells us that #α(Γ) ·#α(Γ) is atleast 4, so in this example, we know that #α(Γ) is at least two.
Thus equation (iii) must have a solution. In fact we can see that:

22 = 2 · 14 + 2 · 14

So we conclude that #α(Γ) = 2.
Thus rank of Γ is zero, and the same is true for rank of Γ, so we can solve both C and C using same
arguments.
Thus the group of rational points on C and C are both finite, and so all rational points have finite order.
Now to find points of finite order, we can use Theorem 1.8.4 (Nagell-Lutz Theorem). Thus, if P = (x, y) is
a point of finite order in Γ, then either y = 0 or y

∣∣b2(a2 − 4b) ⇒ y
∣∣4. The points with y = 0 are (0, 0) and

(±1, 0) and for y = ±2,±3,±4, we get no points. Thus the group of rational points onC are:

C(Q) = {O, (0, 0), (1, 0), (−1, 0)}

Similarly, we can find points of finite order in Γ, as y = 0 or y
∣∣b2(a2 − 4b) ⇒ y

∣∣ − 256. Proceeding in
same way as for C, we get:

C(Q) = {O, (0, 0), (2, 4), (2,−4)}

Example 1.8.2. Solve
y2 = x3 + 20x

in rational numbers.

Solution. Unlike previous example, here you will get rank of Γ to be 1. Thus it has infinitely many solutions.
[To eliminate some equations you will have to use Fermat’s Little Theorem]
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Chapter 2

Special Types of Diophantine Equations

Here I will discuss few of the well studied types of diophantine equations. A complete list of well studied
diophantine equations upto year 1969, can be found pp. 307 onwards in [5].

2.1 Linear Equations

2.1.1 Equations in two unknowns

Theorem 2.1.1. Let a, b, c ∈ Z; a, b 6= 0. Consider the linear diophantine equation ax+ by = c, then:

i. If d = gcd(a, b) then this linear equation is solvable in integers if and only if d | c.

ii. If (x0, y0) is a particular solution of this equation then every integer solution is of the form:

x = x0 +
b

d
t, y = y0 −

a

d
t

where t ∈ Z.

Sketch of Proof. The basic idea behind proof is:

i. Apply Euclid’s Division Algorithm in bottom-up fashion

ii. Simply substitute given solution in diophantine equation and verify.

Methods to find particular solution. There are two methods available:

1. Remainder Substitution & Isolation

2. Last Partial Quotient Omission & Subtraction

Actually both methods are equivalent and are based on Euclid’s Division Algorithm. The proof of equivalence
between both methods requires theory of Continued Fractions which I will not discuss here. For proof you
may refer [7] or [15].

I will illustrate both methods using following example:

Example 2.1.1. Solve 127x− 52y + 1 = 0 for integers.

Solution. Firstly we will calculate gcd(127, 52)

127 = 52× 2 + 23

52 = 23× 2 + 6

23 = 6× 3 + 5

6 = 5× 1 + 1

5 = 1× 5 + 0
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Since gcd(127, 52) = 1 this equation is solvable.

Method 1: The first step is to rewrite the equation first step of division algorithm as:

23 = a− 2b, where we let a = 127 & b = 52

Next we substitute this value into second equation and also replace 52 by b:

b = (a− 2b)× 2 + 6

Now rearrange the terms and isolate the reminder:

6 = 5b− 2a

Now substitute 6 and 23 in terms of a and b in next equation of division algorithm:

a− 2b = (5b− 2a)× 3 + 5

Again rearrange terms and isolate remainder:

5 = 7a− 17b

Now substitute 5 and 6 in next equation of division algorithm:

5b− 2a = (7a− 17b)× 1 + 1

Now rearrange the terms to get:
9a− 22b+ 1 = 0

Comparing with given equation we get: x = 9 and y = 22 as a particular solution. From this we can
generate all infinite solutions.

Method 2: First step is to create an improper fraction by dividing bigger coefficient by smaller coefficient
(magnitude only)
Thus in this example we get: 127

52
Now separate out the integral part of this fraction:

127

52
= 2 +

23

52

Then re-write the fractional part in terms of terminating continued fraction as:

127

52
= 2 +

23

52
= 2 +

1

2 +
1

3 +
1

1 +
1

5

Now we will omit the last partial quotient and simplify the continued fraction so formed:

2 +
1

2 +
1

3 +
1

1

=
22

9

Now we will subtract this new fraction from our original improper fraction:

127

52
− 22

9
=
−1

52× 9

Cross multiply denominators to get:

127× 9− 52× 22 + 1 = 0

Compare it with original equation and get x = 9 and y = 22 as a particular solution.

Remark: Note that both the methods described above lead to same solutions, which provides a verification
to my assertion that at base level both methods are equivalent. It may be noted that these methods provide
the least solution of the equation, namely that for which x < |b| and y < |a|.
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2.1.2 Equations in n−unknowns

Theorem 2.1.2. Given a linear equation:

a1x1 + a2x2 . . .+ anxn = c

where n ≥ 2, a1, a2, . . . , an, c are fixed integers and all coefficients a1, a2, . . . , an are different from zero.

i. This equation is solvable if and only if gcd(a1, a2, . . . , an)|c.

ii. If this equation is solvable then one can choose n − 1 solutions such that each solution is an integer
linear combination of those n− 1 solutions.

Sketch of Proof. These generalizations can be proved by induction on basic case of n = 2.(Theorem 2.1.1)

i. Let d = gcd(a1, . . . , an). If c is not divisible by d, then given equation is not solvable.

ii. Actually, we need to prove that gcd(x1, x2, . . . , xn) is a linear combination with integer coefficients of
x1, x2, . . . , xn. Apply induction on Euclid’s Division Algorithm which we use to create linear combi-
nation for two numbers. Since: gcd(x1, . . . , xn) = gcd(gcd(x1, . . . , xn−1), xn).

Theorem 2.1.3. Suppose that the equation:

a1x1 + a2x2 + · · ·+ amxm = n

where a1, a2, . . . , am > 0, is solvable in non-negative integers, and let An be the number of its solutions
(x1, x2, . . . , xm). Then:

An =
1

n!
fn(0)

where,

f(x) =
1

(1− xa1)(1− xa2) . . . (1− xam)
, |x| < 1

is the generating function of the sequence {An}n≥1. and fn(x0) denotes the nth derivative of f(x) at point
x0.

Remark: A generating function f(x) is a power series function of variable x, that is, we can substitute in
a value of x and if the power series is converging series then we get back value of f(x). Generating function
for a given sequence has the terms of the sequence as coefficients of the power series. For examples refer
Chapter 41 of [16]

Proof. Note that if n = 0 and if all coefficients are positive then only one trivial non-negative solution
namely (0, 0, . . . , 0) exist, thus A0 = 1. Hence we can write our sequence as:

A0, A1, A2, A3, A4 . . .

thus the corresponding generating function f(x) will be:

f(x) = A0 +A1x+A2x
2 +A3x

3 +A4x
4 + . . . (2.1)

Now let’s observe the most important generating function i.e Geometric Series Formula (Note that this is
generating function for sequence 1, 1, 1, 1, 1, 1, . . .):

1

1− x
= 1 + x+ x2 + x3 + . . . , |x| < 1

We have ai as our coefficients so we consider geometric series of form:

1

1− xai
= 1 + xai + x2ai + x3ai + . . . , |x| < 1

An is the number of non-negative solutions of given linear diophantine equation which is exactly same as
the number of ways we can add the exponents of x i.e. αai, where α ∈ Z+ to get n in exponent (since linear
diophantine equation is essentially linear combination of coefficients) thus we can write f(x) as:

f(x) = (1 + xa1 + x2a1 + . . .)(1 + xa2 + x2a2 + . . .) . . . (1 + xam + x2am + . . .), |x| < 1 (2.2)
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Replace RHS by geometric series formula to get the desired generating function:

f(x) =
1

(1− xa1)(1− xa2) . . . (1− xam)
, |x| < 1

Thus by comparing (2.1) and (2.2) we can say that An is the coefficient of xn we get on multiplication of
all brackets. We can find that coefficient easily using basic calculus on (2.1). Observe that:

fn(x) = n!An +
(n+ 1)!

1!
(n+ 1)!An+1x+

(n+ 2)!

2!
An+2x

2 +
(n+ 3)!

3!
An+3x

3 + . . . (2.3)

Thus we can separate out An as:

An =
1

n!
fn(0)

Remark: Though this formula for finding number of non-negative solutions of a given linear diophantine
equation with positive coefficients is easy to derive but calculation of An using this formula is difficult in
most situations(see [14]). Note that computing the number solutions of even a linear diophantine equation
is by far one the most complex process.

2.2 Equations of second degree in two unknowns

2.2.1 Equations of form: x2 −Dy2 = 1, D ∈ Z+ and
√
D is irrational

Diophantus considered only rational solutions of such equations, but other mathematicians like Brah-
magupta, Jayadeva, Bhaskaracharya, Fermat, Euler, and others focused on its solutions in integers. Note
that this equation has the trivial solution (x0, y0) = (1, 0) in non-negative integers. I will here study such
equations using elementary arithmetic. But, we can also handle such equations using concept of Unique
Factorization Domains, for that treatment refer pp. 167-169 of [17].

Theorem 2.2.1. Given an equation:
x2 −Dy2 = 1

where D ∈ Z+ and
√
D is irrational1

i. This equation possesses a non-trivial solution (x1, y1) in positive integers.

ii. The general solution is given by (xn, yn), n ≥ 0,{
xn+1 = x1xn +Dy1yn

yn+1 = y1xn + x1yn,

where (x1, y1) is the least solution. Hence this equation has infinitely many solutions in non-negative
integers.

iii. Show that: {
xn = 2x1xn−1 − xn−2

yn = 2x1yn−1 − yn−2

for n ≥ 2

also gives general solution of this equation.

iv. If (x1, y1) is the least solution of the equation then any solution of the equation is of form (±xn,±yn),
where {

xn = 1
2 [(x1 + y1

√
D)n + (x1 − y1

√
D)n]

yn = 1
2
√
D

[(x1 + y1

√
D)n − (x1 − y1

√
D)n]

1The equation is of no interest when D is a perfect square, since the difference of two perfect squares can never be 1, except
in the case 12 − 02
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Remark: (x1, y1) is called the least solution or minimal solution of equation if for x = x1 and y = y1 the
binomial x + y

√
D, assumes the least possible value among all the possible values which it will take when

all the possible positive integral solutions of the equation are substituted for x and y.

Proof. Before we start the proof you must have an understanding of terms like Sequences, Convergent of a
continued fractions2 (for details see [15]) and Greatest Integer Function (denoted by b•c).

i. We will divide the proof into three parts3

a. Prove the existence of a positive integer k such that equation x2 −Dy2 = k has an infinite number
of positive integral solutions.

Given:
x2 −Dy2 = (x−

√
Dy)(x+

√
Dy) = k (2.4)

Now consider an even convergent of the irrational number
√
D, δ2n = P2n

Q2n
>
√
D. Replace x and

y respectively by the numerator and denominator of this even convergent to get:

P 2
2n −DQ2

2n = (P2n −
√
DQ2n)(P2n +

√
DQ2n)

The left hand side of this equality, and therefore the right hand side too, is an integer. Let it be
z2n and

√
D = α Then we can write:

z2n = (P2n − αQ2n)(P2n + αQ2n) (2.5)

But since: {
0 < P2n − αQ2n <

1
Q2n+1

0 < P2n + αQ2n = 2αQ2n + P2n − αQ2n < 2αQ2n + 1
Q2n+1

Now substitute these inequalities in (2.5) to estimate z2n.

0 < z2n <
1

Q2n+1

(
2αQ2n +

1

Q2n+1

)
< 2α+ 1

since Q2n < Q2n+1.
But z2n is an integral positive value. Thus, all numbers z2, z4, . . . , z2n, . . . will be positive integers,
none of which exceed the same number 2α + 1. But since α =

√
D is irrational, its continued

fraction is infinite and so the sequence of pairs of numbers P2n and Q2n is also infinite.
Now since there are not more than b2α+ 1c integers between 1 and the number 2α+ 1 (which is
definite and does not depend on n), the infinite sequence of positive integers z2, z4, . . . , z2n, . . . is
made up of a finite number of different terms.
In other words, the infinite number series z2, z4, . . . , z2n, . . . is just the sequence of integers
1, 2, 3, . . . , b2α + 1c repeated in some way or other and it is not even necessary for all these
integers to occur in the series.
Note also that since the quantity of different terms of the infinite series z2, z4, . . . , z2n, . . . is finite,
at least one term (one number), k (1 ≤ k ≤ b2α+ 1c), is repeated an infinite number of times.
Hence, among the pairs of numbers (P2, Q2), (P4, Q4), . . . , (P2m, Q2n), . . . there is an infinite set
of pairs for which z = x2−Dy2 assumes the same value k upon substitution of these numbers in

2The expression obtained by omitting all terms of its continued fraction (of say α) starting with some particular term is
called convergent. The first convergent δ1 is equal to first partial quotient (q0). Also convergents satisfy following inequality:
δ1 < δ3 < . . . < δ2k−1 < α and δ2 > δ4 > . . . > δ2k > α. Also we can write kth convergent as: δk = Pk

Qk
, (1 ≤ k ≤ n) Then we

write a recursive formula: {
Pk = Pk−1qk + Pk−2

Qk = Qk−1qk +Qk−2

Also for consecutive convergents:

δk − δk−1 =
(−1)k

QkQk−1
(k > 1)

3There is an elegant way of proving this assertion using Diophantine Approximation which is based on Pigeon Hole Principle,
for that proof refer pp. 232 of [16] or pp. 53 of [5].
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place of x and y.
Thus, we have proved the existence of a positive integer k for which (2.4) possesses an infinite
number of integral solutions (x, y).

b. Prove that among the pairs of integers which are solution of (2.4) for given k, there will be infinitely
many pairs yielding the same remainders when divided by k

If we could assert that k = 1, then we would have proved that given equation has an infinite
number of integral solutions. Since we cannot assert this, let us assume that k > 1 (in the con-
trary case when k = 1 everything is proved).
We can put the statement to be proved in another way, we shall prove that there exist two
non-negative integers, p and q, both less than k, such that for an infinite number of pairs
(u1, v1), (u2, v2), . . . , (un, vn), . . . which are solutions of:

u2
n −Dv2

n = k (2.6)

the equalities: {
un = ank + p

vn = bnk + q
(2.7)

hold, where an and bn are the quotients upon division of un and vn by k, and p and q the re-
mainders.
For, if we divide un and vn by the integer k, k > 1, then we obtain relations of this form, where
as always the remainders upon division lie between zero and k − 1.
Since the only possible remainders upon the division of the numbers un by k are the numbers
0, 1, 2, . . . , k− 1, and likewise the remainders upon the division of vn by k can only be these same
numbers 0, 1, 2, . . . , k − 1, then the number of possible pairs of remainders upon the division of
the numbers un, and vn by k will be k × k = k2.
This is also obvious because a pair of remainders (pn, qn) corresponds to each pair (un, vn) and
the number of different values assumed by each of the numbers pn and qn separately is not greater
than k.
Consequently, the number of different pairs of remainders is not greater than k2.
Thus to each pair of integers (un, vn) there corresponds a pair of remainders (pn, qn) on division
by k.
But the number of different pairs of remainders is finite, does not exceed k2 , while the number
of pairs (un, vn) is infinite.
This means that since the number of different pairs in the sequence (p1, q1), (p2, q2), . . . , (pn, qn), . . .
is finite, at least one pair of remainders is repeated an infinite number of times.
Denoting this pair of remainders (p, q), we see that there exists an infinite set of pairs (un, vn)
for which relations (2.7) hold.
Since not all the pairs satisfy (2.7) for certain definite p and q, whose existence we have just
proved, we shall renumber all those pairs un, vn) which satisfy (2.7) denoting them by (Rn, Sn).
So, the infinite sequence of pairs (R1, S1), (R2, S2), . . . , (Rn, Sn), . . . is a subsequence of the se-
quence (un, vn) which, in turn, is a subsequence of the sequence of numerators and denominators
of the even convergents of α.
The pairs of numbers (R1, S1), (R2, S2), . . . , (Rn, Sn), . . . satisfy equation (2.6) and yield the same
remainders, p and q, on division by k.
Thus we have established the existence of an infinite set of such pairs of positive integers yielding
the same remainders when divided by k.

c. Generate a general solution of x2 −Dy2 = 1

In last step we have established the existence of an infinite set of such pairs of positive integers
Rn and Sn. Note first of all that the pairs (Rn, Sn), being the numerators and denominators of
convergents, must be pairs of relatively prime numbers.
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Indeed, if we replace k by 2k in

δk − δk−1 =
(−1)k

QkQk−1
(k > 1)

and set δ2k = P2k
Q2k

, δ2k−1 =
P2k−1

Q2k−1
, then we get:

P2k

Q2k
− P2k−1

Q2k−1
=

1

Q2kQ2k−1

multiply both sides by Q2kQ2k−1, we get

P2kQ2k−1 − P2k−1Q2k = 1

This relation between four integers, P2k, Q2k, P2k−1 and Q2k−1 shows that if P2k and Q2k have
a common divisor greater than unity, then its whole left-hand side must be divisible by this
common divisor. But the right-hand side of above equality is unity, which cannot be divided by
any integer greater than unity.
Thus it is established that the numbers Rn and Sn, which can only be the numerators and
denominators of convergents, are relatively prime.
From following relation: {

Pk = Pk−1qk + Pk−2

Qk = Qk−1qk +Qk−2

it also immediately follows that: Q2 < Q4 < . . . < Q2n < . . .
From the fact that the numbers Rn and Sn are relatively prime and S1, S2, . . . , Sn, . . ., which are
taken from the sequence of numbers Q2n all differing from one another, are also all different from
one another, it immediately follows that in the infinite sequence of fractions:

R1

S1
,
R2

S2
, . . . ,

Rn
Sn

, . . .

there are no numbers equal to one another.
Note that the definition of numbers Rn and Sn is:

R2
n −DS2

n = (Rn − αSn)(Rn + αSn) = k, (α =
√
D)

Now substitute (R1, S1) and (R2, S2) in this definition:{
R2

1 −DS2
1 = (R1 − αS1)(R1 + αS1) = k

R2
2 −DS2

2 = (R2 − αS2)(R2 + αS2) = k
(2.8)

Also,
(R1 − αS1)(R2 + αS2) = R1R2 −DS1S2 + α(R1S2 − S1R2) (2.9)

Similarly,
(R1 + αS1)(R2 − αS2) = R1R2 −DS1S2 − α(R1S2 − S1R2) (2.10)

When divided by k, Rn and Sn leave remainders p and q independent of n (as proved in earlier).
Consequently, because of (2.7), we get:{

Rn = cnk + p

Sn = dnk + q
(2.11)

Now after a series of High School Algebra4 transformations and substitutions using (2.8) and
(2.11) we get:

R1R2−DS1S2 = R1(c2k+ p)−DS1(d2k+ q) = k[R1(c2− c1)−DS1(d2− d1) + 1] = kx1 (2.12)

4As called by S. Abhyankar
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where x1 is a integer.
Similarly by using (2.11) only we get:

R1S2 − S1R2 = R1(d2k + q)− S1(c2k + p) = k[R1(d2 − d1)− S1(c2 − c1)] = ky1 (2.13)

where y1 is again an integer.
We can assert that y1 is not equal to zero i.e. this is non-trivial solution. For suppose y1 = 0,
then ky1 = R1S2 − R2S1 = 0, hence, R1

S1
= R2

S2
which is impossible since we have already proved

that all these fractions Rn
Sn

are different.
Now use (2.12) and (2.13) in (2.9) and (2.10) to get:{

(R1 − αS1)(R2 + αS2) = k(x1 + αy1)

(R1 + αS1)(R2 − αS2) = k(x1 − αy1)
(2.14)

Use (2.14) in (2.8) to get:

k2 = (R2
1 −DS2

1)(R2
2 −DS2

2) = k2(x2
1 −Dy2

1)

Since k > 0 (we have already proved in first part), cancelling k2, we get:

x2
1 −Dy2

1 = 1

But y1 6= 0 (we have already proved in this part) which means that x1 6= 0, otherwise the left-
hand side would be negative while the right-hand side would be equal to unity. Thus, even under
the assumption that k 6= 1 or k > 1, we have determined two non-zero integers, x1 and y1 which
satisfy equation x2 −Dy2 = 1.

ii. Use induction with respect to n. Clearly, (x1, y1) is a solution to given equation. If (xn, yn) is a
solution to this equation, then:

x2
n+1 −Dy2

n+1 = (x1xn +Dy1yn)2 −D(y1xn + x1yn)2 = (x2
1 −Dy2

1)(x2
n −Dv2

n) = 1

thus the pair (xn+1, yn+1) is also a solution to the given equation.
Observe that for all non-negative integers (this statement has simple proof by contradiction, refer, pp.
354-355 of [9])

(x1 + y1

√
D)n = xn + yn

√
D (2.15)

Let, zn = xn + yn
√
D = (x1 + y1

√
D)n, n ≥ 0 and note that, z0 < z1 < z2 < . . .

We will now prove that the solutions to given equation satisfy (2.15).
Indeed, if given equation has a solution (x, y) such that z = x + y

√
D is not of the form (2.15), then

zm < z < zm+1 for some integer m.
Then,

1 <
z

zm
=

(x+ y
√
D)

(x1 + y1

√
D)m

=
(x+ y

√
D)

(xm + ym
√
D)

= (x+ y
√
D)(xm − ym

√
D) < x1 + y1

√
D

and therefore,
1 < (xxm + yym

√
D) + (xmy − xym

√
D) < x1 + y1

√
D

Whereas,
(xxm −Dyym)2 −D(xmy − xym)2 = (x2 −Dy2)(x2

m −Dy2
m) = 1

Thus, (xxm−Dyym, xmy−xym) is a solution of given equation, which is less than (x1, y1), contradicting
the assumption that (x1, y1) was minimal or least solution

iii. The the relation: {
xn+1 = x1xn +Dy1yn

yn+1 = y1xn + x1yn,
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can be written in matrix5 form as: [
xn+1

yn+1

]
=

[
x1 Dy1

y1 x1

] [
xn
yn

]
Which leads to:[

xn
yn

]
=

[
x1 Dy1

y1 x1

] [
xn−1

yn−1

]
=

[
x1 Dy1

y1 x1

]2 [
xn−2

yn−2

]
= . . . =

[
x1 Dy1

y1 x1

]n [
x0

y0

]
(2.16)

where (x0, y0) = (1, 0) is the trivial solution
Let’s calculate: [

x1 Dy1

y1 x1

]2

=

[
x2

1 +Dy2
1 2Dy1x1

2x1y1 Dy2
1 + x2

1

]
From previous part, we know x2 = x2

1 +Dy2
1, y2 = 2y1x1:[

x1 Dy1

y1 x1

]2

=

[
x2 Dy2

y2 x2

]
(2.17)

Since x2
1 −Dy2

1 = 1 we get: [
x1 Dy1

y1 x1

]2

=

[
2x2

1 − 1 2Dx1y1

2x1y1 2x2
1 − 1

]
Thus: [

x1 Dy1

y1 x1

]2

= 2x1

[
x1 Dy1

y1 x1

]
−
[
1 0
0 1

]
Further since, where (x0, y0) = (1, 0) is the trivial solution, we get:[

x1 Dy1

y1 x1

]2

= 2x1

[
x1 Dy1

y1 x1

]
−
[
x0 y0

y0 x0

]
(2.18)

Equating (2.17) and (2.18) we get:[
x2 Dy2

y2 x2

]
= 2x1

[
x1 Dy1

y1 x1

]
−
[
x0 y0

y0 x0

]
Now by induction on (2.17) and (2.18), we get:[

x1 Dy1

y1 x1

]n
=

[
xn Dyn
yn xn

]
= 2x1

[
xn−1 Dyn−1

yn−1 xn−1

]
−
[
xn−2 yn−2

yn−2 xn−2

]
(2.19)

Using (2.19) in (2.16) after substituting x0 = 1 and y0 = 0 we get:[
xn
yn

]
= 2x1

[
xn−1

yn−1

]
−
[
xn−2

yn−2

]
(2.20)

Thus, [
xn
yn

]
=

[
2x1xn−1 − xn−2

2x1yn−1 − yn−2

]
Hence we have obtained the required formula for xn and yn:{

xn = 2x1xn−1 − xn−2

yn = 2x1yn−1 − yn−2

for n ≥ 2

5Note that: [
a b
c d

] [
p
q

]
=

[
ap+ bq
cp+ dq

]
&

[
p q
r s

] [
a b
c d

]
=

[
pa+ qc pb+ qd
ra+ sc rb+ sd

]
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iv. Now we will have to find corresponding generating function, for recursive formula proved in previous
part so as to explicitly find nth term.
Since xn and yn both are of same form, for the ease of notations, consider equivalent recursive sequence:

an+1 = kan − an−1 where k = 2x1

Also let the generating function be f(t), then:

f(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + . . .

Using the recursive formula we can rewrite f(t) as:

f(t) = a0 + a1t+ (ka1 − a0)t2 + (ka2 − a1)t3 + (ka3 − a2)t4 + . . .

We can regroup the terms as:

f(t) = a0 + a1t+ kt(a1t+ a2t
2 + a3t

3 + . . .)− t2(a0 + a1t+ a2t
2 + . . .)

Identify f(t) in right hand side:

f(t) = a0 + a1t+ kt[f(t)− a0]− t2f(t)

Isolate f(t) on left hand side to get our generating function:

f(t) =
a0 + (a1 − ka0)t

1− kt+ t2
(2.21)

Now to find nth term we will express this generating function in partial fraction form:

a0 + (a1 − ka0)t

1− kt+ t2
=
a0 + (a1 − ka0)t

(1− αt)(1− βt)
=

A

(1− αt)
+

B

(1− βt)
where α, β are roots of 1− kt+ t2

(2.22)
Using our quadratic equation root formula we get:

α =
k +
√
k2 − 4

2
, β =

k −
√
k2 − 4

2

Following standard method of finding partial fractions by comparing coefficients we get:

A =
a0(α− k) + a1

α− β
, B =

a0(β − k) + a1

β − α

Note that:
1

1− αt
= 1 + αt+ α2t2 + . . . for |αt| < 1

1

1− βt
= 1 + βt+ β2t2 + . . . for |βt| < 1

Substitute this in (2.22) to get:

f(t) = (A+B) + (Aα+Bβ)t+ (Aα2 +Bβ2)t2 + (Aα3 +Bβ3)t3 . . .

Hence:
an = Aαn +Bβn (2.23)

Now substitute values A and B in this to get:

an =
a0(α− k) + a1

α− β
αn − a0(β − k) + a1

α− β
βn

Further substitute the value of α and β to get:

an =
a0(−k +

√
k2 − 4) + 2a1

2
√
k2 − 4

(
k +
√
k2 − 4

2

)n
− a0(−k −

√
k2 − 4) + 2a1

2
√
k2 − 4

(
k −
√
k2 − 4

2

)n
56



But k = 2x1, so we can simplify above expression to get:

an =
a0(−x1 +

√
x2

1 − 1) + a1

2
√
x2

1 − 1

(
x1 +

√
x2

1 − 1
)n
− a0(−x1 −

√
x2

1 − 1) + a1

2
√
x2

1 − 1

(
x1 −

√
x2

1 − 1
)n

Also, x2
1 −Dy2

1 = 1, so we can further simplify it as:

an =
a0(−x1 + y1

√
D) + a1

2y1

√
D

(
x1 + y1

√
D
)n
− a0(−x1 − y1

√
D) + a1

2y1

√
D

(
x1 − y1

√
D
)n

Now we can separate out xn and yn from this general case:xn = x0(−x1+y1
√
D)+x1

2y1
√
D

(
x1 + y1

√
D
)n
− x0(−x1−y1

√
D)+x1

2y1
√
D

(
x1 − y1

√
D
)n

yn = y0(x1+1+y1
√
D)+y1

2y1
√
D

(
x1 + y1

√
D
)n
− y0(x1+1−y1

√
D)+y1

2y1
√
D

(
x1 − y1

√
D
)n

Further, x0 = 1 and y0 = 0 thus finally we get:{
xn = 1

2 [(x1 + y1

√
D)n + (x1 − y1

√
D)n]

yn = 1
2
√
D

[(x1 + y1

√
D)n − (x1 − y1

√
D)n]

(2.24)

Methods to find particular solution. Finding an efficient method is a topic of research. The main
method of determining the fundamental solution to such equations involves continued fractions [based on
same idea as used in proof of part (i)].
We can write

√
D in continued fraction form as:

√
D = q0 +

1

q1 +
1

q1 +

.. .

2q0 +
1

q1 +
1

. . .

Because any continued fraction for
√
N is necessarily of the form:

q0, q1, q2, . . . , q2, q1, 2q0︸ ︷︷ ︸
n terms

where the period begins immediately after the first term q0 , and it consists of a symmetrical part q1, q2, . . . , q2, q1,
followed by the number 2q0 (for proof see pp. 92 of [15]).
Then the least solution to this equation turns out to be:

(x1, y1) =

{
(Pn, Qn) if n is even

(P2n, Q2n) if n is odd
(2.25)

where Pk
Qk

= δk is kth convergent of the continued fraction and δ1 = q0.

Example 2.2.1. Find the set of solutions for:

a. x2 − 13y2 = 1

b. x2 − 21y2 = 1

Solution. a. √
13 = 3 +

1

1 +
1

1 +
1

1 +
1

1 +
1

6 +
1

. . .
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Hence here, n = 5, thus least solution is, (P10, Q10).

δ10 = 3 +
1

1 +
1

1 +
1

1 +
1

1 +
1

6 +
1

1 +
1

1 +
1

1 +
1

1

=
649

180
=
P10

Q10

Indeed with a pocket calculator you can check that: 6492 − 13(180)2 = 1
Hence the set of solutions is:{

xn = 1
2 [(649 + 180

√
13)n + (649− 180

√
13)n]

yn = 1
2
√

13
[(649 + 180

√
13)n − (649− 180

√
13)n]

b. √
21 = 4 +

1

1 +
1

1 +
1

2 +
1

1 +
1

1 +
1

8 +
1

. . .

Hence here, n = 6, thus the least solution is, (P6, Q6).

δ6 = 4 +
1

1 +
1

1 +
1

2 +
1

1 +
1

1

=
55

12
=
P6

Q6

Again with a pocket calculator you can check that: 552 − 21(12)2 = 1
Thus the set of solutions is:{

xn = 1
2 [(55 + 12

√
21)n + (55− 12

√
21)n]

yn = 1
2
√

21
[(55 + 12

√
21)n − (55− 12

√
21)n]

Remark: The method of finding solutions by using continued fractions can even be extended to equations
of form: ax2 − by2 = c, see [12]

2.2.2 Equations of form: ax2 − by2 = 1, a, b ∈ Z+

Consider the diophantine quadratic equation:

ax2 + bxy + cy2 + dx+ ey + f = 0

with integral coefficients a, b, c, d, e, f . This equation represents a conic in the Cartesian plane, so solving
this equation in integers means finding all lattice points situated on this conic. We can solve this equation
in integers by reducing the general equation of the conic to its canonical form. Call the discriminant6 of
this equation 4 = b2 − 4ac.

6The discriminant of a quadratic form (a, b, c) is defined to be number b2−4ac. It is an important fact that equivalent forms
have the same discriminant. For more details see pp. 120 of [15]
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1. When 4 < 0, the conic defined by this equation is an ellipse, and in this case the given equation has
only a finite number of solutions.

2. When 4 = 0, the conic given by this equation is a parabola.

(a) if 2ae− bd = 0, given equation becomes (2ax+ by + d)2 = d2 − 4af , which is easy to solve.

(b) if 2ae−bd 6= 0, by performing the substitutions X = 2ax+by+d and Y = (4ae−2bd)y+4af−d2,
given equation reduces to X2 + Y = 0, which is also easy to solve.

3. When 4 > 0, when the conic defined by given equation is a hyperbola. Using a sequence of substitu-
tions, given equation reduces to x2 −Dy2 = A, which is difficult to solve if k = 1, D ∈ Z+ and

√
D is

irrational (as seen in last subsection), else it is easier to solve.

Now consider the equation of type:

ax2 − by2 = 1, a, b ∈ Z+

Note that, in this case 4 > 0, hence we may be able to reduce it to form: x2 −Dy2 = 1, D ∈ Z+ and
√
D

is irrational.

Theorem 2.2.2. Given equation:
ax2 − by2 = 1, a, b ∈ Z+

i. If ab = k2 , where k ∈ Z, k > 1, then this equation does not have solutions in positive integers.

ii. Suppose that this equation has solutions in positive integers and let (x1, y1) be its minimal solution,
i.e., the one with the least y1 > 0. The general solution to this equation is (xn, yn), n ≥ 1, where:{

xn = by1vn − x1un

yn = ax1vn − y1un

and (un, vn), n ≥ 1 is the non-trivial solution to u2 − abv2 = 1, ab ∈ Z+ and
√
ab is irrational.

iii. In case of solvability of given equation, the relation between the fundamental solution (u1, v1) to u2 −
abv2 = 1, ab ∈ Z+ and

√
ab is irrational and the minimal solution (x1, y1) to given equation is :

u1 ± v1

√
ab =

(
x1

√
a± y1

√
b
)2

where the signs + and − correspond.

iv. If (x1, y1) is the least solution of the equation then any solution of the equation is of form (±xn,±yn),where
xn = −1

2
√
a

[(
x1
√
a+ y1

√
b
)2n−1

+
(
x1
√
a− y1

√
b
)2n−1

]
yn = 1

2
√
b

[(
x1
√
a+ y1

√
b
)2n−1

−
(
x1
√
a− y1

√
b
)2n−1

]
Proof. The main ideas of proof are based on previous theorem

i. Assume that given equation has a solution (α, β), where α, β ∈ Z+. Then

aα2 − bβ2 = 1

and clearly α and β are relatively prime. From the condition ab = k2 it follows that a = k2
1 and b = k2

2

for some positive integers k1 and k2 . Then the relation becomes:

k2
1α

2 − k2
2β

2 = 1

can be written as
(k1α− k2β)(k1α+ k2β) = 1

It follows that
1 < k1α+ k2β = k1α− k2β = 1

a contradiction.
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ii. Firstly verify that (xn, yn) is a solution to given equation. Indeed,

ax2
n − by2

n = a(by1vn − x1un)2 − b(ax1vn − y1un)2

⇒ ax2
n − by2

n = (ax2
1 − by2

1)(u2
n − abv2

n) = 1× 1 = 1

Conversely, let (x, y) be a solution to given equation.
Then note that (u, v), is a solution to u2 − abv2 = 1, ab ∈ Z+ and

√
ab is irrational if,{

u = ax1x+ by1y

v = y1x+ x1y

Solving the above system of linear equations with unknowns x and y yields{
x = by1v − x1u

y = ax1v − y1u

Hence in general: {
xn = by1vn − x1un

yn = ax1vn − y1un

iii. Observe that: (
x1

√
a± y1

√
b
)2

= ax2
1 + by2

1 ± 2x1y1

√
ab

But as observed in previous part: {
un = ax1xn + by1yn

vn = y1xn + x1yn

Thus for n = 1, (
x1

√
a± y1

√
b
)2

= u1 ± v1

√
ab

iv. We have already proved in previous parts of this theorem that:{
xn = by1vn − x1un

yn = ax1vn − y1un
and

(
x1

√
a± y1

√
b
)2

= u1 ± v1

√
ab

Further from (2.24) we know that:{
un = 1

2 [(u1 + v1

√
ab)n + (u1 − v1

√
ab)n]

vn = 1
2
√
ab

[(u1 + v1

√
ab)n − (u1 − v1

√
ab)n]

Combining all these three results we get:
xn = by1

(
1

2
√
ab

[(
x1
√
a+ y1

√
b
)2n
−
(
x1
√
a− y1

√
b
)2n])

− x1

(
1
2

[(
x1
√
a+ y1

√
b
)2n

+
(
x1
√
a− y1

√
b
)2n])

yn = ax1

(
1

2
√
ab

[(
x1
√
a+ y1

√
b
)2n
−
(
x1
√
a− y1

√
b
)2n])

− y1

(
1
2

[(
x1
√
a+ y1

√
b
)2n

+
(
x1
√
a− y1

√
b
)2n])

On combining similar terms we get:
xn = −1

2
√
a

[(
x1
√
a− y1

√
b
)(
x1
√
a+ y1

√
b
)2n

+
(
x1
√
a+ y1

√
b
)(
x1
√
a− y1

√
b
)2n
]

yn = 1
2
√
b

[(
x1
√
a− y1

√
b
)(
x1
√
a+ y1

√
b
)2n
−
(
x1
√
a+ y1

√
b
)(
x1
√
a− y1

√
b
)2n
]

But, (x1
√
a+ y1

√
b)(x1

√
a− y1

√
b) = 1, thus above expression further simplifies to:

xn = −1
2
√
a

[(
x1
√
a+ y1

√
b
)2n−1

+
(
x1
√
a− y1

√
b
)2n−1

]
yn = 1

2
√
b

[(
x1
√
a+ y1

√
b
)2n−1

−
(
x1
√
a− y1

√
b
)2n−1

]
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Methods to find particular solution. We are given following equation:

ax2 − by2 = 1

where a, b ∈ Z+ and
√
ab is irrational. From this we will construct following equation:

u2 −
√
abv2 = 1

where,
√
ab is irrational.

Then find the least solution of our constructed equation by using continued fraction method. Further use
the result proved above:

u1 ± v1

√
ab =

(
x1

√
a± y1

√
b
)2

where u1, v1 ∈ Z+ is least solution of constructed equation and (x1, y1) is least solution of given equation.
Thus, solution to given equation in Z+ exist if and only if we can find x1, y1 ∈ Z+ such that7

u1 = ax2
1 + by2

1

v1 = 2x1y1

ax2
1 − by2

1 = 1

So we have to solve another set of degree two diophantine equations in two variables. But since these are
simultaneous equations these are easier to solve.

Example 2.2.2. Solve in positive integers the equation:

a. 6x2 − 5y2 = 1

b. 5x2 − 6y2 = 1

Solution. Note that for both given equations we will get same constructed equation:

u2 −
√

30v2 = 1

Now,
√

30 = 5 +
1

2 +
1

10 +
1

. . .

Since n = 2, thus least solution of this equation is (P2, Q2):

δ2 = 5 +
1

2
=

11

2
=
P2

Q2

Thus, u1 = 11, v1 = 2. Now we need to validate:
11 = ax2

1 + by2
1

2 = 2x1y1

1 = ax2
1 − by2

1

for each part.

a. 
11 = 6x2

1 + 5y2
1

2 = 2x1y1

1 = 6x2
1 − 5y2

1

On solving we get: x1 = 1, y1 = 1 as least solution, thus general solution of given equation is of form:
xn = −1

2
√

6

[(√
6 +
√

5
)2n−1

+
(√

6−
√

5
)2n−1

]
yn = 1

2
√

5

[(√
6 +
√

5
)2n−1

−
(√

6−
√

5
)2n−1

]
7There is a classic paper on this equation by D. T. Walker certainly worth peeping, refer [4].
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b. 
11 = 5x2

1 + 6y2
1

2 = 2x1y1

1 = 5x2
1 − 6y2

1

On solving these simultaneous equations we get: 10x2
1 = 12 but x1 ∈ Z, thus given equation has No

Solution in positive integers.

2.3 Equations of second degree in three unknowns

2.3.1 Pythagorean Triangles

Let’s following theorem from geometry:

The length of radius of a circle inscribed in a Pythagorean Triangle is always an integer.

There would seem to be insufficient connection between the radius and sides to ensure that if the sides
are integer, so is the radius. The proof is easy. But, to prove this you first need to have a parametric form
for sides of triangle which is stated in following theorem.8

Theorem 2.3.1. Any primitive solution9 (x, y, z) in positive integers to

x2 + y2 = z2

with ybeing an even number is of form: 
x = m2 − n2

y = 2mn

z = m2 + n2

with m and n are relatively prime positive integers with m > n and m+ n is an odd number.

Sketch of Proof. .

Method 1: This theorem is classic example of application of Parametrization. Rewrite given equation as:

y2 = z2 − x2 = (z − x)(z + x)

Then use the fact that: the product of two relatively prime numbers is a perfect square only if each
factor is a perfect square. Now consider parity argument to find parametric form of z and x.

Method 2: See Example 1.7.1 for proof using Unique Factorization Domain

Remark: Also the equations of form x2 + y2 = az2 where a ∈ Z are not always solvable. But they can be
easily dealt with modular arithmetic method.

2.3.2 Equations of form: ax2 + by2 = z2, a, b ∈ Z+ and are square-free

Theorem 2.3.2. The equation:
ax2 + by2 = z2

where a, b ∈ Z+ and are square-free,10 is solvable in integers if and only if following congruences are solvable11
a ≡ α2 (mod b), where α = x′z, xx′ ≡ 1 (mod b)

b ≡ β2 (mod a), where β ∈ Z
a1b1 ≡ −γ2 (mod h), where γ ∈ Z, h = gcd(a, b), a = ha1, b = hb1

Also, a1, b1, h are relatively prime in pairs.

8For proof of this theorem you just need to equate area of whole triangle with the sum of three smaller triangles (with radius
as height). For whole proof refer pp. 68 of [2]

9A solution (x0, y0, z0) to x2 + y2 = z2 with x0, y0, z0 relatively prime is called primitive solution.
10A number is called square-free if it is not divisible by any square greater than 1
11Notice that we need to deal only with square free numbers since for the introduction of square factors into the coefficients

a and b does not affect the solvability of the equation.
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Proof. We will consider three cases:

Case 1: If either a or b is 1, the equation is obviously soluble.12

Case 2: If a = b, the congruence conditions {
a ≡ α2 (mod b),

b ≡ β2 (mod a)

are trivially satisfied, and
a1b1 ≡ −γ2 (mod h),

reduces to:
1 ≡ −γ2 (mod a)

Further13, this implies that a is representable as p2 + q2, and the equation is satisfied by
x = p,

y = q,

z = p2 + q2

Case 3: Now suppose that a > b > 1.
By hypothesis, the congruence b ≡ β2 (mod a) is solvable. Choose a solution β which satisfies |β| ≤ a

2 .
Since β2 − b is a multiple of a, we can put:

β2 − b = aAk2 (2.26)

where k and A are integers and A is square free (all the square factors being absorbed in k2). Note
that k is relatively prime to b, since b is square free. We observe that A is positive:

aAk2 = β2 − b > −b > −a ⇒ Ak2 ≥ 0 ⇒ A > 0

since b is not a perfect square.
Now substitute y and z in terms of new variables Y and Z :{

z = bY + βZ,

y = βY + Z,

because this substitution allows following manipulation:

(β −
√
b)(Z − Y

√
b) = z − y

√
b

Moreover using this in given equation we get:

ax2 = z2 − by2 = (β2 − b)(Z2 − bY 2)

Now using (2.26) we get:
ax2 = aAk2(Z2 − bY 2)

Put, x = kAX to get:
AX2 + bY 2 = Z2

If this equation is soluble, so is given equation.(Since the substitutions done above give integral values,
not all zero, for x, y, z in terms of X,Y, Z)
The new coefficient A is positive and square free, and satisfies:

A =
β2 − b
ak2

<
β2

ak2
≤ β2

a
≤ a

4
⇒ A < a

12Equations of form: ax2 + y2 = z2 or x2 + ay2 = z2, a ∈ Z can be solved by parametrization method, as an illustration see
Example 1.3.1

13The congruence, x2 ≡ −1 (mod n) is solvable if and only if n has no prime factor of form 4k + 3 and is also not divisible
by 4. This, then is the necessary and sufficient condition for n to be properly representable as sum of two squares. For proof
refer [15].
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since we had assumed |β| ≤ a
2

Now we will prove that A and b satisfy the congruence conditions analogous to the three given.
By (2.26) we get :

b ≡ β2 (mod A)

which is analogous equation of b ≡ β2 (mod a).
We can divide (2.26) by h, to get:

β2

h
− b

h
=
a

h
Ak2

But we are given that: a = ha1 and b = hb1, also let: β = hβ1, then we get:

hβ2
1 − b1 = a1Ak

2 ⇒ hβ2
1 ≡ a1Ak

2 (mod b1) (2.27)

Similarly if we let, α = hα1, then a ≡ α2 (mod b) is equivalent to a ≡ h2α2
1 (mod b), but again given

that a = ha1 and b = hb1, we obtain:

a1 ≡ hα2
1 (mod b1) (2.28)

Now combining (2.27) and (2.28), we get:

hβ2
1 ≡ hA(kα1)2 (mod b1)

and since h, k, a1 are all relatively prime to b1 it follows that A is congruent to a square (mod b1).
and in view of a1b1 ≡ −γ2 (mod h) and the fact that k, a1, b1 are all relatively prime to h it follows
that A is congruent to a square (mod h), and therefore also (mod b), giving the analogue of a ≡ α2

(mod b).
Let H denote the highest common factor of A and b, and put A = HA2 , b = Hb2 . The equation
(2.26) can be divided by H , giving:

Hβ2
2 − b2 = aA2k

2

Multiply by A2 to get:
−A2b2 ≡ a(A2k)2 (mod H)

Also,14

a ≡ α2 (mod b) ⇒ a ≡ α2 (mod Hb2) ⇒ a ≡ α2 (mod H)

it follows that −A2b2 is congruent to a square (mod H), which is the analogue of a1b1 ≡ −γ2 (mod h).
We have derived from given equation a similar equation with the same b but with a replaced by A,
where 0 < A < a, and A, b satisfy the same three congruence conditions as a, b. Repetition of the
process must lead eventually to an equation in which either one coefficient is 1 or the two coefficients
are equal. As we have seen, such an equation is soluble.

Methods to find particular solution. We may follow Law of Quadratic Reciprocity to solve the con-
gruences (if exist) if a and b are prime. Then to find solutions follow the procedure illustrated in proof
above.

Example 2.3.1. Solve the equation 41x2 + 31y2 = z2 in positive integers.

Solution. Since the coefficients are relatively prime, there are only the two congruence conditions:{
41 ≡ α2 (mod 31),

31 ≡ β2 (mod 41)

Method 1: Since 41 ≡ 1 (mod 4) and 31 ≡ 3 (mod 4), by Law of Quadratic Reciprocity:(
31

41

)
=

(
41

31

)
=

(
10

31

)
=

(
2

31

)(
5

31

)
=

(
2

31

)(
31

5

)
=

(
2

31

)(
1

5

)
=

(
2

31

)
= 1

Since, 82 ≡ 2 (mod 31). Hence both of these congruences are solvable.

14For example, since, 9 ≡ 3 (mod 6) ⇒ 9 ≡ 3 (mod 2) & 9 ≡ 3 (mod 3), though they are not in their lowest form.
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Method 2: If you don’t know Law of Quadratic reciprocity, then you will have to solve equation and check (also
if a and b would not have been prime):

α2 ≡ 41 (mod 31) ⇒ α2 ≡ 10 (mod 31)

Firstly we will calculate Phi Function: φ(31) = 30 then since: gcd(41, 31) = 1 and gcd(2, 30) 6= 1 thus
we can’t use our standard method of computing kth roots modulo m. Thus I will have to generate a
table till I get 10 as residue (maximum upto α = 31−1

2 = 15)

α 1 2 3 4 5 6 7 8 9 10 11 12 13 14

α2 1 4 9 16 25 36 49 64 81 100 121 144 169 196

mod 31 1 4 9 16 25 5 18 2 19 7 28 20 14 10

Thus α = 14 is a solution, and by symmetry, α = 31− 14 = 17.
Similarly I will have to generate a table for β2 ≡ 31 (mod 41) till I get 31 as residue (maximum upto
β = 41−1

2 = 20)

β 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

β2 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400

mod 41 1 4 9 16 25 36 8 23 40 18 39 21 5 32 20 10 2 37 33 31

Thus β = 20 is a solution, and by symmetry, β = 41− 20 = 21.
Hence solution to given equation exist.

Now to find solutions we must choose a value for β and then define A and k as:

β2 − b = aAk2

As we did in proof, let: |β| ≤ a
2 , so we take β = 20, and have:

β2 − b = 400− 31 = 9× 41, ⇒ k = 3, A = 1.

Note that, A = 1 means that no further repetition of the process will be necessary.
Now as did in proof we replace: 

z = 31Y + 20Z,

y = 20Y + Z,

x = 3X

Then the new equation derived from given equation is

X2 + 31Y 2 = Z2

This can be solved as in Example: 1.3.1:

31Y 2 = Z2 −X2 = (Z +X)(Z −X)

Now since LHS is an integer, so 31 will divide either (Z−X) or (Z+X), In the first case, if 31 divide Z−X
Z +X = n2,

Z −X = 31m2

Y = mn

while in second case: 
Z +X = 31m2,

Z −X = n2

Y = mn
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where n and m are positive integers
Solving these two systems of equations we get:

X = n2−31m2

2 ,

Y = mn

Z = n2+31m2

2

or


X = 31m2−n2

2 ,

Y = mn

Z = n2+31m2

2

respectively.
Now combine above two expressions and get general parametric form as:

X = ±n2−31m2

2 ,

Y = mn

Z = n2+31m2

2

where m,n are even numbers.
From these we get x, y, z by reversing replacement as:

x = ±3(n2−31m2)
2 ,

y = n2+40mn+31m2

2

z = 10n2 + 310m2 + 31mn

where m,n are even numbers.
For example, for m = 2, n = 2 we get:

x = 180

y = 144

z = 1404

cancelling common factors
=⇒


x = 5

y = 4

z = 39

Thus this form will give infinite solutions but NOT all solutions, like: (3, 1, 20).

2.3.3 Equations of form: x2 + axy + y2 = z2, a ∈ Z

The Pythagorean equation is a special case of this equation with a = 0.

Theorem 2.3.3. All integral solutions to x2 + axy + y2 = z2, a ∈ Z are given by:
x = k(ap2 − 2pq),

y = k(q2 − p2),

z = ±k(apq − p2 − q2)


x = k(q2 − p2),

y = k(ap2 − 2pq)

z = ±k(apq − p2 − q2)

where p, q ∈ Z are relatively prime and k ∈ Q such that (a2 − 4)k ∈ Z

Proof. Note that the two families of solutions follow symmetry of given equation in x and y.

Check by substituting these values of x, y, z in given equation.
Now we need to show that all solutions of given equation are of given form. Given equation is equivalent
to:

x(x+ ay) = (z − y)(z + y)

We can rewrite this as:
x

z − y
=

z + y

x+ ay

Now let, p, q are integers and gcd(q, p) = 1. Then, p
q be the corresponding irreducible fraction, we get:

x

z − y
=

z + y

x+ ay
=
p

q
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From this we get: {
qx = p(z − y)

q(z + y) = p(x+ ay)
⇒

{
qx+ py − pz = 0

px+ (pa− q)y − qz = 0

Now from these simultaneous equations we can get x and y in terms of z as:
x =

(ap2 − 2pq)z

apq − p2 − q2

y =
(q2 − p2)z

apq − p2 − q2

Now choose z = k(apq − p2 − q2), k ∈ Q and get given solutions.
Further if, k = r

s in lowest form, then:

s

∣∣∣∣ gcd
(
ap2 − 2pq, q2 − p2, apq − p2 − q2

)
⇒ s

∣∣∣∣(a(ap2 − 2pq
)

+ 2
(
q2 − p2

)
+ 2
(
apq − p2 − q2

))
⇒ s

∣∣∣∣((a2 − 4
)
p2
)

But:
s
∣∣∣p2 ⇒ s

∣∣∣p ⇒ s 6
∣∣∣(q2 − p2)

since p, q are relatively prime. Hence:

s
∣∣∣(a2 − 4

)
Which is equivalent to:

(a2 − 4)k ∈ Z

2.3.4 Equations of form: ax2 + by2 + cz2 = 0; a, b, c,∈ Z \ {0} and abc is square-free

The general Ternary Quadratic Form is a polynomial f(x, y, z) of form:

f(x, y, z) = ax2 + by2 + cz2 + dxy + eyz + fzx.

A triple (x, y, z) of numbers for which f(x, y, z) = 0 is called a zero of the form. The solution (0, 0, 0) is the
trivial zero. Any Ternary Quadratic Form can be converted to ax2 + by2 + cz2 = 0; a, b, c,∈ Z\{0} by doing
appropriate substitutions and transformations.15

Theorem 2.3.4. Let a, b, c be non-zero integers such that the product abc is square-free. Necessary and
sufficient conditions that ax2 + by2 + cz2 = 0 have a non-trivial solution in integers x, y, z, are that:

i. a, b, c do not have the same sign

ii. −bc,−ac,−ab are quadratic residues modulo a, b, c, respectively.
Symbolically: 

−bc ≡ α2 (mod a)

−ac ≡ β2 (mod b)

−ab ≡ γ2 (mod c)

where α, β, γ ∈ Z, all three congruences are solvable.

Proof. i. If ax2 + by2 + cz2 = 0, has a solution x0, y0, z0 not all zero, then a, b, c are not of the same sign.
Dividing x0, y0, z0 by gcd(x0, y0, z0) we have a solution x1, y1, z1 with gcd(x1, y1, z1) = 1

15For more details refer pp. 246-248 of [9]
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ii. Let gcd(x1, c) = p. Then p 6
∣∣b since p

∣∣c and abc is square-free. Therefore

p
∣∣by2

1 ⇒ p
∣∣y2

1 ⇒ p
∣∣y1

and then,
p2
∣∣(ax2

1 + by2
1

)
⇒ p2

∣∣cz2
1 ⇒ p2

∣∣z2
1 ⇒ p

∣∣z1

since c is square-free.
Hence p is a factor of x1, y1, z1 contrary to gcd(x1, y1, z1) = 1. Thus, we have gcd(c, x1) = 1.
Let u be chosen to satisfy:

ux1 ≡ 1 (mod c) (2.29)

The equation ax2
1 + by2

1 + cz2
1 = 0 implies:

ax2
1 + by2

1 ≡ 0 (mod c)

Multiplying this by u2b and using (2.29) we get:

u2b2y2
1 ≡ −ab (mod c)

Thus we have established that −ab is a quadratic residue modulo c.
A similar proof shows that −bc and −ac are quadratic residues modulo a and b respectively.

Conversely: Let us assume that −bc,−ab− ca are quadratic residues modulo a, b, c respectively.
Note that this property does not change if a, b, c are replaced by their negatives. Since a, b, c are not
of the same sign, we can change the signs of all of them, if necessary, in order to have one positive and
two of them negative. Then, perhaps with a change of notation, we can arrange it so that a is positive
and b and c are negative.
Define r as a solution of:

r2 ≡ −ab (mod c) (2.30)

and, a1 as a solution of:
aa1 ≡ 1 (mod c) (2.31)

These solutions r and a1 exist because of our assumptions on a, b, c. Then we can write previous
equation as:

⇒ ax2 + by2 ≡ aa1(ax2 + by2) ≡ a1(a2x2 + aby2) (mod c)

Now using, (2.30), we get:

⇒ ax2 + by2 ≡ a1(a2x2 − r2y2) (mod c)

⇒ ax2 + by2 ≡ a1(ax− ry)(ax+ ry) (mod c)

Using, (2.31) again, we get:

⇒ ax2 + by2 ≡ (x− a1ry)(ax+ ry) (mod c)

Thus ax2 +by2 +cz2 is the product of two linear factors modulo c, and similarly modulo a and modulo
b.
Since ax2 + by2 + cz2 factors into linear factors modulo c and also modulo a, and gcd(a, c) = 1, thus
ax2 + by2 + cz2 also factors modulo ac as a consequence of Chinese Remainder Theorem16.
Now, since ax2 + by2 + cz2 factors into linear factors modulo b and also modulo ca, and gcd(ca, b) = 1,
thus ax2 + by2 + cz2 also factors modulo abc, again as a consequence of Chinese Remainder Theorem.
Thus, there exist numbers α1, β1, γ1, α2, β2, γ2 such that:

ax2 + by2 + cz2 ≡
(

(α1x+ β1y + γ1z)(α2x+ β2y + γ2z)
)

(mod abc) (2.32)

Now consider the congruence:

(α1x+ β1y + γ1z) ≡ 0 (mod abc) (2.33)

16For proof see pp. 243 of [9]
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Since, a > 0; b, c < 0, let λ =
√
bc, µ =

√
|ac|, η =

√
|ab|.

Now, λ, µ, η are positive real numbers with product λµη = abc ∈ Z. Then,

(α1x+ β1y + γ1z) ≡ 0 (mod λµη) (2.34)

Let x range over the values {0, 1, . . . , bλc}, y over the values {0, 1, . . . , bµc}, and z over the values
{0, 1, . . . , bηc}.
This gives us (1 + bλc)(1 + bµc)(1 + bηc) different triples x, y, z.
Now as per properties of floor function:

(1 + bλc)(1 + bµc)(1 + bηc) > λµη = abc

and hence there must be some two triples (x1, y1, z1) and (x2, y2, z2) such that:

α1x1 + β1y1 + γ1z1 ≡ α1x2 + β1y2 + γ1z2 (mod abc)

Then we have
α1(x1 − x2) + β1(y1 − y2) + γ1(z1 − z2) ≡ 0 (mod abc)

Thus, 
|x1 − x2| ≤ bλc ≤ λ,
|y1 − y2| ≤ bµc ≤ µ,
|z1 − z2| ≤ bηc ≤ η

Then the equation (2.33) [which is equivalent to (2.34)] has a solution x1, y1, z1, not all zero, such that
|x1| ≤ λ,
|y1| ≤ µ,
|z1| ≤ η

⇒


|x1| ≤

√
bc,

|y1| ≤
√
|ac|,

|z1| ≤
√
|ab|

But abc is square-free, so
√
bc is an integer only if it is 1, and similarly for

√
|ac| and

√
|ab|. Therefore:

x2
1 ≤ bc, equality possible only if b = c = −1

y2
1 ≤ −ac, equality possible only if a = 1, c = −1

z2
1 ≤ −ab, equality possible only if a = 1, b = −1

Hence, since a is positive and b and c are negative, we have, unless b = c = 1,

ax2
1 + by2

1 + cz2
1 ≤ ax2

1 < abc

and
ax2

1 + by2
1 + cz2

1 ≥ by2
1 + cz2

1 > b(−ac) + c(−ab) = −2abc

Leaving aside the special case when b = c = −1, we have:

−2abc < ax2
1 + by2

1 + cz2
1 < abc

Now (x1, y1, z1) is a solution of (2.33) and so also, because of (2.32), a solution of :

ax2 + by2 + cz2 ≡ 0 (mod abc)

Thus the above inequalities imply that:

ax2
1 + by2

1 + cz2
1 = 0 or ax2

1 + by2
1 + cz2

1 = −abc

In the first case we have our solution of given equation.
In the second case we verify that (x2, y2, z2), defined by:

x2 = −by1 + x1z1,

y2 = ax1 + y1z1,

z2 = z2
1 + ab,
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form a solution. Also, if x2 = y2 = z2 = 0, then

z2
1 + ab = 0 ⇒ z2

1 = −ab ⇒ z1 = ±1

because ab, like abc, is square-free. Then a = 1, b = 1, and x = 1, y = −1, z = 0 is a solution.
Finally we dispose of the special case b = c = −1. The conditions on a, b, c now imply that −1 is a
quadratic residue modulo a; in Legendre symbols,(

−1

a

)
= 1

This implies17 that the equation y2 + z2 = a has a solution y1, z1. Then x = 1, y = y1, z = z1 is a
solution of given equation i.e. ax2 + by2 + cz2 = 0 since b = c = −1.

Thus we have proved that given to us is necessary and sufficient condition.

Methods to find particular solution. Here we will use the geometry to relate rational solutions to integer
solutions. [as commented in “Introduction” of this report.]

• If we have a solution in rational numbers, not all zero, then we can construct a primitive solution in
integers by multiplying each coordinate by the least common multiple of denominators of the three.
Illustration: Since (3

5 ,
4
5 , 1) is a zero of the form f(x, y, z) = x2 + y2 − z2 , and hence (3, 4, 5) is a

primitive integral solution.

• All solutions of this equation may be found, once a single solution has been identified by using concept
of Rational Points on Curves.
Illustration: In case of finding Pythagorean Triples (integer solutions of Pythagoras Theorem),
finding non-trivial primitive i.e. pairwise relatively prime integer solutions of X2 + Y 2 − Z2 = 0 is
equivalent to finding rational points on unit circle centred at origin i.e. x2 + y2 = 1 (a conic section),
where X

Z = x, YZ = y. Every point on this circle whose coordinates are rational numbers can be
obtained from the formula18

(x, y) =

(
1−m2

1 +m2
,

2m

1 +m2

)
by substituting in rational numbers for m [except for the point (−1, 0) which is the limiting value as
m→∞].
If we replace m = p

q , we get the formula we derived in Section 2.3.1,
X = p2 − q2

Y = 2pq

Z = p2 + q2

• Thus we can reduce the problem of finding non-trivial primitive i.e. pairwise relatively prime integer
solutions of aX2 + bY 2 + cZ2 to an equivalent problem of finding rational points on a conic section :
ax2 + by2 + c = 0. Now this can be handled as discussed in Section: 2.2.2. [i.e depending upon type
of conic section]

2.4 Equations of degree higher than the second in three unknowns

2.4.1 Equations of form: x4 + x2y2 + y4 = z2

Theorem 2.4.1. All non-negative integer solutions of the equation:

x4 + x2y2 + y4 = z2

17The congruence, x2 ≡ −1 (mod n) is solvable if and only if n has no prime factor of form 4k + 3 and is also not divisible
by 4. This, then is the necessary and sufficient condition for n to be properly representable as sum of two squares. For proof
refer [15].

18For derivation refer pp. 21 of [16].
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are given by: 
x = k

y = 0

z = k2


x = 0

y = k

z = k2

where k ∈ Z+.

Proof. Firstly, since right hand side of given equation is a perfect square, so left hand side, which is a
symmetric quadratic in x and y should also satisfy, perfect square rule of a quadratic, i.e. discriminant
w.r.t. both x2 and y2 should be zero.
With respect to x2: ∆ = y4 − 4y4 = 0 ⇒ y = 0, but this will be true for all x, since we have not imposed
any condition on x, thus (k, 0, k2) is solution of this equation for all k ∈ Z+

With respect to y2: ∆ = x4 − 4x4 = 0 ⇒ x = 0, but this will be true for all y, since we have not imposed
any condition on y, thus (0, k, k2) is solution of this equation for all k ∈ Z+

Also, by completing squares, given equation is equivalent to:(
x2 − y2

)2
+ 2(xy)2 = z2

which eliminates the possibility of x = y 6= 0 as a solution. But we need to prove that these are the “only
solutions”.
Let, (x1, y1, z1) be a solution to given equation. Assume that gcd(x1, y1) = 1. Then x1 and y1 have different
parities, for otherwise z2

1 ≡ 3 (mod 4). Suppose that y1 > 0 is odd and minimal.
Multiply given equation by 4 and simplify:

⇒ 4x4
1 + 4x2

1y
2
1 + 4y4

1 = 4z2
1

⇒ 4z2
1 −

(
2x2

1 + y2
1

)2
= 3y4

1

⇒
(

2z1 − 2x2
1 − y2

1

)(
2z1 + 2x2

1 + y2
1

)
= 3y4

1 (2.35)

Now assume that d is a prime dividing both 2z1 + 2x2
1 + y2

1 and 2z1 − 2x2
1 − y2

1 . Thus,

gcd
((

2z1 + 2x2
1 + y2

1

)
,
(
2z1 − 2x2

1 − y2
1

))
= d

⇒ d
∣∣∣(2z1 + 2x2

1 + y2
1

)
Then d is odd,

⇒ d
∣∣z1 and d

∣∣(2x2
1 + y2

1)

From (2.35) it follows that d
∣∣3y1.

If d > 3, then d
∣∣y1 and d

∣∣2x2
1 , i.e., gcd(x1, y1) ≥ d, a contradiction.

If d = 3, it follows that 3
∣∣z1, and from given equation we obtain 3

∣∣(2x2
1 + y2

1), so 3
∣∣y1. Therefore 3

∣∣x1, and
so gcd(x1, y1) ≥ 3, a contradiction.
Hence:

gcd
((

2z1 + 2x2
1 + y2

1

)
,
(
2z1 − 2x2

1 − y2
1

))
= 1

Thus to satisfy (2.35), 
2z1 + 2x2

1 + y2
1 = a4,

2z1 − 2x2
1 − y2

1 = 3b4,

y1 = ab

or


2z1 + 2x2

1 + y2
1 = 3a4,

2z1 − 2x2
1 − y2

1 = b4,

y1 = ab

where a and b are both odd positive integers.
In first case, on simplification we get:

4x2
1 = a4 − 2a2b2 − 3b4 = (a2 + b2)(a2 − 3b2)
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Now applying modulo arithmetic method, since fourth powers are involved we will consider modulo 24 = 16,
thus19:

a4 − 2a2b2 − 3b4 ≡ −4 (mod 16)

Since a and b are both odd. But: 4x2
1 ≡ 0 (mod 16), since x1 is even. Thus no value of (x1, y1, z1) satisfy

first case.
In second case, on simplification we get:

4x2
1 = 3a4 − 2a2b2 − b4 = (a2 − b2)(3a2 + b2)

Further observe that20 since a and b are both odd, it follows that{
a2 − b2 = c2

3a2 + b2 = 4d2

where c, d ∈ Z.
Now substitute: {

a = p2 + q2

b = p2 − q2

where p, q ∈ Z+, to get:
3(p2 + q2)2 + (p2 − q2)2 = 4p4 + 4p2q2 + 4q4 = 4d2

⇒ p4 + p2q2 + q4 = d2

Which is equivalent to given equation, thus (p, q, d) and (q, p, d) is solution to give equation.
But, since y1 = ab, thus y1 > a. But, a > p2 > p; a > q2 > q, thus, y1 > p, q. But this contradicts the
minimality of y1.
Thus, y1 = 0 [minimal non-negative value], which implies, z1 = x2

1. Hence, (k, 0, k2) for k ∈ Z+. gives a
solution.

By symmetry, other solution (by contradicting minimality of x1) is (0, k, k2) for k ∈ Z

2.4.2 Equations of form: x4 − x2y2 + y4 = z2

Theorem 2.4.2. All non-negative integer solutions of the equation:

x4 − x2y2 + y4 = z2

are given by: 
x = k

y = 0

z = k2


x = 0

y = k

z = k2


x = k

y = k

z = k2

where k ∈ Z+.

Proof. Given equation is equivalent to [Pythagoras equation form]:(
x2 − y2

)2
+ (xy)2 = z2

Let (x1, y1, z1) be solution of given equation. Assume that gcd(x1, y1) = 1 and that x1y1 > 0 is minimal.
We will consider two cases:

19For more details about selection of number with respect to which we should check residue refer Chapter-2 of [5].
20Modulo arithmetic method won’t help here:

3a4 − 2a2b2 − b4 ≡ 0 (mod 16)

Thus solution of this equation may or may not exist.
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Case 1: x1 and y1 are of different parity
Then, for some positive integers a and b, with gcd(a, b) = 1, let [Pythagorean Triple]:

x2
1 − y2

1 = a2 − b2

x1y1 = 2ab

z1 = a2 + b2
(2.36)

Let, gcd(x1, b) = d1 and gcd(y1, a) = d2, then:

x1 = d1X1,

b = d1B,

y1 = d2Y1,

a = d2A,

X1Y1 = 2AB.

for some positive integers A,B,X1, Y1 such that gcd(X1, B) = gcd(Y1, A) = 1, thus:{
X1 = 2A,

Y1 = B
or

{
X1 = A,

Y1 = 2B

hence giving respective set of values as:
x1 = 2d1A,

b = d1B,

y1 = d2B,

a = d2A

or


x1 = d1A

b = d1B,

y1 = 2d2B,

a = d2A

Now substituting the first set of values in (2.36) we get:

⇒
(
2d1A

)2 − (d2B
)2

=
(
d2A

)2 − (d1B)2

⇒ d2
1

(
4A2 +B2

)
= d2

2

(
A2 +B2

)
(2.37)

Further:
gcd(a, b) = 1 ⇒ gcd(A,B) = 1

Let, gcd
((

4A2 +B2
)
,
(
A2 +B2

))
= d, thus:

d

∣∣∣∣((4A2 +B2
)
−
(
A2 +B2

))
⇒ d

∣∣∣3A2

But, for these set of values,

gcd(X1, B) = gcd(2A,B) = 1 ⇒ gcd(A,B) = 1

thus,
3 6
∣∣(A2 +B2) ⇒ d 6

∣∣3 ⇒ d
∣∣A2 ⇒ d

∣∣A
Similarly,

d

∣∣∣∣(4
(
A2 +B2

)
−
(
4A2 +B2

))
⇒ d

∣∣∣3B2 ⇒ d
∣∣B2 ⇒ d

∣∣B
By condition, gcd(A,B) = 1 and d

∣∣A and d
∣∣B we get d = 1, thus

gcd
((

4A2 +B2
)
,
(
A2 +B2

))
= 1

Now in (2.37), we write two equations of second degree in three unknowns as:{
A2 +B2 = C2

4A2 +B2 = D2
(2.38)
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for some positive integers C and D.
We may suppose that B is odd, since if B were even, we could set B = 2B1 and have a similar pair of
equations.
The first equation in (2.38) is Pythagorean equation, thus surely has solutions. Let,{

A = pq,

B = p2 − q2

so that we get: C2 = p4 − p2q2 + q4

Thus, (p, q, C) is another solution of given equation.
But, pq = A = a

d2
≤ a = x1y1

2b < x1y1
2 , which contradicts minimality of x1y1.

Thus, x1y1 = 0 [minimal non-negative value], yielding the solution, (0, k, k2), k ∈ Z+ and (k, 0, k2),
k ∈ Z+.

Case 2: Both x1 and y1 are odd (same parity)21

Then, for some positive integers a and b of different parity (not both odd), with gcd(a, b) = 1, let
[Pythagorean Triple]: 

x2
1 − y2

1 = 2ab

x1y1 = a2 − b2

z1 = a2 + b2

Then: (
x2

1 + y2
1

)2
=
(
x2

1 − y2
1

)2
+
(
2x1y1

)2
⇒
(
x2

1 + y2
1

)2
= (2ab)2 + 4

(
a2 − b2

)2
⇒
(
x2

1 + y2
1

)2
= 4
(
a4 − a2b2 + b4

)
⇒
(x2

1 + y2
1

2

)2
= a4 − a2b2 + b4

Thus, starting with (x1, y1, z1), we have generated a new solution:(
a, b,

x2
1 + y2

1

2

)
=
(√z1 + x1y1

2
,

√
z1 − x1y1

2
,
x2

1 + y2
1

2

)
But, z2

1 = x4
1 + y4

1 − x2
1y

2
1

(
a, b,

x2
1 + y2

1

2

)
=

(√√
x4

1 + y4
1 − x2

1y
2
1 + x1y1

2
,

√√
x4

1 + y4
1 − x2

1y
2
1 − x1y1

2
,
x2

1 + y2
1

2

)
is a solution to given equation.
We assumed gcd(x1, y1) = 1, so, x1 6= y1 6= 0.
Now,a, b must be integers, so firstly, x4

1 − x2
1y

2
1 + y4

1 should be a perfect square, its discriminant w.r.t.
x2

1 (and y2
1) should be zero,

∆ = y2
1 − 4y2

1 = 0 ⇒ y1 = 0

Contradiction!22 Thus, x1 = y1 if satisfies the equation is only solution in this case.
Now, for x1 = y1 = k we get: (k, 0, k2) as new, solution. Hence this satisfies the equation, and thus is
a solution.
Hence, (k, k, k2) where, k ∈ Z+ is a solution to given equation.

Combining both cases we prove the statement.

21For both x1 and y1 even we first reduce them by cancelling common factors, since, gcd(x1, y1) = 1., and then put them in
either case 1 or case 2.

22Note that if gcd(x1, y1) = v > 1, even then we will arrive at same contradiction, by taking v out of square-root.
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2.4.3 Fermat’s Last Theorem

Undoubtedly Fermat’s Last Theorem is one of the most important Diophantine Equation. Pierre de Fermat
scribbled the following assertion in the margin alongside problem 8 in Book II of the Latin translation, by
Bachet, of Diophantus’ Arithmetic (assertion translated from the Latin as in [16]):

It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general
any power higher than the second into powers of like degree. I have discovered a truly remarkable proof which
this margin is too small to contain.

This assertion can be restated as:
There exist no non-zero integer solution of xn + yn = zn for n ≥ 3.

It took hard-work of many brilliant mathematicians over a span of 350 years to prove Fermat’s assertion
and turn it into a theorem. But when I first saw this theorem, I wondered: Why can’t we apply principle of
mathematical induction?. The following problem was basis of my speculation:

Digression. Prove that for all integers n ≥ 3, there exist23 odd positive integers x, y, such that 7x2+y2 = 2n.

But here instead we need to prove “non-existence” of solutions so we can’t use induction. Rather we can
try contrapositive of induction, i.e. Method of Finite Descent. But that too fails. Though, Fermat proved
his assertion for n = 4 by using Method of Infinite Descent! I will now give proof of two special cases and
will try to give an outline of proof for general case.

Theorem 2.4.3. There exist no non-zero integer solution of x3 + y3 = z3

Proof. Assume that the given equation is solvable in non-zero integers24 and let, (x1, y1, z1) be a non-zero
primitive25 solution with, x1y1z1 6= 0 and |x1y1z1| is minimal.
Now two of the integers x1, y1, z1 must be odd. (standard parity argument). Let, x1, y1 be odd numbers.
Then: {

x1 + y1 = 2u

x1 − y1 = 2v

where u, v ∈ Z. We can assume that u > 0, for simplicity.
Solving above set of equations we obtain: {

x1 = u+ v

y1 = u− v

But since (x1, y1, z1) are solution of given equation we substitute these values in given equation to get:

(u+ v)3 + (u− v)3 = z3
1

⇒ 2u(u2 + 3v2) = z3
1 (2.39)

Since x1, y1 are odd, u, v are of different parity. Thus, (u2 + 3v2) is an odd number. Hence,

gcd(2u, u2 + 3v2) = gcd(u, u2 + 3v2)

Also, gcd(x1, y1) = 1 ⇒ gcd(u, v) = 1

⇒ gcd(2u, u2 + 3v2) = gcd(u, 3)

Now we will split cases based upon possible values on gcd(u, 3).

23Choose: xn+1 = |xn−yn|
2

and yn+1 = 7xn+yn
2

and apply weak form of induction. For complete solution refer: pp. 37 of [17]
24The proof that I have provided here, uses elementary arithmetic and quadratic reciprocity only. This proof has been taken

from [17]. First proof of this theorem was published by Euler, using Unique Factorization Domain, but it was complicated,
for that proof refer pp.170 of [17]. An elegant proof to this theorem also using Unique Factorization Domain was provided by
Gauss. For that proof refer pp. 96 of [1] or pp. 441 of [9].

25x1, y1, z1 are pairwise prime
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Case 1: gcd(u, 3) = 1
Then we write solution of (2.39) in parametric form as:

2u = t3

u2 + 3v2 = s3

z1 = ts

(2.40)

From this set of equations, we are concerned about second one:

u2 + 3v2 = s3

Now we will have to analyse this equation in detail in order to deal with given equation.

Proposition 1: Let n be a positive integer. The equation u2 + 3v2 = n is solvable in integers if and only if all
prime factors of n of the form 3k − 1 have even exponents26.

Part 1: A prime p can be written in the form p = u2 + 3v2 if and only if p = 3 or p = 3k+ 1, k ∈ Z+.

Indeed, we have 3 = 02 + 3(1)2 . Thus this proves our conjecture for p = 3.

Step 1: p = u2 + 3v2 ⇒ p is a prime of form 3k + 1, k ∈ Z+

Now, assume p > 3 and p = u2 + 3v2 . Then gcd(u, p) = 1 and gcd(v, p) = 1. Therefore,
there exists an integer v′ such that

vv′ ≡ 1 (mod p) (2.41)

Also from our main equation we get:

u2 ≡ −3v2 (mod p)

Now using (2.41) it follows that,

(uv′)2 ≡ −3 (mod p)

Thus, -3 is a quadratic residue modulo p. Thus is terms of Legendre symbol:

⇒
(
−3

p

)
= 1

Also by Quadratic Residue Multiplication Rule, we get:

⇒
(

3

p

)(
−1

p

)
= 1

Further as per Eulers Criterion, we get:

⇒
(

3

p

)
= (−1)

p−1
2

From Law of Quadratic Reciprocity:

⇒
(

3

p

)(
p

3

)
= (−1)

p−1
2

3−1
2

Thus we get:

⇒
(
p

3

)
= 1

This implies that p is a quadratic residue modulo 3. But only possible quadratic residue27

for a prime number modulo 3 is 1. Thus:

p ≡ 1 (mod 3)

This proves one side implication of our conjecture.

26Note that prime factors with even powers are always quadratic residue modulo p, for any odd prime number p. Thus we
just need to prove that prime factors of n which appear in quadratic residue are of form 3k + 1.

27see Example 1.6.1
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Step 2: p is a prime of the form 3k + 1⇒ p = u2 + 3v2

Since p is a prime of the form 3k + 1, there exists28 an integer a such that a2 ≡ −3
(mod p). Clearly gcd(a, p) = 1, and if we set b = b√pc, then (b + 1)2 > p. Thus, there
exist (b + 1)2 pairs (c, d) ∈ {0, 1, . . . , b} × {0, 1, . . . , b} and (b + 1)2 integers of the form
ac+ d where c, d ∈ {0, 1, . . . , b}.
It follows29 that there exist pairs (c1, d1) 6= (c2, d2) such that ac1 +d1 ≡ ac2 +d2 (mod p).
Assume c1 ≥ c1 and define {

u = c1 − c2,

v = |d1 − d2|

Therefore, {
0 < u, v ≤ b < √p
au+ v ≡ 0 (mod p)

⇒ a2u2 − v2 ≡ 0 (mod p)

Moreover, since a2 ≡ −3 (mod p), we obtain that:

p
∣∣∣(a2 + 3

)
u2 − (3u2 + v2) ⇒ 3u2 + v2 = lp

where l ∈ Z+.
Since we have : 0 < u2, v2 < p, it follows that, l ∈ {1, 2, 3, }
If, l = 1 we get: 3u2 + v2 = p, possible.
If, l = 2 we get: 3u2 + v2 = 2p, not possible since 2p ≡ 0 (mod 2) ⇒ 3u2 + v2 ≡ 0
(mod 2)⇒ 3u2 + v2 ≡ 0 (mod 4), thus p is not odd prime. Contradiction!
If, l = 3 we get: 3u2 + v2 = 3p, is possible since we can substitute v = 3v1 to get,
u2 + 3v2

1 = p.
This proves other side of implication.

Part 2: If p ≥ 3 is a prime of the form 3k − 1 and p|u2 + 3v2 , then p|u and p|v.

Let p 6
∣∣u, we have gcd(p, u) = 1. Therefore, there exists an integer v′ such that

vv′ ≡ 1 (mod p) (2.42)

Also from our main equation we get:

u2 ≡ −3v2 (mod p)

Now using (2.42) it follows that,

(uv′)2 ≡ −3 (mod p)

Thus, -3 is a quadratic residue modulo p. Thus is terms of Legendre symbol:

⇒
(
−3

p

)
= 1

leading to (as done in Step 1 of Part 1),

⇒ p ≡ 1 (mod 3)

Contradiction!

28This is superset of case, p = 12k1 + 1, and when p = 4k2 + 1 we can apply Theorem 1.6.3 and 1.6.4 to show existence of a,
thus −3 is a quadratic residue modulo p.

29we used similar argument to prove Theorem 2.2.1
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Now we will complete the proof by combining Part 1 and Part 2.
Consider n = g2h, where h is square-free integer. It follows that:

h =
m∏
i=1

pi

where pi = 3 or pi ≡ 1 (mod 3).[prime numbers]
As proved in Part 1, pi = u2

i + 3v2
i , also since,(

u2
1 + 3v2

1

)(
u2

2 + 3v2
2

)
=
(
u1u2 + 3v1v2

)2
+ 3
(
u1v2 − u2v1

)2
Thus we get:

h = p1p2 . . . pm = u2 + 3v2

for some integers u and v.
Finally,

n = g2h = (gu)2 + 3(gu)2.

Thus proving our proposition.

Proposition 2: The equation, u2 + 3v2 = s3 has solution (u1, v1, s1) with s1 odd and gcd(u1, v1) = 1 if and only
if there exists integers α, β such that :

u1 = α
(
α2 − 9β2

)
v1 = 3β

(
α2 − β2

)
s1 = α2 + 3β2

where α 6≡ β (mod 2)30 and gcd(α, 3β) = 1

Step 1: If there exists integers α, β which satisfy given conditions ⇒ (u1, v1, s1) is a solution of with
s1 odd and gcd(u1, v1) = 1

Let (u1, v1, s1) be triples satisfying given conditions in terms of α and β. Verify that:

α2
(
α2 − 9β2

)2
+ 27β2

(
α2 − β2

)2
=
(
α2 + 3β2

)3

thus (u1, v1, s1) is a solution is a solution of given equation.
Since α 6≡ β (mod 2) we obtain that s1 is odd.
Now,

gcd(u1, v1) = gcd
(
α
(
α2 − 9β2

)
, 3β
(
α2 − β2

))
But, from gcd(α, 3β) = 1, it follows that:

gcd
(

3β,
(
α2 − β2

))
= gcd

(
3β, α

)
= 1

and,

gcd
(
α, 3β

(
α2 − β2

))
= gcd

(
α,
(
α2 − β2

))
= gcd

(
α,−β2

)
= 1

Thus,

⇒ gcd(u1, v1) = gcd
((
α2 − 9β2

)
,
(
α2 − β2

))
⇒ gcd(u1, v1) = gcd

(((
α2 − 9β2

)
−
(
α2 − β2

))
,
(
α2 − β2

))
= gcd

(
− 8β2,

(
α2 − β2

))
But, α 6≡ β (mod 2),

⇒ gcd(u1, v1) = gcd
(
β2,
(
α2 − β2

))
⇒ gcd(u1, v1) = gcd

(
β2, α2

)
= gcd

(
β, α

)
= 1

This proves one side of implication.

30equivalent to saying that both are of different parity
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Step 2: (u1, v1, s1) is a solution with s1 odd and gcd(u1, v1) = 1 ⇒ there exists integers α, β which
satisfy given conditions.

We will prove this by induction over prime factors of s1.
If s1 = 1, we have u1 = ±1, v1 = 0, and α = ±1, β = 0.
Consider s1 > 1 and let q be a prime divisor of s1. So

s1 = qr

where q and r are odd. We get:

s3
1 = u2

1 + 3v2
1 = (qr)3 (2.43)

Now using gcd(u1, v1) = 1 and Proposition 1 [since we have showed existence of set of
solutions in Step - 1 of this proposition.], for q = 3k′ + 1 = 6k + 1 (we replace k′ = 2k, since
we have odd primes), there exist integers α1, β1 such that:

q = α2
1 + 3β2

1

Since q is prime and q = 6k + 1, we obtain, gcd(α1, 3β1) = 1 and α1 6≡ β1 (mod 2).
Further, by parametrization we see that for:{

w = α1

(
α2

1 − 9β2
1

)
f = 3β1

(
α2

1 − β2
1

)
we get:

w2 + 3f2 =
(
α2

1 + 3β2
1

)3
= q3 (2.44)

From this, by modular arithmetic arguments we get: w 6≡ f (mod 2) and gcd(w, 3f) = 1.
Now multiply (2.44) and (2.43) to get:

q6r3 =
(
u2

1 + 3v2
1

)(
w2 + 3f2

)
= q3s1

⇒ q6r3 =
(
wu1 + 3fv1

)2
+ 3
(
fu1 − wv1

)2
=
(
wu1 − 3fv1

)2
+ 3
(
fu1 + wv1

)2
(2.45)

Further:
(fu1 + wv1)(fu1 − wv1) = f2u2

1 − w2v2
1

Using, (2.44)
⇒ (fu1 + wv1)(fu1 − wv1) = f2u2

1 −
(
q3 − 3f2

)
v2

1

⇒ (fu1 + wv1)(fu1 − wv1) = f2
(
u2

1 + 3v2
1

)
− q3v2

1

using (2.43)
⇒ (fu1 + wv1)(fu1 − wv1) = f2s3

1 − q3v2
1 = f2r3q3 − q3v2

1

⇒ (fu1 + wv1)(fu1 − wv1) = q3
(
f2r3 − v2

1

)
Therefore:

q3
∣∣∣(fu1 + wv1)(fu1 − wv1)

But, gcd(wfu1v1, q) = 1,

q
∣∣∣(fu1 + wv1) or q

∣∣∣(fu1 − wv1)

Thus both of these can’t be satisfied simultaneously.
Therefore, there exists λ ∈ {−1, 1} such that:{

fu1 − λwv1 = q3µ

wu1 + 3λfv1 = q3σ
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for some integer µ, σ.
Substitute them in (2.45) to get

r3 = σ2 + 3µ2

Also we can solve above set of equations and use (2.44) to get:u1 = σw + 3fµ

v1 =
σf − µw

λ

Now, if s1 has in its decomposition η prime factors, then since s1 = qr, it follows that r has
η − 1 prime factors.
From gcd(u1, v1) = 1, we obtain gcd(µ, σ) = 1.
Taking into account that r is odd and that it satisfies the induction hypothesis for η − 1, we
obtain integers α2, β2 satisfying the properties (again invoke Proposition 1):

α2 6≡ β2 (mod 2),

gcd(α2, 3β2) = 1,

σ = α2

(
α2 − 9β2

2

)
µ = 3β2

(
α2

2 − β2
2

)
r = α2

2 + 3β2
2

(2.46)

Thus:
s1 = qr =

(
α2

1 + 3β2
1

)(
α2

2 + 3β2
2

)
⇒ s1 =

(
α1α2 + 3β1β2

)2
+ 3
(
α1β2 − α2β1

)2
Now, let: {

α = α1α2 + 3β1β2

β = λ
(
α1β2 − α2β1

)
Thus, 

s1 = α2 + 3β2

u1 = α
(
α2 − 9β2

)
v1 = 3β

(
α2 − β2

)
Also,

α− β = (α1α2 + β1β2)− (α1β2 + β1α2) = (α1 − β1)(α2 − β2)

⇒ α− β ≡ (α1 − β1)(α2 − β2) (mod 2)

But from earlier arguments we know that,α1 6≡ β1 (mod 2), α2 6≡ β2 (mod 2),

⇒ α 6≡ β (mod 2)

Also,
gcd(u1, v1) = 1 ⇒ gcd(α, 3β) = 1

Combining Step 1 and Step 2 we prove our Proposition 2.

Now, using Proposition 2 we get: 
u = α

(
α2 − 9β2

)
v = 3β

(
α2 − β2

)
s = α2 + 3β2

using this in (2.40):
2u = t3 = (2α)(α− 3β)(α+ 3β)
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Where the factors 2α, α− 3β, α+ 3β are pairwise relatively prime, so we can assume:
2α = Z3,

α− 3β = X3,

α+ 3β = Y 3

Then we obtain, X3 + Y 3 = Z3 and |XY Z| 6= 0, i.e., (X,Y, Z) is a non-zero integral solution to given
equation.
Moreover,

|XY Z| = t =
3
√

2u = 3
√
x1 + y1

But we know that31

1

x1
+

1

y1
< 1 for all positive integers x1, y1 > 2

⇒ x1 + y1 < |x1y1| for all integers x1, y1 6= 0, 1, 2 (2.47)

We can check that for x1, y1 = 1, 2 we get no value of z1, so we can safely use above inequality.

⇒ |XY Z| < 3
√
|x1y1| < |x1y1z1|

Contradiction to minimality of |x1y1z1|, thus this case will yield no solution.

Case 2: gcd(u, 3) = 3

Let, u = 3u0 for some integer u0 and thus (2.39) can be written as:

18u0

(
3u2

0 + v2
)

= z3
1

Thus, 18|z3
1 , z1 is even thus: 9|z3

1 , thus, 3|z1, we get z1 = 3z0 for some integer z0. Thus:

2u0

(
3u2

0 + v2
)

= 3z3
0 (2.48)

Now,
gcd(u, v) = 1 ⇒ gcd(v, 3) = 1 ⇒ gcd

(
3u2

0 + v2, 3
)

= 1

Thus, from (2.48),

3
∣∣∣2u0(3u2

0 + v2) ⇒ 3
∣∣∣2u0 ⇒ 3

∣∣∣u0

Thus, u0 = 3ue for some integer ue, then:

2ue

(
3u2

0 + v2
)

= z3
0

But, gcd
(

2ue, 3u
2
0 + v2

)
= 1, we obtain:


2ue = φ3

3u2
0 + v2 = ψ3

z0 = φψ

(2.49)

where ψ is an odd integer, with gcd(v, 3) = 1.
Again we encounter the similar second equation as in Case-1, so can directly use Proposition - 1 and
Proposition - 2 to get: 

v = α
(
α2 − 9β2

)
u0 = 3β

(
α2 − β2

)
ψ = α2 + 3β2

31This is equivalent to: x1 + y1 < x1y1 or y1
y1−1

< x1
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where α, β are integers, α 6≡ β (mod 2) and gcd(α, 3β) = 1.
Using, this along with u0 = 3ue in (2.49):

φ3 = 2ue =
2u0

3
= 2β

(
α2 − β2

)
= 2β(α− β)(α+ β)

Now, since 2β, (α+ β), (α− β) are relatively prime, we get:
α+ β = Z3

α− β = x3

2β = Y 3

Since, X3 + Y 3 = Z3 and |XY Z| 6= 0, (X,Y, Z) is a non-zero integer solution of given equation.
Moreover:

|XY Z| = φ = 3
√

2ue =
3

√
2u0

3
=

3

√
2u1

9
<

3
√

2u

⇒ |XY Z| < 3
√
x1 + y1

But, using (2.47), we get:
⇒ |XY Z| < 3

√
|x1y1|

⇒ |XY Z| < |x1y1z1|

Contradicting minimality of |x1y1z1|. Thus this case also yields no solution.

Combining Case - 1 and Case - 2, we conclude that the given equation has no solution in non-zero integers.

Remark: A close relative of above equation: x3 + y3 = z3 + w3 has infinitely many solutions in integers,
other than the obvious solutions with x = z or x = w or x = y. My favourite example is, Ramanujan-Hardy
Number: 13 + 123 = 93 + 103(= 1729).

Theorem 2.4.4. There exist no non-zero integer solution of x4 + y4 = z4

Proof. Let,(x1, y1, z1) be a primitive solution to this equation, such that z1 is minimal32. Now consider
following transformation: 

x = u,

y = v,

z2 = w

So, we get an equivalent equation:
u4 + v4 = w2 (2.50)

with (u1, v1, w1) as a solution and w1 is minimal. Now substitute:
u2

1 = a

v2
1 = b,

w1 = c

This leads to Pythagorean equation:
a2 + b2 = c2

We know from Section 2.3.1, that the solutions are:
u2

1 = a = st,

v2
1 = b =

s2 − t2

2
,

w2
1 = c =

s2 + t2

2

32Fermat actually proved a stronger result: The equation x4 + y4 = z2 has no solution in non-zero integers. The argument is
similar to the one used here. Then by replacing, z = t2, we get our special case of Fermat’s last Theorem as a corollary.
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where s, t are relatively prime odd integers. Leading to odd u1 and even v1.

Consider: u2
1 = st

Notice that the product, st is odd and equal to a square. But only 0 and 1 are quadratic residue modulo 4.
So we must have:

st ≡ 1 (mod 4)

Thus, both s, t are either both ≡ 1 (mod 4) or both ≡ 1 (mod 4), in any case:

s ≡ t (mod 4) (2.51)

Consider: v2
1 =

s2 − t2

2
⇒ 2v2

1 = s2 − t2 = (s− t)(s+ t)

Now, since s and t are odd and relatively prime means that only common factor of (s− t) and (s+ t) is 2.

⇒ gcd(s− t, s+ t) = 2

But from (2.51) we know that, (s− t) is divisible by 4, but then, (s+ t) is twice an odd integer. Furthermore
we know that (s−t)(s+t) is twice a (even) square. Also, v1 = 2v0 (even),thus, to satisfy all these conditions:{

s− t = 4m2

s+ t = 2n2

where m,n are integers, n is an odd integer and 2m,n are relatively prime.
From this set of equations we can solve for s, t in terms of m,n:{

s = n2 + 2m2

t = n2 − 2m2

Now substitute them back into : u2
1 = st, to get:

u2
1 = n4 − 4m4

Rearrange terms to get:
u2

1 + 4m4 = n4

Now, repeat the substitution process: 
u1 = A,

2m2 = B,

n2 = C

Again we get a Pythagorean equation:
A2 +B2 = C2

Again, we know from Section 2.3.1, that the solutions are:
u1 = A = ST,

2m2 = B =
S2 − T 2

2
,

n2 = C =
S2 + T 2

2

where S, T are relatively prime odd integers.

Consider: 2m2 = B =
S2 − T 2

2

⇒ 4m2 = S2 − T 2 = (S − T )(S + T )
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Now, since S and T are odd and relatively prime means that only common factor of (S − T ) and (S + T )
is 2.

⇒ gcd(S − T, S + T ) = 2

Furthermore we know that (S − T )(S + T ) is a perfect square. Thus,{
S − T = 2M2

S + T = 2N2

where M,N are integers.
From this set of equations we can solve for S, T in terms of M,N :{

S = N2 +M2

T = N2 −M2

Now substitute them into : n2 =
S2 + T 2

2
, to get:

n2 = M4 +N4

Thus, (M,N, n) is a solution to our equivalent equation (2.50).But,

w1 =
s2 + t2

2
=

(
n2 + 2m2

)
+
(
n2 − 2m2

)
2

= n4 + 4m2

Thus, w1 > n. But this contradicts the minimality of w1, which further contradicts the minimality of z1.

Thus, the given equation has no solutions in non-zero integers

Remark: A consequence of this theorem is that the area of a Pythagorean triangle can never be a perfect
square.

Theorem 2.4.5. There exist no non-zero integer solution of xn + yn = zn for n ≥ 3

Sketch of Proof. The proof is complicated and is out of scope of this project. Rather I present an outline of
proof from [16]:

1. If, p|n, say n = pm, and if xn + yn = zn, then (xm)p + (ym)p = (zm)p. Thus if this equation has no
solution for prime exponents, then it won’t have solution for non-prime exponents either.

2. Let p ≥ 3 be a prime, and suppose that there is a solution (x0, y0, z0) to xp + yp = zp with x0, y0, z0

non-zero integers and gcd(x0, y0, z0) = 1.

3. Let Ex0,y0 be an elliptic curve, called Frey Curve: y2 = x(x+ xp0)(x− yp0)

4. Wiles’s Theorem tells us that Ex0,y0 is modular, that is, its p-defects, ap follow a Modularity Pattern.

5. Ribet’s Theorem tells us that Ex0,y0 is so strange that it cannot possibly be modular.

6. The only way out of this seeming contradiction is the conclusion that the equation xp + yp = zp has
no solution in non-zero integers.

Commentary about “Sketch of Proof” of Fermat’s Last Theorem

• How Elliptic Curves and Fermat’s Last Theorem got related?
In 1983, Gerd Faltings proved a conjecture of Mordell regarding elliptic curves. As a corollary, it
stated that curve Xn+Y n = 1 has only finitely many rational points if n ≥ 5, which meant that there
can be only finitely many integer solutions of xn + yn = zn for n ≥ 5.
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• What is so special about Frey Elliptic Curve?
In 1985, Gerhard Frey linked a counter example to Fermat’s Last Theorem, if there is one, with an
elliptic curve which did not seem to satisfy the Shimura-Taniyama-Weil Conjecture. Frey’s idea was:
if, for some prime p > 3, there are non-zero integers u, v, w such that up + vp = wp, then consider the
elliptic curve, now referred as the Frey Curve, y2 = x(x + up)(x − vp). Thus for first time, Fermat’s
Last Theorem for any exponent was connected with a cubic curve instead of a higher degree curve
which the equation itself defines.

• What is Shimura-Taniyama-Weil Conjecture ?
It states that every elliptic curve is modular. That is, p-defects, ap’s of an elliptic curve exhibit a
modularity pattern.

• What is meant by an elliptic curve being modular?
An elliptic curve is called modular if there is a map to it from another special sort of curve called a
modular curve.

• What is meant by p-defects?
p-defect, ap, is defined as difference between the prime number, p, and number of solutions to a given
elliptic curve modulo p, Np.

ap = p−Np

The actual mathematical name for the quantity ap is the trace of Frobenius.

• What does it mean to say that ap of an elliptic curve exhibit a Modularity Pattern?
It means that there is a series:

Θ = c1T + c2T
2 + c3T

3 + . . .

so that for (most) primes p, the coefficients cp equals ap of that elliptic curve.

• What is Wiles’s Theorem?
It states that every semistable elliptic curve exhibits a Modularity Pattern.

• When is an elliptic curve semistable?
An elliptic curve is semistable if, for every bad prime p ≥ 3, the ap is equal to ±1.

• What is meant by bad prime?
We say that a prime number, p, is a bad prime, for a given elliptic curve, y2 = f(x) = x3 +ax2 +bx+c,
if the polynomial f(x) has double or triple root modulo p.

• What is Ribet’s Theorem?
It states that for a prime p, if xp + yp = zp with xyz 6= 0, then the Frey Curve is not modular.

First General Results on Fermat’s Last Theorem : A Historical Account

One of the first general results on Fermat’s Last Theorem, as opposed to verification
for specific exponents n, was given by Sophie Germain in 1823. She proved that if
both p and 2p + 1 are primes then the equation ap + bp = cp has no solutions in
integers a, b, c with p not dividing the product abc.
A later result of a similar nature, due to A. Wieferich in 1909, is that the same
conclusion is true if the quantity 2p − 2 is not divisible by p2 .
In later part of nineteenth century, Richard Dedekind, Leopold Kronecker, and espe-
cially Ernst Kummer, developed a new field of mathematics called algebraic number
theory and used their theory to prove Fermat’s Last Theorem for many exponents,
although still only a finite list.
Then, in 1985, L.M. Adleman, D.R. Heath-Brown, and E. Fouvry used a refinement
of Germain’s criterion together with difficult analytic estimates to prove that there
are infinitely many primes p such that ap + bp = cp has no solutions with p not
dividing abc.
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2.5 Exponential Equations

These are those equations where, the unknowns appear also as exponents. For some refernces on such
equations refer pp. 109-111 of [8].

2.5.1 Equations in two unknowns

Theorem 2.5.1. The equation
xy = yx

has only one solution in positive integers, with y > x. That is x = 2, y = 4.

Proof. Suppose that (x1, y1), with y1 > x1 is a solution of given equation. We will follow method of
Parametrization. Let

y1 =

(
1 +

1

r

)
x1 where, r =

x1

y1 − x1
is a positive rational number

Now substituting this in given equation we get:

x
(1+ 1

r )x1
1 = yx11

⇒ x
(1+ 1

r )
1 = y1 =

(
1 +

1

r

)
x1 ⇒ x

1
r
1 = 1 +

1

r

⇒ x1 =

(
1 +

1

r

)r
Thus we get,

y1 =

(
1 +

1

r

)r+1

Let, r = m/n, where gcd(m,n) = 1 and x1 = t/s, where gcd(t, s) = 1.
Thus,

x1 =

(
m+ n

n

)n/m
=
t

s
⇒ (m+ n)n

nn
=
tm

sm

Each side of this equality is an irreducible fraction; also since, gcd(m,n) = 1 we get gcd(m+ n, n) = 1, and
hence, gcd((m+ n)n, nn) = 1 and gcd(t, s) = 1 we get gcd(tm, sm) = 1. Thus

(m+ n)n = tm and nn = sm

Thus, there exist natural number k and l such that:{
m+ n = km, t = kn

n = lm, s = ln

⇒ m+ lm = km

⇒ k ≥ l + 1

If, m > 1 we would have:
km ≥ (l + 1)m ≥ lm +mlm−1 + 1 > lm +m = k

But, this is impossible!
Consequently, if m = 1, r = n/m = n. This leads to the conclusion that:{

x1 =
(
1 + 1

n

)n
,

y1 =
(
1 + 1

n

)n+1 (2.52)

where n is a natural number.
Conversely, it is easy to verify that these x1, y1 satisfy given equation. Therefore, all the solutions of equation
xy = yx in rational numbers x, y with y > x > 0 are given by (2.52) where n is a positive integer.
It follows that n = 1 is the only value for which the equation has a solution in positive integers. In this case
the solution is x = 2, y = 4.
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Theorem 2.5.2. The equation
xy − yx = 1

has precisely two solutions in positive integers. These are x = 2, y = 1 and x = 3, y = 2.

Proof. Suppose that natural numbers x, y satisfy given equation. Then, necessarily, xy > 1, and therefore
x > 1. If x = 2, then as per given equation,

2y = y2 + 1

which implies that y is odd and consequently, 4
∣∣(y2 − 1). This implies that, 4

∣∣2y − 2 and 2
∣∣2y−1 − 1. We

conclude that y = 1.
Also from given equation:

xy > yx ⇒ x
√
x > y
√
y

Further we have:
3
√

3 >
2
√

2 =
4
√

4 >
5
√

5 >
6
√

6 > . . . >
1
√

1

So, x = 3, y = 1 do not satisfy given equation, but x = 3, y = 2 do.
Therefore, if x, y is a solution of given equation different from (2, 1) and (3, 2), then either x = 3, y ≥ 4 or
x ≥ 4, y ≥ x+ 1. Thus in either case we have y ≥ x+ 1.
Let y − x = a ∈ Z+, then

xy

yx
=

xx+a

(x+ a)x
=

xa(
1 + a

x

)x (2.53)

But, as we know, for base of natural logarithm,et > 1 + t whenever t > 0, this implies that for t = a/x we
have (

1 +
a

x

)x
< ea

using this in (2.53) and by x ≥ 3 > e, we obtain:

xy

yx
>
xa

ea
=
(x
e

)a
≥ x

e
≥ 3

e
> 1.1

Hence,

xy − yx > yx

10
≥ 43

10
> 1

contradicting our assumption that (x, y) is solution of given equation. This leads us to the conclusion that
the given equation has no solution different from x = 2, y = 1 and x = 3, y = 2.

2.5.2 Equations in three unknowns

Theorem 2.5.3. The equation
xxyy = zz

has infinitely many solutions in positive integers, different from 1.

Proof. A parametric solution to this equation was found by Chao Ko33 and is given by:

x =

(
2

(
(2n−n−1)2n+1

)
+2n

)(
(2n − 1)2(2n−1)

)

y =

(
2(2n−n−1)2n+1

)(
(2n − 1)2(2n−1)+2

)

z =

(
2

(
(2n−n−1)2n+1

)
+(n+1)

)(
(2n − 1)2(2n−1)+1

)
for any positive integer n.

33“Note on the Diophantine equation xxyy = zz”, J. Chinese Math. Soc., Vol 2, pp. 205-207 (1940)
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Conclusion

I have discussed about 40 theorems and 25 examples related to “Diophantine Equations” in this project
report.

Among the 23 problems posed by David Hilbert in the lecture delivered before the International Congress
of Mathematicians at Paris in 1900, tenth problem is regarding Diophantine equation, it states:

Given a Diophantine equation with any number of unknown quantities and with integral numerical coeffi-
cients. To devise a process according to which it can be determined by a finite number of operations whether
the equation is solvable in rational integers.

This problem was solved in 1970 by Yuri Matiyasevich, following works of Martin Davis, Hilary Put-
nam and Julia Robinson. The solution is negative, there is no hope of producing a complete theory of the
subject. But still, Michel Waldschmidt, in his paper “Open Diophantine Problems” (Moscow Mathematical
Journal, Vol. 4, No. 1, January-March 2004, pp. 245-305) states that there is still a hope for a positive an-
swer to Hilbert’s Tenth Problem, if one restricts original problem to a limited number of variables, say n = 2.

I would like to finish my project report with following comments:

• Little is known about the unique factorization property of Q[
√
d] for d > 0. What we know is that

Q[
√
d] is a Unique Factorization Domain (i.e. the ring of algebraic integers of Q[

√
d] is a Unique Factor-

ization Domain) for d = 2, 3, 5, 6, 7, 11, 13, 14, 17,19, 21, 22, 23, 29, 33, 37, 41, 53, 57, 61, 69, 73, 77, 89, 93, 97.

• Among the two problems considered, i.e., computing the number solutions and generating the solutions,
the first one is by far the most complex.

• If we are given a rational point on cubic curve we can find other solutions, but there is no known
method to determine in a finite number of steps whether any given rational cubic has rational point.

• Exponential Diophantine Equations constitute some very interesting conjectures, for example, following
conjecture was made by Siva Shankaranarayana Pillai at a conference of Indian Mathematical Society
in Aligarh (1945) :

Let k be a positive integer. The equation

xp − yq = k

where the unknowns x, y, p, q ≥ 2 take integer values, has only finitely many solutions (x, y, p, q).
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