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Abstract

For centuries, kings, queens and generals have all been aware of the consequences of their messages falling
into the wrong hands, revealing precious secrets to rival nations. It was the threat of enemy interception

that motivated the development of codes and ciphers. This lead to development of cryptography, the
practice and study of techniques for secure communication in the presence of third parties. In this project
report I will analyse 1930s model of Enigma, an electromechanical rotor cipher machine, which was used

by Nazi Germany Army before World War II. Objective of this report is to discuss a simple theorem about
permutation groups, which was the key step involved in breaking 1930s Enigma ciphers.
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Introduction

Enigma was invented by the German engineer Arthur Scherbius at the end of World War I. The Enigma
machine is a combination of mechanical and electrical subsystems. The mechanical subsystem consists of a
keyboard with 26 keys; 3 rotating disks called rotors arranged adjacently along a spindle; and one of various
stepping components to turn at least one rotor with each key press and the last rotor came before a reflector,
a patented feature unique to Enigma among the period’s various rotor machines.

Figure 1: Scherbius’s Enigma patent (https://www.google.com/patents/US1657411)

There was a ring around the circumference of each rotor on which the the alphabets A,B, . . . , Z or the
numbers 01, 02, . . . , 26 were engraved. This ring could be rotated around the circumference and then
held in place with a pin. The ring setting of the key indicated the letter of the alphabet on the ring that
corresponded to the position of the pin. The purpose of the ring setting was to set the letters on the ring
with respect to the internal wiring of the rotor.

Figure 2: Details of an Enigma rotor: (1) The finger notches used to turn the rotors to a start position;
(2) The alphabet RING; (3) The shaft upon which the rotors turn; (4) The catch which locks the alphabet
ring to the core (5); (5) The CORE containing the cross-wiring between contacts (6) and discs (7); (6) The
spring loaded contacts to make contact with the next rotor; (7) The discs embedded into the core to make
contact with the spring loaded contacts in the next rotor. (8) The CARRY notch attached to the alphabet
ring; (http://www.codesandciphers.org.uk/virtualbp/enigma/enigma files/enigwhls.gif)
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The mechanical parts act in such a way as to form a varying electrical circuit. When a key is pressed, one
or more rotors move to form a new rotor configuration, and a circuit is completed. Current flows through
various components in the new configuration, ultimately lighting one display lamp, which shows the output
letter.

Early models were used commercially from the early 1920s, and adopted by military and government
services of several countries. Scherbius’s Enigma is known as unsteckered Enigma, Enigma without plug-
boards.

In 1930 the German military increased security of Scherbius’s Enigma by the addition of a plugboard.
The plugboard contributed more cryptographic strength than an extra rotor. Unsteckered Enigma can be
solved relatively straightforwardly using hand methods.

Figure 3: German Army Enigma Machine (https://commons.wikimedia.org/wiki/File:EnigmaMachineLabeled.jpg)

The Polish Cipher Bureau sought to break Enigma ciphers due to the increasing threat that Poland faced
from Germany. Near the beginning of 1929, the Polish Cipher Bureau invited math students at Poznań
University to take a class on cryptology. On 1 September 1932, 27-year-old Polish mathematician Marian
Rejewski and two fellow Poznań University mathematics graduates, Henryk Zygalski and Jerzy Różycki,
joined the Bureau full-time and moved to Warsaw.

Figure 4: Current circuit diagram [R- reflector; L,M,N - rotors; S - plugboard cables; K - Keyboard; ⊗ -
Lampboard] (see [9])

When the Poles began to attack Enigma, 6 plugs were in use. Rejewski reverse-engineered the device,
using theoretical mathematics and material supplied by French military intelligence. Subsequently the three
mathematicians designed mechanical devices for breaking Enigma ciphers. From 1938 onwards, additional
complexity was repeatedly added to the Enigma machines, making decryption more difficult and requiring
further equipment and personnel-more than the Poles could readily produce.
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Chapter 1

Questions on Permutation Groups

These are some warm-up question-answers taken from [1], [2] and [3].

Q1 Illustrate Cayley’s Theorem by calculating the left regular representation for the group
V4 = {e, a, b, c} where a2 = b2 = c2 = e, ab = ba = c, ac = ca = b, bc = cb = a.

Solution. According to Cayley’s Theorem, V4 is isomorphic to some subgroup of A(V4), let that sub-
group be H. Hence, there exists a mapping Λ : V4 → H such the for all x, y ∈ V4, Λ(x ·y) = Λ(x)∗Λ(y)
where · and ∗ are the binary operations of groups V4 and H respectively and Λ is one-to-one. Also, H
consists of set of functions, λv : V4 → V4, where, if v ∈ V4, then λv(z) = v · z for every z ∈ V4.

Thus the left regular representation for the group V4 can be derived from Cayley table:

· e a b c

e e a b c
a a e c b
b b c e a
c c b a e

λe :

[
e a b c
e a b c

]
λa :

[
e a b c
a e c b

]
λb :

[
e a b c
b c e a

]
λc :

[
e a b c
c b a e

]

Now from Cayley table of H we can clearly see the isomorphism:

∗ λe λa λb λc
λe λe λa λb λc
λa λa λe λc λb
λb λb λc λe λa
λc λc λb λa λe

Q2 Show that A5 has 24 elements of order 5, 20 elements of order 3, and 15 elements of order
2.

Solution. A5 is the set of permutations of {1, 2, 3, 4, 5} that can be expressed as a product of even
number of 2-cycles. Also if a permutation α can be expressed as a product of even number of 2-cycles,
then every decomposition of α into a product of 2-cycles must have an even number of 2-cycles. Fur-
ther we can write any cycle of length m as a product of (m − 1) 2-cycles. Thus we need to consider
only following disjoint cycle structures of the elements of S5:
(5)
(3)(1)(1)
(2)(2)(1)
(1)(1)(1)(1)(1)
Now, from simple Combinatorial arguments, we know that

The number of ways to arrange n distinct objects along a fixed circle = (n− 1)!

Thus using above formula and multiplication principle of counting:

Number of elements of order 5 =

(
5

0

)
(5− 1)! = 4! = 24
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Number of elements of order 3 =

(
5

2

)
·
(

3

3

)
(3− 1)! =

5! · 2!

3! · 2!
= 20

Number of elements of order 2 =

(
5

1

)
·
(

4

2

)
(2− 1)!

2
·
(

2

2

)
=

5 · 4!

2 · 2! · 2!
= 15

Number of elements of order 1 =

(
5

5

)
= 1

Q3 Show that if n ≥ m then the number of m-cycles in Sn is given by n(n−1)(n−2)...(n−m+1)/m.

Solution. We can generalize combinatorial argument of previous problem to get1

# cycles of order m = (# select m letters from n letters) · (# arrange m distinct objects on a circle)

# cycles of order m =

(
n

m

)
· (m− 1)! =

n!

(n−m)! ·m
=
n(n− 1) . . . (n−m+ 1)

m

Q4 Let σ be the m-cycle (12 . . .m). Show that σi is also an m-cycle if and only if i is relatively
prime to m.

Solution. The permutation σ can be visualised by placing the numbers {1, 2, . . . ,m} clockwise around
a circle, then σ takes each number to the one next to it clockwise. Since σ is a m−cycle, m is the
smallest number of compositions for which σm = ε where ε is the identity element of the permutation
group.

Thus, σ takes the number k to k + 1, considered modulo m.

Then, σi takes each number i places around the circle in clockwise direction from it, so it takes the
number k to k + i modulo m. Thus one of the cycles of σi is (1, 1 + i, 1 + 2i, · · · ) modulo m. If this
cycle has length m, then it must be the only cycle (since all the numbers from 1 to m must be in it),
so that σi is an m-cycle. If this cycle has length less than m, then there must be more than one cycle
an σi is not an m-cycle.

Let σi be a cycle of length k, then k is the smallest positive integer such that 1 + ki ≡ 1 (mod m).
Equivalently, k is the smallest positive integer such that m|ki.
If i is relatively prime to m, then m|ik implies m|k, so that the smallest such k is k = m.

If i is not relatively prime to m then let gcd(i,m) = d. So m = dm′ and i = di′ where gcd(m′, i′) = 1.
Then the smallest positive integer k such that dm′|di′k, or equivalently, m′|i′k. Sincem′, i′ are relatively
prime, the smallest such k is k = m′.

Thus, if i is relatively prime to m then σi is a m-cycle. On the other hand, if i is not relatively prime
to m, then σi contains an m′-cycle, for some m′ < m, so cannot be a m-cycle.

Q5 Let n ≥ 3. Prove the following in Sn.

(a) Every permutation of Sn can be written as a product of at most n− 1 transpositions.

(b) Every permutation of Sn that is not a cycle can be written as a product of at most n − 2
transpositions.

Solution. Here we need to generalize the argument used in Q2.

(a) Since every permutation in Sn is a product of 2-cycles (called transpositions), such that:

(a1 . . . ap)(b1 . . . bq) . . . (c1 . . . cr) = (a1ap) . . . (a1a2)(b1bq) . . . (b1b2) . . . (c1cr) . . . (c1c2)

Thus:

# transpositions for every permutation of Sn = (p−1)+(q−1)+. . .+(r−1) = n−(# disjoint cycles)

Since p + q + . . . + r = n, if we explicitly write 1-cycles also and consider them to be disjoint
cycles. Thus:

max{# transpositions for every permutation of Sn} = n−min{# disjoint cycles} = n− 1

1for ease of writing, let # denote “number of ...”
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(b) If permutation of Sn is not a cycle then min{# disjoint cycles} = 2. Thus,

max{# transpositions for every permutation of Sn that is not a cycle} = n− 2

Q6 Let σ be a permutation of a set A. We say that σ moves a ∈ A if σ(a) 6= a. Let SA denote
the permutations on A.

(a) If A is a finite set then how many elements are moved by a n-cycle σ ∈ SA?

(b) Let A be an infinite set and let H be the subset of SA consisting of all σ ∈ SA such that σ only
moves finitely many elements of A. Show that H ≤ SA.

(c) Let A be an infinite set and let K be the subset of SA consisting of all σ ∈ SA such that σ moves
at most 50 elements of A. Is K ≤ SA? Why?

Solution. (a) n elements

(b) We need to verify two conditions:

i. σ1, σ2 ∈ H ⇒ σ1 ∗ σ2 ∈ H
If a permutation σ1 and σ2 move a finite number of elements of A, then σ1 ∗ σ2, where
∗ is binary operation defined for SA, also moves at most finite number of elements of A.
Therefore, H is closed under the binary operation.

ii. σ ∈ H ⇒ σ−1 ∈ H
If σ ∈ H then σ moves only finite number of elements of A. Notice that σ−1 moves exactly
the same elements as σ, therefore, σ−1 also moves only finite number of elements of A, and
σ−1 ∈ H

(c) K is not a subgroup of SA.
Take 100 different elements of A, denote them a1, a2, . . . , a100. Consider permutations σ1 =
(a1a2 . . . a49a50) and σ2 = (a51a52 . . . a99a100). Then σ1, σ2 ∈ K, but σ1 ∗ σ2 6∈ K. Therefore, K
is not closed under the binary operation in SA (composition).

Q7 Show that if σ is a cycle of odd length then σ2 is a cycle.

Solution. This is a corollary of Q4. Also explicitly,

σ = (a1a2 . . . a2m+1)

⇒ σ2 = (a1a2 . . . a2m+1)(a1a2 . . . a2m+1) = (a1a3 . . . a2m−1a2m+1a2a4 . . . a2m−2a2m)

Q8 Let p be a prime. Show that an element has order p in Sn if and only if its cycle
decomposition is a product of commuting p-cycles. Show by an explicit example that
this need not be the case if p is not prime.

Solution. We know following 3 theorems about Permutation Groups (see [3])

(a) Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

(b) Disjoint cycles commute

(c) (Ruffini’s Theorem) The order of a permutation of a finite set written in disjoint cycle form is
the least common multiple of the lengths of the cycle.

Let α1, α2, . . . αk be the length of k disjoint cycles of a permutation in Sn. Now, since order of this
permutation is a prime number, p.

p = lcm(α1, α2, . . . αk)

⇒ αi|p for all 1 ≤ i ≤ k

⇒ αi = 1 or αi = p

This proves, the given statement, that an element has order p in Sn if and only if its cycle decompo-
sition is a product of commuting p− cycles.

Clearly, from above argument, this need not be the case if p is not prime. Let, q be a composite
number, then
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An element has order q in Sn 6⇒ its cycle decomposition is a product of commuting q−cycles.

Consider and element of order 6, in S7, (123)(45)(67), this is not a product of commuting 6-cycles.

Note:Cycle decomposition of an element in Sn is a product of commuting q−cycles ⇒ its order is q

Q9 Show that if n ≥ 4 then the number of permutations in Sn which are the product of two
disjoint 2-cycles is n(n− 1)(n− 2)(n− 3)/8.

Solution. Such permutations are of form: (2)(2) (1)(1) . . . (1)︸ ︷︷ ︸
(n− 4) 1-cycles

, by following Q2, we can say:

# permutations in Sn product of two disjoint 2-cycles =

(
n

n− 4

)
·
(

4

2

)
(2− 1)!

2
=
n(n− 1)(n− 2)(n− 3)

8

Q10 Let b ∈ S7 and suppose b4 = (2143567). Find b.

Solution. Since o(b4) = 7 it follows that e = (b4)7 = b28, so o(b)|28, hence o(b) = 1, 2, 4, 7, 14 or 28.

Suppose that o(b) = 28, we know we can decompose b into disjoint cycles, and if o(b) = 28, then the
least common multiple of these cycles must be 28, but the maximum number of symbols that may
appear in any permutation in S7 is 7 so it must be the case that b is a 7-cycle, which cannot be the
case since then b would have order 7, or b is a product of 2 and/or 4 cycles, which cannot be the case
either, since then the least common multiple of the lengths of cycles would not be 28. So o(b) 6= 28.

Suppose that o(b) = 14, we know we can decompose b into disjoint cycles, and if o(b) = 14 = 2 × 7,
then the least common multiple of these cycles must be 14, but the maximum number of symbols that
may appear in any permutation in S7 is 7 so it must be the case that b is a 7-cycle, which cannot be
the case since then b would have order 7, then as in previous case, o(b) 6= 14.

Since b4 6= e, clearly o(b) 6= 1, 2, or 4.

The remaining possibility is that o(b) = 7, which therefore must be true, and it must be the case that
b is 7-cycle, for this is the only choice of lengths of cycles in S7 such that the least common multiple
of the lengths of cycles will be 7.

Let, b = (a1a2a3a4a5a6a7), and as per the question:

(a1a2a3a4a5a6a7)(a1a2a3a4a5a6a7)(a1a2a3a4a5a6a7)(a1a2a3a4a5a6a7) = (2143567)

⇒ (a1a5a2a6a3a7a4) = (2143567)

⇒ a1 = 2, a2 = 4, a3 = 5, a4 = 7, a5 = 1, a6 = 3, a7 = 6

⇒ b = (2457136)

Q11 Let b = (123)(145). Write b99 in disjoint cycle form.

Solution. Firstly write b in disjoint cycle form to calculate o(b).

b = (123)(145) = (14523)

⇒ o(b) = 5

Now, 99 ≡ 4 (mod 5), so

b99 = b5×19+4 = b4 = (14523)(14523)(14523)(14523) = (13254)

Q12 Find three elements σ in S9 with the property that σ3 = (157)(283)(469).
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Solution. Here, o(σ3) = 3, thus ε = (σ3)3 = σ9, hence o(σ) = 1,3, or 9. Since σ3 6= ε, we get, o(σ) 6=
1 or 3.

Thus, o(σ) = 9 and since S9 has only 9 letters, we get:

σ = (a1a2a3a4a5a6a7a8a9)

And according to question:

(a1a2a3a4a5a6a7a8a9)(a1a2a3a4a5a6a7a8a9)(a1a2a3a4a5a6a7a8a9) = (157)(283)(469)

⇒ (a1a4a7)(a2a5a8)(a3a6a9) = (157)(283)(469)

Since disjoint cycles commute we need to consider all 3! = 6 cases, :

(a1a4a7) = (157), (a2a5a8) = (283), (a3a6a9) = (469)⇒ σ = (124586739)

(a1a4a7) = (157), (a3a6a9) = (283), (a2a5a8) = (469)⇒ σ = (142568793)

(a2a5a8) = (157), (a1a4a7) = (283), (a3a6a9) = (469)⇒ σ = (214856379)

(a3a6a9) = (157), (a1a4a7) = (283), (a2a5a8) = (469)⇒ σ = (241865397)

(a3a6a9) = (157), (a2a5a8) = (283), (a1a4a7) = (469)⇒ σ = (421685937)

(a2a5a8) = (157), (a3a6a9) = (283), (a1a4a7) = (469)⇒ σ = (412658973)

Thus all these 6 elements of S9 satisfy given property.

Q13 Show that if H is a subgroup of Sn, then either every member of H is an even permutation
or exactly half of the members are even.

Solution. We are given that H ≤ Sn, thus:

(a) σ1, σ2 ∈ H ⇒ σ1σ2 ∈ H
(b) σ ∈ H ⇒ σ−1 ∈ H

If σ1, σ2 are even permutations then, σ1σ2 will also be even permutation, and since inverse of permu-
tation is letters written in reverse order, we conclude that it is possible for this subgroup to have only
even permutations as its members. (In other words, H is a subgroup of An.)

Else, if σ1, σ2 are odd permutations then, σ1σ2 will be even permutation, and since inverse of per-
mutation is letters written in reverse order, we conclude that H will have some even and some odd
permutations as members. Same argument is applicable when only one of σ1, σ2 is odd permutation.
Now what remains to prove is that, if there are elements of odd permutations, then:

# elements of H with even permutations = # elements of H with odd permutations

Let σ be an element with odd permutation in H.

For each odd permutation α, the permutation σα is even and σα 6= σβ when α 6= β. Thus:

# elements of H with even permutations ≥ # elements of H with odd permutations (1.1)

On the other hand, for each even permutation α, the permutation σα is odd and σα 6= σβ when α 6= β.
Thus:

# elements of H with even permutations ≤ # elements of H with odd permutations (1.2)

Now combining the equations (1.1) and (1.2), we complete proof of given statement.

Q14 Suppose that H is a subgroup of Sn of odd order. Prove that H is a subgroup of An.

Solution. This result follows quickly from previous problem. If H is a subgroup of Sn, and if H
contains an odd permutation, then exactly half the elements of H are odd permutations (form Q13).
If H has odd order, it’s impossible for exactly half of its elements to be odd permutations; therefore
H contains no odd permutations at all, i.e., H is a subgroup of An.
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Q15 Prove that the smallest subgroup of Sn containing (12) and (12 . . . n) is Sn. In other words,
these generate Sn.

Solution. Let H be the smallest subgroup of Sn containing {(12), (12 . . . n)}, now as per properties of
subgroup, stated in Q13, we can see that:

(12)(12 . . . n) = (1)(23 . . . n) ∈ H and (12 . . . n)(12) = (13 . . . n)(2) ∈ H

Now we have generated new elements of our group, we can apply above process again:

(12)(12 . . . n)2 = can’t write explicit cycle since it depends upon parity of n

Recall that, raising a cycle to the k-th power simply has the effect of sending each listed number to
the one k spaces to the right; thus:

(12 . . . n)0 = {1 7→ 1, 2 7→ 2, . . .}
(12 . . . n)1 = {1 7→ 2, 2 7→ 3, . . .}
(12 . . . n)2 = {1 7→ 3, 2 7→ 4, . . .}

...
...

(12 . . . n)n−2 = {1 7→ (n− 1), 2 7→ n, . . .}
(12 . . . n)n−1 = {1 7→ n, 2 7→ 1, . . .}

(12 . . . n)n = {1 7→ 1, 2 7→ 2, . . .}

We can rather try to compute:

(12 . . . n)k(12)(12 . . . n)n−k for k = 0, 1, 2, . . . n

Thus:

(12 . . . n)0(12)(12 . . . n)n−0 = (12)

(12 . . . n)1(12)(12 . . . n)n−1 = (23)

(12 . . . n)2(12)(12 . . . n)n−2 = (34)

...
...

(12 . . . n)2(12)(12 . . . n)n−2 = ((n− 1)n)

(12 . . . n)n−1(12)(12 . . . n)1 = (n1)

(12 . . . n)n(12)(12 . . . n)0 = (12)

Thus, we observe that in general the permutations (12 . . . n)k(12)(12 . . . n)n−k with k varying will give
the transpositions (12), (23), (34), . . . , ((n− 1)n) , (n1). Thus, all of these transpositions are generated
by (12) and (12 . . . n).

But we know that every permutation in Sn is a product of two cycles, thus what remains to prove is:
all transpositions are generated by those listed above.

Observe that:
(13) = (12)(23)(12) and (24) = (23)(34)(23)

Now let’s generalize this, consider a transposition, (ab), with a is to the left of b.

(ab) =
(
a(a+ 1)

)(
(a+ 1)(a+ 2)

)
· · ·
(

(b− 1)b
)(

(b− 2)(b− 1)
)
· · ·
(

(a+ 1)(a+ 2)
)(
a(a+ 1)

)
This involves transpositions of consecutive numbers, building up from a to b over the first part and
then back down from b to a over the second. Thus (12) and (123 . . . n) generated all transpositions,
since they generated all transpositions involving consecutive letters.

Since Sn is generated by all transpositions, we thus conclude that it is possible to express any permu-
tation as a product involving only (12) and (123 . . . n), so that these two permutations generate all of
Sn. Hence H is actually, whole of Sn.
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Q16 Prove that for n ≥ 3 the subgroup generated by the 3-cycles is An.

Solution. Consider a 3-cycle: σ′ = (a1a2a3) = (a1a3)(a1a2), thus σ′ ∈ An. Now let the group generated
by this 3-cycle be H, then clearly, H ≤ An. To prove that in fact this subgroup generated is An, we
need to follow the argument used to prove that unit element, ε, is an even permutation.

Let, σ ∈ An, then, σ = α1α2 . . . α2k, where αi is a 2-cycle. Further we know that α2k−1α2k can be
expressed in one of the following forms:

(ab)(ab) = ε

(ab)(bc) = (ac)(ab) = (abc)

(ac)(cb) = (bc)(ab) = (acb)

(ab)(cd) = (cd)(ab) = (abc)(bcd)

If the first case occurs, we may delete α2k−1α2k, from original product to obtain: σ = α1α2 . . . α2k−2.

In the other three cases, we replace the 2-cycles on left by corresponding 3-cycle on right.

Now we can repeat the procedure just describe with α2k−1α2k, and we obtain a product of 3-cycles.
Thus every σ is a product of 3-cycles. Hence our subgroup H is essentially the group An. Thus proving
given statement.

Q17 Prove that if a normal subgroup of An contains even a single 3-cycle it must be all of An.

Solution. Consider, N �An, thus for every element x ∈ An and n ∈ N , xnx−1 ∈ N .

Suppose that σ = (abc) = (ac)(ab) ∈ N , be the only 3-cycle in N . Then S = {a, b, c} is a unique
non-trivial orbit of σ (as defined on pp. 77, [1]). From Q2, we can say that there are (3 − 1)! = 2,
3-cycles which have S as their non-trivial orbit, namely (abc) and (abc)−1 = (cba). Following previous
problem, we need to only show that any 3-element subset S′ of {1, 2, . . . , n} is the non-trivial orbit of
a 3-cycle in N i.e. S 6= S′ or equivalently |S ∩ S′| < 3.

Now we need to show that there exists x ∈ An such that σ′ = xσx−1 ∈ N , where σ′ has orbit S′. So
we have three cases to consider:

Case 1: |S ∩ S′| = 0
Let, S′ = {d, e, f} and suppose σ′ = (def), then we need to find x, such that:

(def) = x(abc)x−1 ⇒ (df)(de) = x(ac)(ab)x−1

Then after some trial and error: x = (ae)(ad)(ab)(cf) = (abde)(cf), does the trick.

Case 2: |S ∩ S′| = 1
Let, S′ = {a, d, e} and suppose σ′ = (ade), then we need to find x, such that:

(ade) = x(abc)x−1 ⇒ (ae)(ad) = x(ac)(ab)x−1

Thus, clearly, x = (bd)(ce) does the trick. (basic idea was to generate a map of form a 7→ c 7→ e)

Case 3: |S ∩ S′| = 2
Let, S′ = {a, b, d} and suppose σ′ = (adb), then we need to find x, such that:

(adb) = x(abc)x−1 ⇒ (ab)(ad) = x(ac)(ab)x−1

Thus, clearly, x = (ab)(cd) does the trick. (basic idea was to preserve the cycle a 7→ b 7→ a)

Q18 Prove that A5 has no non-trivial proper normal subgroups. In other words show that A5

is a simple group.

Solution. Suppose that N �A5 and N 6= {e}. We will show that N = A5, which will prove that A5 is
simple, since N is arbitrary.

Using he fact that N 6= {e} and since N is a subset of A5 , we conclude that N contains a non-trivial
even permutation σ. From Q2, we can say that σ has disjoint cycle decomposition of one of following
3 types:
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Case 1: σ = (abcde)
Consider: α = (ab)(cd) ∈ A5, then we have σ′ ∈ N , such that:

σ′ = ασα−1 = (ab)(cd)(abcde)(ab)(cd) = (adceb)

But since N is a subgroup of A5, it must also contain σσ′

σσ′ = (abcde)(adceb) = (aec)

From Q17, we can say that, since N contains a 3-cycle, and N �A5, N = A5.

Case 2: σ = (ab)(cd)
Consider: β = (abe), then we have σ′ ∈ N , such that:

σ′ = βσβ−1 = (abe)(ab)(cd)(eba) = (be)(cd)

Now again since σσ′ ∈ N , thus:

σσ′ = (ab)(cd)(be)(cd) = (abe)

Again from Q17, we can say that, since N contains a 3-cycle, and N �A5, N = A5.

Case 3: σ = (abc)
Follows directly from Q17.

Q19 Show that Z(Sn) is trivial for n ≥ 3.

Solution. Note that, Z(G) = {x ∈ G : gx = xg for all x ∈ G} and Z(Sn) is trivial implies that
Z(Sn) = {ε}, where ε is the identity element.

To prove that Z(Sn) is trivial is equivalent to prove that for all σ ∈ Sn, such that σ 6= ε, there exists
α ∈ Sn such that σα 6= ασ. (contrapositive of given statement)

Let, σ ∈ Sn, be a non identity element. Also, let, σ(a) = b where a 6= b, then we can choose α = (bc)
[i.e. α(b) = c] where σ(b) 6= c (this is clearly possible since n ≥ 3). Thus,

σα(a) = σ(a) = b and ασ(a) = α(b) = c

Since, σ(b) 6= c, we have shown that σα and ασ act differently2 on a, and so are different elements of
Sn.

Thus, no non-identity element of Sn commutes with all elements of Sn, hence Z(Sn) = {ε}.

Q20 Show that two permutations in Sn are conjugate if and only if they have the same cycle
structure or decomposition. Given the permutation α = (12)(34), α′ = (56)(13), find a
permutation β such that βαβ−1 = α′.

Solution. We need to prove two parts :

Part 1: Two permutations in Sn are conjugate ⇒ they have the same cycle structure or decomposition.
Let α, β be any two permutation in Sn and βαβ−1, is conjugate of α, call it α′.
If, α = (a1, a2, . . . , ak1)(b1, b2, . . . , bk2) · · · (c1, c2, . . . , ck3), I claim that:

α′ = (β(a1), β(a2), . . . , β(ak1))(β(b1), β(b2), . . . , β(bk2)) · · · (β(c1), β(c2), . . . , β(ck3)) (1.3)

Since both sides of above equation are permutations, we just need to check that both sides have
same effect on any integer j ∈ {1, 2, . . . n}. Since β is surjective3, j = β(i) for some i. By
symmetry, we can assume that j = β(a1). Also, α(a1) = a2, thus for LHS:

βαβ−1j = βαβ−1β(a1) = β(a2)

Since RHS also takes β(a1) to β(a2), thus the LHS and RHS have the same effect on j and so
they must be equal. Proving my claim.
Thus, α and α′ = βαβ−1 have same cycle structure.

2For γ, δ ∈ Sn, γ = δ if and only if δ(x) = γ(x) for all x (letters).
3permutations are bijective maps
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Part 2: Two permutations in Sn have same cycle structure ⇒ they are conjugate
Now suppose that α and α′ have the same cycle structure. We want to find a permutation β that
sends α to α′ . By assumption the cycles in α and α′ have the same lengths. Then we can pick
a correspondence between the cycles of α and the cycles of α′ .

Pick an integer j. Then j belongs to a cycle of α. Look at the corresponding cycle in α′ and look
at the corresponding entry, call it j′ . Then β should send j to j′ . From (1.3), we can check that
βαβ−1 = α′.

Also, we are asked to find β for α = (12)(34) and α′ = (13)(56). Since there are 6 elements involved,
we can assume that we are working in S6.

Now write the two permutations in full cycle notation, writing cycles from longest to shortest (cycles
of the same length can be ordered arbitrarily, the starting number of cycle can be chosen arbitrarily
from within the cycle).

Let, α = (12)(34)(5)(6) and α′ = (13)(56)(2)(4),

β =

[
1 2 3 4 5 6
1 3 5 6 2 4

]
In other words, β(1) = 1, β(2) = 3, etc. We can convert β to cycle notation, β = (235)(46).

Another β is found by, let, α = (12)(34)(5)(6) and α′ = (56)(13)(4)(2),

β =

[
1 2 3 4 5 6
5 6 1 3 4 2

]
Hence, β = (1543)(26).

Since we can reorder the cycles of the same length, and since we can “cycle” a cycle as much as we
want, we actually get many different β.

12



Chapter 2

Introduction to Cryptanalysis

Here I will discuss the basic information needed to start cryptanalysis of Enigma Cipher.

2.1 Hiding Messages

Any message may be hidden in two basic ways. The methods of steganography conceal the very existence of
the message, for example invisible inks and microdots. The methods of cryptography, on the other hand, do
not conceal the presence of a secret message but render it unintelligible as ciphertext, to outsiders by various
transformations of the plaintext. Breaking ciphers require ingenuity, creativity and a little math. The skill
involved in breaking ciphers is called cryptanalysis.

2.2 Cipher not Code

A code is a mapping from some meaningful unit (word, sentence, phrase) into something else (usually a
shorter group of symbols). A code requires a codebook, it is simply a list of these mappings. For example
we could make up a code where the word Apple is written as 67, historical example of this is “Zimmermann
Telegram Code” for more details refer [14].
Ciphers do not involve meaning. Instead they are mechanical operations (known as algorithms) which are
performed on the individual or small chunks of letters.
A code is stored as a mapping in a codebook, while ciphers transform individual symbols according to an
algorithm.

It was definitively stated in 1883 by the Dutch linguist Auguste Kerckhoffs von Nieuwenhof in his book
La Cryptographie militaire:

Kerckhoffs’ Principle: The security of a cryptosystem must not depend on keeping secret the
crypto-algorithm. The security depends only on keeping secret the key.

The process of converting a message from plane language into secret language by systematic treatment
of its letters is called enciphering. The inverse process of restoring the original message from the cipher text
by reversing the steps of encipherment with full knowledge of the details is called deciphering.

2.3 Substitution Cipher

Substitution is a function which uses a set of rules to transform elements of a sequence into a new sequence
using a set of rules which “translate” from the original sequence to its transformation.

In the encryption methods which uses substitution, every character of the plaintext is replaced by
another character in the ciphertext. For the decryption, the reverse substitution has to be performed. The
easiest substitution is given when each character is replaced by exactly one other character. This encryption
can be broken with statistical methods because in every language characters appear with a particular
probability.
Examples: Caesar Cipher (a Monoalphabetic Cipher), Vigenère cipher (a Polyalphabetic Cipher), Dancing
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Men Cipher [The Adventure of Dancing Men by Arthur Conan Doyle] (a symbol substitution cipher), Pig-
Pen cipher (a symbol substitution cipher), Hill Cipher (a polygraphic cipher1)

2.3.1 Caesar Cipher

Consider the 26 alphabets of English Language and associate each letter with the number representing its
position in normal sequence:

Plain Alphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Corresponding Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

One of the earliest cryptographic systems known was used by Roman dictator Gaius Julius Caesar and
is referred to by his namethe Caesar Cipher. It consisted of a replacement of each letter of the message by
the letter three places beyond it in the normal alphabet.

Now, to encipher the message, BEWARE OF ZOMBIES, after deleting spaces, we proceed as follows (each
step is illustrated below):

1. Replace each letter by the number to which it corresponds

2. Add 3 to each of these numbers and reduce each mod26.

3. Replace the resulting numbers by their letter equivalents in the letter-number correspondences

Plaintext B E W A R E O F Z O M B I E S

Corresponding Numbers 1 4 22 0 17 4 14 5 25 14 12 1 8 4 18

Adding 3 (mod 26) 4 7 25 3 20 7 17 8 2 17 15 4 11 7 21

Ciphertext E H Z D U H R I C R P E L H V

There is nothing special about the number 3 as the amount of shift between the cipher sequence and
the plain sequence. We can choose any number at all, so long as an understanding has been made with
our correspondent about how the enciphering was to be accomplished. Given the number of shifts (can call
it key), the substitution alphabet can be constructed and used for encipherment or for decipherment. A
substitution alphabet in which both the plain and the cipher sequences are the normal alphabet (with the
cipher sequence shifted a specific number of places) is called a direct standard alphabet.

In the equivalent numerical process, expressible as C = P ⊕ K, the number of places of shift (K) is
the number to be added modulo 26 to the numerical equivalent of each plain language character (P) to
determine its cipher replacement (C). To decipher the ciphertext simply perform the inverse process, i.e.
subtract K from C modulo 26.

Cryptanalysis (Primary Frequency Analysis). .
Suppose we are not the intended receiver, but we somehow intercept the message:

EHZDUHRICRPELHV

Now we don’t know the key needed to decipher this message. If we would know that this is Caesar Cipher
then, we can easily check the 25 possible keys and decipher the message.
We now examine the possibility of a different method of procedure which does not assume, but instead
will prove, that the system of encipherment used a shift of the normal alphabet. This method is based
on a fundamental property of language, the relative frequencies of occurrence of the different letters of the
alphabet.

Alphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Percentage 8.2 1.5 2.8 4.3 12.7 2.2 2.0 6.1 7.0 0.2 0.8 4.0 2.4 6.7 7.5 1.9 0.1 6.0 6.3 9.1 2.8 1.0 2.4 0.2 2.0 0.1

Table 2.1: A standard table of relative frequencies. The table was compiled by H. Beker and F. Piper, and
originally published in Cipher Systems: The Protection of Communication

In general, short texts are likely to deviate significantly from the standard frequencies, and if there are
fewer than a hundred letters, then decipherment will be very difficult. On the other hand, longer texts are

1A system of cryptography in which a group of n plain text letters is replaced as a unit by a group of n cipher letters is
called a polygraphic system.
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more likely to follow the standard frequencies, although this is not always the case.

For given cipher text we calculate relative frequency: Let us assume that the commonest alphabets in

Alphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Occurrences 0 0 1 1 2 0 0 3 1 0 0 1 0 0 0 1 0 2 0 0 1 1 0 0 0 1

Percentage 0 0 6.7 6.7 13.3 0 0 20 6.7 0 0 6.7 0 0 0 6.7 0 13.4 0 0 6.7 6.7 0 0 0 6.7

Table 2.2: Table of relative frequencies for EHZDUHRICRPELHV

the ciphertext probably represent the commonest letters in the English alphabet, but not necessarily in the
right order. Nevertheless we can assume H = E, since both are alphabets with highest frequency in both
Table 2.1 and Table 2.2. Thus, we get K = 3 and we broke the cipher!

2.3.2 Vigenère Cipher

The first step in encipherment is to draw up a so-called Vigenère2 square, as shown in Table 2.3, a plain
alphabet followed by twenty-six cipher alphabets, each shifted by one letter with respect to the previous
alphabet. To unscramble the message, the intended receiver needs to know which row of the Vigenère square

Plain Alphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

C K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

I L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

P M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

H N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

E O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

R P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Table 2.3: Vigenère square,

has been used to encipher each letter, so there must be an agreed system of switching between rows. This
is achieved by using a keyword.

Now, let’s again encipher the previous message, BEWARE OF ZOMBIES, after deleting spaces, with keyword
ELEPHANT we proceed as follows (each step is illustrated below):

1. Select a keyword.

2Pronounced “vidjenair”
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2. The keyword is spelled out above the message and plaintext is written in columns of width equal to
length of keyword. In the language of modular arithmetic every letter whose position number in the
original message is congruent to a (mod b), where b is length of keyword, would be enciphered by the
alphabet designated by the a-th letter of the keyword.

3. To encipher each letter begin by identifying the key letter above it, which in turn defines a particular
row in the Vigenère square.

Keyword E L E P H A N T

Plaintext B E W A R E O F

Ciphertext F P A P Y E B Y

Plaintext Z O M B I E S

Ciphertext D Z Q Q P E F

Cryptanalysis (Secondary Frequency Analysis). .
The fact that a letter that appears several times in the ciphertext can represent a different plaintext letter
on each occasion generates tremendous ambiguity for the cryptanalyst. Equally confusing is the fact that
a letter that appears several times in the plaintext can be represented by different letters in the ciphertext.
Thus Vigenère cipher is invulnerable to primary frequency analysis (try yourself).

Consider the ciphertext:

FPAPYEBYDZQQPEF

Suppose we know that it was enciphered using the Vigenère cipher, but we know nothing about the original
message, and the keyword is a mystery. The first stage in cryptanalysis is to look for sequences of letters
that appear more than once in the ciphertext.

There are two ways that such repetitions could arise. The most likely is that the same sequence of letters
in the plaintext has been enciphered using the same part of the key. Alternatively, there is a slight possibility
that two different sequences of letters in the plaintext have been enciphered using different parts of the key,
coincidentally leading to the identical sequence in the ciphertext. If we restrict ourselves to long sequences,
then we largely discount the second possibility, and in this case we shall consider repeated sequences only if
they consist of four letters or more.

After listing which sequences repeat themselves and the spacing between these repetitions we identify
the factors of the spacing and these factors are possible lengths of the keyword.

Unfortunately, our intercepted message has no repeated sequence3, but it at least has repeated alphabets,
Table 2.4 is a log of such repetitions, along with the spacing between the repetition and possible length of
key.

Repeated Sequence Repeat Spacing Possible length of key (or factors)

F 14 2,7,14

2 2
P 9 3,9

11 11

E 8 2,4,8

Y 3 3

Table 2.4: Repetitions and spacings in FPAPYEBYDZQQPEF

Now, 2,3,4,7,8,9,11 and 14 are possible lengths of keyword (ignore consecutive repetition). From infinitely
possible lengths of keywords we have identified the finitely many cases which we need to check.

Now what remains is to identify the exact keyword. If k is length of the keyword then let, L1L2 · · ·Lk
represents the keyword. What we need to do is to write cipher text in column of length k and write keyword
above the column. Then apply primary frequency analysis to alphabets below each alphabet of keyword
and check for existence of keyword.

As an illustration observe the case when k = 2
3This is worst case scenario, when repeated sequences are of length 1
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Keyword L1 L2

F P

A P

Y E

Ciphertext B Y

D Z

Q Q

P E

F

Now we have two independent cipher texts, FAYBDQPF and PPEYZQE to be checked by primary frequency
analysis. We won’t be able to find K for both of these!

So on check for k = 3, 4, 7, for k = 8 we get:

Keyword L1 L2 L3 L4 L5 L6 L7 L8

Ciphertext F P A P Y E B Y

D Z Q Q P E F

Then the frequency distribution for each alphabet of keyword is:

Alphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

L1 0 0 0 50 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 50
L3 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0

Percentage L4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 50 0 0 0 0 0 0 0 0 0
L5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 50 0
L6 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L7 0 50 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

Now compare above results with Table 2.1.
We observe that as per standard frequency distribution, C & U; G & Y; J & X; M & W; Q & Z are the

ones with equal frequency. Now we need to check, if there is a pair with difference between corresponding
numbers same as any of cipher alphabets. Voil! for L3, the gap between A and Q is 16	0 = 16 or 0	16 = 10
and the gap between M and W is 22	 12 = 10 or 12	 22 = 16. Thus for gap of 10, we get: A= W and Q =
M, leading to L3 = E.

Also, since E is the alphabet with highest frequency in Table 2.1, for L6 (not L8 since it has only one
alphabet), we put E = E, thus L6 = A.

Further, {F, G, M, P, W, Y}; {H, R, S}; {I, N}; {J, Q, X, Z} ;{K, V}; are set of alphabets with
approximately equal frequency. But no pair from these sets will work. (check yourself).

Now consider the pairs with difference in percentage approximately 1. Even then we fail!
Thus by above arguments we can deduce only that: if the keyword is of 8 letters then it will be of

form L1L2EL4L5AL7L8. Then we will have to use brute-force method, by checking all 266 = 308915776
possibilities by computer.

For breaking a Vigenère cipher by frequency analysis the length of the cipher text alone is not the crucial
part. What really matters is the proportion ciphertext length

key length , as this indicates how many characters of the
clear text are enciphered by the same character of the key.

As seen in above example, frequency analysis based on monograms (single letters) will definitely fail.
We can try to break the cipher by using frequency analysis of bigrams, trigrams or quadgrams instead, see
[5] for illustration.

Both, Frequency Analysis4 and Index of Coincidence5, only work if the cipher text is much longer than
the key.

4for more details refer pp. 64-73 of [5]
5this is a statistical way of dealing with the problem, refer pp. 61-74 of [4]
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Another approach is using word dictionaries6, this tool can break extremely short Vigenère ciphers. It
requires that the clear text as well as the keyword consists of words only which are found in the dictionary.

If the message is shorter than the key, then the Vigenère cipher is essentially the one-time pad, which
is unbreakable for a random key (proven by Claude Shannon). If the key is not random, then you may get
some information on the plaintext.

2.4 Transposition Cipher

Permutation of a set X is a bijective function σ : X → X that for each element x ∈ X assigns a unique
value σ(x) ∈ X.
A transposition is a permutation of two elements and any permutation is also a product of transpositions.

In transposition cipher the order of the characters is rearranged but the actual characters are not
changed. Transposition can be broken by statistical methods because the pairs of successive characters in
a normal language have typical likelihood. Other pairs do occur much less often. If the messages is short,
some characters may not appear thus it is possible to say which words do not exist in the text.
Examples: Rail Fence Cipher or Scytale Cipher (a matrix transposition cipher)

Note the small difference between transposition ciphers and substitution cipher, substitution ciphers
replace each letter with a different letter or symbol to produce the ciphertext, in a transposition cipher, the
letters are just moved around.

2.4.1 Rail Fence Cipher

The text is written with alternate letters on each of n rows, and then read row by row.
As an example, consider the message BEWARE OF ZOMBIES, and n = 3, then we get:

Row 1 B R Z I

Row 2 E A E F O B E

Row 3 W O M S

Thus the cipher text will be: BRZIEAEFOBEWOMS.
Decrypting the message is easy if the number of rows and row boundaries are known. Just write down

the rows in order:
BRZI

EAEFOBE

WOMS

and reconstruct the “rails” of the fence:

B R Z I

E A E F O B E

W O M S

If no row boundaries are present, it is not difficult to reconstruct the fence, as long as you know how many
rows there are and in which order they are written7.

We can assign a number corresponding to position of each alphabet of plaintext to get:

Plaintext B E W A R E’ O F Z O’ M B I E’’ S

Position Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Now since n = 3 we get position numbers for ciphertext as:

Ciphertext B R Z I E A E’ F O’ B E’’ W O M S

Position Number 1 5 9 13 2 4 6 8 10 12 14 3 7 11 15

Writing this under the plain text message we have:

6see here: http://www.sichere.it/vigenere tool.php?language=EN
7For added complexity, a key can be used to indicate the order of reading the rows. For example, the key 213, gives

EAEFOBEBRZIWOMS as ciphertext.
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plaintext position numbers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ciphertext position numbers 1 5 9 13 2 4 6 8 10 12 14 3 7 11 15

Now apply the cycle procedure. We end up with following disjoint cycles:

(2, 5)(3, 9, 10, 12)(4, 13, 7, 6)(11, 14)

In most cases of transposition ciphers, the resulting permutation consists of several cycles with no particular
relation between their lengths. The total number of letters represented in these cycles is less than the length
of the message by the number of letters whose positions are unchanged, i.e. are in cycles consisting of just
one number.

The advantages of using the permutation concept for transposition are mainly theoretical. The permu-
tation which expresses the result of a transposition is a function not only of the method but also of the
length of the message. Consequently the permutation procedure is not really practical for enciphering and
deciphering messages of differing lengths.

In general, it can be shown that n applications of the transposition yield a decimation at interval n
of the original permutation. This result now permits us to answer the question: How many times does a
transposition have to be applied before the cipher becomes identical with the original plain text? Consider a
single cycle of the original permutation, say of length x. Such a cycle is reduced to cycles of one letter only
if decimated at any interval which is a multiple of x. In other words, all the letters of that cycle return to
their original positions if the transposition is repeated a multiple of x times. Since such a statement is true
for every cycle:

Theorem 2.4.1 (Order of a Permutation). The number of times a transposition must be applied to return
to the original plain language message is the least common multiple of the lengths of all the cycles included
in it.

Proof. Refer pp. 102 of [3].

Thus our example above, the ciphertext will become a plaintext if transposition is applied 4 times, since
lcm(4, 2) = 4.

Thus the disjoint permutation cycle can also be used as key, instead of number of rows and order of rows.

Cryptanalysis (Brute Force). .
If you know (or suspect) that a message was encrypted with a Rail Fence Cipher, it can easily be deciphered
by brute force because the letters break into rows according to certain fixed patterns based on the number
of rows in the key.

For example, in BRZIEAEFOBEWOMS, we try out row lengths:

1. If n = 2, then, then letters 1, 3, 5, . . . of the plaintext are in row one and letters 2, 4, 6, . . . are in row
two. Thus possible keys are 12 or 21, with 8 alphabets in row 1 and 7 alphabets in row 2.

key: 12
B R Z I E A E F

O B E W O M S
OR

key: 21
F O B E W O M S

B R Z I E A E

None of these make any sense!

2. If n = 3, then letters 1, 5, 9, . . . are in row one, letters 2, 4, 6, 8, . . . are in row two and letters 3, 7, 11, . . .
are in row three, with 4 alphabets in row 1 and 7 alphabets in row 2 and 4 alphabets in row 3.

Now we will have to decide possible spacings and ordering out of 3! = 6 possibilities:

Case 1: BRZIEAE FOBE WOMS

Since, two of rows are of same length, we have two ways of forming rail fence:
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i. row 1 : FOBE and row 3: WOMS
F O B E

B R Z I E A E

W O M S
Meaningless!

ii. row 1 : WOMS and row 3: FOBE
W O M S

B R Z I E A E

F O B E
Meaningless!

Case 2: BRZI EAEF OBEWOMS

Since, two of rows are of same length, we have two ways of forming rail fence:

i. row 1 : BRZI and row 3: EAEF
B R Z I

O B E W O M S

E A E F
Meaningless!

ii. row 1 : EAEF and row 3: BRZI
E A E F

O B E W O M S

B R Z I
Meaningless!

Case 3: BRZI EAEFOBE WOMS

Since, two of rows are of same length, we have two ways of forming rail fence:

i. row 1 : WOMS and row 3: BRZI
W O M S

E A E F O B E

B R Z I
Meaningless!

ii. row 1 : BRZI and row 3: WOMS
B R Z I

E A E F O B E

W O M S
Meaningful!

And we are done!
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Chapter 3

Permutation Groups and Enigma Ciphers

Here I will primarily discuss the work of Marian Rejewski (see Part-I of [9]).1 Observe that in Enigma, each
rotor and reflector performed a substitution cipher and plugboard and ring settings2 performed transposition
cipher.

3.1 Enigma Algorithm

In 1931 and 1932 the French cryptographer Gustave Bertrand obtained the algorithm used by the German
Enigma from a spy, Hans-Thilo Schmidt, known by the code name Asche. In Nazi Germany military till
1938, the following regulations were obeyed (see [19]):

1. For a message to be correctly encrypted and decrypted, both the sender and receiver needed to set
up their Enigma in exactly the same way. These settings were distributed in key sheets. The key
sheets were distributed on beforehand, and contained the basic settings for a whole month, per day.
In general, the key sheets were in the custody of an officer, responsible for setting up the rotor order,
plugboard and ring settings. After setup, he could lock the machine front panel with a key.

2. The operator could only select the rotor orientation (or rotor start position). Then he chose the
individual key for a message, consisting of three letters which were ciphered twice, thus obtaining six
letters placed at the beginning of the message.

In each place of the message they form a one-to-one transformation of the set of letters onto itself and
hence they are permutations. These permutations, denoted subsequently by letters A,B,C,D,E and F ,
are unknown to the cryptologist.

As shown in Figure 4, S represents the plugboard, N represents the right-hand, or fast, rotor; M
represents the middle rotor; L represents the left-hand, or slow, rotor; and R represents the reflector.

We can think of S,N,M,L and R as permutations. In addition to these permutations, we have a
permutation P , corresponding to the motion of the fast rotor which moves forward on letter each time a
key is pressed.

P = (abcdefghijklmnopqrstuvwxyz)

Thus, the unknown permutations from A to F can be represented in the form (composing permutations
from left to right):

A = SPNMLRL−1M−1N−1P−1S−1 = (SPNML)R(SPNML)−1

B = SP 2NMLRL−1M−1N−1P−2S−1 = (SP 2NML)R(SP 2NML)−1

C = SP 3NMLRL−1M−1N−1P−3S−1 = (SP 3NML)R(SP 3NML)−1

D = SP 4NMLRL−1M−1N−1P−4S−1 = (SP 4NML)R(SP 4NML)−1

E = SP 5NMLRL−1M−1N−1P−5S−1 = (SP 5NML)R(SP 5NML)−1

F = SP 6NMLRL−1M−1N−1P−6S−1 = (SP 6NML)R(SP 6NML)−1

1There are excellent articles on this topic by Jiří T ůma (see [7]) and Chris Christensen (see [8])
2Only the position of the notches on the right hand and middle rotors contributed to cryptographic security of Enigma.
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Whether the middle and left-hand rotors move or not, an Enigma permutation is always a conjugate of the
reflector. So, an Enigma permutation is always a product of 13 disjoint transpositions.

The reflector was “half a rotor.” There were only 26 contacts on the right-hand side of the reflector.
Internally, the 26 contacts were joined in pairs by wires to create a permutation consisting of 13 disjoint
transpositions. The fact that every Enigma permutation is a product of 13 disjoint transpositions is what
permits Enigma to encipher and decipher in the same mode. Every Enigma permutation is self-reciprocal.

3.2 Number of Possible Keys

We observed in last chapter, that cryptanalysis becomes more and more difficult with increase in number of
possible keys. Using the information provided in introduction of this report, for 1930s German Army model
of Enigma:

#possible keys = (#possible plugboard settings)× (#possible rotor orders)

×(#possible rotor orientations)× (#possible ring settings)

⇒ #possible keys =

(
26!

(26− (2× 6))!
× 1

6!× 26

)
× (3!)× (26× 26× 26)× (1× 26× 26)

⇒ #possible keys = (100391791500)× (6)× (17576)× (676)

⇒ #possible keys = 7, 156, 755, 732, 750, 624, 000

3.3 Weakness of Enigma

Thus the individual keys for the given day had the following properties:

• All individual message keys were ciphered in the same basic position unknown to the cryptologist;

• Each individual key was ciphered twice, so that the first letter meant the same as the fourth, the
second the same as the fifth and so on.

If a sufficient number of messages (approximately 80) of the same day are available, then, in general, all
alphabet letters are present in their six initial places.

Being self-reciprocal was also a weakness. The reflector permutation guarantees that every Enigma
permutation is self-reciprocal, but it also guarantees that no letter can be enciphered as itself.

But the transitions from the first letter of each message to the fourth one, from the second to the fifth
and from the third to the sixth form also permutations which, contrary to the individual ones, are entirely
known to the cryptologist since they are the products AD, BE, CF of the above-mentioned permutations
and are also given by the formulas:

AD = SPNMLRL−1M−1N−1P−1S−1SP 4NMLRL−1M−1N−1P−4S−1

BE = SP 2NMLRL−1M−1N−1P−2S−1SP 5NMLRL−1M−1N−1P−5S−1

CF = SP 3NMLRL−1M−1N−1P−3S−1SP 6NMLRL−1M−1N−1P−6S−1

The first part of cryptanalysis is, in principle, to solve this set of equations in which the left-hand sides are
known and the permutation P and its powers on the right-hand sides as well, whereas the permutations
S,L,M,N,R are unknown. Since in this form the set is certainly unsolvable, we have to simplify it.

Since the cycle structure is not affected by the plugboard, the first step is to let

Pα = PαNMLRL−1M−1N−1P−α

where each of Pα, α = {1, 2, 3, 4, 5, 6}, is determined by only rotor orientation and rotor order. Thus:

AD = SP1S
−1SP4S

−1 = SP1P4S
−1

BE = SP2S
−1SP5S

−1 = SP2P5S
−1

CF = SP3S
−1SP6S

−1 = SP3P6S
−1

Consider following theorem from elementary permutation theory:
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Theorem 3.3.1. Two permutations in Sn are conjugate if and only if they have the same cycle structure
or decomposition.

Proof. See Q20 in Chapter 1 of this report.

From this theorem, the disjoint cycle structure of AD is the same as it would be if there were no plug-
board. Similarly, the disjoint cycle structure of BE and CF is not affected by the plugboard. Thus we can
find rotor orientation and rotor order without considering 100, 391, 791, 500 possible plugboard connections.
Momentarily we can also ignore the 676 ring settings, thus we are only left with 105, 456 rotor orders and
rotor orientations.

We can assume that the middle and left-hand rotor did not turn during the six permutationA,B, . . . , E, F .
This was a reasonable assumption because the middle rotor turned only once in 26 turns of the right-hand
rotor. If a turnover did occur, the above method will not work.

3.4 Rejewski’s Insight

Now we aim to get disjoint unknown permutations from A to F from known products AD, BE, CF . As
seen in previous section, the unknown permutations consists only of transpositions, and the expressions AD,
BE, CF are their products. Rejewski proved following theorems to handle above problem.

Theorem 3.4.1 (Rejewski’s Theorem). A permutation of even degree includes cycles of same length in
even numbers if and only if this permutation is product of two permutations consisting only of disjoint
transpositions.

Proof. We need to prove two parts:

Part 1: Two permutations of same degree consist only disjoint transpositions ⇒ their product consist of an
even number of disjoint cycles of the same length.

Let X and Y stand for the permutations to be multiplied and let their degree be 2n, since there are
only disjoint transpositions.

If in the permutation X a transposition identical with a transposition in Y , for example, (ab), inci-
dentally occurs, then in the product XY a pair of single-letter cycles (a)(b) will be observed i.e. we
will get an identity element. With respect to transpositions, identical in the two permutations, the
theorem is thus true.

After rejecting identical transpositions we can assume, without loss of generality, that the follow
transpositions occur:

X = (a1a2)(a3a4)(a5a6) · · · (a2k−3a2k−2)(a2k−1a2k)

Y = (a2a3)(a4a5)(a6a7) · · · (a2k−2a2k−1)(a2ka1)

Indeed, the initial letter a1 must finally appear in the permutation Y . When we perform the operation
of multiplying XY , we will always get two cycles of the same length k ≤ n:

⇒ XY = (a1a3a5 . . . a2k−3a2k−1)(a2ka2k−2 . . . a6a4a2)

If in this way not all letters of the permutation are exhausted, we continue our procedure to exhaust
all the letters.

Simultaneously we note that the letters of a given transposition are always observed in two different
cycles of the same length in the permutation XY and if two letters appearing in two different cycles
of the same length in the permutation XY belong to the same transposition, then their neighbouring
letters (the left neighbour and the right one) belong to the same transposition. Thus completing proof
of this part.

Part 2: A permutation of even degree includes cycles of same length in even numbers ⇒ this permutation is
product of two permutations consisting only of disjoint transpositions3

3Recall that each of AD,BE and CF satisfy the conditions of this part of theorem.
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Given: XY = (a1a3a5 . . . a2k−3a2k−1)(a2ka2k−2 . . . a6a4a2)
Then we can write:(one obvious factor, though many other possible)

X = (a1a2)(a3a4)(a5a6) · · · (a2k−3a2k−2)(a2k−1a2k)

Y = (a2a3)(a4a5)(a6a7) · · · (a2k−2a2k−1)(a2ka1)

Thus proving other part of theorem.

Combining both parts we complete proof of the theorem.

The above theorem on the product of transpositions does not lead us to the point we are aiming to get
at, it brings us, however, to the proximity of it. For an illustration of application of above theorem refer pp.
263-268 of [8].
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Chapter 4

Finding the Key

According to the work of Marian Rejewski, as seen in last chapter, we now are left with a lesser number
of probable keys, but still we need to find the key, i.e. the exact initial settings1 of the machine for a given
day in a reasonable period of time. Thus following techniques (based on brute-force and frequency analysis)
were created by Polish mathematicians to search for initial keys from the probable ones.

4.1 Cyclometer

Marian Rejewski invented a machine, which consisted of, in effect, two Enigma machines side by side with
their right hand wheels offset by three places. He had worked out his theory of Characteristics and by using
the Cyclometer had constructed a lookup table with 105,456 entries, a characteristic for each three wheel
start combination for all possible wheel orders for three wheels. (26 × 26 × 26 × 3!). The characteristics
were built up by following loops of letters from firstly the first and fourth positions in the double enciphered
message key. Then between the second and fifth positions and finally between the third and sixth positions.
For more details and examples refer [16].

Figure 4.1: Cyclometer [Drawn using Inkscape] (http://commons.wikimedia.org/wiki/File:Cyclometer4.png)

4.2 Zygalski Sheets

Henryk Zygalski realised that the analysis of the vast amount of information required could be achieved
by a grill method using perforated sheets. The sheet procedure involves working through each of the six
possible wheel orderings for three wheels and for each wheel order working through the 26 possible left hand
wheel ring letters, 156 tries in all, but on average only half before the answer is found. There were sheets
prepared for each left wheel letter for each wheel order. There were sheets prepared for each left wheel
letter for each wheel order. Each sheet contained four squares of 26 by 26 i.e. two alphabets along the top
and down the side.The 26× 26 matrix represented the 676 possible starting positions of the middle and left
rotors and was duplicated horizontally and vertically: a-z, a-y. One can try overlaying Zygalski sheets at
http://www.codesandciphers.org.uk/virtualbp/poles/zygalski.htm.

1I will primarily discuss the work published by Marian Rejewski (see Part-II of [9])
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Figure 4.2: A Zygalski Sheet (see [9])

4.3 Bomba Kryptologiczna (Cryptologic Bomb)

When Marian Rejewski, Jerzy Różycki2 and Henryk Zygalski had been studying the double enciphered
message settings in order to construct Rejewski’s characteristics, cases had been noticed where the same
enciphered letter occurred in either the 1st and 4th, or 2nd and 5th, or 3rd and 6th positions in the enciphered
message settings.

Figure 4.3: For clarity shown in the upper part of the Bomba Kryptologiczna only one set of rotors encryption
(see [10])

2Jerzy Różycki invented the “clock” method, which sometimes made it possible to determine which of the machine’s rotors
was at the far right, that is, in the position where the rotor always revolved at every depression of a key.
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These positions, which were called females, corresponded to positions at which the same letter had been
keyed by the German operator into the Enigma machine because of the repeat of the three letter message
key. Rejewski also had the idea for a mechanical method for finding the Enigma ring settings from the
females in the double enciphered message settings. The idea was to rotate six sets of enigma wheels in
synchronism with each set being one fast wheel position in advance of the preceding one so that the six
positions corresponding to the double encipherment of the message setting could be examined simultaneously
looking for repeating enciphered letters. Six of these machines were required, each set with one of the six
possible wheel order for the possible three wheels in the Enigma machine. The Bombas were not very reliable
and Zygalski’s sheets produced better results. For more details refer [17].
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Conclusion

In Chapter-1 we discussed questions from basic concepts regarding permutation groups needed to understand
Rejewski’s Theorem.

Further in Chapter-2 we saw that, the weakness of Caesar cipher is that it uses one fixed shift for whole
message. Then Vigenère cipher was created by eliminating that weakness of Caesar cipher, using a fixed
keyword so that consecutive alphabets have different shifts. Though for short messages Vigenère cipher
turns out to be very secure, but for long messages there were repetitions of shifts after fixed intervals, which
turned out to be the weakness this cipher.

Then Scherbius invented Enigma machine by eliminating weakness of Vigenère cipher, using rotors to
keep changing keywords (but of fixed length) for a given message. But unlike Vigenère cipher, since the key
length was fixed, the brute-force method was successful.

Then Nazi Germany Army, added plugboards to Enigma, which, unlike the statistical complications
caused by substitution cipher systems, caused complications of form of transposition cipher. These compli-
cations were handled in an elegant way by Rejewski as seen in Chapter-3 by using theory of permutation
groups to reduce number of probable keys and making addition of plugboard as well as rotations nearly
ineffective. Also Polish mathematicians developed novel methods of finding initial key as seen in Chapter-4.

Reflector was responsible for ease of usage of Enigma by allowing same “key” (initial settings), to be used
to encipher and decipher the message. But at same time, reflector ensured that no alphabet is taken to

itself (so as to ensure disjoint cycles), which turned out to be biggest weakness of Enigma.
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