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Abstract

Algebraic number theory is essentially the study of number fields which are finite
extensions of the field Q of rational numbers. A large portion of classical algebraic
number theory involves investigating following questions about subrings of arbitrary
number fields: What are the units in this ring? What are the irreducible elements? Do
the elements factor uniquely? If not, what can we say about the factorization of ideals
into prime ideals? How many ideal classes are there? And this report addresses some of
these questions.
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Introduction

Let a be an algebraic number over a field F, then the polynomials over F' having « as a root
form a prime ideal' p in ring? F[z] . Since F[x] is a principal ideal domain (PID), p is in fact
a maximal ideal®. The ring F[a] is isomorphic to the factor ring F[z]/p. Since p is maximal
ideal we conclude that F[a] is a field whenever « is algebraic over F. Similarly, we can
prove that for any finite number of algebraic numbers a4, ..., an, K = Flag, ...,y is a
field extension of F'. Such finite degree field extension of the field of rational numbers Q
is referred to as number field. Hence, in general, finite extension of given number field K
will lead to another number field L. Since we will be studying field extensions, we should
have understanding of the Galois group of L/K, whenever L is a normal extension of K*.
For a nice overview of the algebra needed to study number fields refer pp. 36-39 of [3].

In my first summer project report[21] we saw the usage of property of unique factor-
ization for ring of integers of the quadratic number field to solve Diophantine equations.
But I presented the proofs for initial cases of Fermat’s Last Theorem (for n = 3,4) using
elementary method of infinite descent (by Euler and Fermat) instead of algebraic ones.
Now in chapter 1 we will discuss the method which was one of the main sources of the
modern discipline of commutative algebra[19], to solve a case of Fermat’s Last Theorem.

A number field K can be viewed as a subfield of C which is a finite dimensional vector
space over Q. Moreover, we can write every number field X' = Q[a] for some chosen «
with the degree of the algebraic number « being equal to the dimension of K over Q.
Hence a number field always has power basis over Q. On the contrary, the ring of integers
of every number field need not be of form Z[«], which we shall discuss in chapter 2.

We know that the rings of algebraic integers do not always have unique factorization
property. But since every ring of algebraic integers happens to be a Dedekind domain,
every proper ideal admits a unique factorization as a product of prime ideals. We shall
exploit this fact in chapter 3.

In chapter 4 we shall try to address the question: “How much ideals in a Dedekind
domain behave like elements?”. One part of the answer is given by the ideal class group
(section 1.2) since its size is a measure for the deviation of a ring of integers from being
a unique factorization domain (UFD)°. The other part of the answer is provided by the
multiplicative group of units of the Dedekind domain, since passage from principal ideals
to their generators requires the use of units. Also in my recent winter project report[22]
we saw that Roth’s theorem can be applied to a large variety of Diophantine equations
to show that they have only finitely many solutions. In certain special cases, however,
it is possible to make more precise statements about the number and nature of possible
solution[5]. Hence, towards the end of this chapter we shall concern ourselves with the
equation =3 + dy® = 1 and calculate its exact number of solutions using group of units.

1By a prime ideal we will always mean a non-zero prime ideal

2By a ring we will always mean a commutative ring with unity (multiplicative identity).

°In a PID, every non-zero prime ideal is maximal.

“Number fields are of characteristic zero. In characteristic zero and finite fields every extension is separa-
ble. Hence, if a number field is normal then it is Galois.

>A Dedekind domain is a UFD iff it is a PID. A ring of integers is a PID iff it has a trivial ideal class group.



Chapter 1

First Case of Fermat’s Last Theorem

Fermat’s Last Theorem (FLT) states that no n'" power can be the sum of two other n'"

powers, where n > 2. It is easy to show that if the theorem is true when n equals some
integer r, then it is true when n equals any multiple of r. Since every integer greater than
2 is divisible by 4 or an odd prime, it is sufficient to prove the theorem for n = 4 and every
odd prime.

In 1770, Leonhard Euler formulated an ingenious algebraic proof (apart from his ele-
mentary proof in 1760) for n = 3, but it had a serious flaw. Euler assumed that Z[y/—3]
was characterized by unique factorization, which is wrong. The flaw was easily corrected
since the quadratic ring of integers Z[_l%/:g] is characterized by unique factorization.
For application of this algebraic method to solve some more specific exponent cases refer
[16].

In 1823, Marie-Sophie Germain proved FLT (using elementary methods) for all prime
exponents 2 < p < 100 by giving a prime ¢ for which following theorem applies.

Theorem (Germain, 1823'). Let p, q be distinct odd primes, and assume the following two
conditions:

1. p#aP (mod q) forany a € Z
2. 2P +yP 4+ 2P =0 (mod q) has no set of integral solution, each not divisible by q
Then FLT holds for p such that p { xyz.

For example, if p = 7, ¢ = 29, then both the conditions of the Germain’s theorem are
satisfied[12] and hence FLT is proved for p = 7. For proof of this theorem refer to Paulo
Ribenboim’s book?.

1.1 The Two Cases

As a corollary of the above theorem by Germain, we get:

Corollary 1 (Germain, 1823). For a prime p if 2p + 1 is also prime and p t xyz, then there
is no integer solution of xP + yP = zP.

!Since women were not allowed in French Academy of Sciences, Adrien-Marie Legendre communicated
the results and credited Germain for them.

213 Lectures on Fermat’s Last Theorem. New York: Springer-Verlag, 1979. pp. 55. http://dx.doi.org/
10.1007/978-1-4684-9342-9 (or) Fermat’s Last Theorem for Amateurs. New York: Springer-Verlag, 1999.
pp- 109. http://dx.doi.org/10.1007/b97437


http://dx.doi.org/10.1007/978-1-4684-9342-9
http://dx.doi.org/10.1007/978-1-4684-9342-9
http://dx.doi.org/10.1007/b97437

So, if she could prove that there are infinitely many such primes p, now called Sophie
Germain primes, then she would have been able to prove FLT for infinite number of prime
exponents. But, we still don’t know that whether there are finite or infinite number of
Sophie Germain primes. Based on this result, the statement of FLT is generally subdivided
into two cases, with Germain’s condition being the first case:

1. For the prime exponent p when there do not exist integers z,y, z such that p fxyz
and zP + yP = 2P.

2. For the prime exponent p when there do not exist integers x, y, z all different from
zero, such that p|xyz, ged(z,y, 2) = 1 and 2P + yP = 2P.

1.2 Kummer’s Theory

A naive approach to solve (at least) first case of FLT would be to generalize Euler’s ap-
proach. Firstly we factorize right hand side of general equation

Pyl = (@) Cy) (@ Py =2

2mi

where ¢ = e » is the p*" root of unity. Then we assume that the unique factorization
property holds for

p—2
Z[C]:{Zaici:aiez for 0§z’§p—2}

1=0

But even when this kind of argument is successfully executed (see pp. 4, [11), we will be
able to prove FLT only for finitely many prime exponents, since now it is known that only
for p=3,5,7,11,13,17 and 19, Z[¢] has unique factorization property®.

Ernst Kummer had been working on theory of cyclotomic integers, the ring of integers
Z[¢,) where ¢, is complex n'" root of unity, for long time. It was known that the unique
factorization property doesn’t always exist in Z[(,], for example if n = 23. To restore this
unique factorization property, Kummer introduced ideal prime factors into the arithmetic of
cyclotomic integers, somewhat analogous to introduction of i = v/—1 into the arithmetic of
ordinary integers by Carl Friedrich Gauss. Influenced by Carl Jacobi’s work on cyclotomic
functions[7], Kummer’s theory of ideal factorization came into existence and is considered
to be one of the major achievements of 19*" century mathematics[12][15]. But today,
Kummer’s ideal prime numbers and certain classes of numbers that are related to them
(to which he devoted twenty of his best years) are called ideals. His aim was to find the
solution of the problem of the higher reciprocity laws posed by Gauss. Since FLT is closely
related to the problem of higher reciprocity laws*, Kummer was able to prove the FLT for
every odd prime integer n between 1 to 100 except 37, 59 and 67 using his concept of
ideal factorization.

Definition 1 (Ideal Class). Given two ideals a and b of a ring of integers, a ~ b if and
only if aa = 8b for some «, § in the ring of integers in the number field. This equivalence
relation ~ on the set of ideals leads to equivalence classes, called ideal classes.

Definition 2 (Class Number). The class number / of a ring of integers in a number field
is the order of the group formed by ideal classes.

*Masley, J. H. and Montgomery, H. L. “Cyclotomic fields with unique factorization.” Journal fiir die reine
und angewandte Mathematik (Crelle’s Journal) 1976, no. 286-287 (Jan 1976): 248-256. http://dx.doi.
org/10.1515/cr11.1976.286-287.248

4Although Gauss himself always denied that he was interested in FLT per se, but expressed the hope that
from his results concerning higher reciprocity laws he would be able to deduce FLT easily.


http://dx.doi.org/10.1515/crll.1976.286-287.248
http://dx.doi.org/10.1515/crll.1976.286-287.248

Definition 3 (Regular Primes). A prime integer p is called regular if and only if it doesn’t
divide the class number h of the ring Z[(,,].

1.3

The Proof

Since Z[(] is the ring of integers in the number field Q[¢] (proved in Theorem 7) and the
ring of integers is a Dedekind domain (introduced in chapter 3), we conclude that Z[(]
has unique factorization property in ideals.

Theorem 1 (Kummer, 1847). Let p be a regular prime, then there do not exist rational
integers x,y, z such that a? + y? = 2P if p fryz.

Proof. Suppose zP + yP = zP, with x,y and z relatively prime integers (without loss of
generality) and with p not dividing zyz. We have ideal factorization

(@+y)z+y)-(w+y?h) = (2)

2mi

in which all factors are interpreted as principal idealsand ( = e » .

Claim 1

Claim 2

Claim 3

Claim 4

p can’t be equal to 3

If our assumption is true for p = 3, then there exist z, y, z such that 23 + 9% = 23 and
3 fxyz. Then these x,y, » must also satisfy 2% + y® — 23 = 0 (mod 9) (see pp. 3 of
[21]). We chose to reduce modulo 9 because if a® = b (mod 9) then b = 0, £1. Using
this fact in all 27 possible cases, we conclude that 22 + y3 — 23 = (mod 9) iff 3|zyz
since at least one of x,y, z must be a multiple of 9. Contradicting our assumption
that 3 fzyz and hence proving our claim.

z #y (mod p)
If vt =y = —z (mod p), then —22P = 2P (mod p) which is a contradiction since
p > 3 by Claim 1. Hence, we get = # y (mod p).
Ideals (z + ('y) are relatively prime
On the contrary, assume that they have a common prime ideal p dividing two of
them. By eliminating z, we see that p divides (1 — () or (y), whereas eliminating v,
we see that p divides (1 — () or (x). Let A = 1 — ¢, then p = (\). Thus

t+y=x+Cy=0 (mod)\)

=2=x+y=0 (modN\)

leading to the contradiction that p divides z since by setting ¢t = 1in 1+t+. ..+t~ =
H?;i(t — (7)) we get

p=01-Q0-¢) 1= H=2x1-¢) - (1-¢
in which all factors are interpreted as algebraic numbers.

z + 'y = ¢;af, for some unit ¢; and some element «; of Z[(]

By unique factorization of ideals and Claim 3, each factor is a p'" power of some
ideal a. Hence '
(x+(y) =d”

Now since ideal classes form a finite abelian group (discussed in chapter 4), if p is
regular (i.e. doesn’t divide order of the group formed by ideal classes) then clearly

6



this group contains no element of order p. It follows that if an ideal a? is principal
then so is a (pp. 5, [11). Therefore, a = («;) for some «; € Z[(] and

p
%

z 4 Cly = ga
where ¢; is some unit element of Z[(].

Claim 5 Any unit’ ¢ of Z[¢] is a power of ( times a real unit.

Let f € Q[x] be a monic polynomial. Suppose all the roots of f have absolute value
1. Then the sum of the roots taking them r at a time is bounded by (") by the
triangle inequality. Thus the coefficient of z" is bounded by this ("), hence for any
fixed n there are only finitely many algebraic integers « such that all conjugates have
absolute value 1 because there are only finitely many polynomials in Z[x] with given
bounded coefficients.

Then consider the powers of an algebraic integer « in ring of integers O. They are
all algebraic integers of degree at most n, and furthermore all their conjugates also
have absolute value 1 since the Galois actions map powers of o to powers of its
conjugates. Thus the powers of « are restricted to a finite set. This means « is a root
of unity® in O.

Let £ be the complex conjugate of ¢. Now consider the conjugates of ¢/, that is ¢’ /¢’
for all conjugates £’ of . Since complex conjugation is one of the Galois actions they
are all algebraic integers with absolute value 1, thus ¢/z is a root of unity’ in Z[(].
Hence ¢/z = +¢* where 0 < k < p — 1.

Suppose £/ = —(*. Then e? = —&P. But ¢ = ” (mod p). Thus 2¢” = 0 (mod p),
so p divides € which contradicts the fact that ¢ is a unit. Hence only plus sign holds
and ¢ = g¢*.

Now since p > 3, we can choose r € Z such that £ = 2r (mod p). Then we have

(""e = ("€ = (~"e so ("¢ is invariant under complex conjugation and is thus real.
Hence, ¢ = 2(* = ((""¢)¢" = u¢"” where v is a real unit of Z[(].

From Claim 4 and Claim 5 we can conclude that
7+ Gy = ulo?
where a = ag + a1{ + ... + a,—2¢?~? and a; € Z. Then we observe that
of =ag+af +...+a) ,=a (mod p)
for some a € Z. Hence
x4 (y =ual” (mod p)
Since ¢ = (!, on complex conjugation we get
r+ ¢y =uaC™ (mod p)

Therefore,

(@4 Cy) = (@+¢"y)  (mod p)
=2+ (y—CTz—C*"'y=0 (mod p)

>The matter of units in the rings Z[¢] remains one of the higher mysteries. Kummer’s achievement was to
be able to tame this matter somewhat. We will discuss more about it in section 2.1 and section 4.2. Also see
this discussion on Math.SatckExchange: http://math.stackexchange.com/q/3185/214604

®Not every algebraic integer with absolute value 1 is a root of unity, there are algebraic integers on the
unit circle which aren’t roots of unity[18][20]. Also see this Math.StackExchange discussion: http://math.
stackexchange.com/q/4323/214604

"The roots of unity are the numbers of form ¢>7*/™

where ¢ and m are coprime rational integers.


http://math.stackexchange.com/q/3185/214604
http://math.stackexchange.com/q/4323/214604
http://math.stackexchange.com/q/4323/214604

If the powers of ( occurring here are distinct, then since they form part of a basis of
Z[¢], we get p divides = and y, which is a contradiction to our initial assumption p fzyz.
Otherwise, we have to consider following three cases:

a) 1= (%, then p divides y, contradicting p Jzyz
b) 1 = (%!, then p divides « — v, contradicting Claim 2
¢) ¢ = ¢* 1, then p divides z, contradicting p fryz

Hence our initial assumption was wrong and there don’t exist rational integers x,y and z
satisfying the first case of FLT for regular prime exponents. O

In 1985, Etienne Fouvry®, Leonard M. Adleman and David R. Heath-Brown® used a
refinement of Germain’s criterion together with difficult analytic estimates to prove that
there are infinitely many primes p such that first case of FLT is true. Though Germain’s
proof of first case is based on elementary methods, Kummer’s proof laid foundations of
“Algebraic Number Theory” and hence is worth discussing.

8 “Théoréme de Brun-Titchmarsh; application au théoréme de Fermat.” Inventiones Mathematicae 79, no.
2 (1985), 383-407. http://dx.doi.org/10.1007/bf01388980

°Adleman, L. M. and Heath-Brown, D. R. “The first case of Fermat’s last theorem.” Inventiones Mathemati-
cae 79, no. 2 (1985), 409-416. http://doi.org/10.1007/b£f01388981


http://dx.doi.org/10.1007/bf01388980
http://doi.org/10.1007/bf01388981

Chapter 2

Ring of Integers of Number Field

Let A denote the set of algebraic integers in C. Given a number field K of degree n over
Q, then AN K = Ok denotes the ring of integers of K. The additive group part of O is a
free abelian group of rank n (proof involves application of Cramer’s rule, see pp. 29, [1]).

Lemma 1 (Gauss Lemma). If a polynomial is irreducible in Z[z| then it is irreducible in

Q[z].

Proof. We will prove the lemma in two steps:

Step 1

Step 2

If m and n be the greatest common divisor of the coefficients of polynomials f and
g in Z[z] then mn is the greatest common divisor of the coefficients of fg.

Without loss of generality, consider two polynomials f, g € Z[x| such that the great-
est common divisor of coefficients of each of these polynomials in 1 (if not then can
divide by the greatest common divisor and obtain such polynomials). Then we have
to prove that 1 is in fact greatest common divisor of the coefficients of fg. On the
contrary assume that d > 1 is the greatest common divisor of the coefficients of fg,
and some rational prime p divides d, hence

fg=0 (mod p)
But Z, is an integral domain, so
f=0 (modp) or g=0 (mod p)

This implies that p divides the coefficients of at least one of the polynomials f or g,
thus contradicting the fact that the greatest common divisor of coefficients of each
of these polynomials is 1. Hence d = 1.

If h € Z[z] and h is irreducible over Z then h is irreducible over Q[z].

On the contrary, assume that h = fg over Q[z]. We can find rational integers a and b
such that af, bg € Z[z| and can also ensure that the greatest common divisor of each
of the polynomials af and bg is 1. Now by Step 1 we conclude that 1 is the greatest
common divisor of the coefficients of abfg = abh. But since h € Z[x] we know that
ab must divide the greatest common divisor of the coefficients of abh. Hence ab|1
implying a = b = 1 and contradicting the fact that h is irreducible in Zx].

O

Definition 4 (Embedding in C). An injective homomorphism from K to C. There are n
embeddings of K in C.



Definition 5 (Trace of algebraic number). Let L be another number field lying over K and
o1,...,0m denote the m = [L : K| embeddings of L in C which fix K point-wise. Then
for a € L, trace of L relative to K is a function defined as follows

TE(Q) = o1(a) + o2(a) + ...+ om(a)

Definition 6 (Norm of algebraic number). Let L be another number field lying over K
and o1,...,0., denote the m = [L : K] embeddings of L in C which fix K point-wise.
Then for « € L, norm of L relative to K is a function defined as follows

N (a) = o1(@)oz(a) - om(a)

Theorem 2. The T () and NE(«) are respectively the trace and determinant of the matrix
A, where the matrix A denotes the linear mapping of multiplication by o € L with respect to
any basis {a1,...,an} for Lover K, m = [L: K|.

Proof. Note that j** column of A consists of the coordinates of aa; with respect to the
«;. We know that the trace and determinant are independent of the particular basis
chosen; thus it is sufficient to calculate them for any convenient basis. Let’s fix a ba-
sis {1, B2,..., 5} for L over K[a] with r = [L: K[a]] = % where K[a] has power
basis {1,q,...,a? '} with d = [K[a]: K]. Multiply both these basis to get a basis
{aiﬁj :0<i<d—-1 and 1< j<r}ofLover K. Then we make following claim

Claim: Let ¢(«) and n(«) be the sum and product of the d conjugates of « over K,
then

Tf%(a)z%t(a) and  NL(a) = (n(a))™/4

Note that t(e) = T ] and n(a) = le(([a}. Each embedding of K[a] in C extends to

exactly 7 = r embeddings on L in C. That establishes the formulas and completes the
proof of the theorem. O

Remark 1. From the claim proved in above theorem, we can also conclude that T%(«)
and NZ(a) are in K and if o € Oy, then they are in Ok.

Example 1. Let K = Q[v/k], where k is a cube-free positive integer. For some a € 7, compute
the value of N (Vk + a).

Solution. I will discuss 3 ways to compute the norm of given algebraic number

Method 1 Following are the three complex embeddings in this number field:

a+bVk+ceVE2 — a+bVk+cVk2
a—i—b%—i—ce/k»z — a—i—bw\S/E—l—chW
a—i—l)\g/%—i—c\?’//?2 — a+bw2\3/%+cw\3/?

where a, b, ¢ are rational numbers and w = ¢ . Hence
Ng(%—i- a) = (a+ Vk)(a +wVk)(a+w?Vk)
Since w + w? + 1 = 0, thus

Ng(%%—a):a‘g—kk

10



Method 2 We shall compute the minimal polynomial for o = /% +a and then norm will be the
negative of the constant term (the product of conjugates of «).

¢ = Vk+a
=(z—-a)? = k
= 23— 3a2® + 3a®z — (a® +k) = 0

Hence, N§ (Vk + a) = a® + k

Method 3 As per the theorem above, the norm of o € Q[v/k] is the determinant of the linear
map z — ax. Taking 1, V/k, V/k2 to be the basis and o = V/k + a, we compute the
linear maps:

(Vk+a)l = a+ Vk+0VEk2
(Vk+a)Vk = 0+aVk+ Vk2
(Vk+a)Vk2 = k+0Vk+aVk?

Hence we get

NE(Vk + a) = det(A) = a® 4k

S
— e o
2 o=
I

Remark 2. Trace and norm functions have property of transitivity, i.e. if K, L, M are
number fields such that K C L C M, then for all « € M we have TE(TM (a)) = TH («)
and NE(NM(a)) = NM(a). For proof see pp. 24 of [1].

Definition 7 (Discriminant of n-tuple). Let 04,..., 0, denote the n = [K : Q] embeddings
of K in C. For any n-tuple of elements ay,as,...,a, € K, we define discriminant of
a1,Q9,...,0, to be

disc (a1, @, . . ., o) = det(o;(a;))?

where o;(a;) denote element in the i row and j** column.

Remark 3. Using simple matrix algebra we can prove that
disc (a1, a2, ..., ap) = det(Téf(aiaj))

where T (@ia;) denote element in the i** row and j** column. This enables us to con-
clude that disc (a1, ag, ..., ay) € Q. Also if all a; € Ok then disc (a1, ag, ..., ap) € Z.

Theorem 3. In O discriminant is an invariant.

Proof. We will prove two assertions to justify the invariance of the discriminant in this
case.

Claim 1 Let {f1,...,0,} and {71,...,7,} be two integral basis for O. Then

disc(B1, ..., Bn) = disc(V1, ..., Tn)

and we shall denote this constant by disc(O).
We can write one basis in terms of other as
b1 "
=M
Bn Tn

11



Claim 2

where M is a n x n matrix over Z. Applying each embedding o; to each of the n
equations formed above, we get

o1(B1) o2(B1) ... on(B1) oi(y) o2(m) ... on(n)
: : : =M : : . :

1(B) 02(B) .. oulf) 1) G201 . onlm)

Taking the determinant and squaring we get

disc(B1, . .., Bn) = det(M)? disc(y1, . . ., Yn)

Clearly det(M) € Z since M is a matrix over Z. This implies that disc(y1,...,7,) is a
divisor of disc(f1, - . ., B,), and both have the same sign. Similarly we can show that
disc(By, ..., By) is a divisor of disc(v1,...,v,). We conclude that both the discrimi-
nants are equal.

If aq,...,a, € Ok then they form an integral basis for Ok if and only if
disc(ayq, . .., an) = disc(Ok)
Form Claim 1 it’s clear that if {«, ..., «,} for an integral basis for Ok then

disc(ayq, . .., ap) = disc(Ok)
All we need to prove is its converse. As stated earlier, O is a free abelian group of
rank n. If H, G are two free abelian subgroups of rank n in K, with H C G, then
from first isomorphism theorem

G/H 2 T/T7 x L)kyT % -+ L) knT.

where ki,...,k, € Z>o , hence G/H is finite abelian group. Then G/H is a direct

sum of at most n cyclic groups. Thus if G has a generating set f, ..., 3, then there
exist appropriate integers ki, ..., k, such that k131,..., k,[, is a generating set for
H. Moreover, since

k151 kh 0 ... Of |/

ko B2 0 ke ... O [P

knBn, 0 0 ... kn| [Bn

and |G/H| =k - ka- - - k. As in previous case, we conclude that
disc(H) = |G/H|? disc(Q)

In this put H to the group generated by {a,...,a,} and G = Og. Now thus
disc(H) = disc(G) we get |G/H| = 1 implying that H = G.

O]

Remark 4. If ay,...,a, € O and disc(aq, ..., a,) is square free, then {aq,...,a,} for
an integral basis for Ok (see pp. 45, [1]).

Theorem 4 (Stickelberger’s Criterion). disc(Ox) = 0,1 (mod 4)
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Proof. K is a number field of order n over Q and o4, ..., 0, are the embeddings of K in
C. Given algebraic integers a1, ..., a, € K, we know that d = disc(ay,...,a,) € Z. Note
that

n
det(oi(aj)) = Z sgn(p) Hai (ap(i))
PESH i=1
where S,, is the group of permutations of {1,2,...,n} and sgn is +1 if p is an even per-
mutation and -1 otherwise. Hence the determinant is a sum of n! terms. Let P denote the
sum of terms corresponding to even permutations, and let ' denote the sum of the terms
(without negative signs) corresponding to odd permutations. Thus

d=(P—-N)?=(P+N)* - 4PN 2.1)

Extending K to a normal extension L of QQ, each embedding of K extends to [L : K]
embeddings of L, all of which are automorphism of L since L is normal. Note that P + N
and PN lie in L, so we can apply the embeddings to them. Moreover since all o; are
automorphisms now, we have two possibilities

oi(P)=P and o;(N)=N
O'Z('P) :N and O’z(./\/) =P

Hence we have o;(P+N) = P+N and o;,(PN) = PN for any o;. Since P+N and PN are
the fixed elements of L over Q, we conclude that P+A, PN € Q. But, P+N and PN are
algebraic integers since a4, . . . , o, are algebraic integers. We know that the only algebraic
integers in Q are the ordinary integers (see pp. 15, [1]1). Therefore, P + N, PN € Z and
using this fact in (2.1), we conclude that

d=(P+N)?=0,1 (mod 4)
In particular we have disc(Og) = 0,1 (mod 4). O

Theorem 5 (Relative discriminant). Let K C L C M be number fields, [L : K| = n,[M :
L] = m, and let {a1,...,an,} and {p1,...,Bm} be bases for L over K and M over L,
respectively. Then we have

disc (a1 B1, ..., nfm) = (disc% (a1, ... ,an))m NE (discﬁ/[ (Br,---+Bm))

where, for example, disck (a1, ..., a,) = det(o;(a;))? = det(Tk(a;a;)) where the embed-
dings o; of L in C fix K point-wise.

Proof. Let oy,...,0, be the embeddings of L in C fixing K point-wise, and 7,..., 7, be
the embeddings of M in C fixing L point-wise. Fix a normal extension N of Q such that
M C N, then we can extend all ¢;’s and 7;’s to automorphisms of N; fix one extension of
each and again denote these extensions by o; and 7;. We define two mn x mn matrices A
and B:

A 0 0
0 A 0
A= : :
0 O An
Ul(al)Im Ug(al)Im e an(al)Im
B_ o1(ae)ly oa(a)ly ... onp(a2)ly,
g1 (an)Im Ug(al)fm .. O’n(an)fm



where

oi(r1(B1)) oi(11(B2)) ... oi(T1(Bm)) 10 0
oi(r2(B1)) oi(r2(B2)) .. oi(m2(Bm)) 01 0
Ai = : : . : and Inm=1]. . . .
0i(tm(B1)) oi(11(B2)) ... 0i(Tm(Bm)) 00 ... 0
are m xm matrices. Therefore A has o;(7,(5%)) in row m(i—1)+h and column m(i—1)+k;
B has 0;(«;) in row m(i — 1) +t and column m(j — 1) +t foreach t = 1,...,m and zeros

everywhere else. Note that
disc (11, ..., anfm) = det(AB)?

And we have

det(A)? = [ [ det(4:)?* = [ [ oi(disc}’ (B1,.. ., Bm)) = Ni¢ (disc}’ (B, .., Bm))
i=1 =1
det(B)? = [(det(0s(a;))™]? = [(det(os(a;))*]™ = (disci(ar, . .., an))™
[

Corollary 2. Let K and L be number fields such that [K : Q] =n, [L: Q] =m, [KL: Q] =
mn and ged(disc(Ok), disc(Op)) = 1. Then we have

disc(Okr) = (disc (OK))[LIQ] (disc (OL))[K:Q}

Definition 8 (Discriminant of «). Let a be an algebraic integer of degree n over QQ such
that K = Q[a] then we define

disc () = disc (1, a, ..., a" 1)
Remark 5. Suppose K = Q[a], and let a,...,a, denote the conjugates of o over Q.
Then

disc(a) = H (ar — a)? = Q E{f (‘/1)) 1 ' n=0,1 (mod 4)

1<r<s<n —Ng (f'(a)) if n=2,3 (mod 4)
where f is the minimal polynomial for o over Q. The proof uses Vandermonde determi-
nant formula, see pp. 26, [1])

2.1 Cyclotomic Fields

As we have seen in previous chapter, the attempt to prove FLT required a good under-
standing of m'" cyclotomic field Q[(,,] where (,, = e with i = v—1and m € Zo.
Q[¢m] has degree p(m) = #{k : ged(k,m) = 1,1 < k < m}, over Q (pp. 18, [1])

Definition 9 (Cyclotomic Polynomial). It is the monic polynomial with integer coefficients,
which is the minimal polynomial of over the field of the rational numbers of any primitive
mt" root of unity.

D, (x) = H (x - egzk> = H (ac — C,Ifn)

1<k<m 1<k<m
ged(k,m)=1 ged(k,m)=1

14



(I)l(l‘)

I

8
I

—_

@2(1‘) =x+1

O3(r) =2+ +1 Qy(r) =22+ 1

Ps(x) =at + a3+ 22+ +1 Pg(x) =22 —x +1

Pr(x)=aS+ b+t ¥ 2l 2+ 1 Pg(x) =2t +1

Graphs generated using complex plot(f(z), (-5,5),(-5,5)) in SageMath version 7.2
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Graphs generated using complex plot(f(z), (-5,5),(-5,5)) in SageMath version 7.2
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These are complex plane plots' of the first eight cyclotomic polynomials followed by
first to eighth roots of unity.

These plots suggest that for odd m, ®,,(—z) = ®3,,,(z). This symmetry can be ex-
plained by the fact that for odd m, 2m'" roots of unity are in Q[¢,,]. For example? the
third cyclotomic field is equal to sixth cyclotomic field: (5 = —(¢ = —(¢2)?, which shows
that Q[¢s] = Q[¢3] = Q[¢3). In general, for odd m, (om = —C € Q2] = Q[Gn)- In
fact, we will now prove that for odd m the m!" cyclotomic field is the same as 2m!" and
for even m, all cyclotomic fields are distinct.

Theorem 6. The number of roots of unity in Q[(,,] is lem(2,m).

Proof. If Q[(,,] contains some " root of unity then Q[¢,] C Q[¢,,] and using the fact about
degree of a cyclotomic field stated earlier, p(r) < p(m).

Also, then (= Ciem(m,r) 18 in Q[(;]. Hence we have lem(m,r) < r. But least com-
mon multiple of two numbers can’t be less than any one of them, therefore lcm(m,r) = r.
Thus r is a multiple of m, let » = ms for some integer s.

Now by a standard identity for Euler’s totient function

ged(m, )
p(ged(m, s))
Moreover by definition of ¢ we have ¢(a) < a for any positive integer a, hence

p(r) = p(ms) = p(m)p(s)

o(r) > o(m)p(s)

Now for some maximal r, Q[(,,] = Q[¢,] and in that case we have p(m) = ¢(r). Using
above identity, we conclude

p(m) = p(m)p(s)
Therefore, p(s) < 1, but by definition of ¢ it can’t be less than one. Hence, ¢(s) = 1 and
it implies that s = 1 or s = 2. Thus » = m or r = 2m. This shows that the number of roots
of unity in Q|[(,,] can either be m or 2m. But as a special case of the standard identity for
Euler’s totient function used above, we have

20(m) if m is even
o(2m) = ¢(m) fm
p(m) if mis odd

Since ¢(r) should not be greater than ¢(m), we conclude that

] m if m is even
~\2m ifmisodd

Thus completing the proof of the theorem. O

Remark 6. The Galois group of Q[(,,,] over Q, Gal(Q[(,,]/Q) is isomorphic to the multi-
plicative group of integers mod m

Zy, ={k:1<k<m,gedk,m=1}

For each k € Z, the corresponding automorphism in the Galois group sends ¢, to ¢¥,.
See pp. 18, [1].

!These colour maps are obtained by a stereographic projection from the surface of the three-dimensional
colour space (in the hue-lightness-saturation system) onto the complex plane. The hue represents the ar-
gument (also called phase angle) of the complex number z. The absolute value (also called magnitude or
modulus) is given by the lightness of the colour. All colours of the colour map have the maximal saturation
(with respect to the given lightness). Positive real numbers always appear red. The primary colours appear at
phase angles %” (green) and %’T (blue). The subtractive colours yellow, cyan, and magenta have the phases
%, ™, and 57” The poles of a complex function are white, the zeros are black.

2Note that first two cyclotomic fields are both just Q since ¢; = 1 and ¢» = —1.
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Theorem 7. If K = Q[(y] then O = Z[(n)-

Proof. We will prove Ok = Z[(,,] by induction on m.

Step 1 If m is power of a prime number, then Ox = Z[(,].

Claim 1

Claim 2

Claim 3

For all m > 3, Z[1 — (] = Z[y] and disc(1 — () = disc(Gm).
Since (;, = 1 — (1 — (), we get Z[1 — (] = Z[(m]- By Remark 5 we get

disc((m) = ] (r—a)?= J[ ((1=a)—(1—ay)?=disc(l—(m)

1<r<s<n 1<r<s<n

where «; runs through the conjugates of (,,, and 1 — «; runs through the conju-
gates of 1 — (-

For m = p", p is a prime number,

r= ]I (1—412)

1<k<m
ged(k,m)=1

This is stronger version of the fact used in third claim of Theorem 1 and can be
proved by same approach. Consider
|

fl@)= ———

" 1= 1+a? 42 4 g
z _

Then all ¢* where 1 < k < m and ged(k, m) = 1, are roots of f since they are
roots of 2" — 1 but not of 2P ' — 1. Thus in fact

f@= T (1-¢)

1<k<m
ged(k,m)=1
where # values of k = ¢(m) = ¢(p") = (p — 1)p"~!. Finally put z = 1.
Ok = Z[1 = (m]
Using the fact that Ok is a free abelian group of rank n, every a € O can be
expressed in the form (pp. 29, [1])

kit k(1= Gn) o+ R (1= Gn)™ !
“= d

where n = ¢(p"), all k; € Z and d = disc(1 — () = disc((r) [by Claim 1]. Also
by using the fact that Q[(,,] has degree ¢(m) over Q and Remark 5 we conclude
that disc((,,) divides mem) (pp- 27, [1]1). Hence in this case d is a power of p.
On the contrary assume that Og # Z[1 — (], then there must be some « for
which not all k; are divisible by d. It follows that Ok contains an element of
form

kj(l - Cm)j_l + ijrl(l - Cm)] + kn(l - Cm)n_l
p

for some j < n and k; not divisible by p. Claim 2 shows that p/(1—(x)" € Z[(n)
since 1 — ¢” is easily seen to be divisible in Z[¢,,] by 1 — (. Then p/(1—¢,)7 €
Z[(m) and hence Bp/(1—(,)? € Ok. Subtracting the terms which are obviously
in O, we obtain k;/(1 — () € Ok. Therefore, N§ (1 — (n)|N§ (k;). But this
is impossible since N (k;) = k7 and N§ (1 — (,n) = p (Use Remark 5 in Claim
2). Hence proving our claim.

8=
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Finally, by Claim 1, O = Z[(,,] if m is power of a prime number.

Step 2 Let m = my X mq, for some relatively prime integers mj, mo > 1 such that K; =
Q[Cm,] and K2 = Q[(m,]- If Ok, = Z[(m,] and Ok, = Z[(m,] then O = Z[(].
We have following result:

Let K and L be two number fields, then KL is the smallest subfield of C con-
taining K and L. If [KL : Q] = mn and ged(disc(Ok),disc(Or)) = 1, then
Okr = OkOr. (pp. 34, [1])

To be able to apply this result, we must prove that the required conditions are satis-
fied.
Claim1l K = K1K2

Clearly, (" = (,n, and ()2 = (,, . Since m; and mg are coprime, it follows that
Cm = (o, G, for some 7, s € Z such that rmgy + smy = 1 and hence K = K1 K.

Claim 2 [K1 K> : Q] = ¢(m)e(n) and ged(disc(Ok;, ), disc(Ok,)) =1
Since m; and my are coprime, [K : Q] = ¢(m) = ¢(mq)p(ms) = [K1K, : Q).
As stated in third claim of first step of this proof, disc((,,,) divides mf(mi)
1 = 1,2 and also by Theorem 3, we conclude that

ged(disc(Ok, ), disc(Ok,)) = ged(disc((m, ), disc((m,)) = ged(my,me) =1

for

Claim 1 also implies that Z[(,,] = Z[(m,]|Z[(m,] and using the result stated in box
above we complete proof of this step.

Combining both the steps above, we complete the proof. O

Theorem 8. Let p be a prime number, then disc({,) = +pP~2, where + sign holds iff p = 1,2
(mod 4).
Proof. This is direct application of Remark 5. We wish to use following formula
, NI (1)) if p—1=0,1 (mod 4)
disc(Gp) =" T aig)] ,
—Ng (f' () if p—1=2,3 (mod4)

We know that the cyclotomic polynomial (i.e. minimal polynomial) is

P
f(x):1+x+x2+...+xp_1:x7
x

The easiest way to compute f'((,) is to write (x — 1) f(x) = 2P — 1 and differentiate

f@)+ (@ = 1)f'(x) = pa?~?

Therefore since ¢, = 1 and ¢(p) = p — 1, we have

Cp (Cp — 1) Ng[gp](cp)Nng] (Cp _ 1) 1xp

since Ng[cp}((p —-1)= Ng[g’](l — (p) because p — 1 is even and Ng[cﬂ(l — (p) = p follows
from the fact used in third claim of Theorem 1. O

Ng[gp} (f/(Cp)) — Nng]

Remark 7. We can use Corollary 2 to derive general formula for discriminant of ¢, for
any m, but the calculations are said to be messy, hence I will just state the result

p(m)

(1)
p(m)
lemp(Pfl)

me(m)

disc(¢m) =
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2.2

Real Cyclotomic Fields

Based upon cyclotomic fields, we define m!" real cyclotomic field as Q[¢,,] where &, =
Cm + Gt = 2cos(E) € R.

Theorem 9. If K = Q[¢,,] then Ok = Z[&,,,] for m > 3.

Proof. We will divide the proof in several parts

Claim 1

Claim 2

Claim 3

Claim 4

Claim 5

Q[¢m] is of degree 2 over the field K = Q[¢,,].
By definition of &,,, we have that (,, is a root of
flz) =2 —&nz+1

Hence (,, is root of a irreducible monic polynomial of degree 2 over K, proving our
claim.

Q[&,] is the fixed field of the automorphism o of Q|[(,,,] determined by o (() = ¢t
Note that (.} = (,,, therefore o is just complex conjugation. The result follows.
Since &, = G + G = 2R((,) and from Claim 2 we get

Qfém] € RN Q[¢m] € Q[¢m]
From Claim 1 we know that [Q [(,,] : Q [¢,]] = 2. Also since

Q[Gn] ={a+ b : a,b € RNQ[Gn]}

we have [Q[(y] : RNQ[¢r]] = 2. Therefore, since both are extensions of same
degree and one is subset of other, we conclude that Q[,,,] = R N Q[

OK =RnN Z[Cm]
Note that Z[(,,] = A N Q[(;»]. Now use Claim 3 to get

RN Z[Cm] =AnN @[Em] = Ok

Ifn= @, then {ﬂ'n(ﬂﬁ :1=0,1,...,n—1;j = 0,1} is an integral basis for Z[(,,]

Note that, [Q[¢n] : K|[K : Q] = [Q[¢n] : Q], therefore from Claim 1 and the fact
stated in previous section we get (since m > 3)
[QGm] : Q] _ p(m)
KZ = = —
K=k~ 2 "

Thus we can write
Z[Cm] = {ao+a1lm+.. .—l—anC,T,i—i-anHC;Lfl +.. .+a2n_2cgl"_2+a2n_1(fn"_l ta; € L}
But (2" = 1, thus we can rewrite above set as
ZGm) = {ao+a1Cm+ - . .4+ anCh + ans1G, "V 4 A aon—2Cr +aon—1G : ai € L}
Now using &, = G + ¢, we get

ZGm] ={ao+ -+ anCly + ang1(m — )"+ .+ a2n1(Em — Gm) : @i € Z}

Since, as stated in Claim 1, (2, —&,,(n+1 = 0 we conclude that all ¢!, fori =2,...,n
will vanish, for example:

G2 = (Emlmn — 1)lm = &nC — Cm = &m(&mlm — 1) — Gm = E26m — &m — Cm

C;}n = (fmCm - 1)2 = 572114731 +1- 2€m<m = ggz(gmgm - 1) +1- 2£m<m = ggzgm - fgn - 2€m<m +1
Hence proving our claim. (Note that the claim is correct since dimension is still 2n.)
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Claim 6 {1,&,,,£2,,...,&%" 1) is an integral basis for Ok

According to Claim 4, we just need to show that {1,&,,,£2,,...,£% !} is an integral
basis for R N Z[(,,]. Since &, = 2R((,,) implies that R((,,) is linearly dependent on
&m- Therefore, R N Z[(,,] has claimed basis by eliminating all dependent elements
from the integral basis in Claim 5.

From Claim 6 we conclude that Ox = Z[¢,,,]. O

Theorem 10. Let p be an odd prime number; then disc(¢p,) =

Proof. We have Q € Q[¢,] € Q[¢,), and [Q[¢,] : Q] = 22 = 2, [Q[¢,] : Q[&,)] =

Also, from previous theorem, I know that the integral bas1s for Q[¢,]/Q is

{1,&,...,£) "'} and the integral basis for Q[¢,]/Q[&,] is {1, (p}-
We will use Theorem 5 to calculate discriminant:

2
dised (1, Gy 6, GG, 8760 71G) = (dised ™ (16,6571 ) NG (disege) (1,6))

Keeping in mind Theorem 3 and using Theorem 7, Theorem 9 along with Remark 5 we
get (note that the + signs cancel out on both sides)

2
disc%[gp} (¢p) = (discg[g”} (fp)) Ng[gp} (NQ &l (f (Cp)))

where f(z) = 2% — £,z +1, is the minimal polynomial for Q[(,] over Q[¢,]. Using Remark 2
we can re-write it as

2
disc%[(p] (C ) (dlSCQ[gp} (51))) Ng[@)] (f/(gp)) (22)
Note that &, = ¢, + ¢, !, therefore

Ng ™ (G- NG (G +1)

NI (£(G)) = NI (26, — &) = NI9L (¢, - 1) = oL
NI ()

Observe that ®,(z—1) is the minimal polynomial for ¢,+1 where ®,(z) = 1+z+...+aP~L,
therefore NQ[C" (1+¢p) is equal to constant term in & (a: ) =1+(z-1)+...+(z—1)P7L,
since p — 1 is even we will have pT times —1 and %~ ! 41 times +1, thus leaving +1 as

constant term. Hence® Ng[cp](l + (¢p) = 1. Using thlS along with Theorem 8 in (2.2) we
get(note that we already cancelled out sign arising due to p)

P _
dlSC@[gp (&p) = disc(&p) = £ Z)T = ip%

But + sign must hold since, Q[¢,] contains y/disc(&,) (algebraic closure property of num-
ber field). O

2.3 Quadratic Fields

Let K be a number field and d = disc(Ox). By definition v/d is the determinant of a matrix
with entries in the normal closure of K. Thus the normal closure of K contains Q[v/d].
But, Q[/d] is not always a quadratic field. It can be the case that d is a square, and that
the normal closure contains no quadratic field. We will come back to this idea towards the
end of this section.

*We can use similar argument to calculate N(1 — ¢,) in Theorem 8.
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Theorem. Let K = Q[/m] where m be squarefree integer.

o Z[l\y/m] if m=2,3 (mod4)
K Z[%} if m=1 (mod4)
For proof see Theorem 1.7.8 of [21].

Remark 8. We can write O explicitly as

atbym if m=1 (mod4) and a=b (mod 2)

a+bym if m=23 (mod4) and a,beZ
Ok =
2

Theorem 11. Let K = Q[y/m] where m be squarefree integer.

oy [disel/m) = dm i m=2.3 (mod 4)
isc(O) = disc (%):m if m=1 (mod4)

Proof. We can prove this by using any of the four different formulas known to us, I will
use the basic definition. Note that the complex embeddings of Q[,/m] are:

o1:a+bym — a+by/m
oy:a+bym — a—by/m

mnomﬁﬂzrxﬁ
(1) ox(vm)| |1 —ym

2
dmol+ﬁw UM>m?V? ﬁlHﬁ
I 2 - 1

2

disc(1,v/m) =

o9(1) o9 1+%/E

O]

Remark 9. The minimal polynomial for « can be computed by equating it to « and getting

. . .. . . 14++v/m
rid of fractional powers. Here, minimal polynomial for \/m is f(x) = 22 —m and for f
is f(z) = 2% — 2+ 52

Theorem 12. Every quadratic field is contained in a cyclotomic field.
Proof. We will prove this theorem in two steps

Claim 1 Q[(g] contains Q[v/2].

It’s enough to show that eigth cyclotomic field contains v/2

(s = e2™/8 — cos (f) + isin (z) = i—i—zi
° 4 TV ARG

1 1 1 1
x/§=<+‘>+<+'>= +Et=G+E
\/i /L\/i \/§ Z\/i <8 CS CS CS
Claim 2 Let p be an odd prime then Q|[(,] contains \/p if p = 1 (mod 4), and /—pifp =3
(mod 4).
From Theorem 8 we know that
pP=2 if p=1 (mod4)

disc((p) = {_pp—2 if p=3 (mod 4)

22



Taking square-root of both sides we get

Vdise(Gp)  J/p if p=1 (mod4)
pe=3/2 |\ /=p if p=3 (mod 4)

Now our claim follows using Remark 5

1 1—[ - ¢l = VP if p=1 (mod4)
p(p=3)/2 PP /=p if p=3 (mod 4)

1<r<s<p—1

Claim 3 K = Q[/m] for a squarefree m is contained in the d*" cyclotomic field, where
d = disc(Ok).

Note that /=1 = i = e'§ = (4 = (2. Hence, if the ¢'* cyclotomic field contains
Ql[,/p), the 4¢'" cyclotomic field contains Q[,/—p| because it must contain the fourth
root of unity 7 along with ,/p. Since m is square free, m = %p;-ps - - - py, for k distinct
primes. Also, from Theorem 11 we know that

de 4m if m=2,3 (mod 4)
“|m if m=1 (mod4)

Thus completing the proof of the claim.

We could have proved this theorem without third claim, by proving a weaker result. Note
that if r|s, then Q[¢,] C QI[(s] since ¢, = CSS/T. From this and the previous observations,
vm € Q[Cs, Cpys - -+ Cp) € Q[Csm]. Hence the cyclotomic field Q[Cs,,] contains Q[v/m]. O

Remark 10. We can use the method used to prove second claim above to express v/ —3 =

(3—CGandVb=G-CE -G+

2.4 Pure Cubic Fields

Unlike the number fields discussed so far, these are not Galois extensions. These fields
were first studied by Richard Dedekind (pp. 105, [5]).

Theorem 13. Let K = Q[¢/m] where m be a cubefree integer. Let a = /m and m = hk?,
where h and k are squarefree and relatively prime. Then an integral basis for O consists of

1: if m#=£l (mod9) or h*#k* (mod?9)

a? + Ko+ k?
1,@,
3k

17 a?
} if m=+1 (mod9) or h*=k? (mod9)
with the + sign corresponding in the obvious way.

Proof. We will use the following result:
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Let K = Q[a] and o € Ok such that it has degree n over Q. Then there is an
integral basis
o) fee)
Tody T dy

where f; are monic polynomials of degree i over Z and d; € Z\{0} are uniquely
determined such that dl‘dg‘ . ’dnq- (pp. 36, [1])
Following facts can also be established (pp. 49, [1])

() disc(a) = (dy - da -~ dp—1)? disc(Ok)

(ii) di-da---d,—1 is the order of the group Ok /Z[a] (follows from second claim
of Theorem 3)

(iii) If7 + j<n then dz‘dj

it

(iv) Fori <n, d!

d; and d?("*”‘ dise(a).

By the above result, the ring Ok has an integral basis of the form {1, %10‘), %20‘)}

Claim 1 d1 =1 and fl(Oé) =«
By Remark 5, disc(a) = —NS[O‘] (¢'(a)) where g(x) = 2% — m. Therefore, disc(a) =

—27a% = —27m?. Now using the fact (iv) stated above we conclude that d; = 1
except possibly when 9|m, in which case d; = 1 or 3.

Suppose 9/m and 8 = (« + a)/3 for some integer a, is an element of O. Using
Example 1 we can compute

27
(TQ[Q]( )+3 TQ[O‘]( 2)—|—3a2T8[a}(a)—|—3a3)

T3 (6% =18 (“3 + 300"+ 3aa + a3)

Tar

Note that
Tg[a](a) =sumof roots =a; +as + a3 =0

and we know following two identities from school days:

o + a5 4+ ad=(ay + as + a3)? — 2(a1as + avas + azaq)

o+ a3+ ad=(a1 + g +a3)(ad + a3+ ai — ajas + asas + azar) + 3arasas
Moreover

aias + asas + agaq = the sum of product of two roots taken at a time = 0
We conclude that
Tg[o‘] (a?) = af + a3 + a3=0
Tg[a] (?) = Tg[a] (m) = o + a3 + aj=3m

Giving us

13°(8%) = - (3m + 3d°)

7
Now since TQ (8%) € Z for B € Ok and 9|m, we conclude that 3|a. Hence
a/3 € Ok and NS[O‘] (a/3) € Z, implying that 27|m. But we are given that 9|m,
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Claim 2

Claim 3

Claim 4

hence contradicting the assumption (requirements are higher than initially stated).
Therefore d; = 3 is not possible.

Since d; = 1, we can take f(«) = a.
2

(6%

—e0

A K

Clearly o?/k € K and observe that it’s also an algebraic integer since % k =3 hZ’§4 =

Vh2k is a root of h(x) = 23 — h%k, which is irreducible over Z. Therefore, o?/k €
ANK =0g.

2
B = (a:;l) € Og whenm = +1 (mod 9), with the signs corresponding in obvious
way.
Note that
5_1 3_ (a$1)2_1 3_ a?F2a\°
3) 3 3) 3
Therefore,
3 a2 é_i [« ¥ 8a3 $6a + 1204 B
<6 5+3 27> ( =0
3 52 E_i B m? :F8m:|:6ma + 12ma _
(5o 5-3) - ( -0
3 a2 é_(m$)$6m +a? F 2a) B
<ﬁ B+3> ( 27 =0
2
<53 52+§)_((m:|:1) Fom(aF1) ) _ 0

3 9 1+2m (m 1)27
6—5+< >B— 57 =0

Hence $ is root of an irreducible monic polynomial with coefficients in Z (since
m = £1 (mod 9)). Since 5 € K, we conclude that § € O.

a? £ k2o + k?

3k
way.

€ O when m = £1 (mod 9), with signs corresponding in obvious

Follows from Claim 2 and Claim 3 since sum and product of two elements from given
ring of integers belongs to same ring of integers. So let’s find this linear combination
for one sign combination (m =1 (mod 9))

o + k2a + k2 a? a—1)2

_ (
3k *Ak+B 3

Equating coefficients of powers of « we get:

+ Cuo

k2=Bk =B=k
3Ck—2Bk=k* =C=k
3A4+kB=1 =A=1F

Now since m = hk? = 1 (mod 9), note that > = 1,4,7 (mod 9) and 4 -7 = 1
(mod 9). Therefore, k> = 1 (mod 3) and A € Z. Similarly we can find A, B, C for
other sign combination. Hence our claim is true.
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Claim 5

Claim 6

Claim 7

Claim 8

Claim 9

Claim 10

k|dy when m # £1 (mod 9) and 3k|d2 when m = £+1 (mod 9)

From Claim 2 and Claim 4 we can conclude this.

d2|3m

Using fact (i) from the result in box stated initially, we conclude that ds|+/disc(«).
From Claim 1 we know that disc(a) = —27m?. Since da € Z, da|3m.

Let p be a prime number such that p # 3, p|m,p? Jm then p Jds.

On the contrary assume that p|dy and let fo(a) = a® + ba + c for b,c € Z. Then
fa(a))/p € Ok and as in Claim 1, we can compute its trace:

Tg[a] <a2+ba+c> :§€Z
p p

Therefore, p|c; hence (a? + ba)/p € Ok. By cubing and considering its trace

Q] ab + b33 + 3ba® + 3b?at
Q

Tg[a] <m2 + b3m + 3bma? + 3b2ma>
»

p3
3m? 3
- 2 040ez
p p

Since p # 3, p?|(m? + b3m); hence p?|m. Thus contradicting our assumption and
proving our claim.

Let p be a prime number such that p # 3 and p?|m then p? [ds.
As seen in proof of Claim 7, if p|ds then p?|m. Hence p? [fds.

Let fao(a) = a? + ba + c for b, ¢ € Z, then dy divides b? + 2¢, m + 2bc and ¢ + 2bm.

Square and verify.

fala)\? at +b2a? + ¢? + 2ba3 + 2bca + 2ca’

(%)

ma + b?a? + ¢ + 2bm + 2bca + 2ca’
d3

(b + 2c)a? + (m + 2be)a + ¢ + 2bm
d3

Let 3 fm then 3 fdy if m # £1 (mod 9) and 3|dz if m = +1 (mod 9).

Note that Claim 6 implies that 9 fds. When m = £1 (mod 9) we already know that
3|ds (Claim 5).

Now for m # +1 (mod 9), on the contrary assume that 3|dz. Then Claim 9 implies
that ¢ = 1 (mod 3) and b = m (mod 3). This implies that (a? + ma + 1)/3 € Ok.
Now if m = 1 (mod 3), then (o — 1)2/3 € Ok. Raising it to fourth power and
considering the trace

Q] (((@—1)%\  1—56m+ 28m?
To < st )~ 27 €z

Hence m =1 (mod 9), contrary to our assumption. Similarly we can obtain contra-
diction for m = 2 (mod 3).
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Claim 11

Claim 12

Claim 13

Claim 14

Combining Claim 1 and Claim 14 proves the theorem.

Let 3|m but 9 fm then 3 fda.

Assuming 3|do, Claim 9 implies that 3|b and 3|c. Thus o?/3 € O and computing
trace of sixth power (i.e. till trace is non-zero and denominator have higher expo-

nent than numerator)
12 4
(0% m
<36> =5 <L

This contradicts the condition that 9 fm.

Qlo]
Ty

Let 9|m then 9 fds.

Assume 9|dg, Claim 9 implies that 9|c, hence (a? + ba)/9 € Ok. Now proceed as in
Claim 7 to obtain a contradiction.

dy is not larger that £ when m # +1 (mod 9) and 3k when m = +1 (mod 9).
Combining all claims from Claim 6 to Claim 12 we obtain this.

de = k and fa(a) = a®> when m # £1 (mod 9); d2 = 3k and fo(a) = o? + +k*a + k?
dy = 3k when m = £1 (mod 9).

From Claim 5 and Claim 13 we conclude that dy = k£ when m # +1 (mod 9) and
dy = 3k when m = £1 (mod 9). Combining this with Claim 2 and Claim 4, the
claim follows.

O]

Remark 11. For a square free integer m, if a = /m then

a+ba+ca® if m#Z+l (mod9) and a,b,c€Z
w if m=4+1 (mod9) and a=+b=c¢ (mod 3)

with the + sign corresponding in the obvious way.

Theorem 14. Let K = Q[¥/m] where m is squarefree integer.

—27m?

—3m?

if m#+l1
if m==+l1

(mod 9)

disc(Ok) = { (mod 9)

Proof. If m is square free then we can set kK = 1, h = m in previous theorem to get

Z[¥m) = {a+ b¥/m + cVm?:a,bc€ Z} if m#+1l (mod9)

O =
K {M;azczib (mod3)} if m=+1 (mod9)

with the + sign corresponding in the obvious way. We will use basic definition to compute
the discriminant. As stated in Example 1, following are the three complex embeddings in
this number field (put o = /m for the sake of clarity):

2

o1:a+ba+ca® — a+ba+ca?

2 2

g9 a+ba+ca® — a+bwa+ awia

2 2

o3 a+ba+ca® —  a+bwia+ cwa

where a, b, ¢ are rational numbers and w = e™s . Also using the fact w + w? + 1 = 0, we

get*

o1(1) o1(a) o1(a?) 1 a a? |?
disc(1, o, 0?) = |g9(1) o3(a) o2(a?)| =1 wa w?a? =-27a°
o3(1) o3(a) o3(a?) 1 w?a wa?

“*Note that in this case disc(Ox) = disc(c) which was calculated in previous theorem, again calculated
here for fun.
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o1(1) o1(a) o1 % o?tat1 |?

1 «
3
. 2 2 2 2
disc (1,04, a~xatl iSO‘H) = loa(1) oa(a) o9 | EEEE i;‘“ =11 wa % — —3af
2 2 woltw?atl
o3(1) o3(a) o3t 1 wo 3

2.5 Biquadratic Fields

A biquadratic field K = Q[v/m, v/n] = Q[v/m + v/n] where m and n are distinct squarefree
integers, is a Galois extension of the rational number field Q with Galois group the Klein
four-group (pp. 116, [11). It consists of three quadratic fields Q[/m], Q[v/n] and Q[V/&]

where k£ = — ™% . We can see this in two ways, depending on how we represent the
[ged(m,n)]

elements of the permutation group[8]:
o Leta =+/m,b=—/m,c=+/n,d=—/n, then
Gal(K/Q) = {1, (a,b), (¢, d), (a,b)(c,d)} = V4

olete=\/m+n,f=vm—yng=—ym+ynh=—ym-yn
Gal(K/Q) = {1, (e, f)(g, h), (e, 9)(f, h), (e, h)(f, 9)} = Vi

Lemma 2. Let K = Q[/m, /n] be a biquadratic field and a € K. Then o € Ok if and only
if N(g[ M(a) and Téf[ Vo () are algebraic integers.
K

Proof. One side of implication that if « € Ok then NQ[ ) (o) and Té{[ ] (o) are algebraic

integers follows from Remark 1.
For other side of the implication note that norm and trace of an element belong to Z

characterizes the elements of the ring of integers only for quadratic extensions since the
monic minimal polynomial in that case is 2% — Tg[m (a)x + Ng[ﬁ] (c). Let Néf[ Vo ()

and T(éf[ \/rﬂ(a) be algebraic integers and since K is a quadratic extension of Q[,/m] the

result follows. O

Theorem 15. Let K = Q[/m,+/n| be a biquadratic field. Then an integral basis for Ok
consists of

l,ﬁ,ﬂ,\/ﬁ;\/%} if m=3 (mod4), n=k=2 (mod 4)

1?1+\/ﬁ7\/ﬁ7\/ﬁ+\/ﬁ} if m=1 (mod4), n=k=2,3 (mod 4)

2 2
\ 1,1+2\/ﬁ,1+2\/ﬁ’<1+2\/%> <1+2x/E>} Fomen— k=1 (mod4)

Proof. We divide the proof in 4 parts

Claim 1 m =3 (mod 4),n = k = 2 (mod 4) then the basis of O is {1, N W}

We can write o € O as linear combination of 1, /m, \/n, vk with rational coeffi-
cients

a=A+Bym+Cyn+ DVk
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Claim 2

Now to determine A, B, C, D we will take trace with respect to every quadratic sub-
field

TE () = (A+B\/m+o\/ﬁ+px/%)+(A+B\/m—of—px/%)

= 24+2BVym

TE 2(a) = (A+B\/E+C\/H+D\/E)+(A—B\/E+Cf—D\/E)
= 24+2CVn

TE p(0) = (A+Bﬁ+cﬁ+pﬁ)+(A—Bﬁ-0ﬁz+px/@
= 24+ 2DVk

As per Lemma 2 each of them must be an algebraic integer. Therefore, for some
a,b,c,d € Z
a b c d
5 5 C 5 and 5
Therefore, we can write

_a+bym+ceyn+dvk

2
Now we will consider Néf[ M(a) to find relations between a, b, c and d. Note that

VE = YR hence

ged(m,n)?
<a+b\/7n+c\/ﬁ+dx/é> <a+b\/7n—cf—dx/E>
2 2

(a4 bym)? — (ey/n + dVk)?
4
a® + b®>m + 2aby/m — *n — d’k — gcgffn"n) vm
- 1
:a2 +b*m — c?n — d*k  ged(m,n)ab — cdnm
4 2ged(m,n)
But by Lemma 2 this must be an algebraic integer in Z[\/m/|, hence a and b must

be even and ¢ = d (mod 2). Using this fact we can rewrite « such that all the
coefficients lie in Z:

K
Napym (@)=

a+by/m + ey/n — dyn + dyn + dvVk
2

- §epme (55 ()

m=1 (mod 4),n =k = 2,3 (mod 4) then the basis of O is {1, SN ﬁ;ﬂ}

We can write o € O as linear combination of 1,/m, \/n, vk with rational coeffi-
cients
a=A+ Bym+ Cyvn+ DVk

Now to determine A, B, C, D we will take trace with respect to every quadratic sub-
field and as in previous case

m+ 1
T(I{[\/m](a) = 2A+2B\/E:2A—2B+4B<\F2 )

Tgm(@ = 24+2CVn
TS (@) = 24+2DVk
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Claim 3

As per Lemma 2 each of them must be an algebraic integer. Therefore, for some
a,b,c,d €
b d
A:g , B=- C’:E and D= —
2 2 2 2
Therefore, we can write

_a+bym+eyn+dvk
B 2
Now we will consider Ng[ N0 (a) to find relations between a,b,c and d. Note that
VEk = gﬁn\ﬁ‘b) and as in previous case
NE (a>_a2 +b*m — c*n — d%k N ged(m, n)ab — cdn\/rn
Qlvm =/ 4 2ged(m,n)
_a2+b2m—52n—d2k—2ab+ Cg?g:'n) cdn \/m_l’_l
- 4 - + (ab B gcd(m,n)) ( 2 >

But by Lemma 2 this must be an algebraic integer in Z[‘/@H], hence a = b (mod 2)

and ¢ = d (mod 2). Using this fact we can rewrite « such that all the coefficients lie
inZ:

a+bym—b+b+cyn—dyn+dyn+dvk
2

_ ab+b<1+2¢m>+<c2d>ﬁ+d<\/ﬁ+\/§>

2 2

m

n =k =1 (mod 4) then the basis of Ok is {1, 1+5/m’ 1+2\/ﬁ, (1+5/E) <1+2\/E>}

We can write o € O as linear combination of 1, /m, \/n, v’k with rational coeffi-
cients

a=A+Bym+Cyn+DVk

Now to determine A, B, C, D we will take trace with respect to every quadratic sub-
field and as in previous case

K B vm+1
Ty m (@) = 2A—2B+4B< 5 )
K _ Vn+1
T (@) = 2A—2C+4C< 5 >
K VE+1
T3 (@) 2A—2D+4D< 5 )

As per Lemma 2 each of them must be an algebraic integer. Therefore, for some
a,b,c,d € Zsuchthata=b=c¢=d (mod 2)

a b d
A_Z , B_Z , C_Z and D_Z
Therefore, we can write
_a+bym+eyn+dvk
N 4

where a =b=c=d (mod 2).
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Now consider another algebraic number g € K

5= L+ym\ (1+VEk\  v+oym+omyn+ovk
T2 2 )~ 4
since m =1 (mod 4), for all v € Z, § € Ok. By closure property, a + 8 € O-.

a+v+ (b+v)y/m+ (c+vm)yn+ (d+ o)Wk
4

Ifd+v=0,thena+v=b+4+v=c+vm =0 (mod 2) implying that

rdsymttyn
2

for some r,s,t € Z. Now by using norm condition we conclude that r + s+ ¢ = 0
(mod 2). Using this fact we can rewrite « such that all the coefficients lie in Z:

a=(a—b—c—dm)+ (559) (B) + (<g2) (M52) +a () (45)

Claim 4 The above three cases are unique upto rearrangement of m,n and k and there is no
other case possible.

It’s clear that the cases are unique upto rearrangement of m,n, k. Let’s see why
the only other possible case is invalid. If m = 3 (mod 4) and n = 3 (mod 4) then
mn =1 (mod 4), implying £ = 1 and hence m = n.

This completes the proof. O

Theorem 16. Let K = Q[\/m,/n] be a biquadratic field. Then disc(Of) is the product of
the discriminants of the three quadratic subfields. Therefore

64mnk if m=3 (mod4), n=k=2 (mod4)
disc(Og) =< 16mnk if m=1 (mod4), n=k=2,3 (mod 4)
mnk if m=n=k=1 (mod4)

Proof. The complex embeddings for this field are (note that 'k = gﬁn‘{z))

o1:a+bym+ceyn+dVk = a+bvm+ev/n+ dvVk
o9 :a+bym+ceyn+dVk = a—bym+cev/n—dVk
o3:a+bym+ceyn+dVk = a+byvm—cv/n—dVk
o4 a+bym+cevn+dVk - a—bym—cevn+dVk

Now using previous theorem
Casel m=3 (mod4), n=k=2 (mod 4)
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o1 (1) o1(v/m) o1(y/n)
, \/ﬁ+\/E> o2(1) o2(vm) o2(Vn)
disc [ 1, vm, vn, ~¥——— | =

( 2 o3(1) o3(ym) o3(y/n)
o4(1) oa(v/m) oa(yvn)
1ovmo e Rk
N R
1 ym -y Dk
1 o—ym -y R

= (8\/ mnk:) ’ = 64dmnk

Case2 m=1 (mod4), n=k=2,3 (mod 4)

o1(1) o1 (HQ/TTL) o1 (
1t ym \/ﬁ+\/%> oa(1) o2 (Ff)
disc | 1, ,Vn, =

( 2 VT a3(1) o3 ”ﬁ) a3 (

o4(1) U4<1+ﬁ) o4 (

1 1+2¢m NG \/E;rﬂ

1 1—5/E \/ﬁ \/ﬁ;\/E

1 l_ﬁ —/n _\/E;M/E

Case3 m=n=k=1 (mod 4)

B
3
S

) o1

) o2

e
N RN
515

A~ TN
B
IS
=

04

[\

o1 (1) o1 (F™) or (M) oy (MR (4
1+y/m 1+v/n 1+vm\ (1+VE
disc <1 1+v/m 147 (1+\/a) (H\/E)):Uz(l) 02 2 02 2 02 2 2
s T R 2 2 o3(1) o3 1+§/E o 1+2\/5 o3 1+%/E 1+2\/Z
o4 (1) o4 L}/E 04 1+2\/E 04 Lﬁ 1+2\/E
1 Lvmo e (1vm) (14vE 2
2 2 2 2
1 =vm Ve (1-ym) (1-Vk
2 2 2 2
_1 1+y/m 1-v/n I+vm\ (1-vk
2 2 2 2
1-v/m 1—yn 1—vm\ (1+Vk
1 2 2 2 2
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Chapter 3

Ideals of Ring of Integers

In 1876, Richard Dedekind extended applicability of Kummer’s ideal numbers to ring of
integers other than those defined by roots of unity, like Z[\/—5] and hence ideals are also
known as Dedekind’s ideals[12]. In our discussion, Q C K C L are the number fields with
prime ideals p = (p) = pZ, p and P of Z, Ok and Oy, respectively.

Definition 10 (Dedekind Domain). An integral domain R such that
1. Every ideal is finitely generated
2. Every non-zero prime ideal is a maximal ideal

3. Ris integrally closed in its field of fractions

F:{g:a,,@ER,B#O}

Remark 12. Ok is a Dedekind domian; see pp. 56, [1].

Remark 13. Every ideal in a Dedekind domain R is uniquely representable as a product
of prime ideals. (pp. 59, [1])

Lemma 3. If a and b are ideals in a Dedekind domain R, then alb iff b C a.

Proof. One direction is trivial, a|b implies b C a. Conversely, assuming b C a, fix ¢ such
that ac is principal (pp. 57, [1]), ac = {(«), for some a € R. Note that the set 0 = ébc is
an ideal in R and that ad = b. O

Remark 14. From this lemma, we conclude that “multiple” means sub-ideal and “divisor”
means larger ideal.

Definition 11 (Greatest common divisor of two ideals). It is the smallest ideal containing
both the given ideals. Therefore, gcd(a,b) = a + b.

Definition 12 (Least common multiple of two ideals). It is the largest ideal contained in
both of the given ideals. Therefore, lcm(a,b) = anb.

Theorem 17. Let a be an ideal in a Dedekind domain R, and let « be any non-gzero element
of a. Then there exist 8 € a such that a = («, §3).

Proof. We will construct 5 € R such that a = ged({«), (5)). Then g will be obviously in a.
Let p{'p5? - - - pI' be the prime decomposition of a, where p; are distinct. Then («) is
divisible by all p;"". Let q1, q2, . .., qs denote the other primes (if any) which divide («). We
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must construct 3 such that none of q; divide (), and for each ¢, p;" is the exact power of
p; dividing (5). Equivalently,

Be (Q (b - p?l‘“)) N (jﬁl(R - qy))

We will use Chinese Remainder Theorem:

Let aj, ag, ..., a, be pairwise relatively prime ideals in a ring R. The the mapping

R/ﬁaiHR/al - Rfay
=1

is an isomorphism. (pp. 253, [1])

Fix §; € p;" — p?"“ which is necessarily non-empty by unique factorization) and let

satisfy the congruence

B = B (modp™th) i=1,2,...,r

1

f =1 (modg;) j=12,...,s

Such a f3 exists because the powers of p; and the q; are pairwise co-maximal (i.e. coprime),
thus the sum of any two of them is R. O

Remark 15. Let K be a number field, a be a non-zero ideal of Ok. Then |Ok /a| divides
N{ () for all a € a and equality holds iff a = (a)

Definition 13 (Norm of ideal). Let L be a number field lying over K such that L is a
normal extension of K. Then |Gal(L/K)| = [L : K| = n. For an ideal b of O, we define
NE(b) to be the ideal such that

N =0k} TI o)

c€Gal(L/K)

Remark: Property of transitivity is satisfied by norm function. If K ¢ L C M are
number fields then N (B) = NL(NM(8)) for and ideal B € Oy. (pp. 85, [11).

Definition 14 (Lying over/Lying under). Let K C L be number fields. If p and ‘3 are
prime ideals of Ok and Oy, respectively, such that p C 3 then we say that B lies over p or
p lies under .

Remark 16. The prime ideals lying over a given prime ideal p of O are the ones which
occur in the prime decomposition of pOy, where K C L are number fields. (pp. 63, [1])

Definition 15 (Ramification index). The exponents with which the prime ideals lying
over a given prime ideal p of Ok occur in the prime decomposition of pOy, is called their
ramification indices. For example, if pOr, = P - - - P¢ then e; is the ramification index of
B, over p, denoted by e(B;/p)

Definition 16 (Inertial degree). Let K C L are number fields and p C ‘3 are prime ideals
in Ok and Oy, respectively. Then the finite field Oy, /B is an extension of finite degree f
over the finite field O /p. Here f is called the inertial degree of 3 over p and is denoted

by f(B/p) = [OL/PB : Ok/p].

34



When we write A/B where A, B are two algebraic structures, slash (/) imparts
different meanings in different contexts. Some of them are:

o If B is a normal subgroup of A, then A/B represents a quotient group (read
as: A mod B)

o If B is an ideal of a ring A, then A/B represents a quotient ring (read as:
A mod B)

o If A and B are fields, then A/B represents that A is an field extension over
B (read as: A over B) and if A is a Galois extension of B then Gal(A/B)
represents the collection of automorphism of A which keep elements of B
fixed.

o If A and B are prime ideals, then A/B represents that A lies over B (read
as: A over B)

o If A and B are ring of integers of number fields, then A/B represents A
lies over B (read as: A over B)

Lemma 4 (Multiplicative in towers). If p C B C P are prime ideals of Ox C O, C Oy,
then

e(P/p) = e(P/R)e(B/p) and [f(P/p) = f(P/B)f(B/p)

Proof. For ramification index, note that know that maximum exponents dividing the prod-
uct of an ideal lying below it with the ring Be*/%) |pO;, PeF/F) O, and
Pe(P/P)|p©,, . Therefore we get (in terms of the maximum exponents)

e m e &
(P (P/<;3))e( /») "13 (m/p)oﬂ/([‘ﬁ/p)
- Pe(P/B)e(B/p) ‘ pOus

since Oy, C Oy and multiplication of a ring by its sub-ring is the ring itself.

For inertial degree, note that f(B/p) = [Or/P : Ok /p], f(P/P) = [On/P : OL/B]
and f(P/p) = [Opn/P : Ok /p]. From field theory we know that (for proof see pp. 523 of
Dummit-Foote?).

(O /P OL/R[OL/B : Ok /p] = [On /P : Ok /p]
O

Remark 17. Let p be any prime ideal of O, then p lies over a unique prime ideal (pp.
63, [11) p = (p) of Z. Therefore, O /p is a field of order p/, there f = f(p/p).

Theorem 18. Let K C L are number fields and n = [L : K|. If B4, ...,B, are the prime
ideals of Oy, lying over a prime ideal p of O with e1,...,e. and f1,..., f, the corresponding
ramification indices and inertial degrees then

r

Zez’fz' =n

i=1

Proof. We have pOr, = [[;_; B;* and we know following result

! Abstract Algebra. John Wiley & Sons, Inc.
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Let K C L be number fields and n = [L : K] then (pp. 66, [1])
(a) For ideals a and b of Ok, |Ok /ab| = |Ok /a| |Ok/b|
(b) Let a be an ideal of Ok. For an Op-ideal aOy, |01 /a0 | = |Ok /a|"

(¢) Let a € Ok, a # 0. For the principal ideal (), |Ok /{a)| = ‘Néf(a)‘

hence using (a) we get

|OL/pOL| =

or/ ]
=1

=[T1ow/ms 1 = [T 10w /%l
=1 i=1
But by definition of inertial degree, we know that |0 /B;| = |Ok /p|fi’ therefore
01/p01| = [ 1Ok /pl = |Ok fp]>==1 7
i=1

Now using (b) we get
|01/pO0L| = |OK /p|"

and the result follows. O

Theorem 19. Let L be a normal extension of K and p is a prime ideal of Of. Let B3 and B’
be two prime ideals of Oy, lying over the prime same prime p of O. Then o(*B) = P’ for
some o € Gal(L/K).

Proof. Clearly, the Galois group Gal(L/K) permutes the prime ideals lying over p. If B lies
over p and o € Gal(L/K), then o () is a prime ideal in 0(Or) = Oy, lying over o(p) = p.
Here we wish to prove that the Galois group permutes them transitively.

On the contrary, suppose o (‘B) # P’ for all o € Gal(L/K). Then by Chinese remainder
theorem (stated in Theorem 17) there is a solution to the system of congruences

= 0 (mod*P)
1 (mod o(P)) forallo € Gal(L/K)

Let o € Oy, be such a solution, we have
NE(a) e Ox NP =p

since one of the factors of N&(«) is o € 8. On the other hand we have o ¢ o(%B) for each
o € Gal(L/K), hence o~ !(a) ¢ B. We can express N&(a) as the product of all o~ (a),
and since none of these are in prime ideal 3, it follows that NZ(«) ¢ . But we have
already seen that NE(a) € p C . O

Corollary 3. If L is normal over K and 3 and 3’ are two prime ideals lying over p, then
e(B/p) = e(P'/p) and f(B/p) = f(B'/p).

Proof. e(B/p) = e(P’'/p) follows from the unique factorization property stated in Re-
mark 13.

f(B/p) = f(P'/p) is obtained by establishing an isomorphism between Oy, /% and
oL/ O

Definition 17 (Ramified prime). A prime ideal p of O is said to be ramified in Oy, (or in
L) if and only if e(/p) > 1 for some prime ideal ‘B of Oy, lying over p.
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Remark 18. A prime ideal p = (p) of Z is ramified in Ok iff p| disc(Ok).

Definition 18 (Fractional ideal). Let R be a Dedekind domain and F be its field of frac-
tions. A fractional ideal f of F' is a set of form «a, for some o € F' and some ideal a of
R.

Remark 19. Considering F' as an R—module, f is a fractional ideal iff it is a finitely gen-
erated submodule of F' (pp. 92, [1]). Therefore, a fractional R—ideal is a full R—lattice
in F (pp. 47, [6]).

Definition 19 (Inverse fractional ideal). Let R be a Dedekind domain and F be its field of
fractions. If f is a fractional ideal of F, then the inverse fractional ideal §~! is defined as

fl={aecF:aof C R}

Remark 20. Note that ff~! = R. Also, the fractional ideals of F form a free abelian group
under multiplication. Equivalently, every fractional ideal of F' is uniquely representable as
a product of distinct prime ideals of R (pp. 92, [1] and pp. 47, [6]).

Definition 20 (Complementary fractional Ideal). Let K C L be number fields and f is a
fractional ideal of L, then the complementary fractional ideal f* is defined as

f*={aeL:Tk(af) c Og}

Remark 21. If we consider f to be a fractional O —ideal of L, then §* is an Oy —submodule
of L, which is an R—lattice. Thus f* is also a fractional Oy —ideal of L. (pp. 60, [6])

Definition 21 (Different Ideal). Let X C L be number fields, then the different ideal
diff (O /Ok) of Or, with respect to O is the inverse of the complement of Oy..

diff(0,/O0k) = (03) P ={a € L: a0}, Cc O}

Remark 22. Oy is a fractional ideal of L and because O, C Oj the inverse of Oj is
a fractional ideal inside Oy, hence an ideal (or, what we may refer as integral ideal).
Therefore, this is a special ideal of Oy, which is divisible by exactly those prime ideals I3
of O, which are ramified over Ok . Hence a generalization of Remark 18. (pp. 73, [1])

Definition 22 (Decomposition group). Let K and L be number fields such that L is a
normal extension of K. Then for each prime ideal 8 of Oy, lying over the prime ideal p of
Ok we define the decomposition group D(3/p) as

D(B/p) = {o € Gal(L/K) : o(B) = ¥}

Remark 23. From Corollary 3 we know that if there are r prime ideals B3; of Oy, lying
over prime ideal p of O then they all have same ramification index e and inertial degree
f. Therefore, by Theorem 18 we conclude that ref =n = [L : K] = |Gal(L/K)]|.

Definition 23 (Inertia group). Let K and L be number fields such that L is a normal
extension of K. Then for each prime ideal ‘3 of Oy, lying over the prime ideal p of O we
define the inertia group E(*B/p) as

E®B/p) ={c € Gal(L/K) :0(a) =a (modP) forallaec O}

Remark 24. Clearly D(3/p) and E(B3/p) are subgroups of Gal(L/K). Also we can express
decomposition group as

D(B/p) ={oc e Gal(L/K):0(a) =0 (mod*P) iff =0 (modP)}
therefore E(*B/p) is a normal subgroup of D(*B/p). (pp. 114, [1])
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Definition 24 (Decomposition field). Let L be a normal extension of K and a prime ideal
P of O, lying over the prime ideal p of Ox. The fixed field of the decomposition group
D = D(*B/p) is called decomposition field as is denoted by Lp.

Definition 25 (Inertia Field). Let L be a normal extension of K and a prime ideal 3 of
Oy, lying over the prime ideal p of Of. The fixed field of the inertia group E = E(B/p) is
called decomposition field as is denoted by Lg.

Theorem 20. Let L be a normal extension of K and there be r prime ideals ‘3 of Oy, lying
the over prime ideal p of O with e(*B/p) = e and f(*B/p) = f. If D = D(P/p) and
E = E(*B/p), then

(@ [Lp:K]=r,e(Bp/p) =1and f(Pp/p) =1
(b) [Lg: Lp]=f, e(Be/Bp) =1and f(Br/Pp) = f
(@ [L:Lg]=e e(P/Pp) =eand f(B/Pg) =1

where P and Bp, respectively are the unique prime ideals of the ring of integers of Lr and
Lp lying under ‘3.

Proof. 1will give an outline of proof, for details see pp. 100, [1].

(a) By the fundamental theorem of Galois theory we know that [Lp : K] is same as the
index of D in Gal(L/K). So, prove that the index of D in Gal(L/K) is r. Notice
that 3 is the only prime ideal of Oy lying over Bp, since such primes are per-
muted transitively by Gal(L/Lp) (Theorem 19). Apply Theorem 18 to [L : Lp] =
e(B/Bp)f(P/Pp) and conclude that e(P/Pp) = e and f(*P/Pp) = f, implying
that e(Bp/p) = L and f(Pp/p) = 1.

(b) Assume f(P/PBr) = 1 (we will prove it in next part), then together with f(*Bp/p) =
1 this shows that f(Pr/PBp) = f(P/p) = f (Lemma 4). Then by Theorem 18 we
must have [Lg : Lp| > f, but since E is a normal subgroup of D (Remark 24), we
have [Lg : Lp] = |D/E| < f, hence exactly f. Which implies that e(Pr/Bp) = 1.

(c) Let the ring of integers of L be O, then we will show that the Galois group of Oy, /B
over O/ is trivial. This implies that f(*f/Pr) = 1. Then we obtain [L : Lg| = e
and e(B/PE) = e by using Lemma 4.

O]

Corollary 4. If D = D(*3/p) is a normal subgroup of Gal(L/K) then p splits into r distinct
primes in Lp. If E = E(B/p) is also normal in Gal(L/K) then each of them remains prime
(i.e. inert) in L. Finally each one becomes e'" power in L.

Remark 25. Normality condition on D is necessary. For example, if L = Q[+/19, w] where
w = e¥™/3_ Then L is normal of degree 6 over K = Q with Galois group S3 (group of
permutations of three objects). Here 30k doesn’t split into three distinct prime ideals
in any of the possible decomposition fields Q[/19], Q[v/w19] and Q[v/w?219]. In fact it is
ramified in each since it splits into p%pg. (pp- 103, [1D)

Theorem 21. Let K be a number field, and let L and M be two extensions of K. Fix a prime
ideal p of K.

(@) If p is unramified in both L and M, then p is unramified in the composite field L M.

(b) If p splits completely in both L and M then p splits completely in LM.
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Proof. We will prove each part separately.

(a) Assuming that p is unramified in L and M, let 8 be any prime ideal of LM lying
over p. We have to show that e(3/p) = 1. Let F be be any normal extension of K
containing LM, and let 3’ be any prime ideal of F lying over B. Thus, B’ also lies
over p. Let E = E(P'/p) be the corresponding inertia group, so let Fy is the inertia
field. From previous theorem we can deduce that (pp. 104, [1]) that Fg contains
both L and M, since the primes ' N £ and P’ N M are necessarily unramified over
p. Then Fg also contains LM, implying that 3’ N LM = ‘B is unramified over p.

(b) The proof is similar to what we did in (a), just replace inertia group FE by decompo-
sition group D = D(B’/p). Note that splitting completely in LM is equivalent to the
condition e(*B/p) = f(P/p) = 1 for every prime ideal P of LM lying over p.

O]

Definition 26 (Ramification group). Let L be a normal extension of K and a prime ideal
P of Of, lying over the prime ideal p of O. Then for m > 0 we define ramification group
as

Vin(B/p) = {0 € Gal(L/K) : (o) = (mod P foralla € Op}

Remark 26. V4(B/p) = E(B/p) and the V,,(B/p) form a descending chain of normal
subgroups of D(*B/p). (pp. 121, [1])

Definition 27 (Frobenius automorphism). Let K and L be number fields such that L is a
normal extension of K. Then for each prime ideal B of O, lying over the prime ideal p of
Ok we define the Frobenius automorphism of ‘B over p, (B /p) € D(*BP/p) as

Y(a) = o/ (mod R)
forall « € Op.

Theorem 22. Let L be a normal extension of K and p be a prime ideal of K which is
unramified in L. For each prime ideal ¥ of L lying over p there is a unique Frobenius
automorphism (P /p) € Gal(L/K) such that

¥(e) = ol (mod )

forall « € Op. When Gal(L/K) is abelian 1)(3/p) depends only on p, and
() = ol (mod pOL)

forall a € Oy.

Proof. Assuming that p is unramified in L, ¢)(}3/p) is the only element in D(}3/p) with this
property, and in fact the only element in Gal(L/K). Also note that

P(oPB/p) = op(P/p)o!

for each ¢ € Gal(L/K). Since all prime ideals lying over p are of this form, we conclude
that the conjugacy class of the element ¢ (J3/p) is uniquely determined by p.

When G is abelian (3 /p) itself is uniquely determined by the unramified prime ideal
p. This ¢)(P/p) satisfies the same congruence for all ‘B, hence it satisfies

Y(a) = ol (mod pOL)
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3.1 Cyclotomic Integer Rings

Theorem 23. Let K = Q|(,,] and fix a prime p € Z with p = (p) be the corresponding prime
ideal of Z. If B, . . ., B, be the distinct prime ideals of Z[(,,] lying over o then

POk = (P1-Pa---B)°

and each one of them has same inertial degree f. Moreover, if m = p*n, where p | n then
e = p(p*) and f is the multiplicative order of p mod n.

Proof. Since K = Q[(,,] is a normal extension of Q, using Corollary 3 we conclude that all
prime ideals of Z[(,,] have same ramification index and inertial degree over p.

Note that (,;, = (pr, = (r(n. We will consider how o splits in each of the fields
K1 = Q[¢,+] and Kz = Q[(,], the result for Q[(,,,] will follow.

(A) How g splits in K1 = Q[(,x]
Casel p fm
Then k = 0 and therefore K; = Q[(,x] = Q and e(p/p) = 1 = ¢(p°).

Case 2 p|m
We will use following fact:

Let G, = €2™/™ m a positive integer. Then following holds (pp. 47, [1])
(a) If k is relatively prime to m then 1+ Gy, + ... + ¢%7 1 is a unit in Z[(,,].

(b) Let m = p*, p be a prime. Then p = u(1 — Cpk)W(pk) where w is a unit in
Z[C,x]. (see second claim of Theorem 7)

Using (b) we know that

p=u(l = Gu)?")
where u is a unit in Z[(,x]. Also, (1 — Cpkﬁ(pk) = p = pZ. Since p(p*) is the
degree of K over Q, any further splitting of (1 — () into primes would violate
Theorem 18; thus (1 — (,») must be a prime. Therefore, the principal ideal
(1= () of Z[(,] is a prime ideal lying over p and e((1 — (,x)/p) = »(p").

(B) How p splits in Ko = Q[(y]

Casel p fm
Then n = m and Ky = Q[(,] = Q[(n]. Therefore this case is same as the next
one, i.e. p{n.

Case 2 p|m

We know that p is unramifeid (Remark 18) since p 1 n and disc(Z[(,]) is a
divisor of n?(") as seen in third claim of Theorem 7. Thus we have

0Ok, = ZL[Cy) = p1-p2--- Py

where p; are distinct primes of Z[(,|, each with the same inertial degree f over

o, and rf = p(n).

Claim: f = f(p;/p) is the order of p mod n.

i. As stated in Remark 6, Gal(K>/Q) = Z; and an automorphism o of K

corresponds to the congruence class [a] € Z} for a € Z iff 0((,) = Cn-
In particular, let o denote the automorphism corresponding to [p]. Let (o)
denote the subgroup of Gal(K3/Q) generated by o. The order of the group
(o) is the same as the order of the element o, which is same as the order
of p mod n.
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ii. Fix any p = p;, we denote the field Z[(,]/p has degree f over Z, = Z/pZ
since that was the definition of f = f(p/p) = [Z[(.]/p : Z/pZ]. Conse-
quently, the Galois group of Z[(,]/p over Z,, generated by the automor-
phism 7 which sends every element to its p"* power. Hence the order of the
group (1) is f.

iii. For every a € Z, 0@ = 1iff ¢!" = (¢, and the latter holds iff p? = 1
(mod n). On the other hand, 7¢ = 1 iff (8" = ¢, (mod p). Suppose (% =
¢ (mod p). We can write p® = b (mod n), 1 < b < n. Then, ¢!, = ¢’ and
¢® = ¢, (mod p). This implies ¢®~! =1 (mod p) since ¢, is a unit in Z[¢,,).
As seen in third claim of Theorem 1, we have

n=1-G)1-¢) (-G
This implies that if b > 1 then n € p, but this is clearly impossible since
p € p C p and ged(n, p) = 1. Therefore b = 1. This proves that if ¢ =
(mod p) then p® =1 (mod n), which in turn implies that 0 = 1 iff 7% =1,
for every a € Z. Hence proving that (o) and (7) have the same order.
(C) Putting together the results for Q[(,+] and QI[¢,].

Fix primes By, ...,B, of Z[(,,] lying over py,...,p, respectively. All B; lie over g,
hence all B; must lie over (1 — (,») of Z[(], since we showed that (1 — () is the
unique prime ideal of Z[(,] lying over p.

PBi
RN
<1 - Cpk> Pi

NS
®
Figure 3.1: Hasse diagram of the lattice of subideals

From this diagram we conclude that

e(Bi/p) > e((L—(n)/p) = (")
fBi/p) > flpi/p)=f

Moreover, we have rf = o(n) and ¢(p*)rf = ¢(m). Then by Theorem 18, i; are
the only prime ideals of Z[(,,] lying over g and equality must hold in the inequalities
above. Therefore, ref = ¢(m). Thus completing the proof.

O

Corollary 5. If p t m, then g splits into p(m)/f distinct prime ideals in Z[(,,], where f is
the order of p mod m. Therefore

where f is the lease positive integer such that p/ = 1 (mod m) and p, are prime ideals of
Ok = Z[(m) lying over .

Theorem 24. There exist prime integers p and g such that Q[(,,] contains a subfield K in
which

PO0r = (p1...pr)°
where p; are prime ideals of O lying over o with inertial degree f.
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Proof. We will prove this by giving necessary criterion for finding p and ¢ satisfying given
conditions.

Step 1 There exist primes p and ¢ such that p splits into = disctinct primes in the Q[(,].

Given r, then by Corollary 5 such p, ¢ exist because we can find f’ such that it is
the smallest positive integer satisfying p/’ = 1 (mod ¢) with f’ = @ = q%l. This
is possible since by Fermat’s little theorem, f’ should be a factor of ¢ — 1 and this
condition can be satisfied here.

Step 2 These p and ¢ can be taken so that Q[(,] contains a subfield of degree r f over Q.

From Corollary 4 we can conclude that

Whenever L is normal over K with cyclic Galois group and p (a prime
ideal of K) splits into r prime ideals in L, then the decomposition field is
the unique intermediate field of degree r over K, and p splits into r prime
in every intermediate field containing the decomposition field.(pp. 102,

[1D

Since QI[(,] is normal extension of Q, and by Remark 6 we know that the Galois
group is cyclic, we can use this result. Also, 7f|p(¢) which implies that rf | rf’ or

FLf.
Step 3 We can ensure that the condition p =1 (mod e) is satisfied.

We can choose p for step 1 by keeping this condition in mind, using generalized
version of Chinese Remainder Theorem.

We will have to use following two theorems”

(a) Let nq,ng,...,n; be positive integers, with ged(n;,n;) = 1 whenever
i # j, and let ai,as,...,a; be any integers. Then the solutions of
simultaneous congruences, x = a; (mod n); for 1 < i < k form a
single congruence class mod n, where n = nj - - - ng.

(b) Let n = nq---ng where the integers n; are mutually coprime, and
let f(z) be a polynomial with integer coefficients. Suppose that for
each i = 1,... k there are N; congruence classes = € Z,, such that
f(z) =0 (mod n;). Then there are N = N; ... Ny, classes x € Z,, such
that f(z) = (mod n).

“pp. 53 and 58 of Jones-Jones, “Elementary Number Theory.” Springer Undergraduate
Mathematics Series (1998).

Step 4 o splits into r prime ideals, each with ramification index e and inertial degree f in a
subfield of Q[(,,], where p and g satisfy above three conditions.

This follows from Theorem 23.

O]

Remark 27. For e = 2, f = 3,r = 5, an example of such primes is p = 29,¢ = 61. (pp.
117, 11D

Theorem 25. Let K be a subfield of Q[(,,] and H be the subgroup of the Z, fixing K
pointwise. For a prime p € Z not dividing m, if f is the least positive integer such that
[pf ] € H where square brackets denote the congruence class mod m then f = f(p/p) for
any prime ideal p of K lying over .
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Proof. From Remark 6 we know that Gal(Q[(x]/Q) -

=~ Z*,. Note that K is a normal
extension of , hence we have Frobenius automorphism (/p)

() = al®¥ (mod p)

for all @ € Ok. Note that, f(p/p) = [Ok/p : Z/p] = [Ok /p : Z,). Therefore f(p/p) is the
order of ¥(p/g).

Moreover, Q C K C Q[¢,] where Q[(,,] and K both are normal over Q. If B is some
prime ideal of Z[(,,,] lying over p then ¢ (p/g) is the restriction of ¥ (P/p) to K. (pp. 118,
[11). Therefore ¢(p/p) has order equal to degree of p mod m. Thus f is the order of

(p/p)- O

Theorem 26. Let K = Q[(,], where p is an odd prime. If q is any prime different from p and
d is a divisor of p— 1 then ¢ is a d** power mod p iff q splits completely in a subfield Fy C K
having degree d over Q.

Proof. From Remark 6 we know that Gal(K/Q) = Z;, is cyclic group of order p — 1, hence
there is a unique subfield F; C K having degree d over Q, for each divisor d of p — 1. In
fact, IF; is the fixed field of the unique subgroup of the Galois group having order (p—1)/d.
Also, Fdl C Fd2 iff dy ‘ ds.

From Corollary 5 we know that ¢ splits in r distinct primes in K, where f = (p — 1)/r
is the order of ¢ in the multiplicative group Z,. Since, Z is a cyclic group of order p — 1,
the d'* powers form the unique subgroup of order (p — 1)/d, consisting of all elements
whose orders divide (p — 1)/d. Thus the following holds

¢/ =1 (modp) (since f is the order of ¢ mod p)

g=2z? (modp) forsomez € Z

P =1 (mod p) (Fermat’s Little Theorem (or) p — 1 is the order of Z;)

Therefore, f = (p — 1)/r divides (p — 1)/d implying that d|r. Hence Fy C F,.

Observe that I, is the decomposition field Kp corresponding to D(q/qZ), where q is
any prime ideal of O lying over the ideal ¢Z = (gq). This is because the decomposition
field must have degree r over Q, and F, is the only one. Thus by following result

If D(B/p) is a normal subgroup of Gal(L/K), then p splits completely in K’
iff K" C Lp (pp. 105, [1])

F; C F, is equivalent to ¢Z splitting completely in . O

3.2 Real Cyclotomic Integer Rings

Theorem 27. Let K = Q[¢,,] with &,, = (i + ¢, and p be a rational prime such that p t m

then
¢(m)

2f

00k = [] »e
=1
where the inertial degree f is the smallest positive integer satisfying p/ = +1 (mod m) and
pg are prime ideals of O = Z[§,,] lying over p.

Proof. We will use Theorem 25. First of all, H = {[1], [~1]} (which is not same as Z3).
Therefore, inertial degree f is the least positive integer such that p/ = +1 (mod m).

Since p 1 m, Corollary 5 implies that e(*3/p) = 1 for any prime ideal ¢ of Z[(,,] lying
over p. Moreover, Q[¢,,] is a subfield of Q[(,,], hence we conclude that its ramification
index is also 1.
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As seen in proof of Theorem 9, Q[(,,] has degree 2 over Q[¢,,] and degree ¢(m) over

Q. Hence we conclude that Q[¢,,,] and degree @ over Q.

Let p split into r distinct prime ideals p; of Z[¢,,], then Theorem 18 implies that fr =

@andwegetr:%. O

3.3 Quadratic Integer Rings

Definition 28 (Legendre symbol). Let p be an odd prime integer and n be another integer
not divisible by p, then we define Legendre symbol ( %) as

—1 otherwise

<n> B {1 if x is quadratic residue mod p
p

Definition 29 (Jacobi symbol). For a € Z and odd b > 0, such that ged(a,b) = 1, we
define Jacobi symbol (%) in terms of Legendre symbol as

a Fra\"
(5) = 11 <p>
where b = []"_, p/* with p; being odd primes.
Theorem 28. Let K = Q[\/m| where m is a square free integer and p be a prime integer.
(@ Ifp|m then pOx = (p,/m)*
(b) If p =2 and m is odd then
(2,1++y/m)? if m=3 (mod4)

POk = { (2,52, 15Y™y if =1 (mod 8)
pOk if m=5 (mod 8)

(c) If pis odd and p 1 m then

B (p,n+ /m)(p,n — /m) if(%)zl withm =n? (mod p)
pOK{pOK ()=

where pOx = {pz : v € O} just like’> pZ = px : x € 7.
Proof. Firstly, from Theorem 18 we conclude that there are only three possibilities:
b2 with f(p/p) =1

Ok = qp with f(p/p) =2
pipe with  f(p1/p) = f(p2/p) =1

Now we will prove all the cases separately:

(@) (p,/m)? = (p* py/m,m). This is contained in pOy since p | m. On the other hand,
it contains the ged(p?, m), which is p; hence it contains pO.

(b) We will consider all possibilities separately

2Coincidentally pZ = (p) = @, but every prime ideal is not a principal ideal.
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(1) m=3 (mod 4)

We have, (2,1++/m)? = (4,1+m+2y/m,2(1++/m)). Note that 2 divides each
one of the three factors. Now the result follows as in (a).

(i) m =1 (mod 8)
We have, (2, 1+5/H><2’ l_ﬁ) = (4,52 1 — /m, 1+ /m). Note that 2 divides
each one of the four factors. Now the result follows as in (a).

(iii)) m =5 (mod 8)
Claim: If p is any prime ideal of Ok lying over ¢, then Ok /p is not isomorphic
to Zs.
Consider the polynomial z> — z + =™ Since m = 1 (mod 4), this has a root
in Ok and hence a root in Ok /p. But since m = 5 (mod 8) this polynomial
reduces to 2 — 2 — 1 mod 2 which has no root in Z,. Therefore, O /p is not
isomorphic to Zs.
Since our claim is true, f = [Ok/p : Z,] > 1 and from our initial observations
we conclude that f = 2.

(c) We will consider all possibilities separately

0 ()~
We have, (p,n+ v/m) (p,n — v/i) = (p?,n2 — m, p(n — /i), p(n + /im)). Since

m =n? (mod p), p divides each one of the four factors. Now the result follows
as in (a).

(i) (%) =1
Claim: If p is any prime ideal of Ok lying over g, then Ok /p is not isomorphic
to Zp.
Consider the polynomial 22 — m. This has a root in O, hence a root in O /p.
But since m is not a quadratic residue mod p, this has no root in Z,,. Therefore,
Ok /p is not isomorphic to Z,,.

Since our claim is true, f = [Ok/p : Z,] > 1 and from our initial observations
we conclude that f = 2.

O

Theorem 29 (Quadratic Reciprocity Law®). Let p be an odd prime in Z, then

<2>_ 1 ifp=+1 (mod 8)
p) |-1 ifp=+3 (mod?8)

and for odd primes q different from p we have

<q> _J1 ifporg=1 (mod4)

p) |-1 ifp=q=3 (mod4)

Proof. From second claim in proof of Theorem 12 we know that QI[(,] contains Q[,/p]
if p =1 (mod 4) and Q[\/—p] if p = 3 (mod 4). Therefore we can use Theorem 26 to

conclude that for any prime number r, (%) = 1 iff (r) splits completely in Fy = Q[\/Lp].

We restate the splitting conditions from Theorem 28 as

3This is claimed to be the theorem with second largest number of proofs, first being the Pythagorean
Theorem. I discussed an elementary proof of this theorem in one of my earlier project reports (pp. 13, [21]).
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(r)Ox splits in Q[,/p] iff either r = 2and p =1 (mod 8) orr = g and (%) =1.

Now to accommodate the Q[,/—p] case simultaneously, consider following fact

22 +1=0 (mod p) has a solution® iff p = 2,1 (mod 4).

“n?41=0 (mod p) = p=2,1 (mod 4) can be proved by contradiction, on the contrary
assume that p = 3 (mod 4), hence n® + 1 = 3¢ (mod 4); using mod 2 conclude that it
should satisfy n? + 1 = 3 (mod 4) which is impossible. For p = 2,1 (mod 4) = n> +1=0
(mod p) use the fact that Z; is cyclic group of order p — 1, see pp. 7 of [1]

From this, since p is odd, we conclude that (%) = 1iff p = 1 (mod 4). Also using

definition of Legendre symbol, we can conclude that ( ) (9) = (%) for a, b not divisible

AV
by p.
Note that p = 1 (mod 4) holds for p = 1,—3 (mod 8) and p = 3 (mod 4) holds for

p = —1,3 (mod 8). Now combining all this information the theorem follows for r = 2.
When p = 1 (mod 4), F2 = Q[,/p]. The condition of splitting stated above implies that

(%) =1 <= (%) = 1, hence is symmetrical in p and ¢ and theorem follows in this

case. O

3.4 Pure Cubic Integer Rings

Theorem 30. Let K = Q[{/m] where m be a cubefree integer with m = hk? such that h and
k are squarefree and relatively prime. Also, p be a rational prime with p = (p).

(a) If p # 3 and p { m then the prime decomposition of pOp can be determined by factoring

2 —m mod p.

(b) Ifp# 3 and p | m then pOk = p3
(c) If p = 3 then then

Or — p if m#Z+£l (mod9) or h*#k? (mod9)
PR T e if m=41 (mod9) or h2=k (mod9)

Proof. We will prove each part separately:

(a) We will use the following result:
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Let L be a field extension of K with n = [L : K]. Fix an element a € Oy, of degree
n over K, such that L = K[a]. Therefore, Ok|[a] is an additive subgroup of Oy ..
Since Okla] and Op, are free abelian groups of rank mn, where m = [K : Q],
OL/Ok|a] is necessarily finite (see second claim of Theorem 3).

Fix a prime ideal p of O then if a polynomial h € Ok z], then [h] denote the
corresponding polynomial in (O /p) [z] obtained by reducing the coefficients of
h mod p. Now fix a monic irreducible polynomial ¢ € Ok|z] for a. Then [g]
factors uniquely into monic irreducible factors in (Ox /p)[x] and we can write

(9] = [91]“ [g2]* - - - [gr ]

where g; are monic polynomials over Ok and [g;] are distinct.
Let p be the prime of Z lying under p. If p doesn’t divide |01,/ Ox[a]| then

pOL = FPG -

where 3; is the ideal (p, g;(cv)) of Or. In other words, B; = pOr, + (gi(«)) with
f(Bi/p) equal to the degree of g;. (pp. 79, [1]1)

Here p # 3 and p { m, therefore p? { disc(/m) (Theorem 14). As seen in Theorem 3
and Theorem 13, this implies that p does not divide |O /Z[a]|. Now g(x) = 23 —m
is the irreducible monic polynomial for /m, hence

POk = BB b

where p;, = (p,9:(/m)) and f(p;/p) equal to the degree of g;. (then using Theo-
rem 18 we can calculate ¢; since r and f; are known)

(b) Since ged(h, k) =1, p | m implies thatp | k or p | h.

Consider the case when p { k. Let p be the prime divisor of p in Ok. Let § = O‘% =

Vh2k (see second claim of Theorem 13). Then p divides (h*k) = (8%) in Ok, so
that p must divide (3)Oy. Then p? divides (33) = (h?k) in O. Since ged(h, k) = 1
and hk is squarefree, we conclude that h?k = pb for some b not divisible by p. Then
(b)Of is not divisible by p. Considering the prime decomposition of pb we deduce
that p3 divides p in Of. Then from Theorem 18 it follows that pO = p3.

Alternatively, we can just show that p t |Ox/S| and use the result stated in (a).
Similarly, the claim holds for p { k, just instead of 8 consider o = v/ hk2.

(c) If 3 | hk then h? # k? (mod 9) since hk is squarefree. The desired conclusion then
follows from (b), since we can use same argument when p | h, with 3 replaced by
a = hk?.

Assume that 3 1 hk. We have following result

Let K be a number field of degree n over Q and a,...,a, € K. (pp. 86, [1])
@) discg(mzl, Qg,...,an) =r2disc(ay, a9, ..., ay) forallr € Q.
(ii) Let 8 be a linear combination of o, ..., a, with coefficients in Q. Then

discg(al + B e, ... ap) = discg(al, ceey Q)

Let v = (o — 1)?/3, then using above result along with third claim of proof of
Theorem 13 we conclude that disc(g (v) = 4discg (Ok). Now, using this with the
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result stated in (a) we can always compute the factors for m = +1 (mod 9) except
possible when m = £8 (mod 27). But 9 ¢ discg((’)K) when m = +1 (mod 9).
Finally, using Remark 18, we conclude that O is not the cube of a prime ideal and
in fact pOx = p?ps. (pp. 89, [11)

O

3.5 Octet Integer Rings

In this section we will discuss the normal closure of pure quartic field (pp. 41, [1]). Let
m € Z, and assume that m is not a square. Then K = Q[{/m] has degree 4 over Q
and L = Q[+/m, 1] is its normal closure over Q. The roots of 2* — m are denoted by the
alphabets as a = /m,b = i{/m,c = —¥m and d = —i{/m. Now we can represent the
Galois group Gal(L/Q) as permutations of a, b, ¢, d.

L = Q[i][/m] is an extension of Q[:] of degree 4. The four conjugates of v/m over Q[i]
are a, b, c,d. Any element of Gal(L/Q[i]) is determined completely by knowing to which
a, b, ¢, d the element sends /m. Let o be a permutation which maps a to b. Then we have:

o(a) b

o(b) = o(ia) =io(a)=1ib=c

o(c) = o(—a)=—-0(a)=-b=d
o(d) = o(—ia) =—io(a) =—ib=a

Therefore, o = (a, b, c,d) and Gal(L/Q[i]) = {1,0,02,03}.

L = Q[v/m][i] is an extension of K = Q[/m] of degree 2. Since this is normal
quadratic extension, we know that the permutation map 7 is conjugation map. There-
fore, 7 = (b,d) and Gal(L/K) = {1,7}.

Since 7 and ¢ are independent we conclude that

G = Gal(L/Q) = {1,0,0% 0% 1,07, 0°1,0°7} = Dy

where D, is the Dihedral group of order 8.
We can use this to illustrate Fundamental Theorem of Galois Theory

G=Ds L =Ql¥/m, i

PR AN

{L,r0% 0%} {l,0,0%0% {l,07,0% 0%} Q[V/m] Q[iv/m] Qlym,i Q1 —i)y/m] Q[(1+14)Vm]

/NSO N NN

{L,o?7}  {1,7} {1,6} {1,037} {l,07} Qlvm] Q[ Qliyv/m]

{1} Q
(a) The Hasse diagram of the lattice of sub- (b) The Hasse diagram of the lattice of subfields
groups of Gal(L/Q) = D, of L

Figure 3.2: Note that the subgroup and subfield lattices are in opposite direction, since the
containment of fixed fields is opposite to the containment of corresponding Galois groups

Theorem 31. Let K = Q[/m,i| where i = \/—1, m € Z and m is not a square. Suppose p
is an odd prime not dividing m. Prove that @ is unramified in K.
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Proof. Since K = Q[/m]Q]i], we will use Theorem 21(a) to prove this theorem. All we
need to prove is that p is unramified in L = Q[v/m] and M = Q[i]. We can refine the
arguments for proof of Remark 18 to deduce that

Let « € Ok, K = Q[a] and f be any monic polynomial (not necessarily irre-
ducible) over Z such that f(«) = 0. if p is a prime such that p { Néf (f'(«)), then
(p) = p is unramified in K (pp. 73, 43 of [1])

For L = Q[¥/m)], f(x) = 2* — m, then f'(x) = 4a3.

NE(f'(@) = NE (40®) = 4 (NE () = 28(=m)? = —25m?

Now since p is odd and p { m, g is unramified in L.
For M = Qli], f(z) = 2® + 1, then f(z) = 2z.

NE(f/(0) = NE (20%) = 22N (0) = 2
Now since p is odd, g is unramified in M. O

Remark 28. We can prove more general result that this p splits into three primes in pure
quadratic field Q[/m] by using Frobenius automorphism. (pp. 119, [1])
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Chapter 4

The Two Groups

In this chapter we shall be concerned with the lattices over the ring of rational integers.
Let K be a number field of degree n over Q. Let o1, ..., 0, denote the embeddings of K
in R, and 71,77, ..., Ts, 75 denote the remaining embeddings of K in C. Thus r +2s =n =
[K : Q]. Amapping K — R" is then obtained by sending each o € K to the n—tuple

(o1(),...,on(@), R71(a), ST () ... RTs (), ST5(v))
where R and S indicate the real and imaginary parts of the complex numbers.

Definition 30 (Fundamental parallelotope). Let A be a n—dimensional lattice in R™ then
fundamental paralleotope is the following subset

R"/A ={a1v1 + ...+ apv, 1 a; € [0,1)}
where v, ..., v, is any Z—basis for A.

Theorem 32. The mapping K — R™ sends O to an n—dimensional lattice Ax. A funda-
mental parallelotope for this lattice has volume

vol(R" /Ag) = 2i | disc(Ok )|

Proof. Fix an integral basis a1, as, ..., a, for Ok, these generate O over Z. Therefore
their images in R"™ generate Ax over Z. We have to show that these images are linearly
independent over R. Let M be the n x n matrix whose i** row consists of the image of «;.

oi(ar) ... op(ar) Rm(aq) Sm(ar) ... Rrs(ar) S7s(aq)
M = : : : : : :
oi(ayn) ... or(an) Rr(an) STi(an) ... Rrg(an) STs(an)
Now take determinant of this and use the fact that R7;(o;) = w and S7j(o) =

S toget
or(e1) ... or(an) Tl(al);ﬁ(al) n(a1)2—iﬁ(oz1) o Ts(al)-;?s(al) Ts(al);iﬁ(al)
det(M)= . : . :
or(om) ... or(om) T1 (an)JQrTT(an) Tl(an);iﬁ(an) o rs(an);r?s(an) fs(an);i?s(an)
oi(ar) ... op(a1) mi(on) mi(or) —T7i(ar) ... Ts(a1) Te(an) — Ts(ar)
=()"| : : :

or(an) ... or(an) 7i(ay) T(an) —Ti(an) ... Ts(an) Ts(ay) — Ts(am)

o 01(051) (TT(Oq) 7'1(051) —?1(041) Ts(al) —7‘73(0&1)

oi(an) .. op(ay) Ti(an) —Ti(an) ... Ts(an) —Ts(ay)

:; | disc(Ok)| = vol(R" /Ax)
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Since the determinant is non-zero, the images in R™ are independent over R. O
Corollary 6. The image of K is dense in R".
Definition 31 (Norm on R"). For each point x = z = (x1,...,z,) € R" set
N) = 10+ a20) o (a3 4 22)
Remark 29. If o € Ox maps to x € Ag, then N'(x) = NJ (a).

Theorem (Minkowski’s convex body theorem). Let A be an n—dimensional lattice in R"
and let E be a convex, Lebesgue measurable, centrally symmetric subset of R™ such that

vol(E) > 2" vol(R"/A)
Then E contains some non-gero point in A. If E is also compact, then equality can also hold
and > can be weakened to >.
For proof see Theorem 2.2.1 of [22].

Corollary 7. Suppose A C R™ is a compact, convex and centrally symmetric set with
vol(A) > 0. If a € A implies that |N'(a)| < 1, then every n—dimensional lattice A contains a
non-gero point x with

2n
WGl < vol(A)

vol(R"™/A)

4.1 Ideal Class Group

We have already defined what do we mean by an ideal class and stated the fact that ideal
classes form a finite group in section 1.2. Now we will prove that ideals classes form a
group and compute a bound for the size of the group formed by them. The proof for
finiteness is based on the relation of size of quotient ring with inertial degree which is
related to ideal factorization (pp. 132, [1]).

Theorem 33. The ideal classes in a Dedekind domain form a group under multiplication.

Proof. We know that ideal classes of Dedekind domain R are defined by equivalence rela-
tion ~. Hence given two ideals a and b of R, a ~ b if and only if «a = 8b for some «, 5 in
R.

Claim 1 Two ideals in R are isomorphic as R—modules iff they are in the same class.

Let a and b be two ideals in R belonging to same class. Therefore a ~ b and aa = b
for some «, 5 € R. We can define an R-module isomorphism, p : a — b such that
p(a) = bif aa = Bb. Hence, a = b.

Let a and b be two ideals in R which are isomorphic. Let the R—module isomorphism
be p : a — b hence for any ai,a2 € a, p(r-a1 + s-a2) = r-plar) + s - p(az) for
r,s € R. Observe that for a € a, p(a) € b, we have
pla)a={p(a)a:aca} ={p(aa):aca}l={apla):aca}={ab:beb} =ab
Therefore p(a)a = ab and a ~ b.
Claim 2 If a is an ideal of R and «a is principal for some « € R then a is principal. Therefore
principal ideals form an ideal class.

Let aa = (k), then aa = 1- (k). Therefore, a ~ (k) and previous claim implies that
a and (k) are isomorphic as R—module. Hence a is a principal ideal and principal
ideals form an ideal class.
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Claim 3

Claim 4

The ideal classes in R form a group iff for every ideal a there is an ideal b such that
ab is principal.

Product of two ideal classes is obtained by selecting an ideal from each, multiplying
them and taking the ideal class which contains the product ideal (product ideal is
the set of all finite sums of elements of form ab with a € a and b € b). The resulting
ideal class doesn’t depend on the particular ideal class chosen, but only on the two
original ideal classes. Multiplied in this way, the ideal classes form a group. The
identity element is the class Cj consisting of all principal ideals. Therefore, for the
existence of inverse it is necessary that for every ideal a there is an ideal b such that
ab is principal.

For every ideal a of R there is an ideal b of R such that ab is principal.

Let o be any non-zero member of a and let b = {8 € R : fa C («)}. Then b is
easily seen to be an ideal (non-zero since « € b) and clearly ab C («). Now consider
following two results (pp. 57, [1])

(a) In a Dedekind domain, every ideal contains a product of prime ideals.

(b) Let a be a proper ideal in a Dedekind domain R with field of fractions F.
Then there is an element v € F'\R = ' — R such that ya C R.

1
Consider the set A = —ab. Note that A C R since ab C («) and is in fact an ideal. If

(6]
A = R then ab = (a) and we are done.

We will prove that .4 can’t be a proper ideal of R. If A is a proper ideal then we can
use (b) from the box above to conclude that v.A C R for some v € F\R. Since R
is integrally closed in field of fractions F, it is enough to show that ~ is a root of a
monic polynomial over R.

Observe that A contains b since a € a. Thus vb C 7.A C R. Since b and ~.4 both
are contained in R, it follows from the definition of b that vb C b. Now fix a finite
generating set {aq, ..., a;,} for the ideal b and using the relation vb C b we obtain
following matrix equation

where M is an m x m matrix over R. By taking determinant we can obtain a monic
polynomial over R having v as a root. Hence completing the proof.

O]

Remark 30. The ideal class group of R is isomorphic to the quotient group G/H, where
G is the group of fractional ideals of F' and H is the subgroup consisting of the principal
ideals. (pp. 92, [1])

Theorem 34. Every ideal class of O contains an ideal a with

Ok /a] < % (j) Vdisc(Ok)|

Proof. We will divide the proof in several parts
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Claim 1. Every n—dimensional lattice A in R™ contains a non-zero point x with

Vel < 2 (2) v/

n

We will use Corollary 7, and hence define A as

A= {x:(xl,...,xn):|a:1|—l—...+|a:T|+2(1/m%+1+$%+2+...+,/x%71+x%> gn}

This set is clearly centrally symmetric (—x € A < x € A) and compact (every open
cover has finite subcover). To prove that this set is convex, let x,y € A, then we
can see that z = % € A by using triangle inequality. Since choice of x and y was
arbitrary, we conclude that A is a convex set. To prove a € A = [N (a)| < 1, we will
use arithmetic-geometric mean inequality. Note that geometric mean of coordinates
of ais {/|N(a)| and arithmetic mean of coordinates of a is at most 1. Therefore,

VIN@)|[ <1 = |N@)| <1

Now we just need to prove that

1(4) = Tor (T 4.1
vol(4) = ﬁ (2) “4-1)
We will prove this by induction. Let V, 4(¢) denote the volume of the subset R"+2¢
defined by

lw1] + ..+ Jar| + 2 (\/337%-1-1 +$72n+2 +.F \/x72~+23—1 + x72~+23> <t
then

Vis(t) = ™25V, 4(1) (4.2)

Now we will compute V; 4(1), if » > 0 then since it’s centrally symmetric (instead of
integration -1 to 1 we can integrate O to 1 twice) and using the relation between one
dimensional Lebesgue measure and n—dimensional Lebesgue measure (note that
along r we get linear/square regions).

‘/r,s(l) = /‘/rlsl_xd

_ / (1—2)" " 254zV._ (1) (using (4.2))
0

2

= Vi_1s(1
r4+2s " 1’5( )

Applying this repeatedly we obtain

27"71
(r+2s)(r+2s—1)---(2s+2)

Vm(l) = Vl,s(l) (4.3)

Now we need to determine Vj (1) for s > 0 (note that along s we get disc/spherical
regions)

Vis(1 //V1511—2 z? + y?)dz dy
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with the integral taken over the circular region 22 +? < 1/4. Transforming to polar
coordinates, put z = kcos(6),y = ksin(d) and dzdy = k dk df where 0 < 6 < 2«
and 0 < k < 1 to get

1 2
Vis(1) = /2/ Vi1 (1 — 2k)k df dk

27r
= / / k)2 VEdodk Vi, (1) (using (4.2))

= O

= 27r/ (1—2k)>kdk V1 s1(1)
0

1
/ A1 —¢)de Vis—1(1) (substitute 1 — 2k = ¢)
0

1
>< e
2 " 2s(25+ 1)

3 o

Vis—1(1)

Applying this repeatedly we obtain

T8 1
Vis(1) = (5) mvl@(l) 4.4)
Now Vj o(1) = 2 i.e. length of the set [—1, 1] and we conclude that

Vo,s(1) = <g)s (2324—1)'

Using this in (4.3) we obtain

) = g (3) =2 (3)

Using this in (4.2) we obtain

" (TS
Vis(t) = 52 (5)
Put ¢ = n to obtain (4.1).

Claim 2. Let b be a non-zero ideal in O, then

vol(R"/Ay) = \/|dlSC (OKr)| |0k /|

where Ay is the image of b in R™.

As seen in second claim of Theorem 3, taking square root both sides, if M is an
n-dimensional sublattice of A then vol(R™/M) = |A/M|vol(R™/A). Hence

vol(R"™/Ap) = |Ax/Ap| vol(R" /A k)

Using Theorem 32 and since b is an ideal, we conclude that
Vol(R" /Ae) = 5/ TAc(Ox] |0 /b
Claim 3. Every non-zero ideal b in O contains a non-zero element « with
NE(@) < 22 (1) Vids©lox /s
This follows by using Remark 29 and second claim in first claim.
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Given an ideal class C, consider the inverse class C~! and fix any ideal b € C~!. We can
obtain « as in third claim. b contains the principal ideal («), hence («) = ba for some
ideal a € C (as in Theorem 33). Finally using the fact (a) and (c) from the box given in
Theorem 18, we have

IN§ ()] = |0k /{a)| = |Ok /ab] = |Ok /a] Ok /b]
and the result follows. O
Corollary 8. |disc(Og)| > 1 whenever Ok # Z.
Example 2 (Cyclotomic Field). Let ¢ = €2™/7, then Z[(] is a principal ideal domain.

Solution. Let K = QI[(], from Theorem 8 we know the value of discriminant, hence

-1
6! /4\ 2
Ox/al < 5 <7T> VT~ 4.13
The possible prime divisors of a are necessarily among the prime ideals lying over prime
ideals generated by 2 and 3. So we factor (2)Ok and (3)Og. From Corollary 5 we
know know that inertial degree f is the smallest integer such that p/ = 1 (mod 7). For
p=2,f=3and p =3, f = 6, therefore

(2)Og =p1p2 and (3)Ox =p
Hence (3) is prime in Ok and every prime ideal dividing (3) is equal to (3) so p is principal.
For (2), observe that the minimal polynomial factorizes mod 2 as (following the box in

Theorem 30)

O+ + 4+ B3+ 24+t +1=EB+2+1)E+t+1) (mod 2)

To factorize polynomials f(z) mod p we can use Berlekamp’s algorithm. This may
be accessed in the PARI/GP package® using the factormod(f,p) command. For
example: 237 = (z+2)(2?+32+4) mod 5, and in PARI/GP, factormod(x® — 7,5)
returns (1,5) * x + Mod(2,5), 1;Mod(1, 5) * x? 4+ Mod (3, 5) * x + Mod(4,5), 1].

“Can be accessed directly from web-browser: http://pari.math.u-bordeaux.fr/gp.html

In fact
(E+E+D(E+¢+1)¢t =2

so we have
2)0k = (C+C+ I+ +1) = pip2

hence both p; and ps are principal. It follows that every ideal in Z[(] is principal.

Remark 31. As observed in this example, whenever Ok remains a prime ideal, then
then the corresponding prime ideal p is principal.

Example 3 (Real Cyclotomic Field). Let & = ¢*™/1 4 ¢=27/11 then 7€ is a principal ideal
domain.

Solution. Let K = QI[¢], from Theorem 10 we know the value of discriminant, hence

4"
\OK/ay§§5<> V114 ~ 4.64
T

55


http://pari.math.u-bordeaux.fr/gp.html

The possible prime divisors of a are necessarily among the prime ideals lying over prime
ideals generated by 2 and 3. So we factor (2)Ok and (3)Og. From Theorem 27 we
know know that inertial degree f is the smallest integer such that p/ = 41 (mod 1)1. For
p=2,f=5and p =3, f =5, therefore

(2)Og =p and (3)Ok = p’
Thus, it follows from Remark 31 that Z[¢] is a principal ideal domain.

Example 4 (Quadratic Fields). If K = Q[/m], determine the ideal classes in Ok for m =
6,437, —5 and -39.

Solution. To compute discriminant we will use Theorem 11 and for factorization of p in
Ok we will use Theorem 28.

(a) m=6

2 /4\°
Ok /al < 55 (W) V4 % 6] ~ 2.45

We need to consider p = 2 only. (2)Ox = (2,v6)2. Now to check whether it’s
principal or not, check for existence of an element in O whose norm is +£2. Writing
a®? — 6b> = £2, we easily find that 2 + /6 is such an element. This shows that (see
box given in Theorem 18)

Ok /(2 +V6)| = INE(2+V6)| =2

From |Ok /ab| = |Ok /a||Ok /b| we conclude that (2 + v/6) is a prime ideal and that
it lies over 2, hence (2 + v/6) = (2,v/6). Hence Ok is a principal ideal domain (class
number is 1).

(b) m =437

2l /4\"°
Ok /al < 55 <W> V1437 ~ 10.45

We need to consider p = 2,3,5 and 7. Note that m = 19 x 23 = 5 (mod 8), therefore
(2) remains inert in Ok. Also, using properties of Legendre symbol we get

BN _ (2 (BOY (2o (B (3=
3 ) \3) 7 5 ) \5) 7 7 ) \7)
Hence (3), (5) and (7) also remain inert in Ok. Therefore, Ok is a principal ideal
domain (class number is 1).

() m=-5

21 (/4
|0k /a| < 9] <F> V|4 x (=5)| ~ 2.85

We need to consider p = 2 only. (2)Of = (2,1++/=5)2. As in (a), we will first check
that if (2,1 4+ v/—5) is principal or not. If it were, say («), then

INE(0)] = [0 /{a)] = 2

hence N§ = +2. Writing o = a+by/=5 with a, b € Z we obtain a® + 50 = +2 which
is impossible. But, (2,1 + +/—5)2 is a principal ideal (since product of two principal
ideals). Therefore, (2,14 +/=5) is an element of order 2 in the ideal class group. We
conclude that ideal class group has two ideal classes (class number is 2).
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(d) m=-39
2! (4
Ok /al < 55 <> V=39 ~ 3.97
7T
We need to consider p = 2 and 3. We have

@0k = (22557 (0 1VE0) gy and 310k = (57T =2
Note that [p;] is inverse of [ps] since their product is a principal ideal class. It must
be the case that the ideal class group is generated by [p] and [p;]. Therefore there

are either three or four ideal classes.

Consider the ideal b = (3 + v/=39). N (3 + v—39) = 48 = 2" - 3. Note that 2 does
not divide 3 + /=39, yet b factors into a product of prime ideals, so only one of p;
and ps can divide evenly into b. So it can’t be a cyclic group of order 3 or a Klein 4
group. Therefore, either b = p?p or b = p3p and thus p?p or p3p is a principal ideal.
This implies that p? and p belong to same ideal class (or p3 and p belong to same
ideal class).
PPl pip~l=pivp=piel
Further,
pi~1, pip2~1=pf~py

where 1 represents a principal ideal. So ideal class group is of form {1, [p1][p?][p3]}.
Hence the ideal class group if a cyclic group of order 4 (class number is 4).

Example 5 (Pure Cubic Fields). If K = Q[{/m)], determine the ideal classes in O for m = 6
and 19.

Solution. To compute discriminant we will use Theorem 14 and for factorization of p in
Ok we will use Theorem 30 (factorize polynomials as done in Example 2). Also following
result will be useful:

We can calculate norm of potential principal ideal generators (follow Example 1):

L. N§(a+by/m) = a® + b*m

2. Ng(a +b¢m + cVm?) = a® + b¥m + 3m? — 3mabe

(@) m=6

| /4
Ox /a < % () V= 2706)7] ~ 8.82

™

We need to consider p = 2, 3,5 and 7. Note that since 2 and 3 divide 6, both of them
are ramified (Remark 18). Also note that the basis of O is {1, V/6, V62 }.

<2>OK = p? = <27 %>3

30k = p3=(3,V6)

(5)0K = psps= <5, 6 1> <5, V62 + 6 + 1>
MOk = pspepr = (7, V6+1) (7,V67 — Vo + 1)

- <7,€f6+1><7,%+2><7,%—3>

Now to check whether (2, v/6) is principal or not, check for existence of an element
in O whose norm is +2. Writing a® + 60> + 2, we easily find that —2 + /6 is such
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(b)

an element. Now as seen in first part of previous examples, (—2 + V/6) = (2, V/6)
and hence p; is principal. Note that N (V/62 + V/6 + 1) = 25 = 52, Therefore

)0k = p}=(-2+V6)
(5)0K = paps = (V6-1) (V62 + V6+1)
(O = popopr = (V6+1) (7,¥6+2) (7,76 -3)

For (3)Ox we will use the fact that 2 x 3 = 6 and p; is principal, thus p» is also a
principal ideal (pp. 133,[1]). Note that since one of factor of (5)Of and (7)Ok,
other factor has to be principal, since their product is a principal ideal. Hence, Oy
is principal ideal domain (class number is 1).

m =19
3! (4
O/l < 55 () V= 3(19)2] ~ 9.31
T
We need to consider p = 2,3,5 and 7. Let o = /19 then the basis elements of O

2
are 1,a, 3 = %" hence

(200 = pip2=(2,a—-1)(2,0> +a+1) = (2,a—1)(2,38)
(3)0Ox = pips

(5)0x = psps = (5,a+1) (5,0 —a+1) = (5,a+1) (5,33 — 2)
(NOk = pr

To factorize (3) O I will use computer algebra system (since I don’t know any easier
way)

The general algorithm for computing prime ideal factorizations is discussed in
Cohen’s books on computational number theory. See Algorithm 6.2.9 and Algo-
rithm 4.8.17 of A Course in Computational Algebraic Number Theory. Springer-
Verlag (1996); Algorithm 2.3.22 of Advanced Topics in Computational Number
Theory. Springer-Verlag (2000).

This may be accessed in the PARI/GP package wusing command
idealfactor(nfinit(f(x)),p). The output is an array where each row is
associated to a different prime ideal. A row has the form [[p, v, e, f, w]e], where
e and f are the ramification index and residue field degree for that prime ideal.
The vector v is related to a second generator ~ such that the prime ideal being
described is (p,~) and w is related to the inverse of the prime ideal.

Here is the SageMath code for ideal factorization:

sage: K.<a> = MumberField(x*3-19); K

Number Field in a with defining polynomial x~3 -
sage: I=K.ideal(3); I

Fractional ideal (3)

sage: F=I.factor(); F

(Fractional ideal (3, 1/3*a”~2 + 1/3*a + 1/3))72 * (Fractional ideal (3, 1/3*a”2 + 1/3

19

*a - 2/3))
Therefore,
l+a+a®\?/, —2+a+a?

We have ps ~ p;1p3 ~ p; ' and pg ~ p;'. Hence the class group is generated by
po, p3 and pg. Now again using SageMath to multiply these:
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sage: K.<a> = NumberField(x~3-19)

sage: I = K.fractional_ideal(3,1/3*a”2 + 1/3%a + 1/3)
sage: J = K.fractional_ideal(2z, a»2 + a + 1)

sage: I*J

Fractional ideal (-1/3*a"2 - 1/3*a - 1/3)

p3p2 = <3¢5> <2736> = <_/8>

sage: K.<a> = NumberField(x"3-19)

sage: I = K.fractional_ideal(3,1/3*a”2 + 1/3*a + 1/3)
sage: J = K.fractional_ideal(5, a*2 - a + 1)

sage: I*J

Fractional ideal (1/3*a”2 + 4/3*a + 16/3)

P3P = <375> <5’3B*2> = <5+Oé+ﬁ>

Therefore, p3 ~ p; LN ve ! and we conclude that the ideal class is generated by the
class containing ps. Finally, we check the degree of p3 using SageMath. It’s clear that
degree should be a multiple of 3.

sage: K.<a> = NumberField(x~3-19)
sage: I = K.fractional_ideal(3,1/3*a”2 + 1/3*a + 1/3)
sage: I*I*I

Fractional ideal (1/3*a”2 - 2/3*a + 4/3)

pi=(3,8°=(1-a+p)

Hence it has three ideal classes (class number is 3).

Remark 32. In part (b), this course of action was motivated by the fact that we were not
able to find elements r, s € Ok having norm 3 and such that (r, s) = Ok. On the contrary
if m =17 = —1 (mod 9) then the corresponding cubic field have class number 1.

The standard way of proceeding is collecting many elements of small norm and form-

ing quotients; if we have elements of norm 2 and 6 we can in

norm

§enera1 find an integer with
3. Note that the integer basis for this case is 1, a, § = % form = +1 (mod 9).

Now we look for elements of the form a + ba + ¢ with interesting norms and x, y, z small.
A little inspection shows that

] Element of Ok \ Norm for m = 19 \ Norm for m = 17 ‘

-1+« 18 =232 16 = 2*
1+a+8 27 =33 3
1+2 8§ =23 20=2%.5
-1+8 18 6=2-3
—-2+8 20=2%.5 -2
1+« 20 18
2+a+p3 12=2°.3 2
4+a+p 30=2-3-5 48 =2%.3
3—a 8 10=2-5
l—a+p 27 3

For m = 17 we have |Ok /a| <9, and o = v/17

{
{
{
{

200k = pip2=(2,a+1){2,a’ +a+1)=2+a+p)(2-7)

30k = p3pa=(1+a+p8)(l—a+p)

50k = P5P6=<5,a+2)<5,a2+3a_1>:<Qi;i5><5(2;_aa+ﬁ)>
Or = p7

Hence the ring of integers of Z[+v/17] is a principal ideal domain.

59



4.2 Group of Units

Theorem (Dirichlet’s Units Theorem). Let U be the group of units in Ok. Let r and 2s be
the number of real and non-real embeddings of K in C. Then U is the direct product W x V
where W is a finite cyclic group consisting of the roots of unity in K, and V is a free abelian
group of rank r + s — 1.

Definition 32 (Fundamental system of units). The free abelian group V of rank r + s — 1

consists of products of some r + s — 1 units wy, ug, ..., Urrs_1
kl kl kr+s—1
Up Uy - Upygg

where k; € Z are uniquely determined for a given element of V. This set of  + s — 1 units
{u1,ug, ..., urys—1} is called fundamental system of units in O

Definition 33 (Fundamental unit). A fundamental unit is a generator (modulo the roots
of unity) for the unit group of the ring of integers of a number field, when the group has
rank 1.

Remark 33. The unit group has fundamental unit iff free abelian group V" has rank 1 and
this is possible only when the number field is real quadratic field, cubic field or a totally
imaginary quartic field.

(a) For real quadratic field » = 2,s = 0 therefore, U = {iuk : k € Z} where u is
fundamental unit in O.

(b) For pure cubic field r = 1, s = 1 therefore, U = {iuk : k € Z} where u is fundamen-
tal unit in Og.

(c) For quartic field with » = 0,s = 2 we have U = {Guk : k € Z} where 6 is a root of
unity and u is fundamental unit in O

Theorem 35 (Algorithm for determining fundamental units in a real quadratic field). Let
m be a square free positive integer.

(a) m=2,3 (mod 4)

1. Take the smallest positive b such that either mb® + 1 or mb? — 1 is a square, say
2
a®, a>0

2. a+ by/m is the fundamental unit in Z[/m].
(b) m=1 (mod 4)

1. Take the smallest positive b such that either mb? + 4 or mb* — 4 is a square, say
a?, a > 0 with a having same parity as that of b.

2. % is the fundamental unit in Z [Hﬁ }

Proof. We will prove both cases separately.

(a) Note that Nff (a + by/m) = a* — b*m = +1 for a unit a + by/m. Hence, we have
to consider numbers of form mb? £+ 1, b € Z such that it is a perfect square. Now,
a + by/m is a power of fundamental unit v (Remark 33). If ub =a+ by/m for k > 1
then it will contradict the fact that a and b are the smallest possible positive integers
such that a + by/m is a unit.
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(b) As noted in Remark 8, for m = 1 (mod 4) the elements of Ok are of form %
where a, b have same parity. Then, N(g (”H;‘/ﬁ) = “2_f2m = +1 for a unit %
Then as in previous case, for least positive value of b and « satisfying these condi-
tions, we get fundamental unit.

O]

Remark 34. We can use continued fractions to find minimal positive solution for m = 2,3
(mod 4) (see pp. 57 of [21])

Example 6. Let K = Q[\/m], determine the fundamental unit in Ok for m = 2,3,5,6,13
and 17.

Solution. We will use above algorithm.

’ m ‘ minimum solution ‘ fundamental unit ‘

2 2(1)2-1=1 142
3 3(1)2 +1 =22 2++/3
1
5 5(1)2—4=1 +2\/5
6 6(2)% +1 = 52 5426
V1
13| 13(1)2—-4=32 %
17 172)?% -4=282 4417

Theorem 36 (Lower bound of fundamental unit for pure cubic field). Let K be a cubic
extension of Q having only one embedding in R. Let u be the fundamental unit in Ok, then

for | disc(Ok)| > 33
|disc(0i<)| - 27 <

Proof. From Remark 33 it follows that « > 1 and all units in O are of form +u¥, k € Z.

2

Claim 1 Let u, ae’” and ae~" be the conjugates of u. Then u = a2 and

disc(u) = —4sin?(0)(a® +a=> — 2cos(h))?
Since, N§ (u) = 1 = ua®, we have u = a~2. From Remark 5 we know that
disc(u) = (ae 02 (4 — ae®)?(u — ae”?)?
0 5\ 2
= —4a*sin®() ( (ae’ +ael)u+a>
= —4a’sin?() (u — 2aucos(f) + a2)2

a™3 — 2cos(f) + a3)2

Claim 2 |disc(u)] < 4(u® +u=3 + 6)
Let 2 = a® + a3 and ¢ = cos(#), so from previous claim we have, f(z) = —4(1 —
c?)(z — 2¢)?, now we will find the minimum value of

g(x) = %(a:) — 2t =(1—-c*)(x—20)? — 2% = —*2® + de( — 1)z — 4c?
= ¢'(r) = —2c%z +4e(c* —1) =0
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2(c? —1)

. ):4(1—202)§4

=g(x)<yg <
since minimum value of ¢? = cos?(#) = 0. From this we conclude that

()] = | = 4(g(x) +27)] < 4(4 +2°) = 4(u® + u™° +6)

From this claim we conclude that

w43 | disc(u)| 6
4
As given in box of Theorem 13 we have
g O]
4
disc(O
=ud > 7‘ ISCEL K)| —6—u?
Since u > 1 we have
o | disc(Ok)| - | disc(Ok)| — 28
4 4

For disc(Ok)| > 33, we have

di - 27
2 14O

Example 7. Let K = Q[v/2], prove that is the fundamental unit of Ok.

_t
V2 —
Solution. Let a = v/2, Ok = Z[a] and disc(a) = disc(Ox) = —108 > 33. If u is the

fundamental unit, then from the theorem above, u? > 20.25 > 20. Therefore, u > 2.72
and u? > 7.39. Now,
1
B=——"=0a’+a+1
a—1

is unit in O since Ng(a —1)=2-1=1 (see Example 1). We can see that (V2 ~ 1.26)
1<f<4 =1<f<u?

and 3 is a power of u, hence 5 = u.

Remark 35. There is no known formula for calculating fundamental unit but is intimately
related to a unit ¢, called circular unit, in ring of algebraic integers and satisfies: ¢ = u”
where h is the class number for that ring[11].
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4.3 Solving Diophantine Equations

In Example 6 we saw that 1 + /2 is the fundamental unit in Z[v/2], but clearly it’s not a
root of unity. We can use powers of 1 + 1/2 to generate infinitely many solutions to the
Diophantine equation 2% — 2y? = +1 (pp. 20, [21]). Just as quadratic fields enabled us to
solve Diophantine equations of form 22 —dy? = +1,4 (pp. 55 [5]) and 2> +z+b = y> (pp.
26, [21]), pure cubic fields enable us to solve Diophantine equations of form az3+by? = c.
Though we have already proved that such equations have finitely many solutions (pp. 64,
[22]), but for some special cases we can tell the exact value of maximum possible number
of solutions.

Theorem 37 (Delaunay'-Nagell> Theorem). The equation x® + dy®> = 1 has at most one
solution in integers x,y different from zero. If 1,y is a solution, the number x;, + y1v/d
is either the fundamental unit of K = Q[v/d] or its square; the latter can happen for only
finitely many values of d.

Proof. If d = +1 then the given equation has only trivial solutions. If d contains a cube
larger than 1, it can be absorbed into the factor y3. Hence we can assume that d is cubefree
and larger than 1. From Example 1 we know that Néf (a4 b¥/d) = a® + db® therefore, if

Néf(m—i—m%):xi’—kdy:le, y1 # 0

then z; 4 y1 V/d is a positive unit of KX, and a such is a positive power of the fundamental
unit © mentioned in Remark 33. It therefore suffices to show that no power of a positive
unit smaller than 1, with exponent larger than 2, is of the special form z+y+/d and to show
that the square of a unit is of this form in only finitely many cases. We divide the proof
in four parts. I won't give details of the proof of these parts since they involve lengthy
arguments and details can be found on pp. 113-119 of [5]. Let d = ab® where a,b are
coprime and squarefree, also o = Vab?, B = Va2band X,Y € Q.

Claim 1. The square of an irrational unit of K of the form v = = + ya + 23, with x,y, 2 € Z is

itself of the form X + Ya only if v = 1 + /20 — +/50. The square of a unit of K of

T+ ya+ zf8

the form v = with 3 1 zyz (if such exists) is itself of the form X + Y«

for only finitely many values of d.
To prove this we will need FLT for n = 3 (pp. Theorem 2.4.3, pp. 75, [21]); (£5,3)
are the only solution of z? 4+ 2 = y3 (Example 1.7.3, pp. 26, [21]) and following

result by Louis Joel Mordell® is a very weak consequence of a result by Kurt Mahler*
(uses p-adic version of Roth’s Theorem, see pp. 68 of [22])

Suppose that m > 2,n > 3,ab # 0,gcd(z,y) = 1. Then as max(|z|, |y|) — oo,
the greatest prime factor of az™ + by™ tends to infinity (pp. 155, [5]).

Claim 2. The fourth power of a positive irrational unit of K is never of the form X + Y.

This follows from previous claim.

! Announced in French Academy of Sciences in three parts in 1916, 1920 and 1921; for the part reported
in 1921 see: http://gallica.bnf.fr/ark:/12148/bpt6k31239

2«Solution compléte de quelques équations cubiques a deux indeterminées.” Journal de Mathématiques
Pures et Appliquées 9, no. 4 (1925), 209-270. http://sites.mathdoc.fr/JMPA/afficher_notice.php?id=
JMPA_1925_9_4_A6_0

3«The Integer Solutions of the Equation y* = az™ + bz" "' + ... + k.” Journal of the London Mathematical
Society 1, no. 2 (1926): 66-68. http://dx.doi.org/10.1112/jlms/s1-1.2.66

*“On the greatest prime factor of ax™ + by™.” Nieuw Archief voor Wiskunde 3, no. 1 (1953): 113-122.
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Claim 3. The cube of a positive irrational unit of K is never of the form X + Y«

Claim 4. If p > 3 is a prime and v = W is a positive unit smaller than 1, then v? is

not of the form X + Ya

Along with Theorem 13, we need to use following result

Suppose x and y are integers such that ged(x, dy) = 1, such that
(z+yVd)" =X +YVd+ ZVd?

where X,Y and Z are rational and n» > 1. Then XY Z # 0 except in two
instances: (/10 — 1)° = 99 — 45v/10 and (/4 — 1)* = —15 4 12/2 (pp. 110,
[5]).

From second, third and fourth claim it follows that any non-zero solution of 23 4 dy* = 1
must correspond either to the fundamental unit of K, or to its square. Not both of these
numbers can lead to solutions, thus completing the proof.

O]
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Conclusion

The proof of second case of FLT for regular primes is direct application of Kummer’s higher
reciprocity laws and was his main achievement, for complete proof refer [9]. Hence com-
bining both cases, Kummer proved:

Theorem (Kummer, 1847°). The equation xP + y? = zP has no solution in integers if the
exponent p is a regular prime.

Kummer found a criterion in terms of Bernoulli numbers By = 1,B; = —%,Bg =
%,Bg = Bs =... = Byogg>1 = 0,B4 = 5—01, ..., that could be checked reasonably conve-
niently, at least for primes less than 100.

Theorem. Let h, be the class number of Z[¢ + ('] and h be the class number Z[(] where

2mi

¢ =e » and pis a prime integer. Then
(a) If p|hy then p|h, where h, = %
(b) pl|hs if and only if there is some integer k with 1 < k < %, such that p? divides the
sum 307 5.
(c) If p|hs then p divides the numerator of a Bernoulli number Bsj, with 2 < 2k < p — 3.
(d) pis regular if and only if it does not evenly divide the numerator of any of the first p — 3
numbers in the series of fractions of the Bernoulli Numbers B,,.

Using this theorem Kummer proved FLT for prime exponents less than 100 except 37,
59 and 67. These three are the only irregular primes less than 100, since 37 divides the
numerator of Bss, 59 divides the numerator of B4y and 67 divides the numerator of Bsg.
Actually this is checked using following congruences relation derived by Kummer between
1850-1857, for its proof refer pp. 44, of Neal Koblitz’s book®.

Theorem. Let n,m,p,r € N where n,m are even numbers and p is prime number with
p—1 )(n, then

B B
1— n—1) —n =(1— m—1) —m d r
(1=p"") == (1-p"")—= (mod p)
when n = m (mod ¢(p")), where ¢ is Euler’s totient function.

In 1915, Kaj Lgchte Jensen’ proved that there are infinitely many irregular primes, for
proof see §7.2 in Chapter 5 of Borevich-Safarevich®. We still don’t know that whether
there are infinite or finite number of regular primes. Hence, we face the similar dilemma
as faced by Germain in 1823 (see Corollary 1) but now have a better understanding of
algebraic numbers.

>“Beweis des Fermat'schen Satzes der Unméglichkeit von z* + y» = 2z fiir eine unendliche An-
zahl Primzahlen \.” Lejeune Dirichlet communicated to the Koniglichen Preuflischen Akademie der Wis-
senschaften zu Berlin in 1847. The proof was given in modern form, using Dedekind’s notion of ideals, by
David Hilbert in 1894.

®p-adic Numbers, p-adic Analysis, and Zeta - Functions. New York: Springer-Verlag, 1984. http://dx.doi.
org/10.1007/978-1-4612-1112-9

7“Om talteoretiske Egenskaber ved de Bernoulliske tal.” Nyt tidsskrift for matematik 26 (1915): 73-83.
http://www.jstor.org/stable/24532219

8Number Theory. New York and London: Academic Press, 1966
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Appendix A

Lattice

Within mathematics, the term lattice has different meanings in different contexts. While
studying number fields we came across this term lattice in three different contexts, which
I will discuss here (in the order of their occurrence in this report). I will be deliberately
avoiding discussion of properties of sublattices.

A.1 Module

Let R be an Dedekind domain and F' be the corresponding field of fractions.
R—lattice is a finitely generated R—torsion-free module®.

Each R—lattice M is a R—submodule of a finite dimensional vector space V over F,
namely V' = FM. We call M a full R—lattice in V, the adjective indicting that M contains
a F—basis of V. Let M and N be a pair of full R—lattices in a F'—space V. Since N
contains a I'—basis for V, for each x € M there is a non-zero a € R such that ax € N.
But M is finitely generated as R—module. Therefore we can choose a € R,a # 0, such
that aM C N.

We define dual and double dual R—modules corresponding to the R—lattice M:

M* = Hompg(M, R), M*™ = Hompg(M*, R)

where, for example, the set of all module homomorphisms? from M to R is denoted by
Homp(M, R). Also, the evaluation map® ¢ : M — M** is given by

{e(m)}f = f(m), feM*

Clearly ¢ = 0 if and only if M* = 0. Then every R—lattice is reflexive®, that is, M = M**.
Then define dual spaces

V* = Homp(V,F), V** =Homp(V* F)

The evaluation map gives a F'—isomorphism V' = V**. Since R is noetherian, M* and
M** are also R—lattices, and there are embeddings M* C V* and M** C V**. Explicitly
we have

M*™={veV:f(v)eR forall feM"}

For a more general discussion, than given earlier, of different ideal refer pp. 60 of [6].

A torsion-free module is a module over a ring such that 0 is the only element annihilated by a regular
element (non zero-divisor) of the ring.

2This set is an abelian group and also a module since R is commutative.

3Let S, T be sets, and let S” be the set of all mappings from T to S. The evaluation mapping for ST is the
mapping ¢ : ST x T — S defined by ¢(f,t) = f(t)

“We call M reflexive if ¢ is an isomorphism.
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For the case where M is a Z—module” embedded in a vector space V' over the field R,
and the Euclidean metric is used to describe the lattice structure, we get lattice-group
as a special case of lattice-module. Since the motivation behind study of each of them is
different, I have discussed them separately.

A free abelian group or free Z—module is an abelian group with a basis.

A.2 Partially Ordered Set

A lattice is a partially ordered set in which for every two elements a and b the least upper
bound (called join, denoted a Vv b) and the greatest lower bound (called meet, denoted a N b)
exist.
According to their properties, lattices are divided into various types. The most basic
ones being distributive, modular and complemented lattices[10].
The elements of a distributive lattice satisfy the distributive law:
V(bAc)=

(@Nb)V(aNc)

The elements of a modular lattice satisfy the modular law:

a<c=aV((bAc)=(aVb) Ac

Every distributive lattice is modular.

If a lattice has the greatest and the least elements and to each of its elements such an
element exists that their join is the greatest element and their meet is the least element, it
is called complemented. In other words, a lattice is said to be complemented if for each
element o there exist an element b satisfying:

aVb=1 and aAb=0

A complemented distributive lattice is called Boolean algebra.

To represent finite lattices we use Hasse diagram. It is a type of mathematical diagram
used to represent a partially ordered set with all elements of the same rank shown at the
same height above the bottom.

(171,1)
\1112/ \2|l2/ }22/ 141 \221 1211 }1{1 1\1111
v oxacy Y WA L | N
oo 112 22 21 211 111l 0,1,1 1,0,1 1,1,0
Nt N N/ N/ N\L\/ N
N NS \/ \/ / N\
M H (0,0,1) (0,1,0) (1,0,0)
\D/ \1/ ‘ /
|
5 ! (0,0,0)

(a) Distributive  Lattice:
Young’s lattice representing
integer partitions

[By David Eppstein (Public domain),
via Wikimedia Commons]

(b) Modular Lattice: Young-
Fibonacci lattice representing
the digit sequences of 1 and 2
[By David Eppstein (Public domain),
via Wikimedia Commons]

(c) Complemented Lattice: It
is representing the boolean
algebra of subsets of a three
element set

Figure A.1: Three examples of lattice-orders
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A.3 Group

Let aj,as,...,a, be linearly independent real vectors in n—dimensional real euclidean
space R" over R. Then the lattice A is defined as

A={xeR":x=was +...+upan,u; € Z}

Since the basis aj, as,...,ay, is linearly independent, the expression of any vector x as
defined above for real u; is unique. Moreover, the basis is not uniquely determined by the
lattice. If a1, a2, ...,a, and a, a5, ..., al are bases of the same lattice, then

n

,— .. .
q; = E :UZ]aJ

j=1

where v;; are any integers with det(v;;) = £1, then we have

n

det(al,...,a) = det(v;;) det(ay,...,an) = det(a,...,an)

where, for example, det(aq,...,a,) denotes the determinant of the n x n matrix whose

j" row is the vector a;. Hence,

d(A) = [det(ay, . .., an)|

is independent of the particular choice of the basis of A. Note that if x € A then —x € A;
and if x,y € Athenx +y € A.

The vectors of a lattice A form a group under addition.

Moreover, by generalising Minkowski’s convex body theorem as on pp. 73 of [4], a
lattice is the most general group of vectors in n—dimensional space which contains n
linearly independent vectors and which satisfies the further property that there is some
sphere about the origin o which contains no other vector of the group except o.

We denote the scalar product of two n—dimensional vectors x = (x1, 2, ...,x,) and
y = (1,92, -, yn) by

Xy = Z1Y1 + T2¥Y2 + ... + Tp¥n

Let by, ..., by be a basis of a lattice A. Since the b; are linearly independent, there exist
vectors b} such that
1 if i=j
bibi=4 .7
0 if i1#£7

The lattice A* with the basis bjf‘ is called the dual (or polar or reciprocal) lattice of A, and
b} is the dual (or polar or reciprocal) basis to b;. The dual lattice A* of A is independent
of the choice of the particular basis, since

d(A)d(A*) =1

for proof refer pp. 24 of [4].

Example: Consider pair of complex numbers wy,w; € C such that their ratio 1 is not
real. In other words, considered as vectors in R2, the two are not collinear. The lattice
generated by wy and w, is called period lattice. Thus

A ={mw; + nwy : m,n € Z}
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(a) Square Lattice: Represents Gaussian inte-  Eisenstein integers when w; = 1 and wy =
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2

Figure A.2: Examples of period lattices drawn on complex plane using GeoGebra v4.0.34.0

and Pinta v1.3

Normally we are concerned with lattices over the rational integers, but we can extend
this notion of lattice to general number fields as in [14].

Let K be an algebraic extension of the Q of degree m. We regard K as an algebra
over Q, which we can extend to an algebra K* over R. It is well known that K* is
commutative and semi-simple®, and the integers of K* are just those of K. Then we
can define the n—dimensional space K" over K as being the set of ordered n—tuples of
elements in K*. Thus if 5 € K™ then § = (54, ..., 5,) where each ; € K* is of form

Bi = it + Tipoa + ...+ Timauy,

where z; € R and ag, ..., a,, is an integral basis for K. Hence there is a natural map
from K™ onto R™” in which each component j; of 3 € K" is mapped onto m of the
components of the point in R™", namely x;1, .. ., Zi,. A transformation in K" of matrix
A and determinant § # 0 induce a transformation in R™" of matrix P~' BP, where

a1, V1, aWr, A 0 0
o1, o1, a1, 0 A@ .. 0
P= ) ) ) and B=| .
A1, o™, oI, 0 0 Alm)
with agl),...,a(.m) to be conjugates of «j, I, to be n x n identity matrix and

AW A(M) be the conjugates of A. We can also extend the norm A from K to
K*, thus the transformation in R™" has determinant N (¢). Finally, we define a lattice
in K" to be any linear transformation of determinant ¢ of the set of points in K™ all of
whose coordinates are integers, such that A (4) # 0.

K™ is isomorphic to direct sum of r copies of R and s copies of C, where r and 2s are the number of
real and complex conjugates of K.
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