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Abstract

Algebraic number theory is essentially the study of number fields which are finite
extensions of the field Q of rational numbers. A large portion of classical algebraic

number theory involves investigating following questions about subrings of arbitrary
number fields: What are the units in this ring? What are the irreducible elements? Do
the elements factor uniquely? If not, what can we say about the factorization of ideals

into prime ideals? How many ideal classes are there? And this report addresses some of
these questions.
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Introduction

Let α be an algebraic number over a field F , then the polynomials over F having α as a root
form a prime ideal1 p in ring2 F [x] . Since F [x] is a principal ideal domain (PID), p is in fact
a maximal ideal3. The ring F [α] is isomorphic to the factor ring F [x]/p. Since p is maximal
ideal we conclude that F [α] is a field whenever α is algebraic over F . Similarly, we can
prove that for any finite number of algebraic numbers α1, . . . , αm, K = F [α1, . . . , αm] is a
field extension of F . Such finite degree field extension of the field of rational numbers Q
is referred to as number field. Hence, in general, finite extension of given number field K
will lead to another number field L. Since we will be studying field extensions, we should
have understanding of the Galois group of L/K, whenever L is a normal extension of K4.
For a nice overview of the algebra needed to study number fields refer pp. 36–39 of [3].

In my first summer project report[21] we saw the usage of property of unique factor-
ization for ring of integers of the quadratic number field to solve Diophantine equations.
But I presented the proofs for initial cases of Fermat’s Last Theorem (for n = 3, 4) using
elementary method of infinite descent (by Euler and Fermat) instead of algebraic ones.
Now in chapter 1 we will discuss the method which was one of the main sources of the
modern discipline of commutative algebra[19], to solve a case of Fermat’s Last Theorem.

A number field K can be viewed as a subfield of C which is a finite dimensional vector
space over Q. Moreover, we can write every number field K = Q[α] for some chosen α
with the degree of the algebraic number α being equal to the dimension of K over Q.
Hence a number field always has power basis over Q. On the contrary, the ring of integers
of every number field need not be of form Z[α], which we shall discuss in chapter 2.

We know that the rings of algebraic integers do not always have unique factorization
property. But since every ring of algebraic integers happens to be a Dedekind domain,
every proper ideal admits a unique factorization as a product of prime ideals. We shall
exploit this fact in chapter 3.

In chapter 4 we shall try to address the question: “How much ideals in a Dedekind
domain behave like elements?”. One part of the answer is given by the ideal class group
(section 1.2) since its size is a measure for the deviation of a ring of integers from being
a unique factorization domain (UFD)5. The other part of the answer is provided by the
multiplicative group of units of the Dedekind domain, since passage from principal ideals
to their generators requires the use of units. Also in my recent winter project report[22]
we saw that Roth’s theorem can be applied to a large variety of Diophantine equations
to show that they have only finitely many solutions. In certain special cases, however,
it is possible to make more precise statements about the number and nature of possible
solution[5]. Hence, towards the end of this chapter we shall concern ourselves with the
equation x3 + dy3 = 1 and calculate its exact number of solutions using group of units.

1By a prime ideal we will always mean a non-zero prime ideal
2By a ring we will always mean a commutative ring with unity (multiplicative identity).
3In a PID, every non-zero prime ideal is maximal.
4Number fields are of characteristic zero. In characteristic zero and finite fields every extension is separa-

ble. Hence, if a number field is normal then it is Galois.
5A Dedekind domain is a UFD iff it is a PID. A ring of integers is a PID iff it has a trivial ideal class group.
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Chapter 1

First Case of Fermat’s Last Theorem

Fermat’s Last Theorem (FLT) states that no nth power can be the sum of two other nth

powers, where n > 2. It is easy to show that if the theorem is true when n equals some
integer r, then it is true when n equals any multiple of r. Since every integer greater than
2 is divisible by 4 or an odd prime, it is sufficient to prove the theorem for n = 4 and every
odd prime.

In 1770, Leonhard Euler formulated an ingenious algebraic proof (apart from his ele-
mentary proof in 1760) for n = 3, but it had a serious flaw. Euler assumed that Z[

√
−3]

was characterized by unique factorization, which is wrong. The flaw was easily corrected
since the quadratic ring of integers Z[−1+

√
−3

2 ] is characterized by unique factorization.
For application of this algebraic method to solve some more specific exponent cases refer
[16].

In 1823, Marie-Sophie Germain proved FLT (using elementary methods) for all prime
exponents 2 < p < 100 by giving a prime q for which following theorem applies.

Theorem (Germain, 18231). Let p, q be distinct odd primes, and assume the following two
conditions:

1. p 6≡ ap (mod q) for any a ∈ Z

2. xp + yp + zp ≡ 0 (mod q) has no set of integral solution, each not divisible by q

Then FLT holds for p such that p - xyz.

For example, if p = 7, q = 29, then both the conditions of the Germain’s theorem are
satisfied[12] and hence FLT is proved for p = 7. For proof of this theorem refer to Paulo
Ribenboim’s book2.

1.1 The Two Cases

As a corollary of the above theorem by Germain, we get:

Corollary 1 (Germain, 1823). For a prime p if 2p + 1 is also prime and p - xyz, then there
is no integer solution of xp + yp = zp.

1Since women were not allowed in French Academy of Sciences, Adrien-Marie Legendre communicated
the results and credited Germain for them.

213 Lectures on Fermat’s Last Theorem. New York: Springer-Verlag, 1979. pp. 55. http://dx.doi.org/

10.1007/978-1-4684-9342-9 (or) Fermat’s Last Theorem for Amateurs. New York: Springer-Verlag, 1999.
pp. 109. http://dx.doi.org/10.1007/b97437
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So, if she could prove that there are infinitely many such primes p, now called Sophie
Germain primes, then she would have been able to prove FLT for infinite number of prime
exponents. But, we still don’t know that whether there are finite or infinite number of
Sophie Germain primes. Based on this result, the statement of FLT is generally subdivided
into two cases, with Germain’s condition being the first case:

1. For the prime exponent p when there do not exist integers x, y, z such that p 6 |xyz
and xp + yp = zp.

2. For the prime exponent p when there do not exist integers x, y, z all different from
zero, such that p|xyz, gcd(x, y, z) = 1 and xp + yp = zp.

1.2 Kummer’s Theory

A naive approach to solve (at least) first case of FLT would be to generalize Euler’s ap-
proach. Firstly we factorize right hand side of general equation

xp + yp = (x+ y)(x+ ζy) · · · (x+ ζp−1y) = zp

where ζ = e
2πi
p is the pth root of unity. Then we assume that the unique factorization

property holds for

Z[ζ] =

{
p−2∑
i=0

aiζ
i : ai ∈ Z for 0 ≤ i ≤ p− 2

}

But even when this kind of argument is successfully executed (see pp. 4, [1]), we will be
able to prove FLT only for finitely many prime exponents, since now it is known that only
for p = 3, 5, 7, 11, 13, 17 and 19, Z[ζ] has unique factorization property3.

Ernst Kummer had been working on theory of cyclotomic integers, the ring of integers
Z[ζn] where ζn is complex nth root of unity, for long time. It was known that the unique
factorization property doesn’t always exist in Z[ζn], for example if n = 23. To restore this
unique factorization property, Kummer introduced ideal prime factors into the arithmetic of
cyclotomic integers, somewhat analogous to introduction of i =

√
−1 into the arithmetic of

ordinary integers by Carl Friedrich Gauss. Influenced by Carl Jacobi’s work on cyclotomic
functions[7], Kummer’s theory of ideal factorization came into existence and is considered
to be one of the major achievements of 19th century mathematics[12][15]. But today,
Kummer’s ideal prime numbers and certain classes of numbers that are related to them
(to which he devoted twenty of his best years) are called ideals. His aim was to find the
solution of the problem of the higher reciprocity laws posed by Gauss. Since FLT is closely
related to the problem of higher reciprocity laws4, Kummer was able to prove the FLT for
every odd prime integer n between 1 to 100 except 37, 59 and 67 using his concept of
ideal factorization.

Definition 1 (Ideal Class). Given two ideals a and b of a ring of integers, a ∼ b if and
only if αa = βb for some α, β in the ring of integers in the number field. This equivalence
relation ∼ on the set of ideals leads to equivalence classes, called ideal classes.

Definition 2 (Class Number). The class number h of a ring of integers in a number field
is the order of the group formed by ideal classes.

3Masley, J. H. and Montgomery, H. L. “Cyclotomic fields with unique factorization.” Journal für die reine
und angewandte Mathematik (Crelle’s Journal) 1976, no. 286-287 (Jan 1976): 248–256. http://dx.doi.

org/10.1515/crll.1976.286-287.248
4Although Gauss himself always denied that he was interested in FLT per se, but expressed the hope that

from his results concerning higher reciprocity laws he would be able to deduce FLT easily.
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Definition 3 (Regular Primes). A prime integer p is called regular if and only if it doesn’t
divide the class number h of the ring Z[ζn].

1.3 The Proof

Since Z[ζ] is the ring of integers in the number field Q[ζ] (proved in Theorem 7) and the
ring of integers is a Dedekind domain (introduced in chapter 3), we conclude that Z[ζ]
has unique factorization property in ideals.

Theorem 1 (Kummer, 1847). Let p be a regular prime, then there do not exist rational
integers x, y, z such that xp + yp = zp if p 6 |xyz.

Proof. Suppose xp + yp = zp, with x, y and z relatively prime integers (without loss of
generality) and with p not dividing xyz. We have ideal factorization

〈x+ y〉〈x+ yζ〉 · · · 〈x+ yζp−1〉 = 〈z〉p

in which all factors are interpreted as principal ideals and ζ = e
2πi
p .

Claim 1 p can’t be equal to 3

If our assumption is true for p = 3, then there exist x, y, z such that x3 + y3 = z3 and
3 6 |xyz. Then these x, y, z must also satisfy x3 + y3 − z3 ≡ 0 (mod 9) (see pp. 3 of
[21]). We chose to reduce modulo 9 because if a3 ≡ b (mod 9) then b = 0,±1. Using
this fact in all 27 possible cases, we conclude that x3 + y3 − z3 ≡ (mod 9) iff 3|xyz
since at least one of x, y, z must be a multiple of 9. Contradicting our assumption
that 3 6 |xyz and hence proving our claim.

Claim 2 x 6≡ y (mod p)

If x ≡ y ≡ −z (mod p), then −2zp ≡ zp (mod p) which is a contradiction since
p > 3 by Claim 1. Hence, we get x 6≡ y (mod p).

Claim 3 Ideals 〈x+ ζiy〉 are relatively prime

On the contrary, assume that they have a common prime ideal p dividing two of
them. By eliminating x, we see that p divides 〈1− ζ〉 or 〈y〉, whereas eliminating y,
we see that p divides 〈1− ζ〉 or 〈x〉. Let λ = 1− ζ, then p = 〈λ〉. Thus

x+ y ≡ x+ ζiy ≡ 0 (mod λ)

⇒ zp ≡ x+ y ≡ 0 (mod λ)

leading to the contradiction that p divides z since by setting t = 1 in 1+t+. . .+tp−1 =∏p−1
j=1(t− ζj) we get

p = (1− ζ)(1− ζ2) · · · (1− ζp−1) = λ(1− ζ2) · · · (1− ζp−1)

in which all factors are interpreted as algebraic numbers.

Claim 4 x+ ζiy = εiα
p
i , for some unit εi and some element αi of Z[ζ]

By unique factorization of ideals and Claim 3, each factor is a pth power of some
ideal a. Hence

〈x+ ζiy〉 = ap

Now since ideal classes form a finite abelian group (discussed in chapter 4), if p is
regular (i.e. doesn’t divide order of the group formed by ideal classes) then clearly

6



this group contains no element of order p. It follows that if an ideal ap is principal
then so is a (pp. 5, [1]). Therefore, a = 〈αi〉 for some αi ∈ Z[ζ] and

x+ ζiy = εiα
p
i

where εi is some unit element of Z[ζ].

Claim 5 Any unit5 ε of Z[ζ] is a power of ζ times a real unit.

Let f ∈ Q[x] be a monic polynomial. Suppose all the roots of f have absolute value
1. Then the sum of the roots taking them r at a time is bounded by

(
n
r

)
by the

triangle inequality. Thus the coefficient of xr is bounded by this
(
n
r

)
, hence for any

fixed n there are only finitely many algebraic integers α such that all conjugates have
absolute value 1 because there are only finitely many polynomials in Z[x] with given
bounded coefficients.

Then consider the powers of an algebraic integer α in ring of integers O. They are
all algebraic integers of degree at most n, and furthermore all their conjugates also
have absolute value 1 since the Galois actions map powers of α to powers of its
conjugates. Thus the powers of α are restricted to a finite set. This means α is a root
of unity6 in O.

Let ε be the complex conjugate of ε. Now consider the conjugates of ε/ε, that is ε′/ε′

for all conjugates ε′ of ε. Since complex conjugation is one of the Galois actions they
are all algebraic integers with absolute value 1, thus ε/ε is a root of unity7 in Z[ζ].
Hence ε/ε = ±ζk where 0 ≤ k ≤ p− 1.

Suppose ε/ε = −ζk. Then εp = −εp. But εp ≡ εp (mod p). Thus 2εp ≡ 0 (mod p),
so p divides ε which contradicts the fact that ε is a unit. Hence only plus sign holds
and ε = εζk.

Now since p > 3, we can choose r ∈ Z such that k ≡ 2r (mod p). Then we have
ζ−rε = ζrε = ζ−rε so ζ−rε is invariant under complex conjugation and is thus real.
Hence, ε = εζ2r = (ζ−rε)ζr = uζr where u is a real unit of Z[ζ].

From Claim 4 and Claim 5 we can conclude that

x+ ζy = uζrαp

where α = a0 + a1ζ + . . .+ ap−2ζ
p−2 and ai ∈ Z. Then we observe that

αp ≡ ap0 + ap1 + . . .+ app−2 ≡ a (mod p)

for some a ∈ Z. Hence
x+ ζy ≡ uaζr (mod p)

Since ζ = ζ−1, on complex conjugation we get

x+ ζ−1y ≡ uaζ−r (mod p)

Therefore,

ζ−r(x+ ζy) ≡ ζr(x+ ζ−1y) (mod p)

⇒ x+ ζy − ζ2rx− ζ2r−1y ≡ 0 (mod p)

5The matter of units in the rings Z[ζ] remains one of the higher mysteries. Kummer’s achievement was to
be able to tame this matter somewhat. We will discuss more about it in section 2.1 and section 4.2. Also see
this discussion on Math.SatckExchange: http://math.stackexchange.com/q/3185/214604

6Not every algebraic integer with absolute value 1 is a root of unity, there are algebraic integers on the
unit circle which aren’t roots of unity[18][20]. Also see this Math.StackExchange discussion: http://math.
stackexchange.com/q/4323/214604

7The roots of unity are the numbers of form e2πit/m where t and m are coprime rational integers.
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If the powers of ζ occurring here are distinct, then since they form part of a basis of
Z[ζ], we get p divides x and y, which is a contradiction to our initial assumption p 6 |xyz.
Otherwise, we have to consider following three cases:

a) 1 = ζ2r, then p divides y, contradicting p 6 |xyz

b) 1 = ζ2r−1, then p divides x− y, contradicting Claim 2

c) ζ = ζ2r−1, then p divides x, contradicting p 6 |xyz

Hence our initial assumption was wrong and there don’t exist rational integers x, y and z
satisfying the first case of FLT for regular prime exponents.

In 1985, Étienne Fouvry8, Leonard M. Adleman and David R. Heath-Brown9 used a
refinement of Germain’s criterion together with difficult analytic estimates to prove that
there are infinitely many primes p such that first case of FLT is true. Though Germain’s
proof of first case is based on elementary methods, Kummer’s proof laid foundations of
“Algebraic Number Theory” and hence is worth discussing.

8 “Théorème de Brun-Titchmarsh; application au théorème de Fermat.” Inventiones Mathematicae 79, no.
2 (1985), 383–407. http://dx.doi.org/10.1007/bf01388980

9Adleman, L. M. and Heath-Brown, D. R. “The first case of Fermat’s last theorem.” Inventiones Mathemati-
cae 79, no. 2 (1985), 409–416. http://doi.org/10.1007/bf01388981
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Chapter 2

Ring of Integers of Number Field

Let A denote the set of algebraic integers in C. Given a number field K of degree n over
Q, then A∩K = OK denotes the ring of integers of K. The additive group part of OK is a
free abelian group of rank n (proof involves application of Cramer’s rule, see pp. 29, [1]).

Lemma 1 (Gauss Lemma). If a polynomial is irreducible in Z[x] then it is irreducible in
Q[x].

Proof. We will prove the lemma in two steps:

Step 1 If m and n be the greatest common divisor of the coefficients of polynomials f and
g in Z[x] then mn is the greatest common divisor of the coefficients of fg.

Without loss of generality, consider two polynomials f, g ∈ Z[x] such that the great-
est common divisor of coefficients of each of these polynomials in 1 (if not then can
divide by the greatest common divisor and obtain such polynomials). Then we have
to prove that 1 is in fact greatest common divisor of the coefficients of fg. On the
contrary assume that d > 1 is the greatest common divisor of the coefficients of fg,
and some rational prime p divides d, hence

fg ≡ 0 (mod p)

But Zp is an integral domain, so

f ≡ 0 (mod p) or g ≡ 0 (mod p)

This implies that p divides the coefficients of at least one of the polynomials f or g,
thus contradicting the fact that the greatest common divisor of coefficients of each
of these polynomials is 1. Hence d = 1.

Step 2 If h ∈ Z[x] and h is irreducible over Z then h is irreducible over Q[x].

On the contrary, assume that h = fg over Q[x]. We can find rational integers a and b
such that af, bg ∈ Z[x] and can also ensure that the greatest common divisor of each
of the polynomials af and bg is 1. Now by Step 1 we conclude that 1 is the greatest
common divisor of the coefficients of abfg = abh. But since h ∈ Z[x] we know that
ab must divide the greatest common divisor of the coefficients of abh. Hence ab|1
implying a = b = 1 and contradicting the fact that h is irreducible in Z[x].

Definition 4 (Embedding in C). An injective homomorphism from K to C. There are n
embeddings of K in C.

9



Definition 5 (Trace of algebraic number). Let L be another number field lying over K and
σ1, . . . , σm denote the m = [L : K] embeddings of L in C which fix K point-wise. Then
for α ∈ L, trace of L relative to K is a function defined as follows

TLK(α) = σ1(α) + σ2(α) + . . .+ σm(α)

Definition 6 (Norm of algebraic number). Let L be another number field lying over K
and σ1, . . . , σm denote the m = [L : K] embeddings of L in C which fix K point-wise.
Then for α ∈ L, norm of L relative to K is a function defined as follows

NL
K(α) = σ1(α)σ2(α) · · ·σm(α)

Theorem 2. The TLK(α) and NL
K(α) are respectively the trace and determinant of the matrix

A, where the matrix A denotes the linear mapping of multiplication by α ∈ L with respect to
any basis {α1, . . . , αm} for L over K, m = [L : K].

Proof. Note that jth column of A consists of the coordinates of ααj with respect to the
αi. We know that the trace and determinant are independent of the particular basis
chosen; thus it is sufficient to calculate them for any convenient basis. Let’s fix a ba-
sis {β1, β2, . . . , βr} for L over K[α] with r = [L : K [α]] = m

d where K[α] has power
basis {1, α, . . . , αd−1} with d = [K [α] : K]. Multiply both these basis to get a basis
{αiβj : 0 ≤ i ≤ d− 1 and 1 ≤ j ≤ r} of L over K. Then we make following claim

Claim: Let t(α) and n(α) be the sum and product of the d conjugates of α over K,
then

TLK(α) =
m

d
t(α) and NL

K(α) = (n(α))m/d

Note that t(α) = T
K[α]
K and n(α) = N

K[α]
K . Each embedding of K[α] in C extends to

exactly m
d = r embeddings on L in C. That establishes the formulas and completes the

proof of the theorem.

Remark 1. From the claim proved in above theorem, we can also conclude that TLK(α)
and NL

K(α) are in K and if α ∈ OL then they are in OK .

Example 1. Let K = Q[ 3
√
k], where k is a cube-free positive integer. For some a ∈ Z, compute

the value of NK
Q ( 3
√
k + a).

Solution. I will discuss 3 ways to compute the norm of given algebraic number

Method 1 Following are the three complex embeddings in this number field:

a+ b
3
√
k + c

3
√
k2 7→ a+ b

3
√
k + c

3
√
k2

a+ b
3
√
k + c

3
√
k2 7→ a+ bω

3
√
k + cω2 3

√
k2

a+ b
3
√
k + c

3
√
k2 7→ a+ bω2 3

√
k + cω

3
√
k2

where a, b, c are rational numbers and ω = e
2πi
3 . Hence

NK
Q (

3
√
k + a) = (a+

3
√
k)(a+ ω

3
√
k)(a+ ω2 3

√
k)

Since ω + ω2 + 1 = 0, thus

NK
Q (

3
√
k + a) = a3 + k

10



Method 2 We shall compute the minimal polynomial for α = 3
√
k+a and then norm will be the

negative of the constant term (the product of conjugates of α).

x =
3
√
k + a

⇒ (x− a)3 = k

⇒ x3 − 3ax2 + 3a2x− (a3 + k) = 0

Hence, NK
Q ( 3
√
k + a) = a3 + k

Method 3 As per the theorem above, the norm of α ∈ Q[ 3
√
k] is the determinant of the linear

map x 7→ αx. Taking 1, 3
√
k,

3
√
k2 to be the basis and α = 3

√
k + a, we compute the

linear maps:

(
3
√
k + a)1 = a+

3
√
k + 0

3
√
k2

(
3
√
k + a)

3
√
k = 0 + a

3
√
k +

3
√
k2

(
3
√
k + a)

3
√
k2 = k + 0

3
√
k + a

3
√
k2

Hence we get

NK
Q (

3
√
k + a) = det(A) =

∣∣∣∣∣∣
a 0 k
1 a 0
0 1 a

∣∣∣∣∣∣ = a3 + k

Remark 2. Trace and norm functions have property of transitivity, i.e. if K,L,M are
number fields such that K ⊂ L ⊂ M , then for all α ∈ M we have TLK(TML (α)) = TMK (α)
and NL

K(NM
L (α)) = NM

K (α). For proof see pp. 24 of [1].

Definition 7 (Discriminant of n-tuple). Let σ1, . . . , σn denote the n = [K : Q] embeddings
of K in C. For any n-tuple of elements α1, α2, . . . , αn ∈ K, we define discriminant of
α1, α2, . . . , αn to be

disc (α1, α2, . . . , αn) = det(σi(αj))
2

where σi(αj) denote element in the ith row and jth column.

Remark 3. Using simple matrix algebra we can prove that

disc (α1, α2, . . . , αn) = det(TKQ (αiαj))

where TKQ (αiαj) denote element in the ith row and jth column. This enables us to con-
clude that disc (α1, α2, . . . , αn) ∈ Q. Also if all αi ∈ OK then disc (α1, α2, . . . , αn) ∈ Z.

Theorem 3. In OK discriminant is an invariant.

Proof. We will prove two assertions to justify the invariance of the discriminant in this
case.

Claim 1 Let {β1, . . . , βn} and {γ1, . . . , γn} be two integral basis for OK . Then

disc(β1, . . . , βn) = disc(γ1, . . . , γn)

and we shall denote this constant by disc(OK).

We can write one basis in terms of other asβ1...
βn

 = M

γ1...
γn
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where M is a n × n matrix over Z. Applying each embedding σj to each of the n
equations formed above, we getσ1(β1) σ2(β1) . . . σn(β1)

...
...

. . .
...

σ1(βn) σ2(βn) . . . σn(βn)

 = M

σ1(γ1) σ2(γ1) . . . σn(γ1)
...

...
. . .

...
σ1(γn) σ2(γn) . . . σn(γn)


Taking the determinant and squaring we get

disc(β1, . . . , βn) = det(M)2 disc(γ1, . . . , γn)

Clearly det(M) ∈ Z since M is a matrix over Z. This implies that disc(γ1, . . . , γn) is a
divisor of disc(β1, . . . , βn), and both have the same sign. Similarly we can show that
disc(β1, . . . , βn) is a divisor of disc(γ1, . . . , γn). We conclude that both the discrimi-
nants are equal.

Claim 2 If α1, . . . , αn ∈ OK then they form an integral basis for OK if and only if

disc(α1, . . . , αn) = disc(OK)

Form Claim 1 it’s clear that if {α1, . . . , αn} for an integral basis for OK then

disc(α1, . . . , αn) = disc(OK)

All we need to prove is its converse. As stated earlier, OK is a free abelian group of
rank n. If H,G are two free abelian subgroups of rank n in K, with H ⊂ G, then
from first isomorphism theorem

G/H ∼= Z/k1Z× Z/k2Z× · · ·Z/knZ

where k1, . . . , kn ∈ Z>0 , hence G/H is finite abelian group. Then G/H is a direct
sum of at most n cyclic groups. Thus if G has a generating set β1, . . . , βn then there
exist appropriate integers k1, . . . , kn such that k1β1, . . . , knβn is a generating set for
H. Moreover, since 

k1β1
k2β2

...
knβn

 =


k1 0 . . . 0
0 k2 . . . 0
...

...
. . .

...
0 0 . . . kn



β1
β2
...
βn


and |G/H| = k1 · k2 · · · kn. As in previous case, we conclude that

disc(H) = |G/H|2 disc(G)

In this put H to the group generated by {α1, . . . , αn} and G = OK . Now thus
disc(H) = disc(G) we get |G/H| = 1 implying that H = G.

Remark 4. If α1, . . . , αn ∈ OK and disc(α1, . . . , αn) is square free, then {α1, . . . , αn} for
an integral basis for OK (see pp. 45, [1]).

Theorem 4 (Stickelberger’s Criterion). disc(OK) ≡ 0, 1 (mod 4)

12



Proof. K is a number field of order n over Q and σ1, . . . , σn are the embeddings of K in
C. Given algebraic integers α1, . . . , αn ∈ K, we know that d = disc(α1, . . . , αn) ∈ Z. Note
that

det(σi(αj)) =
∑
ρ∈Sn

sgn(ρ)

n∏
i=1

σi
(
αρ(i)

)
where Sn is the group of permutations of {1, 2, . . . , n} and sgn is +1 if ρ is an even per-
mutation and -1 otherwise. Hence the determinant is a sum of n! terms. Let P denote the
sum of terms corresponding to even permutations, and let N denote the sum of the terms
(without negative signs) corresponding to odd permutations. Thus

d = (P −N )2 = (P +N )2 − 4PN (2.1)

Extending K to a normal extension L of Q, each embedding of K extends to [L : K]
embeddings of L, all of which are automorphism of L since L is normal. Note that P +N
and PN lie in L, so we can apply the embeddings to them. Moreover since all σi are
automorphisms now, we have two possibilities{

σi(P) = P and σi(N ) = N
σi(P) = N and σi(N ) = P

Hence we have σi(P+N ) = P+N and σi(PN ) = PN for any σi. Since P+N and PN are
the fixed elements of L over Q, we conclude that P+N ,PN ∈ Q. But, P+N and PN are
algebraic integers since α1, . . . , αn are algebraic integers. We know that the only algebraic
integers in Q are the ordinary integers (see pp. 15, [1]). Therefore, P +N ,PN ∈ Z and
using this fact in (2.1), we conclude that

d ≡ (P +N )2 ≡ 0, 1 (mod 4)

In particular we have disc(OK) ≡ 0, 1 (mod 4).

Theorem 5 (Relative discriminant). Let K ⊂ L ⊂ M be number fields, [L : K] = n, [M :
L] = m, and let {α1, . . . , αn} and {β1, . . . , βm} be bases for L over K and M over L,
respectively. Then we have

discMK (α1β1, . . . , αnβm) =
(
discLK (α1, . . . , αn)

)m
NL
K

(
discML (β1, . . . , βm)

)
where, for example, discLK(α1, . . . , αn) = det(σi(αj))

2 = det(TLK(αiαj)) where the embed-
dings σi of L in C fix K point-wise.

Proof. Let σ1, . . . , σn be the embeddings of L in C fixing K point-wise, and τ1, . . . , τm be
the embeddings of M in C fixing L point-wise. Fix a normal extension N of Q such that
M ⊂ N , then we can extend all σi’s and τj ’s to automorphisms of N ; fix one extension of
each and again denote these extensions by σi and τj . We define two mn×mn matrices A
and B:

A =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . An



B =


σ1(α1)Im σ2(α1)Im . . . σn(α1)Im
σ1(α2)Im σ2(α2)Im . . . σn(α2)Im

...
...

. . .
...

σ1(αn)Im σ2(α1)Im . . . σn(αn)Im
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where

Ai =


σi(τ1(β1)) σi(τ1(β2)) . . . σi(τ1(βm))
σi(τ2(β1)) σi(τ2(β2)) . . . σi(τ2(βm))

...
...

. . .
...

σi(τm(β1)) σi(τ1(β2)) . . . σi(τm(βm))

 and Im =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 0


arem×mmatrices. ThereforeA has σi(τh(βk)) in rowm(i−1)+h and columnm(i−1)+k;
B has σi(αj) in row m(i− 1) + t and column m(j − 1) + t for each t = 1, . . . ,m and zeros
everywhere else. Note that

discMK (α1β1, . . . , αnβm) = det(AB)2

And we have

det(A)2 =
n∏
i=1

det(Ai)
2 =

n∏
i=1

σi(discML (β1, . . . , βm)) = NL
K

(
discML (β1, . . . , βm)

)
det(B)2 = [(det(σi(αj))

m]2 = [(det(σi(αj))
2]m = (discLK(α1, . . . , αn))m

Corollary 2. Let K and L be number fields such that [K : Q] = n, [L : Q] = m, [KL : Q] =
mn and gcd(disc(OK), disc(OL)) = 1. Then we have

disc(OKL) = (disc (OK))[L:Q] (disc (OL))[K:Q]

Definition 8 (Discriminant of α). Let α be an algebraic integer of degree n over Q such
that K = Q[α] then we define

disc (α) = disc (1, α, . . . , αn−1)

Remark 5. Suppose K = Q[α], and let α1, . . . , αn denote the conjugates of α over Q.
Then

disc(α) =
∏

1≤r<s≤n
(αr − αs)2 =

{
NK

Q (f ′(α)) if n ≡ 0, 1 (mod 4)

−NK
Q (f ′(α)) if n ≡ 2, 3 (mod 4)

where f is the minimal polynomial for α over Q. The proof uses Vandermonde determi-
nant formula, see pp. 26, [1])

2.1 Cyclotomic Fields

As we have seen in previous chapter, the attempt to prove FLT required a good under-
standing of mth cyclotomic field Q[ζm] where ζm = e

2πi
m with i =

√
−1 and m ∈ Z>0.

Q[ζm] has degree ϕ(m) = #{k : gcd(k,m) = 1, 1 ≤ k ≤ m}, over Q (pp. 18, [1])

Definition 9 (Cyclotomic Polynomial). It is the monic polynomial with integer coefficients,
which is the minimal polynomial of over the field of the rational numbers of any primitive
mth root of unity.

Φm(x) =
∏

1≤k≤m
gcd(k,m)=1

(
x− e

2iπk
m

)
=

∏
1≤k≤m

gcd(k,m)=1

(
x− ζkm

)
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Φ1(x) = x− 1 Φ2(x) = x+ 1

Φ3(x) = x2 + x+ 1 Φ4(x) = x2 + 1

Φ5(x) = x4 + x3 + x2 + x+ 1 Φ6(x) = x2 − x+ 1

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1 Φ8(x) = x4 + 1

Graphs generated using complex plot(f(z),(-5,5),(-5,5)) in SageMath version 7.2
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x = 1 x2 = 1

x3 = 1 x4 = 1

x5 = 1 x6 = 1

x7 = 1 x8 = 1

Graphs generated using complex plot(f(z),(-5,5),(-5,5)) in SageMath version 7.2
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These are complex plane plots1 of the first eight cyclotomic polynomials followed by
first to eighth roots of unity.

These plots suggest that for odd m, Φm(−x) = Φ2m(x). This symmetry can be ex-
plained by the fact that for odd m, 2mth roots of unity are in Q[ζm]. For example2 the
third cyclotomic field is equal to sixth cyclotomic field: ζ6 = −ζ46 = −(ζ26 )2, which shows
that Q[ζ6] = Q[ζ26 ] = Q[ζ3]. In general, for odd m, ζ2m = −ζm+1

2m ∈ Q[ζ22m] = Q[ζm]. In
fact, we will now prove that for odd m the mth cyclotomic field is the same as 2mth and
for even m, all cyclotomic fields are distinct.

Theorem 6. The number of roots of unity in Q[ζm] is lcm(2,m).

Proof. If Q[ζm] contains some rth root of unity then Q[ζr] ⊂ Q[ζm] and using the fact about
degree of a cyclotomic field stated earlier, ϕ(r) ≤ ϕ(m).

Also, then ζmζr = ζlcm(m,r) is in Q[ζm]. Hence we have lcm(m, r) ≤ r. But least com-
mon multiple of two numbers can’t be less than any one of them, therefore lcm(m, r) = r.
Thus r is a multiple of m, let r = ms for some integer s.

Now by a standard identity for Euler’s totient function

ϕ(r) = ϕ(ms) = ϕ(m)ϕ(s)
gcd(m, s)

ϕ(gcd(m, s))

Moreover by definition of ϕ we have ϕ(a) ≤ a for any positive integer a, hence

ϕ(r) ≥ ϕ(m)ϕ(s)

Now for some maximal r, Q[ζm] = Q[ζr] and in that case we have ϕ(m) = ϕ(r). Using
above identity, we conclude

ϕ(m) ≥ ϕ(m)ϕ(s)

Therefore, ϕ(s) ≤ 1, but by definition of ϕ it can’t be less than one. Hence, ϕ(s) = 1 and
it implies that s = 1 or s = 2. Thus r = m or r = 2m. This shows that the number of roots
of unity in Q[ζm] can either be m or 2m. But as a special case of the standard identity for
Euler’s totient function used above, we have

ϕ(2m) =

{
2ϕ(m) if m is even
ϕ(m) if m is odd

Since ϕ(r) should not be greater than ϕ(m), we conclude that

r =

{
m if m is even
2m if m is odd

Thus completing the proof of the theorem.

Remark 6. The Galois group of Q[ζm] over Q, Gal(Q[ζm]/Q) is isomorphic to the multi-
plicative group of integers mod m

Z∗m = {k : 1 ≤ k ≤ m, gcd k,m = 1}

For each k ∈ Z∗m the corresponding automorphism in the Galois group sends ζm to ζkm.
See pp. 18, [1].

1These colour maps are obtained by a stereographic projection from the surface of the three-dimensional
colour space (in the hue-lightness-saturation system) onto the complex plane. The hue represents the ar-
gument (also called phase angle) of the complex number z. The absolute value (also called magnitude or
modulus) is given by the lightness of the colour. All colours of the colour map have the maximal saturation
(with respect to the given lightness). Positive real numbers always appear red. The primary colours appear at
phase angles 2π

3
(green) and 4π

3
(blue). The subtractive colours yellow, cyan, and magenta have the phases

π
3

, π, and 5π
3

. The poles of a complex function are white, the zeros are black.
2Note that first two cyclotomic fields are both just Q since ζ1 = 1 and ζ2 = −1.
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Theorem 7. If K = Q[ζm] then OK = Z[ζm].

Proof. We will prove OK = Z[ζm] by induction on m.

Step 1 If m is power of a prime number, then OK = Z[ζm].

Claim 1 For all m ≥ 3, Z[1− ζm] = Z[ζm] and disc(1− ζm) = disc(ζm).
Since ζm = 1− (1− ζm), we get Z[1− ζm] = Z[ζm]. By Remark 5 we get

disc(ζm) =
∏

1≤r<s≤n
(αr − αs)2 =

∏
1≤r<s≤n

((1− αr)− (1− αs))2 = disc(1− ζm)

where αi runs through the conjugates of ζm and 1−αi runs through the conju-
gates of 1− ζm.

Claim 2 For m = pr, p is a prime number,

p =
∏

1≤k≤m
gcd(k,m)=1

(
1− ζkm

)

This is stronger version of the fact used in third claim of Theorem 1 and can be
proved by same approach. Consider

f(x) =
xp

r − 1

xpr−1 − 1
= 1 + xp

r−1
+ x2p

r−1
+ . . .+ x(p−1)p

r−1

Then all ζkm where 1 ≤ k ≤ m and gcd(k,m) = 1, are roots of f since they are
roots of xp

r − 1 but not of xp
r−1 − 1. Thus in fact

f(x) =
∏

1≤k≤m
gcd(k,m)=1

(
1− ζkm

)

where # values of k = ϕ(m) = ϕ(pr) = (p− 1)pr−1. Finally put x = 1.

Claim 3 OK = Z[1− ζm]

Using the fact that OK is a free abelian group of rank n, every α ∈ OK can be
expressed in the form (pp. 29, [1])

α =
k1 + k2(1− ζm) + · · ·+ kn(1− ζm)n−1

d

where n = ϕ(pr), all ki ∈ Z and d = disc(1− ζm) = disc(ζm) [by Claim 1]. Also
by using the fact that Q[ζm] has degree ϕ(m) over Q and Remark 5 we conclude
that disc(ζm) divides mϕ(m) (pp. 27, [1]). Hence in this case d is a power of p.
On the contrary assume that OK 6= Z[1 − ζm], then there must be some α for
which not all ki are divisible by d. It follows that OK contains an element of
form

β =
kj(1− ζm)j−1 + kj+1(1− ζm)j + · · ·+ kn(1− ζm)n−1

p

for some j ≤ n and kj not divisible by p. Claim 2 shows that p/(1−ζm)n ∈ Z[ζm]
since 1− ζkm is easily seen to be divisible in Z[ζm] by 1− ζm. Then p/(1− ζm)j ∈
Z[ζm] and hence βp/(1−ζm)j ∈ OK . Subtracting the terms which are obviously
in OK , we obtain kj/(1− ζm) ∈ OK . Therefore, NK

Q (1− ζm)|NK
Q (kj). But this

is impossible since NK
Q (kj) = knj and NK

Q (1− ζm) = p (Use Remark 5 in Claim
2). Hence proving our claim.
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Finally, by Claim 1, OK = Z[ζm] if m is power of a prime number.

Step 2 Let m = m1 × m2, for some relatively prime integers m1,m2 > 1 such that K1 =
Q[ζm1 ] and K2 = Q[ζm2 ]. If OK1 = Z[ζm1 ] and OK2 = Z[ζm2 ] then OK = Z[ζm].

We have following result:

Let K and L be two number fields, then KL is the smallest subfield of C con-
taining K and L. If [KL : Q] = mn and gcd(disc(OK),disc(OL)) = 1, then
OKL = OKOL. (pp. 34, [1])

To be able to apply this result, we must prove that the required conditions are satis-
fied.

Claim 1 K = K1K2

Clearly, ζm1
m = ζm2 and ζm2

m = ζm1 . Sincem1 andm2 are coprime, it follows that
ζm = ζrm1

ζsm2
for some r, s ∈ Z such that rm2 + sm1 = 1 and hence K = K1K2.

Claim 2 [K1K2 : Q] = ϕ(m)ϕ(n) and gcd(disc(OK1),disc(OK2)) = 1

Since m1 and m2 are coprime, [K : Q] = ϕ(m) = ϕ(m1)ϕ(m2) = [K1K2 : Q].
As stated in third claim of first step of this proof, disc(ζmi) divides mϕ(mi)

i for
i = 1, 2 and also by Theorem 3, we conclude that

gcd(disc(OK1),disc(OK2)) = gcd(disc(ζm1),disc(ζm2)) = gcd(m1,m2) = 1

Claim 1 also implies that Z[ζm] = Z[ζm1 ]Z[ζm2 ] and using the result stated in box
above we complete proof of this step.

Combining both the steps above, we complete the proof.

Theorem 8. Let p be a prime number, then disc(ζp) = ±pp−2, where + sign holds iff p ≡ 1, 2
(mod 4).

Proof. This is direct application of Remark 5. We wish to use following formula

disc(ζp) =

{
N

Q[ζp]
Q (f ′(ζp)) if p− 1 ≡ 0, 1 (mod 4)

−NQ[ζp]
Q (f ′(ζp)) if p− 1 ≡ 2, 3 (mod 4)

We know that the cyclotomic polynomial (i.e. minimal polynomial) is

f(x) = 1 + x+ x2 + . . .+ xp−1 =
xp − 1

x− 1

The easiest way to compute f ′(ζp) is to write (x− 1)f(x) = xp − 1 and differentiate

f(x) + (x− 1)f ′(x) = pxp−1

Therefore since ζpp = 1 and ϕ(p) = p− 1, we have

N
Q[ζp]
Q (f ′(ζp)) = N

Q[ζp]
Q

(
p

ζp (ζp − 1)

)
=

N
Q[ζp]
Q (p)

N
Q[ζp]
Q (ζp)N

Q[ζp]
Q (ζp − 1)

=
pp−1

1× p

since NQ[ζp]
Q (ζp − 1) = N

Q[ζp]
Q (1− ζp) because p− 1 is even and NQ[ζp]

Q (1− ζp) = p follows
from the fact used in third claim of Theorem 1.

Remark 7. We can use Corollary 2 to derive general formula for discriminant of ζm for
any m, but the calculations are said to be messy, hence I will just state the result

disc(ζm) =
(−1)

ϕ(m)
2 mϕ(m)∏

p|m p
ϕ(m)
(p−1)
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2.2 Real Cyclotomic Fields

Based upon cyclotomic fields, we define mth real cyclotomic field as Q[ξm] where ξm =
ζm + ζ−1m = 2 cos(2πm ) ∈ R.

Theorem 9. If K = Q[ξm] then OK = Z[ξm] for m ≥ 3.

Proof. We will divide the proof in several parts

Claim 1 Q[ζm] is of degree 2 over the field K = Q[ξm].

By definition of ξm we have that ζm is a root of

f(x) = x2 − ξmx+ 1

Hence ζm is root of a irreducible monic polynomial of degree 2 over K, proving our
claim.

Claim 2 Q[ξm] is the fixed field of the automorphism σ of Q[ζm] determined by σ(ζm) = ζ−1m .

Note that ζ−1m = ζm, therefore σ is just complex conjugation. The result follows.

Claim 3 K = Q[ξm] = R ∩Q[ζm]

Since ξm = ζm + ζm = 2<(ζm) and from Claim 2 we get

Q[ξm] ⊂ R ∩Q[ζm] ⊂ Q[ζm]

From Claim 1 we know that [Q [ζm] : Q [ξm]] = 2. Also since

Q[ζm] = {a+ bζm : a, b ∈ R ∩Q[ζm]}

we have [Q [ζm] : R ∩Q [ζm]] = 2. Therefore, since both are extensions of same
degree and one is subset of other, we conclude that Q[ξm] = R ∩Q[ζm].

Claim 4 OK = R ∩ Z[ζm]

Note that Z[ζm] = A ∩Q[ζm]. Now use Claim 3 to get

R ∩ Z[ζm] = A ∩Q[ξm] = OK

Claim 5 If n = ϕ(m)
2 , then {ξimζ

j
m : i = 0, 1, . . . , n− 1; j = 0, 1} is an integral basis for Z[ζm]

Note that, [Q[ζm] : K][K : Q] = [Q[ζm] : Q], therefore from Claim 1 and the fact
stated in previous section we get (since m ≥ 3)

[K : Q] =
[Q[ζm] : Q]

[Q[ζm] : K]
=
ϕ(m)

2
= n

Thus we can write

Z[ζm] = {a0+a1ζm+ . . .+anζ
n
m+an+1ζ

n+1
m + . . .+a2n−2ζ

2n−2
m +a2n−1ζ

2n−1
m : ai ∈ Z}

But ζ2nm = 1, thus we can rewrite above set as

Z[ζm] = {a0 +a1ζm+ . . .+anζ
n
m+an+1ζ

−(n−1)
m + . . .+a2n−2ζ

−2
m +a2n−1ζ

−1
m : ai ∈ Z}

Now using ξm = ζm + ζ−1m we get

Z[ζm] = {a0 + . . .+ anζ
n
m + an+1(ξm − ζm)n−1 + . . .+ a2n−1(ξm − ζm) : ai ∈ Z}

Since, as stated in Claim 1, ζ2m−ξmζm+1 = 0 we conclude that all ζim for i = 2, . . . , n
will vanish, for example:

ζ3m = (ξmζm − 1)ζm = ξmζ
2
m − ζm = ξm(ξmζm − 1)− ζm = ξ2mζm − ξm − ζm

ζ4m = (ξmζm − 1)2 = ξ2mζ
2
m + 1− 2ξmζm = ξ2m(ξmζm − 1) + 1− 2ξmζm = ξ3mζm − ξ2m − 2ξmζm + 1

Hence proving our claim. (Note that the claim is correct since dimension is still 2n.)
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Claim 6 {1, ξm, ξ2m, . . . , ξn−1m } is an integral basis for OK
According to Claim 4, we just need to show that {1, ξm, ξ2m, . . . , ξn−1m } is an integral
basis for R ∩ Z[ζm]. Since ξm = 2<(ζm) implies that <(ζm) is linearly dependent on
ξm. Therefore, R ∩ Z[ζm] has claimed basis by eliminating all dependent elements
from the integral basis in Claim 5.

From Claim 6 we conclude that OK = Z[ξm].

Theorem 10. Let p be an odd prime number, then disc(ξp) = p
p−3
2 .

Proof. We have Q ⊂ Q[ξp] ⊂ Q[ζp], and [Q[ξp] : Q] = ϕ(p)
2 = n, [Q[ζp] : Q[ξp]] = 2.

Also, from previous theorem, I know that the integral basis for Q[ξp]/Q is
{1, ξp, . . . , ξn−1p } and the integral basis for Q[ζp]/Q[ξp] is {1, ζp}.

We will use Theorem 5 to calculate discriminant:

disc
Q[ζp]
Q (1, ζp, ξp, ξpζp, . . . , ξ

n−1
p , ξn−1p ζp) =

(
disc

Q[ξp]
Q

(
1, ξp, . . . , ξ

n−1
p

))2
N

Q[ξp]
Q

(
disc

Q[ζp]
Q[ξp]

(1, ζp)
)

Keeping in mind Theorem 3 and using Theorem 7, Theorem 9 along with Remark 5 we
get (note that the ± signs cancel out on both sides)

disc
Q[ζp]
Q (ζp) =

(
disc

Q[ξp]
Q (ξp)

)2
N

Q[ξp]
Q

(
N

Q[ζp]
Q[ξp]

(
f ′(ζp)

))
where f(x) = x2−ξpx+1, is the minimal polynomial for Q[ζp] over Q[ξp]. Using Remark 2
we can re-write it as

disc
Q[ζp]
Q (ζp) =

(
disc

Q[ξp]
Q (ξp)

)2
N

Q[ζp]
Q

(
f ′(ζp)

)
(2.2)

Note that ξp = ζp + ζ−1p , therefore

N
Q[ζp]
Q

(
f ′(ζp)

)
= N

Q[ζp]
Q (2ζp − ξp) = N

Q[ζp]
Q

(
ζp − ζ−1p

)
=
N

Q[ζp]
Q (ζp − 1)N

Q[ζp]
Q (ζp + 1)

N
Q[ζp]
Q (ζp)

Observe that Φp(x−1) is the minimal polynomial for ζp+1 where Φp(x) = 1+x+. . .+xp−1,
thereforeNQ[ζp]

Q (1+ζp) is equal to constant term in Φp(x−1) = 1+(x−1)+. . .+(x−1)p−1,
since p − 1 is even we will have p−1

2 times −1 and p−1
2 + 1 times +1, thus leaving +1 as

constant term. Hence3 N
Q[ζp]
Q (1 + ζp) = 1. Using this along with Theorem 8 in (2.2) we

get(note that we already cancelled out sign arising due to p)

disc
Q[ξp]
Q (ξp) = disc(ξp) = ±

√
pp−2

p
= ±p

p−3
2

But + sign must hold since, Q[ξp] contains
√

disc(ξp) (algebraic closure property of num-
ber field).

2.3 Quadratic Fields

LetK be a number field and d = disc(OK). By definition
√
d is the determinant of a matrix

with entries in the normal closure of K. Thus the normal closure of K contains Q[
√
d].

But, Q[
√
d] is not always a quadratic field. It can be the case that d is a square, and that

the normal closure contains no quadratic field. We will come back to this idea towards the
end of this section.

3We can use similar argument to calculate N(1− ζp) in Theorem 8.
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Theorem. Let K = Q[
√
m] where m be squarefree integer.

OK =

{
Z[
√
m] if m ≡ 2, 3 (mod 4)

Z
[
1+
√
m

2

]
if m ≡ 1 (mod 4)

For proof see Theorem 1.7.8 of [21].

Remark 8. We can write OK explicitly as

OK =

a+ b
√
m if m ≡ 2, 3 (mod 4) and a, b ∈ Z

a+ b
√
m

2
if m ≡ 1 (mod 4) and a ≡ b (mod 2)

Theorem 11. Let K = Q[
√
m] where m be squarefree integer.

disc(OK) =

{
disc(

√
m) = 4m if m ≡ 2, 3 (mod 4)

disc
(
1+
√
m

2

)
= m if m ≡ 1 (mod 4)

Proof. We can prove this by using any of the four different formulas known to us, I will
use the basic definition. Note that the complex embeddings of Q[

√
m] are:

σ1 : a+ b
√
m 7→ a+ b

√
m

σ2 : a+ b
√
m 7→ a− b

√
m

disc(1,
√
m) =

∣∣∣∣σ1(1) σ1(
√
m)

σ2(1) σ2(
√
m)

∣∣∣∣2 =

∣∣∣∣1 √
m

1 −
√
m

∣∣∣∣2 = 4m

disc

(
1,

1 +
√
m

2

)
=

∣∣∣∣∣∣σ1(1) σ1

(
1+
√
m

2

)
σ2(1) σ2

(
1+
√
m

2

)∣∣∣∣∣∣
2

=

∣∣∣∣∣1 1+
√
m

2

1 1−
√
m

2

∣∣∣∣∣
2

= m

Remark 9. The minimal polynomial for α can be computed by equating it to x and getting
rid of fractional powers. Here, minimal polynomial for

√
m is f(x) = x2−m and for 1+

√
m

2
is f(x) = x2 − x+ 1−m

4 .

Theorem 12. Every quadratic field is contained in a cyclotomic field.

Proof. We will prove this theorem in two steps

Claim 1 Q[ζ8] contains Q[
√

2].

It’s enough to show that eigth cyclotomic field contains
√

2

ζ8 = e2πi/8 = cos
(π

4

)
+ i sin

(π
4

)
=

1√
2

+ i
1√
2

√
2 =

(
1√
2

+ i
1√
2

)
+

(
1√
2

+ i
1√
2

)
= ζ8 + ζ−18 = ζ8 + ζ78

Claim 2 Let p be an odd prime then Q[ζp] contains
√
p if p ≡ 1 (mod 4), and

√
−p if p ≡ 3

(mod 4).

From Theorem 8 we know that

disc(ζp) =

{
pp−2 if p ≡ 1 (mod 4)

−pp−2 if p ≡ 3 (mod 4)
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Taking square-root of both sides we get

√
disc(ζp)

p(p−3)/2
=

{√
p if p ≡ 1 (mod 4)
√
−p if p ≡ 3 (mod 4)

Now our claim follows using Remark 5

1

p(p−3)/2

∏
1≤r<s≤p−1

∣∣ζrp − ζsp∣∣ =

{√
p if p ≡ 1 (mod 4)
√
−p if p ≡ 3 (mod 4)

Claim 3 K = Q[
√
m] for a squarefree m is contained in the dth cyclotomic field, where

d = disc(OK).

Note that
√
−1 = i = e

2πi
4 = ζ4 = ζ28 . Hence, if the qth cyclotomic field contains

Q[
√
p], the 4qth cyclotomic field contains Q[

√
−p] because it must contain the fourth

root of unity i along with
√
p. Since m is square free, m = ±p1 ·p2 · · · pk for k distinct

primes. Also, from Theorem 11 we know that

d =

{
4m if m ≡ 2, 3 (mod 4)

m if m ≡ 1 (mod 4)

Thus completing the proof of the claim.

We could have proved this theorem without third claim, by proving a weaker result. Note
that if r|s, then Q[ζr] ⊂ Q[ζs] since ζr = ζ

s/r
s . From this and the previous observations,√

m ∈ Q[ζ8, ζp1 , . . . , ζpk ] ⊂ Q[ζ8m]. Hence the cyclotomic field Q[ζ8m] contains Q[
√
m].

Remark 10. We can use the method used to prove second claim above to express
√
−3 =

ζ3 − ζ23 and
√

5 = ζ5 − ζ25 − ζ35 + ζ45

2.4 Pure Cubic Fields

Unlike the number fields discussed so far, these are not Galois extensions. These fields
were first studied by Richard Dedekind (pp. 105, [5]).

Theorem 13. Let K = Q[ 3
√
m] where m be a cubefree integer. Let α = 3

√
m and m = hk2,

where h and k are squarefree and relatively prime. Then an integral basis for OK consists of
{

1, α,
α2

k

}
if m 6≡ ±1 (mod 9) or h2 6≡ k2 (mod 9){

1, α,
α2 ± k2α+ k2

3k

}
if m ≡ ±1 (mod 9) or h2 ≡ k2 (mod 9)

with the ± sign corresponding in the obvious way.

Proof. We will use the following result:
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Let K = Q[α] and α ∈ OK such that it has degree n over Q. Then there is an
integral basis {

1,
f1(α)

d1
, . . . ,

fn−1(α)

dn−1

}
where fi are monic polynomials of degree i over Z and di ∈ Z\{0} are uniquely
determined such that d1

∣∣∣d2∣∣∣ . . . ∣∣∣dn−1. (pp. 36, [1])
Following facts can also be established (pp. 49, [1])

(i) disc(α) = (d1 · d2 · · · dn−1)2 disc(OK)

(ii) d1 ·d2 · · · dn−1 is the order of the groupOK/Z[α] (follows from second claim
of Theorem 3)

(iii) If i+ j < n then didj
∣∣∣di+j

(iv) For i < n, di1
∣∣∣di and dn(n−1)1

∣∣∣ disc(α).

By the above result, the ring OK has an integral basis of the form
{

1, f1(α)d1
, f2(α)d2

}
.

Claim 1 d1 = 1 and f1(α) = α

By Remark 5, disc(α) = −NQ[α]
Q (g′(α)) where g(x) = x3 −m. Therefore, disc(α) =

−27α6 = −27m2. Now using the fact (iv) stated above we conclude that d1 = 1
except possibly when 9|m, in which case d1 = 1 or 3.

Suppose 9|m and β = (α + a)/3 for some integer a, is an element of OK . Using
Example 1 we can compute

T
Q[α]
Q (β3)=T

Q[α]
Q

(
α3 + 3aα2 + 3a2α+ a3

27

)
=

1

27

(
T
Q[α]
Q (α3) + 3aT

Q[α]
Q (α2) + 3a2T

Q[α]
Q (α) + 3a3

)
Note that

T
Q[α]
Q (α) = sum of roots = α1 + α2 + α3 = 0

and we know following two identities from school days:

α2
1 + α2

2 + α2
3=(α1 + α2 + α3)

2 − 2(α1α2 + α2α3 + α3α1)

α3
1 + α3

2 + α3
3=(α1 + α2 + α3)(α

2
1 + α2

2 + α2
3 − α1α2 + α2α3 + α3α1) + 3α1α2α3

Moreover

α1α2 + α2α3 + α3α1 = the sum of product of two roots taken at a time = 0

We conclude that

T
Q[α]
Q (α2) = α2

1 + α2
2 + α2

3=0

T
Q[α]
Q (α3) = T

Q[α]
Q (m) = α3

1 + α3
2 + α3

3=3m

Giving us

T
Q[α]
Q (β3) =

1

27

(
3m+ 3a3

)
Now since T

Q[α]
Q (β3) ∈ Z for β ∈ OK and 9|m, we conclude that 3|a. Hence

α/3 ∈ OK and N
Q[α]
Q (α/3) ∈ Z, implying that 27|m. But we are given that 9|m,
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hence contradicting the assumption (requirements are higher than initially stated).
Therefore d1 = 3 is not possible.

Since d1 = 1, we can take f1(α) = α.

Claim 2
α2

k
∈ OK

Clearly α2/k ∈ K and observe that it’s also an algebraic integer since α2

k = 3

√
h2k4

k3
=

3
√
h2k is a root of h(x) = x3 − h2k, which is irreducible over Z. Therefore, α2/k ∈

A ∩K = OK .

Claim 3 β =
(α∓ 1)2

3
∈ OK when m ≡ ±1 (mod 9), with the signs corresponding in obvious

way.

Note that (
β − 1

3

)3

=

(
(α∓ 1)2

3
− 1

3

)3

=

(
α2 ∓ 2α

3

)3

Therefore, (
β3 − β2 +

β

3
− 1

27

)
−
(
α6 ∓ 8α3 ∓ 6α5 + 12α4

27

)
= 0(

β3 − β2 +
β

3
− 1

27

)
−
(
m2 ∓ 8m∓ 6mα2 + 12mα

27

)
= 0(

β3 − β2 +
β

3

)
−
(

(m∓ 1)2 ∓ 6m(1 + α2 ∓ 2α)

27

)
= 0(

β3 − β2 +
β

3

)
−
(

(m∓ 1)2 ∓ 6m(α∓ 1)2

27

)
= 0(

β3 − β2 +
β

3

)
−
(

(m∓ 1)2 ∓ 18mβ

27

)
= 0

β3 − β2 +

(
1± 2m

3

)
β − (m∓ 1)2

27
= 0

Hence β is root of an irreducible monic polynomial with coefficients in Z (since
m ≡ ±1 (mod 9)). Since β ∈ K, we conclude that β ∈ OK .

Claim 4
α2 ± k2α+ k2

3k
∈ OK when m ≡ ±1 (mod 9), with signs corresponding in obvious

way.

Follows from Claim 2 and Claim 3 since sum and product of two elements from given
ring of integers belongs to same ring of integers. So let’s find this linear combination
for one sign combination (m ≡ 1 (mod 9))

α2 + k2α+ k2

3k
= A

α2

k
+B

(α− 1)2

3
+ Cα

Equating coefficients of powers of α we get:
k2 = Bk ⇒ B = k

3Ck − 2Bk = k2 ⇒ C = k

3A+ kB = 1 ⇒ A = 1−k2
3

Now since m = hk2 ≡ 1 (mod 9), note that x2 ≡ 1, 4, 7 (mod 9) and 4 · 7 ≡ 1
(mod 9). Therefore, k2 ≡ 1 (mod 3) and A ∈ Z. Similarly we can find A,B,C for
other sign combination. Hence our claim is true.
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Claim 5 k|d2 when m 6≡ ±1 (mod 9) and 3k|d2 when m ≡ ±1 (mod 9)

From Claim 2 and Claim 4 we can conclude this.

Claim 6 d2|3m

Using fact (i) from the result in box stated initially, we conclude that d2|
√

disc(α).
From Claim 1 we know that disc(α) = −27m2. Since d2 ∈ Z, d2|3m.

Claim 7 Let p be a prime number such that p 6= 3, p|m, p2 6 |m then p 6 |d2.

On the contrary assume that p|d2 and let f2(α) = α2 + bα + c for b, c ∈ Z. Then
f2(α)/p ∈ OK and as in Claim 1, we can compute its trace:

T
Q[α]
Q

(
α2 + bα+ c

p

)
=

3c

p
∈ Z

Therefore, p|c; hence (α2 + bα)/p ∈ OK . By cubing and considering its trace

T
Q[α]
Q

(
α6 + b3α3 + 3bα5 + 3b2α4

p3

)
= T

Q[α]
Q

(
m2 + b3m+ 3bmα2 + 3b2mα

p3

)
=

3m2

p3
+

3b3m

p3
+ 0 + 0 ∈ Z

Since p 6= 3, p3|(m2 + b3m); hence p2|m. Thus contradicting our assumption and
proving our claim.

Claim 8 Let p be a prime number such that p 6= 3 and p2|m then p2 6 |d2.

As seen in proof of Claim 7, if p|d2 then p2|m. Hence p2 6 |d2.

Claim 9 Let f2(α) = α2 + bα+ c for b, c ∈ Z, then d2 divides b2 + 2c, m+ 2bc and c2 + 2bm.

Square and verify.(
f2(α)

d2

)2

=
α4 + b2α2 + c2 + 2bα3 + 2bcα+ 2cα2

d22

=
mα+ b2α2 + c2 + 2bm+ 2bcα+ 2cα2

d22

=
(b2 + 2c)α2 + (m+ 2bc)α+ c2 + 2bm

d22

Claim 10 Let 3 6 |m then 3 6 |d2 if m 6≡ ±1 (mod 9) and 3|d2 if m ≡ ±1 (mod 9).

Note that Claim 6 implies that 9 6 |d2. When m ≡ ±1 (mod 9) we already know that
3|d2 (Claim 5).

Now for m 6≡ ±1 (mod 9), on the contrary assume that 3|d2. Then Claim 9 implies
that c ≡ 1 (mod 3) and b ≡ m (mod 3). This implies that (α2 + mα + 1)/3 ∈ OK .
Now if m ≡ 1 (mod 3), then (α − 1)2/3 ∈ OK . Raising it to fourth power and
considering the trace

T
Q[α]
Q

(
(α− 1)8

34

)
=

1− 56m+ 28m2

27
∈ Z

Hence m ≡ 1 (mod 9), contrary to our assumption. Similarly we can obtain contra-
diction for m ≡ 2 (mod 3).
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Claim 11 Let 3|m but 9 6 |m then 3 6 |d2.
Assuming 3|d2, Claim 9 implies that 3|b and 3|c. Thus α2/3 ∈ OK and computing
trace of sixth power (i.e. till trace is non-zero and denominator have higher expo-
nent than numerator)

T
Q[α]
Q

(
α12

36

)
=
m4

35
∈ Z

This contradicts the condition that 9 6 |m.

Claim 12 Let 9|m then 9 6 |d2.
Assume 9|d2, Claim 9 implies that 9|c, hence (α2 + bα)/9 ∈ OK . Now proceed as in
Claim 7 to obtain a contradiction.

Claim 13 d2 is not larger that k when m 6≡ ±1 (mod 9) and 3k when m ≡ ±1 (mod 9).

Combining all claims from Claim 6 to Claim 12 we obtain this.

Claim 14 d2 = k and f2(α) = α2 when m 6≡ ±1 (mod 9); d2 = 3k and f2(α) = α2 +±k2α+k2

d2 = 3k when m ≡ ±1 (mod 9).

From Claim 5 and Claim 13 we conclude that d2 = k when m 6≡ ±1 (mod 9) and
d2 = 3k when m ≡ ±1 (mod 9). Combining this with Claim 2 and Claim 4, the
claim follows.

Combining Claim 1 and Claim 14 proves the theorem.

Remark 11. For a square free integer m, if α = 3
√
m then

OK =

a+ bα+ cα2 if m 6≡ ±1 (mod 9) and a, b, c ∈ Z
a+ bα+ cα2

3
if m ≡ ±1 (mod 9) and a ≡ ±b ≡ c (mod 3)

with the ± sign corresponding in the obvious way.

Theorem 14. Let K = Q[ 3
√
m] where m is squarefree integer.

disc(OK) =

{
−27m2 if m 6≡ ±1 (mod 9)

−3m2 if m ≡ ±1 (mod 9)

Proof. If m is square free then we can set k = 1, h = m in previous theorem to get

OK =

Z[ 3
√
m] = {a+ b 3

√
m+ c

3
√
m2 : a, b, c ∈ Z} if m 6≡ ±1 (mod 9){

a+b 3√m+c
3√
m2

3 : a ≡ c ≡ ±b (mod 3)
}

if m ≡ ±1 (mod 9)

with the ± sign corresponding in the obvious way. We will use basic definition to compute
the discriminant. As stated in Example 1, following are the three complex embeddings in
this number field (put α = 3

√
m for the sake of clarity):

σ1 : a+ bα+ cα2 7→ a+ bα+ cα2

σ2 : a+ bα+ cα2 7→ a+ bωα+ cω2α2

σ3 : a+ bα+ cα2 7→ a+ bω2α+ cωα2

where a, b, c are rational numbers and ω = e
2πi
3 . Also using the fact ω + ω2 + 1 = 0, we

get4

disc(1, α, α2) =

∣∣∣∣∣∣
σ1(1) σ1(α) σ1(α

2)
σ2(1) σ2(α) σ2(α

2)
σ3(1) σ3(α) σ3(α

2)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
1 α α2

1 ωα ω2α2

1 ω2α ωα2

∣∣∣∣∣∣
2

= −27α6

4Note that in this case disc(OK) = disc(α) which was calculated in previous theorem, again calculated
here for fun.
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disc
(

1, α, α
2±α+1

3

)
=

∣∣∣∣∣∣∣∣∣
σ1(1) σ1(α) σ1

(
α2±α+1

3

)
σ2(1) σ2(α) σ2

(
α2±α+1

3

)
σ3(1) σ3(α) σ3

(
α2±α+1

3

)
∣∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
1 α α2±α+1

3

1 ωα ω2α2±ωα+1
3

1 ω2α ωα2±ω2α+1
3

∣∣∣∣∣∣∣
2

= −3α6

2.5 Biquadratic Fields

A biquadratic field K = Q[
√
m,
√
n] = Q[

√
m+
√
n] where m and n are distinct squarefree

integers, is a Galois extension of the rational number field Q with Galois group the Klein
four-group (pp. 116, [1]). It consists of three quadratic fields Q[

√
m],Q[

√
n] and Q[

√
k]

where k = mn
[gcd(m,n)]2

. We can see this in two ways, depending on how we represent the
elements of the permutation group[8]:

� Let a =
√
m, b = −

√
m, c =

√
n, d = −

√
n, then

Gal(K/Q) = {1, (a, b), (c, d), (a, b)(c, d)} ∼= V4

� Let e =
√
m+

√
n, f =

√
m−

√
n, g = −

√
m+

√
n, h = −

√
m−

√
n

Gal(K/Q) = {1, (e, f)(g, h), (e, g)(f, h), (e, h)(f, g)} ∼= V4

Lemma 2. Let K = Q[
√
m,
√
n] be a biquadratic field and α ∈ K. Then α ∈ OK if and only

if NK
Q[
√
m]

(α) and TKQ[
√
m]

(α) are algebraic integers.

Proof. One side of implication that if α ∈ OK then NK
Q[
√
m]

(α) and TKQ[
√
m]

(α) are algebraic
integers follows from Remark 1.

For other side of the implication note that norm and trace of an element belong to Z
characterizes the elements of the ring of integers only for quadratic extensions since the
monic minimal polynomial in that case is x2 − TQ[

√
m]

Q (α)x + N
Q[
√
m]

Q (α). Let NK
Q[
√
m]

(α)

and TKQ[
√
m]

(α) be algebraic integers and since K is a quadratic extension of Q[
√
m] the

result follows.

Theorem 15. Let K = Q[
√
m,
√
n] be a biquadratic field. Then an integral basis for OK

consists of

{
1,
√
m,
√
n,

√
n+
√
k

2

}
if m ≡ 3 (mod 4), n ≡ k ≡ 2 (mod 4){

1,
1 +
√
m

2
,
√
n,

√
n+
√
k

2

}
if m ≡ 1 (mod 4), n ≡ k ≡ 2, 3 (mod 4){

1,
1 +
√
m

2
,
1 +
√
n

2
,

(
1 +
√
m

2

)(
1 +
√
k

2

)}
if m ≡ n ≡ k ≡ 1 (mod 4)

Proof. We divide the proof in 4 parts

Claim 1 m ≡ 3 (mod 4), n ≡ k ≡ 2 (mod 4) then the basis ofOK is

{
1,
√
m,
√
n,

√
n+
√
k

2

}
We can write α ∈ OK as linear combination of 1,

√
m,
√
n,
√
k with rational coeffi-

cients
α = A+B

√
m+ C

√
n+D

√
k
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Now to determine A,B,C,D we will take trace with respect to every quadratic sub-
field

TKQ[
√
m](α) =

(
A+B

√
m+ C

√
n+D

√
k
)

+
(
A+B

√
m− C

√
n−D

√
k
)

= 2A+ 2B
√
m

TKQ[
√
n](α) =

(
A+B

√
m+ C

√
n+D

√
k
)

+
(
A−B

√
m+ C

√
n−D

√
k
)

= 2A+ 2C
√
n

TKQ[
√
k]

(α) =
(
A+B

√
m+ C

√
n+D

√
k
)

+
(
A−B

√
m− C

√
n+D

√
k
)

= 2A+ 2D
√
k

As per Lemma 2 each of them must be an algebraic integer. Therefore, for some
a, b, c, d ∈ Z

A =
a

2
, B =

b

2
, C =

c

2
and D =

d

2
Therefore, we can write

α =
a+ b

√
m+ c

√
n+ d

√
k

2

Now we will consider NK
Q[
√
m]

(α) to find relations between a, b, c and d. Note that
√
k =

√
m
√
n

gcd(m,n) , hence

NK
Q[
√
m](α)=

(
a+ b

√
m+ c

√
n+ d

√
k

2

)(
a+ b

√
m− c

√
n− d

√
k

2

)

=
(a+ b

√
m)2 − (c

√
n+ d

√
k)2

4

=
a2 + b2m+ 2ab

√
m− c2n− d2k − 2cdn

gcd(m,n)

√
m

4

=
a2 + b2m− c2n− d2k

4
+

gcd(m,n)ab− cdn
2 gcd(m,n)

√
m

But by Lemma 2 this must be an algebraic integer in Z[
√
m], hence a and b must

be even and c ≡ d (mod 2). Using this fact we can rewrite α such that all the
coefficients lie in Z:

α =
a+ b

√
m+ c

√
n− d

√
n+ d

√
n+ d

√
k

2

=
a

2
+
b

2

√
m+

(
c− d

2

)√
n+ d

(√
n+
√
k

2

)

Claim 2 m ≡ 1 (mod 4), n ≡ k ≡ 2, 3 (mod 4) then the basis ofOK is
{

1, 1+
√
m

2 ,
√
n,
√
n+
√
k

2

}
We can write α ∈ OK as linear combination of 1,

√
m,
√
n,
√
k with rational coeffi-

cients
α = A+B

√
m+ C

√
n+D

√
k

Now to determine A,B,C,D we will take trace with respect to every quadratic sub-
field and as in previous case

TKQ[
√
m](α) = 2A+ 2B

√
m = 2A− 2B + 4B

(√
m+ 1

2

)
TKQ[
√
n](α) = 2A+ 2C

√
n

TKQ[
√
k]

(α) = 2A+ 2D
√
k
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As per Lemma 2 each of them must be an algebraic integer. Therefore, for some
a, b, c, d ∈ Z

A =
a

2
, B =

b

2
, C =

c

2
and D =

d

2

Therefore, we can write

α =
a+ b

√
m+ c

√
n+ d

√
k

2

Now we will consider NK
Q[
√
m]

(α) to find relations between a, b, c and d. Note that
√
k =

√
m
√
n

gcd(m,n) and as in previous case

NK
Q[
√
m](α)=

a2 + b2m− c2n− d2k
4

+
gcd(m,n)ab− cdn

2 gcd(m,n)

√
m

=
a2+b2m−c2n−d2k−2ab+ 2cdn

gcd(m,n)

4 +
(
ab− cdn

gcd(m,n)

)(√
m+1
2

)
But by Lemma 2 this must be an algebraic integer in Z[

√
m+1
2 ], hence a ≡ b (mod 2)

and c ≡ d (mod 2). Using this fact we can rewrite α such that all the coefficients lie
in Z:

α =
a+ b

√
m− b+ b+ c

√
n− d

√
n+ d

√
n+ d

√
k

2

=
a− b

2
+ b

(
1 +
√
m

2

)
+

(
c− d

2

)√
n+ d

(√
n+
√
k

2

)

Claim 3 m ≡ n ≡ k ≡ 1 (mod 4) then the basis of OK is
{

1, 1+
√
m

2 , 1+
√
n

2 ,
(
1+
√
m

2

)(
1+
√
k

2

)}
We can write α ∈ OK as linear combination of 1,

√
m,
√
n,
√
k with rational coeffi-

cients
α = A+B

√
m+ C

√
n+D

√
k

Now to determine A,B,C,D we will take trace with respect to every quadratic sub-
field and as in previous case

TKQ[
√
m](α) = 2A− 2B + 4B

(√
m+ 1

2

)
TKQ[
√
n](α) = 2A− 2C + 4C

(√
n+ 1

2

)
TKQ[
√
k]

(α) = 2A− 2D + 4D

(√
k + 1

2

)

As per Lemma 2 each of them must be an algebraic integer. Therefore, for some
a, b, c, d ∈ Z such that a ≡ b ≡ c ≡ d (mod 2)

A =
a

4
, B =

b

4
, C =

c

4
and D =

d

4

Therefore, we can write

α =
a+ b

√
m+ c

√
n+ d

√
k

4

where a ≡ b ≡ c ≡ d (mod 2).
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Now consider another algebraic number β ∈ K

β = v

(
1 +
√
m

2

)(
1 +
√
k

2

)
=
v + v

√
m+ vm

√
n+ v

√
k

4

since m ≡ 1 (mod 4), for all v ∈ Z, β ∈ OK . By closure property, α+ β ∈ OK .

γ = α+ β =
a+ v + (b+ v)

√
m+ (c+ vm)

√
n+ (d+ v)

√
k

4

If d+ v = 0, then a+ v ≡ b+ v ≡ c+ vm ≡ 0 (mod 2) implying that

γ =
r + s

√
m+ t

√
n

2

for some r, s, t ∈ Z. Now by using norm condition we conclude that r + s + t ≡ 0
(mod 2). Using this fact we can rewrite α such that all the coefficients lie in Z:

α = (a− b− c− dm) +
(
b−d
2

) (1+
√
m

2

)
+
(
c−dm

2

) (1+
√
n

2

)
+ d

(
1+
√
m

2

)(
1+
√
k

2

)

Claim 4 The above three cases are unique upto rearrangement of m,n and k and there is no
other case possible.

It’s clear that the cases are unique upto rearrangement of m,n, k. Let’s see why
the only other possible case is invalid. If m ≡ 3 (mod 4) and n ≡ 3 (mod 4) then
mn ≡ 1 (mod 4), implying k = 1 and hence m = n.

This completes the proof.

Theorem 16. Let K = Q[
√
m,
√
n] be a biquadratic field. Then disc(OK) is the product of

the discriminants of the three quadratic subfields. Therefore

disc(OK) =


64mnk if m ≡ 3 (mod 4), n ≡ k ≡ 2 (mod 4)

16mnk if m ≡ 1 (mod 4), n ≡ k ≡ 2, 3 (mod 4)

mnk if m ≡ n ≡ k ≡ 1 (mod 4)

Proof. The complex embeddings for this field are (note that
√
k =

√
m
√
n

gcd(m,n))

σ1 : a+ b
√
m+ c

√
n+ d

√
k 7→ a+ b

√
m+ c

√
n+ d

√
k

σ2 : a+ b
√
m+ c

√
n+ d

√
k 7→ a− b

√
m+ c

√
n− d

√
k

σ3 : a+ b
√
m+ c

√
n+ d

√
k 7→ a+ b

√
m− c

√
n− d

√
k

σ4 : a+ b
√
m+ c

√
n+ d

√
k 7→ a− b

√
m− c

√
n+ d

√
k

Now using previous theorem

Case 1 m ≡ 3 (mod 4), n ≡ k ≡ 2 (mod 4)
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disc

(
1,
√
m,
√
n,

√
n+
√
k

2

)
=

∣∣∣∣∣∣∣∣∣∣∣∣

σ1 (1) σ1 (
√
m) σ1 (

√
n) σ1

(√
n+
√
k

2

)
σ2 (1) σ2 (

√
m) σ2 (

√
n) σ2

(√
n+
√
k

2

)
σ3 (1) σ3 (

√
m) σ3 (

√
n) σ3

(√
n+
√
k

2

)
σ4 (1) σ4 (

√
m) σ4 (

√
n) σ4

(√
n+
√
k

2

)

∣∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣
1
√
m

√
n

√
n+
√
k

2

1 −
√
m

√
n

√
n−
√
k

2

1
√
m −

√
n −

√
n−
√
k

2

1 −
√
m −

√
n −

√
n+
√
k

2

∣∣∣∣∣∣∣∣∣∣

2

=
(

8
√
mnk

)2
= 64mnk

Case 2 m ≡ 1 (mod 4), n ≡ k ≡ 2, 3 (mod 4)

disc

(
1,

1 +
√
m

2
,
√
n,

√
n+
√
k

2

)
=

∣∣∣∣∣∣∣∣∣∣∣∣

σ1(1) σ1

(
1+
√
m

2

)
σ1 (
√
n) σ1

(√
n+
√
k

2

)
σ2(1) σ2

(
1+
√
m

2

)
σ2 (
√
n) σ2

(√
n+
√
k

2

)
σ3(1) σ3

(
1+
√
m

2

)
σ3 (
√
n) σ3

(√
n+
√
k

2

)
σ4(1) σ4

(
1+
√
m

2

)
σ4 (
√
n) σ4

(√
n+
√
k

2

)

∣∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣
1 1+

√
m

2

√
n

√
n+
√
k

2

1 1−
√
m

2

√
n

√
n−
√
k

2

1 1+
√
m

2 −
√
n −

√
n−
√
k

2

1 1−
√
m

2 −
√
n −

√
n+
√
k

2

∣∣∣∣∣∣∣∣∣∣

2

=
(

4
√
mnk

)2
= 16mnk

Case 3 m ≡ n ≡ k ≡ 1 (mod 4)

disc
(

1, 1+
√
m

2 , 1+
√
n

2 ,
(
1+
√
m

2

)(
1+
√
k

2

))
=

∣∣∣∣∣∣∣∣∣∣∣∣

σ1 (1) σ1

(
1+
√
m

2

)
σ1

(
1+
√
n

2

)
σ1

((
1+
√
m

2

)(
1+
√
k

2

))
σ2 (1) σ2

(
1+
√
m

2

)
σ2

(
1+
√
n

2

)
σ2

((
1+
√
m

2

)(
1+
√
k

2

))
σ3 (1) σ3

(
1+
√
m

2

)
σ3

(
1+
√
n

2

)
σ3

((
1+
√
m

2

)(
1+
√
k

2

))
σ4 (1) σ4

(
1+
√
m

2

)
σ4

(
1+
√
n

2

)
σ4

((
1+
√
m

2

)(
1+
√
k

2

))

∣∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 1+
√
m

2
1+
√
n

2

(
1+
√
m

2

)(
1+
√
k

2

)
1 1−

√
m

2
1+
√
n

2

(
1−
√
m

2

)(
1−
√
k

2

)
1 1+

√
m

2
1−
√
n

2

(
1+
√
m

2

)(
1−
√
k

2

)
1 1−

√
m

2
1−
√
n

2

(
1−
√
m

2

)(
1+
√
k

2

)

∣∣∣∣∣∣∣∣∣∣∣∣

2

=mnk
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Chapter 3

Ideals of Ring of Integers

In 1876, Richard Dedekind extended applicability of Kummer’s ideal numbers to ring of
integers other than those defined by roots of unity, like Z[

√
−5] and hence ideals are also

known as Dedekind’s ideals[12]. In our discussion, Q ⊂ K ⊂ L are the number fields with
prime ideals ℘ = 〈p〉 = pZ, p and P of Z, OK and OL respectively.

Definition 10 (Dedekind Domain). An integral domain R such that

1. Every ideal is finitely generated

2. Every non-zero prime ideal is a maximal ideal

3. R is integrally closed in its field of fractions

F =

{
α

β
: α, β ∈ R, β 6= 0

}

Remark 12. OK is a Dedekind domian; see pp. 56, [1].

Remark 13. Every ideal in a Dedekind domain R is uniquely representable as a product
of prime ideals. (pp. 59, [1])

Lemma 3. If a and b are ideals in a Dedekind domain R, then a|b iff b ⊂ a.

Proof. One direction is trivial, a|b implies b ⊂ a. Conversely, assuming b ⊂ a, fix c such
that ac is principal (pp. 57, [1]), ac = 〈α〉, for some α ∈ R. Note that the set d = 1

αbc is
an ideal in R and that ad = b.

Remark 14. From this lemma, we conclude that “multiple” means sub-ideal and “divisor”
means larger ideal.

Definition 11 (Greatest common divisor of two ideals). It is the smallest ideal containing
both the given ideals. Therefore, gcd(a, b) = a + b.

Definition 12 (Least common multiple of two ideals). It is the largest ideal contained in
both of the given ideals. Therefore, lcm(a, b) = a ∩ b.

Theorem 17. Let a be an ideal in a Dedekind domain R, and let α be any non-zero element
of a. Then there exist β ∈ a such that a = 〈α, β〉.

Proof. We will construct β ∈ R such that a = gcd(〈α〉, 〈β〉). Then β will be obviously in a.
Let pn1

1 pn2
2 · · · pnrr be the prime decomposition of a, where pi are distinct. Then 〈α〉 is

divisible by all pnii . Let q1, q2, . . . , qs denote the other primes (if any) which divide 〈α〉. We
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must construct β such that none of qj divide 〈β〉, and for each i, pnii is the exact power of
pi dividing 〈β〉. Equivalently,

β ∈

(
r⋂
i=1

(
pnii − pni+1

i

))⋂ s⋂
j=1

(R− qj)


We will use Chinese Remainder Theorem:

Let a1, a2, . . . , an be pairwise relatively prime ideals in a ring R. The the mapping

R
/ n⋂
i=1

ai 7→ R/a1 × · · ·R/an

is an isomorphism. (pp. 253, [1])

Fix βi ∈ pnii − pni+1
i which is necessarily non-empty by unique factorization) and let β

satisfy the congruence

β ≡ βi (mod pni+1
i ) i = 1, 2, . . . , r

β ≡ 1 (mod qj) j = 1, 2, . . . , s

Such a β exists because the powers of pi and the qj are pairwise co-maximal (i.e. coprime),
thus the sum of any two of them is R.

Remark 15. Let K be a number field, a be a non-zero ideal of OK . Then |OK/a| divides
NK

Q (α) for all α ∈ a and equality holds iff a = 〈α〉

Definition 13 (Norm of ideal). Let L be a number field lying over K such that L is a
normal extension of K. Then |Gal(L/K)| = [L : K] = n. For an ideal b of OL we define
NL
K(b) to be the ideal such that

NL
K(b) = OK

⋂ ∏
σ∈Gal(L/K)

σ(b)

Remark: Property of transitivity is satisfied by norm function. If K ⊂ L ⊂ M are
number fields then NM

K (B) = NL
K(NM

L (B)) for and ideal B ∈ OM . (pp. 85, [1]).

Definition 14 (Lying over/Lying under). Let K ⊂ L be number fields. If p and P are
prime ideals of OK and OL respectively, such that p ⊂ P then we say that P lies over p or
p lies under P.

Remark 16. The prime ideals lying over a given prime ideal p of OK are the ones which
occur in the prime decomposition of pOL, where K ⊂ L are number fields. (pp. 63, [1])

Definition 15 (Ramification index). The exponents with which the prime ideals lying
over a given prime ideal p of OK occur in the prime decomposition of pOL is called their
ramification indices. For example, if pOL = Pe1

1 · · ·Per
r then ei is the ramification index of

Pi over p, denoted by e(Pi/p)

Definition 16 (Inertial degree). Let K ⊂ L are number fields and p ⊂ P are prime ideals
in OK and OL respectively. Then the finite field OL/P is an extension of finite degree f
over the finite field OK/p. Here f is called the inertial degree of P over p and is denoted
by f(P/p) = [OL/P : OK/p].
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When we write A/B where A,B are two algebraic structures, slash ( / ) imparts
different meanings in different contexts. Some of them are:

� IfB is a normal subgroup of A, then A/B represents a quotient group (read
as: A mod B)

� If B is an ideal of a ring A, then A/B represents a quotient ring (read as:
A mod B)

� If A and B are fields, then A/B represents that A is an field extension over
B (read as: A over B) and if A is a Galois extension of B then Gal(A/B)
represents the collection of automorphism of A which keep elements of B
fixed.

� If A and B are prime ideals, then A/B represents that A lies over B (read
as: A over B)

� If A and B are ring of integers of number fields, then A/B represents A
lies over B (read as: A over B)

Lemma 4 (Multiplicative in towers). If p ⊂ P ⊂ P are prime ideals of OK ⊂ OL ⊂ OM ,
then

e(P/p) = e(P/P)e(P/p) and f(P/p) = f(P/P)f(P/p)

Proof. For ramification index, note that know that maximum exponents dividing the prod-
uct of an ideal lying below it with the ring Pe(P/p)|pOL, P e(P/P)|POM and
P e(P/p)|pOM . Therefore we get (in terms of the maximum exponents)(

P e(P/P)
)e(P/p) ∣∣∣Pe(P/p)Oe(P/p)M

⇒ P e(P/P)e(P/p)
∣∣∣pOM

since OL ⊂ OM and multiplication of a ring by its sub-ring is the ring itself.
For inertial degree, note that f(P/p) = [OL/P : OK/p], f(P/P) = [OM/P : OL/P]

and f(P/p) = [OM/P : OK/p]. From field theory we know that (for proof see pp. 523 of
Dummit-Foote1).

[OM/P : OL/P][OL/P : OK/p] = [OM/P : OK/p]

Remark 17. Let p be any prime ideal of OK , then p lies over a unique prime ideal (pp.
63, [1]) ℘ = 〈p〉 of Z. Therefore, OK/p is a field of order pf , there f = f(p/℘).

Theorem 18. Let K ⊂ L are number fields and n = [L : K]. If P1, . . . ,Pr are the prime
ideals of OL lying over a prime ideal p of OK with e1, . . . , er and f1, . . . , fr the corresponding
ramification indices and inertial degrees then

r∑
i=1

eifi = n

Proof. We have pOL =
∏r
i=1P

ei
i and we know following result

1Abstract Algebra. John Wiley & Sons, Inc.
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Let K ⊂ L be number fields and n = [L : K] then (pp. 66, [1])

(a) For ideals a and b of OK , |OK/ab| = |OK/a| |OK/b|

(b) Let a be an ideal of OK . For an OL-ideal aOL, |OL/aOL| = |OK/a|n

(c) Let α ∈ OK , α 6= 0. For the principal ideal 〈α〉, |OK/〈α〉| =
∣∣∣NK

Q (α)
∣∣∣

hence using (a) we get

|OL/pOL| =

∣∣∣∣∣OL/
r∏
i=1

Pei
i

∣∣∣∣∣ =
r∏
i=1

|OL/Pei
i | =

r∏
i=1

|OL/Pi|ei

But by definition of inertial degree, we know that |OL/Pi| = |OK/p|fi , therefore

|OL/pOL| =
r∏
i=1

|OK/p|fiei = |OK/p|
∑r
i=1 eifi

Now using (b) we get
|OL/pOL| = |OK/p|n

and the result follows.

Theorem 19. Let L be a normal extension of K and p is a prime ideal of OK . Let P and P′

be two prime ideals of OL lying over the prime same prime p of OK . Then σ(P) = P′ for
some σ ∈ Gal(L/K).

Proof. Clearly, the Galois group Gal(L/K) permutes the prime ideals lying over p. If P lies
over p and σ ∈ Gal(L/K), then σ(P) is a prime ideal in σ(OL) = OL, lying over σ(p) = p.
Here we wish to prove that the Galois group permutes them transitively.

On the contrary, suppose σ(P) 6= P′ for all σ ∈ Gal(L/K). Then by Chinese remainder
theorem (stated in Theorem 17) there is a solution to the system of congruences

x ≡ 0 (mod P′)

x ≡ 1 (mod σ(P)) for all σ ∈ Gal(L/K)

Let α ∈ OL be such a solution, we have

NL
K(α) ∈ OK ∩P′ = p

since one of the factors of NL
K(α) is α ∈ P′. On the other hand we have α 6∈ σ(P) for each

σ ∈ Gal(L/K), hence σ−1(α) 6∈ P. We can express NL
K(α) as the product of all σ−1(α),

and since none of these are in prime ideal P, it follows that NL
K(α) 6∈ P. But we have

already seen that NL
K(α) ∈ p ⊂ P.

Corollary 3. If L is normal over K and P and P′ are two prime ideals lying over p, then
e(P/p) = e(P′/p) and f(P/p) = f(P′/p).

Proof. e(P/p) = e(P′/p) follows from the unique factorization property stated in Re-
mark 13.

f(P/p) = f(P′/p) is obtained by establishing an isomorphism between OL/P and
OL/P′

Definition 17 (Ramified prime). A prime ideal p of OK is said to be ramified in OL (or in
L) if and only if e(P/p) > 1 for some prime ideal P of OL lying over p.
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Remark 18. A prime ideal ℘ = 〈p〉 of Z is ramified in OK iff p|disc(OK).

Definition 18 (Fractional ideal). Let R be a Dedekind domain and F be its field of frac-
tions. A fractional ideal f of F is a set of form αa, for some α ∈ F and some ideal a of
R.

Remark 19. Considering F as an R−module, f is a fractional ideal iff it is a finitely gen-
erated submodule of F (pp. 92, [1]). Therefore, a fractional R−ideal is a full R−lattice
in F (pp. 47, [6]).

Definition 19 (Inverse fractional ideal). Let R be a Dedekind domain and F be its field of
fractions. If f is a fractional ideal of F , then the inverse fractional ideal f−1 is defined as

f−1 = {α ∈ F : αf ⊂ R}

Remark 20. Note that ff−1 = R. Also, the fractional ideals of F form a free abelian group
under multiplication. Equivalently, every fractional ideal of F is uniquely representable as
a product of distinct prime ideals of R (pp. 92, [1] and pp. 47, [6]).

Definition 20 (Complementary fractional Ideal). Let K ⊂ L be number fields and f is a
fractional ideal of L, then the complementary fractional ideal f∗ is defined as

f∗ = {α ∈ L : TLK(αf) ⊂ OK}

Remark 21. If we consider f to be a fractionalOL−ideal of L, then f∗ is anOL−submodule
of L, which is an R−lattice. Thus f∗ is also a fractional OL−ideal of L. (pp. 60, [6])

Definition 21 (Different Ideal). Let K ⊂ L be number fields, then the different ideal
diff(OL/OK) of OL with respect to OK is the inverse of the complement of OL.

diff(OL/OK) = (O∗L)−1 = {α ∈ L : αO∗L ⊂ OL}

Remark 22. OL is a fractional ideal of L and because OL ⊂ O∗L the inverse of O∗L is
a fractional ideal inside OL, hence an ideal (or, what we may refer as integral ideal).
Therefore, this is a special ideal of OL which is divisible by exactly those prime ideals P
of OL which are ramified over OK . Hence a generalization of Remark 18. (pp. 73, [1])

Definition 22 (Decomposition group). Let K and L be number fields such that L is a
normal extension of K. Then for each prime ideal P of OL lying over the prime ideal p of
OK we define the decomposition group D(P/p) as

D(P/p) = {σ ∈ Gal(L/K) : σ(P) = P}

Remark 23. From Corollary 3 we know that if there are r prime ideals Pi of OL lying
over prime ideal p of OK then they all have same ramification index e and inertial degree
f . Therefore, by Theorem 18 we conclude that ref = n = [L : K] = |Gal(L/K)|.

Definition 23 (Inertia group). Let K and L be number fields such that L is a normal
extension of K. Then for each prime ideal P of OL lying over the prime ideal p of OK we
define the inertia group E(P/p) as

E(P/p) = {σ ∈ Gal(L/K) : σ(α) ≡ α (mod P) for all α ∈ OL}

Remark 24. ClearlyD(P/p) andE(P/p) are subgroups of Gal(L/K). Also we can express
decomposition group as

D(P/p) = {σ ∈ Gal(L/K) : σ(α) ≡ 0 (mod P) iff α ≡ 0 (mod P)}

therefore E(P/p) is a normal subgroup of D(P/p). (pp. 114, [1])
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Definition 24 (Decomposition field). Let L be a normal extension of K and a prime ideal
P of OL lying over the prime ideal p of OK . The fixed field of the decomposition group
D = D(P/p) is called decomposition field as is denoted by LD.

Definition 25 (Inertia Field). Let L be a normal extension of K and a prime ideal P of
OL lying over the prime ideal p of OK . The fixed field of the inertia group E = E(P/p) is
called decomposition field as is denoted by LE .

Theorem 20. Let L be a normal extension of K and there be r prime ideals P of OL lying
the over prime ideal p of OL with e(P/p) = e and f(P/p) = f . If D = D(P/p) and
E = E(P/p), then

(a) [LD : K] = r, e(PD/p) = 1 and f(PD/p) = 1

(b) [LE : LD] = f , e(PE/PD) = 1 and f(PE/PD) = f

(c) [L : LE ] = e, e(P/PE) = e and f(P/PE) = 1

where PE and PD, respectively are the unique prime ideals of the ring of integers of LE and
LD lying under P.

Proof. I will give an outline of proof, for details see pp. 100, [1].

(a) By the fundamental theorem of Galois theory we know that [LD : K] is same as the
index of D in Gal(L/K). So, prove that the index of D in Gal(L/K) is r. Notice
that P is the only prime ideal of OL lying over PD, since such primes are per-
muted transitively by Gal(L/LD) (Theorem 19). Apply Theorem 18 to [L : LD] =
e(P/PD)f(P/PD) and conclude that e(P/PD) = e and f(P/PD) = f , implying
that e(PD/p) = 1 and f(PD/p) = 1.

(b) Assume f(P/PE) = 1 (we will prove it in next part), then together with f(PD/p) =
1 this shows that f(PE/PD) = f(P/p) = f (Lemma 4). Then by Theorem 18 we
must have [LE : LD] ≥ f , but since E is a normal subgroup of D (Remark 24), we
have [LE : LD] = |D/E| ≤ f , hence exactly f . Which implies that e(PE/PD) = 1.

(c) Let the ring of integers of LD beO, then we will show that the Galois group ofOL/P
over O/PE is trivial. This implies that f(P/PE) = 1. Then we obtain [L : LE ] = e
and e(P/PE) = e by using Lemma 4.

Corollary 4. If D = D(P/p) is a normal subgroup of Gal(L/K) then p splits into r distinct
primes in LD. If E = E(P/p) is also normal in Gal(L/K) then each of them remains prime
(i.e. inert) in LE . Finally each one becomes eth power in L.

Remark 25. Normality condition on D is necessary. For example, if L = Q[ 3
√

19, ω] where
ω = e2πi/3. Then L is normal of degree 6 over K = Q with Galois group S3 (group of
permutations of three objects). Here 3OK doesn’t split into three distinct prime ideals
in any of the possible decomposition fields Q[ 3

√
19],Q[ 3

√
ω19] and Q[

3
√
ω219]. In fact it is

ramified in each since it splits into p21p2. (pp. 103, [1])

Theorem 21. Let K be a number field, and let L and M be two extensions of K. Fix a prime
ideal p of K.

(a) If p is unramified in both L and M , then p is unramified in the composite field LM .

(b) If p splits completely in both L and M then p splits completely in LM .
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Proof. We will prove each part separately.

(a) Assuming that p is unramified in L and M , let P be any prime ideal of LM lying
over p. We have to show that e(P/p) = 1. Let F be be any normal extension of K
containing LM , and let P′ be any prime ideal of F lying over P. Thus, P′ also lies
over p. Let E = E(P′/p) be the corresponding inertia group, so let FE is the inertia
field. From previous theorem we can deduce that (pp. 104, [1]) that FE contains
both L and M , since the primes P′ ∩ L and P′ ∩M are necessarily unramified over
p. Then FE also contains LM , implying that P′ ∩ LM = P is unramified over p.

(b) The proof is similar to what we did in (a), just replace inertia group E by decompo-
sition group D = D(P′/p). Note that splitting completely in LM is equivalent to the
condition e(P/p) = f(P/p) = 1 for every prime ideal P of LM lying over p.

Definition 26 (Ramification group). Let L be a normal extension of K and a prime ideal
P of OL lying over the prime ideal p of OK . Then for m ≥ 0 we define ramification group
as

Vm(P/p) = {σ ∈ Gal(L/K) : σ(α) ≡ α (mod Pm+1) for all α ∈ OL}

Remark 26. V0(P/p) = E(P/p) and the Vm(P/p) form a descending chain of normal
subgroups of D(P/p). (pp. 121, [1])

Definition 27 (Frobenius automorphism). Let K and L be number fields such that L is a
normal extension of K. Then for each prime ideal P of OL lying over the prime ideal p of
OK we define the Frobenius automorphism of P over p, ψ(P/p) ∈ D(P/p) as

ψ(α) ≡ α|OK/p| (mod P)

for all α ∈ OL.

Theorem 22. Let L be a normal extension of K and p be a prime ideal of K which is
unramified in L. For each prime ideal P of L lying over p there is a unique Frobenius
automorphism ψ(P/p) ∈ Gal(L/K) such that

ψ(α) ≡ α|OK/p| (mod P)

for all α ∈ OL. When Gal(L/K) is abelian ψ(P/p) depends only on p, and

ψ(α) ≡ α|OK/p| (mod pOL)

for all α ∈ OL.

Proof. Assuming that p is unramified in L, ψ(P/p) is the only element in D(P/p) with this
property, and in fact the only element in Gal(L/K). Also note that

ψ(σP/p) = σψ(P/p)σ−1

for each σ ∈ Gal(L/K). Since all prime ideals lying over p are of this form, we conclude
that the conjugacy class of the element ψ(P/p) is uniquely determined by p.

When G is abelian ψ(P/p) itself is uniquely determined by the unramified prime ideal
p. This ψ(P/p) satisfies the same congruence for all P, hence it satisfies

ψ(α) ≡ α|OK/p| (mod pOL)
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3.1 Cyclotomic Integer Rings

Theorem 23. Let K = Q[ζm] and fix a prime p ∈ Z with ℘ = 〈p〉 be the corresponding prime
ideal of Z. If P1, . . . ,Pr be the distinct prime ideals of Z[ζm] lying over ℘ then

℘OK = (P1 ·P2 · · ·Pr)
e

and each one of them has same inertial degree f . Moreover, if m = pkn, where p - n then
e = ϕ(pk) and f is the multiplicative order of p mod n.

Proof. Since K = Q[ζm] is a normal extension of Q, using Corollary 3 we conclude that all
prime ideals of Z[ζm] have same ramification index and inertial degree over ℘.

Note that ζm = ζpkn = ζpkζn. We will consider how ℘ splits in each of the fields
K1 = Q[ζpk ] and K2 = Q[ζn], the result for Q[ζm] will follow.

(A) How ℘ splits in K1 = Q[ζpk ]

Case 1 p 6 |m
Then k = 0 and therefore K1 = Q[ζpk ] = Q and e(℘/℘) = 1 = ϕ(p0).

Case 2 p|m
We will use following fact:

Let ζm = e2πi/m, m a positive integer. Then following holds (pp. 47, [1])

(a) If k is relatively prime to m then 1 + ζm + . . .+ ζk−1m is a unit in Z[ζm].

(b) Let m = pk, p be a prime. Then p = u(1− ζpk)ϕ(p
k) where u is a unit in

Z[ζpk ]. (see second claim of Theorem 7)

Using (b) we know that
p = u(1− ζpk)ϕ(p

k)

where u is a unit in Z[ζpk ]. Also, 〈1 − ζpk〉ϕ(p
k) = ℘ = pZ. Since ϕ(pk) is the

degree of K1 over Q, any further splitting of 〈1− ζpk〉 into primes would violate
Theorem 18; thus 〈1 − ζpk〉 must be a prime. Therefore, the principal ideal
〈1− ζpk〉 of Z[ζpk ] is a prime ideal lying over ℘ and e(〈1− ζpk〉/℘) = ϕ(pk).

(B) How ℘ splits in K2 = Q[ζn]

Case 1 p 6 |m
Then n = m and K2 = Q[ζn] = Q[ζm]. Therefore this case is same as the next
one, i.e. p - n.

Case 2 p|m
We know that ℘ is unramifeid (Remark 18) since p - n and disc(Z[ζn]) is a
divisor of nϕ(n) as seen in third claim of Theorem 7. Thus we have

℘OK2 = ℘Z[ζn] = p1 · p2 · · · pr

where pi are distinct primes of Z[ζn], each with the same inertial degree f over
℘, and rf = ϕ(n).
Claim: f = f(pi/℘) is the order of p mod n.

i. As stated in Remark 6, Gal(K2/Q) ∼= Z∗n and an automorphism σ of K2

corresponds to the congruence class [a] ∈ Z∗n for a ∈ Z iff σ(ζn) = ζn.
In particular, let σ denote the automorphism corresponding to [p]. Let 〈σ〉
denote the subgroup of Gal(K2/Q) generated by σ. The order of the group
〈σ〉 is the same as the order of the element σ, which is same as the order
of p mod n.
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ii. Fix any p = pi, we denote the field Z[ζn]/p has degree f over Zp ∼= Z/pZ
since that was the definition of f = f(p/℘) = [Z[ζn]/p : Z/pZ]. Conse-
quently, the Galois group of Z[ζn]/p over Zp, generated by the automor-
phism τ which sends every element to its pth power. Hence the order of the
group 〈τ〉 is f .

iii. For every a ∈ Z, σa = 1 iff ζp
a

n = ζn and the latter holds iff pa ≡ 1
(mod n). On the other hand, τa = 1 iff ζp

a

n ≡ ζn (mod p). Suppose ζp
a

n ≡
ζn (mod p). We can write pa ≡ b (mod n), 1 ≤ b ≤ n. Then, ζp

a

n = ζbn and
ζbn ≡ ζn (mod p). This implies ζb−1n ≡ 1 (mod p) since ζn is a unit in Z[ζn].
As seen in third claim of Theorem 1, we have

n = (1− ζn)(1− ζ2n) · · · (1− ζn−1n )

This implies that if b > 1 then n ∈ p, but this is clearly impossible since
p ∈ ℘ ⊂ p and gcd(n, p) = 1. Therefore b = 1. This proves that if ζp

a

n ≡ ζn
(mod p) then pa ≡ 1 (mod n), which in turn implies that σa = 1 iff τa = 1,
for every a ∈ Z. Hence proving that 〈σ〉 and 〈τ〉 have the same order.

(C) Putting together the results for Q[ζpk ] and Q[ζn].

Fix primes P1, . . . ,Pr of Z[ζm] lying over p1, . . . , pr respectively. All Pi lie over ℘,
hence all Pi must lie over 〈1 − ζpk〉 of Z[ζpk ], since we showed that 〈1 − ζpk〉 is the
unique prime ideal of Z[ζpk ] lying over ℘.

Pi

〈1− ζpk〉 pi

℘

Figure 3.1: Hasse diagram of the lattice of subideals

From this diagram we conclude that

e(Pi/℘) ≥ e(〈1− ζpk〉/℘) = ϕ(pk)

f(Pi/℘) ≥ f(pi/℘) = f

Moreover, we have rf = ϕ(n) and ϕ(pk)rf = ϕ(m). Then by Theorem 18, Pi are
the only prime ideals of Z[ζm] lying over ℘ and equality must hold in the inequalities
above. Therefore, ref = ϕ(m). Thus completing the proof.

Corollary 5. If p - m, then ℘ splits into ϕ(m)/f distinct prime ideals in Z[ζm], where f is
the order of p mod m. Therefore

℘OK =

φ(m)
f∏
`=1

p`

where f is the lease positive integer such that pf ≡ 1 (mod m) and p` are prime ideals of
OK = Z[ζm] lying over ℘.

Theorem 24. There exist prime integers p and q such that Q[ζpq] contains a subfield K in
which

℘OK = (p1 . . . pr)
e

where pi are prime ideals of OK lying over ℘ with inertial degree f .
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Proof. We will prove this by giving necessary criterion for finding p and q satisfying given
conditions.

Step 1 There exist primes p and q such that p splits into r disctinct primes in the Q[ζq].

Given r, then by Corollary 5 such p, q exist because we can find f ′ such that it is
the smallest positive integer satisfying pf

′ ≡ 1 (mod q) with f ′ = ϕ(q)
r = q−1

r . This
is possible since by Fermat’s little theorem, f ′ should be a factor of q − 1 and this
condition can be satisfied here.

Step 2 These p and q can be taken so that Q[ζq] contains a subfield of degree rf over Q.

From Corollary 4 we can conclude that

Whenever L is normal over K with cyclic Galois group and p (a prime
ideal of K) splits into r prime ideals in L, then the decomposition field is
the unique intermediate field of degree r over K, and p splits into r prime
in every intermediate field containing the decomposition field.(pp. 102,
[1])

Since Q[ζq] is normal extension of Q, and by Remark 6 we know that the Galois
group is cyclic, we can use this result. Also, rf |ϕ(q) which implies that rf | rf ′ or
f | f ′.

Step 3 We can ensure that the condition p ≡ 1 (mod e) is satisfied.

We can choose p for step 1 by keeping this condition in mind, using generalized
version of Chinese Remainder Theorem.

We will have to use following two theoremsa

(a) Let n1, n2, . . . , nk be positive integers, with gcd(ni, nj) = 1 whenever
i 6= j, and let a1, a2, . . . , ak be any integers. Then the solutions of
simultaneous congruences, x ≡ ai (mod n)i for 1 ≤ i ≤ k form a
single congruence class mod n, where n = n1 · · ·nk.

(b) Let n = n1 · · ·nk where the integers ni are mutually coprime, and
let f(x) be a polynomial with integer coefficients. Suppose that for
each i = 1, . . . , k there are Ni congruence classes x ∈ Zn, such that
f(x) ≡ 0 (mod ni). Then there are N = N1 . . . Nk classes x ∈ Zn such
that f(x) ≡ (mod n).

app. 53 and 58 of Jones-Jones, “Elementary Number Theory.” Springer Undergraduate
Mathematics Series (1998).

Step 4 ℘ splits into r prime ideals, each with ramification index e and inertial degree f in a
subfield of Q[ζpq], where p and q satisfy above three conditions.

This follows from Theorem 23.

Remark 27. For e = 2, f = 3, r = 5, an example of such primes is p = 29, q = 61. (pp.
117, [1])

Theorem 25. Let K be a subfield of Q[ζm] and H be the subgroup of the Z∗m fixing K
pointwise. For a prime p ∈ Z not dividing m, if f is the least positive integer such that[
pf
]
∈ H where square brackets denote the congruence class mod m then f = f(p/℘) for

any prime ideal p of K lying over ℘.
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Proof. From Remark 6 we know that Gal(Q[ζm]/Q) ∼= Z∗m. Note that K is a normal
extension of Q, hence we have Frobenius automorphism ψ(P/p)

ψ(α) ≡ α|Z/℘| (mod p)

for all α ∈ OK . Note that, f(p/℘) = [OK/p : Z/℘] = [OK/p : Zp]. Therefore f(p/℘) is the
order of ψ(p/℘).

Moreover, Q ⊂ K ⊂ Q[ζm] where Q[ζm] and K both are normal over Q. If P is some
prime ideal of Z[ζm] lying over p then ψ(p/℘) is the restriction of ψ(P/℘) to K. (pp. 118,
[1]). Therefore ψ(p/℘) has order equal to degree of p mod m. Thus f is the order of
ψ(p/℘).

Theorem 26. Let K = Q[ζp], where p is an odd prime. If q is any prime different from p and
d is a divisor of p−1 then q is a dth power mod p iff q splits completely in a subfield Fd ⊂ K
having degree d over Q.

Proof. From Remark 6 we know that Gal(K/Q) ∼= Z∗p is cyclic group of order p− 1, hence
there is a unique subfield Fd ⊂ K having degree d over Q, for each divisor d of p − 1. In
fact, Fd is the fixed field of the unique subgroup of the Galois group having order (p−1)/d.
Also, Fd1 ⊂ Fd2 iff d1 | d2.

From Corollary 5 we know that q splits in r distinct primes in K, where f = (p− 1)/r
is the order of q in the multiplicative group Z∗p. Since, Z∗p is a cyclic group of order p − 1,
the dth powers form the unique subgroup of order (p − 1)/d, consisting of all elements
whose orders divide (p− 1)/d. Thus the following holds

qf ≡ 1 (mod p) (since f is the order of q mod p)

q ≡ xd (mod p) for some x ∈ Z
qp−1 ≡ 1 (mod p) (Fermat’s Little Theorem (or) p− 1 is the order of Z∗p)

Therefore, f = (p− 1)/r divides (p− 1)/d implying that d|r. Hence Fd ⊂ Fr.
Observe that Fr is the decomposition field KD corresponding to D(q/qZ), where q is

any prime ideal of OK lying over the ideal qZ = 〈q〉. This is because the decomposition
field must have degree r over Q, and Fr is the only one. Thus by following result

If D(P/p) is a normal subgroup of Gal(L/K), then p splits completely in K ′

iff K ′ ⊂ LD (pp. 105, [1])

Fd ⊂ Fr is equivalent to qZ splitting completely in Fd.

3.2 Real Cyclotomic Integer Rings

Theorem 27. Let K = Q[ξm] with ξm = ζm + ζ−1m and p be a rational prime such that p - m
then

℘OK =

φ(m)
2f∏
`=1

p`

where the inertial degree f is the smallest positive integer satisfying pf ≡ ±1 (mod m) and
p` are prime ideals of OK = Z[ξm] lying over ℘.

Proof. We will use Theorem 25. First of all, H = {[1], [−1]} (which is not same as Z×3 ).
Therefore, inertial degree f is the least positive integer such that pf ≡ ±1 (mod m).

Since p - m, Corollary 5 implies that e(P/℘) = 1 for any prime ideal P of Z[ζm] lying
over ℘. Moreover, Q[ξm] is a subfield of Q[ζm], hence we conclude that its ramification
index is also 1.
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As seen in proof of Theorem 9, Q[ζm] has degree 2 over Q[ξm] and degree ϕ(m) over
Q. Hence we conclude that Q[ξm] and degree φ(m)

2 over Q.
Let ℘ split into r distinct prime ideals pi of Z[ξm], then Theorem 18 implies that fr =

φ(m)
2 and we get r = φ(m)

2f .

3.3 Quadratic Integer Rings

Definition 28 (Legendre symbol). Let p be an odd prime integer and n be another integer
not divisible by p, then we define Legendre symbol

(
n
p

)
as

(
n

p

)
=

{
1 if x is quadratic residue mod p

−1 otherwise

Definition 29 (Jacobi symbol). For a ∈ Z and odd b > 0, such that gcd(a, b) = 1, we
define Jacobi symbol

(
a
b

)
in terms of Legendre symbol as

(a
b

)
=

k∏
i=1

(
a

pi

)ri
where b =

∏k
i=1 p

ri
i with pi being odd primes.

Theorem 28. Let K = Q[
√
m] where m is a square free integer and p be a prime integer.

(a) If p | m then ℘OK = 〈p,
√
m〉2

(b) If p = 2 and m is odd then

℘OK =


〈2, 1 +

√
m〉2 if m ≡ 3 (mod 4)

〈2, 1+
√
m

2 〉〈2, 1−
√
m

2 〉 if m ≡ 1 (mod 8)

pOK if m ≡ 5 (mod 8)

(c) If p is odd and p - m then

℘OK =

〈p, n+
√
m〉〈p, n−

√
m〉 if

(
m
p

)
= 1 with m ≡ n2 (mod p)

pOK if
(
m
p

)
= −1

where pOK = {px : x ∈ OK} just like2 pZ = px : x ∈ Z.

Proof. Firstly, from Theorem 18 we conclude that there are only three possibilities:

℘OK =


p2 with f(p/℘) = 1

p with f(p/℘) = 2

p1p2 with f(p1/℘) = f(p2/℘) = 1

Now we will prove all the cases separately:

(a) 〈p,
√
m〉2 = 〈p2, p

√
m,m〉. This is contained in ℘OK since p | m. On the other hand,

it contains the gcd(p2,m), which is p; hence it contains ℘OK .

(b) We will consider all possibilities separately
2Coincidentally pZ = 〈p〉 = ℘, but every prime ideal is not a principal ideal.
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(i) m ≡ 3 (mod 4)

We have, 〈2, 1+
√
m〉2 = 〈4, 1+m+2

√
m, 2(1+

√
m)〉. Note that 2 divides each

one of the three factors. Now the result follows as in (a).

(ii) m ≡ 1 (mod 8)

We have, 〈2, 1+
√
m

2 〉〈2, 1−
√
m

2 〉 = 〈4, 1−m4 , 1−
√
m, 1 +

√
m〉. Note that 2 divides

each one of the four factors. Now the result follows as in (a).

(iii) m ≡ 5 (mod 8)

Claim: If p is any prime ideal of OK lying over ℘, then OK/p is not isomorphic
to Z2.
Consider the polynomial x2 − x + 1−m

4 . Since m ≡ 1 (mod 4), this has a root
in OK and hence a root in OK/p. But since m ≡ 5 (mod 8) this polynomial
reduces to x2 − x − 1 mod 2 which has no root in Z2. Therefore, OK/p is not
isomorphic to Z2.
Since our claim is true, f = [OK/p : Zp] > 1 and from our initial observations
we conclude that f = 2.

(c) We will consider all possibilities separately

(i)
(
m
p

)
= 1

We have, 〈p, n+
√
m〉〈p, n−

√
m〉 = 〈p2, n2−m, p(n−

√
m), p(n+

√
m)〉. Since

m ≡ n2 (mod p), p divides each one of the four factors. Now the result follows
as in (a).

(ii)
(
m
p

)
= −1

Claim: If p is any prime ideal of OK lying over ℘, then OK/p is not isomorphic
to Zp.
Consider the polynomial x2 −m. This has a root in OK , hence a root in OK/p.
But sincem is not a quadratic residue mod p, this has no root in Zp. Therefore,
OK/p is not isomorphic to Zp.
Since our claim is true, f = [OK/p : Zp] > 1 and from our initial observations
we conclude that f = 2.

Theorem 29 (Quadratic Reciprocity Law3). Let p be an odd prime in Z, then(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

and for odd primes q different from p we have(
q

p

)
=

{
1 if p or q ≡ 1 (mod 4)

−1 if p ≡ q ≡ 3 (mod 4)

Proof. From second claim in proof of Theorem 12 we know that Q[ζp] contains Q[
√
p]

if p ≡ 1 (mod 4) and Q[
√
−p] if p ≡ 3 (mod 4). Therefore we can use Theorem 26 to

conclude that for any prime number r,
(
r
p

)
= 1 iff 〈r〉 splits completely in F2 = Q[

√
±p].

We restate the splitting conditions from Theorem 28 as

3This is claimed to be the theorem with second largest number of proofs, first being the Pythagorean
Theorem. I discussed an elementary proof of this theorem in one of my earlier project reports (pp. 13, [21]).
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〈r〉OK splits in Q[
√
p] iff either r = 2 and p ≡ 1 (mod 8) or r = q and

(
p
q

)
= 1.

Now to accommodate the Q[
√
−p] case simultaneously, consider following fact

x2 + 1 ≡ 0 (mod p) has a solutiona iff p ≡ 2, 1 (mod 4).

an2+1 ≡ 0 (mod p)⇒ p ≡ 2, 1 (mod 4) can be proved by contradiction, on the contrary
assume that p ≡ 3 (mod 4), hence n2 + 1 ≡ 3` (mod 4); using mod 2 conclude that it
should satisfy n2 + 1 ≡ 3 (mod 4) which is impossible. For p ≡ 2, 1 (mod 4)⇒ n2 + 1 ≡ 0
(mod p) use the fact that Z∗p is cyclic group of order p− 1, see pp. 7 of [1]

From this, since p is odd, we conclude that
(
−1
p

)
= 1 iff p ≡ 1 (mod 4). Also using

definition of Legendre symbol, we can conclude that
(
a
p

)(
b
p

)
=
(
ab
p

)
for a, b not divisible

by p.

Note that p ≡ 1 (mod 4) holds for p ≡ 1,−3 (mod 8) and p ≡ 3 (mod 4) holds for
p ≡ −1, 3 (mod 8). Now combining all this information the theorem follows for r = 2.
When p ≡ 1 (mod 4), F2 = Q[

√
p]. The condition of splitting stated above implies that(

q
p

)
= 1 ⇐⇒

(
p
q

)
= 1, hence is symmetrical in p and q and theorem follows in this

case.

3.4 Pure Cubic Integer Rings

Theorem 30. Let K = Q[ 3
√
m] where m be a cubefree integer with m = hk2 such that h and

k are squarefree and relatively prime. Also, p be a rational prime with ℘ = 〈p〉.

(a) If p 6= 3 and p - m then the prime decomposition of ℘OK can be determined by factoring
x3 −m mod p.

(b) If p 6= 3 and p | m then ℘OK = p3

(c) If p = 3 then then

℘OK =

{
p3 if m 6≡ ±1 (mod 9) or h2 6≡ k2 (mod 9)

p21p2 if m ≡ ±1 (mod 9) or h2 ≡ k2 (mod 9)

Proof. We will prove each part separately:

(a) We will use the following result:
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Let L be a field extension ofK with n = [L : K]. Fix an element α ∈ OL of degree
n over K, such that L = K[α]. Therefore, OK [α] is an additive subgroup of OL.
Since OK [α] and OL are free abelian groups of rank mn, where m = [K : Q],
OL/OK [α] is necessarily finite (see second claim of Theorem 3).
Fix a prime ideal p of OK then if a polynomial h ∈ OK [x], then [h] denote the
corresponding polynomial in (OK/p) [x] obtained by reducing the coefficients of
h mod p. Now fix a monic irreducible polynomial g ∈ OK [x] for α. Then [g]
factors uniquely into monic irreducible factors in (OK/p)[x] and we can write

[g] = [g1]
e1 [g2]

e2 · · · [gr]er

where gi are monic polynomials over OK and [gi] are distinct.
Let p be the prime of Z lying under p. If p doesn’t divide |OL/OK [α]| then

pOL = Pe1
1 Pe2

2 · · ·P
er
r

where Pi is the ideal 〈p, gi(α)〉 of OL. In other words, Pi = pOL + 〈gi(α)〉 with
f(Pi/p) equal to the degree of gi. (pp. 79, [1])

Here p 6= 3 and p - m, therefore p2 - disc( 3
√
m) (Theorem 14). As seen in Theorem 3

and Theorem 13, this implies that p does not divide |OK/Z[α]|. Now g(x) = x3 −m
is the irreducible monic polynomial for 3

√
m, hence

℘OK = pe11 pe22 · · · p
er
r

where pi = 〈℘, gi( 3
√
m)〉 and f(pi/℘) equal to the degree of gi. (then using Theo-

rem 18 we can calculate ei since r and fi are known)

(b) Since gcd(h, k) = 1, p | m implies that p | k or p | h.

Consider the case when p - k. Let p be the prime divisor of ℘ in OK . Let β = α2

k =
3
√
h2k (see second claim of Theorem 13). Then p divides 〈h2k〉 = 〈β3〉 in OK , so

that p must divide 〈β〉OK . Then p3 divides 〈β3〉 = 〈h2k〉 in OK . Since gcd(h, k) = 1
and hk is squarefree, we conclude that h2k = pb for some b not divisible by p. Then
〈b〉OK is not divisible by p. Considering the prime decomposition of pb we deduce
that p3 divides ℘ in OK . Then from Theorem 18 it follows that ℘OK = p3.

Alternatively, we can just show that p - |OK/β| and use the result stated in (a).
Similarly, the claim holds for p - k, just instead of β consider α =

3
√
hk2.

(c) If 3 | hk then h2 6≡ k2 (mod 9) since hk is squarefree. The desired conclusion then
follows from (b), since we can use same argument when p | h, with β replaced by
α = hk2.

Assume that 3 - hk. We have following result

Let K be a number field of degree n over Q and α1, . . . , αn ∈ K. (pp. 86, [1])

(i) discKQ (rα1, α2, . . . , αn) = r2 disc(α1, α2, . . . , αn) for all r ∈ Q.

(ii) Let β be a linear combination of α1, . . . , αn with coefficients in Q. Then

discKQ (α1 + β, α2, . . . , αn) = discKQ (α1, . . . , αn)

Let γ = (α − 1)2/3, then using above result along with third claim of proof of
Theorem 13 we conclude that discKQ (γ) = 4 discKQ (OK). Now, using this with the
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result stated in (a) we can always compute the factors for m ≡ ±1 (mod 9) except
possible when m ≡ ±8 (mod 27). But 9 - discKQ (OK) when m ≡ ±1 (mod 9).
Finally, using Remark 18, we conclude that ℘OK is not the cube of a prime ideal and
in fact ℘OK = p21p2. (pp. 89, [1])

3.5 Octet Integer Rings

In this section we will discuss the normal closure of pure quartic field (pp. 41, [1]). Let
m ∈ Z, and assume that m is not a square. Then K = Q[ 4

√
m] has degree 4 over Q

and L = Q[ 4
√
m, i] is its normal closure over Q. The roots of x4 −m are denoted by the

alphabets as a = 4
√
m, b = i 4

√
m, c = − 4

√
m and d = −i 4

√
m. Now we can represent the

Galois group Gal(L/Q) as permutations of a, b, c, d.
L = Q[i][ 4

√
m] is an extension of Q[i] of degree 4. The four conjugates of 4

√
m over Q[i]

are a, b, c, d. Any element of Gal(L/Q[i]) is determined completely by knowing to which
a, b, c, d the element sends 4

√
m. Let σ be a permutation which maps a to b. Then we have:

σ(a) = b

σ(b) = σ(ia) = iσ(a) = ib = c

σ(c) = σ(−a) = −σ(a) = −b = d

σ(d) = σ(−ia) = −iσ(a) = −ib = a

Therefore, σ = (a, b, c, d) and Gal(L/Q[i]) = {1, σ, σ2, σ3}.
L = Q[ 4

√
m][i] is an extension of K = Q[ 4

√
m] of degree 2. Since this is normal

quadratic extension, we know that the permutation map τ is conjugation map. There-
fore, τ = (b, d) and Gal(L/K) = {1, τ}.

Since τ and σ are independent we conclude that

G = Gal(L/Q) = {1, σ, σ2, σ3, τ, στ, σ2τ, σ3τ} ∼= D4

where D4 is the Dihedral group of order 8.
We can use this to illustrate Fundamental Theorem of Galois Theory

G = D4

{1, τ, σ2, σ2τ} {1, σ, σ2, σ3} {1, στ, σ2, σ3τ}

{1, σ2τ} {1, τ} {1, σ2} {1, σ3τ} {1, στ}

{1}

(a) The Hasse diagram of the lattice of sub-
groups of Gal(L/Q) ∼= D4

L = Q[ 4
√
m, i]

Q[ 4
√
m] Q[i 4

√
m] Q[

√
m, i] Q[(1− i) 4

√
m] Q[(1 + i) 4

√
m]

Q[
√
m] Q[i] Q[i

√
m]

Q

(b) The Hasse diagram of the lattice of subfields
of L

Figure 3.2: Note that the subgroup and subfield lattices are in opposite direction, since the
containment of fixed fields is opposite to the containment of corresponding Galois groups

Theorem 31. Let K = Q[ 4
√
m, i] where i =

√
−1, m ∈ Z and m is not a square. Suppose p

is an odd prime not dividing m. Prove that ℘ is unramified in K.
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Proof. Since K = Q[ 4
√
m]Q[i], we will use Theorem 21(a) to prove this theorem. All we

need to prove is that ℘ is unramified in L = Q[ 4
√
m] and M = Q[i]. We can refine the

arguments for proof of Remark 18 to deduce that

Let α ∈ OK , K = Q[α] and f be any monic polynomial (not necessarily irre-
ducible) over Z such that f(α) = 0. if p is a prime such that p - NK

Q (f ′(α)), then
〈p〉 = ℘ is unramified in K (pp. 73, 43 of [1])

For L = Q[ 4
√
m], f(x) = x4 −m, then f ′(x) = 4x3.

NK
Q (f ′(α)) = NK

Q (4α3) = 44
(
NK

Q (α)
)3

= 28(−m)3 = −28m3

Now since p is odd and p - m, ℘ is unramified in L.
For M = Q[i], f(x) = x2 + 1, then f(x) = 2x.

NK
Q (f ′(α)) = NK

Q (2α3) = 22NK
Q (α) = 22

Now since p is odd, ℘ is unramified in M .

Remark 28. We can prove more general result that this ℘ splits into three primes in pure
quadratic field Q[ 4

√
m] by using Frobenius automorphism. (pp. 119, [1])

49



Chapter 4

The Two Groups

In this chapter we shall be concerned with the lattices over the ring of rational integers.
Let K be a number field of degree n over Q. Let σ1, . . . , σr denote the embeddings of K
in R, and τ1, τ1, . . . , τs, τs denote the remaining embeddings of K in C. Thus r+ 2s = n =
[K : Q]. A mapping K → Rn is then obtained by sending each α ∈ K to the n−tuple

(σ1(α), . . . , σr(α),<τ1(α),=τ1(α) . . .<τs(α),=τs(α))

where < and = indicate the real and imaginary parts of the complex numbers.

Definition 30 (Fundamental parallelotope). Let Λ be a n−dimensional lattice in Rn then
fundamental paralleotope is the following subset

Rn/Λ = {a1v1 + . . .+ anvn : ai ∈ [0, 1)}

where v1, . . . , vn is any Z−basis for Λ.

Theorem 32. The mapping K → Rn sends OK to an n−dimensional lattice ΛK . A funda-
mental parallelotope for this lattice has volume

vol(Rn/ΛK) =
1

2s

√
| disc(OK)|

Proof. Fix an integral basis α1, α2, . . . , αn for OK , these generate OK over Z. Therefore
their images in Rn generate ΛK over Z. We have to show that these images are linearly
independent over R. Let M be the n× n matrix whose ith row consists of the image of αi.

M =

σ1(α1) . . . σr(α1) <τ1(α1) =τ1(α1) . . . <τs(α1) =τs(α1)
...

. . .
...

...
...

. . .
...

...
σ1(αn) . . . σr(αn) <τ1(αn) =τ1(αn) . . . <τs(αn) =τs(αn)


Now take determinant of this and use the fact that <τj(αi) =

τj(αi)+τj(αi)
2 and =τj(αi) =

τj(αi)−τj(αi)
2
√
−1 to get

det(M)=

∣∣∣∣∣∣∣
σ1(α1) . . . σr(α1)

τ1(α1)+τ1(α1)
2

τ1(α1)−τ1(α1)
2i . . . τs(α1)+τs(α1)

2
τs(α1)−τs(α1)

2i
...

. . .
...

...
...

. . .
...

...
σ1(αn) . . . σr(αn) τ1(αn)+τ1(αn)

2
τ1(αn)−τ1(αn)

2i . . . τs(αn)+τs(αn)
2

τs(αn)−τs(αn)
2i

∣∣∣∣∣∣∣
=
(
1
2i

)s ∣∣∣∣∣∣∣
σ1(α1) . . . σr(α1) τ1(α1) τ1(α1)− τ1(α1) . . . τs(α1) τs(α1)− τs(α1)

...
. . .

...
...

...
. . .

...
...

σ1(αn) . . . σr(αn) τ1(αn) τ1(αn)− τ1(αn) . . . τs(αn) τs(αn)− τs(αn)

∣∣∣∣∣∣∣
=

(
1

2i

)s ∣∣∣∣∣∣∣
σ1(α1) . . . σr(α1) τ1(α1) −τ1(α1) . . . τs(α1) −τs(α1)

...
. . .

...
...

...
. . .

...
...

σ1(αn) . . . σr(αn) τ1(αn) −τ1(αn) . . . τs(αn) −τs(αn)

∣∣∣∣∣∣∣
=

1

2s

√
| disc(OK)| = vol(Rn/ΛK)
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Since the determinant is non-zero, the images in Rn are independent over R.

Corollary 6. The image of K is dense in Rn.

Definition 31 (Norm on Rn). For each point x = x = (x1, . . . , xn) ∈ Rn set

N (x) = x1 · x2 · · ·xr(x2r+1 + x2r+2) · · · (x2n−1 + x2n)

Remark 29. If α ∈ OK maps to x ∈ ΛK , then N (x) = NK
Q (α).

Theorem (Minkowski’s convex body theorem). Let Λ be an n−dimensional lattice in Rn
and let E be a convex, Lebesgue measurable, centrally symmetric subset of Rn such that

vol(E) > 2n vol(Rn/Λ)

Then E contains some non-zero point in Λ. If E is also compact, then equality can also hold
and > can be weakened to ≥.

For proof see Theorem 2.2.1 of [22].

Corollary 7. Suppose A ⊂ Rn is a compact, convex and centrally symmetric set with
vol(A) > 0. If a ∈ A implies that |N (a)| ≤ 1, then every n−dimensional lattice Λ contains a
non-zero point x with

|N (x)| ≤ 2n

vol(A)
vol(Rn/Λ)

4.1 Ideal Class Group

We have already defined what do we mean by an ideal class and stated the fact that ideal
classes form a finite group in section 1.2. Now we will prove that ideals classes form a
group and compute a bound for the size of the group formed by them. The proof for
finiteness is based on the relation of size of quotient ring with inertial degree which is
related to ideal factorization (pp. 132, [1]).

Theorem 33. The ideal classes in a Dedekind domain form a group under multiplication.

Proof. We know that ideal classes of Dedekind domain R are defined by equivalence rela-
tion ∼. Hence given two ideals a and b of R, a ∼ b if and only if αa = βb for some α, β in
R.

Claim 1 Two ideals in R are isomorphic as R−modules iff they are in the same class.

Let a and b be two ideals in R belonging to same class. Therefore a ∼ b and αa = βb
for some α, β ∈ R. We can define an R-module isomorphism, ρ : a → b such that
ρ(a) = b if αa = βb. Hence, a ∼= b.

Let a and b be two ideals inRwhich are isomorphic. Let theR−module isomorphism
be ρ : a → b hence for any a1, a2 ∈ a, ρ(r · a1 + s · a2) = r · ρ(a1) + s · ρ(a2) for
r, s ∈ R. Observe that for α ∈ a, ρ(α) ∈ b, we have

ρ(α)a = {ρ(α)a : a ∈ a} = {ρ(αa) : a ∈ a} = {αρ(a) : a ∈ a} = {αb : b ∈ b} = αb

Therefore ρ(α)a = αb and a ∼ b.

Claim 2 If a is an ideal of R and αa is principal for some α ∈ R then a is principal. Therefore
principal ideals form an ideal class.

Let αa = 〈k〉, then αa = 1 · 〈k〉. Therefore, a ∼ 〈k〉 and previous claim implies that
a and 〈k〉 are isomorphic as R−module. Hence a is a principal ideal and principal
ideals form an ideal class.
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Claim 3 The ideal classes in R form a group iff for every ideal a there is an ideal b such that
ab is principal.

Product of two ideal classes is obtained by selecting an ideal from each, multiplying
them and taking the ideal class which contains the product ideal (product ideal is
the set of all finite sums of elements of form ab with a ∈ a and b ∈ b). The resulting
ideal class doesn’t depend on the particular ideal class chosen, but only on the two
original ideal classes. Multiplied in this way, the ideal classes form a group. The
identity element is the class C0 consisting of all principal ideals. Therefore, for the
existence of inverse it is necessary that for every ideal a there is an ideal b such that
ab is principal.

Claim 4 For every ideal a of R there is an ideal b of R such that ab is principal.

Let α be any non-zero member of a and let b = {β ∈ R : βa ⊂ 〈α〉}. Then b is
easily seen to be an ideal (non-zero since α ∈ b) and clearly ab ⊂ 〈α〉. Now consider
following two results (pp. 57, [1])

(a) In a Dedekind domain, every ideal contains a product of prime ideals.

(b) Let a be a proper ideal in a Dedekind domain R with field of fractions F .
Then there is an element γ ∈ F\R = F −R such that γa ⊂ R.

Consider the set A =
1

α
ab. Note that A ⊂ R since ab ⊂ 〈α〉 and is in fact an ideal. If

A = R then ab = 〈α〉 and we are done.

We will prove that A can’t be a proper ideal of R. If A is a proper ideal then we can
use (b) from the box above to conclude that γA ⊂ R for some γ ∈ F\R. Since R
is integrally closed in field of fractions F , it is enough to show that γ is a root of a
monic polynomial over R.

Observe that A contains b since α ∈ a. Thus γb ⊂ γA ⊂ R. Since γb and γA both
are contained in R, it follows from the definition of b that γb ⊂ b. Now fix a finite
generating set {α1, . . . , αm} for the ideal b and using the relation γb ⊂ b we obtain
following matrix equation

γ

α1
...
αm

 = M

α1
...
αm


where M is an m×m matrix over R. By taking determinant we can obtain a monic
polynomial over R having γ as a root. Hence completing the proof.

Remark 30. The ideal class group of R is isomorphic to the quotient group G/H, where
G is the group of fractional ideals of F and H is the subgroup consisting of the principal
ideals. (pp. 92, [1])

Theorem 34. Every ideal class of OK contains an ideal a with

|OK/a| ≤
n!

nn

(
4

π

)s√
| disc(OK)|

Proof. We will divide the proof in several parts
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Claim 1. Every n−dimensional lattice Λ in Rn contains a non-zero point x with

|N (x)| ≤ n!

nn

(
8

π

)s
vol(Rn/Λ)

We will use Corollary 7, and hence define A as

A :=
{
x = (x1, . . . , xn) : |x1|+ . . .+ |xr|+ 2

(√
x2r+1 + x2r+2 + . . .+

√
x2n−1 + x2n

)
≤ n

}
This set is clearly centrally symmetric (−x ∈ A⇔ x ∈ A) and compact (every open
cover has finite subcover). To prove that this set is convex, let x,y ∈ A, then we
can see that z = x+y

2 ∈ A by using triangle inequality. Since choice of x and y was
arbitrary, we conclude that A is a convex set. To prove a ∈ A⇒ |N (a)| ≤ 1, we will
use arithmetic-geometric mean inequality. Note that geometric mean of coordinates
of a is n

√
|N (a)| and arithmetic mean of coordinates of a is at most 1. Therefore,

n
√
|N (a)| ≤ 1 ⇒ |N (a)| ≤ 1

Now we just need to prove that

vol(A) =
nn

n!
2r
(π

2

)s
(4.1)

We will prove this by induction. Let Vr,s(t) denote the volume of the subset Rr+2s

defined by

|x1|+ . . .+ |xr|+ 2

(√
x2r+1 + x2r+2 + . . .+

√
x2r+2s−1 + x2r+2s

)
≤ t

then
Vr,s(t) = tr+2sVr,s(1) (4.2)

Now we will compute Vr,s(1), if r > 0 then since it’s centrally symmetric (instead of
integration -1 to 1 we can integrate 0 to 1 twice) and using the relation between one
dimensional Lebesgue measure and n−dimensional Lebesgue measure (note that
along r we get linear/square regions).

Vr,s(1) = 2

∫ 1

0
Vr−1,s(1− x)dx

= 2

∫ 1

0
(1− x)r−1+2sdxVr−1,s(1) (using (4.2))

=
2

r + 2s
Vr−1,s(1)

Applying this repeatedly we obtain

Vr,s(1) =
2r−1

(r + 2s)(r + 2s− 1) · · · (2s+ 2)
V1,s(1) (4.3)

Now we need to determine V0,s(1) for s > 0 (note that along s we get disc/spherical
regions)

V1,s(1) =

∫ ∫
V1,s−1(1− 2

√
x2 + y2)dx dy
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with the integral taken over the circular region x2 +y2 ≤ 1/4. Transforming to polar
coordinates, put x = k cos(θ), y = k sin(θ) and dx dy = k dk dθ where 0 ≤ θ ≤ 2π
and 0 ≤ k ≤ 1

2 to get

V1,s(1) =

∫ 1
2

0

∫ 2π

0
V1,s−1(1− 2k)k dθ dk

=

∫ 1
2

0

∫ 2π

0
(1− 2k)1+2(s−1)k dθ dk V1,s−1(1) (using (4.2))

= 2π

∫ 1
2

0
(1− 2k)2s−1k dk V1,s−1(1)

=
π

2

∫ 1

0
c2s−1(1− c) dc V1,s−1(1) (substitute 1− 2k = c)

=
π

2
× 1

2s(2s+ 1)
V1,s−1(1)

Applying this repeatedly we obtain

V1,s(1) =
(π

2

)s 1

(2s+ 1)!
V1,0(1) (4.4)

Now V1,0(1) = 2 i.e. length of the set [−1, 1] and we conclude that

V0,s(1) =
(π

2

)s 2

(2s+ 1)!

Using this in (4.3) we obtain

Vr,s(1) =
1

(r + 2s)!
2r
(π

2

)s
=

1

n!
2r
(π

2

)s
Using this in (4.2) we obtain

Vr,s(t) =
tn

n!
2r
(π

2

)s
Put t = n to obtain (4.1).

Claim 2. Let b be a non-zero ideal in OK , then

vol(Rn/Λb) =
1

2s

√
| disc(OK)| |OK/b|

where Λb is the image of b in Rn.

As seen in second claim of Theorem 3, taking square root both sides, if M is an
n-dimensional sublattice of Λ then vol(Rn/M) = |Λ/M | vol(Rn/Λ). Hence

vol(Rn/Λb) = |ΛK/Λb| vol(Rn/ΛK)

Using Theorem 32 and since b is an ideal, we conclude that

vol(Rn/Λb) =
1

2s

√
| disc(OK)| |OK/b|

Claim 3. Every non-zero ideal b in OK contains a non-zero element α with

NK
Q (α) ≤ n!

nn

(
4

π

)s√
|disc(OK)||OK/b|

This follows by using Remark 29 and second claim in first claim.
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Given an ideal class C, consider the inverse class C−1 and fix any ideal b ∈ C−1. We can
obtain α as in third claim. b contains the principal ideal 〈α〉, hence 〈α〉 = ba for some
ideal a ∈ C (as in Theorem 33). Finally using the fact (a) and (c) from the box given in
Theorem 18, we have∣∣NK

Q (α)
∣∣ = |OK/〈α〉| = |OK/ab| = |OK/a| |OK/b|

and the result follows.

Corollary 8. |disc(OK)| > 1 whenever OK 6= Z.

Example 2 (Cyclotomic Field). Let ζ = e2πi/7, then Z[ζ] is a principal ideal domain.

Solution. Let K = Q[ζ], from Theorem 8 we know the value of discriminant, hence

|OK/a| ≤
6!

66

(
4

π

) 7−1
2 √

| − 75| ≈ 4.13

The possible prime divisors of a are necessarily among the prime ideals lying over prime
ideals generated by 2 and 3. So we factor 〈2〉OK and 〈3〉OK . From Corollary 5 we
know know that inertial degree f is the smallest integer such that pf ≡ 1 (mod 7). For
p = 2, f = 3 and p = 3, f = 6, therefore

〈2〉OK = p1p2 and 〈3〉OK = p

Hence 〈3〉 is prime inOK and every prime ideal dividing 〈3〉 is equal to 〈3〉 so p is principal.
For 〈2〉, observe that the minimal polynomial factorizes mod 2 as (following the box in
Theorem 30)

t6 + t5 + t4 + t3 + t2 + t+ 1 ≡ (t3 + t2 + 1)(t3 + t+ 1) (mod 2)

To factorize polynomials f(x) mod p we can use Berlekamp’s algorithm. This may
be accessed in the PARI/GP packagea using the factormod(f,p) command. For
example: x3−7 ≡ (x+2)(x2+3x+4) mod 5, and in PARI/GP, factormod(x3 − 7, 5)
returns (1, 5) ∗ x + Mod(2, 5), 1; Mod(1, 5) ∗ x2 + Mod(3, 5) ∗ x + Mod(4, 5), 1].

aCan be accessed directly from web-browser: http://pari.math.u-bordeaux.fr/gp.html

In fact
(ζ3 + ζ2 + 1)(ζ3 + ζ + 1)ζ4 = 2

so we have
〈2〉OK = 〈ζ3 + ζ2 + 1〉〈ζ3 + ζ + 1〉 = p1p2

hence both p1 and p2 are principal. It follows that every ideal in Z[ζ] is principal.

Remark 31. As observed in this example, whenever ℘OK remains a prime ideal, then
then the corresponding prime ideal p is principal.

Example 3 (Real Cyclotomic Field). Let ξ = e2πi/11 + e−2πi/11, then Z[ξ] is a principal ideal
domain.

Solution. Let K = Q[ξ], from Theorem 10 we know the value of discriminant, hence

|OK/a| ≤
5!

55

(
4

π

)0√
114 ≈ 4.64
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The possible prime divisors of a are necessarily among the prime ideals lying over prime
ideals generated by 2 and 3. So we factor 〈2〉OK and 〈3〉OK . From Theorem 27 we
know know that inertial degree f is the smallest integer such that pf ≡ ±1 (mod 1)1. For
p = 2, f = 5 and p = 3, f = 5, therefore

〈2〉OK = p and 〈3〉OK = p′

Thus, it follows from Remark 31 that Z[ξ] is a principal ideal domain.

Example 4 (Quadratic Fields). If K = Q[
√
m], determine the ideal classes in OK for m =

6, 437,−5 and -39.

Solution. To compute discriminant we will use Theorem 11 and for factorization of ℘ in
OK we will use Theorem 28.

(a) m = 6

|OK/a| ≤
2!

22

(
4

π

)0√
|4× 6| ≈ 2.45

We need to consider p = 2 only. 〈2〉OK = 〈2,
√

6〉2. Now to check whether it’s
principal or not, check for existence of an element in OK whose norm is ±2. Writing
a2 − 6b2 = ±2, we easily find that 2 +

√
6 is such an element. This shows that (see

box given in Theorem 18)

|OK/〈2 +
√

6〉| = |NK
Q (2 +

√
6)| = 2

From |OK/ab| = |OK/a||OK/b| we conclude that 〈2 +
√

6〉 is a prime ideal and that
it lies over 2, hence 〈2 +

√
6〉 = 〈2,

√
6〉. Hence OK is a principal ideal domain (class

number is 1).

(b) m = 437

|OK/a| ≤
2!

22

(
4

π

)0√
|437| ≈ 10.45

We need to consider p = 2, 3, 5 and 7. Note that m = 19×23 ≡ 5 (mod 8), therefore
〈2〉 remains inert in OK . Also, using properties of Legendre symbol we get(

437

3

)
=

(
2

3

)
= −1,

(
437

5

)
=

(
2

5

)
= −1,

(
437

7

)
=

(
3

7

)
= −1

Hence 〈3〉, 〈5〉 and 〈7〉 also remain inert in OK . Therefore, OK is a principal ideal
domain (class number is 1).

(c) m = −5

|OK/a| ≤
2!

22

(
4

π

)√
|4× (−5)| ≈ 2.85

We need to consider p = 2 only. 〈2〉OK = 〈2, 1+
√
−5〉2. As in (a), we will first check

that if 〈2, 1 +
√
−5〉 is principal or not. If it were, say 〈α〉, then

|NK
Q (α)| = |OK/〈α〉| = 2

hence NK
Q = ±2. Writing α = a+b

√
−5 with a, b ∈ Z we obtain a2+5b2 = ±2 which

is impossible. But, 〈2, 1 +
√
−5〉2 is a principal ideal (since product of two principal

ideals). Therefore, 〈2, 1 +
√
−5〉 is an element of order 2 in the ideal class group. We

conclude that ideal class group has two ideal classes (class number is 2).
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(d) m = −39

|OK/a| ≤
2!

22

(
4

π

)√
| − 39| ≈ 3.97

We need to consider p = 2 and 3. We have

〈2〉OK =

〈
2,

1 +
√
−39

2

〉〈
2,

1−
√
−39

2

〉
= p1p2 and 〈3〉OK = 〈3,

√
−39〉2 = p2

Note that [p1] is inverse of [p2] since their product is a principal ideal class. It must
be the case that the ideal class group is generated by [p] and [p1]. Therefore there
are either three or four ideal classes.

Consider the ideal b = 〈3 +
√
−39〉. NK

Q (3 +
√
−39) = 48 = 24 · 3. Note that 2 does

not divide 3 +
√
−39, yet b factors into a product of prime ideals, so only one of p1

and p2 can divide evenly into b. So it can’t be a cyclic group of order 3 or a Klein 4
group. Therefore, either b = p21p or b = p22p and thus p21p or p22p is a principal ideal.
This implies that p21 and p belong to same ideal class (or p22 and p belong to same
ideal class).

p2 ∼ 1, p21p ∼ 1⇒ p21 ∼ p⇒ p41 ∼ 1

Further,
p41 ∼ 1, p1p2 ∼ 1⇒ p31 ∼ p2

where 1 represents a principal ideal. So ideal class group is of form {1, [p1][p21][p31]}.
Hence the ideal class group if a cyclic group of order 4 (class number is 4).

Example 5 (Pure Cubic Fields). If K = Q[ 3
√
m], determine the ideal classes inOK for m = 6

and 19.

Solution. To compute discriminant we will use Theorem 14 and for factorization of ℘ in
OK we will use Theorem 30 (factorize polynomials as done in Example 2). Also following
result will be useful:

We can calculate norm of potential principal ideal generators (follow Example 1):

1. NK
Q (a+ b 3

√
m) = a3 + b3m

2. NK
Q (a+ b 3

√
m+ c

3
√
m2) = a3 + b3m+ c3m2 − 3mabc

(a) m = 6

|OK/a| ≤
3!

33

(
4

π

)√
| − 27(6)2| ≈ 8.82

We need to consider p = 2, 3, 5 and 7. Note that since 2 and 3 divide 6, both of them
are ramified (Remark 18). Also note that the basis of OK is {1, 3

√
6,

3
√

62}.

〈2〉OK = p31 = 〈2, 3
√

6〉3

〈3〉OK = p32 = 〈3, 3
√

6〉3

〈5〉OK = p3p4 =
〈

5,
3
√

6− 1
〉〈

5,
3
√

62 +
3
√

6 + 1
〉

〈7〉OK = p5p6p7 =
〈

7,
3
√

6 + 1
〉〈

7,
3
√

62 − 3
√

6 + 1
〉

=
〈

7,
3
√

6 + 1
〉〈

7,
3
√

6 + 2
〉〈

7,
3
√

6− 3
〉

Now to check whether 〈2, 3
√

6〉 is principal or not, check for existence of an element
in OK whose norm is ±2. Writing a3 + 6b3 ± 2, we easily find that −2 + 3

√
6 is such
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an element. Now as seen in first part of previous examples, 〈−2 + 3
√

6〉 = 〈2, 3
√

6〉
and hence p1 is principal. Note that NK

Q (
3
√

62 + 3
√

6 + 1) = 25 = 52. Therefore

〈2〉OK = p31 = 〈−2 +
3
√

6〉3

〈5〉OK = p3p4 =
〈

3
√

6− 1
〉〈

3
√

62 +
3
√

6 + 1
〉

〈7〉OK = p5p6p7 =
〈

3
√

6 + 1
〉〈

7,
3
√

6 + 2
〉〈

7,
3
√

6− 3
〉

For 〈3〉OK we will use the fact that 2 × 3 = 6 and p1 is principal, thus p2 is also a
principal ideal (pp. 133,[1]). Note that since one of factor of 〈5〉OK and 〈7〉OK ,
other factor has to be principal, since their product is a principal ideal. Hence, OK
is principal ideal domain (class number is 1).

(b) m = 19

|OK/a| ≤
3!

33

(
4

π

)√
| − 3(19)2| ≈ 9.31

We need to consider p = 2, 3, 5 and 7. Let α = 3
√

19 then the basis elements of OK
are 1, α, β = 1+α+α2

3 hence

〈2〉OK = p1p2 = 〈2, α− 1〉
〈
2, α2 + α+ 1

〉
= 〈2, α− 1〉 〈2, 3β〉

〈3〉OK = p23p4

〈5〉OK = p5p6 = 〈5, α+ 1〉
〈
5, α2 − α+ 1

〉
= 〈5, α+ 1〉 〈5, 3β − 2〉

〈7〉OK = p7

To factorize 〈3〉OK I will use computer algebra system (since I don’t know any easier
way)

The general algorithm for computing prime ideal factorizations is discussed in
Cohen’s books on computational number theory. See Algorithm 6.2.9 and Algo-
rithm 4.8.17 of A Course in Computational Algebraic Number Theory. Springer-
Verlag (1996); Algorithm 2.3.22 of Advanced Topics in Computational Number
Theory. Springer-Verlag (2000).
This may be accessed in the PARI/GP package using command
idealfactor(nfinit(f(x)), p). The output is an array where each row is
associated to a different prime ideal. A row has the form [[p, v, e, f, w]e], where
e and f are the ramification index and residue field degree for that prime ideal.
The vector v is related to a second generator γ such that the prime ideal being
described is (p, γ) and w is related to the inverse of the prime ideal.

Here is the SageMath code for ideal factorization:

Therefore,

〈3〉OK =

〈
3,

1 + α+ α2

3

〉2〈
3,
−2 + α+ α2

3

〉
= 〈3, β〉2 〈3, β − 1〉

We have p2 ∼ p−11 ,p23 ∼ p−14 and p6 ∼ p−15 . Hence the class group is generated by
p2, p3 and p6. Now again using SageMath to multiply these:
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p3p2 = 〈3, β〉 〈2, 3β〉 = 〈−β〉

p3p6 = 〈3, β〉 〈5, 3β − 2〉 = 〈5 + α+ β〉

Therefore, p3 ∼ p−12 ∼ p−16 and we conclude that the ideal class is generated by the
class containing p3. Finally, we check the degree of p3 using SageMath. It’s clear that
degree should be a multiple of 3.

p33 = 〈3, β〉3 = 〈1− α+ β〉

Hence it has three ideal classes (class number is 3).

Remark 32. In part (b), this course of action was motivated by the fact that we were not
able to find elements r, s ∈ OK having norm 3 and such that 〈r, s〉 = OK . On the contrary
if m = 17 ≡ −1 (mod 9) then the corresponding cubic field have class number 1.

The standard way of proceeding is collecting many elements of small norm and form-
ing quotients; if we have elements of norm 2 and 6 we can in general find an integer with
norm 3. Note that the integer basis for this case is 1, α, β = α2±α+1

3 for m ≡ ±1 (mod 9).
Now we look for elements of the form a+ bα+ cβ with interesting norms and x, y, z small.
A little inspection shows that

Element of OK Norm for m = 19 Norm for m = 17

−1 + α 18 = 2 · 32 16 = 24

1 + α+ β 27 = 33 3

1 + β 8 = 23 20 = 22 · 5
−1 + β 18 6 = 2 · 3
−2 + β 20 = 22 · 5 −2

1 + α 20 18

2 + α+ β 12 = 22 · 3 2

4 + α+ β 30 = 2 · 3 · 5 48 = 24 · 3
3− α 8 10 = 2 · 5

1− α+ β 27 3

For m = 17 we have |OK/a| ≤ 9, and α = 3
√

17

〈2〉OK = p1p2 = 〈2, α+ 1〉
〈
2, α2 + α+ 1

〉
= 〈2 + α+ β〉 〈2− β〉

〈3〉OK = p23p4 = 〈1 + α+ β〉 〈1− α+ β〉

〈5〉OK = p5p6 = 〈5, α+ 2〉
〈
5, α2 + 3α− 1

〉
=

〈
3− α

2 + α+ β

〉〈
5(2 + α+ β)

3− α

〉
〈7〉OK = p7

Hence the ring of integers of Z[ 3
√

17] is a principal ideal domain.
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4.2 Group of Units

Theorem (Dirichlet’s Units Theorem). Let U be the group of units in OK . Let r and 2s be
the number of real and non-real embeddings of K in C. Then U is the direct product W × V
where W is a finite cyclic group consisting of the roots of unity in K, and V is a free abelian
group of rank r + s− 1.

Definition 32 (Fundamental system of units). The free abelian group V of rank r + s− 1
consists of products of some r + s− 1 units u1, u2, . . . , ur+s−1

uk11 u
k1
1 · · ·u

kr+s−1

r+s−1

where ki ∈ Z are uniquely determined for a given element of V . This set of r+ s− 1 units
{u1, u2, . . . , ur+s−1} is called fundamental system of units in OK .

Definition 33 (Fundamental unit). A fundamental unit is a generator (modulo the roots
of unity) for the unit group of the ring of integers of a number field, when the group has
rank 1.

Remark 33. The unit group has fundamental unit iff free abelian group V has rank 1 and
this is possible only when the number field is real quadratic field, cubic field or a totally
imaginary quartic field.

(a) For real quadratic field r = 2, s = 0 therefore, U = {±uk : k ∈ Z} where u is
fundamental unit in OK .

(b) For pure cubic field r = 1, s = 1 therefore, U = {±uk : k ∈ Z} where u is fundamen-
tal unit in OK .

(c) For quartic field with r = 0, s = 2 we have U = {θuk : k ∈ Z} where θ is a root of
unity and u is fundamental unit in OK .

Theorem 35 (Algorithm for determining fundamental units in a real quadratic field). Let
m be a square free positive integer.

(a) m ≡ 2, 3 (mod 4)

1. Take the smallest positive b such that either mb2 + 1 or mb2 − 1 is a square, say
a2, a > 0

2. a+ b
√
m is the fundamental unit in Z[

√
m].

(b) m ≡ 1 (mod 4)

1. Take the smallest positive b such that either mb2 + 4 or mb2 − 4 is a square, say
a2, a > 0 with a having same parity as that of b.

2. a+b
√
m

2 is the fundamental unit in Z
[
1+
√
m

2

]
.

Proof. We will prove both cases separately.

(a) Note that NK
Q (a + b

√
m) = a2 − b2m = ±1 for a unit a + b

√
m. Hence, we have

to consider numbers of form mb2 ± 1, b ∈ Z such that it is a perfect square. Now,
a+ b

√
m is a power of fundamental unit u (Remark 33). If uk = a+ b

√
m for k > 1

then it will contradict the fact that a and b are the smallest possible positive integers
such that a+ b

√
m is a unit.
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(b) As noted in Remark 8, for m ≡ 1 (mod 4) the elements of OK are of form a+b
√
m

2

where a, b have same parity. Then, NK
Q

(
a+b
√
m

2

)
= a2−b2m

4 = ±1 for a unit a+b
√
m

2 .
Then as in previous case, for least positive value of b and a satisfying these condi-
tions, we get fundamental unit.

Remark 34. We can use continued fractions to find minimal positive solution for m ≡ 2, 3
(mod 4) (see pp. 57 of [21])

Example 6. Let K = Q[
√
m], determine the fundamental unit in OK for m = 2, 3, 5, 6, 13

and 17.

Solution. We will use above algorithm.

m minimum solution fundamental unit

2 2(1)2 − 1 = 1 1 +
√

2

3 3(1)2 + 1 = 22 2 +
√

3

5 5(1)2 − 4 = 1
1 +
√

5

2
6 6(2)2 + 1 = 52 5 + 2

√
6

13 13(1)2 − 4 = 32
3 +
√

13

2
17 17(2)2 − 4 = 82 4 +

√
17

Theorem 36 (Lower bound of fundamental unit for pure cubic field). Let K be a cubic
extension of Q having only one embedding in R. Let u be the fundamental unit in OK , then
for |disc(OK)| ≥ 33

| disc(OK)| − 27

4
< u3

Proof. From Remark 33 it follows that u > 1 and all units in OK are of form ±uk, k ∈ Z.

Claim 1 Let u, aeiθ and ae−iθ be the conjugates of u. Then u = a−2 and

disc(u) = −4 sin2(θ)(a3 + a−3 − 2 cos(θ))2

Since, NK
Q (u) = 1 = ua2, we have u = a−2. From Remark 5 we know that

disc(u) = (aeiθ − ae−iθ)2(u− aeiθ)2(u− ae−iθ)2

= −4a2 sin2(θ)
(
u2 − (aeiθ + ae−iθ)u+ a2

)2
= −4a2 sin2(θ)

(
u2 − 2au cos(θ) + a2

)2
= −4 sin2(θ)

(
a−3 − 2 cos(θ) + a3

)2
Claim 2 |disc(u)| < 4(u3 + u−3 + 6)

Let x = a3 + a−3 and c = cos(θ), so from previous claim we have, f(x) = −4(1 −
c2)(x− 2c)2, now we will find the minimum value of

g(x) =
−f(x)

4
− x2 = (1− c2)(x− 2c)2 − x2 = −c2x2 + 4c(c2 − 1)x− 4c4

⇒ g′(x) = −2c2x+ 4c(c2 − 1) = 0
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⇒ x =
2(c2 − 1)

c

⇒ g(x) ≤ g
(

2(c2 − 1)

c

)
= 4(1− 2c2) ≤ 4

since minimum value of c2 = cos2(θ) = 0. From this we conclude that

|f(x)| = | − 4(g(x) + x2)| ≤ 4(4 + x2) = 4(u3 + u−3 + 6)

From this claim we conclude that

u3 + u−3 >
| disc(u)|

4
− 6

As given in box of Theorem 13 we have

u3 + u−3 >
| disc(OK)|

4
− 6

⇒ u3 >
|disc(OK)|

4
− 6− u−3

Since u > 1 we have

u3 >
| disc(OK)|

4
− 7 =

| disc(OK)| − 28

4

For disc(OK)| ≥ 33, we have

u3 >
| disc(OK)| − 27

4

Example 7. Let K = Q[ 3
√

2], prove that
1

3
√

2− 1
is the fundamental unit of OK .

Solution. Let α = 3
√

2, OK = Z[α] and disc(α) = disc(OK) = −108 > 33. If u is the
fundamental unit, then from the theorem above, u3 > 20.25 > 20. Therefore, u > 2.72
and u2 > 7.39. Now,

β =
1

α− 1
= α2 + α+ 1

is unit in OK since NK
Q (α− 1) = 2− 1 = 1 (see Example 1). We can see that ( 3

√
2 ≈ 1.26)

1 < β < 4 ⇒ 1 < β < u2

and β is a power of u, hence β = u.

Remark 35. There is no known formula for calculating fundamental unit but is intimately
related to a unit c, called circular unit, in ring of algebraic integers and satisfies: c = uh

where h is the class number for that ring[11].
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4.3 Solving Diophantine Equations

In Example 6 we saw that 1 +
√

2 is the fundamental unit in Z[
√

2], but clearly it’s not a
root of unity. We can use powers of 1 +

√
2 to generate infinitely many solutions to the

Diophantine equation x2− 2y2 = ±1 (pp. 20, [21]). Just as quadratic fields enabled us to
solve Diophantine equations of form x2−dy2 = ±1, 4 (pp. 55 [5]) and x2+x+b = y3 (pp.
26, [21]), pure cubic fields enable us to solve Diophantine equations of form ax3+by3 = c.
Though we have already proved that such equations have finitely many solutions (pp. 64,
[22]), but for some special cases we can tell the exact value of maximum possible number
of solutions.

Theorem 37 (Delaunay1-Nagell2 Theorem). The equation x3 + dy3 = 1 has at most one
solution in integers x, y different from zero. If x1, y1 is a solution, the number x1 + y1

3
√
d

is either the fundamental unit of K = Q[ 3
√
d] or its square; the latter can happen for only

finitely many values of d.

Proof. If d = ±1 then the given equation has only trivial solutions. If d contains a cube
larger than 1, it can be absorbed into the factor y3. Hence we can assume that d is cubefree
and larger than 1. From Example 1 we know that NK

Q (a+ b 3
√
d) = a3 + db3 therefore, if

NK
Q (x1 + y1

3
√
d) = x31 + dy31 = 1, y1 6= 0

then x1 + y1
3
√
d is a positive unit of K, and a such is a positive power of the fundamental

unit u mentioned in Remark 33. It therefore suffices to show that no power of a positive
unit smaller than 1, with exponent larger than 2, is of the special form x+y 3

√
d and to show

that the square of a unit is of this form in only finitely many cases. We divide the proof
in four parts. I won’t give details of the proof of these parts since they involve lengthy
arguments and details can be found on pp. 113-119 of [5]. Let d = ab2 where a, b are
coprime and squarefree, also α =

3
√
ab2, β =

3
√
a2b and X,Y ∈ Q.

Claim 1. The square of an irrational unit of K of the form v = x+ yα+ zβ, with x, y, z ∈ Z is
itself of the form X + Y α only if v = 1 + 3

√
20 − 3

√
50. The square of a unit of K of

the form v =
x+ yα+ zβ

3
with 3 - xyz (if such exists) is itself of the form X + Y α

for only finitely many values of d.

To prove this we will need FLT for n = 3 (pp. Theorem 2.4.3, pp. 75, [21]); (±5, 3)
are the only solution of x2 + 2 = y3 (Example 1.7.3, pp. 26, [21]) and following
result by Louis Joel Mordell3 is a very weak consequence of a result by Kurt Mahler4

(uses p-adic version of Roth’s Theorem, see pp. 68 of [22])

Suppose that m ≥ 2, n ≥ 3, ab 6= 0, gcd(x, y) = 1. Then as max(|x|, |y|) → ∞,
the greatest prime factor of axm + byn tends to infinity (pp. 155, [5]).

Claim 2. The fourth power of a positive irrational unit of K is never of the form X + Y α.

This follows from previous claim.

1Announced in French Academy of Sciences in three parts in 1916, 1920 and 1921; for the part reported
in 1921 see: http://gallica.bnf.fr/ark:/12148/bpt6k31239

2“Solution complète de quelques équations cubiques à deux indeterminées.” Journal de Mathématiques
Pures et Appliquées 9, no. 4 (1925), 209–270. http://sites.mathdoc.fr/JMPA/afficher_notice.php?id=
JMPA_1925_9_4_A6_0

3“The Integer Solutions of the Equation y2 = axn + bxn−1 + . . .+ k.” Journal of the London Mathematical
Society 1, no. 2 (1926): 66–68. http://dx.doi.org/10.1112/jlms/s1-1.2.66

4“On the greatest prime factor of axm + byn.” Nieuw Archief voor Wiskunde 3, no. 1 (1953): 113–122.
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Claim 3. The cube of a positive irrational unit of K is never of the form X + Y α

Claim 4. If p > 3 is a prime and v =
x+ yα+ zβ

3
is a positive unit smaller than 1, then vp is

not of the form X + Y α

Along with Theorem 13, we need to use following result

Suppose x and y are integers such that gcd(x, dy) = 1, such that

(x+ y
3
√
d)n = X + Y

3
√
d+ Z

3
√
d2

where X,Y and Z are rational and n > 1. Then XY Z 6= 0 except in two
instances: ( 3

√
10 − 1)5 = 99 − 45 3

√
10 and ( 3

√
4 − 1)4 = −15 + 12 3

√
2 (pp. 110,

[5]).

From second, third and fourth claim it follows that any non-zero solution of x3 + dy3 = 1
must correspond either to the fundamental unit of K, or to its square. Not both of these
numbers can lead to solutions, thus completing the proof.
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Conclusion

The proof of second case of FLT for regular primes is direct application of Kummer’s higher
reciprocity laws and was his main achievement, for complete proof refer [9]. Hence com-
bining both cases, Kummer proved:

Theorem (Kummer, 18475). The equation xp + yp = zp has no solution in integers if the
exponent p is a regular prime.

Kummer found a criterion in terms of Bernoulli numbers B0 = 1, B1 = −1
2 , B2 =

1
6 , B3 = B5 = . . . = Bodd>1 = 0, B4 = −1

30 , . . ., that could be checked reasonably conve-
niently, at least for primes less than 100.

Theorem. Let h+ be the class number of Z[ζ + ζ−1] and h be the class number Z[ζ] where
ζ = e

2πi
p and p is a prime integer. Then

(a) If p|h+ then p|h∗ where h∗ = h
h+

(b) p|h∗ if and only if there is some integer k with 1 ≤ k ≤ p−3
2 , such that p2 divides the

sum
∑p−1

j=1 j
2k.

(c) If p|h∗ then p divides the numerator of a Bernoulli number B2k with 2 ≤ 2k ≤ p− 3.
(d) p is regular if and only if it does not evenly divide the numerator of any of the first p−3

numbers in the series of fractions of the Bernoulli Numbers Bn.

Using this theorem Kummer proved FLT for prime exponents less than 100 except 37,
59 and 67. These three are the only irregular primes less than 100, since 37 divides the
numerator of B32, 59 divides the numerator of B44 and 67 divides the numerator of B58.
Actually this is checked using following congruences relation derived by Kummer between
1850-1857, for its proof refer pp. 44, of Neal Koblitz’s book6.

Theorem. Let n,m, p, r ∈ N where n,m are even numbers and p is prime number with
p− 1 6

∣∣n, then (
1− pn−1

) Bn
n
≡
(
1− pm−1

) Bm
m

(mod pr)

when n ≡ m (mod ϕ(pr)), where ϕ is Euler’s totient function.

In 1915, Kaj Løchte Jensen7 proved that there are infinitely many irregular primes, for
proof see §7.2 in Chapter 5 of Borevich-Safarevich8. We still don’t know that whether
there are infinite or finite number of regular primes. Hence, we face the similar dilemma
as faced by Germain in 1823 (see Corollary 1) but now have a better understanding of
algebraic numbers.

5“Beweis des Fermat’schen Satzes der Unmöglichkeit von xλ + yλ = zλ für eine unendliche An-
zahl Primzahlen λ.” Lejeune Dirichlet communicated to the Königlichen Preußischen Akademie der Wis-
senschaften zu Berlin in 1847. The proof was given in modern form, using Dedekind’s notion of ideals, by
David Hilbert in 1894.

6p-adic Numbers, p-adic Analysis, and Zeta - Functions. New York: Springer-Verlag, 1984. http://dx.doi.
org/10.1007/978-1-4612-1112-9

7“Om talteoretiske Egenskaber ved de Bernoulliske tal.” Nyt tidsskrift for matematik 26 (1915): 73-83.
http://www.jstor.org/stable/24532219

8Number Theory. New York and London: Academic Press, 1966
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Appendix A

Lattice

Within mathematics, the term lattice has different meanings in different contexts. While
studying number fields we came across this term lattice in three different contexts, which
I will discuss here (in the order of their occurrence in this report). I will be deliberately
avoiding discussion of properties of sublattices.

A.1 Module

Let R be an Dedekind domain and F be the corresponding field of fractions.

R−lattice is a finitely generated R−torsion-free module1.

Each R−lattice M is a R−submodule of a finite dimensional vector space V over F ,
namely V = FM . We call M a full R−lattice in V , the adjective indicting that M contains
a F−basis of V . Let M and N be a pair of full R−lattices in a F−space V . Since N
contains a F−basis for V , for each x ∈ M there is a non-zero a ∈ R such that ax ∈ N .
But M is finitely generated as R−module. Therefore we can choose a ∈ R, a 6= 0, such
that aM ⊂ N .

We define dual and double dual R−modules corresponding to the R−lattice M :

M∗ = HomR(M,R), M∗∗ = HomR(M∗, R)

where, for example, the set of all module homomorphisms2 from M to R is denoted by
HomR(M,R). Also, the evaluation map3 ϕ : M →M∗∗ is given by

{ϕ(m)}f = f(m), f ∈M∗

Clearly ϕ = 0 if and only if M∗ = 0. Then every R−lattice is reflexive4, that is, M ∼= M∗∗.
Then define dual spaces

V ∗ = HomF (V, F ), V ∗∗ = HomF (V ∗, F )

The evaluation map gives a F−isomorphism V ∼= V ∗∗. Since R is noetherian, M∗ and
M∗∗ are also R−lattices, and there are embeddings M∗ ⊂ V ∗ and M∗∗ ⊂ V ∗∗. Explicitly
we have

M∗∗ = {v ∈ V : f(v) ∈ R for all f ∈M∗}
For a more general discussion, than given earlier, of different ideal refer pp. 60 of [6].

1A torsion-free module is a module over a ring such that 0 is the only element annihilated by a regular
element (non zero-divisor) of the ring.

2This set is an abelian group and also a module since R is commutative.
3Let S, T be sets, and let ST be the set of all mappings from T to S. The evaluation mapping for ST is the

mapping ϕ : ST × T → S defined by ϕ(f, t) = f(t)
4We call M reflexive if ϕ is an isomorphism.
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For the case where M is a Z−modulea embedded in a vector space V over the field R,
and the Euclidean metric is used to describe the lattice structure, we get lattice-group
as a special case of lattice-module. Since the motivation behind study of each of them is
different, I have discussed them separately.

aA free abelian group or free Z−module is an abelian group with a basis.

A.2 Partially Ordered Set

A lattice is a partially ordered set in which for every two elements a and b the least upper
bound (called join, denoted a ∨ b) and the greatest lower bound (called meet, denoted a ∧ b)
exist.

According to their properties, lattices are divided into various types. The most basic
ones being distributive, modular and complemented lattices[10].
The elements of a distributive lattice satisfy the distributive law:

a ∨ (b ∧ c) = (a ∧ b) ∨ (a ∧ c)

The elements of a modular lattice satisfy the modular law:

a ≤ c⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c

Every distributive lattice is modular.
If a lattice has the greatest and the least elements and to each of its elements such an
element exists that their join is the greatest element and their meet is the least element, it
is called complemented. In other words, a lattice is said to be complemented if for each
element a there exist an element b satisfying:

a ∨ b = 1 and a ∧ b = 0

A complemented distributive lattice is called Boolean algebra.
To represent finite lattices we use Hasse diagram. It is a type of mathematical diagram

used to represent a partially ordered set with all elements of the same rank shown at the
same height above the bottom.

(a) Distributive Lattice:
Young’s lattice representing
integer partitions
[By David Eppstein (Public domain),
via Wikimedia Commons]

(b) Modular Lattice: Young-
Fibonacci lattice representing
the digit sequences of 1 and 2
[By David Eppstein (Public domain),
via Wikimedia Commons]

(1, 1, 1)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(0, 0, 1) (0, 1, 0) (1, 0, 0)

(0, 0, 0)

(c) Complemented Lattice: It
is representing the boolean
algebra of subsets of a three
element set

Figure A.1: Three examples of lattice-orders
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A.3 Group

Let a1,a2, . . . ,an be linearly independent real vectors in n−dimensional real euclidean
space Rn over R. Then the lattice Λ is defined as

Λ = {x ∈ Rn : x = u1a1 + . . .+ unan, ui ∈ Z}

Since the basis a1,a2, . . . ,an is linearly independent, the expression of any vector x as
defined above for real ui is unique. Moreover, the basis is not uniquely determined by the
lattice. If a1,a2, . . . ,an and a′1,a

′
2, . . . ,a

′
n are bases of the same lattice, then

a′i =
n∑
j=1

vijaj

where vij are any integers with det(vij) = ±1, then we have

det(a′1, . . . ,a
′
n) = det(vij) det(a1, . . . ,an) = ±det(a1, . . . ,an)

where, for example, det(a1, . . . ,an) denotes the determinant of the n × n matrix whose
jth row is the vector aj. Hence,

d(Λ) = |det(a1, . . . ,an)|

is independent of the particular choice of the basis of Λ. Note that if x ∈ Λ then −x ∈ Λ;
and if x,y ∈ Λ then x± y ∈ Λ.

The vectors of a lattice Λ form a group under addition.

Moreover, by generalising Minkowski’s convex body theorem as on pp. 73 of [4], a
lattice is the most general group of vectors in n−dimensional space which contains n
linearly independent vectors and which satisfies the further property that there is some
sphere about the origin o which contains no other vector of the group except o.

We denote the scalar product of two n−dimensional vectors x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) by

xy = x1y1 + x2y2 + . . .+ xnyn

Let b1, . . . ,bn be a basis of a lattice Λ. Since the bj are linearly independent, there exist
vectors b∗j such that

b∗jbi =

{
1 if i = j

0 if i 6= j

The lattice Λ∗ with the basis b∗j is called the dual (or polar or reciprocal) lattice of Λ, and
b∗j is the dual (or polar or reciprocal) basis to bj. The dual lattice Λ∗ of Λ is independent
of the choice of the particular basis, since

d(Λ)d(Λ∗) = 1

for proof refer pp. 24 of [4].
Example: Consider pair of complex numbers w1, w2 ∈ C such that their ratio w1

w2
is not

real. In other words, considered as vectors in R2, the two are not collinear. The lattice
generated by w1 and w2 is called period lattice. Thus

Λ = {mw1 + nw2 : m,n ∈ Z}
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(a) Square Lattice: Represents Gaussian inte-
gers when w1 = 1 and w2 =

√
−1 = i

(b) Equilateral Triangle Lattice: Represents
Eisenstein integers when w1 = 1 and w2 =
−1+

√
−3

2

Figure A.2: Examples of period lattices drawn on complex plane using GeoGebra v4.0.34.0
and Pinta v1.3

Normally we are concerned with lattices over the rational integers, but we can extend
this notion of lattice to general number fields as in [14].
Let K be an algebraic extension of the Q of degree m. We regard K as an algebra
over Q, which we can extend to an algebra K∗ over R. It is well known that K∗ is
commutative and semi-simplea, and the integers of K∗ are just those of K. Then we
can define the n−dimensional space Kn over K as being the set of ordered n−tuples of
elements in K∗. Thus if β ∈ Kn then β = (β1, . . . , βn) where each βi ∈ K∗ is of form

βi = xi1α1 + xi2α2 + . . .+ ximαm

where xi ∈ R and α1, . . . , αm is an integral basis for K. Hence there is a natural map
from Kn onto Rmn in which each component βi of β ∈ Kn is mapped onto m of the
components of the point in Rmn, namely xi1, . . . , xim. A transformation in Kn of matrix
A and determinant δ 6= 0 induce a transformation in Rmn of matrix P−1BP , where

P =


α
(1)
1 In α

(1)
2 In . . . α

(1)
m In

α
(2)
1 In α

(2)
2 In . . . α

(2)
m In

...
...

. . .
...

α
(m)
1 In α

(m)
2 In . . . α

(m)
m In

 and B =


A(1) 0 . . . 0

0 A(2) . . . 0
...

...
. . .

...
0 0 . . . A(m)


with α

(1)
j , . . . , α

(m)
j to be conjugates of αj , In to be n × n identity matrix and

A(1), . . . , A(m) be the conjugates of A. We can also extend the norm N from K to
K∗, thus the transformation in Rmn has determinant N (δ). Finally, we define a lattice
in Kn to be any linear transformation of determinant δ of the set of points in Kn all of
whose coordinates are integers, such that N (δ) 6= 0.

aK∗ is isomorphic to direct sum of r copies of R and s copies of C, where r and 2s are the number of
real and complex conjugates of K.
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