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Abstract

We will give an outline of the motivation behind the Weil conjectures, and discuss their
application for counting points on projective smooth curves over finite fields.
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Introduction

Arithmetic zeta-function was introduced by Jean-Pierre Serre4 in a lecture delivered in 1963,
and was popularised by Alexander Grothendieck5. This function was the outcome of following
elementary problem in number theory: how to count the number of solutions to systems of
polynomial equations over finite fields. This problem was, in fact, the main motivation be-
hind the famous Weil conjectures. These conjectures suggested a deep connection between the
arithmetic of algebraic varieties defined over finite fields and the topology of algebraic varieties
defined over the complex numbers [1]. The Weil conjectures constitute one of the central land-
marks of modern algebraic geometry: they served as a driving force behind a striking number
of fundamental advances in the field [7].

In the first chapter we will discuss two aspects of artihmetic zeta-function. Firstly, we
will have a look at the motivation behind defining the aritmetic zeta-function, following the
expositiory articles by Srinivas and Pranajape [5], and Osserman [7]. Secondly, we will look at
some of the properties of arithmetic zeta-function, and how these properties take care of all the
older definitions of zeta-function.

In the second chapter we will give an overview of Weil conjectures. We will first state the
general conjecture. Then will look at the outline of the proof Riemann hypothesis for the case of
projective non-singular absolutely irreducible curve over finite fields; following the last exercise
of Hartshorne’s textbook [1, Exercise C.5.7]. We will conclude this chapter by illustrating an
application of Weil conjectures to count the points on an elliptic curve; following the expository
article by Oort [6].

The lecture notes6 by Edixhoven and Taelman [8] has been used as the main reference for
this report.

4Serre, J-P. “Zeta and L-functions”, in Arithmetical Algebraic Geometry (Proceedings of a Conference held
at Purdue University, December 5-7, 1963), edited by O. F. G. Schilling, 82–92. New York: Harper and Row,
1965. (Available in: Oeuvres - Collected Papers II, Springer Collected Works in Mathematics of J-P. Serre, pp.
249–259 (2003).)

5A. Grothendieck, Formule de Lefschetz et rationalité des fonctions L, Séminaire Bourbaki 279 (1964), 41-55.
6During this internship I read the first seven lectures from these notes. But, most of the content discussed in

this report is from the first two lectures.
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Chapter 1

Zeta-Functions

In this chapter we will look at the motivation behind defining the arithmetic zeta-function, and
will also study some of its properties.

1.1 Analytic zeta-functions

The study of zeta function was started by Leonhard Euler in the first half of the eighteenth
century. He computed the values at even positive integers, and the first of them, ζ(2), provides
a solution to the Basel problem. The values at negative integer points, also found by Euler, are
rational numbers and play an important role in the theory of modular forms.

1.1.1 Euler zeta-function

For a given real number k > 1, consider the series

∞∑
n=1

1

nk
= 1 +

1

2k
+

1

3k
+ . . .

Note that the series
∑∞

n=1 n
−k is uniformly convergent for a ≤ k ≤ b, if 1 < a < b. Now let

s = σ + it be a complex number, then

ζ(s) =
∞∑
n=1

1

ns

converges for σ > 1 and is called the Euler zeta-function [10, §1.3.1]. Moreover, since the series∑∞
n=1 n

−s is uniformly convergent throughout any finite region in which σ ≥ a > 1, the function
ζ(s) is continuous at all points of the region σ > 1.

Next, consider the product ∏
p

(
1− 1

ps

)
where p runs through the primes 2, 3, 5, . . .. This product is uniformly convergent in any finite
region throughout which σ > 1, and one can prove that [10, §1.3.2]

ζ(s) =
∏
p

(
1− 1

ps

)−1
, σ > 1

Moreover, since a convergent infinite product of non-zero factors is non-zero, we can conclude
that ζ(s) has no zeros for σ > 1.
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1.1.2 Riemann zeta-function

In 1859, Bernhard Riemann, in his remarkable 8-page paper, extended the Euler definition to
whole of complex plane by its meromorphic continuation (with pole at s = 1)

ζ(s) =
e−iπsΓ(1− s)

2πi

∫
C

ws−1

ew − 1
dw

where the contour C starts at infinity on the positive real axis, encircles the origin once in
the positive direction, excluding the points ±2iπ,±4iπ, . . . and returns to positive infinity [10,
§1.3.4]. He also found its functional equation

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s)

from which we can conclude that the only zeros of ζ(s) for σ < 0 are at the poles of Γ
(
s
2

)
,

except 0 since it’s a simple pole of ζ(1 − s). So, the points s = −2,−4,−6, . . . are called the
trivial zeros of ζ(s). The remainder of the plane, where 0 ≤ σ ≤ 1, is called the critical strip.
Moreover, in 1893, Jacques Hadamard proved that ζ(s) has infinitely many non-trivial zeros in
the critical strip 0 ≤ σ ≤ 1 [10, §1.3.5].

The famous Riemann hypothesis is that any non-trivial zero of ζ(s) has σ = 1/2. The
location of zeros of Riemann zeta-function in the critical strip, also plays an important role in
the proof of prime number theorem [10, §1.7.2].

1.2 Algebraic zeta-function

In 1877, Dedekind began generalizing some of Lejeune Dirichlet’s work to number fields. His first
paper was Über die Anzahl der Ideal-Klassen in den verschiedenen Ordnungen eines endlichen
Körpers. It appears that Erich Hecke named the Dedekind zeta-function after him1.

1.2.1 Dedekind zeta-function

The Dedekind zeta-function ζK of a number field K is defined for σ > 1 by the Dirichlet series

ζK(s) =
∞∑
n=1

jn
ns

where jn denotes the number of ideals a of OK with |OK/a| = n. One can also prove that ζK
is analytic on the half-plane σ > 1. Moreover, the absolute convergence of the above series also
justifies that

ζK(s) =
∑

a⊂OK

1

|OK/a|s
for σ > 1

This last representation of ζK suggests writing

ζK(s) =
∏

p⊂OK

(
1− 1

|OK/p|s

)−1
=
∏

p⊂OK

1

1− |OK/p|−s

due the property of unique factorization of ideals and multiplicative property of order of ideals
[2, Theorem 22(a)]. Hence we can recover the original zeta-function for K = Q.

As in the case of Riemann zeta-function, ζK can be extended to a meromorphic function
on the half-plane σ > 1 − 1

[K:Q] , analytic everywhere except s = 1 where it has a simple pole.

1source: http://www.lmfdb.org/knowledge/show/lfunction.history.dedekind
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In contrast to the situation for Riemann zeta-function, the functional equation for Dedekind
zeta-function remained open until 1917, when it was settled by Hecke, who showed at the same
time that Dedekind zeta-function could be extended to the complex plane, thereby ensuring
that the Riemann hypothesis makes sense for them as well.

We can use the Dedekind zeta-function to obtain a formula for the number of ideal classes
in OK , called the class number formula [2, Theorem 44].

1.3 Zeta-function of curves over finite fields

Emil Artin first introduced zeta functions and the Riemann hypothesis for certain curves over
finite fields in his 1923 thesis, noting that the ring of polynomial functions on such a curve shares
precisely the properties of rings of integers which Dedekind used to define his zeta functions.
While in the number field case one can think of the zeta function as counting primes, in the
case of a function field the zeta function may be expressed in terms of the more geometric data
of counting points on the given curve [7, §1].

1.3.1 Artin zeta-function

Artin studied a certain class of curves in plane. Here, the plane means F2
q , where Fq is the

finite field having q elements, and a curve C is simply the set of zeros of a polynomial f(x, y) ∈
Fq[x, y]. In general, if F is any filed containing Fq then we define the curve corresponding to
the polynomial f(x, y) ∈ Fq[x, y] in the larger plane F 2 as

C(F ) = {(x, y) ∈ F 2 : f(x, y) = 0}

If F is a finite field, then F = Fqm for m ≥ 1 and C(F ) is finite. For m ≥ 1 define Nm(C) to
be the number of points in the curve C(Fqm). The sequence N1(C), N2(C), N3(C), . . . is what
we wish to study.

The next step is along the lines of generating functions [5]. We define the zeta-function

ZC(t) = exp

( ∞∑
m=1

Nm(C)
tm

m

)

For t = q−s, the above definition coincides with the expression we would obtain using Dedekind
zeta-function for the coordinate ring Fq[x, y]/〈f(x, y)〉. We will prove this equivalence later in
this chapter.

1.3.2 Schmidt zeta-function

In a 1931 paper, Friedrich Karl Schmidt generalized Artin’s work to all curves over finite fields,
and exploited the geometry to prove a strong form of the functional equation for such zeta
functions. The nicest form of Schmidt’s theorem involves restricting to smooth projective curves
[7, §2]. Schmidt proved that for a smooth projective curve C over Fq of genus g, we have

ZC(t) =
P (t)

(1− t)(1− qt)

where P (t) ∈ Z[t] with degree 2g. Shortly thereafter, in a 1933 paper Helmut Hasse was able
to prove the Riemann hypothesis in the special case of elliptic curves over finite fields.

The Riemann hypothesis for C is then the statement that the roots of ZC(q−s) all have
σ = 1/2, or equivalently,

|Nm(C)− qm − 1| ≤ 2g
√
qm

for all m ≥ 1. We will prove this equivalence in the next chapter.
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1.3.3 Hasse-Weil zeta-function

In 1940 and 1941, André Weil gave outline of two proofs of the Riemann hypothesis for curves
over finite fields. Then Weil wrote his Foundations of Algebraic Geometry, which appeared in
1948, and in it he made the two proofs, outlined earlier, rigorous. The following year2 Weil
went further, studying zeta functions ZV (t) associated with higher-dimensional varieties V over
finite fields, and taking as his definition the formula

ZV (t) = exp

( ∞∑
m=1

Nm(V )
tm

m

)

While the situation is more complicated in this context, the behavior conjectured by Weil was
nonetheless strikingly similar, an utterly natural extension of the case of curves. We will state
these Weil conjectures in the next chapter.

Weil’s generalization was motivated by the following two observations:

1. Hasse’s proof of Riemann hypothesis for elliptic curves over finite field exploited the prop-
erties of Frobenius automorphism. Let F be a finite field containing Fqm and t ∈ F , then
tq
m

= t if and only if t ∈ Fqm [4, §14.3]. Now consider the Frobenius map

σqm : F 2 → F 2

(x, y) 7→ (xq
m
, yq

m
)

This is a bijective map with the F2
qm as the set of fixed points. As assumed by Artin, let

C be a curve defined by f(x, y) ∈ Fq[x, y]. Since Fqm ⊃ Fq, it follows that [4, Exercise
13.5.8]

f(x, y) = 0 ⇐⇒ f(σqm(x, y)) = 0

So we see that σqm gives a map from C to itself. Thus, to study Nm(C) it is enough to
analyse the fixed points of Frobenious map on C.

2. In 1926, Solomon Lefschetz gave a “trace formula” that could count the number of fixed
points of a continuous mapping from a compact manifold to itself, in terms of the action
of the map on the associated singular cohomology spaces.

Forgetting for the moment that σqm only makes sense over finite fields, if we imagine that
C was defined over the complex numbers, then by using the complex topology we could study
the fixed points of σqm by the Lefschetz fixed-point theorem, obtaining a formula in terms of
the action of σqm on the cohomology groups.

1.4 Arithmetic zeta-function

In this section we formulate the modern definition3 of zeta-function which takes care of the all
the cases discussed above.

1.4.1 Rings of finite type

Definition 1 (Ring of finite type). Let R be a commutative ring with identity. Let S ⊂ R such
that for all rings R′ ⊂ R with S ⊂ R′ we have R′ = R. Then S is called the generating subset
of R and the ring R is said to be of finite type if the set S is finite.

2A. Weil, “Numbers of solutions of equations in finite fields”, Bull. Amer. Math. Soc. 55 (1949), 497–508.
3This definition should in terms of scheme of finite type over the integers. But since I don’t have knowledge

of schemes, I will state using a slightly different terminology [8].
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Example 1. Some examples of rings of finite type:

1. Z (take S = ∅);

2. Any finite ring (take S = R);

3. If R is a ring of finite with generating set S, then R[X] is also a ring of finite type with
the generating set S ∪ {X};

4. If R is a ring of finite type with generating set S and a ⊂ R is an ideal, then R/a is also
a ring of finite type with the generating set {s : s ∈ S} where s denotes the image of s in
R/a.

Example 2. Some examples of rings which are not of finite type:

1. The ring Z[X1, X2, . . .] is not of finite type. We can prove this claim as follows: On
the contrary, let S = {Xi1 , Xi2 , . . . , Xik} be the finite set of variables occuring in the
polynomials in S. Then S is contained in the proper subring Z[Xi1 , Xi2 , . . . , Xik ] of
Z[X1, X2, . . .] contradicting the fact that S was a generating set.

2. Q is not of finite type. We can prove this claim as follows: On the contrary, let S be a finite
generating set, and N be the least common multiple of the denominators of the elements
of S. Take R′ = Z[1/N ] = {a/N b : a ∈ Z, b ∈ N}. Then S ⊂ R′ ( Q, contradicting the
fact that S was a generating set.

Remark 1. The above definition is equivalent to saying that R is a finitely generated Z-algebra,
i.e. R is a quotient of Z[X1, . . . , Xn] for some n.

Lemma 1 (Artin-Tate lemma). Let A ⊆ B ⊆ C be rings. Suppose that A is Noetherian. If
C is finitely generated as an A-algebra and C is finitely generated as a B-module, then B is
finitely generated as an A-algebra.

Proof. Let x1, . . . , xm generate C as an A-algebra, and y1, . . . , yn generate C as a B-module.
Then there exist expressions of the form

xi =
∑
j

bijyj (bij ∈ B) (1.1)

yiyj =
∑
k

bijkyk (bijk ∈ B) (1.2)

Let B0 be the algebra generated over A by bij and bijk. Since A is Noetheiran, so is B0 by
Hilbert Basis Theorem [3, Theorem 7.7], and A ⊆ B0 ⊆ B.

Any element of C is a polynomial in the xi with coefficients in A. Substituting (1.1) and
making repeated use of (1.2) shows that each element of C is a linear combination of the yi with
coefficients in B0, and hence C is finitely generated as a B0-module. Since B0 is Noetherian,
and C is a finitely generated B0-module, it follows that C is Noetherian [3, Proposition 6.5].
Since C is a Noetherian B0-module, it follows that B is finitely generated as a B0-module [3,
Proposition 6.2]. Since B0 is finitely generated as an A-algebra, it follows that B is finitely
generated as an A-algebra.

Lemma 2 (Zariski’s lemma). Let k be a field and let another field K be a finitely generated
k-algebra. Then K is a finite algebraic extension of k.

Proof. Let K = k[x1, . . . , xn]. If K is not algebraic over k then we can re-number the xi’s so
that x1, . . . , xr are algebraically independent over k, where r ≥ 1, and each of xr+1, . . . , xn is
algebraic over the field F = k(x1, . . . , xr). Hence K is a finite algebraic extension of F and
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therefore finitely generated as a F -module. Applying Lemma 1 to k ⊆ F ⊆ K, it follows that
F is a finitely generated k-algebra, say F = k[y1, . . . , ys]. Each yi is of the form fi/gi where fi
and gi are polynomial is x1, . . . , xr.

Note that there are infinitely many irreducible polynomials in the ring k[x1, . . . , xr] (just
like there are infinite primes in Z). Hence there is an irreducible polynomial h which is prime
to each of the gi, for i = 1, . . . , s, say h = g1g2 · · · gs + 1. Then the element h−1 ∈ F is not a
polynomial in yi’s. This contradicts the fact that F = k[y1, . . . , ys]. Hence, K is algebraic over
k, and therefore a finite algebraic extension.

Remark 2. There is also a direct proof by Zariski [3, Exercise 5.18]. In fact, the characterization
theorem for Jacobson rings contains Zariski’s lemma as a special case [3, Exercise 5.25].

Moreover, this lemma is also a consequence of the Noether normalization lemma [13, The-
orem 2.2]. Indeed, by the normalization lemma, K is a finitely generated module over the
polynomial ring k[x1, . . . , xd] where x1, . . . , xd are elements of K that are algebraically inde-
pendent over k. But since K has Krull dimension zero and since an integral ring extension
preserves Krull dimensions, the polynomial ring must have dimension zero; i.e., d = 0.

Corollary 1 (Weak Nullstellensatz). Let k be a field, R be a finitely generated k-algebra. Let
m be a maximal ideal of R. Then the field R/m is a finite algebraic extension of k.

Proof. Take K = R/m in Zariski’s lemma.

Remark 3. In particular, if k is algebraically closed then R/m ∼= k. One can directly prove the
weak form of Hilbert’s nullstellensatz using Noether normalization lemma [3, Exercise 5.17].

Theorem 1. Let R be a ring of finite type which is a field. Then R is a finite field.

Proof. It is sufficient to prove that R can’t have characteristic 0. On the contrary, let R be a
field of characteristic 0. Then the prime subfield of R is isomorphic to Q [4, §13.1], and we have
Z ⊂ Q ⊆ R. Since R is of finite type, it’s a finitely generated Z-algebra, and hence R is a finitely
generated Q-algebra. Applying Lemma 2 to R we get that R is a finitely generated Q-module.
But then Lemma 1 implies that Q is a finitely generated Z-algebra. But, as seen in Example 2,

this is not possible. If we had Q = Z
[
m1
n1
, . . . , mknk

]
, we could as well write Q = Z [1/N ] where

N = lcm(n1, . . . , nk). But then 1/q ∈ Q, for prime q not dividing N , can’t be written as a
polynomial in 1/N .

Therefore, R must be of characteristic p > 0, i.e. a finitely generated Fp-algebra. Then by
Lemma 2 we get that R = Fpr for some r ≥ 1.

Corollary 2 (Nullstellensatz over Z). Let R be a ring of finite type and m ⊂ R a maximal
ideal. Then the quotient R/m is a finite field.

Proof. Use Corollary 1.

Definition 2 (Arithmetic zeta-function). Let R be a ring of finite type. The zeta-function of
R is defined as

ζR(s) =
∏
m⊂R

1

1− |R/m|−s

for s ∈ C with Re(s) sufficiently large, and product taken over all maximal ideals of R.

Remark 4. We assume that there exists a ρ ∈ R such that ζR(s) converges absolutely for
Re(s) > ρ. Moreover, from now onwards we will manipulate certain products and series without
carefully looking at convergence. We will implicitly assume that these manipulations are done
in the domain of absolute convergence.

Example 3. We can recover the earlier definitions of zeta-functions as follows:
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1. ζZ(s) = ζ(s) (Z is a principal ideal domain, hence every prime ideal is maximal)

2. ζOK (s) = ζK(s) (OK is a finitely generated Z-algebra [2, Theorem 2] and a Dedekind
domain [2, Theorem 14])

Proposition 1. Let R1 and R2 be rings of finite type. Then R1 × R2 is of finite type and
ζR1×R2(s) = ζR1(s)ζR2(s).

Proof. Let S1 and S2 be the finite generating set of R1 and R2, respectively. Then S1 × S2 is
the finite generating set of R1×R2. To prove the zeta-function formula, it is sufficient to prove
that the maximal ideals of R1 ×R2 are either of the form m1 ×R2, where m1 is maximal ideal
in R1, or of the form R1 ×m2, where m2 is maximal ideal in R2.

Let m be a maximal ideal in R1 × R2, then (R1 × R2)/m is a field. Suppose m contains
neither all of R1 × {0} nor {0} ×R2. Then we could pick non-zero elements (r1, 0) ∈ R1 × {0}
and (0, r2) ∈ R2×{0}, neither of which is in m, and then ((r1, 0) +m)((0, r2) +m) = (0, 0) +m.
But since a field does not contain zero-divisors, m must contain all of R1 or all of R2. Using
the fact an ideal is maximal if and only if the quotient ring is a field, we conclude that that the
ideal m is of the required form.

Hence we have

ζR1×R2(s) =
∏

m⊂R1×R2

1

1− |R1 ×R2/m|−s

=

(∏
m1

1

1− |R1 ×R2/m1 ×R2|−s

)(∏
m2

1

1− |R1 ×R2/R1 ×m2|−s

)
= ζR1(s)ζR2(s)

Remark 5 (Riemann hypothesis for rings of finite type). Let R be a ring of finite type. Then
s 7→ ζR(s) extends to a meromorphic function on C, and for every s ∈ C at which ζR has a pole
or a zero we have 2Re(s) ∈ Z.

For R = Z this conjecture is equivalent to the Riemann hypothesis, as the zeros and poles
of ζ with Re(s) > 1 or Re(s) < 0 are known.

Proposition 2. Let R be a ring of finite type, then

ζR(s) =
∏

p∈Z>0

ζR/〈p〉(s)

where p is a positive prime integer.

Proof. Let m ⊂ R be a maximal ideal of R. Then Corollary 2 implies that R/m is a finite field,
hence it has a finite characteristic p > 0. This gives us the element p =

∑p
i=1 1 ∈ m. Moreover,

by fourth isomorphism theorem [4, Theorem 7.8(3)] we have the following bijection, where we
only consider the maximal ideals :

{m ⊂ R : p ∈ m} 1:1←→{m′ ⊂ R/〈p〉}
m 7−→m/〈p〉

m′ + 〈p〉 ←− [ m′

Also, by third isomorphism theorem [4, Theorem 7.8(2)] we have:

R/m ∼=
R/〈p〉
m/〈p〉

hence |R/m| = |R/〈p〉/m/〈p〉|.
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Example 4. We can now define zeta-function for various rings:

1. Let R = Fq, then

ζFq(s) =
1

1− q−s

2. Let n be a positive integer and R = Z/nZ. We have n = pr11 p
r2
2 · · · p

r`
` for some distinct

primes p1, p2, . . . , p`. Then the maximal ideals of R are piZ/nZ and |R/m| = pi for all i.

ζZ/nZ(s) =
∏

p∈Z>0

p|n

1

1− p−s

3. Let R = Z[X]/〈Xn〉. Recall that the maximal ideals of Z[X] are of the form 〈p, f〉 where p
is a prime integer and f is a monic integral polynomial irreducible modulo p [13, Theorem
2.1]. Hence the maximal ideals of R are 〈p,X〉/〈Xn〉 for all p ∈ Z>0, and we get

ζZ[X]/〈Xn〉(s) =
∏
p

1

1− p−s
= ζ(s)

1.4.2 Fp-algebras of finite type

Definition 3 (Fp-algebra). A ring R in which p =
∑p

i=1 1 = 0 has the property that the ring
homomorphism Z→ R factors as Z→ Fp → R. Such rings are called Fp-algebras.

Remark 6. Proposition 2 allows us to express the zeta-function of a ring of finite type as a
product of zeta functions of Fp-algebras.

Definition 4 (Special arithmetic zeta-function). For p prime and R an Fp-algebra of finite
type, we define ZR(t) as follows:

ZR(t) =
∏
m⊂R

1

1− tdeg(m)
∈ Z[[t]]

where deg(m) = [R/m : Fp].

Proposition 3. For p prime and R be an Fp-algebra of finite type, then:

ζR(s) = ZR(p−s)

Proof. We note that R/m ∼= Fpr for some r ≥ 1, and r = deg(m).

ζR(s) =
∏
m⊂R

1

1− |R/m|−s
=
∏
m⊂R

1

1− |Fpr |−s
=
∏
m⊂R

1

1− (pr)−s
=
∏
m⊂R

1

1− (p−s)r
= ZR

(
p−s
)

Definition 5 (Logarithm of formal power series). The logarithm of power series is defined as
the map

log :1 + xQ[[x]] −→ Q[[x]]

1− a 7−→−
∑
n>0

an

n

10



Remark 7. The sum defined above converges to a formal power series since x divides a, and
only finitely many terms contribute to the coefficient of xn in log(1−a). Moreover, the logarithm
defines a group homomorphism from the multiplicative group 1 + xQ[[x]] to the additive group
Q[[x]].

Lemma 3. Consider the tower of finite fields Fp ⊆ Fpd ⊆ Fpn. Then |Hom(Fpd ,Fpn)| = d.

Proof. Let ϕ : Fpd → Fpn be a ring homomorphism. Then ϕ is injective since Fpd is a field [3,
Proposition 1.2]. Moreover, Im(ϕ) is a subring of the finite field Fpn , hence is an integral domain.
Since any finite integral domain is a field [4, Corollary 7.3], Im(ϕ) ⊆ Fpn is a subfield. Therefore,
Im(ϕ) is isomorphic to a finite field of order pd by the first isomorphism theorem [4, Theorem
7.7]. Hence, every ring homomorphism is actually an automorphism, i.e. Hom(Fpd ,Fpn) =
Aut(Fpd/Fp). Also, we know that the extension of finite fields Fpd/Fp is Galois [4, Corollary
14.6], hence |Aut(Fpd/Fp)| = [Fpd : Fp] = d.

Theorem 2. For p prime and R an Fp-algebra of finite type, then

logZR(t) =
∞∑
n=1

νn(R)
tn

n

where νn(R) = |Hom(R,Fpn)|, i.e. the number of ring homomorphisms from R to Fpn.

Proof. Firstly, we have the following bijection involving ring homomorphisms and maximal
ideals:

Hom(R,Fpn)
1:1←→{(m, α) : α ∈ Hom(R/m,Fpn)}

β 7−→ (ker(β), β) where β : R/ ker(β)→ Fpn

α̃←− [ (m, α) where α̃ : R→ R/m
α→ Fpn

where ker(β) is a maximal ideal since R/ ker(β) is isomorphic to some subfield of Fpn [4, Corol-
lary 7.3, Theorem 7.7].

Now, let m be a maximal ideal of R. Note that R/m ∼= Fpdeg(m) , and Fpdeg(m) is a subfield of
Fpn if and only if deg(m) divides n [4, Theorem 13.14]. Hence, by Lemma 3, |Hom(R/m,Fpn)| =
deg(m) if deg(m) divides n, and is zero otherwise. This gives us:

νn(R) =
∑
d|n

d · |{m ⊂ R : deg(m) = d}| (1.3)

Let’s now use the definition of ZR(t) and log to simplify the left hand side:

logZR(t) = log
∏
m⊂R

1

1− tdeg(m)

=
∑
m⊂R

log
1

1− tdeg(m)

=
∑
m⊂R

∞∑
j=1

tj deg(m)

j

=

(
tdeg(m1) +

t2 deg(m1)

2
+ . . .

)
+

(
tdeg(m2) +

t2 deg(m2)

2
+ . . .

)
+ . . .

Note that the numerator of the coefficients of tn is |{m ⊂ R : deg(m) = d}| where d|n. Hence
we have:

logZR(t) =
∞∑
n=1

∑
d|n

d · |{m ⊂ R : deg(m) = d}|

 tn

n

11



Now using (1.3) we get:

logZR(t) =

∞∑
n=1

νn(R)
tn

n

Proposition 4. For p prime and R = Fp[X1, . . . , Xr]/a with a the ideal generated by polyno-
mials f1, . . . , fm. Then

νn(R) =
∣∣{(x1, . . . , xr) ∈ Frpn : fj(x1, . . . , xr) = 0 for j = 1, 2, . . . ,m}

∣∣
Proof. Let ϕ : R → Fpn be a ring homomorphism. Note that the ring homomorphism is
completely determined by its values at the generators Xi. Suppose a ring homomorphism sends
Xi to xi ∈ Fpn . Since a ring homomorphism sends 0 to 0, it follows that fj(x1, . . . , xr) = 0 in
Fpn for all j. On the other hand, if we have (x1, . . . , xr) ∈ Frpn such that fj(x1, . . . , xr) = 0 for
all j, the ring homomorphism from Fp[X1, , . . . , Xr] to Fpn that sends Xi to xi, factors through
R. Hence we get

νn(R) = |Hom(R,Fpn)|
=
∣∣{(x1, . . . , xr) ∈ Frpn : fj(x1, . . . , xr) = 0 for j = 1, 2, . . . ,m}

∣∣
That is, νn(R) is the size of the vanishing set of the ideal a.

Example 5. Let q be a prime power and R = Fq[X,Y ]/〈XY −1〉. Then, since R is a Fp-algebra
of finite type, we have:

logZR(t) =

∞∑
m=1

Nm(C)
tm

m

where C is the vanishing set of the polynomial XY − 1 in the F2
qm plane, and Nm(C) =∣∣{(x1, x2) ∈ F2

qm : x1x2 = 1}
∣∣. Hence Nm(C) is equal to the number of elements of Fqm with

multiplicative inverse, i.e. Nm(C) = qm − 1. Hence we get:

logZR(t) =
∞∑
m=1

(qm − 1)tm

m

=

∞∑
m=1

(qt)m

m
−
∞∑
m=1

tm

m

= − log(1− qt) + log(1− t)

= log
1− t
1− qt

Hence we have ZR(t) = 1− t/1− qt. Compare the result with the discussion in subsection 1.3.1
and subsection 1.3.2.

12



Chapter 2

An overview of Weil conjectures

In 1949, André Weil gave conjectures concerning the number of solutions of polynomial equations
over finite field. While one might ultimately be more interested in solutions over the field of
rational numbers, the problem of finding solutions is far more tractable over finite fields, and
local-global principles [9] establish subtle relationships between the two cases.

2.1 The statement of conjectures

As seen in subsection 1.3.3, let V be any higher dimensional variety over finite fields, and the
zeta-function be defined as

ZV (t) = exp

( ∞∑
m=1

Nm(V )
tm

m

)
where Nm(V ) is the number of points in the variety V over Fqm . Then the following four
conjectures were made:

1. Rationality : ZV (t) is a rational function of t.

2. Factorization: If n = dimV , then we can write

ZV (t) =
P1(t)P3(t) · · ·P2n−1(t)

P0(t)P2(t) · · ·P2n(t)

Moreover, if V is the reduction modulo p of a variety Ṽ defined over a subfield of C, then
bj = degPj(t) is the jth Betti number of Ṽ using the usual topology.

3. Functional equation: The roots of Pj(t) are interchanged with the roots of P2n−j(t) under
the substitution t 7→ 1/qnt.

4. Riemann hypothesis: Each root of each Pj(t) is a complex number of norm q−j/2.

In 1960, using p-adic analysis, Bernard Dwork was able to prove the rationality of zeta-
function. Later, in 1962, all the conjectures except Weil’s Riemann hypothesis followed from the
formulation of the suitable cohomology theory so that the Lefschetz theorem could be applied.
One such theory was Alexander Grothendieck’s étale cohomology, developed in collaboration
with Michael Artin. However, Weil’s Reimann hypothesis was first proved by Pierre Deligne in
1973 by developing another topological idea of Lefschetz (called the weak Lefschetz theorem) in
the context of the étale theory of Grothendieck. Deligne gave a second proof of Weil’s Reimann
hypothesis in 1980, and in the process of this proof the second part of Lefschetz topological
work (called the hard Lefschetz theorem) was shown in étale context.

13



2.2 Riemann hypothesis for projective smooth curves over finite
field

The main step in Weil’s proof of the Riemann Hypothesis for curves over finite fields is to
establish the Hasse-Weil inequality.

Theorem A. Let C be a projective non-singular absolutely irreducible curve over a finite field
Fqm. Then

|qm + 1−Nm(C)| ≤ 2qm/2g(C)

where g(C) is the genus of C.

I don’t have enough knowledge of algebraic geometry, to be able to discuss the proof of this
result. However, we can see how this inequality is equivalent to Weil’s Riemann hypothesis. As
claimed in subsection 1.3.2, we will assume the rationality, factorization and functional equation
of the curve.

Theorem B. Let C be a projective non-singular absolutely irreducible curve over a finite field
Fqm. Then

1. ZC(t) is a rational function in C(t) with factorization

ZC(t) =
P (t)

(1− t)(1− qt)
, P (t) =

2g∏
j=1

(1− αjt)

where g = g(C) and α1, . . . , α2g ∈ C.

2. ZC(t) satisfies the functional equation:

ZC

(
1

qt

)
= q1−gt2−2gZC(t)

Theorem 3 (Riemann hypothesis for projective smooth curves over finite field). Let C be a
projective non-singular absolutely irreducible curve over a finite field Fqm. Then all roots of
ZC(t) are the complex numbers of norm q−1/2.

Proof. As seen in Example 5, we have

logZC(t) =
∞∑
m=1

Nm(C)
tm

m

Using the rational function from Theorem B we get:

∞∑
m=1

Nm(C)
tm

m
= log

P (t)

(1− t)(1− qt)

= logP (t)− log(1− t)− log(1− qt)

= log

2g∏
j=1

(1− αjt)− log(1− t)− log(1− qt)

=

2g∑
j=1

log(1− αjt)− log(1− t)− log(1− qt)

=
∞∑
m=1

1 + qm −
2g∑
j=1

αmj

 tm

m
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Hence we get the trace formula

Nm(C) = qm + 1−
2g∑
j=1

αmj (2.1)

Next, substituting (2.1) in the Hasse-Weil inequality from Theorem A, we get:∣∣∣∣∣∣
2g∑
j=1

αmj

∣∣∣∣∣∣ ≤ 2g
√
qm (2.2)

Now we state the essential claim:
Claim: For all j, |αj | ≤ q1/2.
Consider the following function:

f(t) =

2g∑
j=1

αjt

1− αjt
(2.3)

Observe that f(t) is homomorphic in the disk D = {t ∈ C : |t| < ρ} for

ρ =
1

max
1≤j≤2g

|αj |
(2.4)

Now consider the power series expansion of f(t) around origin

f(t) =
∞∑
n=0

ant
n (2.5)

Next, observe that ρ is in fact the radius of convergence of the power series of f(t), since D is
the largest disk (around origin) in which the series converges (since t = 1/αj is not possible).
Moreover, by Cauchy-Hadamard theorem we know that the radius of convergence ρ is given by

1

ρ
= lim sup

n→∞
|an|1/n (2.6)

Equating (2.3) and (2.5) we get

∞∑
n=0

ant
n =

2g∑
j=1

αjt

1− αjt

=

2g∑
j=1

∞∑
`=1

(αjt)
`

=

∞∑
`=1

 2g∑
j=1

αj

 t`

Comparing the coefficients we get

a0 = 0, an =

2g∑
j=1

αnj ∀n ≥ 1

Equating (2.4) and (2.6) we get:

max
1≤j≤2g

|αj | = lim sup
n→∞

|an|1/n
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= lim sup
n→∞

∣∣∣∣∣∣
2g∑
j=1

αnj

∣∣∣∣∣∣
1/n

≤ lim sup
n→∞

(
2gqn/2

)1/n
using (2.2)

= q1/2 (since lim sup
n→∞

a1/n = lim
n→∞

a1/n = 1 for a ∈ R)

Hence proving our claim:
|αj | ≤ q1/2 ∀ j ∈ {1, . . . , 2g} (2.7)

Next, consider the functional equation and substitute the rational function in it from Theorem B
to get

q1−gt2−2g =
ZC (1/qt)

ZC(t)
=

(1− t)(1− qt)qt2P (1/qt)

(qt− 1)(t− 1)P (t)
= q1−2gt2−2g

∏2g
`=1(qt− α`)∏2g
j=1(1− αjt)

Hence we have
2g∏
`=1

(qt− α`) =

2g∏
j=1

(qg − αjqgt)

Now comparing the coefficients we conclude that there exist integers ` and j such that

qt = −αjqgt
−α` = qg

}
⇒ ∀ j ∈ {1, . . . , 2g} ∃ ` ∈ {1, . . . , 2g} such that αjα` = q (2.8)

Now combining (2.8) and (2.7) we get |αj | = q1/2 for all j ∈ {1, . . . , 2g}. Hence completing the
proof.

Remark 8. As in Proposition 3, we can define ζ(s) := ZC(p−s). From this we can conclude
that all the roots of ζ(s) have real part 1/2, because:

q−1/2 = |α−1j | =
∣∣∣q−(Re(s)+iIm(s))

∣∣∣ = q−Re(s)

2.3 Counting points on elliptic curve

In this section we will see an application of Weil’s conjectures to compute the points on an
elliptic curve over a finite field [6]. First, let’s recall the definition and properties of elliptic
curves [11, Definition 2.29]:

Definition 6 (Elliptic curve). An elliptic curve over a field k is a smooth projective curve E
over k of genus 1, together with a specified k-rational point1 O.

Theorem C. Every elliptic curve over a field k is isomorphic to the projective curve corre-
sponding to a non-singular affine cubic Zf (k) in Weierstrass form, i.e. f(x, y) = 0 being

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, a2, a3, a4, a6 ∈ k

Remark 9. If the characteristic of k in not 2 or 3, then by completing the squares and cubes,
we end up with an equation of the form Y 2 = X3 +aX+b equivalent to the general Weierstrass
form.

1That is O ∈ Pn(k) for O ∈ E ⊂ Pn(k).
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Example 6. Consider the elliptic curve over F2m given by the Weierstrass form:

Ẽ : y2 − y = x3 − x2

We homogenize this equation to obtain a projective non-singular absolutely irreducible curve
of genus 1:

E : y2z − yz2 = x3 − x2z

Next we observe that [0 : 0 : 1], [0 : 1 : 0], [0 : 1 : 1], [1 : 0 : 1] and [1 : 1 : 1] are the five solutions
of E over F2. Hence we have N1(E) = 5. Since g = 1, by Theorem B we know that

ZE(t) =
(1− αt)(1− βt)
(1− t)(1− 2t)

for some α, β ∈ C. Now using (2.1) we

Nm(E) = 2m + 1− αm − βm (2.9)

We know the value for m = 1, hence we get the α + β = −2. Also, by (2.8) we know that
αβ = 2. Combining these two, we conclude that

α = −1± i and β = −1∓ i

Substituting these values in (2.9) we get the points counting formula for our elliptic curve
E over F2m :

Nm(E) = 2m + 1− (−1 + i)m − (−1− i)m

Now we can use this formula to count number of points in the elliptic curve E for any m. For
example,

N10(E) = 210 + 1− (−1 + i)10 − (−1− i)10

= 1025−
(√

2e
3πi
4

)10
−
(√

2e
5πi
4

)10
= 1025− 32(e−

πi
2 + e

πi
2 )

= 1025

We can in fact re-write the formula as:

Nm(E) = 2m + 1− 2
m
2
+1 cos

(
3m

4
π

)
=



2m + 1− 2
m
2
+1 if m ≡ 0 (mod 8)

2m + 1 + 2
m+1

2 if m ≡ ±1 (mod 8)

2m + 1 if m ≡ ±2 (mod 8)

2m + 1− 2
m+1

2 if m ≡ ±3 (mod 8)

2m + 1 + 2
m
2
+1 if m ≡ 4 (mod 8)

From this we observe that N1(E) = N2(E) = N3(E) = 5, hence no new solution can be found
when we search in F4 and F8.
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Conclusion

There are some basic questions that have non-obvious connections to the Weil conjectures. For
example, consider the discriminant modular form

∆(z) =
(2π)12

1728

(
E4(z)

3 − E6(z)
2
)

Then the Fourier coefficients of (2π)−12∆(z) define the Ramanujan τ -function[12, §3.3]

(2π)−12∆(z) =
∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 + . . .

Ramanujan conjectured that |τ(p)| ≤ 2p11/2 for any prime number p. Work of Martin Eichler,
Goro Shimura, Michio Kuga, Yasutaka Ihara, and Pierre Deligne showed that, in fact, Ramanu-
jans conjecture is a consequence of the Weil conjectures, so that Delignes proof of the latter in
1974 also resolved the former[7].

The Weil conjectures form the cornerstone to the further study of the topological and
number-theoretical properties of varieties. In 1969 Grothendieck proposed a vast program go-
ing under the title Motives. He set out some standard conjectures which would prove Weil’s
Riemann hypothesis and much much more. Though Grothendieck’s student Deligne proved
the Weil conjectures, the standard conjectures are as yet unresolved and the grand program of
Grothendieck is yet to be completed [5].
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