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Abstract

Diophantine approximation has quite old history, it includes, for instance,
early estimates for π, computations related to astronomical studies, the

theory of continued fraction expansion. This term was coined in honor of
Diophantus of Alexandria (3rd century), who was the author of a series of
books called Arithmetica, which lead to tremendous advances in number

theory. A basic objective of this subject is to investigate the rational
approximations to a single real number. In this report we will study the

elementary results in this subject.
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Introduction

Let f(x1, . . . , xn) be a function of n variables, which is always positive or
zero. As stated by Davenport1, the general problem of Diophantine approx-
imation is of a mixed arithmetic and analytic nature, since the variables are
integers and the coefficients of f are supposed to be arbitrary real numbers.

One main goal of the theory of Diophantine approximation is to compare,
on the one hand, the distance between a given real number α and a rational
number a/b, with, on the other hand, the denominator b of the approximant.
An approximation is considered as sharp if |α−a/b| is small compared to b.

Several questions arise when α is algebraic, one may consider either
asymptotic or else uniform approximation. After rational approximation
to a single real number, one may investigate, the algebraic approximation
properties of real or complex numbers, replacing the set of rational numbers
by the set of real or complex algebraic numbers.[11]

Suppose2 we wish to prove that the equation x2 − 2y2 = ±1 has an in-
finitely many integral solutions. We can do so by proving that the inequality
|x2 − 2y2| < 2 has infinitely many integral solutions; and on factorising this
we find that it is sufficient to prove that there are infinitely many fractions
x/y for which ∣∣∣∣xy −√2

∣∣∣∣ < c

y2

for some constant c less than 1/
√

2. Thus a problem of a purely arithmetical
character is reduced to a problem of Diophantine approximation.

First and second chapter are devoted to those theorems, whose proofs are
based on simple continued fractions and elementary concepts of geometry of
numbers respectively. But, major part of this report is devoted to proof of
Roth’s Theorem. In his paper[7], Roth wrote:

“As regards the substance of the present paper, it will be appreciated that
many of the ideas and methods are not new. The novel part of the proof
is that culminating in Lemma 7, and even here we make much use of ideas
that have occurred before in the literature of the subject.”

1Davenport, H., ‘The Geometry of Numbers’, The Mathematical Gazette, Vol. 31, No.
296 (Oct., 1947), 206-210.

2In my past report on Diophantine equations, I didn’t discuss that Diophantine equa-
tions can often be best approached from the corresponding inequalities.
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Chapter 1

Rational Approximation to
Irrational Number

Since the rational numbers are dense on the real line, we surely can make
the difference between α and its rational approximation a

b as small as we
wish. But, as we try to make a

b closer and closer to α, we may have to use
larger and larger a and b. So, in this chapter we will see that how well we
can approximate α by rational numbers with not too large denominators.
Using simple continued fractions we can give “best”1 rational approximation
to the irrational number.

1.1 Simple Continued Fractions

Let α be an irrational number, then:

α = bαc+ {α}

where {α} ∈ (0, 1), thus:

α = a0 +
1

α1
, where a0 = bαc and α1 /∈ Z

⇒ α = a0 +
1

a1 + 1
α2

, where a1 = bα1c and α2 /∈ Z

...

The above process will go on. We can prove it by contradiction, since if
it terminates, α will be a rational number (Euclid’s Division Algorithm).
Hence we will get simple continued fraction expansion of α as:

α = a0 +
1

a1 + 1
a2+

1

...

= [a0; a1, a2, . . .]

1see Corollary 1.2.1
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where ai for i ≥ 1 is a positive integer and an is called nth partial quotient.
Note that,

1

α
= [0; a0, a1, . . .]

Also, nth complete quotient, αn, is:

αn = [an; an+1, an+2, . . .] =
1

αn−1 − an−1

Hence, if αn = αn+k then αn = αn+k = αn+2k = · · · where k ∈ N.
We define convergent, δn as:

δn = [a0; a1, a2, . . . , an] = a0 +
1

a1 + 1
a2+

1

...+ 1

an−1+
1
an

=
pn
qn

thus, δ0 = a0, δ1 = a1a0+1
a1

= p1
q1

, so on. But, calculation of δn is tedious in
this way, so we rather use the following recursive definition to calculate δn,
for n ≥ 2,{

pn = pn−1an + pn−2 where p0 = a0 and p1 = a0a1 + 1

qn = qn−1an + qn−2 where q0 = 1 and q1 = a1
(1.1)

The above result can be proved using induction, note that to go from pk
qk

to
pk+1

qk+1
it is necessary to replace ak by ak + 1

ak+1
. Thus for n ≥ 2,

δn =
pn
qn

=
pn−1an + pn−2
qn−1an + qn−2

(1.2)

Also, since:

α = [a0; a1, . . . , an−1, αn] = [a0; a1, . . . , an−1 +
1

αn
]

using this in (1.2) and simplifying using (1.1), we get::

α =
pn−2

(
an−1 + 1

αn

)
+ pn−3

qn−2
(
an−1 + 1

αn

)
+ qn−3

=
pn−1αn + pn−2
qn−1αn + qn−2

(1.3)

Also, (pn) and (qn) are increasing sequences. Moreover, we can prove by
induction that for n ≥ 0,

pnqn+1 − pn+1qn = (−1)n (1.4)

Thus, using (1.2) along with (1.4), we get increment of nth convergent,
∆n, is:

∆n = δn+1 − δn =
(−1)n

qnqn+1
(1.5)
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Hence, we observe that |∆n| > |∆n+1| and exact value of α lies between two
neighbouring convergents.

I will end this section with following observations:

βn =
pn
pn−1

=

{
[an; an−1, . . . , a0] if a0 6= 0

[an; an−1, . . . , a2] if a0 = 0

and
γn =

qn
qn−1

= [an; an−1, . . . , a2, a1] (1.6)

1.2 Elementary Approximation Theorems

Lemma 1.2.1. For any n ≥ 0,∣∣∣α− pn
qn

∣∣∣ < 1

qnqn+1
and |αqn − pn| <

1

qn+1

Proof. The second inequality will follow from the first by multiplication by
qn. By, (1.3) and (1.4):∣∣∣α− pn

qn

∣∣∣ =
1

qn(αn+1qn + qn−1)

But, αn+1 > an+1, so:∣∣∣α− pn
qn

∣∣∣ < 1

qn(an+1qn + qn−1)
=

1

qnqn+1

Theorem 1.2.1 (Dirichlet2, 1842). Given any irrational number α, there
are infinitely many distinct rational numbers a

b with b ≥ 1 such that∣∣∣α− a

b

∣∣∣ < 1

b2

Proof. From Lemma 1.2.1 and qn < qn+1, we get:∣∣∣α− pn
qn

∣∣∣ < 1

qnqn+1
<

1

q2n

2for Dirichlet’s proof using pigeonhole principle see Borwein, J., van der Poorten, A. J.,
Shallit, J. and Zudilin, W., Neverending Fractions. An Introduction to Continued Frac-
tions, Australian Mathematical Society Lecture Series 23 (Cambridge University Press,
Cambridge, 2014) pp. 14-17. The method is of great importance because it can be
extended to multi-dimensional problems, that of the simultaneous approximation of k
numbers, see Theorem 2.1.1
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Hence, there are infinitely many distinct rational numbers a
b with b ≥ 1 such

that: ∣∣∣α− a

b

∣∣∣ < 1

b2

Remark. From Dirichlet’s proof of this theorem we can conclude that: if
α ∈ R, k ∈ Z, there exist integers a, b, where b ∈ {1, 2, 3, . . . , k}, such that
|αb− a| < 1/k. Generalisation of this statement is Lemma 2.1.1.

Lemma 1.2.2. If a
b is a rational number with positive denominator such

that ∣∣∣α− a

b

∣∣∣ < ∣∣∣α− pn
qn

∣∣∣
for some n ≥ 1, then b ≥ qn. Moreover, if

|αb− a| < |αqn − pn|

for some n ≥ 0, then b ≥ qn+1.

Proof. Observe that the second part of the lemma implies the first. Suppose
that the first part is false so that an a/b with∣∣∣α− a

b

∣∣∣ < ∣∣∣α− pn
qn

∣∣∣ and b ≤ qn

The product of these inequalities give:

|αb− a| < |αqn − pn|

But, the second part of lemma says that this implies b ≥ qn+1, so we have a
contradiction, since qn < qn+1 for n ≥ 1.

We will use proof by contradiction for second part. Suppose,

|αb− a| < |αqn − pn| and b < qn+1 (1.7)

Now consider the linear equations in x and y:{
pnx+ pn+1y = a

qnx+ qn+1y = b

These equations have an integral solution (x, y), since determinant of coef-
ficients is ±1 (by (1.4)).

Observe that neither x nor y is zero, since if any one of them become
zero, we get a contradiction to one of the inequalities in (1.7).

Moreover, x and y are of opposite signs, since b < qn+1. Also, αqn − pn
and αqn+1 − pn+1 have opposite signs.. Now,

αb− a = x(αqn − pn) + y(αqn+1 − pn+1)
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Since the two terms on the right have same sign:

|αb−a| = |x(αqn−pn)+y(αqn+1−pn+1)| = |x(αqn−pn)|+|y(αqn+1−pn+1)|

⇒ |αb− a| > |x(αqn − pn)| = |x||(αqn − pn)|

⇒ |αb− a| ≥ |αqn − pn|

This is a contradiction to (1.7). Thus proving our lemma.

Corollary 1.2.1. The convergent δn = pn
qn

is the best approximation of α of
all the rational fractions with denominator less than or equal to qn.

Theorem 1.2.2 (Legendre). Let a and b be coprime integers, b > 0, and
let ∣∣∣α− a

b

∣∣∣ < 1

2b2

Then a
b is a convergent of α.

Proof. We are given that:

|αb− a| < 1

2b
(1.8)

Let the convergents of the simple continued fraction expansion of α be pn/qn,
and suppose a/b is not a convergent. The inequality qn ≤ b ≤ qn+1 determine
the integer n. For this n, the inequality |αb− a| < |αqn − pn| is impossible
due to Lemma 1.2.2.

Thus from (1.8), we have:

|αqn − pn| ≤ |αb− a| <
1

2b

⇒
∣∣∣α− pn

qn

∣∣∣ < 1

2bqn
(1.9)

Using the facts that a/b 6= pn/qn and that bpn − aqn is an integer, we get:

1

bqn
≤ |bpn − aqn|

bqn
=
∣∣∣pn
qn
− a

b

∣∣∣ =
∣∣∣(pn
qn
− α

)
+
(
α− a

b

)∣∣∣
By triangle inequality,

⇒ 1

bqn
≤
∣∣∣α− pn

qn

∣∣∣+
∣∣∣α− a

b

∣∣∣
From (1.9) and given conditions, we get:

⇒ 1

bqn
<

1

2bqn
+

1

2b2

This implies that, b < qn, which is a contradiction.
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Lemma 1.2.3. If x is a real number, x > 1, and x+ 1
x <
√

5, then

x <

√
5 + 1

2
and

1

x
>

√
5− 1

2

Remark. If the partial quotient, an, behaves regularly, and doesn’t be-
come too large, then α may reasonably be regarded as a ‘simple number’;
and in this case the rational approximation of α can’t be good. Hence,
from the point if view of rational approximation, the simplest numbers are
worst3. Thus, the simplest of all irrationals, from this point of view is,

α = [0; 1, 1, 1, . . .] =
√
5−1
2 , in which every an has smallest possible value.4

Theorem 1.2.3 (Hurwitz, 1891). Given any irrational number α, there
exist infinitely many different rational numbers a

b such that:∣∣∣α− a

b

∣∣∣ < 1√
5b2

Moreover, above statement doesn’t hold if
√

5 is replaced by any larger value.

Proof. We will show that, of every three consecutive convergents of simple
continued fraction expansion of α at least one satisfies the given inequality.

From, (1.6), we note that γn = qn/qn−1. We first claim that

γm +
1

γm
<
√

5

if given inequality is false for both a/b = pm−1/qm−1 and a/b = pm/qm.
Suppose, given inequality is false, i.e. |α − a/b| ≥ 1/

√
5b2 for these two

values of a/b. We have∣∣∣α− pm−1
qm−1

∣∣∣+
∣∣∣α− pm

qm

∣∣∣ ≥ 1√
5q2m−1

+
1√
5q2m

(1.10)

But, we observed from (1.5) that, α lies between pm−1/qm−1 and pm/qm;
thus α− pm−1/qm−1 and α− pm/qm are of opposite sign. Hence using (1.5)
we get:∣∣∣α− pm−1

qm−1

∣∣∣+
∣∣∣α− pm

qm

∣∣∣ =
∣∣∣pm
qm
− pm−1
qm−1

∣∣∣ = |∆m−1| =
1

qm−1qm
(1.11)

Combining (1.10) and (1.11), we get:

qm
qm−1

+
qm−1
qm

≤
√

5

3refer section 11.8 of [2]
4note that, golden ratio = ϕ = [1; 1, 1, . . .] = 2√

5−1
=
√
5+1
2
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Since, the left hand side is rational, we actually have a strict inequality, and
thus proving our first claim.

Now, suppose that given inequality is false for a/b = pr/qr, r = n −
1, n, n + 1, i.e. we have |α − a/b| ≥ 1/

√
5b2 for these three values of a/b.

Then we have γm + 1/γm <
√

5 for m = n, n+ 1.
By Lemma 1.2.3, we see that:

1

γn
>

√
5− 1

2
and γn+1 <

√
5 + 1

2

and, by (1.6), we have: γn+1 = an+1 + 1
γn

. This gives us:

√
5 + 1

2
> γn+1 = an+1 +

1

γn

⇒
√

5 + 1

2
> an+1 +

√
5− 1

2

⇒
√

5 + 1

2
≥ 1 +

√
5− 1

2
=

√
5 + 1

2
and this is a contradiction. Hence proving first part of the theorem.

Now, second part of the theorem asserts that: The constant
√

5 in above
inequality is best possible.

It is enough to show that, if A >
√

5 and α = [0; 1, 1, . . .] =
√
5−1
2 then the

inequality ∣∣∣α− a

b

∣∣∣ < 1

Ab2

has only a finite number of solutions.
Suppose the contrary. Then there are infinitely many a and b such that

α =
a

b
+

c

b2
where |c| < 1

A
<

1√
5

Hence,
c

b
= αb− a ⇒ c

b
=

(
√

5− 1)b

2
− a

⇒

(
c

b
− b
√

5

2

)2

=

(
−b
2
− a

)2

⇒ c2

b2
− c
√

5 = a2 + ab− b2

The left hand side is numerically less than 1 when b is large, while the right
hand side is an integer. Hence

a2 + ab− b2 = 0 ⇒ (2a+ b)2 = 5b2

which is impossible. Thus proving second part of the theorem.
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All the rational approximation theorems discussed above can also be
proved using a sequence discovered by French mathematician Charles
Haros in 1806, which Cauchy called Farey Sequence (named after John
Farey).The sequence of all reduced fractions with denominators not ex-
ceeding n, listed in order of their size, is called Farey sequence of order
n. For proofs using this method refer section 6.2 of [5].

1.3 Badly Approximable Irrationals

An irrational number α is badly approximable if there is a constant , c(α) > 0
(which depends only on α) such that∣∣∣∣α− a

b

∣∣∣∣ > c(α)

b2
and 0 < c(α) <

1√
5

(from Theorem 1.2.3)

for every rational a
b . For example, since quadratic surds have periodic con-

tinued fractions, they are badly approximable.

Theorem 1.3.1. Given irrational number α is badly approximable if and
only if the partial quotients in its continued fraction expansion are bounded.

Proof. To study the inequality,∣∣∣∣α− a

b

∣∣∣∣ < c(α)

b2

where 0 < c(α) < 1√
5
< 1

2 , we may restrict ourselves to convergents by

Theorem 1.2.2. As seen in Lemma 1.2.1 we have:∣∣∣α− pn
qn

∣∣∣ =
1

qn(αn+1qn + qn−1)

now using (1.6), we get:∣∣∣α− pn
qn

∣∣∣ =
1

q2n(αn+1 + 1
γn

)
=

1

q2n

(
[an+1; an+2, . . .] + 1

[an;an−1,an−2,...,a1]

)

⇒
∣∣∣α− pn

qn

∣∣∣ =
1

q2n

(
an+1 + [0; an+2, an+3, . . .] + [0; an, an−1, . . . , a1]

)
Hence,

1

q2n(an+1 + 2)
≤
∣∣∣α− pn

qn

∣∣∣ ≤ 1

q2nan+1

The theorem follows.
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Chapter 2

Simultaneous Approximation

In previous chapter we studied approximation to single number, now we will
generalize our results for tuple of numbers.

2.1 Generalising Dirichlet’s Theorem

In this section we will extend the “Dirichlet’s Approximation Theorem”
(Theorem 1.2.1) discussed in previous chapter to a tuple of real numbers
containing irrational numbers.

Lemma 2.1.1 (Dirichlet, 1842). If αij with 1 ≤ i ≤ n and 1 ≤ j ≤ m,
are nm real numbers and k > 1 is an integer, then there exist integers
a1, a2, . . . , an,b1, b2, . . . , bm with

1 ≤ max (|b1|, . . . , |bm|) < k
n
m and |αi1b1 + . . .+ αimbm − ai| ≤

1

k

where 1 ≤ i ≤ n.

Proof. Consider points:(
{α11x1 + . . .+ α1mxm}, · · · · · · , {αn1x1 + . . .+ αnmxm}

)
where

{αi1x1 + . . .+ αimxm} = αi1x1 + . . .+ αimxm − bαi1x1 + . . .+ αimxmc

and each xj is an integer satisfying, 0 ≤ xj < k
n
m for 1 ≤ j ≤ m.

There are at least kn such points, and each of these points lie in the
closed unit cube, denoted by [0, 1]n or In, consisting of points (t1, t2, . . . , tn)
with 0 ≤ ti ≤ 1 for 1 ≤ i ≤ n. The point (1, 1, . . . , 1) also lies in In, so
together there are at least kn + 1 points under consideration.
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We divide In into kn pair wise disjoint subcubes1 of side length 1/k. By
pigeonhole principle, two of the points under consideration will be in the
same subcube. These points are, say:(

{α11x1 + . . .+ α1mxm}, · · · · · · , {αn1x1 + . . .+ αnmxm}
)
,(

{α11x
′
1 + . . .+ α1mx

′
m}, · · · · · · , {αn1x′1 + . . .+ αnmx

′
m}
)

Let, yi, y
′
i be integers for 1 ≤ i ≤ n, such that:

yi = bαi1x1 + . . .+ αimxmc and y′i = bαi1x′1 + . . .+ αimx
′
mc

then, we can re-write the points in consideration as:(
(α11x1 + . . .+ α1mxm − y1), · · · · · · , (αn1x1 + . . .+ αnmxm − yn)

)
,(

(α11x
′
1 + . . .+ α1mx

′
m − y′1), · · · · · · , (αn1x′1 + . . .+ αnmx

′
m − y′n)

)
Here, (x1, . . . xm) 6= (x′1, . . . , x

′
m). Put, bj = xj − x′j for 1 ≤ j ≤ m, and

ai = yi − y′i for 1 ≤ i ≤ n. Then:

|αi1b1 + . . .+ αimbm − ai| ≤
1

k

Theorem 2.1.1. Let αij with 1 ≤ i ≤ n and 1 ≤ j ≤ m, be nm real numbers
and k > 1 be an integer, if for some i in 1 ≤ i ≤ n, αi1, . . . , αim, 1 are
linearly independent over the rational numbers2 , then there exist infinitely
many coprime (m+ n)-tuples

(b1, b2, . . . bm, a1, a2, . . . , an)

with

b = max(|b1|, . . . , |bm|) > 0 and |αi1b1 + . . .+ αimbm − ai| ≤
1

b
m
n

where 1 ≤ i ≤ n.

Proof. The inequalities of Lemma 2.1.1 clearly imply this inequality.
Now, by linear independence, we always have

|αi1b1 + . . .+ αinbm − ai| 6= 0

Hence for fixed ai, b1, . . . , bm,

|αi1b1 + . . .+ αimbm − ai| ≤
1

k

can hold only for k ≤ k0. Hence as k → ∞, we obtain infinitely many
solutions.

1thus some of the cubes will contain some of their faces or edges and not others.
2we can even consider the stronger condition:

(
(α11b1 + . . .+α1mbm), · · · · · · , (αn1b1 +

. . .+ αnmbm)
)

is never an integer point when (b1, b2, . . . bm) is a non-zero integer point.
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2.2 Geometry of Numbers

Consider sets S that lie in real n−dimensional space3, Rn and let, x =
(x1, x2, . . . , xn) denote4 a point on Rn. Now we want to find conditions
which ensure that S contains a point whose coordinates are integers5, that
is, a point on Zn.

In this section we will restrict our attention to those sets S for which the
volume v(S) is defined by multiple Riemann Integrals (i.e. Jordan Volume)

Definition (Translation). If x ∈ Rn and S ⊆ Rn, then S + x is set of all
points s + x = (s1 + x1, · · · , sn + xn) with s ∈ S and is called translation of
S by x.

Lemma 2.2.1 (Blichfeldt, 1914). Let S be a set in Rn with volume v(S) > 1.
Then there exist two distinct points s′, s′′ ∈ S such that s′ − s′′ has integral
coordinates.

Proof. Consider only those points s ∈ S that lie in the sphere |s| ≤ R, with
R suitably large, we may suppose that S is bounded.

For each point k = (k1, k2, . . . , kn) with integral coordinates, we let U(k)
be unit n−dimensional cube consisting of those points x = (x1, x2, . . . , xn)
for which ki ≤ xi < ki + 1, for 1 ≤ i ≤ n. That is, bxic = ki for 1 ≤ i ≤ n.
Since each point x in the space Rn lies in exactly one such cube, these cubes
form a partitioning of Rn.

For each integral point k we let S(k) denote the part of S that lies in
U(k). In symbols

S(k) = S ∩ U(k)

Thus the subsets S(k) partition S, and consequently∑
k∈Zn

v(S(k)) = v(S) (2.1)

Let
T (k) = −k + S(k)

so that T (k) is a translate of S(k) and T (k) ⊆ U(0).
Since translation does not disturb the volume of a set, we have

v(T (k)) = v(S(k))

using this in (2.1) we get: ∑
k∈Zn

v(T (k)) = v(S)

3also called n−dimensional Euclidean space
4can also use x instead of x to denote tuple
5x = (a1, x2, . . . , xn) is said to an integer point if each xi for 1 ≤ i ≤ n is an integer.
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But, it is given that, v(S) > 1, so:∑
k∈Zn

v(T (k)) > 1

Since we assumed that S is a bounded set, only finitely many sets T (k) are
non-empty. Moreover, the sets T (k) lie in unit cube U(0) whose volume is 1.
Since the volumes of these sets sum more than 1, they all can’t be disjoint.
Thus there exist two distinct integral points, say k′ and k′′ such that T (k′)
and T (k′′) have a point x in common. Then:

x = −k′ + s′ and x = −k′′ + s′′

For some s′ ∈ S(k′) and s′′ ∈ S(k′′). Hence s′, s′′ ∈ S, and s′ − s′′ = k′ − k′′

is a non-zero integral point. This completes the proof.

Remark. For comments on this proof refer §6.4 oon pp. 322-324 of [5]. Also,
this lemma can be used to extend Lemma 2.1.1 for k > 1, k ∈ R (hence
removing restriction that k ∈ Z), see remark on pp. 32 of [8].

Definition (Dilation). If λ ∈ R and S ⊆ Rn, then λS denotes the set of all
points λs = (λs1, λs2, . . . , λsn) with s ∈ Sand is called dilation of S by the
factor λ.

Definition (Convex set). A set C in Rn is said to be convex if for any two
points x,y ∈ C, the line segment joining them is contained in C.

Definition (Symmetric set about 0). A set S in Rn that has the property
that s ∈ S if and only if −s ∈ S is said to be symmetric about 0.

Theorem 2.2.1 (Minkowski’s Convex Body Theorem, 1896). Let C be a
convex set in Rn, symmetric about 0, bounded and with volume v(C) > 2n,
then C contains a point whose coordinates are integers, not all of them 0.

Proof. Let,

S =
1

2
C

Then,

v(S) =
1

2n
v(C) > 1

By Lemma 2.2.1, there must exist points s′, s′′ ∈ S such that s′ 6= s′′ and
s′ − s′′ ∈ Zn

Note that 2s′, 2s′′ ∈ C. Since, C is symmetric about 0, it follows that
−2s′′ ∈ C. Since C is convex, the line segment joining 2s′ to −2s′′ lies in
C. In particular, Ccontains the midpoint of this segment, namely the point
s′ − s′′. This is the point desired, as it has integral coordinates, not all
zero.

Remark. For another proof of this theorem by Mordell refer pp. 33 of [8].
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2.3 Improving Approximation Constant

Suppose that x = (x1, x2, . . . , xn) ∈ Rn, then we put:

JxK = max(|x1|, |x2|, . . . , |xn|)

Lemma 2.3.1. Suppose that m ≥ 1, n ≥ 1 are integers and that t > 0 is a
real number. Let K(t) be the set of points (x,y) = (x1, . . . , xm, y1, . . . , yn) ∈
Rm+n satisfying:

JxK
tn

+ tmJyK ≤ 1

Then K(t) is compact, symmetric (with respect to 0) and convex, with volume

v(K(t)) = 2m+n m!n!

(m+ n)!

Proof. Consider the transformation given by:

xi 7→ tnxi (1 ≤ i ≤ m)

yj 7→
yj
tm

(1 ≤ j ≤ n)

This transformation is linear and has determinant (tn)m(t−m)n = 1. More-
over, this transformation maps K(1) onto K(t). Since a linear transformation
preserves compactness, symmetry and convexity, it is enough to that K(t)
has these properties when t = 1.

Obviously, K(1) = {(x,y) : JxK + JyK ≤ 1} is compact (i.e. closed and
bounded) and symmetric (with respect to 0). To prove convexity, suppose
that (x,y) and (x′,y′) belong to K(1) and two non-negative real numbers
λ, µ satisfy λ+µ = 1. Then λ(x,y)+µ(x′,y′) = (λx+µx′, λy+µy′) belongs
to K(1) since:

Jλx + µx′K + Jλy + µy′K ≤ λ(JxK + JyK) + µ(Jx′K + Jy′K) ≤ λ+ µ = 1

It remains to compute v(K(t)). Let, J (t) denote the set of points (x,y) in
K(t) for which xi ≥ 0 (1 ≤ i ≤ m) , yj ≥ 0 (1 ≤ j ≤ n) and x1 = JxK.
Thus, J (t) ⊆ K(t), with 0 ≤ x1 ≤ 1, and for each fixed x1{

0 ≤ xi ≤ x1 for 2 ≤ i ≤ m
0 ≤ yj ≤ 1− x1 for 1 ≤ j ≤ n

It follows that:
v(K(t)) = m2m+n · v(J (t))

⇒ v(K(t)) = m2m+n

∫ 1

0
xm−11 (1− x1)ndx1

15



observe that we have Beta function in right hand side, thus

⇒ v(K(t)) = m2m+nB(m,n+ 1)

⇒ v(K(t)) = m2m+nΓ(m)Γ(n+ 1)

Γ(m+ n+ 1)

Since, m,n ∈ Z we get:

⇒ v(K(t)) = m2m+n (m− 1)!n!

(m+ n)!
= 2m+n m!n!

(m+ n)!

Theorem 2.3.1. Consider linear forms6

Li(x) = αi1x1 + . . .+ αimxm (1 ≤ i ≤ n)

where x = (x1, . . . , xm). Put

L(x) =
(
L1(x), L2(x), . . . , Ln(x)

)
Then there is an integer point (x,y) = (x1, x2, . . . , xm, y1, y2, . . . , yn) ∈
Rm+n with x 6= 0 such that

JL(x)− yKn < c(m,n)
1

JxKm

where,

c(m,n) =

(
m+ n

m

)(
m

m+ n

)m( n

m+ n

)n
=

mmnn

(m+ n)m+n
· (m+ n)!

m!n!
< 1

Furthermore, suppose that whenever x 6= 0 is an integer point in Rm then
L(x) is not an integer point in Rn. Then there exist infinitely many integer
points (x,y) with x 6= 0 and with coprime components satisfying the above
inequality.

Proof. As in Lemma 2.3.1, we have a set K(t) and let
•
K(t) be the set of

points (x,y) = (x1, . . . , xm, y1, . . . , yn) ∈ Rm+n satisfying

JxK
tn

+ tmJL(x)− yK ≤ C where C = 2 ·
(
v(K(t))

)−1/(m+n)
(2.2)

The linear transformation defined by:

xi 7→ Cxi (1 ≤ i ≤ m)

6Given a vector, x, we construct a scalar function Li(x), such that it satisfies that
vector action, i.e. Li(x + y) = Li(x) + Li(y), and Li(λx) = λLi(x), where λ is a scalar.
Since, Li is a scalar, it is a valid functional. Now, writing Li when all but one of the xk
is zero for 1 ≤ k ≤ m and taking sum of them, we will get value of original vector.
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yj 7→ C · (Lj(x)− yi) (1 ≤ j ≤ n)

maps K(t) onto
•
K(t) and has determinant (−1)nCm+n, so that

v(
•
K(t)) = Cm+n · v(K(t)) = 2m+n

Since, compactness, symmetry and convexity are preserved under linear

transformations,
•
K(t) has these three properties in view of Lemma 2.3.1. By,

Theorem 2.2.1, it follows that
•
K(t) contains an integer point (x,y) 6= (0,0).

For a given integer point (x,y), equality in (2.2) can hold at most finitely
many values of t. Since the number of integer points in Rm+n is countable,
it follows that the strict inequality in (2.2) will hold for all except countably
many t. In the remainder of the proof, we consider only those t which satisfy
strict inequality in (2.2).

As per Arithmetic Mean-Geometric Mean Inequality, if z1, z2, . . . , z` are
` non-negative numbers, then

(z1z2 · · · , z`)1/` ≤
z1 + z2 + · · ·+ z`

`

We apply this with
` = m+ n

z1 = z2 = . . . = zm =
JxK
mtn

zm+1 = zm+2 = . . . = zm+n =
tmJL(x)− yK

n

to obtain,(
JxK
mtn

)m
·
(
tmJL(x)− yK

n

)n
≤
(
t−nJxK + tmJL(x)− yK

`

)`
Since we have considered only those values of t for which there is strict
inequality in (2.2), we get:(

JxK
mtn

)m
·
(
tmJL(x)− yK

n

)n
<

(
C

`

)`
Which yields,

JxKm · JL(x)− yKn <
mmnn

(m+ n)m+n
Cm+n =

mmnn

(m+ n)m+n
2m+n

(
v(K(t))

)−1
From Lemma 2.3.1, we substitute value of v(K(t)) to get:

JxKm · JL(x)− yKn <
mmnn

(m+ n)m+n

m!n!

(m+ n)!
= c(m,n)
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This inequality is equivalent to the one given in statement of theorem, pro-
vided JxK 6= 0.

If we choose t to satisfy strict inequality in (2.2) and t ≥ C1/m, then
JxK 6= 0, since otherwise, (2.2) implies that, JL(x) − yK = JyK < Ct−m ≤ 1
leading to y = 0, a contradiction. This establishes first assertion of the
theorem.

Now suppose that, whenever x 6= 0 is an integer point in Rm, L(x) is not
an integer point in Rn. Further suppose that t satisfies the strict inequality
in (2.2) and t ≥ C1/m. Since, JxK 6= 0 by preceding paragraph, hence L 6= 0.

It follows that for fixed (x,y) the strict inequality in (2.2) can hold
only for t ≤ t0. Hence as t → ∞, there will be infinitely many distinct
integer points x,y with coprime components and with x 6= 0 satisfying the
inequality given in theorem.

Inequality of Theorem 2.1.1 can be restated as:

JL(x)− yKn <
1

JxKm

Hence, Theorem 2.3.1 is an improvement over Theorem 2.1.1.
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Chapter 3

Rational Approximation to
Algebraic Number

Major part of my exposition follows that of Prof. R. Thangadurai [9]

An algebraic number α is one which satisfies the equation

f(α) = 0, f(x) = anx
n + an−1x

n−1 + . . .+ a0

where an, . . . , a0 are rational numbers. On multiplying f(x) by a suitable
integer we may suppose that an, . . . , a0 are integers and, without loss of
generality, that an 6= 0.

3.1 Liouville’s Theorem

Liouville first remarked that, an irrational algebraic number can’t be too
closely approximated by rational numbers.

Definition (Algebraic Number of degree d). A real number is called an
algebraic number of degree d if this number is a root of an algebraic equation
of degree d with integer coefficients but is not root of any other algebraic
equation of lower degree with integer coefficients.

Thus, rational numbers are algebraic numbers of degree 1.

Theorem 3.1.1 (Liouville, 1844). Suppose α is a real algebraic number of
degree d. Then there is a constant c(α) > 0 such that∣∣∣α− a

b

∣∣∣ > c(α)

bd

for every rational1 a/b different from α.

1In considering inequalities of this type here and elsewhere, we implicitly assume that
b > 0
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Proof. Let p(x) be the defining polynomial of α, i.e., the polynomial of
degree d with root α which has coprime integer coefficients and a positive
leading coefficient.

According to Taylor’s formula,

∣∣∣p(a
b

) ∣∣∣ =
∣∣∣ d∑
k=1

(a
b
− α

)k 1

k!
pk(α)

∣∣∣ ≤ 1

c(α)

∣∣∣a
b
− α

∣∣∣ (3.1)

if |a/b− α| ≤ 1
Unless d = 1 and a

b = α, we have p(a/b) 6= 0, from where we get
|p(a/b)| ≥ 1/bd. Combining this with (3.1) we obtain the inequality in
theorem if |a/b− α| ≤ 1. The theorem is obvious if |a/b− α| > 1.

Remark. Liouville used this theorem to construct transcendental numbers.
See pp. 114 of [8] for examples.

Corollary 3.1.1. Let α be an algebraic real number with degree, d ≥ 2. For
any k > d we have ∣∣∣α− a

b

∣∣∣ < 1

bk

has finitely many solutions in rational numbers.

Proof. On the contrary, suppose that above inequality has infinitely many
solutions in rational numbers. Hence, b is unbounded and satisfy given
inequality.

Let {a1
b1
,
a2
b2
, . . . ,

an
bn
, . . .

}
be a set of solutions of ∣∣∣α− ai

bi

∣∣∣ < 1

bki

Then, bi →∞ as i→∞. By Theorem 3.1 we get:

c(α)

bdi
≤
∣∣∣α− ai

bi

∣∣∣ < 1

bki

Thus,

c(α) ≤ bdi
bki

=
1

bk−di

Hence, c(α) → ∞ as i → ∞. But this contradicts Theorem 3.1. Hence
completing the proof.
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3.2 Statement of Roth’s Theorem

Motivated by previous section we give following definition:

Definition (Approximable to order d). Let α ∈ R\{0} be a real number.
We say α is approximable to degree d (and to no higher) if following two
conditions hold:

1. |α− a/b| < 1/bd has infinitely many solutions in rational numbers.

2. For any ε > 0, the inequality |α−a/b| < 1/bd+ε has only finitely many
rational solutions.

Theorem 3.2.1 (Roth2, 1955). Let ε > 0 be given positive real number and
α be an algebraic number of degree d ≥ 1. Then the inequality∣∣∣α− a

b

∣∣∣ < 1

b2+ε

has finitely many solutions in rational numbers.

Thus, Roth’s theorem3 implies that every algebraic real number is ap-
proximable to order 2 and to no higher. This had been conjectured by Siegel
in 1921. Thue, Siegel, and Dyson had successively improved Liouville’s orig-
inal exponent d, until Roth proved Siegel’s conjectured exponent in 1955.
Now we will prove some corollaries which will guide us towards proof of main
theorem.

Corollary 3.2.1. Let ε > 0 be a given real number and α be an algebraic
number of degree d ≥ 2. Then there exist a constant c(α) > 0 (depends only
on α) such that for every rational number a/b we have∣∣∣α− a

b

∣∣∣ ≥ c(α)

b2+ε

Proof. Since α in algebraic number of degree d ≥ 2, by Roth’s Theorem, we
have ∣∣∣α− x

y

∣∣∣ < 1

y2+ε

2We will follow Cassels’s rearrangement of Roth’s proof, for proof outline see: Schmidt,
W. M., ‘Approximation to Algebraic Numbers’, L’Enseignement Mathématique, 17 (1971),
187-253, doi:10.5169/seals-44578

3Personal anecdote of John Cosgrave, jbcosgrave@gmail.com. “When I was a student
in London, I once asked Roth (in his office at Imperial College) what were the circum-
stances in which he proved his famous 1955 result. Roth told me that when he worked
with Davenport in University College London in the early 50’s, Davenport had a practice
of inviting colleagues to read up on some difficult piece of work, and then explain it in a
seminar talk. Davenport asked him to read the Thue-Siegel result. He read it, understood
it, explained it to everyone, and then (after all that effort) decided to give himself one year
(Roth’s standard practice) to solve Siegel’s conjectured improvement. His year was almost
up, he was just about to give up, when . . . ”
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has finitely many solutions in rationals. Let the solutions be x1
y1
, x2y2 , . . . ,

xM
yM

.
Now let,

c′(α) = min
{∣∣∣α− xi

yi

∣∣∣ : i = 1, 2, . . . ,M
}

Then clearly c′(α) > 0. Then by Liouville’s Theorem, for any rational
number xi

yi
where i = 1, 2, . . . ,M , we have∣∣∣α− xi

yi

∣∣∣ ≥ c′(α) ≥ c′(α)

y2+εi

(3.2)

Also by Roth’s Theorem, for any rational number, a
b 6=

xi
yi

where i =
1, 2, . . . ,M we have ∣∣∣α− a

b

∣∣∣ ≥ 1

b2+ε
(3.3)

Let, c(α) = min{1, c′(α)} > 0 , then from (3.2) and (3.3) we get∣∣∣α− a

b

∣∣∣ ≥ c(α)

b2+ε
∀ a

b
∈ Q

Corollary 3.2.2. Let α be a non-zero real number, if the inequality∣∣∣α− a

b

∣∣∣ < 1

b2+ε

has infinitely many solutions in rational numbers for some ε > 0, then α is
a transcendental number.

Proof. As per our assumption, there are infinitely many rational numbers
such that ∣∣∣α− a

b

∣∣∣ < 1

b2+ε

we can choose rational solutions{a1
b1
,
a2
b2
, . . . ,

an
bn
, . . .

}
such that b1 < b2 < . . ..

Suppose α is an algebraic number of degree d. Since given inequality has
infinitely many solutions, we conclude that α /∈ Q. Therefore the degree of
α is d ≥ 2. By Corollary 3.2.1, we get:

c(α)

b
2+ε/2
i

≤
∣∣∣α− ai

bi

∣∣∣ ≤ 1

b2+εi

Hence,

c(α) ≤ 1

b
ε/2
i

for i = 1, 2, 3, . . .

Since, bi → ∞ as i → ∞, we get c(α) → 0. It contradicts Corollary
3.2.1. Hence, our assumption of α being algebraic was wrong, and thus α is
transcendental.
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Definition (Algebraic integer). A complex number that is a root of some
monic polynomial (a polynomial whose leading coefficient is 1) with integer
coefficients is called algebraic integer.

Corollary 3.2.3. It is enough to prove Roth’s Theorem for algebraic inte-
gers.

Proof. Suppose Theorem 3.2.1 (Roth’s Theorem) is true for algebraic inte-
gers. Then our hypothesis is:

For any given ε > 0 and α be an algebraic integer of degree d, then we
have ∣∣∣α− x

y

∣∣∣ < 1

y2+ε

has finitely many rational solutions.
Now we will prove the result for any algebraic number.
Let α be an algebraic number of degree d. If, α ∈ Q, then clearly the

result is true (d = 1 for rationals). So, we assume that for d ≥ 2 the result
is not true.

Thus, there exist a δ > 0 such that∣∣∣α− x

y

∣∣∣ < 1

y2+δ
(3.4)

has infinitely many rational solutions. Let the solutions be{x1
y1
,
x2
y2
, . . . ,

xn
yn
, . . .

}
such that y1 < y2 < . . ., so that yi →∞ as i→∞. Since α is an algebraic
number, there exist p0 ∈ Z\{0} such that α = β

p0
where β is an algebraic

integer. Then (3.4) becomes:∣∣∣ β
p0
− xi
yi

∣∣∣ < 1

y2+δi

for i = 1, 2, 3, . . .

⇔
∣∣∣β − p0xi

yi

∣∣∣ < p0

y2+δi

for i = 1, 2, 3, . . .

⇔
∣∣∣β − ai

bi

∣∣∣ < p0

b2+δi

for i = 1, 2, 3, . . .

where p0xi = ai and yi = bi. Now, we can write, δ = δ1+δ2 such that δ1 > 0
and δ2 > 0.

We apply hypothesis for α = β and ε = δ1 > 0.
Since, bi →∞ as i→∞, we get, bδ2i →∞ as i→∞. Therefore, p0

b
δ2
i

< 1

for all i ≥ N0 ∈ N. Thus we get:∣∣∣β − ai
bi

∣∣∣ < 1

b2+δ1i

× p0

bδ2i
<

1

b2+δ1i

for all i ≥ N0
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This leads to infinitely many solutions for inequality, thus contradicting our
hypothesis. Hence our assumption was wrong and the result is true for all
values of d.

3.3 Combinatorial Lemmas

Lemma 3.3.1. Let n ≥ 1 and r ≥ 0 be integers. If N(n, r) be the number of
n−tuples (x1, x2, . . . , xn) of non-negative integers such that x1 + x2 + . . .+
xn = r, then

N(n, r) =

(
r + n− 1

r

)
Proof. Symbolically,

N(n, r) := #{(x1, x2, . . . , xn) ∈ Zn≥0 : x1 + x2 + . . .+ xn = r} (3.5)

When r = 0 and n ≥ 1, the result is true because
(
n−1
0

)
= 1 and the solution

in non-negative integers such that s1 + x2 + . . .+ xr = 0 is (0, 0, . . . , 0)
When r ≥ 0 and n = 1, the result is true because

(
r+1−1
r

)
= 1 and x1 = r

is the only solution.
Now suppose that r ≥ 1 and n ≥ 2 are given. Assume that for all pairs

(n′, r′) with n′ ≤ n, r′ ≤ r and (n′, r′) 6= (n, r),

N(n′, r′) =

(
r′ + n′ − 1

r′

)
Now we will prove (by induction) above formula for pair (n, r). Now, since
0 ≤ x1 ≤ r, we can re-write (3.5) as:

N(n, r) := #{(x2, . . . , xn) ∈ Zn−1≥0 : x2 + . . .+ xn ≤ r}

Let

N∗(n, r) := #{(x1, x2, . . . , xn) ∈ Zn≥0 : x1 + x2 + . . .+ xn ≤ r}

Then

N(n, r) = N∗(n− 1, r)

= N∗(n− 1, r − 1) +N(n− 1, r)

= N(n, r − 1) +N(n− 1, r)

=

(
n+ r − 2

r − 1

)
+

(
n+ r − 2

r

)
=

(
n+ r − 1

r

)
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Lemma 3.3.2. Let n ≥ 1 and r ≥ 1 be given integers. For any integer
0 ≤ c ≤ r, we define

F (c) = #{(x2, x3, . . . , xn) ∈ Zn−1≥0 : x2 + x3 + . . .+ xn = r − c}

Then as per notations in proof of Lemma 3.3.1,

1. N∗(n− 1, r) =
r∑
c=0

F (c) = N(n, r)

2.
r∑
c=0

cF (c) =
r

n

r∑
c=0

F (c) =
r

n
N∗(n− 1, r)

Proof. 1. As per definition of F (c) we get:

r∑
c=0

F (c) =

r∑
c=0

#{(x2, . . . , xn) ∈ Zn−1≥0 : x2 + . . .+ xn = r − c}

= #{(x2, . . . , xn) ∈ Zn−1≥0 : x2 + . . .+ xn ≤ r}
= N∗(n− 1, r)

= N(n, r)

2. We can re-write F (c) as:

F (c) =
∑

x2,...,xn∈Z≥0
x2+...+xn=r−c

1 =
∑

x2,...,xn∈Z≥0
c+x2+...+xn=r

1

Let c be any integer where 0 ≤ c ≤ r. Then

cF (c) =
∑

x2,...,xn∈Z≥0
c+x2+...+xn=r

c

Now, do summation over c both sides to get:

r∑
c=0

cF (c) =
r∑
c=0

∑
x2,...,xn∈Z≥0

c+x2+...+xn=r

c

=
∑

c,x2,...,xn∈Z≥0
c+x2+...+xn=r

c

But, note that∑
c,x2,...,xn∈Z≥0
c+x2+...+xn=r

c =
∑

c,x2,...,xn∈Z≥0
c+x2+...+xn=r

xi for i = 2, . . . , n
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Therefore,

r∑
c=0

cF (c) =
1

n

{ ∑
c,x2,...,xn∈Z≥0
c+x2+...+xn=r

c+ · · ·+
∑

c,x2,...,xn∈Z≥0
c+x2+...+xn=r

xn

}

=
1

n

∑
c,x2,...,xn∈Z≥0
c+x2+...+xn=r

(c+ x2 + . . .+ xn)

=
1

n

∑
c,x2,...,xn∈Z≥0
c+x2+...+xn=r

r

=
r

n

∑
c,x2,...,xn∈Z≥0
c+x2+...+xn=r

1

=
r

n

∑
x2,...,xn∈Z≥0

x2+...+xn≤r−c

1

=
r

n
N∗(n− 1, r) (from definition of N∗(n, r))

=
r

n

r∑
c=0

F (c) (from part 1. of this lemma)

Lemma 3.3.3. For any x ∈ R such that |x| ≤ 1, we have 1 + x ≤ ex ≤
1 + x+ x2.

Proof. Let x ∈ R such that |x| ≤ 1 .
Firstly we will prove the lower bound.
If 0 ≤ x ≤ 1, then

1 + x ≤ ex = 1 + x+
x2

2
+ . . .+

xn

n!
+ . . .

since xk/k! is non-negative for all k = 1, 2, . . .
If −1 ≤ x < 0, then

x2n

(2n)!
+

x2n+1

(2n+ 1)!
≥ 0

⇔ x2n

(2n)!
≥ − x2n+1

(2n+ 1)!

⇔ 2n+ 1 ≥ −x

⇔ 2n+ 1 ≥ 0
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Hence, the above inequality is true for all n ≥ 1 and −1 ≤ x < 0. Thus

ex = 1 + x+

(
x2

2
+
x3

3!

)
+

(
x4

4!
+
x5

5!

)
+ . . . ≥ 1 + x

Now, we will prove the upper bound. Since we have to prove that ex ≤
1 + x+ x2, it is equivalent to proving

1 + x+
x2

2
+ . . .+

xn

n!
+ . . . ≤ 1 + x+ x2 for − 1 ≤ x ≤ 1

⇔ x3

3!
+
x4

4!
+ . . . ≤ x2

2
for − 1 ≤ x ≤ 1

Note that n! ≥ 2n−1 for all n ≥ 3 (can be proved by induction). Therefore,

x3

3!
+
x4

4!
+ . . . ≤ x3

22
+
x4

23
+ . . .

=
x3

4

(
1 +

(x
2

)
+ . . .

)
=

x3

4

(
1

1− x
2

)
is valid since |x| < 1

=
x3

2(2− x)

Hence it is enough to prove,

x3

2(2− x)
≤ x2

2
for − 1 ≤ x ≤ 1

⇔ x2(x− 1) ≤ 0 for − 1 ≤ x ≤ 1

Leading to x ≤ 1, hence above inequality is true for |x| < 1. Thus completing
the proof.

Lemma 3.3.4 (Mahler-Reuter, 19614). Let 0 < ε < 1 be given and n ≥ 1;
r1, r2, . . . , rn > 0 be integers. Then

#

{
(x1, . . . , xn) ∈ Zn≥0 :

0 ≤ xk ≤ rk∀k = 1, . . . , n∣∣∣∑n
k=1

xk
rk
− n

2

∣∣∣ ≥ εn
}
≤ 2

n∏
k=1

(rk+1)e−ε
2n/4

Proof. In order to prove this lemma we will prove two claims.
Claim 1:Let m ≥ 2 be a given integer. Then

#

 (xk1, . . . , xkm)
in Zm≥0

:

k = 1, 2, . . . , n
xk1 + . . .+ xkm = rk∣∣∣∑n

k=1
xk1
rk
− n

m

∣∣∣ ≥ εn
 ≤ 2

n∏
k=1

(
rk +m− 1

rk

)
e
−ε2n

4

4A slightly weaker version was proved by Schneider in 1936. Roth used a simpler
version of Schneider’s lemma by Davenport (Lemma 8 in [7])
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If we prove this claim, then this lemma follows by taking m = 2. Since, for
m = 2, we get

#

(xk1, xk2) ∈ Z2
≥0 :

k = 1, 2, . . . , n
xk1 + xk2 = rk∣∣∣∑n

k=1
xk1
rk
− n

2

∣∣∣ ≥ εn
 ≤ 2

n∏
k=1

(rk + 1)e
−ε2n

4 (3.6)

Since, xk1 +xk2 = rk and xki ≥ 0 are integers, we can replace this condition
by

0 ≤ xk1 ≤ rk ⇔
xk1 + xk2 = rk as
xk2 runs through 0 to rk
and xk1 = rk − xk2

Therefore we can rewrite (3.6) as:

#

{
(x1, . . . , xn) ∈ Zn≥0 :

0 ≤ xk ≤ rk∀k = 1, . . . , n∣∣∣∑n
k=1

xk
rk
− n

2

∣∣∣ ≥ εn
}
≤ 2

n∏
k=1

(rk+1)e−ε
2n/4

Thus this lemma follows from Claim 1.
From Claim 1 we shall further deduce the following.
For any tuple (x1, . . . , xn) ∈ Zn≥0 we have∣∣∣∣x1r1 + . . .+

xn
rn
− n

m

∣∣∣∣ ≥ εn
⇔ x1

r1
+ . . .+

xn
rn
− n

m
≥ εn and

x1
r1

+ . . .+
xn
rn
− n

m
≤ −εn

⇔ x1
r1

+ . . .+
xn
rn
≥ n

(
1

m
+ ε

)
and

x1
r1

+ . . .+
xn
rn
≤ n

(
1

m
− ε
)

We want to estimate the cardinality of set, M , given by

M = #

(xk1, . . . , xkm) ∈ Zm≥0 :

k = 1, 2, . . . , n
xk1 + . . .+ xkm = rk∣∣∣∑n

k=1
xk1
rk
− n

m

∣∣∣ ≥ εn


But, we can write M = M+ +M− where

M+ = #

(xk1, . . . , xkm) ∈ Zm≥0 :

k = 1, 2, . . . , n
xk1 + . . .+ xkm = rk∑n

k=1
xk1
rk
≥ n

(
1
m + ε

)


and

M− = #

(xk1, . . . , xkm) ∈ Zm≥0 :

k = 1, 2, . . . , n
xk1 + . . .+ xkm = rk∑n

k=1
xk1
rk
≤ n

(
1
m − ε

)

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In order to prove Claim 1, we need to prove

M ≤ 2
n∏
k=1

(
rk +m− 1

rk

)
e−ε

2n/4

Since, M = M+ +M−, it is enough to prove

M+,M− ≤
n∏
k=1

(
rk +m− 1

rk

)
e−ε

2n/4 (3.7)

Claim 2: For any integer k with 1 ≤ k ≤ n and any integer ck with 0 ≤ ck ≤
rk, we define:

Fk(ck) = #{(xk2, . . . , xkm) ∈ Zm−1≥0 : xk2 + . . .+ xkn = rk − ck}

Then we have,

M+ =
∑

c1,...,cn
0≤ck≤rk∑n

k=1
ck
rk
− n
m
≥εn

F1(c1) · · ·Fn(cn)

and
M− =

∑
c1,...,cn
0≤ck≤rk∑n

k=1
ck
rk
− n
m
≤−εn

F1(c1) · · ·Fn(cn)

Note that: ∑
c1,...,cn
0≤ck≤rk

F1(c1) · · ·Fn(cn) =
n∏
k=1

 rk∑
ck=0

Fk(ck)


By Lemma 3.3.2 and Lemma 3.3.1 we get:

n∏
k=1

 rk∑
ck=0

Fk(ck)

 =
n∏
k=1

N(m, rk)

=

n∏
k=1

(
rk +m− 1

rk

)
Therefore, Claim 2 follows from the definition of M+, M− and Fk(ck) in the
above equality.
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Now we will prove (3.7) for M+ (the proof for M− is similar). Consider

M+e
ε2n/2 = M+ exp

(
ε2n

2

)
= M+ exp

(ε
2
εn
)

=

n∏
k=1

 rk∑
ck=0

Fk(ck)


∑n
k=1

ck
rk
− n
m
≥εn

exp
(ε

2
εn
)

≤
n∏
k=1

 rk∑
ck=0

Fk(ck)


∑n
k=1

ck
rk
− n
m
≥εn

exp

(
ε

2

(
c1
r1

+ . . .+
cn
rn
− n

m

))

≤
n∏
k=1

 rk∑
ck=0

Fk(ck)

 exp

(
ε

2

(
c1
r1

+ . . .+
cn
rn
− n

m

))

=

n∏
k=1

 rk∑
ck=0

Fk(ck)

 exp

(
ε

2

n∑
k=1

(
ck
rk
− 1

m

))

=

n∏
k=1

 rk∑
ck=0

Fk(ck)

( n∏
k=1

exp

(
ε

2

(
ck
rk
− 1

m

)))

=

n∏
k=1

 rk∑
ck=0

Fk(ck) exp

(
ε

2

(
ck
rk
− 1

m

))
Similarly we will get:

M−e
ε2n/2 ≤

n∏
k=1

 rk∑
ck=0

Fk(ck) exp

(
−ε

2

(
ck
rk
− 1

m

))
Put y = ± ε

2

(
ck
rk
− 1

m

)
Since, 0 ≤ ck ≤ rk, we see 0 ≤ ck

rk
≤ 1 Therefore,

−1

m
≤ ck
rk
− 1

m
≤ 1− 1

m
⇔ |y| ≤ 1 (3.8)

By Lemma 3.3.3, we set 1 + y ≤ ey ≤ 1 + y + y2. Therefore,

exp

(
ε

2

(
ck
rk
− 1

m

))
≤ 1 +

ε

2

(
ck
rk
− 1

m

)
+
ε2

4

(
ck
rk
− 1

m

)2

(3.9)
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Interestingly,

rk∑
ck=0

Fk(ck)

(
ε

2

(
ck
rk
− 1

m

))
=

rk∑
ck=0

Fk(ck)

(
ε

2rk

(
ck −

rk
m

))

=
ε

2rk

 rk∑
ck=0

ckFk(ck)−
rk
m

rk∑
ck=0

Fk(ck)


=

ε

2rk
× 0 = 0 (from Lemma 3.3.2)

Hence,
rk∑
ck=0

Fk(ck)

(
ε

2

(
ck
rk
− 1

m

))
= 0 (3.10)

Now, using (3.8), (3.9) and (3.10), we get

rk∑
ck=0

Fk(ck)e
ε
2

(
ck
rk
− 1
m

)
≤

rk∑
ck=0

Fk(ck)

[
1 +

ε

2

(
ck
rk
− 1

m

)
+
ε2

4

(
ck
rk
− 1

m

)2
]

≤
rk∑
ck=0

Fk(ck)

[
1 +

ε

2

(
ck
rk
− 1

m

)
+
ε2

4

]

=

rk∑
ck=0

Fk(ck)

(
1 +

ε2

4

)
Thus,

M+e
ε2n/2 ≤

n∏
k=1

 rk∑
ck=0

Fk(ck)

(
1 +

ε2

4

)
=

n∏
k=1

(
rk +m− 1

rk

)(
1 +

ε2

4

)n
(as in proof of Claim 2)

≤
n∏
k=1

(
rk +m− 1

rk

)(
e
ε2

4

)n
(from Lemma 3.3.3)

Thus, we get:

M+ ≤
n∏
k=1

(
rk +m− 1

rk

)
e−

ε2n
4

Similarly we will get for M−, hence completing the proof.
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3.4 Auxiliary Polynomial in m-variables

In this section, we will consider polynomials in m variables with rational
integer coefficients. Indeed we can write

P (x1, . . . , xm) =

r1∑
j1=0

. . .

rm∑
jm=0

q(j1, . . . , jm)xj11 . . . xjmm

where, all except finitely many of the coefficients, q(j1, . . . , jm) ∈ Z , are
zero.

A curious question we can ask here is: Why do we want to study poly-
nomial of several variable when we want to approximate just one algebraic
integer5?

We saw that Liouville used polynomial in one variable to prove his re-
sult. But a Norwegian mathematician Axel Thue accomplished more than
Liouville using a polynomial of one variable6. Thue’s progress (obtaining
an approximation exponent of d/2 + 1 + ε) can all be formulated in terms
of functions of one variable. It can also be thought of as using an auxiliary
polynomial f(X,Y ) ∈ Z[X,Y ] in two variables which is linear in Y . Thus,
it was observed that Lioville’s Theorem can not be improved, in general,
working with a polynomial of one variable. Therefore, Roth’s theorem re-
quires an auxiliary polynomial in an arbitrary number of variables but the
logical steps remain the same as that of Liouville’s Theorem.

We will conclude this section with the theorem regarding the index of
auxiliary polynomial in m−variables at rational points near the algebraic-
integer point (a m−tuple).

3.4.1 Partial derivative of a polynomial

As per our earlier notations, we will write i to represent a m− tuple,
(i1, i2, . . . , im). For i ∈ Zm≥0, we define

Pi(x1, . . . , xm) =
1

i1!i2! . . . im!

∂i1+...+im

∂xi11 · · · ∂x
im
m

P (x1, . . . , xm)

Lemma 3.4.1. Let P (x1, . . . , xm) ∈ Z[x1, . . . , xm] be a polynomial. For any
i = (i1, . . . , im) ∈ Zm≥0 we have:

Pi(x1, . . . , xm) ∈ Z[x1, . . . , xm]

5Better answer to this question is available when we study transcendental numbers, see
Burger, E. B. and Tubbs, R., Making Transcendence Transparent (Springer, 2004), 32-34.

6For details see §1 of [4], http://www.mast.queensu.ca/~mikeroth/proceedings/

Nakamaye-Roth-Method.pdf
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Proof. We just need to manipulate definition:

Pi(x1, . . . , xm) =
1

i1!i2! . . . im!

∂i1+...+im

∂xi11 · · · ∂x
im
m

P (x1, . . . , xm)

=
1

i1!i2! . . . im!

∑
j1,...,jm
0≤jk≤rk

q(j1, . . . , jm)
∂i1xj11
∂xi11

· · ·
∂imxjm,

∂ximm

=
∑

j1,...,jm
0≤jk≤rk

q(j1, . . . , jm)
m∏
`=1

j` · · · (j` − (i` − 1))

i`
xj`−i``

=
∑

j1,...,jm
0≤jk≤rk

q(j1, . . . , jm)

m∏
`=1

(
j`
i`

)
xj`−i`` ∈ Z[x1, . . . , xm]

(Also, as in combinatorics,
(
j`
i`

)
= 0 of j` < i`.)

3.4.2 Height of a polynomial and Siegel’s Lemma

For any polynomial P (x1, . . . , xm) ∈ Z[x1, . . . , xm], we define the height of
the polynomial P (x1, . . . , xm), denoted by JP K as

JP K = max
j1,...,jk
0≤jk≤rk

|q(j1, . . . , jm)|

and
P (x1, . . . , xm) =

∑
j1,...,jm
0≤jk≤rk

q(j1, . . . , jm)xj11 . . . xjmm

Note that when m = 1, JP K is the maximum of the absolute value of its
coefficients which matches with usual definition of height of P (see Section
2.3)

Lemma 3.4.2. Let P (x1, . . . , xm) ∈ Z[x1, . . . , xm] be a polynomial. For any
i = (i1, . . . , im) ∈ Zm≥0 we have:

JPiK ≤ 2r1+r2+...+rmJP K

Proof. From Lemma 3.4.1 we know that:

Pi(x1, . . . , xm) =
∑

j1,...,jm
0≤jk≤rk

q(j1, . . . , jm)
m∏
`=1

(
j`
i`

)
xj`−i``

=
∑

j1,...,jm
0≤jk≤rk

A(j1, . . . , jm)xj1−i11 · · ·xjm−imm
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where

A(j1, . . . , jm) = q(j1, . . . , jm)

m∏
`=1

(
j`
i`

)
Therefore,

|A(j1, . . . , jm)| = |q(j1, . . . , jm)|
(
j1
i1

)
· · ·
(
jm
im

)
≤ |q(j1, . . . , jm)| 2j1 · · · 2jm

≤ |q(j1, . . . , jm)| 2r1 · · · 2rm (as jk ≤ rk∀k)

= |q(j1, . . . , jm)| 2r1+...+rm

Thus,

JPiK = max
j1,...,jk
0≤jk≤rk

|A(j1, . . . , jm)|

≤ 2r1+...+rm max
j1,...,jk
0≤jk≤rk

|q(j1, . . . , jm)|

= 2r1+...+rmJP K

Lemma 3.4.3 (Siegel). Let

Lj(z) =
N∑
k=1

ajkzk (1 ≤ j ≤M)

be M linear forms with rational integer coefficients. Suppose that N > M
and that

|ajk| ≤ Q (1 ≤ j ≤M, 1 ≤ k ≤ N)

where Q is a positive integer. Then there exists an integer point z =
(z1, . . . , zN ) 6= 0 with

Lj(z) = 0 (1 ≤ j ≤M)

and
JzK ≤

⌊
(NQ)

M
N−M

⌋
Proof. Since N > M , rational solutions of Lj(z) = 0 for 1 ≤ j ≤ M with
z 6= 0 always exist. But, if z is a solution of this equation, then so is λz
for any real λ, and therefore integer points z 6= 0 exist, which satisfy this
equation.

It remains to show that

JzK ≤ Z where Z =
⌊
(NQ)

M
N−M

⌋
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can also be satisfied. We will follow pigeonhole principle (see Lemma 2.1.1).

Firstly we have Z + 1 > (NQ)
M

N−M , from where NQ < (Z + 1)
N−M
M and

therefore
NQZ + 1 ≤ NQ(Z + 1) < (Z + 1)N/M (3.11)

Now, for every integer point z = (z1, . . . , zN ) with 0 ≤ zi ≤ Z for 1 ≤ i ≤ N ,
we have

−RjZ ≤ Lj(z) ≤ SjZ (1 ≤ j ≤M)

where −Rj and Sj are the sums of negative and positive coefficients of L(z),
respectively. Now Rj + Sj ≤ NQ, so that each Lj(z) lies in an interval
of length less than or equal to NQZ. Therefore each Lj(z) takes at most
NQZ + 1 distinct values. Hence the M−tuple, L1(z), . . . , LM (z) takes at
most (NQZ + 1)M values.

The number of possibilities for z with 0 ≤ zi ≤ Z for 1 ≤ i ≤ N is
(Z + 1)N .

But, from (3.11), (NQZ + 1)M < (Z + 1)N . Thus there are N−tuples
z(1) 6= z(2) with 0 ≤ zi ≤ Z for 1 ≤ i ≤ N and Lj

(
z(1)
)

= Lj
(
z(2)
)

for
1 ≤ j ≤M .

The integer point z = z(1)−z(2) satisfies the conditions of the lemma.

Lemma 3.4.4. Let α be an algebraic number of degree d ≥ 1 and let P (x) =
xd + ad−1x

d−1 + . . .+ a0 be the minimal polynomial of α with integer coeffi-

cients. Then for any interval ` ≥ 1, there exist integers a
(`)
d−1, a

(`)
d−2, . . . , a

(`)
0

with
α` = a

(`)
d−1α

d−1 + . . .+ a
(`)
0

and
|a(`)k | ≤ (JP K + 1)` ∀k = 0, 1, . . . , d− 1

Proof. We will prove this by induction on ` ≥ 1.

When ` ≤ d− 1, we can set a
(`)
` = 1 and a

(`)
k = 0 when k 6= ` , this will

satisfy given condition.
When ` = d, since P (α) = 0, we get

αd + ad−1α
d−1 + . . .+ a0 = 0

⇒ αd = (−ad−1)αd−1 + . . .+ (−a0)

with
|ak| ≤ JP K ≤ (JP K + 1)d ∀k = 0, 1, . . . , d− 1

Hence, given condition is satisfied for ` ≤ d
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We can assume that ` > d and for `− 1 the result is true. Therefore,

α` = α · α`−1

= α
(
a
(`−1)
d−1 αd−1 + . . .+ a

(`−1)
0

)
= a

(`−1)
d−1 αd + . . .+ a

(`−1)
0 α

= a
(`−1)
d−1

(
(−ad−1)αd−1 + . . .+ (−a0)

)
+ a

(`−1)
d−2 αd−1 + . . .+ a`−10 α

=
(
−a(`−1)d−1 ad−1 + a

(`−1)
d−2

)
αd−1 + . . .+

(
−a(`−1)d−1 a0

)
Also, for 0 ≤ k ≤ d− 1 as per triangle inequality and induction hypothesis,∣∣∣−a(`−1)d−1 ak + a

(`−1)
k−1

∣∣∣ ≤ ∣∣∣−a(`−1)d−1 ak

∣∣∣+
∣∣∣a(`−1)k−1

∣∣∣
≤ (JP K + 1)`−1 JP K + (JP K + 1)`−1

= (JP K + 1)`−1 (JP K + 1)

= (JP K + 1)`

Hence completing the proof.

3.4.3 Index of a polynomial

Let P (x1, x2, . . . , xm) be a polynomial with rational integer coefficients. Let
r = (r1, . . . , rm) ∈ Zm≥1 and q = (q1, . . . , qm) ∈ Rm be given m−tuples.

If P is not a zero-polynomial i.e. P 6≡ 0 , then index of P with respect
to (q1, . . . , qm; r1, . . . , rm) = (q; r) is defined to be

ind(q;r) P = min
i=(i1,...,im)∈Zm≥0

0≤ik≤degP xi

{
i1
r1

+ . . .+
im
rm

: Pi(q1, . . . , qm) 6= 0

}

where, degP xi = maximum degree of xi in any monomial of P .
If P is a zero-polynomial i.e. P ≡ 0, then index of P is defined to be +∞

for any (r1, . . . , rm) ∈ Zm≥1 and (q1, . . . , qm) ∈ Rm since Pi(x1, . . . , xm) = 0
for all i ∈ Zm≥0.

Lemma 3.4.5. If P 6≡ 0, then ind(q;r) P is a finite number.

Proof. Let the total degree of P (x1, . . . , xm) be k = k1 + . . . + km, where
xk11 . . . xkmm is a monomial in P whose degree is maximum of all the other
monomials in P and k` = degP x`. If k = (k1, . . . , km), then Pk(x1, . . . , xm)
is a constant polynomial7 and hence, Pk(q1, . . . , qm) 6= 0. Also

ind(q;r) P ≤
k1
r1

+ . . .+
km
rm

<∞

7analogous to the case when, f(x) =
∑n
k=0 arx

r is a polynomial, then fn(x) = n! is a
constant polynomial.
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Remark. Note that r` may be smaller that k`.

Corollary 3.4.1. If P (x1, . . . , xm) is a non-zero constant polynomial, then
P (q1, . . . , qm) 6= 0 implies that ind(q;r) P = 0

Proof. It follows from Lemma 3.4.5, since k1
r1

+ . . .+ km
rm

= 0.

Corollary 3.4.2. If ind(q;r) P 6= 0, then P (q1, . . . , qm) = 0 implies that
q = (q1, . . . , qm) is a zero of the polynomial P (x1, . . . , xm).

Proof. Follows from Corollary 3.4.1

Lemma 3.4.6. Let P,Q ∈ Z[x1, . . . , xm]\{0} be given polynomials with the
given parameters r = (r1, . . . , rm) ∈ Zm≥1 and q = (q1, . . . , qm) ∈ Rm from
which index of P and Q are calculated. Then,

1. For any i = (i1, . . . , ik) ∈ Zm≥0 we have

ind(q;r) Pi ≥ ind(q;r) P −
(
i1
r1

+ . . .+
im
rm

)
2. ind(q;r)(P +Q) ≥ min{ind(q;r) P, ind(q;r)Q}

3. ind(q;r)(PQ) = ind(q;r) P + ind(q;r)Q

Proof. 1. Let i = (i1, . . . , im) ∈ Zm≥0 be a given vector. As seen in Lemma
3.4.1, suppose, T (x1, . . . , xm) = Pi(x1, . . . , xm) ∈ Z[x1, . . . , xm].

Now, let j = (j1, . . . , jm) ∈ Zm≥0 be the point for which Tj(q1, . . . , qm) 6=
0, then

Tj(x1, . . . , xm) =
1

j1! · · · jm!

∂j1+...+jm

∂xj11 · · · ∂x
jm
m

T (x1, . . . , xm)

=
1

j1! · · · jm!

∂j1+...+jm

∂xj11 · · · ∂x
jm
m

Pi(x1, . . . , xm)

=
1

j1! · · · jm!

∂j1+...+jm

∂xj11 · · · ∂x
jm
m(

1

i1! . . . im!

∂i1+...+im

∂xi11 · · · ∂x
im
m

P (x1, . . . , xm)

)

=
1

i1!j1! . . . im!jm!

∂i1+j1

∂xi1+j11

· · · ∂
im+jm

∂xim+jm
m

P (x1, . . . , xm)

But,

Pi+j(x1, . . . , xm) =
1

(i1 + j1)! · · · (im + jm)!

∂i1+j1

∂xi1+j11

· · · ∂
im+jm

∂xim+jm
m

P (x1, . . . , xm)

= c1(i1, j1) · · · cm(im, jm)Tj(x1, . . . , xm)
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where c1(i1, j1), . . . , cm(im, jm) are non-zero constants.

Since Tj(q1, . . . , qm) 6= 0, we have, Pi+j(q1, . . . , qm) 6= 0, thus from
definition of ind(q;r) Pi+j, we have

i1 + j1
r1

+ . . .+
im + jm
rm

≥ ind(q;r) P

⇒ j1
r1

+ . . .+
jm
rm
≥ ind(q;r) P −

(
i1
r1

+ . . .+
im
rm

)
Since this equation is true for all j such that Tj(q1, . . . , qm) 6= 0, we
conclude that

ind(q;r) T ≥ ind(q;r) P −
(
i1
r1

+ . . .+
im
rm

)

⇒ ind(q;r) Pi ≥ ind(q;r) P −
(
i1
r1

+ . . .+
im
rm

)
2. Let i = (i1, . . . , im) ∈ Zm≥0 be a point such that

(P +Q)i(q1, . . . , qm) 6= 0

⇒ Pi(q1, . . . , qm) +Qi(q1, . . . , qm) 6= 0

⇒ Pi(q1, . . . , qm) 6= 0 or Qi(q1, . . . , qm) 6= 0

⇒ i1
r1

+ . . .+
im
rm
≥ ind(q;r) P or

i1
r1

+ . . .+
im
rm
≥ ind(q;r)Q

Since, this is true for all i such that (P +Q)i(q1, . . . , qm) 6= 0, we get

ind(q;r)(P +Q) ≥ ind(q;r) P or ind(q;r)(P +Q) ≥ ind(q;r)Q

⇒ ind(q;r)(P +Q) ≥ min{ind(q;r) P, ind(q;r)Q}

3. To prove given statement we will prove two statements:{
ind(q;r)(PQ) ≥ ind(q;r) P + ind(q;r)Q

ind(q;r)(PQ) ≤ ind(q;r) P + ind(q;r)Q

Firstly we will prove: ind(q;r)(PQ) ≥ ind(q;r) P + ind(q;r)Q
Let, i = (i1, . . . , im) ∈ Zm≥0 be a point such that

i1
r1

+ . . .+
im
rm

= ind(q;r)(PQ)

⇒ (PQ)i(q1, . . . , qm) 6= 0
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Now by Leibnitz’s rule8 we have:

(PQ)i(x1, . . . , xm) =
∑
j,k

with j+ k = i

c(j,k)PjQk(x1, . . . , xm)

where c(j,k) is a constant which depends on j and k.

Since (PQ)i(q1, . . . , qm) 6= 0, we have∑
j,k

with j+ k = i

c(j,k)Pj(q1, . . . , qm)Qk(q1, . . . , qm) 6= 0

Thus, there exist j,k ∈ Zm≥0 such that j + k = i and both Pj(q1, . . . , qm)
and Qk(q1, . . . , qm) are not zero. Hence,

j1
r1

+ . . .+
jm
rm
≥ ind(q;r) P and

k1
r1

+ . . .+
km
rm
≥ ind(q;r)Q

⇒ j1 + k1
r1

+ . . .+
jm + km
rm

≥ ind(q;r) P + ind(q;r)Q

⇒ i1
r1

+ . . .+
im
rm
≥ ind(q;r) P + ind(q;r)Q

for all i = (i1, . . . , im) with (P,Q)i(q1, . . . , qm) 6= 0

⇒ ind(q;r)(PQ) ≥ ind(q;r) P + ind(q;r)Q

Now we will prove: ind(q;r)(PQ) ≤ ind(q;r) P + ind(q;r)Q
Let the points j = (j1, . . . , jm) ∈ Zm≥0 and k = (k1, . . . , km) ∈ Zm≥0 be
such that

j1
r1

+ . . .+
jm
rm

= ind(q;r) P and
k1
r1

+ . . .+
km
rm

= ind(q;r)Q

⇒ Pj(q1, . . . , qm) 6= 0 and Qk(q1, . . . , qm) 6= 0

Let, i = (i1, . . . , im) be such that i` = j` + k` for all ` = 1, 2, . . . ,m.

Now, we claim that (PQ)i(q1, . . . , qm) 6= 0

8If f1, . . . , fm are differentiable functions, then

(f1f2 · · · fm)(n) =
∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

) ∏
1≤t≤m

f
(kt)
t

where the sum extends over all m-tuples (k1, . . . , km) of non-negative integers with∑m
t=1 kt = n (see: Olver, P. J., Applications of Lie Groups to Differential Equations

(Springer-Verlag New York, 1993), pp. 318.)
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By definition of ind(q;r) P for any (j′1, . . . , j
′
m) ∈ Zm≥0, if we have

j′1
r1

+ . . .+
j′m
rm

<
j1
r1

+ . . .+
jm
rm

then Pj′(q1, . . . , qm) = 0 where j′ = (j′1, . . . , j
′
m).

If
j′1
r1

+ . . .+
j′m
r′m

>
j1
r1

+ . . .+
jm
rm

and
(k′1, . . . , k

′
m) = (i1 − j′1, . . . , im − j′m)

then we claim that

k′1
r1

+ . . .+
k′m
rm

<
k1
r1

+ . . .+
km
rm

But,

k′1
r1

+ . . .+
k′m
rm

=
i1 − j′1
r1

+ . . .+
im − j′m
rm

=
j1 + k1 − j′1

r1
+ . . .+

jm + km − j′m
rm

=
k1
r1

+ . . .+
km
rm

+

(
j1 − j′1
r1

+ . . .+
jm − j′m

r1

)
︸ ︷︷ ︸

this is negative
due to our assumption

Thus, our claim was true. Hence, by definition of ind(q;r)Q we have
Qk′(q1, . . . , qm) = 0, where k′ = (k′1, . . . , k

′
m)

Thus, either Pj′(q1, . . . , qm) = 0 or Qk′(q1, . . . , qm) = 0, leading to :

(PQ)i(q1, . . . , qm) = Pj(q1, . . . , qm)Qk(q1, . . . , qm) 6= 0

Hence proving our claim and completing the proof.

Theorem 3.4.1 (Index Theorem). Suppose that q is an algebraic integer of
degree d, d ≥ 2 and m is an integer satisfying the inequality

m > 16ε−2 log(4d)

where ε is some positive real number. If r1, . . . , rm are positive integers,
then there exists a polynomial P (x1, . . . , xm) 6= 0 with rational integers co-
efficients such that

1. degP xh ≤ rh, where 1 ≤ h ≤ m
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2. ind(q;r) P ≥
m

2
(1− ε), where (q; r) = (q, . . . , q︸ ︷︷ ︸

m times

; r1, . . . , rm)

3. JP K ≤ Hr1+...+rm, where H depends only on q i.e. H = H(q)

Proof. We wish to find a polynomial

P (x1, . . . , xm) =

r1∑
j1=0

. . .

rm∑
jm=0

k(j1, . . . , jm)xj11 . . . xjmm

with rational integer coefficients k(j1, . . . , jm) such that given conditions 2.
and 3. hold.

We need to determine all the coefficients, hence we have to determine

N = (1 + r1) · · · (1 + rm)

integers.
By 2. we need

Pi(q, . . . , q) = 0 when

(
m∑
h=1

ih
rh

)
− m

2
< −mε

2
(3.12)

As per Lemma 3.4.1,

⇒
∑

j1,...,jm
0≤jh≤rh

k(j1, . . . , jm)

(
j1
i1

)
· · ·
(
jm
im

)
q(j1−i1)+...+(jm−im) = 0 (3.13)

By replacing ε by ε/2 in Lemma 3.3.4, the number of such m−tuples i is at
most

M ′ = (1 + r1) · · · (1 + rm) · e−ε2m/16

But, m > 16ε−2 log(4d), hence the number of conditions in (3.12) is at most

M ′ = N × 2

4d
=
N

2d

for m = b16ε−2 log(4d)c+ 1
Each condition (3.12) is a linear equation in the coefficients k(j1, . . . , jm).

The coefficients of these equations will be rational integers times powers of
q, hence will be algebraic. But each power of q is a linear combination of
1, q, . . . , qd−1 with rational integer coefficients. Hence each condition (3.12)
follows from d linear relations in k(j1, . . . , jm) with rational coefficients.
Thus, we have the number of linear equations for the k(j1, . . . , jm) with
rational coefficients

M ≤ d×M ′ = N

2
(3.14)
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Now we will apply Lemma 3.4.4 to (3.13). Let Q be the maximum of
the absolute values of all rational integer coefficients corresponding to linear
equations in each condition (3.12), then

Q ≤
(
j1
i1

)
· · ·
(
jm
im

)
(JP ′K + 1)(j1−i1)+...+(jm−im)

where P ′ is the minimal polynomial for q. By combinatorial inequality(
j
i

)
≤ 2j , we can say

Q ≤ 2j1+...+jm(JP ′K + 1)(j1−i1)+...+(jm−im)

≤ 2r1+...+rm(JP ′K + 1)r1+...+rm (follows from 1.)

=
(
2
(
JP ′K + 1

))r1+...+rm
Further, by Siegel’s Lemma 3.4.3 and (3.14) our system of equations has
non-trivial integer solution with

|k(j1, . . . , jm)| ≤ b(NQ)
M

N−M c ≤ NQ

Also, N ≤ 2r1+...+rm and Q ≤ (2 (JP ′K + 1))r1+...+rm we get:

|k(j1, . . . , jm)| ≤
(
4
(
JP ′K + 1

))r1+...+rm
for each m−tuple (j1, . . . , jm). Hence the height of P satisfies

JP K ≤
(
4
(
JP ′K + 1

))r1+...+rm
⇒ JP K ≤ Hr1+...+rm

where H is a function of q since it depends on minimal polynomial for q.

Theorem 3.4.2 (Index of polynomial at rational points near algebraic-in-
teger point). Consider the real numbers δ and ε such that 0 < δ < 1 and
0 < ε < δ

36 . Let q be an algebraic integer of degree d, d ≥ 2 and m is
an integer satisfying m > 16ε−2 log(4d). Also given to us is a m−tuple
r = (r1, . . . , rm) ∈ Zm≥1 and a polynomial

P (x1, . . . , xm) ∈ Z[x1, . . . , xm]

satisfying the conditions of Theorem 3.4.1.
Suppose there are m distinct rational numbers{

a1
b1
, . . . ,

am
bm

}
such that

∣∣∣∣q − ah
bh

∣∣∣∣ < 1

b2+δh

with bδh > D

for some constant D = D(q) (depends only on q).

If br11 ≤ b
rh
h ≤ b

(1+ε)r1
1 for all h = 1, 2, . . . ,m, then ind(a;r) P ≥ mε where

a =
(
a1
b1
, . . . , amrm

)
.
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Proof. We have to prove

min
i=(i1,...,im)∈Zm≥0

0≤ik≤degP xi

{
i1
r1

+ . . .+
im
rm

: Pi

(
a1
b1
, . . . ,

am
bm

)
6= 0

}
≥ mε

where, degP xi = maximum degree of xi in some monomial of P .
We will rather prove its contrapositive, i.e. for any i = (i1, . . . , im) ∈ Zm≥0,

satisfying i1
r1

+ . . .+ im
rm

< mε, we have Pi

(
a1
b1
, . . . , amrm

)
= 0.

Let, i = (i1, . . . , im) ∈ Zm≥0 be an m−tuple satisfying i1
r1

+ . . .+ im
rm

< mε.
Also, let T (x1, . . . , xm) = Pi(x1, . . . , xm), now we have to show that

T

(
a1
b1
, . . . ,

am
bm

)
= 0

Since from Lemma 3.4.1,

Pi(x1, . . . , xm) =
∑

j1,...,jm
0≤jk≤rk

k(j1, . . . , jm)
m∏
h=1

(
jh
ih

)
xjh−ihh

we get,

Pi

(
a1
b1
, . . . ,

am
bm

)
=

∑
j1,...,jm
0≤jh≤rh

k(j1, . . . , jm)

m∏
h=1

(
jh
ih

)(
ah
bh

)jh−ih

⇒
∣∣∣∣Pi

(
a1
b1
, . . . ,

am
bm

)∣∣∣∣ =
N ′

br11 · · · b
rm
m

(3.15)

for some integer N ′ ≥ 0
Now, if we prove ∣∣∣∣Pi

(
a1
b1
, . . . ,

am
bm

)∣∣∣∣ < 1

br11 · · · b
rm
m

(3.16)

then from (3.15) and (3.16) we get:

N ′

br11 · · · b
rm
m

=

∣∣∣∣Pi

(
a1
b1
, . . . ,

am
bm

)∣∣∣∣ < 1

br11 · · · b
rm
m

leading to N ′ = 0 and hence,

Pi

(
a1
b1
, . . . ,

am
bm

)
= 0

Hence it is enough to prove that∣∣∣∣T (a1b1 , . . . , ambm
)∣∣∣∣ =

∣∣∣∣Pi

(
a1
b1
, . . . ,

am
bm

)∣∣∣∣ < 1

br11 · · · b
rm
m
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By Lemma 3.4.6(1.), with q = (q, . . . , q) as in Theorem 3.4.1,

ind(q;r) Pi ≥ ind(q;r) P −
(
i1
r1

+ . . .+
im
rm

)

⇒ ind(q;r) T ≥ ind(q;r) P −
(
i1
r1

+ . . .+
im
rm

)
Also from Theorem 3.4.1 we have:

ind(q;r) P ≥
m

2
(1− ε)

and as per our assumption on i, we have:

i1
r1

+ . . .+
im
rm

< mε

we get:

ind(q;r) T ≥
m

2
(1− ε)−mε

⇒ ind(q;r) T ≥
m

2
(1− 3ε) (3.17)

The Taylor series expansion (generalizing what we did in Theorem 3.1.1) of
T (x1, . . . , xm) about q = (q, . . . , q) we get:

T (x1, . . . , xm) =

r1∑
t1=0

· · ·
rm∑
tm=0

Tt(q, . . . , q)(x1 − q)t1 · · · (xm − q)tm

where t = (t1, . . . , tm) ∈ Zm≥0. Evaluating value about a =
(
a1
b1
, . . . , ambm

)
we

get:

T

(
a1
b1
, . . . ,

am
bm

)
=

r1∑
t1=0

· · ·
rm∑
tm=0

Tt(q, . . . , q)

(
a1
b1
− q
)t1
· · ·
(
am
bm
− q
)tm
(3.18)

Now, we want to estimate right hand side of this equation. Therefore we
get: ∣∣∣∣T (a1b1 , . . . , ambm

)∣∣∣∣ ≤ ∑
t1,...,tm
0≤th≤rh

|Tt(q, . . . , q)|
m∏
h=1

∣∣∣∣ahbh − q
∣∣∣∣th

Now, to estimate |Tt(q, . . . , q)| we need to know the estimate of JTtK, number
of terms in Tt and highest power of |q|.

But, from Lemma 3.4.2 we know that

JPiK ≤ 2r1+...+rmJP K

⇒ JT K ≤ 2r1+...+rmJP K and JTtK ≤ 2r1+...+rmJT K
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leading to
JTtK ≤ 4r1+...+rmJP K (3.19)

Also from simple combinatorics we know that

#(terms in Tt) ≤ (r1 + 1) · · · (rm + 1) ≤ 2r1+...+rm (3.20)

Since, |q| ≥ 1 or |q| < 1, we can take the estimate max{1, |q|}r1+...+rm for
highest power of |q|. By using this along with (3.19) and (3.20) get

|Tt(q, . . . , q)| ≤
(
4r1+...+rmJP K

) (
2r1+...+rm

)
max{1, |q|}r1+...+rm

⇒ |Tt(q, . . . , q)| ≤ Cr1+...+rm where C = 8 max{1, |q|}JP K
1

r1+...+rm

(3.21)
But, we are given in statement of theorem that∣∣∣∣ahbh − q

∣∣∣∣th <
(

1

b2+δh

)th
∀h = 1, 2, . . . ,m

⇒
∣∣∣∣ahbh − q

∣∣∣∣th <
(

1

bthh

)2+δ

∀h = 1, 2, . . . ,m (3.22)

Also, (3.17) implies that

ind(q;r) T ≥ m
(

1

2
− 2ε

)
which further implies that any t = (t1, . . . , tm) ∈ Zm≥0 with t1

r1
+ . . .+ tm

rm
≤

m
(
1
2 − 2ε

)
we have Tt(q, . . . , q) = 0. Using this along with (3.21) and (3.22)

in (3.18) we get:∣∣∣∣T (a1b1 , . . . , ambm
)∣∣∣∣ ≤ ∑

t1,...,tm
0≤th≤rh

t1
r1

+...+ tm
rm

>m( 1
2
−2ε)

Cr1+...+rm
1(

bt11 · · · b
tm
m

)2+δ (3.23)
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Further for t1
r1

+ . . .+ tm
rm

> m
(
1
2 − 2ε

)
we can write,

bt11 · · · b
tm
m = b

r1
(
t1
r1

)
1 b

r2
(
t2
r2

)
2 · · · b

rm
(
tm
rm

)
m

≥ b
r1
(
t1
r1

)
1 b

r1
(
t2
r2

)
1 · · · b

r1
(
tm
rm

)
1 (given: br11 ≤ b

rh
h )

= b
r1
(
t1
r1

+...+ tm
rm

)
1

≥ b
r1m( 1

2
−2ε)

1

= (br11 · · · b
r1
1 )︸ ︷︷ ︸

m times

( 1
2
−2ε)

≥
(
b
r1
1+ε

1 · · · b
rm
1+ε
m

)( 1
2
−2ε)

(given: brhh ≤ b
(1+ε)r1
1 )

= (br11 · · · b
rm
m )

(
1
2−2ε

1+ε

)

Further, we have

1
2 − 2ε

1 + ε
=

1

2

(
1− 4ε

1 + ε

)
=

1

2

(
1− 5ε

1 + ε

)
≥ 1

2
(1− 6ε)

Thus for all t with t1
r1

+ . . .+ tm
rm

> m
(
1
2 − 2ε

)
we have

bt11 · · · b
tm
m ≥ (br11 · · · b

rm
m )

1
2
(1−6ε) (3.24)

From (3.23) and (3.24) we get∣∣∣∣T (a1b1 , . . . , ambm
)∣∣∣∣ ≤ (2C)r1+...+rm(br11 · · · b

rm
m )−

1
2
(1−6ε)(2+δ)

=
m∏
h=1

(
2Cb

− 1
2
(1−6ε)(2+δ)

h

)rh
Note that we are given 0 < δ < 1 and 0 < ε < δ

36 , so

1

2
(1− 6ε) (2 + δ) =

2 + δ − 12ε− 6δε

2
> 1 +

δ − δ/3− δ2/6
2

⇒ 1

2
(1− 6ε) (2 + δ) > 1 + δ

(
4− δ

12

)
> 1 + δ

(
4− 1

12

)
⇒ 1

2
(1− 6ε) (2 + δ) > 1 +

δ

4

Hence, ∣∣∣∣T (a1b1 , . . . , ambm
)∣∣∣∣ ≤ m∏

h=1

(
2Cb

−(1+ δ
4)

h

)rh
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Now,

2Cb
−(1+ δ

4)
h < b−1h

⇔ (2C)4 < bδh

⇔ D < bδh given in statement of theorem

where D = (2C)4 = 24
(

8 max{1, |q|}JP K
1

r1+...+rm

)4
, hence D = D(q) and

we get as desired: ∣∣∣∣T (a1b1 , . . . , ambm
)∣∣∣∣ ≤ m∏

h=1

b−rhh

3.5 Wrońskians and Linear Independence of Poly-
nomials

Wrońskian is a determinant introduced by Polish mathematician Józef
Hoene-Wroński (1812) and named by Scottish mathematician Thomas Muir
(1882). It is used in the study of ordinary differential equations, where it
can sometimes show linear independence in a set of solutions.

Firstly let’s see “Why the Wrońskian work?”9

For illustration, let’s work with 3× 3 system. Consider functions f, g, h.
Then they are linearly dependent on some set of real numbers I if we can
find a, b, c ∈ R (not all zero) such that af(t) + bg(t) + ch(t) = 0 for all t in
I. If we differentiate this again and again, we’ll get other equations:

af(t) + bg(t) + ch(t) = 0
af ′(t) + bg′(t) + ch′(t) = 0
af ′′(t) + bg′′(t) + ch′′(t) = 0

Let

f1(t) =

 f(t)
f ′(t)
f ′′(t)

 , f2(t) =

 g(t)
g′(t)
g′′(t)

 , and f3(t) =

 h(t)
h′(t)
h′′(t)


be vectors of functions (i.e. functions from R to R3).

This leads to the discussion about linear independence in reference to
the set: 

 f(t)
f ′(t)
f ′′(t)

 ,
 g(t)
g′(t)
g′′(t)

 ,
 h(t)
h′(t)
h′′(t)


9Bill Cook (http://math.stackexchange.com/users/16423/bill-cook), Linear in-

dependence of function vectors and Wronskians, URL (version: 2012-01-07): http:

//math.stackexchange.com/q/97094
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We say the set {f1(t), f2(t), f3(t)} is linearly dependent on I ⊆ R, if there
exist c1, c2, c3 ∈ R (not all zero) such that c1f1(t) + c2f2(t) + c3f3(t) = 0 for
all t ∈ I.

This equation can be restated in terms of matrices. We have linear
dependence if and only if there exists some constant vector c 6= 0 such that
F(t)c = 0 for all t ∈ I. This is where F(t) = [f1(t) f2(t) f3(t)]. Or writing it
out in a more expanded form:

F(t)c =

 f(t) g(t) h(t)
f ′(t) g′(t) h′(t)
f ′′(t) g′′(t) h′′(t)

c1c2
c3

 =

0
0
0


Now the determinant of F(t) is known as the Wronskian of the functions

f1, f2, f3. That is W (t) = det(F)(t).
To show the columns of F are linearly dependent10 we need there to be

a non-zero solution for all t in I. So only the following can be said:
If the columns of F(t) are linearly dependent on I, then there is a non-

zero solution for F(t)c = 0 which works for all t in I. Thus W (t) =
det(F)(t) = 0 for all t in I.

The converse does not hold in general, but it holds for polynomials.

3.5.1 Ordinary Wrońskian

Let g0(z), g1(z), . . . , g`−1(z) ∈ K[z] where K is a sub-field of C, be a collec-
tion of polynomials. Then Wrońskian of g0(z), g1(z), . . . , g`−1(z) is defined
as11

W (z) = det

(
1

µ!

dµ

dzµ
gν(z)

)
where 0 ≤ µ, ν ≤ `− 1

Theorem 3.5.1. Let g0(z), g1(z), . . . , g`−1(z) ∈ K[z] be given non-zero poly-
nomials. Then they are linearly independent if and only if Wrońskian of
g0, g1, . . . , g`−1 is a non-zero polynomial in K[z].

Proof. We will divide proof in two parts.
.

Part 1: W (z) is a non-zero polynomial ⇒ they are linearly independent
over K.

10For a system of constants (not functions), the columns of an n × n matrix A are
linearly dependent if and only if there is a non-trivial (i.e. non-zero) solution of Ax = 0.
This is true if and only if det(A) = 0.

11this definition differs from the standard definition encountered when we study ordinary
differential equations only in the presence of the non-zero constant factor 1

0!1!···(`−1)!
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Let, c0, c1, . . . , c`−1 ∈ K be given elements, consider system of equations.

c0g0(z) + . . . + c`−1g`−1(z) = 0

c0g
(1)
0 (z) + . . . + c`−1g

(1)
`−1(z) = 0

...
...

...
...

c0g
(`−1)
0 (z) + . . . + c`−1g

(`−1)
`−1 (z) = 0

which can we written as:
g0(z) . . . g`−1(z)

g
(1)
0 (z) . . . g

(1)
`−1(z)

...
. . .

...

g
(`−1)
0 (z) . . . g

(`−1)
`−1 (z)



c0
c1
...

c`−1

 =


0
0
...
0


Since, as per our assumption

W (z) =
1

0!1! . . . (`− 1)!

∣∣∣∣∣∣∣∣∣∣
g0(z) . . . g`−1(z)

g
(1)
0 (z) . . . g

(1)
`−1(z)

...
. . .

...

g
(`−1)
0 (z) . . . g

(`−1)
`−1 (z)

∣∣∣∣∣∣∣∣∣∣
is a non-zero polynomial. Hence there exist z0 ∈ K such that W (z0) 6= 0.
Therefore, we have

A =


g0(z0) . . . g`−1(z0)

g
(1)
0 (z0) . . . g

(1)
`−1(z0)

...
. . .

...

g
(`−1)
0 (z0) . . . g

(`−1)
`−1 (z0)


such that det(A) 6= 0, then

c0
c1
...

c`−1

 = A−1


0
0
...
0

 =


0
0
...
0


⇒ c0 = c1 = . . . = c`−1 = 0

Thus, the polynomials g0, . . . g`−1 are linearly independent over K
.

Part 2: g0, g1, . . . , g`−1 are linearly independent ⇒ W (z) is a non-zero
polynomial over K.

We will prove contrapositive of this statement12, i.e., if W (z) is a zero
polynomial then g0, . . . g`−1 are linearly dependent over K.

12Hence I will follow the proof given for Theorem 4-7(a) in [3]
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We will prove this statement by induction on `.
If ` = 1 and W (z) = g0(z) ≡ 0 and hence our statement is true for base

case.
Take ` > 1 and suppose that the theorem is true for every set of

` − 1 polynomials, g0, g1, . . . , g`−2 over K. Also, let the Wrońskian, W`

of g0, g1, . . . , g`−1 vanishes identically.
If g0, . . . , g`−2 are linearly dependent, so are g0, . . . , g`−1 and the assertion

is proved.
So, we just need to consider the case when g0, . . . , g`−2 are linearly in-

dependent, so that their Wrońskian W`−1 is not identically zero.
Now W`−1, being a polynomial, has only finitely many roots. Let I be

an interval in which it doesn’t vanish and take z ∈ I. For such z, the system
of equations

g0(z)f0(z) + . . . + g`−2(z)f`−2(z) = g`−1(z)

g
(1)
0 (z)f0(z) + . . . + g

(1)
`−2(z)f`−2(z) = g

(1)
`−1(z)

...
...

...
...

g
(`−2)
0 (z)f0(z) + . . . + g

(`−2)
`−2 (z)f`−2(z) = g

(`−2)
`−1 (z)

which can be re-written as

`−2∑
k=0

g
(j)
k (z)fk(z) = g

(j)
`−1(z) where j = 0, 1, . . . , `− 2 (3.25)

can be solved for fk’s as rational functions of z. But then by subtracting
appropriate multiples of each column of W`, from its last column, we obtain

0 = 0!1! · · · (`− 1)!W`(z)

=

∣∣∣∣∣∣∣∣∣∣
g0(z) g1(z) . . . 0

g
(1)
0 (z) g

(1)
1 (z) . . . 0

...
...

. . .
...

g
(`−1)
0 (z) g

(`−1)
1 (z)

... g
(`−1)
`−1 (z)−

∑`−2
k=0 g

(`−1)
k (z)fk(z)

∣∣∣∣∣∣∣∣∣∣
= 0!1! · · · (`− 2)!

(
g
(`−1)
`−1 (z)−

`−2∑
k=0

g
(`−1)
k (z)fk(z)

)
W`−1(z)

Now, since W`−1(z) 6= 0 for z ∈ I, we have

`−2∑
k=0

g
(`−1)
k (z)fk(z) = g

(`−1)
`−1 (z) (3.26)

Differentiating (3.25) gives (by chain rule):

`−2∑
k=0

g
(j+1)
k (z)fk(z) +

`−2∑
k=0

g
(j)
k (z)f ′k(z) = g

(j+1)
`−1 (z) ∀j = 0, 1, . . . , `− 2
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and comparing this with (3.25) for j = 0, . . . , ` − 3 and with (3.26) for
j = `− 2 we get:

`−2∑
k=0

g
(j)
k (z)f ′k(z) = 0 ∀j = 0, 1, . . . , `− 2

But, since W`−1 6= 0, it must be that

f ′0(z) = . . . = f ′`−2(z) = 0 ∀z ∈ I

So, we can say that fk(z) = ck is some constant in K. But then the poly-
nomial13

`−2∑
k=0

ckgk(z)− g`−1(z) = 0 ∀z ∈ I

Therefore, the polynomials g0, . . . , g`−1 are linearly dependent.

3.5.2 Generalized Wrońskian

The concept of generalized Wronskians was introduced by Alexander Os-
trowski in 1919. For functions of several variables, the situation is not quite
so simple, since there are then several partial derivatives to consider. Let
∆0,∆1, . . . ,∆µ, . . . ,∆`−1 be differential operators of form

∆µ =
1

j1!j2! · · · jh!

∂j1

∂zj11
· · · ∂

jh

∂zjhh

such that the order j1 + . . .+ jh of ∆µ does not exceed µ, for 0 ≤ µ ≤ `− 1.
Then the function

G(z1, . . . , zh) =

∣∣∣∣∣∣∣∣∣
∆0g0 ∆0g1 . . . ∆0g`−1
∆1g0 ∆1g1 . . . ∆1g`−1

...
...

. . .
...

∆`−1g0 ∆`−1g1 . . . ∆`−1g`−1

∣∣∣∣∣∣∣∣∣
is called a generalized Wrońskian of g0, . . . , g`−1. Except in the trivial case
h = ` = 1, there are several ∆µ’s for each µ and hence more than one
generalized Wrońskian.

In the case of functions of one variable, the ordinary Wrońskian is that
generalized Wrońskian for which the order of ∆µ is exactly µ, for 0 ≤ µ ≤
`− 1

Lemma 3.5.1. If f(t, tk, . . . , tk
h−1

) is a polynomial, then14

dµ

dtµ
f = ϕ1(t)∆

(1)
µ f + . . .+ ϕr(t)∆

(r)
µ f

13since g0, . . . , g`−2 are assumed to be linearly independent, ck = 0 will work.
14Note that for this operator dµ

dtµ
≡
(
d
dt

)µ
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where ∆(1), . . . ,∆(r) are differential operators of orders not exceeding µ and
ϕ1, . . . , ϕr are polynomials with rational coefficients. Moreover, r depends
only on µ and h.

Proof. Firstly note that, by a standard differentiation formula,

d

dt
f(t, . . . , tk

h−1
) =

h∑
j=1

∂

∂zj
f(z1, . . . , zh)

∣∣∣∣∣
(t,...,tkh−1 )

d

dt
tk
j−1

We will prove the given statement by induction on µ.
If, µ = 1, let h = 2 then

d

dt
f(t, tk) =

∂

∂z1
f(z1, z2)

∣∣∣∣∣
(t,tk)

d

dt
t+

∂

∂z2
f(z1, z2)

∣∣∣∣∣
(t,tk)

d

dt
tk

=
∂

∂z1
f(z1, z2)

∣∣∣∣∣
(t,tk)

+
∂

∂z2
f(z1, z2)

∣∣∣∣∣
(t,tk)

ktk−1

where ϕ1(t) = 1, ϕ2(t) = ktk−1, ∆
(1)
1 = 1

1!
∂
∂z1

and ∆
(2)
1 = 1

1!
∂
∂z2

. Hence given
statement is true for base case.

Fix h and assume µ > 1. Let the result be true for µ− 1. Then,

dµ−1

dtµ−1
f(t, tk, . . . , tk

h−1
) = ϕ1(t)∆

(1)
µ−1f + . . .+ ϕr(t)∆

(r)
µ−1f

Now differentiate this

d

dt

(
dµ−1

dtµ−1

)
f =

dµ

dtµ
f =

d

dt

(
ϕ1(t)∆

(1)
µ−1f + . . .+ ϕr(t)∆

(r)
µ−1f

)
=

d

dt

(
ϕ1(t)∆

(1)
µ−1f

)
+ . . .+

d

dt

(
ϕr(t)∆

(r)
µ−1f

)
=

(
d

dt
(ϕ1(t)) ∆

(1)
µ−1f + ϕ1(t)

d

dt

(
∆

(1)
µ−1f

))
+ . . .

+

(
d

dt
(ϕr(t)) ∆

(r)
µ−1f + ϕr(t)

d

dt

(
∆

(r)
µ−1f

))
Note that,

∆
(j)
µ−1f =

1

j1!j2! · · · jh!

∂j1

∂zj11
· · · ∂

jh

∂zjhh
f
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where j1 + . . .+ jh ≤ µ− 1. Hence,

d

dt

(
∆

(j)
µ−1f

)
=

d

dt
∆

(j)
µ−1f (z1, . . . , zh)

∣∣∣∣∣
(t,...,tkh−1 )

=

h∑
m=1

∂

∂zm

(
∂j1

∂zj11
· · · ∂

jh

∂zjhh
f

)

=
h∑

m=1

∂j1

∂zj11
· · · ∂

jm+1

∂zjm+1
m

· · · ∂
jh

∂zjhh
f

∣∣∣∣∣
(t,...,tk

h−1 )

= ∆(j)
µ f

where ∆
(j)
µ is of order ≤ (µ− 1) + 1 = µ.

Also, since d
dt(φj(t)) ∈ Q[t], so we conclude that,

dµ

dtµ
f = λ1(t)∆

(1)
µ f + . . .+ λs(t)∆

(s)
µ f

where λj(t) ∈ Q[t] since sum of rational functions is a rational function and
s depends on µ and h only.

Theorem 3.5.2. Let g0(z1, . . . , zh), . . . , g`−1(z1, . . . , zh) ∈ K[z1, . . . , zh] be
given non-zero polynomials. If they are linearly independent over K then at
least one of the generalized Wrońskian does not vanish.

Proof. Let, for each ν, gν be of degree less than k in each of its arguments,
so that we can write

gν(z1, . . . , zh) =
k−1∑
k1=0

· · ·
k−1∑
kh=0

0≤ν≤`−1

bν(k1, . . . , kh)zk11 · · · z
kh
h

We claim that the polynomials gν(t, tk . . . , tk
h−1

) are linearly indepen-
dent.

For otherwise there would be an identity in t of the form:

`−1∑
ν=0

cν

k−1∑
k1=0

· · ·
k−1∑
kh=0

bν(k1, . . . , kh)tk1+k2k+...+khk
h−1

= 0

⇒
k−1∑
k1=0

· · ·
k−1∑
kh=0

(
`−1∑
ν=0

cνbν(k1, . . . , kh)tk1+k2k+...+khk
h−1

)
= 0

and it would follow from uniqueness of the representation of an integer to
the base k that for each exponents k1, . . . , kh

`−1∑
ν=0

cνbν(k1, . . . , kh) = 0
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from where we get
`−1∑
ν=0

cνgν(z1, . . . , zh) = 0

contradiction the given condition that gν(z1, . . . , zh) are linearly indepen-
dent, hence proving our claim.

From Theorem 3.5.1 we know that the Wrońskian

W (t) = det

(
1

µ!

dµ

dtµ
f(t)

)
µ,ν=0,...,`−1

= det

(
1

µ!

dµ

dtµ
gν

(
t, tk, . . . , tk

h−1
))

µ,ν=0,...,`−1

does not vanish identically.
Using Lemma 3.5.1 in the above expression for W (t) and writing the

resulting determinant as sum of other determinants, an expression for W (t)
of the form

W (t) = ψ1(t)G1

(
t, . . . , tk

h−1
)

+ . . .+ ψr(t)Gr

(
t, . . . , tk

h−1
)

results, in which ψ1, . . . , ψr are polynomials and G1, . . . , Gr are general-
ized Wrońskians of g0, . . . , g`−1. Since W (t) does not vanish identically,

there is an i for which Gi(t, . . . , t
kh−1

) is not identically zero and therefore
Gi(z1, . . . , zh) is not identically zero.

3.6 Proof of Roth’s Theorem

Lemma 3.6.1 (Roth, 1955). Let ε be given real number satisfying 0 < ε <
1
12 . Let m be given positive integer. Define the real number ω = ω(m, ε) to
be

ω =
24

2m

( ε
12

)2m−1

Let r1, . . . , rm be any positive integers satisfying ωrh ≥ rh+1 for h =
1, 2, . . . ,m− 1.

Suppose γ with 0 ≤ γ ≤ 1 be a real number and (a1, b1), . . . , (am, bm) are
pairs of coprime integers satisfying

1. bh > 0 for h = 1, 2, . . . ,m

2. brhh ≥ b
γr1
1 for h = 1, 2, . . . ,m

3. bωγh ≥ 23m for h = 1, 2, . . . ,m

Let P (x1, . . . , xm) ∈ Z[x1, . . . , xm] be given polynomial of degree r1 + . . . +

rm ≤ mr1 with JP K ≤ bωγr11 . Then, ind(a;r) P ≤ ε where a =
(
a1
b1
, . . . , ambm

)
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Proof. We will prove this lemma by induction on m.
When m = 1 we have, P (x) ∈ Z[x] and

ω = ω(1, ε) =
24

2

( ε
12

)20
= ε

Let, r1 ≥ 1 be given integer and 0 < γ ≤ 1 be a given real number. Let
a1, b1 be two coprime integers such that b1 satisfies

bωγ1 = bεγ1 ≥ 23

Since we want to estimate ind(a;r) P where a = (a1/b1) and r = (r1) we need

to find if P (`)(a1/b1) vanishes or not.
If P (a1/b1) 6= 0 then ind(a;r) P = 0 and hence ind(a;r) P < ε.
So we can assume that P (a1/b1) = 0. Let,

P (x) =

(
x− a1

b1

)`
M(x) (3.27)

where M(x) ∈ Q[x] with M(a1/b1) 6= 0 and ` ≥ 1 is a positive integer.
Therefore

P (x) = (b1x− a1)` b−`1 M(x)

= (b1x− a1)`R(x)

where R(x) ∈ Q[x]. Therefore by clearing the denominators on the right
hand side of equation, we conclude that the leading coefficient of P (x) is
divisible by b`1. If q is the leading coefficient of P (x) then we have

|q| ≤ JP K ≤ bεr11

since b`1 divides |q|, we conclude that

b`1 ≤ JP K ≤ bεr11 ⇒ ` log b1 ≤ εr1 log b1 ⇒ `

r1
≤ ε

Also, as per (3.27), P (`)(a1/b1) 6= 0, therefore

ind(a;r) P ≤
`

r1
≤ ε

Hence, given statement is true for base case.
We assume that the result is true for m− 1 and will prove it for m > 1.
It is given that P (x1, . . . , xm) ∈ Z[x1, . . . , xm]. Let k ≥ 1 be the minimal

integer such that

P (x1, . . . , xm) =

k∑
j=1

φj(x1, . . . , xm−1)ψj(xm) (3.28)
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where φj(x1, . . . , xm−1) ∈ Q[x1, . . . , xm−1] and ψj(xm) ∈ Q[xm] for all j =
1, 2, . . . , k. Now we shall divide our proof in 4 parts.

Claim 1: The polynomial φ1, . . . , φk are linearly independent over Q.
Suppose the contrary. Thus there exist c1, . . . , ck ∈ Q not all zero such

that c1φ1+. . .+ckφk = 0. By clearing the denominators, we can also assume
that c1, . . . , ck are integers and ck 6= 0. Therefore

φk = − 1

ck
(c1φ1 + . . .+ ck−1φk−1)

Then

P (x1, . . . , xm) =
k−1∑
j=1

φj(x1, . . . , xm−1)ψj(xm) + φk(x1 + . . .+ xm−1)ψk(xm)

=
k−1∑
j=1

φj(x1, . . . , xm−1)ψj(xm)− 1

ck

(
c1φ1(x1, . . . , xm−1)+

. . .+ ck−1φk−1(x1, . . . , xm−1)
)
ψk(xm)

=
k−1∑
j=1

φj(x1, . . . , xm−1)

(
ψj(xm)− cj

ck
ψk(xm)

)

=
k−1∑
j=1

φj(x1, . . . , xm−1)Ψj(xm)

contradicts the minimality of k. Therefore φ1, . . . , φk are linearly indepen-
dent over Q.

From Theorem 3.5.2, we conclude that

G(x1, . . . , xm−1) = det (∆iφj(x1, . . . , xm−1))1≤i,j≤k (3.29)

is not a zero polynomial.
Claim 2: ψ1, ψ2, . . . , ψk are linearly independent over Q
This claim can be proved just like Claim 1.
Now from Theorem 3.5.1, it follows that

W (xm) = det

(
1

(i− 1)!

∂i−1

∂xi−1m

ψj(xm)

)
where 1 ≤ i, j ≤ k (3.30)

is not a zero polynomial. Since P (x1, . . . , xm) is a given polynomial, we
define

U(x1, . . . , xm) = det

(
1

(j − 1)!

∂j−1

∂xj−1m

(∆iP )

)
1≤i,j≤k

(3.31)
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But, from (3.28) we observe that for any integer i ≥ 1,

∆iP (x1, . . . , xm) = ∆i

(
k∑
r=1

φr(x1, . . . , xm−1)ψr(xm)

)

=
k∑
r=1

ψr(xm)∆i (φr(x1, . . . , xm−1))

since ∆i is an operator on x1, . . . , xm−1 variables. Hence we can rewrite
(3.31) as

U(x1, . . . , xm) = det

(
1

(j − 1)!

∂j−1

∂xj−1m

ψr(xm)

)
1≤j≤k
1≤r≤k

det (∆iφr(x1, . . . , xm−1))1≤j≤k
1≤r≤k

By (3.29) and (3.30) we get

U(x1, . . . , xm) = W (xm)G(x1, . . . , xm−1) (3.32)

Note that P (x1, . . . , xm) ∈ Z[x1, . . . , xm], therefore

∆iP (x1, . . . , xm) ∈ Z[x1, . . . , xm]

⇒ 1

(j − 1)!

∂j−1

∂xj−1m

(∆iP ) ∈ Z[x1, . . . , xm]

⇒ U(x1, . . . , xm) ∈ Z[x1, . . . , xm]

Since, φ1, . . . , φk and ψ1, . . . , ψk are polynomials with integer coefficients,
W (xm) and G(x1, . . . , xm−1) are also polynomials with integer coefficients.
Thus, U(x1, . . . , xm) = W (xm)G(x1, . . . , xm−1) ∈ Z[x1, . . . , xm−1]

To be able to calculate ind(a;r) P we will first find the lower and upper
bound for ind(a;r) U involving ind(a;r) P .

Claim 3: Let θ = ind(a;r) P , then we have

−kε
2

24
+

k∑
j=1

max
j

(
θ − j − 1

rm
, 0

)
≤ ind(a;r) U ≤

kε2

6

Firstly we will prove the upper bound, that

ind(a;r) U ≤
kε2

6

Using Lemma 3.4.6(3.) on (3.32) we get:

ind(a;r) U = ind(a;r)W + ind(a;r)G
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Hence it is enough to prove that ind(a;r)W ≤ kε2/12 and ind(a;r)G ≤ kε2/12
To estimate the ind(a;r)W and ind(a;r)G we will use induction hypothesis

of lemma. Replace m by m − 1 in the hypotheis of the lemma and set
parameters as follows

ε′ =
ε2

12
and ω′ = ω′(m− 1, ε′) =

24

2m−1

(
ε′

12

)2(m−1)−1

= 2ω(m, ε)

Take kr1, . . . , krm−1 as given positive integers. Since it is given that ωrh ≥
rh+1, we get

ω′krh = 2ωkrh ≥ 2krh+1 ≥ krh+1

Therefore, ω′rh ≥ r′h+1 where r′ = krh for h = 1, . . . ,m− 1. Also,

bω
′γ

h = b2ωγh =
(
bωγh
)2 ≥ (23m)2 ≥ 23(m−1)

We need to check that
JGK ≤ bω

′γkr1
1

Since, U = WG, product of integer coefficient polynomials,

JUK ≥ JW K and JUK ≥ JGK

So it is enough to compute the heights of JUK.
Note that W (x1, . . . , xm) is a determinant of those polynomials of the

form Pi(x1, . . . , xm) with i1 + . . .+ im−1 ≤ rm and im ≤ rm. Since determi-
nant is a sum of those terms, each of which is product of at most k number
of elements of the form Pi(x1, . . . , xm) we see that

JUK ≤ JPiKk

for some i = (i1, . . . , im) with i1 + . . .+ im−1 ≤ rm and im ≤ rm . Also, from
Lemma 3.4.2, we get

JPiK ≤ 2r1+...+rmJP K

⇒ JUK ≤
(
2r1+...+rmJP K

)k
By given hypothesis we know that r1 + . . .+ rm ≤ mr1 ≤ 3mr1 with JP K ≤
bωγr11 , hence

JUK ≤ 23mr1kbωkr1γ1

Moreover since, bωγ1 ≥ 23m, we get

JUK ≤ bωkr1γ1 · bωkr1γ1 = b2ωkr1γ1

⇒ JW K ≤ b2ωkr1γ1 = b
ω′r′1γ
1 and JGK ≤ b2ωkr1γ1 = b

ω′r′1γ
1
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Hence we see that for ε′, ω′, r′1, . . . , r
′
m−1 we have b

r′h
h = bkrhh ≥ (br11 )k = b

r′1
1

and bωγh ≥ 23m for h = 1, . . . ,m together with JGK ≤ b
ω′r′1γ
1 . Thus by

induction hypothesis we get

ind(a;r′)G ≤ ε′

⇒ ind(a;kr)G ≤
ε2

12

⇒ ind(a;r)G ≤
kε2

12

Now we will apply induction on W (xm). Choose m′′ = 1, ε′′ = ε2

12 , krm for
r1, . . . , rm and ω′′ ≥ ω(1, ε′′) ≥ 2ω(m, ε). Also we know that

JW K ≤ b2ωkr1γ1 ≤ bω
′′r′′1 γ

1 < b
ω′′r′′1
1

Hence,

ind(a;kr)W ≤ ε′′ =
ε2

12

⇒ ind(a;r)W ≤
kε2

12

Therefore, as desired

ind(a;r) U ≤
kε2

6

Now we will prove the lower bound

−kε
2

24
+

k∑
j=1

max
j

(
θ − j − 1

rm
, 0

)
≤ ind(a;r) U

Let (p1, p2, . . . , pm−1) ∈ Zm−1≥0 be such that p1 + . . .+pm−1 ≤ k−1 ≤ rm
and q ≥ 0 is an integer such that q − 1 ≤ k − 1 ≤ rm. Then by Lemma
3.4.6(1.) we know that if q = (p1, p2, . . . , pm−1, q − 1), then

ind(a;r) Pq ≥ ind(a;r) P −
(
p1
r1

+ . . .+
pm−1
rm−1

+
q − 1

rm

)
= θ −

(
p1
r1

+ . . .+
pm−1
rm−1

)
− q − 1

rm

As per given statement we have, r1 ≥ . . . ≥ rm, therefore

ind(a;r) Pq ≥ θ −
(

p1
rm−1

+ . . .+
pm−1
rm−1

)
− q − 1

rm

= θ −
(
p1 + . . .+ pm−1

rm−1

)
− q − 1

rm

≥ θ −
(

rm
rm−1

)
− q − 1

rm
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Also, it is given that ωrm−1 ≥ rm, we get

ω ≥ rm
rm−1

Therefore,

ind(a;r) Pq ≥ θ − ω −
q − 1

rm
Note that this lower bound is independent of the chosen p1, . . . , pm−1. More-
over,

ω =
24

2m

( ε
12

)2m−1

∀m ≥ 2

⇒ ω ≤ 24

22

( ε
12

)22−1

⇒ ω ≤ ε2

24
Therefore,

ind(a;r) Pq ≥ θ −
ε2

24
− q − 1

rm
But since index is always positive,

ind(a;r) Pq ≥ max

{
θ − ε2

24
− q − 1

rm
, 0

}
Observe that each entry in column q of the determinant defining U is of type
P(p1,...,pm−1,q−1) Also using Lemma 3.4.6(2.),(3.) we get

ind(a;r) U ≥
k∑
q=1

ind(a;r) Pq

≥
k∑
q=1

max

{
θ − ε2

24
− q − 1

rm
, 0

}

≥
k∑
q=1

(
− ε

2

24
+ max

{
θ − q − 1

rm
, 0

})

= −kε
2

24
+

k∑
q=1

max

{
θ − q − 1

rm
, 0

}
Hence completing proof of Claim 3.

Claim 4: Proof of this lemma directly follows from Claim 3
By Claim 3 we get:

k∑
j=1

max
j

(
θ − j − 1

rm
, 0

)
≤ kε2

6
+
kε2

24
=

5kε2

24
≤ kε2

4
(3.33)

Now by using this we will prove our lemma.
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Case 1: θ >
k − 1

rm

k∑
j=1

max
j

{
θ − j − 1

rm
, 0

}
=

k∑
j=1

(
θ − j − 1

rm

)

= kθ − 1

rm

k∑
j=1

(j − 1)

= kθ − 1

rm

(k − 1)k

2

=
k

2

(
2θ − k − 1

rm

)
=
k

2

(
θ +

(
θ − k − 1

rm

))
By (3.33),

k

2

(
θ +

(
θ − k − 1

rm

))
≤ kε2

4

⇒ kθ

2
<
k

2

(
θ +

(
θ − k − 1

rm

))
≤ kε2

4

⇒ θ ≤ ε2

2
≤ ε

Case 2: θ ≤ k − 1

rm
In this case,

k∑
j=1

max
j

{
θ − j − 1

rm
, 0

}
=

bθrmc∑
j=0

(
θ − j

rm

)
= (bθrmc+ 1) θ − 1

rm

bθrmc (bθrmc+ 1)

2

=
bθrmc+ 1

2

(
2θ − bθrmc

rm

)
=
bθrmc+ 1

2

(
θ +

(
θ − bθrmc

rm

))
Again by (3.33) we get:

⇒ bθrmc+ 1

2
θ ≤

k∑
j=1

max
j

{
θ − j − 1

rm
, 0

}
≤ kε2

4
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Since, bθrmc+ 1 ≥ θrm, we observe that from above inequality,

θrm
2
θ ≤ kε2

4

⇒ rmθ
2 ≤ kε2

4

Note that k ≤ rm + 1 ≤ 2rm because degP xm ≤ rm and hence k ≤
degP xm + 1

⇒ rmθ
2 ≤ 2rmε

2

4

⇒ θ2 ≤ ε2

2

⇒ θ ≤ ε√
2
≤ ε

Proof of Theorem 3.2.1. Claim : For a given algebraic integer α of degree
d ≥ 2 and 0 < δ < 1 real number, the inequality∣∣∣α− a

b

∣∣∣ < 1

b2+δ
(3.34)

has finitely many solutions in rational numbers.
Suppose, on the contrary, that there exist infinitely many rational so-

lutions a/b satisfying given inequality. Then the denominators of a/b are
unbounded. Now we proceed as follows:

1. Choose a real number ε > 0, such that 0 < ε < δ
36 . Since δ < 1, we

see that 0 < ε < 1
36 <

1
12 .

2. Choose an integer m with m ≥ 16ε−2 log(4d). Define ω = ω(m, ε) =
24
2m

(
ε
12

)2m−1

3. Let a1/b1 be a solution of (3.34) with (a1, b1) = 1, b1 > 0 such that
bω1 > Hm (H from Theorem 3.4.1), and bδ1 > D (put h = 1 in Theorem
3.4.2) and bω1 ≥ 23m (put γ = 1 in Lemma 3.6.1 )

4. Choose a2
b2
, . . . , ambm satisfying (3.34), with (ah, bh) = 1, bh > 0 for

h = 2, . . . ,m, so that

ω log bh+1 ≥ 2 log bh

for h = 1, . . . ,m− 1. This implies that b1 < b2 < . . . < bm, and hence
bδh > D (as in Theorem 3.4.2) and bωh ≥ 23m (put γ = 1 in Lemma
3.6.1) hold for h = 1, 2, . . . ,m
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5. Let r1 be an integer so large that εr1 log b1 ≥ log bm

6. For 2 ≤ h ≤ m, put

rh =

⌊
r1 log b1
log bh

⌋
+ 1

Then for 2 ≤ h ≤ m we have

r1 log b1 < rh log bh (by 6.)

≤ r1 log b1 + log bh (by 6.)

≤ (1 + ε)r1 log b1 (by 5.)

This gives br11 ≤ brhh ≤ b
(1+ε)r1
1 (as in Theorem 3.4.2) and brhh ≥ br11 (with

γ = 1 in Lemma 3.6.1)
From the above sequence of inequalities it follows that

rh+1 log bh+1 ≤ (1 + ε)rh log bh

where h = 1, . . . ,m− 1. Therefore, for h = 1, . . . ,m− 1, we have

ωrh ≥ ω
rh+1 log bh+1

(1 + ε) log bh

≥ 2

1 + ε
rh+1 (by 4.)

Thus leading to ωrh ≥ rh+1 (as in Lemma 3.6.1).
The conditions of Theorem 3.4.1 (Index Theorem) are satisfied, since

m ≥ 16ε−2 log(4d) holds. Let P (x1, . . . , xm) be a polynomial satisfying the
conclusions of Theorem 3.4.1. The hypothesis of Theorem 3.4.2,

I. 0 < ε < δ
36

II. |α− ah/bh| < b−2−δh for h = 1, 2, . . . ,m

III. bδh > D for h = 1, 2, . . . ,m

IV. br11 ≤ b
rh
h ≤ b

(1+ε)r1
1 for h = 1, 2, . . . ,m

also hold. Hence,
ind(a;r) P ≥ εm (3.35)

where a =
(
a1
b1
, . . . , ambm

)
and r = (r1, . . . , rm) ∈ Zm≥1.

On the other hand, the hypothesis of Lemma 3.6.1 hold with γ = 1,

I. 0 < ε < 1
12

II. ω = ω(m, ε) = 24
2m

(
ε
12

)2m−1
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III. ωrh ≥ rh+1 for h = 1, . . . ,m

IV. brhh ≥ b
r1
1 for h = 1, . . . ,m

V. qωh ≥ 23m for h = 1, . . . ,m

VI. JP K ≤ bωr11 , since

JP K ≤ Hr1+...+rm (by Theorem 3.4.1)

≤ Hmr1 (by 6.)

≤ bωr11 (by 3.)

Hence,
ind(a;r) P ≤ ε (3.36)

where a =
(
a1
b1
, . . . , ambm

)
and r = (r1, . . . , rm) ∈ Zm≥1.

We observe that, the two conclusions drawn from our assumption of
infinite solutions, (3.35) and (3.36), contradict each other. Hence our as-
sumption was wrong and (3.34) has only finitely many solutions.

3.7 Solutions to Diophantine Equations

As indicated in Introduction of this report, Diophantine approximation can
be used to determine the number of solutions of Diophantine equations.

Example 3.7.1. Prove that there are finitely many integer solutions of

x3 − 2y3 = 11

Solution. If (x, y) is a solution, then x/y must be close to 3
√

2 (assuming |x|
or |y| is large, which would imply both are large):∣∣∣∣xy − 3

√
2

∣∣∣∣ =

∣∣∣∣ 11

y(x2 + xy 3
√

2 + y2 3
√

4)

∣∣∣∣� 1

|y|3

Thus Roth’s theorem implies that given equation has only finitely many
solutions.

But we have more general results, some of which we will discuss in this
section.

Definition (Thue Equation15). Suppose f(x, y) is a binary form with ra-
tional coefficients, and with at least 3 distinct linear factors (with algebraic
coefficients). Then if m is non-zero real number, the diophantine equation
f(x, y) = m, is known as Thue equation.

15Historically, Thue equation was the driving force behind the development of Roth’s
theorem.
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Theorem 3.7.1 (Finite Solutions of Thue Equations). Let f(x, y) = a0x
d+

a1x
d−1y + . . . + ady

d with ai ∈ Z be a form of degree d ≤ 3 which is irre-
ducible16 over Q and m be given. The equation, f(x, y) = m has only finitely
many integer solutions (x, y).

Proof. Factoring f(x, y) over C, we can write

a0(x− α1y) · · · (x− αdy) = m

where α1, . . . , αd are algebraic numbers of degree d and conjugates of one
another. Then dividing by yd and taking absolute values gives

|a0|
∣∣∣∣α1 −

x

y

∣∣∣∣ · · · ∣∣∣∣αd − x

y

∣∣∣∣ =

∣∣∣∣myd
∣∣∣∣ (3.37)

Without loss of generality, we have

|x− α1y| = min
1≤i≤d

|x− αiy|

which is the same as ∣∣∣∣α1
x

y

∣∣∣∣ = min
1≤i≤d

∣∣∣∣αi − x

y

∣∣∣∣
Also, let

γ =
1

2
min
i 6=j
|αi − αj | > 0

If y is large, then both sides of (3.37) will be small. In particular, |α1−x/y|
will be small. But, for i 6= j we observe that∣∣∣∣αi − x

y

∣∣∣∣ ≥ |αi − α1| −
∣∣∣∣α1 −

x

y

∣∣∣∣ ≥ 2γ − γ = γ (3.38)

Then we have∣∣∣∣α1 −
x

y

∣∣∣∣ =
d∏
i=2

∣∣∣∣αi − x

y

∣∣∣∣−1 ∣∣∣∣ ma0yd
∣∣∣∣ (from (3.37))

≤
∣∣∣∣ m

a0γd−1

∣∣∣∣ 1

|y|d
(from (3.38))

Now, since d ≥ 3, Roth’s theorem implies that there is only finite number
of solutions (x, y).

Theorem 3.7.2 (Siegel’s Theorem17). If α is an algebraic number of degree
d, then there is an c(α), depending only on α, such that∣∣∣α− a

b

∣∣∣ > c(α)

b2
√
d

16A polynomial is said to be irreducible if it cannot be factored into nontrivial polyno-
mials over the same field. Also, such a form f can never be irreducible over C.

17This theorem lead to Siegel’s Conjecture, hence is a predecessor of Roth’s Theorem
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Theorem 3.7.3 (Pillai18). Let a, b,m and n be natural numbers and δ > 0.
Then for any integral x and y if we have amx − bny 6= 0, then we have

|amx − bny| > m(1−δ)x

for all x > x(δ) where x(δ) depends on m,n, a, b and δ.

Proof. Suppose that u and v are positive integers, such that a/b is not a
perfect rth power and 1

2au
r < bvr < aur. If

w =
(a
b

) 1
r
u = αu

then α is an algebraic number of degree r at most, and

aur − bvr = b(wr − vr)
= b(wr−1 + wr−2v + . . .+ vr−1)(w − v)

> brvr−1(w − v)
(
∵ wr =

a

b
ur > vr

)
= br

(v
u

)r−1
ur−1(w − v)

> br
( a

2b

) r−1
r
ur
(
α− v

u

) (
∵
a

2b
<
vr

ur
<
a

b

)
> br

( a
2b

) r−1
r
c(α)ur−2

√
r (Siegel’s Theorem)

This is also true if 0 < bvr ≤ 1
2au

r < aur, so that it holds whenever aur−bvr
is positive.

Similarly, whenever bvr − aur is positive, 1
2bv

r < aur < bvr, we get

bvr − aur > b
21/r

2(21/r − 1)

u

v
vr
(v
u
− α

)
>

b21/r

2(21/r − 1)

(
b

2a

)1/r

vr
(v
u
− α

)
>

b21/r

2(21/r − 1)

(
b

2a

)1/r

c(α)vr−2
√
r

Hence in general,
|aur − bvr| > Kzr−2

√
r (3.39)

where u and v are any positive integers, and z being u or v. Also, K depends
on a, b and r.

18Neither Liouville’s nor Thue’s theorems would be strong enough for Pillai’s applica-
tion. It is essential to have an exponent of lower order of magnitude than r.
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Let r be any positive integer and x and y are very large as compared to
r. For natural numbers s, t we can write{

x = sr + h (0 ≤ h < r)

y = tr + l (0 ≤ l < r)

Then,
|amx − bny| = |amh ·mrs − bnl · ntr|

Let, ms = u and nt = v to get

|amx − bny| = |amh · ur − bnl · vr|

Then by (3.39) we get

|amx − bny| > Kur−2
√
r

where K depends on a, b, h, l and r. Since the number of values of h and l
concerned depends only on r, let K0 be the minimum of all K’s, hence

|amx − bny| > K0u
r−2
√
r

= K0u
(1− 2√

r
)r

> u

(
1− 2√

r
− ε
r

)
r

where x > x(ε) and ε→ 0, which depends only on K0 and x.
But, ur = msr = mx−h, and accounting the dependency of x, r and h we

get,

|amx − bny| > m

(
1− 2√

r
− ε
r

)
(x−h)

> m

(
1− 2√

r
− ε
r

)
x

Now for given δ, we can choose x(δ) and r so that 2√
r
+ ε
r < δ for all x > x(δ),

leading to
|amx − bny| > m(1−δ)x

Definition (Pillai Equation19). Given positive integers a, b, c,m, n with a ≥
2 and b ≥ 2, the equation

amx − bny = c

where the unknown x, y are nonnegative integers, is known as Pillai Equation
or Pillai’s Diophantine Equation.

Corollary 3.7.1. Let a, b, c,m and n be natural numbers, then the equation

amx − bny = c

has only finite number of solutions.

19It is a subclass of exponential diophantine equations.
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Conclusion

Roth’s theorem can be restated as

Theorem. Let α be an irrational algebraic number. Then for any ε > 0
there is a quantity cα,ε such that∣∣∣α− a

b

∣∣∣ > cα,ε
b2+ε

As stated by Terence Tao in Roth’s obituary20,

An important point is that the constant cα,ε is ineffective - it is
a major open problem in Diophantine approximation to produce
any bound significantly stronger than Liouville’s theorem with
effective constants. This is because the proof of Roth’s theorem
does not exclude any single rational a/b from being close to α,
but instead very ingeniously shows that one cannot have two
different rationals a/b, a′/b′ that are unusually close to α, even
when the denominators b, b′ are very different in size.

All results obtained by the method of Thue, Siegel and Roth share the
disadvantage that they are non-effective. Effective bounds, which however
don’t imply Roth’s, Thue’s or Siegel’s Theorem unless α is of a special type,
were given by Alan Baker.21

The method of proof of Roth’s Theorem can easily be used to prove some
other modifications, for example, consider following theorem by Ridout22

Theorem. Let α be any algebraic number other than 0; let P1, . . . , Ps,
Q1, . . . , Qt be distinct primes; and let µ, ν, c be real numbers satisfying

0 ≤ µ ≤ 1, 0 ≤ ν ≤ 1, c > 0

20K. F. Roth died about a month before start of this project, on 10 November 2015,
aged 90. https://terrytao.wordpress.com/2015/11/12/klaus-roth/

21see: Baker, A., ‘Rational Approximations to certain algebraic numbers’, Proc. London
Math. Soc., (3) 14 (1964), 385-398.

22 Ridout, D., ‘Rational approximations to algebraic numbers’, Mathematika, 4 (1957),
125-131, doi:10.1112/S0025579300001182
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Let p, q be restricted to integers of form

p = p∗P ρ11 · · ·P
ρs
s , q = q∗Qσ11 . . . Qσtt

where ρ1, . . . , ρs, σ1, . . . , σt are non-negative integers and p∗, q∗ are integers
satisfying

0 < |p∗| ≤ cpµ, 0 < q∗ ≤ cqν

Then if κ > µ+ ν, the inequality

0 <

∣∣∣∣α− p

q

∣∣∣∣ < 1

qκ

has only finite number of solutions in p, q.

An important point to note here is that unlike Roth’s Theorem, this
theorem does not become trivial if α is rational.

The Subspace Theorem of W.M. Schmidt (Theorem 1B in Chapter VI
of [8]), is a powerful generalisation of the Roth’s Theorem. It deals with the
approximation of algebraic numbers and says that tuples of algebraic num-
bers do behave like almost all tuples. Another point of view is the metrical
one, dealing with almost all numbers. The metric theory of Diophantine
approximation provides statements which are valid for almost all (real or
complex) numbers, that means for all numbers outside a set of Lebesgue
measure 0. (see §1.2 of [11]).

I will conclude my report with two famous conjectures in Diophantine
Approximation:

• Littlewood’s Conjecture23(1930): For all pairs of real numbers α and
β, we have that

lim inf
n→∞

n‖nα‖‖nβ‖ = 0

where ‖x‖ denote distance of x from the nearest integer.

• Zaremba’s Conjecture24(1971): For a fixed finite set A ⊂ N, let RA be
the set of all finite continued fractions with all partial denominators
bounded by an integer A := maxA

RA =

{
b

d
= [0; a1, . . . , ak] : 0 < b < d, gcd(b, d) = 1, and∀j, aj ∈ A

}
and let DA ⊂ N be the set of denominators of fractions in RA,

DA =

{
d ∈ N : ∃ gcd(b, d) = 1with

b

d
∈ RA

}
Then for sufficiently large A, DA = N holds.

23see: Haynes, A. and Munday, S., ‘Diophantine Approximation and Coloring’, The
American Mathematical Monthly, Vol. 122, No. 6 (June-July 2015), 567-580

24see: Borwein, J.,et al., Neverending Fractions. An Introduction to Continued Frac-
tions, Australian Mathematical Society Lecture Series 23 (Cambridge University Press,
Cambridge, 2014) pp. 117.
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