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Abstract. We give an explicit version of the “Deuring correspondence” between super-
singular elliptic curves and maximal quaternionic orders, by presenting a deterministic and
explicit algorithm to compute it.

1. Introduction

In this note all fields of positive characteristic will be either finite or function
fields of curves defined over a finite algebraic extension of F,. Elliptic curve
means often isomorphy class of elliptic curves. All quadratic forms have inte-
gral coefficients. For details see [Cn].

Let k be a finite field of characteristic p with fixed algebraic closure k. Let
E be an elliptic curve over k and k(F) its function field. Such a curve is called
supersingular if one, and hence all, of the following equivalences are satisfied:

1. E(k) has no p torsion;
2. Endy(E) is a 4-dimensional Z-lattice;
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3. k(E) has no cyclic (separable and unramified) p-extensions.

Around the 30’s Helmut Hasse proved the Riemann hypothesis for zeta func-
tions of elliptic curves. He was also the first to observe, that besides the two well
known cases of endomorphism rings of elliptic curves - namely Z or an order
in an imaginary quadratic field extension of Q, the so called complex multi-
plication case -, it was also possible to have an order of a definite quaternion
algebra when the base field had positive characteristic. Max Deuring was able
to compute the discriminant of this definite algebra. In [Deu41b] he proved
that the algebra ramifies at p and at co. Furthermore in [Deu41a] he proved
that the endomorphism rings of elliptic curves over a finite field of characteristic
p are maximal orders in the quaternion algebra Q) (the subindex shows the
ramification places of the algebra), and that all maximal orders types of that
algebra appear as endomorphism rings of supersingular elliptic curves over IF_p.

In this note, we recall this correspondence, describe an explicit and deter-
ministic algorithm to compute it and illustrate this algorithm in a concrete
example.

2. Deuring correspondence

In the introduction we said that Deuring proved that every maximal order
type (isomorphy class) of the quaternion algebra Q. , appears as an endomor-
phism ring of a supersingular elliptic curve over F,. But a bijection does not
hold in this picture. In order to explain a bijection, we use the property (3) of
supersingular elliptic curves.

In [HW36] Hasse and Witt study under which conditions a function field
of characteristic p possesses cyclic unramified p-extensions. For the case of
elliptic function fields they give an invariant A depending on the j invariant of
the elliptic function field, such that A = 0 if and only if the elliptic function
field has no cyclic unramified p-extensions, and therefore by (3), if and only
if the elliptic curve is supersingular. This A invariant, called the Hasse-Witt
invariant of the function field, is actually a polynomial in j, which was first
computed in [Deudla, page 201]. With this easily computable polynomial we
can find the explicit equations for all the supersingular elliptic curves over F_p.
Moreover, this Hasse-Witt polynomial factors over I, [j] with factors of degree
at most 2. Now we state the Deuring correspondence:

Theorem 2.1. [Deudlal Let p be a prime, and let A(T) € F,[T] be the char-
acteristic p Hasse-Witt polynomial. For any jo € F, denote by E(jo) any
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elliptic curve in the isomorphy class of those with j-invariant jo. Then A(T)
factors as a product of at most degree 2 polynomials (in F,[T]) and to these
factors correspond bijectively the mazimal order types of the quaternion algebra
Qoo,p. The bijection is as follows:

for any irreducible factor A; of A, choose a root, say jo € F,2; then:

Ai [ad EndE(E(]z))

So, to make this correspondence explicit means to be able to compute the
endomorphism ring of any supersingular elliptic curve (up to isomorphy), that
means to compute the order type of the endomorphism ring. Let us take a look
at the problem in two particular cases.

Example 2.2. Consider two illustrative cases, p = 29 and p = 37.
Case p = 29:

Here the Hasse-Witt polynomial is Az9(T) = T(T —2)(T +4), and there are
only three supersingular elliptic curves over Fag, namely E(0), E(2) and E(25).
In the quaternion algebra over Q ramified only at oo and 29 there are three
isomorphy classes of mazximal orders. Their Z-bases can be computed explic-
itly as in [Piz80] (see also the implementations made by F. Rodriguez-Villegas,
http://www.ma.utexas.edu/users/villegas/cnt/). Instead we are going to
avoid the computation of such bases until the very end of the algorithm, and

we label those mazimal order types by Oy, O, Oj3.
Case p = 37:

Here A37(T) = (T —8)(T%—6T—6). This is the first prime where the Hasse-
Witt polynomial has a nonlinear factor. The supersingular elliptic curves here
are E(8), E(3+10v2) and E(3 —10v/2). As explained in (2.1), the last two
curves have the same endomorphism ring type, hence there are only two maxi-
mal order types in Qoo 37, say O and 0.

The problem is to determine which supersingular elliptic curve corresponds
to which order type. This will be solved at the end of this paper.

Note that David Kohel in his Berkeley thesis [Koh96] (using a different
approach) proved a theorem which says that for any given supersingular el-
liptic curve E there exists an algorithm to compute four linearly independent
endomorphisms of F, with running time O(p3/?) (Theorem 75, loc.cit.). In
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the proof he computes the discriminant of the suborder generated by the inde-
pendent endomorphisms found in his theorem, but cannot control it, and then
cannot assure that the result is a Z-basis of the endomorphism ring(".

We propose an algorithm that, for a given prime p, returns a list of pairs
(Ex,{1,e7,€3,e3}), where E) runs over all supersingular elliptic curves over
F, and the second coordinate is a Z-basis of the endomorphism ring of Ej.
Since we reduce this problem to a problem of computing on one side represen-
tation numbers and on the other graphs of isogenies, by [Piz80] (for computing
the representation numbers) and [Mes86] (for the isogenies graph complexity)
we have that the theoretical complexity of our algorithm is O(p5/ 2), much bet-
ter than the complexity of the already implemented version in PARI, which is
more or less O(p*). Observe that this algorithm gives all the bases of endomor-
phism rings of supersingular elliptic curves over F_p and Kohel’s more flexible
theoretical algorithm works for one curve at a time, at the expense of loosing
certainty, on whether one obtains a base of the maximal order or a base of a
finite index sub-order.

2.1. Brandt-Sohn correspondence. We want to explain briefly a connec-
tion between maximal order types of the quaternion algebras Q. , and ternary
quadratic forms of discriminant —p. In [Bra43] Brandt constructs maximal
orders of quaternion algebras from ternary lattices via Clifford algebras. His
idea was then exploited by Friedhelm Sohn in his Dissertation [Soh57], where
he proves the following;:

Theorem 2.3. There exists an explicit bijection between the classes of ternary
quadratic forms of discriminant —p and the maximal order types of the quater-
nion algebra Q 5.

Indeed, given any ternary quadratic form
f= a11£% + a22$§ + a33x§ + a1221T2 + 137123 + A23X2T3
with a;; € Z we associate the Z-order with basis 1, e, ez, e3 where:
612 = ajkei — ajjakk,
(1) eiej = ag(ai; — ex),
eje; = aige1 + asxe2 + asrpes — Aika ik,

with (7,7, k) any even permutation of {1,2,3} (see [Brz95]). Therefore once
we know a complete set of representatives of the equivalence classes of ternary

(DSee Theorem 84 loc.cit. for conditions when the algorithm gives a base of the endomor-
phism ring and comment thereafter.
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quadratic forms of discriminant —p, we can directly compute the Z-bases of
all maximal order types of Q. . Now, since all the quadratic forms of dis-
criminant —p belong to the same genus, we can use an algorithm of Rainer
Schulze-Pillot [SP91] based on the ¢-neighbors concept introduced by Martin
Kneser to compute a representative for each equivalence class, therefore given
any prime number p we can compute the bases of representatives for all the
maximal order types of Qo p.

3. The algorithm

We now state a key theorem assuring that the algorithm works.

Theorem 3.1. [Sch97| The theta series determine the equivalence classes of
definite ternary quadratic forms over Q. This means that any two definite
ternary quadratic forms over Q are integrally equivalent if and only if they
have the same representation numbers.

Recall, that the representation numbers of a definite quadratic form f of
dimension d are the:

r(f,n) = #{z € Z?| f(z) = n}; n € Z;

and then the theta series for f is:

I(z) = Z exp(2mir(f,n)z); z € H.
neZ
It is a classical result that these theta series are in fact modular forms of
weight d/2 and level the level of the quadratic form; see [SP84] in particular
for the case d = 3. Since there is only one genus for discriminant —p, all the
theta series corresponding to quadratic forms of discriminant —p have the same
Eisenstein part, and therefore they differ, if at all, in the cuspidal part. C.L.
Siegel in his papers on the analytic theory of quadratic forms gives an explicit
bound to decide whether a cusp form is zero or not. This bound grows like p/12.

Moreover Schiemann gives also a bound b(p), which in our case depends
only on the discriminant, such that for any two definite quadratic forms f, g of
discriminant —p holds:

r(f,n) =r(g,n) Vn € Z with |n| < b(p) = f and g are integrally equivalent.

For computational purposes Siegel’s bound is better for us and we use it in the
implementation; but asymptotically they are the same.
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Now let us go back to our problem. After (3.1), we can distinguish between
any two non-equivalent definite ternary quadratic forms and hence by (2.3),
between any two maximal order types and finally by Deuring’s correspondence
(2.1) between two supersingular elliptic curves, and all this by means of look-
ing at the representation numbers up to a fixed bound given by, say Siegel, of
a set of representatives of the equivalence classes of ternary quadratic forms
of discriminant —p (by reduction theory, there are canonical representatives,
which are called reduced ternary quadratic forms).

So in order to comlete our algorithm, we must be able to pin-point the
supersingular elliptic curves using the data from the representation numbers of
the reduced ternary quadratic forms. Let us state this in our concrete examples.
We write a ternary quadratic form like in (and from) the table of Brandt-Intrau

a1 a2 ass
BI58|, namel = .
[ I v/ <a23 aiz a2

Ezxzample 3.2 (Continued). Case p = 29:

We compute the three reduced ternary quadratic forms of discriminant —29:

fi = (; (3) i), fo= (1 i é) fa = <(1) 1 110) ; which correspond to

the maximal orders Oy, 05 and Os.

Case p = 37:

. . 2 2 3 1 2 5
The two reduced ones in this case are: fi = <0 9 1> and fo = (1 1 O> .
Now our problem is to assign to each supersingular elliptic curve of Example
(2.2) one of these ternary quadratic forms.

To acomplish this, we must pass the information on the side of quadratic

forms and their representation numbers to the side of elliptic curves and iso-
genies. Before we make this explicit in the following proposition, we introduce
some notation.
Let f be any quadratic form and denote by O it’s associated order according
to (2.3). For any order & in Qu,, define: Ty,(0) := {(tr(a),nr(a)) € Z* | a €
0 and nr(a) < b}, where tr and nr are the reduced trace and reduced norm
of the quaternion algebra. Set I'(&) = 'y, (&), where bg is the Siegel bound.

Proposition 3.3. Let {f1,..., ft} be a complete set of representatives of re-
duced ternary quadratic forms of discriminant —p. Then the sets I'(Oy,) C 72
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fori=1,...,t are all different, i.e., these subsets characterize univocally the
mazimal order types in Qg p.

Now we make the simple observation:

Corollary 3.4. Since the trace and norm on elements of the order correspond
to the trace and (separable) degree of the endomorphisms of the elliptic curves,
we conclude, that the sets:

A(E) = {(trace(p), deg(¢)) € Z* | ¢ € Endg—(E) and deg(p) < bs},

characterize the supersingular elliptic curves of characteristic p.

Consequently, we must only have to compute the sets I'(0;) and A(E) for
f running through all the reduced ternary quadratic forms of discriminant —p
and F over all the supersingular elliptic curves of characteristic p, and then
establish the bijection just by comparing these sets. We make this clear in our:

Ezample 3.5 (Continued). Case p = 29:

F[S](ﬁfl (_173>;(1’3);<0’3)};

F[S](ﬁh (273);(_2’3)}§

Li51(Of,) = {(=3,3);(3,3);(0;3)}; where the subscript 3] denotes simply the
subset of norm 3 elements of I'. On the elliptic curve side, we simply con-
struct all quotients of the supersingular elliptic curves of degree 3 using [V71]
and for the trace one can avoid easily the polynomial running time algorithms
to do it, since one knows the possible traces, so by testing one gets that:

Li51(O0f,) = Ag)(E(2)), Ti51(Of,) = Ag)(E(25)) and T'(5(0y,) = Ag(E(0)).

) =A{
) =A{

Case p = 37:

Here the sets T'(31(0y,) and T'(31(0y,) are also different, but we do it with de-
gree 5 isogenies and get: I'5)(Oy,) = {(0,5)} and I';5(0y,) = {(—1,5); (1,5)}.
By comparing with the A’s of the elliptic curves we get: T'5)(O, ) = A (E(3+
10v2)) and T3 (0,) = Ay (E(8)).

Thus we are able to establish the correspondence between supersingular
elliptic curves and reduced ternary quadratic forms, and therefore by using
formula (1) we compute directly the bases of the endomorphism rings and
finish our algorithm.
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