
Elliptic Curve Handbook

Ian Connell

February, 1999

http://www.math.mcgill.ca/connell/



Foreword
The first version of this handbook was a set of notes of about 100 pages

handed out to the class of an introductory course on elliptic curves given in

the 1990 fall semester at McGill University in Montreal. Since then I have

added to the notes, holding to the principle: If I look up a certain topic a

year from now I want all the details right at hand, not in an “exercise”, so

if I’ve forgotten something I won’t waste time. Thus there is much that an

ordinary text would either condense, or relegate to an exercise. But at the

same time I have maintained a solid mathematical style with the thought

of sharing the handbook.

Montreal,

August, 1996.
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Chapter 1

Introduction to Elliptic

Curves.

1.1 The a, b, c ’s and ∆, j, . . .

We begin with a series of definitions of elliptic curve in order of increasing
generality and sophistication. These definitions involve technical terms which
will be defined at some point in what follows.

The most concrete definition is that of a curve E given by a nonsingular
Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (1)

The coefficients ai are in a field K and E(K) denotes the set of all solutions
(x, y) ∈ K × K, together with the point O “at infinity” — to be explained in
§1.3. We will see later why the a’s are numbered in this way; to remember the
Weierstrass equation think of the terms as being in a graded ring with

weight of x = 2
" " y = 3
" " ai = i

so that each term in the equation has weight 6. (This also “explains” the absence
of a5.)

A slightly more general definition is: a plane nonsingular cubic with a ra-
tional point (rational means the coordinates are in the designated field K and
does not refer to the rational field Q, unless of course K = Q). An example of
such a curve that is not a Weierstrass equation is the Fermat curve

x3 + y3 = 1, with points (x, y) = (1, 0), (0, 1),
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102 CHAPTER 1. INTRODUCTION TO ELLIPTIC CURVES.

assuming the characteristic of K, denoted charK, is not 3. In Corollary 1.4.2
we will see how to transform such an equation into Weierstrass form.

More general still: a nonsingular curve of genus 1 with a rational point. (As
we will explain later, conic sections — circles, ellipses, parabolas, and hyperbolas
— have genus 0 which implies that they are not elliptic curves.) An example
that is not encompassed by the previous definitions is

y2 = 3x4 − 2, with points (x, y) = (±1,±1),

assuming charK 6= 2, 3. Proposition 1.2.1 below explains how to transform such
quartic equations into Weierstrass form (without using 4

√
3 or

√
−2 !).

Alternative terminology which emphasizes the algebraic group structure:
abelian variety of dimension 1.

More abstractly: E is a scheme over a base scheme S (e.g. spec K) which
is proper, flat and finitely presented, equipped with a section . . . : there is little
point to state all the technicalities at this time. Suffice it to say that the work
of Tate, Mazur and many others makes it plain that it is essential to know the
language of schemes to understand the deeper arithmetic properties of elliptic
curves. (More easily said than done!)

Now let us begin to fill in some details. Consider a Weierstrass equation (1),
which we denote as E. If charK 6= 2 we can complete the square by defining
η = y + (a1x + a3)/2:

η2 = x3 +
b2

4
x2 +

b4

2
x +

b6

4
(2)

where b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6. (3)

If charK 6= 3 we can complete the cube by setting ξ = x + b2/12:

η2 = ξ3 − c4

48
ξ − c6

864
(4)

where c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216b6. (5)

One then defines

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4, (6)

and ∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6. (7)

The subscripts on the b’s and c’s are their weights. We refer to (1), (2) and (4)

as the a-form, b-form and c-form respectively. The definitions (3) and (5)–(7)
are made for all E, regardless of the characteristic of K, and the condition that
the curve be nonsingular, and so define an elliptic curve, is that ∆ 6= 0, as we
will explain in §1.5. Then one defines j = c3

4/∆. For example

when charK = 2, ∆ 6= 0 =⇒ a1 and a3 are not both zero.
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Thus κ := 2y + a1x + a3

is nonzero† for every elliptic curve E in any characteristic. When charK 6= 2
we have κ = 2η and κ is determined up to sign by x. Note that

κ2 = 4x3 + b2x
2 + 2b4x + b6

is valid in all characteristics.
The covariants c4, c6 and the discriminant ∆ have weights 4,6,12 respec-

tively. The quantity j defined above when ∆ 6= 0 is called the j-invariant, or
simply the invariant of E; its weight is 0.

It is often convenient to include ∆ as a third covariant. Thus we say that

y2 + y = x3 − x2 (A11)

has covariants 16, −152, −11, meaning that c4 = 16, c6 = −152 and ∆ = −11.
The label A11 is the standard catalog name of this elliptic curve as in [AntIV];
we put the letter first, rather than 11A, so that A11 can be used as the name of
this curve in computer programs such as apecs; see the appendix to this chapter.
In [Cre92], which extends the catalog of [AntIV], the labelling has been modified
(with the former notation given in parentheses) — this curve is denoted A11;
by force of habit, we will use the notation of [AntIV] for curves contained in
that catalog, and then use Cremona’s notation for curves that are only in the
larger catalog.

For convenience of reference, we collect these various definitions in a box:

b2 = a2
1 + 4a2 ,

b4 = a1a3 + 2a4 ,

b6 = a2
3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4 ,

c4 = b2
2 − 24b4 ,

c6 = −b3
2 + 36b2b4 − 216b6 ,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 ,

κ = 2y + a1x + a3 ,

4b8 = b2b6 − b2
4 ,

1728∆ = c3
4 − c2

6 ,

j = c3
4/∆ = 1728 + c2

6/∆ .

The last three lines in the box are identities that one can verify on the computer.

†as an element of the field L = K(x, y) obtained as a quadratic extension K(x)(y) of the
transcendental extension K(x), where y is defined by equation (1). As will be discussed in
§1.6, L is called the function field of E, and P = (x, y) ∈ E(L) is called a generic point.
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Examples:

1. Suppose charK 6= 2. Then ∆ is 16 times the polynomial discriminant†

of the cubic on the right side of the b-form (2):

Dis
(

x3 + (b2/4)x2 + (b4/2)x + b6/4
)

= ∆/16.

Hence ∆ = 0 iff the cubic has a multiple root.
2. If charK 6= 2 or 3, an alternative to the c-form is

η′2 = ξ′3 − 27c̄4ξ
′ − 54c̄6, η′ = 63η, ξ′ = 62ξ.

Caution: We have put bars on the c ’s because with the displayed values for
the Weierstrass coefficients a1 = 0, . . . , a6 = −54c̄6 the formulas give c4 =
64c̄4, c6 = 66c̄6. In the case of (4), bars are not necessary: the calculated c’s
are the same as the c’s in the equation.

3.

y2 = x3 + bx + c

has covariants −48b, −864c, −16(4b3 + 27c2).

Thus provided ∆ = −2433c2 6= 0, y2 = x3 + c

has c4 = 0 and j = 0;

and provided ∆ = −64b3 6= 0, y2 = x3 + bx

has c6 = 0 and j = 1728 = 123.

4. “Generic j”: provided j 6= 0, 1728,

y2 + xy = x3 − 36

j − 1728
x − 1

j − 1728

has j-invariant = j; the covariants are

c4 = −c6 =
j

j − 1728
, and ∆ =

j2

(j − 1728)3
.

5. When K is the real field R we can take the equation in c-form η2 = ξ3+· · ·.
The cubic has either 1 or 3 real roots according as the discriminant ∆ is negative
or positive; thus as a real manifold there are 1 or 2 components. We will see in
§1.3 that the addition of the point O at ∞ will compactify the curve.

On the following interleaving sheet there are plots of three examples (the
same ones used in [Sil86,p.47]).

†in the usual sense Dis(f) = (−1)n(n−1)/2Resultant(f, f ′) where n = deg(f):

Dis(X2 + aX + b) = a2 − 4b,

Dis(X3 + aX2 + bX + c) = −4a3c + a2b2 + 18abc − 4b3 − 27c2,

in particular, Dis(X3 + bX + c) = −4b3 − 27c2, and

Dis(X4 + bX2 + cX + d) = 16b4d − 4b3c2 − 128b2d2

+144bc2d − 27c4 + 256d3.
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1.2 Quartic to Weierstrass

If K is a field, K∗ denotes the multiplicative group and K denotes an algebraic
closure.

Let F be a nonzero homogeneous polynomial in the variables U,W over the
field K. Recall that a root of F is a ratio U : W = α : β corresponding to a
linear factor βU − αW of F , where one but not both of α, β may be 0. For
example, the homogeneous quartic

U2W 2 − UW 3

has the double root U : W = 1 : 0 and the two simple roots 0 : 1, 1 : 1. If the
degree of F is n then over K, F has precisely n roots, some of which may be
coincident.

Let K be a field of characteristic 6= 2, and consider the curve defined by
an equation over K of the form v2 = a quartic in u with a rational point
(u, v) = (p, q). Replacing u by u + p we can assume that p = 0 :

v2 = au4 + bu3 + cu2 + du + q2.

When q 6= 0, such a curve is birationally equivalent to one given by a Weierstrass
equation:

Proposition 1.2.1 Let K be a field with charK 6= 2 and u, v transcendentals
over K satisfying

v2 = au4 + bu3 + cu2 + du + q2, (¶)

where a, b, c, d ∈ K, and q ∈ K∗. Then

x = (2q(v + q) + du)/u2,

y = (4q2(v + q) + 2q(du + cu2) − d2u2/2q)/u3

satisfy the Weierstrass equation with

a1 = d/q, a2 = c − d2/4q2,
a3 = 2qb, a4 = −4q2a,

a6 = a2a4 = a(d2 − 4q2c).

The discriminant ∆ of this Weierstrass equation is 0 iff the homogeneous quartic

aU4 + bU3W + cU2W 2 + dUW 3 + q2W 4

has a repeated root in K, i.e., iff either a = b = 0 or the polynomial on the right
in (¶) has a repeated root in K.

The inverse transformation is given by

u = (2q(x + c) − d2/2q)/y, v = −q + u(ux − d)/2q.
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In this birational correspondence, the point (u, v) = (0,−q) on (¶) corresponds
to the point (x, y) = (−a2, a1a2 − a3) on the Weierstrass curve.†

Remarks. The proposition essentially covers all cases where ∆ 6= 0, as we
can indicate now by anticipating some definitions and results that will be given
later. Consider

v2 = au4 + bu3 + cu2 + du + e, (#)

where at least one of a, b is nonzero, and the polynomial on the right has no
repeated roots in K. Then (#) is birationally equivalent over K to a Weierstrass
equation iff this curve has a rational place, which means that either

• there is a rational point (u, v) = (p, q), and then either

(i) q 6= 0 — replace u with u + p so the equation becomes that treated
directly by the proposition; or

(ii) q = 0 — replace u, v with 1/u + p, v/u2 to obtain an equation of the
type dealt with in (iv) below;

• or there is a rational place at ∞. This means that either

(iii) a = q2 ∈ K∗2 — there are two rational places at ∞ (cf. Proposi-
tion 2.2.8(b)): replacing u by 1/u and v by v/u2 puts (#) in the form
treated by the proposition; or

(iv) a = 0 — (#) is essentially already in Weierstrass form: take u =
x/b, v = y/b. When e = q2 ∈ K∗2, this gives a Weierstrass equa-
tion different from that of the proposition; but the two Weierstrass
equations can be transformed birationally one into the other.

The meaning of the inverse transformation is this: if x, y satisfy the Weier-
strass equation then u, v defined as rational functions in x, y in this way satisfy
(¶).
Proof. For all but the last statement of the proposition the verification is by
direct calculation, nowadays best performed on the computer. (The theorem
of Riemann-Roch discussed in Chapter 6 gives the theoretical explanation; see
Corollary 6.1.17). For example to see when ∆ = 0, one calculates

• when a 6= 0, then ∆ = 16D where D is the discriminant of the quartic on
the right of (¶);

• when a = 0, b 6= 0, then ∆ = 16b2D where D is the discriminant of the
cubic on the right of (¶);

• when a = b = 0 then ∆ = 0.

†John Cremona suggested adding this last statement.
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To obtain the image of (0,−q) we cannot simply substitute u = 0, v =
−q into the formulas for x and y since we get the indeterminate form 0/0.
L’Hôpital’s rule affords the quickest way to obtain the answer: we differentiate
the numerator and denominator of x twice with respect to u, and those of y three
times, using dv/du = (4au3 + · · · + d)/2v obtained by differentiating (¶), and
then cancel common factors such as 3! from the numerator and denominator of
the resulting fractions. Again the computer makes this relatively painless (and
may tempt the reader to find the point (u, v) corresponding to (x, y) = (−a2, 0)).
The validity of the method for all K with charK 6= 2 depends on the fact that
the functions have perfectly usable Taylor expansions (there is no problem with
factorials in denominators) which are most easily described in the field of formal
power series as follows.

Regard u as an indeterminate so that the field of rational functions K(u)
is canonically a subfield of the field K((u)) of formal power series, i.e., series
of the form

∑∞

N knun for some N ∈ Z, kn ∈ K. Now (¶) defines a quadratic
extension L = K(u)(v) of K(u) and there are two embeddings φ : L −→ K((u))
corresponding to the two square roots of au4 + · · ·. The one that is relevant
here is

φ(v) = −q

(

1 +
d

q2
u +

c

q2
u2 +

b

q2
u3 +

a

q2
u4

)1/2

= −q − d

2q
u +

[

d2

8q3
− c

2q

]

u2 + · · · .

Induction (or at worst a reference to the general binomial theorem in [Con82])
shows that 2 is the only prime that occurs in denominators, and substitution
yields

x =

[

d2

4q2
− c

]

+

[−d3

8q4
+

cd

2q2
− b

]

u + · · · ,

y =

[−d3

4q3
+

cd

q
− 2bq

]

+

[

5d4

32q5
− · · ·

]

u + · · · .

When u = 0 these expressions reduce to −a2 and a1a2 − a3 respectively.
Example The curve v2 = 3u4

1 − 2 was mentioned in §1.1 (in a different
notation) as an example of a curve of genus 1 with a rational point (u1, v) =
(1, 1). To apply the proposition we substitute u1 = u + 1, obtaining the curve

v2 = 3u4 + 12u3 + 18u2 + 12u + 1.

With a, b, c, d, q = 3, 12, 18, 12, 1, we find that

x = 2(6u + v + 1)/u2,

y = 4(−9u2 + 6u + v + 1)/u3,
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satisfy the Weierstrass equation

y2 + 12xy + 24y = x3 − 18x2 − 12x + 216.

We obtain a simpler Weierstrass equation by completing the square on the left
and then the cube on the right: the equation becomes

y2
1 = x3

1 + 24x1

where x1 = x + 6, y1 = y + 6x + 12.

Using the notation

(u1, v) 7→ (u, v) 7→ (x, y) 7→ (x1, y1),

the transformation formulas give

(−1, 1) 7→ (−2, 1) 7→ (−5, 23) 7→ (1, 5),

(−1,−1) 7→ (−2,−1) 7→ (−6, 24) 7→ (0, 0),

and L’Hôpital yields

(1,−1) 7→ (0,−1) 7→ (18,−240) 7→ (24,−120).

The inverse transformations yield, e.g.,

(x1, y1) = (1,−5) 7→ (u1, v) =

(

−33

13
,−1871

169

)

.

J. Fearnley raised the question: starting with different rational points on
the same quartic, how are the Weierstrass equations given by the proposition
related? We will see in a later chapter that the Riemann-Roch theorem implies
that one can pass from one equation to any other one by a transformation of
the form x = α2x1 + r, y = α3y1 + sα2x1 + t, where α, r, s, t ∈ K, α 6= 0. In the
language of §4.1, the elliptic curves are isomorphic.

The above proposition can be ‘reverse engineered’: given a point Q = (x0, y0)
satisfying a Weierstrass equation E, one can write down an equation (¶): v2 =
au4 + · · · as in the proposition, and birational transformations between E and
(¶), such that Q corresponds to (0,−q). The first step is to transform the
equation of E to a new Weierstrass equation E′ whose coefficients satisfy a′

6 =
a′
2a

′
4 and such that Q is transformed to (−a′

2, a
′
1a

′
2 − a′

3) as in the proposition.
For reference purposes we put the details in a
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Corollary 1.2.2 Let K be a field of characteristic 6= 2, let E be a Weierstrass
equation with coefficients a1 . . . , a6 ∈ K, and let Q = (x0, y0) ∈ E(K).

(a) Define

x′ = x + (x0 + a2)/2, y′ = y + (y0 + a1x0 + a3).

Then x′, y′ satisfy the Weierstrass equation with coefficients

a′
1 = a1,

a′
2 = −(3x0 + a2)/2 = −x′

0,

a′
3 = −(2y0 + a1(5x0 + a2)/2 + a3) = −y′

0 + a′
1a

′
2,

a′
4 = a1y0 + (a2

1 + a2/2)x0 + 3x2
0/4 + a1a3 − a2

2/4 + a4,

a′
6 = a′

2a
′
4.

In terms of the new x′, y′-coordinates,

Q = (x′
0, y

′
0) = (−a′

2, a
′
1a

′
2 − a′

3).

(b) Define

u =
2(x − x0)

y + y0 + a1x0 + a3

,

v =
2x + x0 + a2

4
u2 − a1

2
u − 1.

Then
v2 = au4 + bu3 + cu2 + du + 1 (¶′)

where
a = −a′

4/4, b = a′
3/2, c = a′

1
2
/4 + a′

2, d = a′
1.

The inverse transformations are

x = (2(v + 1) + du)/u2 − (x0 + a2)/2,

y = (4(v + 1) + 2(du + cu2) − d2u2/2)/u3 − (y0 + a1x0 + a3).

In this birational correspondence, Q corresponds to the point (u, v) = (0,−1) on
(¶′).

Proof. The verification of (a) amounts to some easy calculations, and (b) to
applying the formulas in the proposition where we have chosen q = 1. (There is
no real loss of generality in the proposition if we take q = 1 — this corresponds
to replacing v with qv and dividing (¶) by q2.)

We mention two points concerning the calculation of E′ :
1. If E satisfies a6 = a2a4 it is still usually necessary to make the transfor-

mation to E′ in order to have Q = (−a′
2, a

′
1a

′
2 − a′

3).
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2. Another application of the transformation produces no change: x′′ = x′

and y′′ = y′, hence a′′
i = a′

i.
Because the reciprocal quartic a + b/u + c/u2 + d/u3 + 1/u4 will arise on

several occasions, it is worthwhile to introduce special notation. It turns out
to be convenient to substitute 1/u = m/2 − a1/4, which produces a quartic
polynomial · · · + m4/16. Multiplying this by 16 and using the notation η0 =
y0 + (a1x0 + a3)/2, the resulting quartic is

QuarQ(m) = (b2
2/16 − 2b4 − b2x0/2 − 3x2

0) − 8η0m − (b2/2 + 6x0)m
2 + m4.

Combining the relation 1/u = m/2 − a1/4 with those connecting u, v with
x, y, we have

Corollary 1.2.3 With K and E as in the previous corollary, for each point
Q ∈ E(K) the quartic curve

v2 = QuarQ(m)

is birationally equivalent with E.

Here is a numerical example over K = Q:

E : y2 = x3 − x2 + x, Q = (0, 0), (A24)

E′ : y′2 = x′3 +
1

2
x′2 +

3

4
x′ +

3

8
, (x′

0, y
′
0) = (−1/2, 0),

QuarQ(m) = −3 + 2m2 + m4.

The significance of the fact that this polynomial has rational roots m = ±1 will
be revealed in §1.7.1.

Here are three examples of E with ∆ = 0: y2 = x3, y2 = x3 + x2, and
y2 = x3 − x2. For these three E, Quar(0,0)(m) is, respectively,

m4, (m − 1)2(m + 1)2, (m2 + 1)2.

We quote from [Ada-Ra80, p.483] a specialized form of the previous corollary
that will be used later.

Corollary 1.2.4 Let P = (p, q) be a point on E : y2 = x3 + bx + c, all defined
over the field K of characteristic 6= 2, and define

u :=
y + q

x − p
, v := 2x + p −

(
y + q

x − p

)2

.

Then
v2 = u4 − 6pu2 − 8qu − (4b + 3p2).

The inverse transfomation is

x = (u2 + v − p)/2, y = (u3 + uv − 3pu − 2q)/2.
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The procedure for transforming the general cubic s1u
3 + s2u

2v + · · ·+ s9v +
s10 = 0 to a Weierstrass equation involves projective coordinates and projective
transformations and so will be given in §1.4 after these necessary preliminaries.

1.3 Projective coordinates.

When we call E a plane curve we are referring to the projective plane P2. Let
us recall the definition of n-dimensional projective space Pn(K) over a field K.
From affine space An+1(K), which consists of all n + 1-tuples (X0, . . . , Xn) ∈
Kn+1, we remove the origin (0, . . . , 0) and divide by the equivalence relation
given by the action of the multiplicative group K∗: (X0, . . . , Xn) and (Y0, . . . , Yn)
are equivalent if ∃λ ∈ K∗ such that Yi = λXi ∀i. (This relation is reflexive
since 1 ∈ K∗; symmetric since λ ∈ K∗ ⇒ λ−1 ∈ K∗; and transitive since
λ, µ ∈ K∗ ⇒ λµ ∈ K∗.) Thus P2(K) consists of all triples (X,Y, Z) where
not all of X,Y, Z are 0 and where we identify (X,Y, Z) with (λX, λY, λZ) for
λ ∈ K∗.

If K ′ is an overfield of K then there is a natural inclusion Pn(K) ⊂ Pn(K ′);
for if (X0, . . . , Xn), (Y0, . . . , Yn) represent points in Pn(K) and λ ∈ K ′∗ is such
that Yi = λXi, ∀i, then λ ∈ K∗ since at least one Xi 6= 0. On the other hand,
if P ∈ Pn(K ′) is represented by (X0, . . . , Xn) ∈ K ′n+1, then P ∈ Pn(K) iff
∃λ ∈ K ′∗ such that all λXi ∈ K∗, equivalently, if Xj is any nonzero coordinate,
then Xi/Xj ∈ K for all i. We then say that P is defined over K.

K always denotes an algebraic closure of K and we normally abbreviate
Pn(K) to Pn.

Recall that a homogeneous polynomial F of degree d in the n + 1-variable
polynomial ring K[U0, . . . , Un], i.e., a nonzero linear combination of monomials
Ud0

0 · · ·Udn
n with d0 + · · · + dn = d, has the property

F (λU0, . . . , λUn) = λdF (U0, . . . , Un) ∀λ ∈ K.

In fact this can be taken as the definition when K is infinite; alternatively, if
this relation is true for a nonzero polynomial F and a transcendental λ, then F
is homogeneous of degree d. It follows that ‘F (P ) = 0’ is unambiguously true
or false for a point P ∈ Pn(K). The zero set of F over K is

ZK(F ) = {P ∈ Pn(K) : F (P ) = 0}.

Z(F ) stands for ZK(F ).

A hyperplane in Pn(K) is the zero set of a linear homogeneous equation
c0X0 + · · ·+ cnXn = 0 where the ci are not all 0. A linear subspace of Pn(K)
is an intersection of hyperplanes, in other words the set of points whose coordi-
nates satisfy a system of linear homogeneous equations. The usual elimination
procedure of linear algebra removes redundant equations so that one has a sys-
tem of r equations where r is the rank of the coefficient matrix. The dimension
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of the linear subspace is defined to be n− r. Thus the dimension of Pn(K) is n.
Lines and planes are linear subspaces of dimension 1 and 2 respectively; in
P2(K), hyperplanes are lines.

We know from linear algebra that the rank of a matrix does not change when
we view it as being defined over a larger field. Thus the dimension of a linear
subspace determined by a set of equations defined over K does not change when
K is replaced by an overfield K ′.

Linear coordinate changes are given by invertible (n + 1)× (n + 1) matrices
A = (aij) :

X ′
i = ai0X0 + · · · + ainXn.

We indicate this with the matrix notation AX = X ′, where X is the column
vector with entries X0, . . . , Xn, and similarly for X ′. Since λA for λ ∈ K∗ gives
the same transformation, one is led to the projective general linear group:

PGLn(K) = GLn+1(K)/〈K∗I〉,

the quotient of the general linear group of invertible (n + 1) × (n + 1) matrices
by the normal subgroup of nonzero scalar matrices.

Clearly the property of being a linear subspace of dimension n−r is preserved
under a linear change of coordinates; in particular, lines remain lines. Also the
set of homogeneous polynomials of degree d is mapped to itself.

For later use we make the simple observation that for any given point a
coordinate system can be chosen so that the point has coordinates (0, . . . , 0, 1),
for example. More generally,

Proposition 1.3.1 Let Pi = (a0i, . . . , ani), i = 1, . . . , n+1 be points in Pn(K)
not contained in any hyperplane, i.e., the (n + 1)× (n + 1) matrix M whose i-th
column is (a0i, . . . , ani) is invertible. Then under the linear change of coordi-
nates M−1X = X ′, the new coordinates of P1, . . . , Pn are

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

respectively.

We choose the line Z = 0 as the line at infinity in P2(K). This choice
is arbitrary; unlike affine space which has the origin as a distinguished point,†

the projective plane has no distinguished point or line. But having made this
choice the points are of two types:

(i) the “affine” points with Z 6= 0: (X, Y, Z) = (x, y, 1) where x = X/Z,
y = Y/Z

(ii) the points “at infinity” with Z = 0: (X,Y, 0).

†Here affine space is regarded as a vector space; however when regarded as an algebraic
variety there is no distinguished point.
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A “compact” visualization of P2(R) is the closed disc with antipodal (dia-
metrically opposite) points identified.

This picture can be obtained by projecting from the center of a hemisphere
to the affine plane:

This sets up a bijection between the points on the affine plane and the interior
points of the disc (the hemisphere flattened out). The points (X, Y, 0) at ∞ are
in bijection with the lines through the origin in the affine plane: the line through
(0, 0) and (X, Y ) is the same as that through (0, 0) and (λX, λY ). And these
lines are in bijection with pairs of antipodal points on the circle bounding the
disc.

If we rewrite the Weierstrass equation

f = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6 = 0

in projective coordinates by substituting x = X/Z, y = Y/Z and multiplying
by Z3 we get

F = Y 2Z + a1XY Z + a3Y Z2 − X3 − a2X
2Z − a4XZ2 − a6Z

3 = 0

which is a homogeneous polynomial of degree 3. At infinity this reduces to
−X3 = 0, hence X = 0 and E has the unique point at infinity

(0, Y, 0) = (0, 1, 0).
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This serves as the designated rational point O of E. How the general curve
of genus 1 with a rational point O is converted into Weierstrass form will be
explained when we discuss the Riemann-Roch theorem; indeed that theorem
will be needed to define the genus of a curve.

A basic topic in the algebraic geometry of P2 is the analysis of the points of
intersection of two curves. The general discussion is quite involved and for now
we give only the simplest results.

Proposition 1.3.2 Let K be any field.
(a) Let F be a nonzero homogeneous polynomial of degree d in the two vari-

ables U0 and U1 defined over K, say

F =

d∏

i=1

(αiU0 + βiU1)

for appropriate αi, βi ∈ K. Then in P1, Z(F ) consists of d points (βi,−αi),
possibly some coincident.

(b) If L and C are nonzero homogeneous polynomials of degrees 1 and d ≥ 1
respectively in three variables defined over K, then in P2, either Z(L) ⊂ Z(C),
or Z(L) ∩ Z(C) consists of d points, possibly some coincident.

(c) If C1 and C2 are nonconstant homogeneous polynomials in K[U0, U1, U2],
then in P2, the set Z(C1) ∩ Z(C2) is nonempty. This set is finite iff C1 and C2

have no common factor, and in that case all points in ZK′(C1) ∩ ZK′(C2) for
any field K ′ ⊃ K are defined over K.

Remarks. Anticipating definitions to be made in Chapter 6, a plane curve
over K is effectively a homogeneous polynomial F in the variables U0, U1, U2,
and the degree of the curve is the degree of F . Thus two lines in P2, if not
coincident, intersect in a unique point; and a line intersects a curve of degree d
either in precisely d points (properly counted), or else is entirely contained in
that curve, in which case the line is a component of the curve.

Statement (c) can be formulated as: two curves in P2 intersect in at least one
point; the intersection is finite iff the curves have no component in common, and
then all intersection points are algebraic over K. Bézout’s theorem says that
two curves with degrees d1 and d2 and without common components intersect in
exactly d1d2 points — properly counted. However the precise statement requires
a number of preliminaries, including a discussion of singular points.
Proof. (a) is obvious.

(b) Let L = c0U0 + c1U1 + c2U2 where, say, c2 6= 0. Substituting U2 =
(−c0/c2)U0 + (−c1/c2)U1 into G yields a homogeneous polynomial in U0, U1

which is either 0 or nonzero of degree d. The statement now follows from
part (a).

(c) Let Ci be homogeneous in U1, U2, U3 of degree di > 0. By Proposi-
tion 1.3.1, choose a coordinate system so that (0, 0, 1) is on neither Ci. Then

Ci = ci0 + ci1U2 + · · · + cidi
Udi

2
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where both cidi
are nonzero constants and cij , if not 0, is homogeneous in U0, U1

of degree di − j.
As polynomials in the variable U2 over the ring K[U0, U1], their resultant R

is a polynomial in K[U0, U1], and there exist λ, µ ∈ K[U0, U1, U2] such that

λC1 + µC2 = R. (¶)

In fact λ and µ are homogeneous of degrees d1(d2−1) and d2(d1−1) respectively,
and therefore R, if not 0, is homogeneous in U0, U1 of degree d1d2. All of this
follows from a formula that we quote from [Con82,p.213]:

R =

c1d1
· · · c10 Ud2−1

2 C1

c1d1
· · · c10 Ud2−2

2 C1

. . .
. . .

...
c1d1

· · · c10 U2C1

c1d1
· · · c11 C1

c2d2
· · · c20 Ud1−1

2 C2

. . .
. . .

...
c2d2

· · · c20 U2C2

c2d2
· · · c21 C2

where entries in a row outside the subscript limits of cij are 0. Expansion of
this determinant along the right column simultaneously gives λ, µ and R.

R = 0 iff the Ci have a common factor F which is a nonconstant polynomial
in U2 over the field K(U0, U1); in fact, since factors of homogeneous polynomials
are again homogeneous, F is a homogeneous polynomial of positive degree in
the three variables. Then the two curves share the component Z(F ).

If R 6= 0, let αU0 + βU1 be a factor of R as in (a) where, say, α 6= 0. Let C̃1

denote the image of C1 under the substitution U0 7→ (−β/α)U1, and similarly

for C̃2 and R̃. Since the leading coefficient of Ci is a constant, the degree of C̃i

in U2 is still di, and therefore R̃ is the resultant of C̃1, C̃2 as polynomials in U2

over K(U1). The fact that R̃ = 0 means that these polynomials have a factor
γU1 + δU2 in common. Hence the point (βδ,−αδ, αγ) lies on the intersection of
the two curves.

Suppose R 6= 0 and P = (a0, a1, a2) lies on both curves. Since cidi
6= 0,

therefore a0 and a1 are not both 0. Under the substitutions Ui 7→ ai, R becomes
R̃ = 0 by (¶), hence a1U0 − a0U1 is a factor of R. Multiplying the coordinates
of P by an appropriate λ, we can assume that a0, a1 ∈ K, and then from either
of the equations C̃i = 0 we conclude that a2 ∈ K also.

1.4 Cubic to Weierstrass: Nagell’s algorithm

Let K be a field of characteristic 6= 2 or 3 and consider the curve defined by an
equation over K of the form 0 = a cubic in u and v with a rational point (p, q).
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This time we can translate both variables. Replacing u by u + p and v by v + q
we can assume that the rational point is (0, 0):

s1u
3 + s2u

2v + s3uv2 + s4v
3 + s5u

2 + s6uv + s7v
2 + s8u + s9v = 0. (¶)

Let f denote the polynomial on the left of (¶).
We now describe the algorithm, due to Nagell [Nag28], to transform f into

Weierstrass form, or to discover that the curve is not elliptic.
Step 1. Interchange u and v if necessary to ensure s9 6= 0. (If both s8 and

s9 are 0 then (0, 0) is a singular point (see §1.5) and the curve is not elliptic.)
Step 2. Substitute u = U/W, v = V/W and clear denominators to obtain

the homogenized form

F = F3 + F2W + F1W
2 = 0

where

F3 = s1U
3 + s2U

2V + s3UV 2 + s4V
3,

F2 = s5U
2 + s6UV + s7V

2,

F1 = s8U + s9V.

The rational point P with (u, v)-coordinates (0, 0) has projective coordinates
(U, V, W ) = (0, 0, 1). The tangent line at P , given by F1 = 0, meets the curve
in the point Q = (−e2s9, e2s8, e3) where ei = Fi(s9,−s8), i = 2, 3. The ei

cannot both be 0 because that would make the tangent a component and the
curve would be reducible — not elliptic; e2 = 0 means that P = Q is a flex
(the tangent has triple contact with the curve at P ), while e3 = 0 means that
Q is at infinity. If e3 6= 0 make the coordinate change U = U ′ − (s9e2/e3)W

′,
V = V ′+(s8e2/e3)W

′, W = W ′, while if e3 = 0 make the change U = U ′−s9W
′,

V = V ′ + s8W
′, W = U ′. In either case Q is now at the origin (U ′, V ′,W ′) =

(0, 0, 1) and the tangent at P is s8U
′ + s9V

′ = 0. We can now return to affine
coordinates u′ = U ′/W ′, v′ = V ′/W ′; projective coordinates were really only
needed to deal with the case when Q was at infinity.

Step 3. If the equation in terms of u′, v′ is f ′ = f ′
3 + f ′

2 + f ′
1 = 0 where

f ′
i = f ′

i(u
′, v′) denotes the homogeneous part of f ′ of degree i, then

u′2f ′
3(1, t) + u′f ′

2(1, t) + f ′
1(1, t) = 0

where t = v′/u′. Thus

u′ =
−φ2 ±

√
δ

2φ3
, v′ = tu′, (∗)

where φi = f ′
i(1, t) and δ = φ2

2 − 4φ1φ3. The values of t such that δ = 0 are the
slopes of the tangents to the curve that pass through Q, and one of these values
is t0 = −s8/s9. Write t = t0 + 1/τ so that ρ = τ4δ is a cubic polynomial in τ .
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Step 4. Finally, if

ρ = cτ3 + dτ2 + eτ + k

then c 6= 0 (since c = 0 implies that the original curve is not elliptic) and the
substitutions τ = x/c, ρ = y2/c2 give the Weierstrass equation

y2 = x3 + dx2 + cex + c2k.

The relations between the original variables u, v and x, y can be traced back
starting with (∗) where

t = t0 + c/x, δ = c2y2/x4.

1.4.1 Example 1: Selmer curves

By a Selmer curve we understand a homogeneous cubic equation of the form

aU3 + bV 3 + cW 3 = 0 where abc 6= 0,

or an affine version such as

au3 + bv3 = c.

The coefficients appear symmetrically: in the homogeneous case we can permute
the variables to obtain a permutation of a, b, c; in the affine case, to interchange
a and c for instance, we can substitute 1/u, −v/u for u, v.

Let us apply Nagell’s algorithm:

Proposition 1.4.1 Let the Selmer curve

au3 + bv3 = c, where abc 6= 0,

be defined over a field K of characteristic 6= 2 or 3, and (permuting a, b, c if
necessary) assume that θ := 3

√
c/b ∈ K. Then the Selmer curve is birationally

equivalent to the Weierstrass curve

y2 = x3 − 432a2b2c2

under the mutually inverse transformations

u = −
6bθ2x

y − 36abc
, v =

y + 36abc

y − 36abc
θ,

x = −
12abθ2u

v − θ
, y = 36abc

v + θ

v − θ
.
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Remark. Replacing u, v with θb/u, −θv/u transforms the Selmer curve to u3+
v3 = ab2, which is dealt with in the first corollary below. Thus the proposition
is not really more general, but it is convenient to have the details displayed for
the symmetrical abc-equation; a similar remark applies to the second corollary.
Proof. Replacing v with v + θ yields a cubic of the form (¶) of the previous
section with

s1 = a, s4 = b, s7 = 3bθ, s9 = 3bθ2,

and the remaining si = 0. We find e2 = 0, e3 = 27abc2. Hence no transforma-
tion is needed in step 2 and

φ3 = a + bt3, φ2 = 3bθt2, φ1 = 3bθ2t,

δ = −3bθ2t(4a + bt3).

t0 = 0, t = 1/τ, ρ = −12abθ2τ3 − 3bθ2.

Hence the Weierstrass equation is

y2 = x3 − 432a2b2c2

where x, y are as stated in the proposition.

We single out a particular example that will be referred to later:

Corollary 1.4.2 Let K be a field of characteristic 6= 2 or 3, and let a ∈ K∗.
Then the twisted Fermat curve

u3 + v3 = a

is birationally equivalent to the Weierstrass curve

y2 = x3 − 432a2

under the mutually inverse transformations

u =
36a − y

6x
, v =

36a + y

6x
,

x =
12a

u + v
, y = 36a

v − u

v + u
.

Proof. We substitute u = 1/u1 and v = −v1/u1, apply the proposition with
b = c = θ = 1, then translate the formulas back using u1 = 1/u, v1 = −v/u.

For example, if a = α3 + 1 then

(u, v) = (1, α) 7−→ (x, y) = (12(α2 − α + 1), 36(α2 − α + 1)(α − 1)).

The proposition can be restated in terms of projective coordinates as follows,
where c is replaced by −c :
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Corollary 1.4.3 Let C denote the Selmer curve aU3 + bV 3 + cW 3 = 0 defined
over the field K of characteristic 6= 2 or 3; assume abc 6= 0 and θ := − 3

√

c/b ∈
K; let E denote the homogeneous form of the Weierstrass equation: Y 2Z =
X3 − 432a2b2c2Z3; let C(K) and E(K) denote the set of points in P2(K) on
C and E respectively. Then mutually inverse bijections C(K) ←→ E(K) are
defined by

(U, V, W ) 7→
(
−12abθ2U,−36abc(V + θW ), V − θW

)
,

(X,Y, Z) 7→
(
−6bθ2X, (Y − 36abcZ)θ, Y + 36abcZ

)

in which O ∈ E(K) corresponds to (0, θ, 1) ∈ C(K).

Thus Fermat’s last theorem for exponent 3, i.e., Euler’s result that U3 +
V 3 +W 3 = 0 has only the three solutions in P2(Q) in which one of U, V, W is 0,
is equivalent to |E(Q)| = 3 where E (in affine form) is y2 = x3 − 432. This will
come out as an example of ‘2-descent’ in Corollary 3.7.5.

Selmer curves will serve as important examples of various topics later in
these notes. For example, aU3 + bV 3 + cW 3 = 0 will be seen to be a “torsor”
of U3 + V 3 + abcW 3 = 0. The latter curve has the rational point (U, V, W ) =
(1,−1, 0), and so is an elliptic curve in the sense of the second definition of §1.1,
and in fact is the Jacobian of the former curve, as will be explained later. For
now we mention‡

Proposition 1.4.4 If
au3 + bv3 + cw3 = 0

then
r3 + s3 + abct3 = 0

where

r = −6 bc2v3w6 − c3w9 − 3 b2cv6w3 + b3v9,

s = −3 bc2v3w6 + c3w9 − 6 b2cv6w3 − b3v9,

t = −3 uvw
(
b2v6 + bcv3w3 + c2w6

)
.

If 3abcuvw 6= 0 (the only case of interest) and abc is not a cube, then t 6= 0;
thus, by the previous corollary, the elliptic curve

y2 = x3 − 432a2b2c2

has the non-O point

x =
4(b2v6 + bcv3w3 + c2w6)

u2v2w2
,

‡See also Proposition 1.4.6 and its corollary in the next section which apply in particular
to Selmer curves.
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y =
4(2b3v9 + 3b2cv6w3 − 3bc2v3w6 − 2c3w9)

u3v3w3
.

The statement t 6= 0 is a consequence of the implication au3 + bv3 + cw3 = 0
and b2v6 + bcv3w3 + c2w6 = 0 =⇒

a2u6 = (−au3)2 = (bv3 + cw3)2 = bcv3w3.

The verification of the equation r3+s3+abct3 = 0 is a simple computer exercise.
However we should indicate how the formulas for r, s, t were obtained; here we
are guided by [Cas91, p.86].§

To obtain these formulas we work in a field of characteristic 6= 3 containing
the quantities a, . . . , w and also a primitive cube root of unity ρ. Let

λ = au3 + ρbv3 + ρ2cw3,

µ = au3 + ρ2bv3 + ρcw3,

so that
λ3 + µ3 = (λ + µ)(ρ2λ + ρµ)(ρλ + ρ2µ)

= (3au3)(3bv3)(3cw3).

Hence the points P = (λ, ρµ, ν) and P ′ = (µ, ρ2λ, ν), where ν = −3uvw, lie
on the curve R3 + S3 + abcT 3 = 0. By Proposition 1.3.2(b), the line joining
P and P ′ meets this curve in a third point Q, and we expect that point to be
“rational”, i.e., not involving ρ (because if σ denotes the automorphism sending
ρ 7→ ρ2 and leaving a, . . . , w fixed — we can take the latter as transcendentals
subject only to the relation au3 + bv3 + cw3 = 0 — then P and σP = P ′ are
conjugate).

Calculation shows that the third point Q = (r, s, t) is given by the formu-
las in the proposition. Starting with other P = (λ, µ, ν), (ρλ, ρµ, ν), . . ., and
corresponding P ′ = σP = (µ, λ, ν), (ρ2µ, ρ2λ, ν), . . ., does not lead to anything
essentially new, only to one of Q, (s, r, t), (1,−1, 0).

A famous example of Selmer is that

3U3 + 4V 3 + 5W 3 = 0

has no points in P2(Q), in other words, the equation has no solution in ra-
tional numbers other than (0, 0, 0). For if there were a solution then, by the
proposition, the elliptic curve

y2 = x3 − 432 · 602

would have a point defined over Q distinct from O, which is not the case. But
the proof of the last statement must wait until Corollary 3.7.8.

§A more natural, but more complicated way of obtaining the formulas will be explained
in §1.7.2 (using ‘multiplication by 3’).
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1.4.2 Example 2: Desboves curves

By a Desboves curve we understand a homogeneous cubic equation of the
form

aU3 + bV 3 + cW 3 + dUV W = 0,

or an affine version of such an equation. We chose this name for this class of
curves because of the historical reference [Des86] brought to our attention in
[Cas91, p.130]; references to related work by Cauchy and others are given in
[Dic52, vol.2, ch.XXI]. Selmer curves are included as the particular case d = 0.

Proposition 1.4.5 Let the Desboves curve

au3 + bv3 + c + duv = 0

be defined over the field K of characteristic 6= 2, 3, and assume (permuting a, b, c
if necessary) that

abcλ 6= 0 where λ := 27abc + d3, and θ := − 3

√

c/b ∈ K.

Then, by Nagell’s algorithm, this curve is birationally equivalent to

y2 = x3 − 3d2x2 +
8

3
dλx −

16

27
λ2 = x3 − 3

(

dx −
4

9
λ

)2

.

Remark. The transformation equations between u, v and x, y are somewhat
lengthy and for that reason are not included in the statement of the proposition.
Proof. The proof proceeds as in the case of Selmer curves, except that now
s6 = d and s8 = dθ; e2 = 0 again, so no transformation is needed in step 2, and
e3 = cλ. The rest is calculation.

We quote Desboves’ formulas. Once again the verification is a computer
exercise and, as in the special case of Selmer curves, the underlying idea is
that in P2 a line meets a Desboves curve in three points, provided these points
are counted with the appropriate multiplicities: this includes the case of a line
tangent to the curve when two of the points are coincident.

Proposition 1.4.6 Let P = (x1, x2, x3) be a point on the Desboves curve

a1X
3
1 + a2X

3
2 + a3X

3
3 + dX1X2X3 = 0 (D)

defined over a field of characteristic 6= 3. Then the third point of intersection
(t1, t2, t3) of the tangent line at P has coordinates

tj = xj(aj+1x
3
j+1 − aj+2x

3
j+2) (subscripts taken mod 3).

If Q = (y1, y2, y3) is another point on the curve then the third point of inter-
section (z1, z2, z3) of the line joining P and Q has coordinates (again subscripts
are taken mod 3)

zj = x2
jyj+1yj+2 − y2

j xj+1xj+2.
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The following corollary is due to Hurwitz [Hur17].

Corollary 1.4.7 Let S be the set of points in P2(Q) on the Desboves curve (D)
where a1, a2, a3, d are integers and the aj are positive, distinct and square-free.
Then S is either empty or infinite. In fact, if P1 ∈ S then all the points in the
sequence P1, P2, . . . are distinct, where Pn+1 is the third point of intersection of
the tangent at Pn.

Remarks. There is no real loss of generality in assuming that the ai are
positive since Xi can be replaced by −Xi. (Equations where an ai = 0 are
trivially solved.) Hurwitz [Hur17, p.465] and Mordell [Mor69, p.78] make the
additional, and apparently unnecessary, assumption that the ai are coprime.

See Corollary 1.7.2 where the present corollary is re-interpreted.

Proof. The assumptions on the coefficients ensure that λ = 27a1a2a3 +d3 6= 0.

Let P1 = (x1, x2, x3) where xj ∈ Z and gcd{xj} = 1, and let P2 =
(t1, t2, t3) = (t′1, t

′
2, t

′
3) where the tj are given by the formulas in the propo-

sition, and t′j = tj/k where k = gcd{tj}. Thus gcd{t′j} = 1. The result will
follow from the strict inequality |t′1t

′
2t

′
3| > |x1x2x3|.

First we note that the xj are co-prime; for if the prime p divides x1 and
x2, say, then p 6 |x3 and (D) implies p2|a3, contrary to the assumption that the
aj are square-free. Second, the xj are nonzero; for if x1 = 0, say, then x2, x3

being prime to x1 are ±1, and (D) implies a2 ± a3 = 0, which contradicts the
assumptions that a2, a3 are positive and distinct. Applying this result to P2

shows that no tj = 0.

Let us write the formulas as tj = xjuj . We wish to prove that for all j,
k|uj , so that t′j = xju

′
j where uj = u′

jk. For then, since
∑

uj = 0, therefore
∑3

j=1 u′
j = 0, hence not all u′

j can be ±1, i.e., at least one |u′
j | > 1, which gives

the result.

Suppose, then, k 6 |u1. This means that for some prime p, if v(n) denotes the
exponent of p in the unique factorization of a nonzero integer n, we have

α := v(k) > v(u1). (1)

Since k |t1 = x1u1, therefore v(x1) > 0 and v(x2) = v(x3) = 0. It follows that
v(t2) = v(u2) = v(a3x

3
3 − a1x

3
1) ≥ α. Since a3 is square-free, this implies

v(a3) = 1 hence α = 1. (2)

Similarly v(a2) = 1 and therefore v(u1) = v(a2x
3
2 −a3x

3
3) > 0. Thus (1) and (2)

are in conflict.

As an exercise, Silverman proposes ([Sil86, p.43]) the determination of those
a1, . . . , d for which S is not empty. The double asterisk on the exercise means,
in this case, that it is a highly unsolved problem!
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1.4.3 Example 3: Intersection of quadric surfaces

A conic or conic section in P2 is the set of points satisfying an equation
Q = 0 where Q is a homogeneous quadratic polynomial in the three coordinates.
The analogous definition in three dimensions is: a quadric surface in P3 is
the set of points satisfying an equation Q = 0 where Q is a homogeneous
quadratic polynomial in the four coordinates. In this section we assume that
the characteristic is different from 2 and 3; the coordinates of a point in P3 will
be denoted (U, V,W,X).

In general, the intersection of two quadric surfaces in P3(K) is an elliptic
curve, provided the intersection has at least one rational point. There are ex-
ceptions of course; for example the intersection of two spheres is a circle. Apart
from the exceptions, the intersection can be transformed into a plane cubic with
a rational point as we will explain, and then Nagell’s algorithm can be applied.

However in certain cases an ad hoc approach that avoids Nagell’s algorithm
can be quicker and easier. Let us begin with such an example.†

Consider the intersection I of the two quadrics Q1 and Q2 given by the
equations

Q1 : U2 − V 2 + kX2 = 0, Q2 : W 2 − V 2 − kX2 = 0,

where k is a nonzero parameter. Eliminating the kX2 term we obtain

U2 + W 2 = 2V 2

which can be interpreted as the equation of a conic C in the the plane P2

coordinatized by U, V, W . The curves C and I cannot be identified because for a
given point (U, V, W ) on the conic there are generally two values of X determined
by kX2 = V 2−U2 = W 2−V 2. (One says that (U, V, W,X) 7→ (U, V, W ) defines
a covering of degree 2.)

The conic C contains the rational point (U, V, W ) = (1, 1, 1). Now, as a
general remark, a conic with a rational point P can be (rationally) parametrized.
The idea is simply this: because the equation of the conic is quadratic, a general
line through P will intersect the conic in exactly one other point and that point
will also be rational. (The other point will coincide with P in the special case
when the line is tangent to the conic.) As a practical matter, one usually reverts
to convenient affine coordinates.

In the present case it is natural to dehomogenize at V = 1: we define
u = U/V and w = W/V , so our conic is u2+w2 = 2 with rational point (u,w) =
(1, 1). The general line through (1, 1) is given by the equation (u−1) = t(w−1)
where t is a parameter. Substituting u = 1 + t(w − 1) into the equation of the
conic, we obtain a quadratic equation for w. One solution is, of course, w = 1;

†I am indebted to Peter Russell for help here, and in general for help with algebraic
geometry in this section and elsewhere.
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the other is

w =
t2 − 2t − 1

t2 + 1
, hence u =

−t2 − 2t + 1

t2 + 1
.

Thus (U, V, W ) = (−t2 − 2t + 1, t2 + 1, t2 − 2t − 1) is a parametrization of the
points on the conic, and I is given by the equation

kX2 = V 2 − U2 = W 2 − V 2 = −4t3 + 4t.

We can tidy this up by substituting X = 2y/k2, t = −x/k:

E : y2 = x3 − k2x.

In terms of these new coordinates, this elliptic curve is the intersection of Q1

and Q2.

Exercise Using the transformations above, set up explicit mutually inverse
bijections

I(K) ←→ E(K).

Thus I(K) becomes an elliptic curve by “transport of structure”. You may find
it more convenient to work with projective coordinates: the lines in P2 that
pass through (1, 1, 1) are s(U −V ) = t(W −V ) where (s, t) ∈ P1 is a parameter;
the second point of intersection with C is

(s2 − 2st − t2, s2 + t2,−s2 − 2st + t2).

Then E should be written in homogeneous form y2z = x3 − k2xz2.

Now let us consider the general case of the intersection of two quadrics. The
ideas for this discussion are taken from Cassels [Cas91].

By a translation, we can suppose that the intersection I of the two quadrics
Q1 and Q2 contains the point P0 = (0, 0, 0, 1). Then the equations for the
quadrics can be written as

Q1 : AX + B = 0, Q2 : CX + D = 0

where A, C are linear and B, D are quadratic in U, V, W . Eliminating X from
the two equations produces

AD − BC = 0

which is a homogeneous cubic in U, V, W . Let I∗ denote I with the point P0

removed, and let E denote the curve in P2 defined by the above cubic. Then
(U, V, W,X) 7→ (U, V,W ) defines a map f : I∗ −→ E.

Let us suppose first that A and C are linearly independent, that is, neither
is a constant times the other. Then the two lines in the U, V, W plane described
by A = 0 and C = 0 intersect in a unique point P1, and this point lies on E.
Let E∗ denote E with the point P1 removed. For each point (U, V,W ) on E∗,
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the equation for either Qi uniquely determines a value for X, hence a point
f ′(U, V,W ) = (U, V,W,X) on I∗. The map f ′ : E∗ −→ I∗ is inverse to f .
(By extending the definitions by f(P0) = P1 and f ′(P1) = P0, it follows that f
(and f ′) are coverings of degree 1: the curves I and E are identical as abstract
algebraic varieties.) E is thus a plane cubic with a rational point P1 and Nagell
can be applied; of course it may still turn out during the algorithm that E is
not elliptic.

In the case that A and C are linearly dependent, say C = cA, by subtracting
c times the equation for Q1 from that of Q2, we can suppose that C = 0. Then
the equations defining I are AX +B = 0 and D = 0, hence we can suppose that
A 6= 0 (otherwise I is a union of lines). The equation AD = 0 shows that E is a
reducible curve: it contains the line A = 0 as a component. (Similarly if B and
D are linearly dependent.) Also X = −B/A, D = 0 displays I as a degree 1
cover of the genus 0 curve defined by D = 0, hence I is a curve of genus 0 —
not an elliptic curve. (The algebraic geometry background needed to flesh out
these statements will be given later.)

Example The sphere U2 + V 2 + W 2 = 3X2 and the ellipsoid
(U −X)2 + 2V 2 + 3W 2 = 5X2 share the point P = (1, 1, 1, 1). The transforma-
tion U = U ′ +X ′, V = V ′ +X ′, W = W ′ +X ′, X = X ′ gives P the coordinates
(0, 0, 0, 1). Taking the point (0, 0, 1) on the cubic (we are not obliged to take
P1 = (1,−3, 2) given by A = C = 0 — as for the quartic equations in Propo-
sition 1.2.1, we will explain later that starting with different rational points in
Nagell’s algorithm yields isomorphic Weierstrass equations), Nagell’s algorithm
yields — we omit the details —

E : y2 = x3 + 44x2 + 528x.

The reader may also wish to verify that the points (0, 0) and (12, 120) on E cor-
respond to the points (1,−1, 1, 1) and (131,−259,−59, 171) on the intersection.

1.5 Singular points.

Consider a homogeneous polynomial F = F (X0, . . . , Xn) ∈ K[X0, . . . , Xn] of
degree d. The Taylor expansion can be written as

F (X0 + λ0, . . . , Xn + λn) = F0 + F1 + · · ·

where Fi = Fi(λ0, . . . , λn) is homogeneous of degree i in the λ’s, each coefficient
of which is homogeneous of degree d − i in the X’s. Thus F0 = F (X0, . . . , Xn)
and

F1 =

n
∑

i=0

aiλi, where ai =
∂F0

∂Xi

.
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There is no problem with ‘factorials in the denominators’ since the Taylor ex-
pansion is the polynomial over K obtained by substituting Xi + λi for Xi in F .
However if charK 6= 2 then one can write as in the classical Taylor expansion

F2 =
1

2!

n∑

i,j=1

aijλiλj , where aij =
∂2F0

∂Xi∂Xj

,

and analogously for higher Fi.
Recall

Euler’s Theorem: For i = 0, 1, . . .

Fi(X0, . . . , Xn) =

(

d
i

)

F (X0, . . . , Xn).

Remark. If we add up these equations we obtain the identity

F (2X0, . . . , 2Xn) = 2dF (X0, . . . , Xn) =

(

∑

i

(

d
i

)

)

F (X0, . . . , Xn).

Usually the theorem is stated in the form: for i = 1, 2, . . .

∑

Xs1
· · ·Xsi

∂kF

∂Xs1
· · · ∂Xsi

= d(d − 1) · · · (d − i + 1)F,

where the sum is over all i-tuples s1, . . . si. The sum on the left is
i!Fi(X0, . . . , Xn); the statement in the text is superior when 0 < charK ≤ i.

Corollary 1.5.1 If F (c0, . . . , cn) = 0 then Fi(c0, . . . , cn) = 0 for i ≥ 0.

Consider the 3-variable case F = F (X, Y, Z) and the corresponding plane
projective curve C = Z(F ). (See §1.3.) We write λ, µ, ν for λ1, λ2, λ3. The
order of a point P = (X0, Y0, Z0) ∈ C is the minimal i such that Fi is not
identically 0 as a polynomial in λ, µ, ν. If i = 1 then P is an ordinary or
nonsingular point, while if i > 1 then P is a singular point or a singularity

of order i. The polynomial F , or the corresponding curve C is nonsingular or
smooth if it has no singular points defined over an algebraic closure of K, and
therefore in fact none defined over any extension of K (by Proposition 1.3.2(c)).

Proposition 1.5.2 Let F = F (X, Y, Z) be a nonzero homogeneous polynomial.
If F is nonsingular then it is absolutely irreducible, i.e., irreducible over K.

Proof. Let F = GH where G and H are homogeneous of positive degree defined
over K, and let P be a point of intersection on the curves corresponding to G
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and H (Proposition 1.3.2(c)). Then FX = GHX + GXH vanishes at P , and
similarly for the other variables. Thus P is a singular point of F .

Let P = (X0, Y0, Z0) be a point of order i ≥ 1 on F = 0. The tangent cone

at P is
Z(Fi) = {(λ, µ, ν) ∈ P2 : Fi(λ, µ, ν) = 0}.

By the previous corollary, the tangent cone contains the point P . It can be
shown that over K, Fi is a product of i linear forms aX + bY + cZ, each
satisfying aX0 + bY0 + cZ0 = 0; thus the tangent cone consists of i lines through
P , possibly some coincident, called the tangent lines at P .

It is much easier to calculate these tangent lines in affine coordinates as
follows. Effect a linear change of coordinates so that P = (0, 0, 1). Then in
terms of x = X/Z, y = Y/Z,

Z−dF (X, Y, Z) = f(x, y) = fi′ + fi′+1 + · · ·

where fj is homogeneous in x, y of degree j. It can be shown that i′ = i, the
order of P , that fi is the product of i linear factors of the form ax+ by, and the
tangent lines are aX + bY = 0.

In the case of an ordinary point P on C, when i = 1, there is a unique
tangent line through P , namely

aXX + aY Y + aZZ = 0 where aX = FX(X0, Y0, Z0) etc.

A point of order 2 with distinct tangents is called a node, while a point of
order 2 with coincident tangents is a cusp. The appearance of a node and a
cusp in the real case are shown on the following interleaf.

Examples

1. The point (0,1,0) at infinity on the curve defined by the Weierstrass
equation F = Y 2Z + · · · − a6Z

3 = 0 is always nonsingular since

FZ = Y 2 + a1XY + 2a3Y Z − a2X
2 − 2a4XZ − 3a6Z

2

has the value 1 6= 0 at that point. The other two derivatives are 0 there, so
the tangent line is Z = 0. Thus to locate any possible singularities on the
Weierstrass form we can use the affine version.

2. y2 = x3 + ax2 has a singularity of order 2 at (x, y) = (0, 0):

f2 = y2 − ax2 = (y −
√

ax)(y +
√

ax),

and so the tangents there are X ±
√

aY = 0. Thus (0, 0, 1) is a node if 2a 6= 0
(with irrational tangents if

√
a /∈ K), and a cusp if 2a = 0.

3. On F = Y 2Z − X3 − XZ2, P = (0, 0, 1) is an ordinary point and the
tangent there is X = 0. If charK = 2 then (1, 0, 1) is singular with F2 =
(λ + µ + ν)2, hence is a cusp with tangent X + Y + Z = 0.



128 CHAPTER 1. INTRODUCTION TO ELLIPTIC CURVES.

4. Let K = Q and

F = 11X3 + 12X2Y − 9XZ2 − Y 3 + 2Z3.

Substituting X = 1, Y = 2, Z = 3 in the Taylor expansion of F , we find that
F0 = F1 = 0 and

F2 = 57λ2 + 24λµ − 6µ2 − 54λν + 9ν2 = L1L2

where L1,2(λ, µ, ν) = (±2
√

6 − 9)λ ∓
√

6µ + 3ν.

Thus P = (1, 2, 3) is a node on F = 0 with tangent lines L1,2(X,Y, Z) = 0.
Alternatively, take the affine equation

f(x, y) = 11x3 + 12x2y − 9x − y3 + 2.

Now P has coordinates x = 1/3, y = 2/3, and

f(1/3 + l, 2/3 + m) = f2 + f3

where f3 = 11l3 + 12l2m − m3

and f2 = 19l2 + 8lm − 2m2 = (19l + (4 − 3
√

6)m)(19l + (4 + 3
√

6)m)/19.

It is comparatively easier to find the factors of f2 than F2. Substituting x =
X/Z, y = Y/Z in the equations of the tangent lines 19(x−1/3)+(4±3

√
6)(y−

2/3) = 0, a brief calculation shows that they give the same lines as L1,2 = 0.

Proposition 1.5.3 For any field K and any a1, . . . , a6 ∈ K,

F = Y 2Z + a1XY Z + a3Y Z2 − X3 − a2X
2Z − a4XZ2 − a6Z

3

is irreducible (even if ∆ = 0).

Proof. Suppose F = GH is a nontrivial factorization, say

G = aX + bY + cZ.

Substituting Z = 0 in F = GH yields −X3 = (aX + bY )G, hence a 6= 0. Now
substituting X = −cZ/a yields

Y 2Z + dY Z2 + eZ3 = 0

for certain d, e ∈ K, which is an impossible identity.
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Proposition 1.5.4 The Weierstrass equation is singular iff ∆ = 0 and then
there is a unique singularity of order 2 as follows:

• If c4 6= 0 there is a K-rational node at the point with coordinates

x0 = (18b6 − b2b4)/c4

y0 = (b2b5 + 3b7)/c4 =

{

−(a1x0 + a3)/2 if charK 6= 2
(a2

3 + a2
1a4)/a3

1 if charK = 2

where

b5 = a1a4 − 2a2a3

b7 = a1(a
2
3 − 12a6) + 8a3a4.

The two tangents are given in terms of the parameter t by x = x0 + t,
y = y0 + µt for the two distinct roots of the separable polynomial µ2 +
a1µ − 3x0 − a2 = 0. When char K 6= 2, these are

µ =
−a1c4 ±

√
−c4c6

2c4
.

• If c4 = 0 there is a cusp at the point with coordinates

charK = 2 : x0 =
√

a4, y0 =
√

a2a4 + a6

charK = 3 : x0 = − 3

√

a2
3 + a6, y0 = a1x0 + a3

charK 6= 2, 3 : x0 = −b2/12, y0 = − 1
2 (a1x0 + a3).

(The cusp can be irrational only when K is an imperfect field of charac-
teristic 2 or 3.) The unique tangent line is x = x0 + t, y = y0 + µt where
µ = 4

√
a4 +

√
a2 when charK = 2, and µ = −a1/2 otherwise.

In either case

fx = a1y0 − 3x2
0 − 2a2x0 − a4 = 0,

fy = 2y0 + a1x0 + a3 = 0.

A singular Weierstrass equation remains singular over every field extension
K ′/K; moreover, the nature of the singularity (node or cusp) is constant.

Proof. Since the proof is by straightforward calculation we only give a sketch.
First let charK 6= 2, 3. Then as detailed above, a linear change of the (affine)

coordinates — which clearly does not affect the occurence of singularities —
allows us to take the simple form

f = η2 − ξ3 +
c4

48
ξ +

c6

864
fη = 2η

fξ = −3ξ2 +
c4

48
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If these three quantities are 0 then ξ = ±√
c4/12, η = 0, c6 = ∓√

c4
3, hence

∆ = 0 and the Taylor expansion reduces to

f(±√
c4/12 + λ, µ) = (µ2 ∓√

c4λ
2/4) − λ3.

Thus the singularity is of order 2 and the number of tangents is 2 or 1 according
as c4 6= 0 or c4 = 0.

Secondly let charK = 2. Then b2 = a2
1, b4 = a1a3, c4 = a4

1 so c4 = 0 iff
a1 = 0. A singularity will be at a common zero of

f = y2 + a1xy + a3y + x3 + a2x
2 + a4x + a6,

fx = a1y + x2 + a4,

fy = a1x + a3.

If a1 = 0 then, in order that fy = 0, we have a3 = 0 hence ∆ = 0, and we
find x0 =

√
a4, y0 =

√
a2a4 + a6. The Taylor expansion of f(x0 + λ, y0 + µ)

works out to

( 4
√

a2 +
√

a4λ + µ)2 + λ3

so the singularity is a cusp.
If a1 6= 0 then x = a3/a1 (so that fy = 0), which is the value in characteris-

tic 2 stated by the proposition for x0 in the node case, and y = (a2
3 + a2

1a4)/a3
1

(so that fx = 0). The condition that f = 0 works out to ∆ = 0, and the Taylor
expansion is

(

a3

a1
+ a2

)

λ2 + a1λµ + µ2 + λ3.

Thus the tangent slopes are the roots of µ2 +a1µ+(a3/a1 +a2) = 0, and a1 6= 0
guarantees that they are distinct, i.e., the equation is separable.

The case of characteristic 3 is just as straightforward.

1.5.1 Example: No E
/Z has ∆ = 1 or −1

Let E be defined over Z, i.e., all the Weierstrass coefficients ai ∈ Z; this is
indicated notationally by E/Z. Since ∆ is a polynomial in the ai with coefficients

in Z, therefore ∆ ∈ Z. When we interpret the ai mod p to obtain a Weierstrass
equation over the p-element field Fp, the discriminant is ∆ mod p. Thus by the
previous proposition, the mod p equation gives an elliptic curve when p is not
a divisor of ∆. We now prove that this fails for at least one p:

Proposition 1.5.5 (Tate, cf. [Ogg66])
Let the elliptic curve E be defined over Z. Then ∆ is neither 1 nor −1.

More generally, ∆ does not have the form δ3 where δ is a nonzero integer all of
whose prime divisors are ≡ 1 mod 8.
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Proof. Suppose E/Z has ∆ = δ3, with δ as described in the proposition; in

particular, δ ≡ ±1 mod 8. Let vp(n) denote the exponent of a prime p in the
unique factorization of a nonzero integer n.

If a1 is even, then, by the formulas in §1.1, v2(b2) ≥ 2, v2(b4) ≥ 1, v2(c4) ≥ 4,
hence from

c2
6 = c3

4 + 1728δ3, ¶
since δ is odd, we have v2(c6) = 3, say c6 = 8c. Then ¶ implies the impossibility
c2 ≡ 27δ3 ≡ ±3 mod 8.

Therefore a1 is odd, hence b2 is odd and c4 = b2
2 − 24b4 ≡ 1 mod 8. Substi-

tuting x = c4 + 12δ and y = c6 in ¶ gives

y2 = x(x2 − 36δx + 432δ2) = xQ, say,

where x ≡ 5 mod 8, in particular, x 6= 0. Since Q = (x − 18δ)2 + 108δ2 > 0, it
follows that x = y2/Q > 0. Thus

x = 3α
∏

pβp

∏

qγq ,

where p runs through the prime divisors of gcd(x, δ), and q through any remain-
ing prime divisors > 3 of x. Since vq(Q) = 0, each γq = vq(y

2) is even, and by
assumption each p ≡ 1 mod 8. Hence x ≡ 3α ≡ 1 or 3 mod 8, which contradicts
x ≡ 5 mod 8.

The following examples show the need for the assumption on the divisors
of δ.

y2 + y = x3 + x2 − 9x − 15, ∆ = −193, B19

y2 + y = x3, ∆ = −33, A27

y2 = x3 − x, ∆ = 26, A32

y2 + y = x3 + x2 − 23x − 50, ∆ = 373, C37

y2 + xy = x3 − x2 − 2x − 1, ∆ = −73, A49

y2 + y = x3 + x2 − 121x − 64, ∆ = 53973. A485

For a given number field K, a natural question is whether there exist E
defined over the ring of integers of K with ∆ a unit. Stroeker [Str83] has proved
that this does not occur when K is imaginary quadratic; but we must postpone
the proof. Unit ∆ do occur over real quadratic fields: Tate gave the example
(cf. [Ser72, p.320])

y2 + xy + ε2y = x3, ε = (5 +
√

29)/2, ∆ = −ε10,

(ε is in fact the fundamental unit of Q(
√

29)) and several others occur in the
table in §4.4.
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It is a triviality to find E defined over the ring of integers of a number field
with ∆ = 1. For example, y2 + a1xy + a3 = x3 has ∆ = (a3

1 − 27a3)a
3
3; choosing

a3 = 1 and a1 = 3
√

28 yields ∆ = 1. However I do not know of an example of
∆ = 1 or −1 over a quadratic field. Here is an example over the biquadratic
field Q(

√
2,
√

7), which contains
√

8 − 3
√

7 = (3 −
√

7)/
√

2 :

y2 +
√

8 − 3
√

7 xy = x3 − 8x2 + (8 + 3
√

7)x, ∆ = 1, j = 2553.

1.6 Affine coord. ring, function field, generic

points

We use the abbreviation UFD for unique factorization domain. Recall ([BAC7],
p.36) that if A is a UFD then so is the polynomial ring A[x]. It follows that
Z[{xi}] and K[{xi}] (K any field) are UFD’s for an arbitrary set of indetermi-
nates, i.e., independent transcendentals.

Let S and T be independent transcendentals over the field K, let a1, . . . , a6 ∈
K and let

f(S, T ) = T 2 + a1ST + a3T − S3 − a2S
2 − a4S − a6.

Lemma 1.6.1 The principal ideal (f(S, T )) in the polynomial ring K[S, T ] is
prime.

Proof. We must prove that f is irreducible. If f = gh, then by substituting
S = X/Z, T = Y/Z and multiplying by Z3 we get a factorization F = GH of
homogeneous polynomials. The result follows by Proposition 1.5.3.

Thus
A = K[S, T ]/(f(S, T ))

is an integral domain (even if ∆ = 0). Writing x and y for the residue classes
of S and T mod f(S, T ), we have

A = K[x, y].

The equation f(S, T ) = 0 defines a curve E in the S, T -plane; but it is cus-
tomary to replace S and T by x and y, and say that E is given by f(x, y) = 0 in
the x, y-plane. That is, x and y stand for a pair of independent transcendentals,
and also for a pair of variables related by the equation f(x, y) = 0. This mild
ambiguity causes no problems in practice.

The integral domain A is the affine coordinate ring of E, and its quotient
field L = K(x, y) is the function field of E. The field L can also be described
as the quadratic extension K(x)(y) of the rational function field K(x) defined
by the polynomial f(x, y), which is quadratic in y; alternatively, L = K(y)(x)
is the cubic extension of the simple transcendental extension K(y) of K. When
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∆ 6= 0, both the quadratic and cubic extensions are separable (though in general
the cubic extension is not Galois). For if L is an inseparable extension of K(x),
then char K = 2 and fy = 2y + a1x + a3 = 0, i.e., a1x + a3 = 0 which implies
a1 = 0 and a3 = 0 and then one calculates b2 = 0, . . . leading to ∆ = 0; similarly
for the cubic extension.

The subfield K of L is called either the ground field, which emphasizes
that K is the field containing a1, . . . , a6 that we started with, or the constant

field (or field of constants), which emphasizes the fact that K is algebraically
closed in L.

Let E(K) denote the set of points (a, b) on E defined over K (that is, a, b ∈ K
and f(a, b) = 0) together with the one point O at infinity. As explained in
Proposition 1.5.4, if ∆ = 0 there is exactly one singular point, which is never
O, while if ∆ 6= 0 then E is nonsingular and is, by definition, an elliptic curve.
If K ′ is any extension field of K, then we can regard E as being defined over
K ′ and so E(K ′) is defined. In particular, (x, y) ∈ E(L) since the point (x, y)
satisfies f(x, y) = 0 by definition.

Now, for each nonzero point (a, b) ∈ E(K), we have a K-algebra homo-
morphism A −→ K defined by x 7→ a and y 7→ b. Thus every nonzero point of
E(K) is obtained by specializing the values of x and y, and for this reason (x, y)
is called a generic point. (We could include O by taking a projective generic
point (X, Y, Z) satisfying the projectivized Weierstrass equation F (X, Y, Z) = 0,
should the need arise.)

When several generic points (x1, y1), (x2, y2), . . . are needed, take the field
K(x1, y1, x2, y2, . . .) where x1, x2, . . . are independent transcendentals and each
yi defines a quadratic extension by the equation f(xi, yi) = 0.

1.7 The group law: nonsingular case

The set of points E(K) on an elliptic curve has a natural structure of an abelian
group. This has a simple geometric description when E is a nonsingular plane
cubic with a rational point O, for example when E is given by a Weierstrass
equation with ∆ 6= 0, and O is the point at infinity; a non-Weierstrass example
is the Fermat curve X3 + Y 3 + Z3 = 0 with O = (1,−1, 0). The description
depends on the fact that a line in P2 meets a cubic in 3 points when the points of
intersection are properly counted, as described in §1.3. In this section the details
will become clear for the Weierstrass equation by direct algebraic calculation.
But first we describe the geometric construction of the group operations for the
general nonsingular cubic.

Let O be the chosen point in E(K) and let the tangent at O meet E in
the third point O′. Note that O′ = O iff O is a flex; this is the case for
the Weierstrass equation since the line at ∞ meets E only at O. Now let
P,Q ∈ E(K) and let the line joining P and Q meet the cubic in the third point
R; 2 or even 3 of these 3 points may coincide. The third point of intersection
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of the line joining R and O is defined to be P + Q; the third point on the line
joining P and O′ (not O unless O is a flex!) is −P ; and O is the zero of the
group. These constructions are illustrated in a real example on the following
interleaf.

As an exercise the reader may note that when O is a flex every flex F satisfies
F +F +F = 0. It is a fact that a nonsingular cubic over an algebraically closed
field of characteristic 6= 3 has exactly 9 flexes.

Proposition 1.7.1 Let C be a nonsingular cubic defined over the field K and
let O ∈ C(K).

(a) With + and − as described above, C(K) is an abelian group with neutral
element O.

(b) If O1, O2 ∈ C(K) and for i = 1, 2, C(K)i denotes the group determined
by choosing Oi as neutral element, then a group isomorphism C(K)1 −→ C(K)2
is defined by

P 7−→ P + O2

where + denotes addition in C(K)1.

The associative law and statement (b) are not obvious from the geometric
definitions. Since they will become “transparent” after we discuss divisors in
Chapter 6, for now we leave the proof “to the reader” as an arduous computer
exercise. For a direct proof see [Kna92,p.67].

As an example we reconsider the curves of Corollary 1.4.7.

Corollary 1.7.2 Let C denote the plane cubic curve

a1X
3
1 + a2X

3
2 + a3X

3
3 + dX1X2X3 = 0

where a1, a2, a3, d are integers and the aj are positive, distinct and square-free.
Then C is nonsingular, hence absolutely irreducible.

Suppose the set C(Q) of rational points on C in P2(Q) is nonempty, say
O ∈ C(Q). With O as neutral element, the group C(Q) contains at least one
point O′ of infinite order, namely the third point of intersection with C of the
tangent at O. In particular, O′ 6= O, and it follows that none of the flexes is
rational over Q. †

Proof. Suppose P = (X1, X2, X3) is a singular point (defined over Q). Then

dX1X2X3 = −3aiX
3
i , i = 1, 2, 3.

It follows that X1X2X3 6= 0, hence (within a common factor) Xi = 1/ 3
√

ai from
which one obtains 27a1a2a3 + d3 = 0. But the last equation is not allowed by
the assumptions.

†This is also obvious by direct calculation: if H denotes the 3× 3 Hessian determinant of
F = a1X3

1 + · · ·+dX1X2X3, then the flexes are the points of intersection of the curves F = 0
and H = 0. They are (0, 3

√
a3,− 3

√
a2), etc. (9 points in all).
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Now let P1 be any point in C(Q) and let P2, . . . be the sequence described
in Corollary 1.4.7. The geometric construction of addition shows that

P2 + [2]P1 = O′, or P2 = O′ − [2]P1,

hence P3 = O′ − [2]P2 = −O′ + [4]P1, etc.

Solving the recurrence we find

Pn =

[
1 − (−2)n−1

3

]
O′ +

[
(−2)n−1

]
P1.

In particular, by Proposition 1.4.7, the sequence

On =

[
1 − (−2)n−1

3

]
O′

consists of distinct points, and therefore O′ has infinite order.
With O ∈ C(Q) as in the corollary, one might jump to the false conclusion

that the group C(Q) is torsion-free (as did Selmer at the beginning of [Sel54]
and Cassels [Cas66,p.264] — but none of their subsequent statements are in-
validated). An example is the curve u3 + 2v3 + 5 − 8uv = 0 with O = (1, 1)
and point (3, 2) of order 2 (alternatively with O = (3, 2) and (1, 1) of order 2).
This example is plotted on an interleaving sheet.† Some similar examples are
u3+3v3+6+4uv = 0 with points (1,−1) and (−3/2, 1/2); u3+2v3+6−14uv = 0
with (−4, 1), (2/3, 5/3); u3 + 2v3 + 7− 12uv = 0 with (1, 2),(3, 1). In Chapter 6
we will see that for elliptic curves as in the corollary and with a rational point,
the order of the torsion subgroup is one of 1,2,3,4,6,9,12 (and is 1 in the Selmer
case d = 0). However I have been able to find examples only of orders 1 and 2.

We now describe algebraically the group operations for a Weierstrass equa-
tion. Since O is going to be the group 0 and since it is the only point at ∞,
we can confine our description of −P1 and P1 + P2 to affine coordinates: let
Pi = (xi, yi). The line x = x1 contains the point P1 and, considering its pro-
jective version X = x1Z, it also contains O. Thus −P1 is the third point of
intersection, which therefore has x-coordinate x1 and it remains to calculate
the y-coordinate. When we substitute x1 for x in the Weierstrass equation we
obtain a quadratic equation for y:

y2 + (a1x1 + a3)y − (x3
1 + a2x

2
1 + a4x1 + a6) = 0.

The sum of the roots is −(a1x1 + a3), and one root is y1, hence the other root,
which is the y-coordinate of −P1, is −a1x1 − a3 − y1.

†We note that the locus of a real projective cubic curve is never contained in an affine

part of P2
(R), i.e., the graph is never finite, as is the case for example with ellipses, since a

cubic polynomial with real coefficients has a real root, and therefore the line at infinity always
intersects the cubic in a real point.
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Next let us calculate P1+P2 = P3 = (x3, y3). If x1 6= x2, i.e., P1 6= ±P2 then
the line joining P1 and P2 is y = y1 + λ(x− x1) where λ = (y2 − y1)/(x2 − x1).
Substituting this expression for y into the Weierstrass equation gives a cubic
equation for x whose three roots are x1, x2, x3. Identifying the sum of the roots
with the negative of the coefficient of x2 yields x3 = −x1 − x2 − a2 + a1λ + λ2

and putting this into the equation of the line gives the y-coordinate of −P3 from
which we find y3 = −[y1 + (x3 − x1)λ + a1x3 + a3].

There remains the case P1 = P2 which is treated similarly where now y =
y1 + λ(x − x1) is the tangent line. We leave to the reader the calculation of λ
as well as a few other details in the following proposition.

Notation: For any abelian group A and m ∈ Z, [m] denotes the endomorphism
multiplication by m and A[m] denotes ker[m]; if m′ is a divisor of m then A[m′]
is a subgroup of A[m]. When m > 0 the elements of A[m] not in A[m′] for
any proper divisor m′ of m are called m-division points. For example for
P ∈ E(K) we have [−1]P = −P and the 2-division points defined over K are
those P 6= O satisfying [2]P = P + P = O. As will be explained in detail in
§1.7.2, there are only finitely many m-division points defined over any extension
field of K and adjoining the x and y coordinates of all these points gives a
finite extension of K called the m-division field of E. The usual Weierstrass
coordinates of a point P ∈ E(K) are denoted x(P ) and y(P ). This notation
is extended to any function f of x and y: f(P ) simply means the value of f
when the coordinates of P are substituted for x and y. Thus, maintaining the
notation introduced in §1.1, when charK 6= 2:

η(P ) = y(P ) + (a1x(P ) + a3)/2.

Proposition 1.7.3 For points on an elliptic curve in Weierstrass form we have

−(x1, y1) = (x1,−y1 − a1x1 − a3).

Hence the points of order 2 in the group are as follows:

charK = 2: if a1 = 0, equivalently j = 0, there are no points of order
2; if a1 6= 0 there is a unique point of order 2, possibly quadratic over
K:

[2]

(

a3/a1,

[

a4 +
√

b8 + (a3
3/a1)

]

/a1

)

= O

charK 6= 2: there are exactly 3 points of order 2, possibly some
irrational over K: (x, η) = (xi, 0) where xi runs through the three
roots of

x3 +
b2

4
x2 +

b4

2
x +

b6

4
= 0.

For (x2, y2) 6= −(x1, y1) we have the addition law

(x1, y1) + (x2, y2) = (x3, y3)
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where

x3 = −x1 − x2 − a2 + a1λ + λ2

y3 = −y1 − (x3 − x1)λ − a1x3 − a3

and

λ =



















y2 − y1

x2 − x1
if x1 6= x2

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if x1 = x2

Hence

x([2](x, y)) =
x4 − b4x

2 − 2b6x − b8

4x3 + b2x2 + 2b4x + b6

.

When charK = 2,

y([2](x, y)) = (c1y + c2)/(a1x + a3)
3 where

c1 = a1x
4 + a1b8 + a3b6,

c2 = x6 + a4x
4 + (b6 + a4b2)x

3 + (b8 + a4b4)x
2

+(b2b8 + (a4 + b4)b6)x + (b4b8 + b2
6 + a4b8).

When charK 6= 2
η([2](x, η)) = f(x)/16η3

where f(x) =

2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x + (b4b8 − b2
6).

There is a special case of the duplication formula that we record in a corollary
for future reference:

Corollary 1.7.4 If charK 6= 2 and

y2 = x(x2 + ax + b)

then

[2](x, y) =

(

(

x2 − b

2y

)2

,
(x2 − b)(x4 + 2ax3 + 6bx2 + 2abx + b2)

8y3

)

.
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Many numerical examples of adding points are given in the standard texts.
We content ourselves with the following four.

Example 1. Let K = Q(t) be a simple transcendental extension of the
rational field. Then on

y2 = x3 + tx2 − tx

one calculates†

∆ = 16t3(t + 4), j = 162(t + 3)3/(t + 4),

(0, 0) + (1, 1) = (−t, t),

[2](0, 0) = O,

[2](1, 1) =

(

(

t + 1

2

)2

,−1

8
(t3 + 5t2 + 3t − 1)

)

,

[3](1, 1) = (a2/d2, ab/d3)

where a = t2 + 6t + 1, b = 3t4 + 16t3 + 22t2 + 24t − 1, and d = (t + 2)(t + 3).

Example 2. For the twisted Fermat curve u3 + v3 = a, y2 = x3 −
432a2, x = 12a/(u + v), etc., introduced in Corollary 1.4.2, we find

−(u, v) = (v, u)

by transforming to (x, y) coordinates, doing the calculation, then transforming
the result back to u, v coordinates. Similarly one can give (rather complicated)
formulas for [2](u, v) and the addition of two points. Alternatively one can work
directly in u, v coordinates using the geometric constructions. The plot on the
following interleaf shows

(1, 12) + (9, 10) + (−37/3, 46/3) = O

on the ‘taxicab curve’ — the case a = 1729.

Example 3. The “generic R-example” is depicted in the diagram. The
equation of the horizontal line is η = y + (a1x + a3)/2 = 0 and the line joining
a point P with O is the vertical line through P . Let us denote the connected
component of O by C1; it is the part on the right passing through P1. The second
real component C2, the dotted oval part, is present when ∆ > 0; then C1 is a
subgroup of index 2 in E(R) and C2 is a coset. Thus P ∈ C2 ⇒ [2]P ∈ C1. The
real points of order 2 are P1 and, if ∆ > 0, P2 and P3. The points of order 3 as
indicated in the diagram are Q and −Q; the real flexes are O,±Q. As we will
see in Proposition 1.7.8, the point P = (x, y) satisfies [3]P = O iff x is a root of
a certain 4-th degree polynomial ψ3(x). An easy Sturm’s theorem calculation
(cf. [Con82], p.273) shows that ψ3 always has exactly 2 real roots. One of

†Actually apecs made these calculations — see the appendix to this chapter.
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these roots gives two corresponding real values of y, hence the points ±Q, but
the values of y corresponding to the other real root x are always nonreal.

Example 4. On the next interleaf a particular real case is plotted, actually
one defined over Q, which we have deliberately chosen with a1 6= 0 to illustrate
the fact that the change from (x, y) to (x, η) coordinates given by η = y +
(a1x + a3)/2 is not orthogonal. Therefore the x-axis symmetry illustrated in
the previous figure is now skewed. But notice that a point P and its negative
are still joined by a vertical line and, in particular, the tangents at points of
order 2 are vertical.

When charK 6= 2 the x-coordinates of the 2-division points are the roots of

f(x) = x3 +
b2

4
x2 +

b4

2
x +

b6

4
.

Since charK 6= 2, this polynomial is always separable over K; for it could be
inseparable only if charK = 3 and b2 = b4 = 0, but then ∆ = 0.

Let ei, i = 1, 2, 3 denote the roots and let K2 denote the 2-division field
K(e1, e2, e3). Since ∆ is 16 times the polynomial discriminant of f(x) and
∆ 6= 0, by standard field theory the possibilities are as follows.
— all three ei ∈ K: K2 = K;
— just one ei ∈ K: K2 is quadratic over K;
— no ei ∈ K and ∆ is a square in K: K2 is Galois (cyclic) order 3 over K;
— no ei ∈ K and ∆ /∈ K∗2: K2 is Galois over K with group S3, the symmetric
group of order 3! = 6.

The possibilities are illustrated by the following three examples over Q.

y2 + xy + y = x3 + x2 − 135x − 660 ∆ = 3852 (E15)

y2 + xy + y = x3 + x2 + 35x − 28 ∆ = −3258 (F15)
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y2 = x3 − x2 − 2x + 1 ∆ = 2472 (A196)

The number of 2-division points defined over Q is respectively, 3,1,0. In fact
one can determine (by methods to be described later) that the group of rational
points in these cases is as follows (Cn denotes the cyclic group of order n and
the coordinates are (x, y)):

E15(Q) = C2 × C2 = {O, (13,−7), (−7, 3), (−29/4, 25/8)},
F15(Q) = C8 = {P = (2, 6), [2]P = (7,−29), [3]P = (32, 171),

[4]P = (3/4,−7/8), [5]P = (32,−204), [6]P = (7, 21),

[7]P = (2,−9), [8]P = O},
A196(Q) = C∞ = 〈(0, 1)〉.

The group orders |E15(Q)| and |F15(Q)|, namely 4 and 8, are interchanged in
table 1 of [AntIV]; remarkably this is the only misprint that has come to light
in this manually typed catalog!

1.7.1 Halving points

Division by 2 is naturally a tad more complicated than multiplication by 2:

Proposition 1.7.5 Let E be an elliptic curve defined over the field K, let
charK 6= 2 and let the x-coordinates of the 2-division points be ei, i = 1, 2, 3,
in a separable algebraic closure K

s
of K.

(a) Let Q ∈ E(K), Q 6= O. Then there exists P ∈ E(K) such that [2]P = Q
iff ∀i, x(Q)−ei is a square in K(ei). When these three conditions are satisfied,
let x(Q) − ei = ρ2

i where the ρi are chosen so that

(i) they are algebraically compatible, i.e., σ ∈ Gal(K
s
/K), σei = ej =⇒

σρi = ρj, and

(ii) so that η(Q) = ρ1ρ2ρ3.
‡

Then all the solutions P are given by

x(P ) = x(Q) + ρ1ρ2 + ρ1ρ3 + ρ2ρ3,

η(P ) = m(x(P ) − x(Q)) − η(Q),

where m = ρ1 + ρ2 + ρ3. Thus the equation of the line in the (x, η)-plane that
is tangent to E at P and passes through −Q = (x(Q),−η(Q)) is

η = m(x − x(Q)) − η(Q). (T)

‡If all ei ∈ K then condition (i) imposes no condition while if Q itself is a point of order 2
then one of the ρ is 0 and condition (ii) imposes no condition.
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(a′) [Was87, Prop.4] An alternative, rational criterion: the solutions of
[2]P = Q as in (a) are in 1-1 correspondence with the roots in K of the polyno-
mial QuarQ(m) (defined in §1.2). For each root m, the corresponding point P
has coordinates

x(P ) = (m2 − b2/4 − x(Q))/2, η(P ) = m(x(P ) − x(Q)) − η(Q),

and (T) is the equation of the tangent line at P .

(b) In the quadratic case, that is, when one ei ∈ K and the other two are
conjugate quadratic over K, there are simpler rational criteria for the existence
of P as follows.† Replacing x by x + ei, the equation takes the form

y2 = x(x2 + ax + b) where d = a2 − 4b 6∈ K∗2,

so e1 = 0, e2 = (−a +
√

d)/2, e3 = e2 = (−a −
√

d)/2.

Then P exists iff

• when Q = (0, 0),

(i) b ∈ K∗2, say b = r2, and

(ii) one of a ± 2r ∈ K∗2 ;

choosing the sign of r so that a + 2r = p2, the two solutions are

[2](r,±rp) = (0, 0);

• when Q = (s, t), s 6= 0,

(i) s ∈ K∗2, say s = r2, and

(ii) one of q± = 2s + a ± 2t/r ∈ K∗2;

choosing the sign of r so that q+ = p2, the two solutions are

[2](S,±pS) = (s, t) where S = s ± pr +
t

r
.

(c) If one of the 2-division points is defined over K, say e1 ∈ K, then all
three are defined over K iff ∆ ∈ K∗2. (Since j − 1728 = c2

6/∆, when j 6= 1728
this is equivalent to j − 1728 ∈ K∗2.) And then

e2, e3 = −1

2

(

e1 +
b2

4
±
√

∆/(2(6e2
1 + b2e1 + b4))

)

.

When this is the case, and the Weierstrass equation is written y2 = x(x2 +
ax + b) = x(x − e2)(x − e3), the criteria for [2]P = Q are the same as in (b):

†as pointed out to me by John Cremona.
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• when Q = (0, 0), iff b = r2 and a + 2r = p2
+, hence a − 2r = p2

− where
p− = (e2−e3)/p+; then the four solutions are given by the four variations
of sign in

[2](ur,wrpu) = (0, 0), u, w ∈ {±1};

• Q = (s, t), s 6= 0, iff s = r2 and q+ = p2
+, hence q− = p2

− where p− =√
d/p+; then the four solutions are given by the four choices of u,w ∈ {±1}

in
[2](S,wpuS) = (s, t) where S = s + wupur + ut/r.

Remarks. (a) is the general case, and so (b) and (c) are in a sense repetetive,
but the formulas can be more convenient.

Referring to (a), since x(P ) and η(P ) are symmetric functions in the ρi

they lie in K. When there is a solution [2]P = Q for a given Q the number
of solutions is the cardinality |E(K)[2]| since any two solutions P differ by an
element of E(K)[2]. This is all borne out by the formulas in (a). For example
if all ei ∈ K, so |E(K)[2]| = 4, then P exists iff all ρi ∈ K and then

— if η(Q) 6= 0, among the 8 variations of the signs of the ρi only 4 qualify
because of the requirement η(Q) = ρ1ρ2ρ3;

— if η(Q) = 0 then one ρi = 0 and the 4 variations of the signs of the other
two ρi all qualify.

Proof. (a) Suppose first that [2]P = Q. For each i make the coordinate shift
x = x′ + ei, so the equation takes the form

η2 = x′3 + ax′2 + bx′,

and let x′(P ) = p ∈ K(ei), η(P ) = q ∈ K. By Corollary 1.7.4,

x′([2]P ) = x([2]P ) − ei =

(

p2 − b

2q

)2

∈ K(ei)
∗2,

so the conditions are necessary. The converse is once again a computational
verification — a simple computer exercise.

(a′) Let

f(x) = x3 +
b2

4
x2 +

b2

2
x +

b6

4

so the b-form of E is η2 = f(x). If we write

f(x + x(Q)) = x3 + bx2 + cx + η(Q)2,

then

b =
b2

4
+ 3x(Q),

c =
b4

2
+

b2

2
x(Q) + 3x(Q)2.
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Assuming [2]P = Q, the tangent line at P can be written in the form (T), and

(mx − η(Q))2 = f(x + x(Q)) = x3 + bx2 + cx + η(Q)2

has the three roots x = x(P ) − x(Q), x(P ) − x(Q), 0. Their sum is 2(x(P ) −
x(Q)) = m2 − b, hence

x(P ) =
m2 − b

2
+ x(Q), and η(P ) =

m(m2 − b)

2
− η(Q).

The 2-nd symmetric function of the roots is (x(P ) − x(Q))2 = c + 2mη(Q), or

(

m2 − b

2

)2

=
b4

2
+

b2

2
x(Q) + 3x(Q)2 + 2mη(Q),

which works out to QuarQ(m) = 0.
(b) First, suppose that Q = (0, 0). In order to have [2](x, y) = (0, 0), by

Corollary 1.7.4 we need b = r2 for some r ∈ K∗ and then with x = ±r we need

y2 = ±r(r2 ± ar + r2) = r2(a ± 2r) ∈ K∗2.

Choosing the sign of r so that a + 2r = p2, we have [2](r, rp) = (0, 0) by the
formula of that corollary.

Second, suppose Q = (s, t), s = r2 6= 0. On the one hand if s − e2 = ρ2

where ρ ∈ K(
√

d), so s − e3 = ρ2, then ρ2ρ2 = t2/r2. Choose the sign of r so
that ρρ = t/r and define p = ρ + ρ. Then

p2 = ρ2 + ρ2 + 2ρρ = s − e2 + s − e3 + 2t/r = 2s + a + 2t/r ∈ K∗2.

Conversely if (i) and (ii) are satisfied with q+ = p2 then the roots of z2 −
pz + t/r are ρ, ρ = (p±√

q−)/2, and these are in K(
√

d) since q+q− = d. Hence
√

q− = ±
√

d/p and ρ2, ρ2 = s − e2, s − e3. The formula for P now follows from
the general formula in (a).

(c) The ei are the roots of

f(x) = x3 + (b2/4)x2 + (b4/2)x + b6/4

= (x − e1)(x
2 + (e1 + b2/4)x + (e2

1 + b2e1/4 + b4/2)).

The roots of the quadratic factor are

(−e1 − b2/4 ± τ)/2 where τ =
√

∆/(4f ′(e1)).

To prove the statements concerning [2]P = Q, one just follows the proof of
(b), noting that when Q = (0, 0) then (a + 2r)(a − 2r) = (e2 − e3)

2, and when
Q = (s, t), s 6= 0, then q+q− = d is a square.
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Examples

On E : y2 = x(x2 + 4x + 13) the point Q = (1/4, 15/8) is not of the form
[2]P , P ∈ E(Q), since the ej are 0,−2 ± 3i and

1

4
+ 2 + 3i =

3(2 + i)2

4

is not a square in Q(i). Note that when x = 1/4, both factors x and x2+4x+13
of the right side of the Weierstrass equation are squares in Q, so in general it
is not sufficient that the K-irreducible factors evaluated at x(Q) are squares in
K.

On the other hand, for Q = (0, 0) on

y2 = x(x2 − x + 1) (A24)

we have b = r2, r = 1 and a + 2r = p2, p = ±1, hence

[2](1,±1) = (0, 0),

and (1,±1) are 4-division points, that is, elements of order 4 in the group E(Q).
The 2-division points of

y2 + xy + y = x3 − x2 − x − 14 (C17)

are (11/4,−15/8) and (−1 ± 2i,∓i). Since 11/4 − (−1 ± 2i) = ((4 ∓ i)/2)2, we
have ρ1 = 0 and ρ2, ρ3 = (4 ± i)/2, so x(P ) = (11/4) + (17/4) = 7,

and [2](7, 13) = [2](7,−21) =

(

11

4
,−15

8

)

.

The final example is stated in a corollary for future reference.

Corollary 1.7.6 Let K be a field of characteristic 6= 2 that contains neither√
−1 nor

√
2 (e.g. Q or a finite field Fq where q = pn ≡ 3 mod 8), and let the

elliptic curve E be given by an equation of the form

y2 = x3 + bx, b ∈ K∗.

Then the 2-torsion subgroup of E(K) (i.e. points of order 2n, some n) is as
follows, where Cm denotes a cyclic group of order m :

• C2 ⊕ C2 if −b is a square;

• C4 if b = 4u4 for some u ∈ K∗;

• C2 otherwise.
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Remark. It will be explained later (Proposition 4.2.2) that when charK 6= 2
the Weierstrass equations y2 = x3 + bx, b ∈ K∗, represent, up to isomorphism,
precisely the curves with a point of order 2 and j = 1728. Actually j = 1728
guarantees a rational point of order 2 except when charK = 3 (or charK = 2).
See also Corollary 7.2.1.
Proof. First suppose that −b is not a square. Then Q = (0, 0) is the only point
of order 2 in E(K), and therefore the 2-torsion subgroup is C2 unless [2]P = Q
has a solution. By part (b) of the proposition, this is the case precisely when b
has the form 4u4. Then P = (2u2,±4u3), and since

√
2 /∈ K, again by part (b),

[2]R = P has no solution, hence the 2-torsion subgroup is C4.
When −b is a square then e1 = 0, e2 =

√
−b and e3 = −

√
−b are all in

K. Now, Q = (0, 0) cannot be halved since, by part (c), that would require
also

√
b ∈ K, hence

√
−1 ∈ K. Next, Q′ = (e2, 0) cannot be halved since that

requires e2 ∈ K∗2 and q+ = 2e2 ∈ K∗2, hence
√

2 ∈ K. Similarly Q′′ = (e3, 0)
cannot be halved. Thus the 2-torsion subgroup is {O,Q, Q′, Q′′} which has the
form C2 ⊕ C2.

1.7.2 The division polynomials

Inductively one can obtain formulas for the coordinates of [m](x, y) for every
positive integer m.† The case m = 2 occurs in Proposition 1.7.3 above; however
we will not take the trouble to carry through with a formula for the y-coordinate
in characteristic 2 for general m.

From §1.1 we recall the definition

κ = 2y + a1x + a3

and the relation
κ2 = 4x3 + b2x

2 + 2b4x + b6 (#)

which is valid in all characteristics. It follows that if P 6= O then

[2]P = O ⇐⇒ κ(P ) = 0.

Next we define the division polynomials inductively:

ψ0 = 0, ψ1 = 1, ψ2 = κ,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8,

ψ4 = κ
(

2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2+

†We are treating (x, y) as a generic point on E: if (a, b) ∈ E(K′) for any field K′ ⊃ K
then x 7→ a, y 7→ b defines a K-algebra homomorphism K[x, y] −→ K′, and the formulas
for [m](x, y) can be specialized to evaluate [m](a, b). But usually one can be more informal
and refer to a ‘general’ point (x, y) with the understanding that the coordinates may have
‘specific’ values.
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(b2b8 − b4b6)x + b4b8 − b2
6

)

,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1,

ψ2m = (ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)ψm/κ.

By taking m = 2, 3, . . . these recurrence relations define ψn for all n ≥ 0. In
[Cas49], Cassels defines

ψ−n = −ψn

and it is easily seen that now the recurrences are valid ∀m ∈ Z. In fact both
recurrences are subsumed by

ψm+nψm−n = ψm−1ψm+1ψ
2
n − ψn−1ψn+1ψ

2
m ∀m,n ∈ Z.

Cassels [ibid.] also introduces the following useful notation, not present in the
classical texts, such as [Web08], vol.3, p.196; [Jor13], vol.3, p.190; [Fri22], vol.2,
p.184 (and at the same time multiplies the old ψm by (−1)m+1, giving our ψm,
so that the leading coefficient is always positive):

φm = xψ2
m − ψm−1ψm+1,

hence φ−m = φm, φ0 = 1;

and when charK 6= 2, ωm = ψ2m/2ψm for m 6= 0, and ω0 = 1,

hence ω−m = ωm.

Proposition 1.7.7 (a) The functions ψodd, ψeven/κ, φall, ωeven, ωodd/κ are all
polynomials in x; more precisely, they are in the ring

Z[a1, a2, a3, a4, a6, x]

where Z denotes Z modulo char K (so Z is Z or Fp). Their leading terms are

ψm = mx(m2−1)/2 + · · · , (m odd)

ψm/κ = (m/2)x(m2−4)/2 + · · · , (m even)

φm = xm2

+ · · · ,
ωm = x3m2/2 + · · · , (m even)

ωm/κ = (1/2)x3(m2−1)/2 + · · · , (m odd)

Thus for all m,

ψ2
m = m2xm2−1 + · · · , ω2

m = x3m2

+ · · · .

(b) If the ai are independent transcendentals and if we assign the weights

w(ai) = i, w(x) = 2, w(y) = 3,
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i.e., we make B = Z[a1, . . . , a6, x, y] into a graded ring, then the functions ψm,
φm, ωm are homogeneous of weights m2−1, 2m2, 3m2 respectively — when they
are expressed as elements of B, all terms have equal weight. (It is immaterial
whether or not y2 is replaced by x3 + · · · according to the Weierstrass equation.)

The easy proof by induction for ψ and then deduction for φ and ω, which is
rather long when written out in detail, is left to the reader.

For P ∈ E(K), P 6= O, we let ψm(P ), φm(P ) and (when char K 6= 2) ωm(P )
denote the values of these functions when the coordinates of P are substituted
for x and y in the above.

Proposition 1.7.8 (a) Let P ∈ E(K), P 6= O and let m ∈ Z. Then [m]P = O
iff ψm(P ) = 0, and when this is not the case,

x([m]P ) = φm(P )/ψm(P )2;

this is a rational function of x(P ). When charK 6= 2,

η([m]P ) = ωm(P )/ψm(P )3, hence

y([m]P ) =
ωm(P )

ψm(P )3
− 1

2

[

a1
φm(P )

ψm(P )2
+ a3

]

.

(b) For positive integers m and n,

ψmn = ψm2

n ψm([n](x, y)),

φmn = ψ2m2

n φm([n](x, y)),

ωmn = ψ3m2

n ωm([n](x, y)).

Proof. (a) A somewhat more challenging exercise for the computer.
(b) These three formulas are merely an elaboration of

[mn](x, y) = [m][n](x, y).

Note that the ωm in [Aya92] is not the same as ours; nevertheless, both ω satisfy
the third equation.

Example The map in Proposition 1.4.4 is essentially multiplication by 3;
the details are as follows. Let K be a field of characteristic 6= 2 or 3, let a, b, c
be nonzero elements of K and suppose θ := − 3

√

c/b ∈ K∗. Consider the curves

E E

C1 C2
-

-

? ?

τ

f1 f2

[3]

C1 : aU3 + bV 3 + cW 3 = 0,
C2 : abcR3 + S3 + T 3 = 0,
E : Y 2Z = X3 − 432a2b2c2Z3.
By Corollary 1.4.3 there are bijections
fi : Ci(K) −→ E(K). The map (u, v, w) 7→ (r, s, t)
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of Proposition 1.4.4, with obvious minor changes in notation, induces a map τ :
C1 −→ C2. Calculation shows that the accompanying diagram is commutative.
Thus an alternative way to introduce τ is to make the definition τ := f−1

2 [3]f1.

In the following corollary we record the most immediate deductions from the
proposition concerning division points. These results will be refined later; see
the remarks in the next section.

Cm denotes a cyclic group of order m and K an algebraic closure of the field
K. Since [−m](P ) = −[m](P ), E(K)[−m] = E(K)[m].

Corollary 1.7.9 Let m be a positive integer.
(a) ψm 6= 0, in other words, [m] 6= [0] as endomorphisms of the abelian group

E(K).
(b) The subgroup E(K)[m] of E(K) is isomorphic to a subgroup of Cm⊕Cm.

If charK = p > 0 then E(K)[p] is either 0 or Cp.
(c) If P = (x, y) ∈ E(K)[m] then mx ∈ Z[a1, . . . , a6].

Proof. (a) By Proposition 1.7.7(a), if ψm = 0 then charK = p > 0 and p|m.
Let q be any prime not dividing m and choose P ∈ E(K)[q], P 6= O. Then
[m]P = [q]P = O where gcd(m, q) = 1, say sm + tq = 1, which gives the
contradiction [1]P = O.

(b) First let m be odd. ψm(x) has at most (m2 − 1)/2 distinct roots x ∈ K.
For each such x there are at most 2 values of y ∈ K satisfying the Weierstrass
equation, and therefore E(K)[m] contains at most m2−1 nonzero points, hence
at most m2 points in all.

Similarly when m is even, E(K)[m] contains O, at most three 2-division
points and at most two points for each of the distinct roots of ψm/κ in K,
hence at most 1 + 3 + 2(m2 − 4)/2 = m2 points in all.

Since [m]P = O for each P ∈ E(K)[m], the first statement follows for both
odd and even m.

Now let charK = p > 0 so that E(K)[p] = V , say, is a vector space over Fp.
When p = 2, we saw in Proposition 1.7.3 that dimV = 0 or 1. When p is odd,
ψp = px(p2−1)/2 + · · · has fewer than (p2 − 1)/2 roots since p = 0 in K. This
implies that dim V ≤ 1.

(c) reflects the fact that the coefficients of ψm are in
Z[a1, . . . , a6] and the leading coefficient is m.

Definition: When charK = p > 0, the elliptic curve E is supersingular resp.
ordinary when E(K)[p] is 0 resp. Cp. (The terminology is a trifle perverse: a
supersingular E is not singular.)

Proposition 1.7.10 Let E be an elliptic curve defined over the field K.

• If charK = 2 then E is supersingular iff a1 = 0 iff j = 0.

• If charK = 3 then E is supersingular iff b2 = 0 iff c4 = 0 iff j = 0.
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Proof. When charK = 2, then b2 = a2
1 and b6 = a2

3 are not both 0 in order
that ∆ 6= 0. The statement follows from relation (#) at the beginning of this
section, or from Proposition 1.7.3.

When charK = 3, the statement follows from ψ3 = b2x
3 + b8 and c4 = b2

2.

Many equivalent conditions for supersingularity will emerge as the theory is
developed. We will see, e.g., that there are nonzero supersingular j ∈ Fp for all
p ≥ 7.

Lemma 1.7.11 Let a1, a2, a3, a4, a6 be independent transcendentals over Q and
let A denote the UFD Z[a1, a2, a3, a4, a6]. Then

(a) ∆ is an irreducible element of A;
(b) as polynomials in x over the quotient field of A, the gcd(φm, ψ2

m) = 1;
in fact

Resultant(φm, ψ2
m) = ±∆m2(m2−1)/6.

Remarks. (a) We will use this result only in characteristic 0, but we note that
the proof is easily adapted to A/pA = Fp[a1 . . .] for all primes p ≥ 5. Special
proofs would be needed for p = 2 and 3, as is often the case in matters having
to do with elliptic curves, in order to establish the irreducibility of the generic
discriminant in these characteristics.

(b) In [Aya92] it is stated that the sign is always +, and I have no reason to
doubt this. But I have found a reasonably simple proof only for m not divisible
by 4. In any case we will not need this refinement.

(When m is odd the positiveness follows from Res(φm, ψ2
m) = Res(φm, ψm)2;

but this no longer applies when m is even since then ψm contains the factor κ
which is not a polynomial in x.)
Proof. The irreducible elements of A are the prime numbers p (and −p ; note
that A∗ = {±1}) and the irreducible polynomials with content (the gcd of the
integer coefficients) = 1.

(a) We note that the factorization of ∆ contains no p. For if ∆ = p∆′, this
factor p would remain when we specialize the ai to values in Z; but a pair of
examples such as A24 with ∆ = −243 and C17 with ∆ = −174 shows that
there is no such common factor p. (We would have a problem if we restricted
ourselves to a family such as y2 = x3 + bx + c for which ∆ = −16(4b3 + 27c2).)

The proof of (a) is completed by looking at ∆ as a polynomial in a6:

∆ = −432a2
6 + αa6 + β, where α, β ∈ Z[a1, a2, a3, a4].

Suppose there were a nontrivial factorization ∆ = fg. If the degree of f as a
polynomial in a6 is 0, then f could only an integer divisor of 432; but we have
just seen that ∆ has no integer factors. Thus f and g must both be of degree 1
which means that the above quadratic has roots in Z[a1, . . . , a4]. These roots
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have the form, for a certain γ ∈ Z[a1, . . . , a4],

a6 = γ ± 1

864
δ3/2 where δ = a4

1 + 8a2
1a2 + 16a2

2 − 24a1a3 − 48a4.

But in fact the required square root does not exist in Z[a1, . . . , a4] since δ is a
linear polynomial in a4.

(b) Let K denote the quotient field of A. Suppose p is an irreducible poly-
nomial factor of φm and ψ2

m of positive degree in K[x]. The formula defining
φm shows that p divides one of

ψm−1, or ψm+1 when m is even,

ψm−1/κ, ψm+1/κ, or κ2 when m is odd.

Extend K to a field K ′ containing a root θ of p, and a point P = (θ, β) ∈ E(K ′).
Since ψm(P ) = 0, by the previous proposition P is a point of order dividing m.
Hence neither ψm−1(P ) nor ψm+1(P ), nor (in the case of odd m) κ2(P ) = ψ2

2(P )
can be 0, and we have a contradiction.

Since the vanishing of the resultant is a necessary and sufficient condition
for nontrivial gcd, we now know at least that the resultant in question — call it
R — is nonzero. Thus we must show that the only irreducible element dividing
R is ∆, and that the exponent is right.

First, R cannot have a prime number factor p since that would make R
identically 0 in characteristic p. Second, if π is a polynomial factor of R then
we can specialize the ai, extending Q to a number field if necessary, to make
π = 0. Then R = 0 which implies that the Weierstrass equation cannot define
an elliptic curve: ∆ is now 0. Conclusion: π = ±∆.

Finally, the exponent is right since R is a homogeneous polynomial of weight
2m2(m2 − 1) (each term in the determinant expansion has that weight, as can
be seen by an inspection of the entries in R) and ∆ is homogeneous of weight
12.

Now, a basic property of the resultant R of two polynomials f and g is that
sf − tg = R for some polynomials s, t with coefficients in the domain generated
by the coefficients of f and g. Thus

sψ2
m − tφm = ∆m2(m2−1) for some s, t ∈ Z[b2, b4, , b6, b8][x].

We wish to make two comments.
First, this equation will survive any specialization of the Weierstrass coeffi-

cients to specific values in a field K of any characteristic (although when charK
divides m the right side is no longer the resultant since the degree of ψ2

m is
reduced). This observation gives part (a) of the following proposition.

Second, at least for the cases m = 2 and 3, the Euclidean algorithm gives a
better exponent on ∆:

m = 2, 3 : σmψ2
m − τmφm = ∆(m−1)2 , σm , τm ∈ Z[b2, b4, b6, b8, x].
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Actually, a direct application of the Euclidean algorithm gets out of hand already
for m = 3; one can use the algorithm instead to find α, β ∈ Z[b2, . . . , x] such
that αψ3 + βφ3 = ∆2, and then square. We record the computer results for
m = 2 in part (b); this identity will be a basic ingredient in a number of results:
the generalized Nagell–Lutz theorem presented in §2.10, an estimate of Siksek
in Chapter 7, and Olson’s theorem in Chapter 8.

Proposition 1.7.12 Let E be an elliptic curve over the field K (of any char-
acteristic).

(a) As polynomials in x over K, the gcd(φm, ψ2
m) = 1; in fact

sψ2
m − tφm = ∆m2(m2−1) for some s, t ∈ Z[b2, b4, b6, b8][x].

(b) We have the polynomial identity

σ2ψ
2
2 − τ2φ2 = ∆

where
σ2 = 12x3 − b2x

2 − 10b4x + b2b4 − 27b6,

ψ2
2 = 4x3 + b2x

2 + 2b4x + b6,

τ2 = 48x2 + 8b2x + 32b4 − b2
2,

φ2 = x4 − b4x
2 − 2b6x − b8.

Equivalently, since x([2](x, y)) = φ2/ψ2
2 and ψ2 = κ,

(σ2 − x([2](x, y))τ2)κ
2 = ∆.

1.7.3 Remarks on the group of division points

In Chapter 6 we will prove the following statement:

Let E be an elliptic curve defined over the field K, let m be a positive
integer and let K ′ be any overfield of K that contains the x and y
coordinates of all the m-division points (e.g. K ′ = K). Suppose that
char K is either 0 or a positive prime that does not divide m. Then

E(K ′)[m] ≈ Cm ⊕ Cm. (%)

The proof will be an elegant application of basic properties of isogenies; but
let us consider how a computational proof might go at this stage.

The case m = 1 is trivial and from earlier work we know the case m = 2 to
be true. Thus we can assume m ≥ 3.

Inspecting the proof of Corollary 1.7.9, the proof of the above statement
would seem to be almost there: all we need to know (with the stated assumption
on char K) is that ψm doesn’t have a repeated root. For convenience define

ψ∗
m =

{

ψm if m is odd,
ψm/κ if m is even,
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so that ψ∗
m is a polynomial in x for all m, and let dm denote its discriminant.

Thus ψ∗
m has a repeated root iff dm = 0. Thus (%) would follow from the next

statement, which I believe is true:

dm =

{

±m′∆(m2−1)(m2−3)/24 m odd,

±m′∆(m2−4)(m2−6)/24 m even,

where m′ is a positive integer whose prime divisors are precisely
those of m.

On the computer one finds, for example, that

d3 = −27∆2.

But one can’t go much further with a Weierstrass equation with general coeffi-
cients — the calculations take too long.

Now any torsion abelian group is the direct sum of its p-primary components.
For example, let T denote the torsion subgroup of E(K) so that

T =
⊕

p prime

T p

where T p =
⋃

n≥1

E(K)[pn].

(In fancier terms, the natural inclusions E(K)[pn] ↪→ E(K)[pn+1] form a direct
system and

T p = lim
−→

E(K)[pn].
)

Thus it is sufficient to prove the proposition when m is a prime power, and this
would follow from (again I believe these statements to be true):

• if m = pn is a power of the odd prime p, then

dm = (−1)(m−1)/2m(m2−3)/2∆(m2−1)(m2−3)/24;

• if m = 2n then

dm = −2αn∆(m2−4)(m2−6)/24

where αn is a positive integer (α2 = 8, α3 = 82, α4 = 492, α5 = 2534,
“etc.” — I do not know the values of any higher α).
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1.8 The group law: singular case

We now consider a Weierstrass equation with ∆ = 0. Let Ens(K) denote the set
of nonsingular points, that is, the point O at ∞ together with all affine points
(x, y) satisfying the equation except for the unique singular point as described in
Proposition 1.5.4. We will prove that the same geometric construction used to
define the group operations for nonsingular Weierstrass equations gives Ens(K)
a group structure. This is expected for reasons of “continuity”: think of the real
case K = R — a small change in the ai makes ∆ 6= 0. The operations −,+ are
defined by rational functions which are continuous (away from 0 denominators)
in all the quantities involved; and the associative law, for instance, is identically
satisfied. It is not surprising that the singular point must be excluded. But of
course these heuristics must be replaced by algebraic proofs paying due regard
to charK.

The analysis of the singular case will have application to elliptic curves. For
example the curve y2 = x(x + 2)(x + 6) defined over Q can be interpreted as a
curve over Fp for each prime p. Over F2 it has a cusp; over F3 it has a node
(with tangents defined only over F9); and since ∆ = 21232, over Fp for p > 3 it
is an elliptic curve. This reduction mod p information conveys significant infor-
mation about the original curve; indeed by the famous Birch, Swinnerton-Dyer
conjecture which we will discuss later, it conveys a huge amount of information.

Three points in Ens(K) are defined to be colinear if they are the three
points of intersection of a line in P2 with Ens(K); if two of the points are the
same this means that the line is tangent there, and if all three points are the
same this means that the point is a flex.

Proposition 1.8.1 Let E be given by a singular Weierstrass equation over K.

(a) The formulas of Proposition 1.7.3 for − and + endow Ens with the
structure of an abelian group with O as 0-element.

(b) Suppose E has a node with tangents x = x0 + t, y = y0 + µit, i = 1, 2
as described in Proposition 1.5.4.

(b1) If the tangents are rational, i.e., µi ∈ K, then







O 7−→ 1

(x, y) 7−→
µ1(x − x0) − (y − y0)

µ2(x − x0) − (y − y0)

defines a group isomorphism φ : Ens(K) −→ K∗. Hence three points
P1, P2, P3 ∈ Ens(K) are colinear iff φ(P1)φ(P2)φ(P3) = 1.

(b2) If the tangents are irrational let K2 denote the quadratic extension K(µ1, µ2),
let N denote the norm homomorphism K∗

2 −→ K∗ and let φ : Ens(K2)−→K∗
2

be the isomorphism of (b1). Then φ(Kns(K)) = kerN .
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(c) Suppose E has a cusp (c4 = 0) with unique tangent x = x0 + t, y =
y0 + µt, as in Proposition 1.5.4, and let K2 = K(x0, y0, µ) (= K except in
certain inseparable cases in characteristics 2 and 3). Then







O 7−→ 0

(x, y) 7−→
x − x0

(y − y0) − µ(x − x0)

defines a group isomorphism† φ : Ens(K2) −→ K+
2 to the additive group. Hence

three points P1, P2, P3 ∈ Ens(K) are colinear iff φ(P1) + φ(P2) + φ(P3) = 0.

Proof. The geometric definition of negative is

−(x, y) = (x,−y − a1x − a3).

In the multiplicative case φ sends this to

µ1(x − x0) − (−y − a1x − a3 − y0)

µ2(x − x0) − (−y − a1x − a3 − y0)
.

We wish to show that this coincides with

(φ(x, y))−1 =
µ2(x − x0) − (y − y0)

µ1(x − x0) − (y − y0)
.

This follows from the relations µ1 + µ2 = −a1, 2y0 + a1x0 + a3 = 0 of Proposi-
tion 1.5.4.

Similarly in the additive case we find φ(−(x, y)) = −φ((x, y)) using
µ = −a1/2 when charK 6= 2, or ∆ = c4 = 0 ⇒ a1 = a3 = 0 when charK = 2.

Assuming that (b1) is proved we deduce (b2) as follows. Let σ denote the
nontrivial element of Gal(K2/K). If P = (x, y) ∈ Ens(K2) then Pσ = (xσ, yσ) ∈
Ens(K2) and since σ interchanges the µ’s

φ(P )σ =
µ2(x

σ − x0) − (yσ − y0)

µ1(xσ − x0) − (yσ − y0)
= φ(P σ)−1.

Hence

P ∈ kerN ⇔ φ(P )/φ(P σ) = 1

⇔ φ(P ) = φ(P σ)

⇔ P = P σ since φ is injective

⇔ P ∈ Ens(K).

Since φ is surjective it follows that kerN = Ens(K).

†with the sign chosen the same way as in [Sil86]; in the multiplicative case the switch
from φ to φ−1 comes from interchanging the µ’s.
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We now assume that K2 = K in the two cases and all will follow if we prove
that φ is bijective and three points Pi are colinear iff the product (resp. sum)
of the φ(Pi) is 1 (resp. 0).

In the multiplicative case we make the linear projective transformation
(X, Y, Z) 7→ (X ′, Y ′, Z ′) where

X ′ = µ1(X − x0Z) − (Y − y0Z),

Y ′ = (µ1 − µ2)
3Z,

Z ′ = µ2(X − x0Z) − (Y − y0Z).

This transformation‡ is invertible since its determinant = (µ1−µ2)
4 6= 0. Using

the various relations explained in Proposition 1.5.4, calculation shows that

X ′Y ′Z ′ = (X ′ − Z ′)3.

The singular point (X, Y, Z) = (x0, y0, 1) in the new coordinates is (0, 1, 0), the
unique point at infinity on the curve. Thus lines not passing through this point
are described in terms of affine coordinates x′ = X ′/Z ′, y′ = Y ′/Z ′ by equations
of the form y′ = ax′+b. The transformation and its inverse are described affinely
as follows:

x′ = φ(x, y), y′ =
(µ1 − µ2)

3

µ2(x − x0) − (y − y0)
,

x = x0 + (µ1 − µ2)
2(x′ − 1)/y′

y = y0 + (µ1 − µ2)
2(µ2x

′ − µ1)/y′,

and we have bijections

P = (x, y) ←→ (x′, y′) = (x′, (x′ − 1)3/x′) ←→ x′ = φ(P ).

The line y′ = ax′ + b meets the curve in the three points whose x′-coordinates
are the three roots x′

1, x
′
2, x

′
3 of the cubic (x′−1)3−x′(ax′+b) = 0. The constant

term shows that x′
1x

′
2x

′
3 = 1. Conversely if three points Pi = (x′

i, y
′
i) ∈ Ens(K)

are such that x′
1x

′
2x

′
3 = 1 then these x′

i are the roots of the above cubic where
we define a = x′

1+x′
2+x′

3−3 and b = 3−(x′
1x

′
2+x′

1x
′
3+x′

2x
′
3), and consequently

the points lie on the line y′ = ax′ + b.
In the additive case µ has just one value and we make the transformation

X ′ = X − x0Z,

Y ′ = Z,

Z ′ = Y − y0Z − µ(X − x0Z);

‡For a step by step explanation of how one is led to this transformation see [Sil86], p.61.
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the determinant is −1, so the transformation is invertible. Again the line Z ′ =
0 meets the curve only in the singular point. If we dehomogenize by x′ =
X ′/Z ′, y′ = Y ′/Z ′, the equation is

y′ = x′3

and we have bijections

P = (x, y) ←→ (x′, y′) = (x′, x′3) ←→ x′ = φ(P ).

Three point Pi ∈ Ens(K) are colinear iff their x′-coordinates x′
i are the three

roots of x′3 − (ax′ + b) = 0 for some a, b ∈ K. Since the x′2 term is absent, this
is the case iff x′

1 + x′
2 + x′

3 = 0.

It is natural to adopt the definitions:
A singular Weierstrass equation is called split multiplicative, nonsplit

multiplicative or additive according as the conditions of paragraph (b1),
(b2) or (c) of the foregoing proposition are met. By the final statement in
Proposition 1.5.4, the only possible change in the ‘type’ of a singular curve is
from non-split multiplicative to split multiplicative.

1.8.1 Examples over finite fields

An example of the previous proposition that will be important when we study
the number theory of elliptic curves is the case of finite fields:

Corollary 1.8.2 Let E be given by a singular Weierstrass equation over the
finite field Fq. Then

|Ens(Fq)| =







q − 1 if E is split multiplicative,
q + 1 if E is nonsplit multiplicative,

q if E is additive.

The nonsplit case follows from the fact that the norm map N : Fq2
∗ −→ Fq

∗

is surjective ([Ire-Ro82], p.159) hence | kerN | = (q2 − 1)/(q − 1) = q + 1.

Example: We can interpret

y2 + xy = x3 − 18x + 27 (D1525)

as a curve over any Fq. As a curve over Q it has covariants and invariant

c4 = 5 ∗ 173, c6 = −53197, ∆ = 33537, j =
1733

337
.

Thus the curve is singular mod p for p = 3, 5, 7 and nonsingular mod p for all
other p. The following results were obtained by apecs. The notation (x, y; n)
stands for a point (x, y) of order n, and Cn denotes a cyclic group of order n.
We denote the finite abelian group Ens(Fp) by G.
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p singular point nonsingular points G |G|
2 O, (1, 1; 4), (0, 1; 2), (1, 0; 4) C4 4
3 (2, 0) split node O, (2, 2; 2) C2 2
5 (2, 4) cusp O, (1, 4; 5), (3, 0; 5), C5 5

(3, 2; 5), (1, 0; 5)
7 (5, 1) nonsplit node O, (2, 6; 2), (6, 2; 4), (4, 2; 8), C8 8

(4, 1; 8), (6, 6; 4), (3, 0; 8), (3, 4; 8)
11 O, (9, 0; 18), . . . C18 18
13 O, (0, 1; 8), (2, 12; 2), . . . C2 × C8 16

Since additive and split multiplicative types remain the same in extensions,
we can predict, for example, that

|E(F32)| = 8, |E(F52)| = 25

without determining the actual points. We will see later how to determine
|E(Fpn)| on the basis of |E(Fp)| for all p and n.
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We conclude with a tabulation of the 25 = 32 Weierstrass equations over F2.
It happens that in all 32 cases Ens(F2) is cyclic. (Not all Ens(F3) are cyclic.)
In the nonsingular cases, ∆ = 1 and j = c4 = 0 or 1. Other special relations
implied by 2 = 0 and a2 = a are b2 = c4 = c6 = a1.

Additive cases (∆ = 0, c4 = 0):

a1 a2 a3 a4 a6 b2 b4 b6 b8 c4 c6 ∆ |Ens(F2)|
0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 1 0 0 0 0 0 0 0 2
0 0 0 1 0 0 0 0 1 0 0 0 2
0 0 0 1 1 0 0 0 1 0 0 0 2
0 1 0 0 0 0 0 0 0 0 0 0 2
0 1 0 0 1 0 0 0 0 0 0 0 2
0 1 0 1 0 0 0 0 1 0 0 0 2
0 1 0 1 1 0 0 0 1 0 0 0 2

Split multiplicative cases (∆ = 0, c4 = 1, a2 = a3):

1 0 0 0 0 1 0 0 0 1 1 0 1
1 0 0 1 1 1 0 0 0 1 1 0 1
1 1 1 0 1 1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0 1 1 0 1

Nonsplit multiplicative cases (∆ = 0, c4 = 1, a2 6= a3):

1 0 1 0 0 1 1 1 0 1 1 0 3
1 0 1 1 0 1 1 1 0 1 1 0 3
1 1 0 0 0 1 0 0 0 1 1 0 3
1 1 0 1 1 1 0 0 0 1 1 0 3

Supersingular cases (∆ = 1, a1 = 0):

0 0 1 0 0 0 0 1 0 0 0 1 3
0 0 1 0 1 0 0 1 0 0 0 1 3
0 0 1 1 0 0 0 1 1 0 0 1 5
0 0 1 1 1 0 0 1 1 0 0 1 1
0 1 1 0 0 0 0 1 1 0 0 1 5
0 1 1 0 1 0 0 1 1 0 0 1 1
0 1 1 1 0 0 0 1 0 0 0 1 3
0 1 1 1 1 0 0 1 0 0 0 1 3

Ordinary cases (∆ = 1, a1 = 1):

1 0 0 0 1 1 0 0 1 1 1 1 4
1 0 0 1 0 1 0 0 1 1 1 1 4
1 0 1 0 1 1 1 1 1 1 1 1 2
1 0 1 1 1 1 1 1 1 1 1 1 2
1 1 0 0 1 1 0 0 1 1 1 1 2
1 1 0 1 0 1 0 0 1 1 1 1 2
1 1 1 0 0 1 1 1 1 1 1 1 4
1 1 1 1 0 1 1 1 1 1 1 1 4
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Student project

Let F ∈ Z[x, y, . . .] be a polynomial in several variables with integer coef-
ficients, let p be a prime, and for n = 1, 2, . . . let νn denote the number of
solutions (x, y, . . .) of the congruence

F ≡ 0 mod pn.

I believe it was Igusa who proved that the power series

f = ν1T + ν2T
2 + · · ·

is a rational function of T .
Elaborate Igusa’s result in the case

F = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6, ai ∈ Z.

For example, when F = y2 − (x3 + 2x − 28) and p = 5, verify that

f =
6T + 20T 2 + 25T 3

1 − 5T
.
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Appendix: introduction to apecs

apecs (arithmetic of plane elliptic curves) is a program written in Maple
available at an anonymous ftp site. Here is the procedure to obtain a copy:

ftp math.mcgill.ca (internet 132.206.150.3)

< login > anonymous

< password > your e-mail address

cd pub/apecs

get README

The file README contains all the info. on how to get apecs (and the
ubasic version upecs).
If there’s a problem please let me know:

connell@math.mcgill.ca (internet 132.206.150.3)
or

Ian Connell
Mathematics Dept.
McGill University
805 Sherbrooke W.
Montreal, Quebec
Canada H3A 2K6

We describe some of the apecs procedures (or commands) that relate to the
topics discussed in this chapter. The descriptions will be simplified and rather
terse; for more information, in an apecs session use the commands Nota(); and
menu();, and for information on a particular command xxx use Menu(xxx);.

We present the descriptions here in a series of Problems followed by so-
lutions in the format input in typewriter font =⇒ output, normally to the
computer screen, where =⇒ is an abbreviation for ‘results in the output’.

Problem 1. (p.102) Calculate b2, . . . , c6,∆, j for y2+2xy−3y = x3+4x2−5x+6.
Solution. Ell(2,4,-3,-5,6); =⇒

b′s = 20,−16, 33, 101

c′s = 784,−26648

DD = −132075 = −3252587

jay = −481890304/132075, denom(jay) = 3252587
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Problem 2. (p.110,141) Check that the point Q = (3, 6) is on this curve and
factor the quartic polynomial QuarQ(m).
Solution. x:=3:y:=6:on(3,6),factor(QuarQ); =⇒

true, M(−60 − 28M + M3)

Problem 3. (p.102) As in Problem 1 for y2 +
√

2y = x3 − 1/2x2 + 1/t where
t is an indeterminate (transcendental).
Solution. t:=’t’:Ell(0,-1/2,sqrt(2),0,1/t); =⇒

b′s = −2, 0, 2
t + 2

t
,− t + 2

t
(etc.)

Problem 4. (p.102) What are ∆ and j when t = 2/3?
Solution. t:=2/3:DD,jay; =⇒

−1712,−4/107

Problem 5. (p.129) For what t is this curve singular?
Solution. t:=’t’:solve(DD,t); =⇒

−27

13
,−2

Problem 6. (p.104) Find an E with j = 27.
Solution. Genj(27); =⇒

several lines of data and then A1323 = [1,−1, 1, 64,−1592]

This procedure first calculates the “generic j” curve and then — since the
argument 27 is rational — converts that Weierstrass equation to Z-minimal
form by the Laska-Kraus algorithm (see §5.6.1):

y2 + xy + y = x3 − x2 + 64x − 1592

and adds the curve to the apecs catalog with name A1323 (1323 is the conductor ;
this term will be defined in a later chapter.)

Problem 7. (p.104) Calculate the real root(s) of the cubic right side of y2 =
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x3 − 3x + 3.
Solution. ell(0,0,0,-3,3):Raf(); =⇒

x-coord.’s of real point(s) of order 2 :

raF = [−2.103803 . . .]

Capitalized commands such as Ell are “verbose”, whereas their uncapital-
ized companions output only bottom line or abbreviated results; in this case
ell has in fact no output.

Problem 8. (p.102) For y2 + 2xy + 4y = x3 − 6x2 display the cubic right side
of η2 = x3 + (b2/4)x2 + (b4/2)x + b6/4 and its real root(s).
Solution. ell(2,-6,4,0,0):x:=’x’:prac,raf(); =⇒

x3 − 5x2 + 4x + 4, [−.56 . . . , 2, 3.56 . . .]

Problem 9. (p.105) Put v2 = 5u4 +4 in Weierstrass form, taking (u, v) = (0, 2)
as O, and find the point on the Weier. curve that (1,3) maps to.
Solution. Quar(5,0,0,0,4,0,2);Trcw(1,3); =⇒

a few lines, then curve is A800 = [0, 0, 0,−5, 0]

U = 2X/Y, V =
−2Y 2 + 4X3

Y 2

X =
V + 2

U2
, Y =

2V + 4

U3

[1, 3] 7−→ [5, 10]

Quar(a,b,c,d,e,f,g); finds the Weierstrass equation of V 2 = aU4+bU3+
cU2 + dU + e with point (U, V ) = (f, g) (e.g., when e = q2, one can take f = 0,
g = q) serving as O according to Proposition 1.1.1 and then converts to minimal
form, in the same manner as Genj in Problem 6. If only 5 arguments are
present Quar attempts to find a rational point, possibly at infinity.

The formulas of the birational correspondence between the quartic and the
Weierstrass equation are displayed (when Quar is capitalized), and Trcw evalu-
ates X and Y for the given [U, V ] = [1, 3]. The map in the opposite direction is
Trwc(5,10) =⇒ [5, 10] 7−→ [1, 3]. (The letters cw and wc stand for ‘curve to
weierstrass’ and vice versa.)

Problem 10. (p.105) (Continuing the previous problem), assign to the vari-
able Pt the image of (1,3) under the birational map from v2 = 5u4 + 4 to
y2 = x3

− 80x.
Solution. ein(0,0,0,-80,0):Pt:=trwc(trcw([1,3],1),2); =⇒

Pt = [20, 80]
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ein (the letters stand for E input) takes 5 rational arguments and, unlike
ell, finds the minimal Weierstrass equation — in this case A800 — and does a
lot more, including keeping track of E and the transformation equations between
E and A800.

We now have two curves birat. equiv. to A800 — the quartic Q of the
previous problem and the (non-Z-minimal) curve E : y2 = x3 − 80x, and they
are distinguished by the code numbers 1 and 2 respectively. We obtain the map
Q → E as the composition Q → A800 → E. Thus trcw([1,3],1) returns the
value [5, 10] which is used as the first argument in the trwc command, and the
latter returns the value [20, 80]. (bec;bic; =⇒ a display of these two variables
which contain, respectively, the equations of Q and E and the details of the
birational transformations.)

As a general rule, uncapitalized commands return the expected value, while
capitalized commands display the result(s) and return NULL; see Menu(xxx);
for the details about command xxx.

The point (or points) at infinity are denoted [ ]. Trcw([ ]) and Trwc([ ])

are valid.

Problem 11. (p.129) Find the location and nature of the singularity of y2+y =
x3 − 3/4x
Solution. Ein(0,0,1,-3/4,0); =⇒

curve is singular, b′s = (etc.)

The singularity is at [1/2,−1/2] and is a node

Tangent slopes there =
√

6
/

2, −
√

6
/

2

In the singular case there is no minimal Weierstrass equation and so no Trwc to
worry about.

Problem 12. (p.–) We wish to recall the Weierstrass equation of the present
curve.
Solution. We(); =⇒

Apecs is not pointing to a catalog curve . . .

Y 2 + Y = X3 − 3/4X

More compactly, we(); =⇒ [0, 0, 1,−3/4, 0]. Only minimal Weierstrass
curves (and no elliptic curves introduced by Ell/ell) are entered into the apecs

catalog and given a catalog name, e.g. cur=A800, and a catalog number de-
noted ncur. On the other hand, all curves, however introduced to apecs, are
added to the stack = list of such curves considered in the present apecs session.
Incidentally, Go(); displays the contents of the stack and Go(n); transfers at-
tention back to curve number n in the stack: apecs is now ‘pointing to’ that
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curve.

Problem 13. (p.115) Transform to minimal Weierstrass form using
(u, v) = (−10, 11) as O :

u2v − 2uv2 − 3v3 − 4u2 + 5uv − 6v2 + 7u − 8v + 2307 = 0

Solution. gcub(0,1,-2,-3,-4,5,-6,7,-8,2307,-10,11):we(); =⇒

[1, 1, 1,−122401, 24417674]

It is also possible to specify O as a point at infinity by homogeneous coor-
dinates in the form U, V, 0 ; then gcub is given a total of 13 arguments. On the
other hand if only 10 arguments are given then gcub attempts to find a rational
point (possibly at infinity). Again Trcw, Trwc, bec and bic are available.

Problem 14. (p.138) Verify the addition of points on y2 = x3 + tx2 − tx given
in example 1, p.138.
Solution. t:=’t’:ell(0,t,0,-t,0):P0:=[0,0]:P1:=[1,1]:Eadd(P0,P1);

Mult(2,P0);Mult(2,P1); =⇒

[0, 0] + [1, 1] = [−t, t]

[2][0, 0] = [ ]

[2][1, 1] = [1/4(t + 1)2,−1/8(t + 1)(t2 + 4t − 1)]

[ ] denotes O in apecs.
Three other basic arithmetic operations that should be mentioned:
Neg(P1); (equivalently Mult(-1,P1);) =⇒ −P1 ;
Sub(P1,P2); (equivalently Eadd(P1,neg(P2));) =⇒ P1 − P2 ;
Comb(n1,P1,n2,P2,. . . ); =⇒ n1P1 + n2P2 + · · · (any ni ∈ Z, any number

of points).
The last procedure has a kind of inverse: Lin(P1,P2,. . . ) finds the least i for

which there exist integers n1, n2, . . . , ni with ni 6= 0 such that n1P1+· · ·+niPi =
a torsion point, i.e., a point of finite order, possibly O.

Problem 15. (p.–) On the Buhler-Gross-Zagier curve y2 + y = x3 − 7x + 6
([BGZ85]), test [0,2], [1,0], [26/25,-101/125] for linear dependence mod torsion.
(Actually the torsion subgroup is trivial as we see by the command Tor; see the
next two examples.)
Solution. Lin([0,2], [1,0], [26/25,-101/125]); =⇒

Grammian height-pairing det = 1.66857 . . . .

The non-vanishing of det implies the independence of the points.
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Extending this example,
Lin([0,2], [1,0], [26/25,-101/125], [2,0]); =⇒
The points satisfy the relation

0[0, 2] − [1, 0] + [26/25,−101/125] − [2][2, 0] = O.

See also Menu(Expr);. The subject of the (canonical or Néron-Tate) height of
points will be treated in Chapter 3.

Problem 16. (p.136) Find all the rational points of finite order on F15.
Solution. ein(F15);PP; =⇒

[2, 6, 8], [7,−29, 4], [32, 171, 8], [3/4,−7/8, 2], [32,−204, 8], [7, 21, 4], [2,−9, 8]

[a,b,n] is alternative notation for a point [a,b] of finite order n — apecs

understands both forms. apecs comes from the factory with all the [AntIV]
curves from A11 to F126 plus some more it needs to know about (involving
isogenies or complex multiplication — topics to be discussed in later chapters)
in its starter catalog. It was originally intended to go all the way to J200 and
perhaps even further following Cremona’s tables [Cre92], but it was felt that
the catalog was becoming too bulky. Each of these catalog entries contains the
sequence PP of points of finite order (without O), along with other information,
and so is available as soon as apecs is pointed to the curve.

For a new curve it is necessary to calculate PP — ein or the other input
commands do not do this automatically.

Problem 17. (p.132, [Cre92]) Find all points of finite order on B1354.
Solution. ein(1,0,1,9,-8):Tor(); =⇒

(various comments as the calculation progresses, then)

Actually NN = 3 and the points are

O, [2, 3, 3], [2,−6, 3]

The method of determining these points depends on an improved Nagell-Lutz
theorem to be discussed in §2.10.1.

Problem 18. (p.140) Find all solutions of [2]P = [4,−10] on A65 : y2 + xy =
x3 − x.
Solution. ein(A65):half(4,-10); =⇒

[[1, 0], [−1, 1]]

If any ψn (p.145) are needed they can be calculated by the command rec

— see Menu(rec);.
Finally we mention a few of the procedures for elliptic curves over Fp.
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Problem 19. (p.156) Taking the coefficients of C20 : y2 = x3 + x2 − 41x −
116 mod p, find |Ens(Fp)| for the first few primes; in particular, verify Corol-
lary 1.8.2 for p = 2 and 5.
Solution. ein(C20):Emods(2,17); =⇒
p Np ap θ ∆ mod p j mod p comments
2 3 0 90.00 0 −− singular—additive
3 6 −2 54.74 2 2 anomalous
5 7 −1 77.08 0 −− singular—nonsplit multiplicative
7 6 2 112.2 5 4
11 12 0 90.00 9 1 supersingular
13 12 2 106.1 11 4
17 24 −6 43.31 11 1

Np = p + 1 − ap is the total number of points on E mod p including the
singular point if there is one. Thus Np = |Ens(Fp)| + 1 in the singular cases
p = 2, 5. One writes ap = cos θp ; that this makes sense depends on Hasse’s
theorem, the ‘Riemann Hypothesis for E mod p’ — the explanation of this and
the other undefined terms will come in due course.

Problem 20. (p.156) Find the group E mod p for p = 2, 3, 5, 11
Solution. Allp(2);Allp(3);Allp(5);Allp(11) =⇒

[1, 1] is a cusp on C20 mod 2

group of non-singular points on C20 mod 2 = O, [0, 0, 2]

group order = 2 , type: cyclic

group of points on C20 mod 3 = O, [0, 2, 3], [1, 1, 6], [0, 1, 3], [1, 2, 6], [2, 0, 2]
group order = 6 , type: cyclic

[4, 0] is a node on C20 mod 5

group of non-singular points on C20 mod 5 = O, [0, 2, 3], [0, 3, 3],

[1, 0, 2], [2, 2, 6], [2, 3, 6]

group order = 6 , type: cyclic

group of points on C20 mod 11 = O, [0, 4, 3], [0, 7, 3],

[6, 0, 2], [2, 1, 6], [2, 10, 6], [4, 3, 6], [7, 0, 2],

[4, 8, 6], [5, 4, 6], [8, 0, 2], [5, 7, 6]

group order = 12 , type: non-cyclic 6 × 2

There are also commands for doing arithmetic mod p : Eadp and Mulp are
the analogs of Eadd and Mult. For these commands p must be preset. E.g.
referring to the last example (C20 mod 11),
p:=11:Mulp(2,[2,1,6]); =⇒ [0, 7].



Chapter 2

Formal Groups

This chapter will involve calculations with formal power series. We summarize
here the basic notation.

Let A be a commutative ring. Then A[[T ]] denotes the ring of formal
power series, a typical element being α = a0 + a1T + a2T

2 + · · · where the
ai ∈ A and T is an indeterminate (transcendental) over A. The ring operations
are as follows: if β =

∑
biT

i is also in A[[T ]] then α + β =
∑

(ai + bi)T
i and

αβ =
∑
ciT

i where ci =
∑i

j=0 ajbi−j .

A((T )) denotes the localization S−1A[[T ]] where S = {1, T, T 2, . . .} is the
multiplicative set generated by T . The elements of A((T )) have the form∑∞

i=N aiT
i, for some N ∈ Z, and are called formal Laurent series.

If A is an integral domain then, obviously, so is A[[T ]]. If K is the quotient
field of A, then the quotient field of A[[T ]] is K((T )).

This construction can be iterated. Because of the A-algebra isomorphism
f : A[[T1]][[T2]]

∼−→ A[[T2]][[T1]] determined by f(T1) = T1 and f(T2) = T2,
these rings are identified and denoted A[[T1, T2]]. (Of course there is another
isomorphism which switches T1 and T2, but that does not give the desired
identification.) By induction, A[[T1, . . . , Tn]] can be regarded as B[[Ti]] for any
i between 1 and n, where B is the power series ring in the set of variables
T1, . . . , Tn with Ti omitted.

The pitfall to avoid here is that the isomorphic rings A((T1))((T2)) and
A((T2))((T1)) cannot be identified in the same way as A[[T1]][[T2]] = A[[T2]][[T1]]
since, for example,

∑∞
i=0 T

−i
1 T i

2 is a member of the first ring, but not the second.

201
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2.1 Discrete valuations

Let V be an integral domain with quotient field K. Then V is a generalized
valuation ring if it has the property

(V1) x ∈ K, x /∈ V =⇒ 1/x ∈ V.

This axiom implies that the value group Γ := K∗/V ∗ is a totally ordered
abelian group with the definition xV ∗ ≥ yV ∗ iff x/y ∈ V . It is customary to
write this group additively, and to adjoin to it the symbol ∞ with the properties
that for all γ ∈ Γ ∪ {∞}, ∞ ≥ γ and ∞ + γ = γ + ∞ = ∞. Then one defines
the generalized valuation

v : K −→ Γ ∪ {∞} where v(x) = xV ∗ for x ∈ K∗, and v(0) = ∞.

It follows easily from (V1) that ∀x, y ∈ K,
(V1a) v(xy) = v(x) + v(y), and
(V1b) v(x+ y) ≥ min{(v(x), v(y)}.
Conversely, if Γ is a totally ordered abelian group and v : K∗ −→ Γ a surjective
map of the nonzero elements of a field K satisfying (V1a) and (V1b), then

V = {x ∈ K : v(x) ≥ 0}

is a generalized valuation ring with quotient field K.

Proposition 2.1.1 (i) v(x1 + · · · + xn) ≥ min{v(x1), . . . , v(xn)} with equality
if the minimum is attained by just one of the v(xi); hence for n ≥ 2,

x1 + · · · + xn = 0 =⇒ at least two xi have the minimum value.

(ii) V = {x ∈ K : v(x) ≥ 0} is a local ring with maximal ideal M = {x ∈
V : v(x) > 0} and group of units (invertible elements) V ∗ = V −M = {x ∈ V :
v(x) = 0}.

(iii) V is integrally closed: for x ∈ K and ai ∈ V

anx
n + an−1x

n−1 + · · · + a0 = 0 =⇒ anx ∈ V ;

Proof. (i) and (ii) are simple deductions from (V1a) and (V1b).
To prove (iii), suppose v(anx) < 0. Then v((anx)

n) < v(aia
n−1−i
n (anx)

i) for
i = 0, 1, . . . , n− 1, which precludes

(anx)
n + an−1(anx)

n−1 + · · · + a0a
n−1
n = 0

by (i).

k = V/M is the residue field of v. Associated to v is the canonical surjective
ring homomorphism

P : V −→ k
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called the (generalized) place of v. This is extended to

P : K −→ k ∪ {∞}

by defining P (x) = ∞ for x /∈ V , and then P (1/x) = 0. It is easy to check that
any one of v, V, P determines the other two uniquely.

We quote without proof

Proposition 2.1.2 Let A be an integral domain contained in the field L.
(a) If P is a prime ideal in A then there exists a valuation w on L such that

A ⊂ Vw ⊂ L and Mw ∩A = P .
(b) The integral closure of A in L is the intersection of all valuation rings

containing A and with quotient field L.

See e.g. [BAC6,p.91–92]. Note that Bourbaki does not allow the trivial
valuation with V = K, M = 0, Γ = 0, and so they require P 6= 0 in (a) and
A 6= K in (b).

Let v be a valuation on the field K with ring Vv and maximal ideal Mv, and
let L be an overfield of K. A valuation w on L is an extension of v if

Vw ∩K = Vv and Mw ∩K = Mv.

Then the natural map

γ : Γv = K∗/V ∗v −→ L∗/V ∗w = Γw

is an order preserving injective homomorphism, and

γ(v(x)) = w(x) ∀x ∈ K∗.

Applying part (a) of the proposition with A = Vv and P = Mv, we have the

Corollary 2.1.3 (Chevalley) A valuation v on a field K has at least one
extension to an arbitrary overfield L.

The notation w|v means that w is an extension of v.

For now we will not need this level of generality: we use only V satisfying
the three axioms

(V1) x ∈ K, x /∈ V =⇒ 1/x ∈ V,

(V2) V 6= K (V is not a field), and

(V3) V is noetherian.
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These assumptions imply, as we will see in a moment, that Γ = Z with the usual
≥. (The converse Γ = Z =⇒ V is noetherian can also be proved.) Then an
element π ∈ V with v(π) = 1 is called a uniformizer.

We define discrete valuation ring or simply valuation ring to mean an
integral domain satisfying (V1) – (V3).†

Among the myriad characterizations of valuation ring, we mention the fol-
lowing. PID stands for principal ideal domain.

Proposition 2.1.4 Let V be an integral domain with quotient field K. Then
the following are equivalent:

(a) V is a discrete valuation ring.
(b) V is a local PID distinct from K.
(c) V is a noetherian local ring with maximal ideal M 6= 0 such that

dimk M/M2 = 1

where k = V/M denotes the residue field.

Proof. (a)=⇒(b) If x, y ∈ V then (V1) implies that either x/y ∈ V or y/x ∈ V .
Hence, given two principal ideals V x and V y, one contains the other. Every
ideal I is finitely generated, say I = V x1 + · · ·V xn, and pairwise comparison
of V xi shows that I = V xi for some i. Thus V is a PID. It is local since given
two maximal ideals one contains the other, hence they are equal.

(b)=⇒(c) Let the maximal ideal be M = V π. If x is any nonzero element of
V we can write x = uπn with n maximal, so u /∈M hence u ∈ V −M = V ∗. It
follows that the nonzero ideals of V are precisely Mn = V πn, and uπn +Mn 7→
u+M induces an abelian group isomorphism

Mn/Mn+1 −→ k+

to the additive group of the residue field. Thus dimk M
n/Mn+1 = 1 for n =

0, 1 . . . .
(c)=⇒(a) Choose an element π ∈M that maps to a basis of the vector space

M/M2, and consider the V -module N = M/V π. Recall

Nakayama’s Lemma Let V be a commutative ring, N a finitely
generated V -module, J an ideal contained in all maximal ideals of
V , and suppose JN = N . Then N = 0.

Thus we will prove thatM = V π by showing that MN = N : givenm+V π ∈ N ,
we can write m = rπ + s where r ∈ V and s ∈M2, say s =

∑
m′im

′′
i . Then

m+ V π =
∑

m′i(m
′′
i + V π) ∈MN.

†When we need to refer to a generalized valuation, e.g. with value group Q or R with its
natural order, or Z × Z with ‘lexicographical’ order, it will be clearly labelled as generalized

and nondiscrete or rank> 1, as the case may be.
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By the noetherian property, every nonzero element r ∈ V can be written as
r = sπn where u ∈ V is not a multiple of π. Thus u ∈ V −M = V ∗. Hence
every x ∈ K∗ can be written in the form x = uπn where n ∈ Z, and (V1)
follows.

Corollary 2.1.5 Let V be a discrete valuation ring with maximal ideal M = V π
and quotient field K. Then

(1) Each x ∈ K∗ has the unique factorization x = uπn where u ∈ V ∗ and
n ∈ Z;

(2) the value group Γ = Z and the valuation map v : K∗ −→ Z is defined
by v(uπn) = n; if another uniformizer wπ is chosen, where w ∈ V ∗, then v is
unchanged since uπn = uw−n(wπ)n.

(3) V is a maximal subring of K: if A is a subring of K containing V , then
A = V or A = K.

Proof. (1) The existence of the factorization uπn was explained in the last part
of the proof of the proposition. It is unique since n is characterized as the only
integer such that xπ−n ∈ V ∗.

(2) By (1), for x ∈ K∗, xV ∗ = πnV ∗ 7→ n defines an isomorphism Γ −→ Z,
and ≥ is the usual ordering.

(3) If A 6= V then uπn ∈ A for some n < 0. It follows that π−1 ∈ A, hence
A = K.

Example Let A be a UFD (unique factorization domain) with quotient field
K. Thus A contains a designated set P of irreducible elements such that every
element x ∈ K∗ has a unique factorization in the form

x = u
∏

p∈P
pvp(x)

where u ∈ A∗. Once P has been chosen, the gcd (greatest common divisor) of
a set of nonzero ai ∈ A is uniquely defined by

gcd{ai} =
∏

p∈P
pmini{vp(ai)}.

It is an immediate consequence of unique factorization that each vp is a
discrete valuation on K whose ring is the localization AAp. In fact all discrete
valuations occur in this way since, as we have seen, a valuation ring is a UFD
with a single irreducible element.

We now present some additional basic information about discrete valuations,
treated as background material, i.e., without proof. We retain the same nota-
tion: V,K,M, π; also we sometimes denote the residue field by ṽ.
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• if we choose any real constant c satisfying 0 < c < 1 and define the v-adic
absolute value by |0| = 0 and for x = uπn ∈ K∗, |x| = cn so that

V = {x ∈ K : |x| ≤ 1},
V ∗ = {x ∈ K : |x| = 1},
M = {x ∈ K : |x| < 1},

then ∀x, y ∈ K,
|xy| = |x||y|, |x+ y| ≤ max{|x|, |y|}

(the latter being known as the strong or ultrametric triangle inequality, which
implies the ordinary or archimedean triangle inequality |x + y| ≤ |x| + |y|),
hence K becomes a metric space if we take |x−y| as the distance between x and
y; note that v and | |, which are often called the π-adic valuation and π-adic
absolute value, do not change if π is replaced by another irreducible element uπ;
another choice of c replaces | | with an equivalent metric (i.e. same topology);

• the completion of K as a metric space, denoted K̂ (or Kv, especially
if more than one v is under consideration) is a field and can be constructed
in the same way as R is constructed from Q: the set of cauchy sequences
(a1, a2, . . .) (cauchy meaning as usual that |ai − aj | is arbitrarily small for i

and j sufficiently big) form a subring of the product ringKN, the null sequences
(null meaning |ai| is arbitrarily small for i sufficiently big) comprise a maximal

ideal, and K̂ is the quotient ring of cauchy sequences modulo null sequences;
the canonical identification of K as a dense subspace of its completion amounts
to identifying a ∈ K with the class of the constant cauchy sequence (a, a, . . .);

K is thus a subfield of K̂; moreover K̂ has a discrete valuation, again denoted
v, extending that of K: if (a1, . . .) is a non-null cauchy sequence representing

α ∈ K̂
∗

then v(ai) remains constant for large i, this value does not depend on
the representative, and is taken as v(α);

• the valuation ring V̂ is the completion of V and admits the alternative
description as the inverse limit

V̂ = lim
←

V/Mn

with respect to the canonical maps V/M j → V/M i where x + M j 7→ x + M i

for i < j; then K̂ can be defined as the field of quotients of V̂ ;
• the residue field remains the same under completion: since the valuation

v on K̂ extends the original v on K, therefore V̂ ∩K = V , and M̂ ∩K = M ; in
fact the map V/M → V̂ /M̂ is an isomorphism.

2.1.1 Examples

Example 1. The UFD Z gives p-adic valuations on Q, one for each prime
p. The valuation ring V is the localization Z(p) of Z at the prime ideal pZ
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and consists of rational numbers of the form m/n where m and n are coprime
integers with n not divisible by p. The completion is the p-adic field Qp with
valuation ring the p-adic integers

Zp = lim
←

Z/pnZ.

The residue field is the p-element field

Z/pZ = Z(p)/pZ(p) = Fp.

The nonzero elements of Qp are uniquely representable as series anp
n+an+1p

n+1+
· · · where ai ∈ S and S is a set of representatives of the residue field, usually
taken to be S = {0, 1, . . . , p − 1}. If an 6= 0 then v(anp

n + · · ·) = n. The
valuation topology on Zp coincides with the inverse limit topology, hence Zp is
a profinite ring, i.e., a topological ring whose topology is compact and totally
disconnected, the latter meaning that given two distinct points there is an open
and closed set containing the first point and excluding the second. (Recall from
general topology that an inverse limit of compact totally disconnected spaces,
e.g. finite discrete spaces, is again a compact totally disconnected space.)

Example 2. If k is a field then the polynomial ring k[T ] is a UFD with
quotient field k(T ), the field of rational functions in the variable T over the field
of constants k. The usual choice for P is the set of monic irreducible polynomials
of degree ≥ 1. Of course k(T1) = k(T ) when

T1 =
aT + b

cT + d
, for

(
a b
c d

)
∈ GL2(k)

but it turns out that only one new valuation shows up besides those we already
have from P, namely the one attached to the irreducible polynomial 1/T in
k[1/T ]. We denote it by v∞ rather than v1/T , when that is not ambiguous; thus
for a polynomial in T of degree n we have

v∞(a0 + · · · + anT
n) = v∞((1/T )−nf) = −n

since f = a0(1/T )n + · · ·+an is not divisible by 1/T in k[1/T ]. In general for an
element of K written as a quotient of polynomials in T , v∞(s/t) = deg t−deg s.
The residue field of v∞ is k∞ = k, and for the corresponding place we have
P∞(T ) = ∞, P∞(1/T ) = 0.

For p ∈ P, the valuation ring V is the local ring k[T ](p) = {s/t ∈ K : p 6 | t}
and the residue field is

V/pV = k[T ]/pk[T ],

which we denote by kp. This is an algebraic extension of k of degree deg p
obtained by adjoining a root of p. In fact the image of T under the place Pw is
a root of p in kp:

kp = k(Pw(T )) and [kp : k] = deg p.
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In particular, for c ∈ k, k(T−c) = k, and PT−c(T ) = c.

For any p ∈ P the completion of V is

V̂ = lim
←
V/pnV = lim

←
k[T ]/pnk[T ] = kp[[T

′]],

the ring of formal power series a0 + a1T
′ + · · · with ai ∈ kp, and the quotient

field K̂ consists of Laurent series anT
′n + an+1T

′n+1 + · · ·, any n ∈ Z. The

canonical embedding λ : K −→ K̂ is defined as follows. By repeated divisions
by p, every polynomial a ∈ k[T ] has a finite p-adic expansion:

a = a0 + a1p+ · · · + anp
n where ai ∈ k[T ] and ai = 0 or deg ai < deg p.

Then λ(a) = a0 + a1 T
′ + · · · + an T

′n, where ai denotes the image of ai in
kp = V/pV . This is extended to all of K by λ(f/g) = λ(f)/λ(g).

For p = ∞ we replace T by 1/T and proceed as in the case p = T . Thus λ :

k(T ) −→ K̂ = k((T ′)) is defined first for polynomials by λ(anT
n + an−1T

n−1 +
· · ·) = anT

′−n + an−1T
′−(n−1) + · · ·, and then extended to all of K as before.

In all cases the extension of v to K̂ is defined by v(anT
′n+an+1T

′n+1+· · ·) =
n, assuming an 6= 0.

All the valuations vp on k(T ) are trivial on k, i.e., v(c) = 0 ∀c ∈ k∗,
equivalently, k ⊂ V . And in fact these are all the k-trivial valuations on k(T ).

2.1.2 The filtration Em(K)

Let v be a discrete valuation on the field K with ring V and uniformizer π.
For any point P = (X0, . . . , Xn) ∈ Pn(K), we can multiply the projective
coordinates by a power of π to ensure that min{v(Xi)} = 0; let us call such
coordinates v-proper. Note that the v-proper coordinates (X0, . . . , Xn) =
(uX0, . . . , uXn) of P are unique up to homothety by a unit u ∈ V ∗, and therefore
v(X0), . . . , v(Xn) are well-defined.

Let E be the elliptic curve defined by the nonsingular Weierstrass equation
in projective form

F = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3 = 0,

which we assume is defined over V , i.e., all ai ∈ V . For P ∈ E(K), this allows
us to define v(P ) in terms of v-proper coordinates P = (X,Y, Z) as follows.

• If v(Z) = 0 then P is a v-integral point and we define v(P ) = 0;

• if v(Z) > 0 then, since min{v(X), v(Y )} = 0 and at least two terms in
the polynomial F must have the minimum value, therefore v(Y ) = 0 and
3v(X) = v(Z); we define v(P ) = v(X).
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Thus v(P ) ≥ 0 for all P , and in particular

v(O) = ∞. (1)

In fact, v(P ) = ∞ ⇔ P = O. Note that P is v-integral iff it is a nonzero point
with v-integral affine coordinates x = X/Z and y = Y/Z. In the contrary case
when P 6= O, denoting v(Z) = m > 0, we have

v(x) = −2m, v(y) = −3m.

Thus if P = (x, y) 6= O then

v(P ) > 0 ⇔ v(x) < 0 and then v(P ) = −v(x)/2.

In particular,

v(−P ) = v(P ) for all P. (2)

In fact if the coordinates in P = (X,Y, Z) are v-proper, then so are those in
−P = (X,−Y − a1X − a3Z,Z).

Here are some numerical examples over K = Q. The points P1 = (1, 1) and
P2 = (4, 13) lie on y2 + y = x3 + x2 + 34x− 34, and

[2]P1 = (2 · 83,−19 · 113), [2]P2 =

(
19

32
,−2413

33

)
,

[−2]P2 =

(
19

32
,
181

33

)
, [2]P1 + P2 =

(
61

32
,
2 · 311

33

)
,

[2]P1+[3]P2 =

(
248311

3472
,−2 · 13 · 1924289

3673

)
, [2]P1−P2 =

(
5 · 17

2232
,−17 · 109

2333

)
.

With v = v3, these illustrate the following rule:

v(P +Q) ≥ min{v(P ), v(Q)} with equality when v(P ) 6= v(Q). (3)

The proof is trivial if either of the points is v-integral or is O, or if their
sum is O. But the proof is distinctly nontrivial when both 0 < v(P ) < ∞ and
0 < v(Q) <∞, at least if we approach it using the formulas of Proposition 1.4.1.
The verification seems to be particularly troublesome when v(P ) = v(Q) > 0,
treating the various possibilities in 0 ≤ v(2) ≤ ∞.

Our proof will use the formal group Ê attached to E, which is defined in
§2.5.2, and will be the first illustration of the power and utility of formal groups
in the theory of elliptic curves. Another illustration will occur in the analysis of
torsion in the group E(K); see §2.10. Before the introduction of formal groups
that analysis was performed by rather arduous calculations with the division
polynomials.
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For positive integers m define

Em(K) = {P ∈ E(K) : v(P ) ≥ m},

so that we have a filtration

E(K) ⊃ E1(K) ⊃ E2(K) ⊃ · · · ⊃
∞⋂

i=1

Ei(K) = {O}.

Caution In §6.2, using quite different considerations, we will define a subgroup
E0(K) lying between E(K) and E1(K). Thus E0(K) does not signify simply
{P : v(P ) ≥ 0} = E(K).

It is convenient to record here the essential point of the above discussion,
but the proof will only be completed in Proposition 2.6.7.

Proposition 2.1.6 Let v be a discrete valuation on the field K with ring V ,
and let E be an elliptic curve defined over V , that is, given by a nonsingular
Weierstrass equation with a1, . . . , a6 ∈ V . Then Em(K) for m ≥ 1 are subgroups
of E(K).

Remark. Later in this chapter we will use the ‘parameter’ z = −x/y for a
nonzero point P ∈ E1(K) with affine coordinates (x, y). Note that

P ∈ Em(K) ⇐⇒ v(z) ≥ m and v(x) < 0.

One must not forget the last condition since examples of v(x) > v(y) ≥ 0, and
therefore P /∈ E1, are easily found.
Proof. This is immediate from the three statements (1), (2) and (3). (And
conversely, the statement that the Em are all subgroups implies (1), (2) and
(3)). For the proof of (3) see Proposition 2.6.7.

2.1.3 Finite extensions

We now give a brief résumé of the facts concerning extensions w of a discrete
valuation v on K to an overfield L of finite degree n = [L : K]; we omit proofs,
regarding the subject as background material.

First of all, an extension w does exist by Corollary 2.1.3. The residue field
w̃ of w is an extension of ṽ of finite degree denoted

f = f(w, v) = [w̃: ṽ].

Moreover, any such w is discrete, and the order preserving injection

γ : Γv = Z −→ Z = Γw
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is multiplication by an integer e = e(w, v) ≥ 1 called the ramification index.
Thus

w(x) = ev(x) ∀x ∈ K.

This definition of the index agrees with that in [BAC6]; but some authors, e.g.
[Zar-Sa58,p.284] define the index to be e times [w̃ : ṽ]i, the inseparable part of
the residue field degree. All agree with the following definition. The extension
is unramified if

e(w, v)[w̃ : ṽ]i = 1,

which means of course that e = 1 and the residue field extension is separable.
In general there are at most n = [L : K] extensions w of v. There is exactly

one extension when either
(i) K = Kv is complete, and then L = Lw is also complete, or
(ii) the field extension L/K is purely inseparable.

When the extension is unique it is given by the formula

w(x) =
e

n
v(N(x))

where N denotes the norm from L to K.
If w1, . . . , wg are the distinct extensions of v to L then

g∑

i=1

e(wi, v)f(wi, v) ≤ n (¶)

with equality in most “reasonable” cases: there is equality if either
• the extension L/K is separable (hence all cases of charK = 0), or
• if V contains a Dedekind domain† R (e.g. a PID) whose quotient field is

K and which is a finitely generated algebra over some field.
With w|v as above, the injection K ↪→ L induces a canonical injection of the

completions Kv ↪→ Lw (by the universal property of the completion) and the
local degree satisfies — in all cases —

[Lw : Kv] = e(w, v)f(w, v).

Moreover, if ŵ and v̂ denote the extensions of w and v to Lw andKv respectively,
then e(ŵ, v̂) = e(w, v) and f(ŵ, v̂) = f(w, v). Of course the analog of g is 1
since v̂ has the unique extension ŵ from Kv to Lw.

When the extension L/K is Galois, the Galois group G acts transitively on
the extensions of v: if w is any extension of v and σ ∈ G then σw defined by
(σw)(x) = w(xσ) also extends v, and all extensions are obtained in this way.
Moreover the e(σw, v) have a common value e and similarly all the f(σw, v)
have the same value f . Thus

efg = n.

†We recall the definition of Dedekind domain and basic properties in §2.2.1.
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Consider now a tower of arbitrary finite extensions K ⊂ L ⊂ M ; let v be a
valuation on K, let w extend v to L and let W extend w to M . The following
multiplicative properties are immediate from the definitions:

e(W, v) = e(W,w)e(w, v), f(W, v) = f(W,w)f(w, v).

2.1.4 Gauss’s lemma

Proposition 2.1.7 Let v be a valuation on the field K with ring V . Then v
can be extended to a valuation v′ on the power series field K((T )) as follows.

v′

(
∞∑

i=N

aiT
i

)
= min{v(ai)}.

The valuation ring of v′ is V ((T )).

Remark. That v can be extended fromK to the field of rational functionsK(T )
is one of at least three results known as Gauss’s lemma. This is a corollary of
the proposition since K(T ) is a subfield of K((T )).
Proof. If f =

∑
aiT

i and g =
∑
bjT

j are nonzero members of K((T )), let
fg =

∑
ckT

k, let v′(f) = α, say v(ai) = α with i minimal, and similarly v′(g) =
β = v(bj) with j minimal. Then v(ci+j) = α + β since v(aibj) < v(ahbi+j−h)
for all h 6= i. Also v(ck) ≥ α+ β ∀k, and therefore

v′(fg) = α+ β = v′(f) + v′(g).

It is also clear that

v′(f + g) ≥ min{v′(f), v′(g)}.

2.2 Krull domains

The study of the arithmetic properties of elliptic curves leads one to consider
families of discrete valuations. For example if the elliptic curve E is given by
a Weierstrass equation with coefficients in Z or more generally in the ring of
integers O of a number field, then the valuations associated to the Dedekind
domain O (we recall definitions below) will help us to investigate E. Similarly
we may wish to consider E with Weierstrass coefficients in, say, a two variable
polynomial ring k[s, t] over a field k; this gives what one calls a two parameter
family of elliptic curves. The ring k[s, t] is a UFD but is not Dedekind.

Consider first the globalization of discrete valuation rings, that is, the class
of integral domains A such that for every nonzero prime ideal P the local ring
AP is a discrete valuation ring. This class consists of all Dedekind domains plus
a certain class of non-noetherian Prufer domains (known as almost Dedekind;
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cf. [Hei67]). However the only UFD’s included in this class are the PID’s, so
this class of rings would be too restrictive for our purposes.

The class of rings that contains both Dedekind domains and UFD’s and is
closely tied to a family of discrete valuations is the following: †

A Krull domain is an integral domain A such that ([BAC7], p.14)
(i) for every P ∈ P, where P denotes the set of all minimal prime ideals, the

local ring AP is a discrete valuation ring;
(ii) A =

⋂{AP : P ∈ P};
(iii) each nonzero a ∈ A is contained in at most finitely many members of

P .

The valuations associated to the P ∈ P are called the essential valuations
of A; these are precisely the valuations on the quotient field of A that are non-
negative on A. (For, from [BAC7, Cor.2, p.10], if v is non-negative on A, then
v together with the essential valuations of A satisfy axioms AKI to AKIII, and
so v must be essential for A.)

We also use P to denote the set of essential valuations (the context should
make it clear whether we mean the prime ideals or the valuations), and we write
PA when it is necessary to identify A.

We quote from [BAC7]:

Proposition 2.2.1 Let A be a Krull domain with quotient field K. Then the
following extensions B of A are Krull:

(i) The localization B = S−1A for a multiplicative subset S ⊂ A, and

PB = {v ∈ PA : v(s) = 0 ∀s ∈ S}.

(ii) The integral closure B of A in a finite extension L of K, and PB consists
of the extensions to L of all v ∈ PA.

(iii) The polynomial ring B = A[{xi}] in an arbitrary set of indeterminates;
for simplicity in the case B = A[x] of a single variable, PB consists of two types
of valuations:

(a) the extensions of v ∈ PA to L = K(x) as given by Gauss’s lemma (cf.
the remark following Proposition 2.1.7), and

(b) the standard valuations on K[x] that are trivial on K (cf. Example 2 in
§2.1.1.

The divisor group Div(A) of the Krull domain A is the free abelian group
on the set P written additively, and an element of Div(A) is a divisor. The
support of a divisor

D =
∑

P∈P
nPP

†An authoratative reference for these concepts is [BAC7], except for the homological
aspects for which one should consult [Car-Ei56].
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is the finite set {P : nP 6= 0}. For nonzero x ∈ K, where K denotes the quotient
field of A, one defines the principal divisor

div(x) =
∑

vP (x)P ∈ Div(A).

Thus div(xy) = div(x) + div(y), div(1/x) = −div(x), for x, y ∈ K∗, and the
principal divisors form a subgroup H of Div(A). The quotient group Div(A)/H
is denoted Cl(A), and is called the divisor class group. For D ∈ Div(A), the
class of D in Cl(A) is denoted cl(D).

By
∑
mPP ≤ ∑

nPP one means mP ≤ nP ∀P . Clearly by (ii) in the
definition of Krull domain, for x, y ∈ K∗

x ∈ A⇔ div(x) ≥ 0; div(x) = div(y) ⇔ x = uy for some u ∈ A∗.

An integral domain A is a UFD iff it is Krull with Cl(A) = 0.
Proof. If A is a UFD, then the minimal prime ideals are Aπ where π is irre-
ducible and the three axioms in the definition are obviously satisfied. Div(A) is
isomorphic with the multiplicative group K∗/A∗ and all divisors are principal.
Conversely, if A is Krull with all divisors principal, then the minimal prime
ideals are principal, say P = AπP where the πP are irreducible. Then ∀x ∈ K∗,

x = u
∏
π

vP (x)
P for some u ∈ A∗, and A is a UFD.

Recall that an integral domain A with quotient field K is completely in-
tegrally closed if for all x ∈ K and nonzero d ∈ A we have the implication

dxn ∈ A ∀n ∈ N =⇒ x ∈ A.

This implies that A is integrally closed and the converse is true when A is
noetherian.

Every Krull domain is completely integrally closed.
Proof : If x, d are as above then for every essential valuation v we have v(d) +
nv(x) ≥ 0, so v(x) ≥ 0, hence x ∈ A by (ii) of the definition.

A noetherian domain is Krull iff it is integrally closed ([BAC7], p.9).
From [BAC7], p.12:

The approximation theorem for Krull domains: let A be a Krull do-
main with quotient field K, let v1, . . . , vr be the valuation maps corresponding to
distinct minimal prime ideals and let n1, . . . , nr be integers. Then there exists
x ∈ K such that vi(x) = ni for i = 1, . . . , r and v(x) ≥ 0 for all other essential v.

Here is a simple application of the approximation theorem. For convenience
we call the minimal prime ideals of a Krull domain A the primes of A.

Corollary 2.2.2 Let A be a Krull domain with only finitely many primes
P1, . . . , Pn. Then Cl(A) = 0, and consequently A is a UFD.

Proof. Since Div(A) is generated by the Pi, it is sufficient to show that each
Pi is a principal divisor. Choose a ∈ A so that vPi

(a) = 1 and vPj
(a) = 0 for

all j 6= i. Then div(a) = Pi.
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For the next proposition, which will be used in §5.7, we make two definitions.
A divisor D =

∑
nPP is squarefree if nP 6= 0 =⇒ nP = 1; a divisor class

c ∈ Cl(A) is prime-full if it contains infinitely many primes.

Proposition 2.2.3 Let A be a Krull domain with Cl(A) finite. Then
(a) Cl(A) is generated by the prime-full classes;
(b) for any given finite set S of primes and divisor class c, there exists a

squarefree divisor in c whose support is disjoint from S.

Remark. When A has infinitely many primes perhaps it is true that every
class is prime-full. This is so when A is the ring of integers in a number field
K: by the Čebotarev density theorem applied to the Hilbert class field of K,
the prime ideals of A are equi-distributed among the classes.
Proof. Let the prime-full classes be denoted c1, . . . , cm (m ≥ 0). First let us
deduce (b) from (a). A typical class c can be written as a sum of ci since Cl(A) is
finite. We can choose distinct prime representatives for these summands outside
of any given S. Then the sum of these primes is a squarefree divisor in c with
support disjoint from S.

Let H be the subgroup generated by the ci and let T denote the set of
primes whose classes fall in Cl(A) − H . Since Cl(A) − H consists of a finite
number of non-prime-full classes, T is finite, say T = {P1, . . . , Pn}. Suppose
n > 0. By the approximation theorem choose a ∈ A such that vP1

(a) = 1
and vP2

(a) = · · · = vPn
(a) = 0. Then div(a) = P1 + D where the support of

D consists of primes whose classes are in H . But this gives the contradiction
cl(P1) = −cl(D) ∈ H . Hence T = ∅, i.e., all primes have their classes in H , so
by definition Cl(A) = H .

The discussion in §2.1.2 of the v-adic value of points P ∈ E(K) can be
globalized immediately:

Proposition 2.2.4 Let A be a Krull domain with quotient field K, and let E
be an elliptic curve defined over A. Then, for each nonzero P = (x, y) ∈ E(K)
and each essential valuation v of A we have

v(x) < 0 =⇒ v(x) = −2m and v(y) = −3m,

where m = v(P ) is a positive integer.
In particular, if A is a UFD, then we can write the coordinates of P in the

form

(x, y) =
(m
e2
,
n

e3

)
,

where m,n, e ∈ A and gcd(m, e) = gcd(n, e) = 1.
Also when A is a UFD, the projective coordinates (a, b, c) of a point can be

chosen to be A-proper, i.e., v-proper ∀ essential v, equivalently, a, b, c ∈ A and
gcd(a, b, c) = 1.
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2.2.1 Dedekind domains

The following definitions apply to any integral domain A with quotient field K.
A fractional ideal is an A-submodule I of K for which there exists a “common
denominator” — a nonzero element d ∈ A such that dI ⊂ K. Examples are the
ideals of A, and finitely generated submodules of K. A principal fractional
ideal is one of the form Ax for some x ∈ K. The product of two fractional
ideals I and J is defined as the set of all finite sum

∑
ij of products of elements

from I and J and is denoted IJ . This is again a fractional ideal since if common
denominators for I and J are d and d′, then dd′ serves as a common denominator
for IJ . Of course the product of ideals is an ideal. A fractional ideal I is
invertible if there exists a fractional ideal J such that IJ = A. In that case J
is unique and is given by

J = {x ∈ K : xI ⊂ A}.

A Dedekind domain is an integral domain satisfying the following equiv-
alent conditions

— Krull and all nonzero prime ideals are maximal;
— hereditary, i.e., every nonzero ideal is invertible;
— every submodule of a projective module is projective;
— every quotient module of an injective module is injective;
— every divisible module is injective;
— every ideal is a product of prime ideals;
— every nonzero ideal is uniquely a product of prime ideals;
— noetherian, integrally closed and every nonzero prime ideal is maximal.

An integral domain is a PID iff it is both Dedekind and a UFD. Examples
of PID’s are: discrete valuation rings, Z and k[X ] (k any field), and for that
matter k itself. However polynomial rings k[X,Y, . . .] in two or more variables
are UFD’s that are not Dedekind.

We quote the analog of Proposition 2.2.1(i)–(ii) for Dedekind domains from
[Zar-Sa58,ch.V]:

Proposition 2.2.5 Let A be a Dedekind domain with quotient field K. Then
the following extensions B of A are Dedekind:

(i) The localization B = S−1A for a multiplicative subset S ⊂ A.
(ii) The integral closure B of A in a finite extension L of K. Moreover, when

the extension L/K is a separable, then there are only finitely many w ∈ PB for
which the ramification index e(w, v) > 1.

Now let A be a Dedekind domain with quotient fieldK, let its set of maximal
ideals be P= {P}, and for an ideal I let

I =
∏

P∈P
P vP (I)
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denote the unique prime ideal factorization. Here are some basic facts.

• The nonzero fractional ideals are all invertible and form an abelian group,
with the product defined above and with identity element A. This group
is free on the set P and thus the unique factorization is extended to all
nonzero fractional ideals:

J =
∏

P vP (J), vP (J) ∈ Z.

• The fact that the Dedekind domain A is a Krull domain can be expressed
this way: for a ∈ K∗, vP (a) := vP (Aa) defines a discrete valuation on K,
the corresponding valuation ring is the localization AP , and

A =
⋂

P∈P
AP .

• Div(A) is isomorphic with the group of nonzero fractional ideals via

∑
nPP 7−→

∏
PnP

and in this bijection principal divisors correspond exactly with principal
fractional ideals.

The divisor class group Cl(A) is also known as the ideal class group.

• The approximation theorem can be sharpened for Dedekind domains in
the following way ([BAC7],p.26): given finitely many distinct prime ideals
Pi in A, positive integers ni and elements xi ∈ K there exists x ∈ K such
that vPi

(x− xi) = ni for all i in the finite set and vP (x) ≥ 0 for all other
P . The special case where the xi = ai ∈ A is known as the Chinese
Remainder Theorem: the system of simultaneous congruences

x ≡ ai mod Pni

i

has a solution x ∈ A. Note that x ≡ a mod Pn is equivalent to vP (x− a) ≥ n.
The Chinese remainder theorem is equivalent to the statement that the
natural map of A to the product of A/Pni

i induces a ring isomorphism

A/
∏

Pni

i
∼=

∏
A/Pni

i .

Here are some simple applications of the approximation theorem.

(i) Every fractional ideal can be generated by two elements: J = Ax+Ay.
This is not true for Krull rings in general; for example the 3-variable
polynomial ring A = k[x, y, z] is a UFD, and the ideal Ax + Ay + Az
cannot be generated by two elements.
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(ii) Let P a maximal ideal. Then a uniformizer π for vP can be chosen in
A, and for any positive integer e, the natural map

A/P e −→ AP /π
eAP

is a ring isomorphism.

2.2.2 One variable function fields

A one variable function field with constant field k is a field L containing
k as a subfield such that

FF1 k is algebraically closed in L;
FF2 L is of transcendence degree 1 over k;
FF3 if x ∈ L is transcendental over k then the extension L/k(x) is finite.

k is called the constant field or field of constants. Two immediate
examples are the field of rational functions L = k(x), and the function field
K(x, y) of an elliptic curve as defined in §1.6 where now the constant field is
denoted K.

If another transcendental x′ is chosen in FF3 then, by FF2, L/k(x′) is also
finite but the degree may be different from that of L/k(x). We do not assume
that L is separably generated over k, i.e., that x can be chosen so that L is
separable over k(x). However this is always so for L = K(x, y) where x and y
are related by a Weierstrass equation since the extensions L/K(x) and L/K(y)
are of degrees 2 and 3 repectively, and so cannot both be inseparable. In fact
both extensions are separable in the case of an elliptic curve (∆ 6= 0), as we
noted in §1.6.

When L/k satisfies only FF2 and FF3, we say that L is a one variable
function field over k. Then the constant field is the algebraic closure of k in L;
this is a finite extension of k.

The following notation is convenient.†

Let L be a one variable function field over k. Then

gamk(L)

denotes the set of all k-trivial valuations on L.

Thus from Example 2 of §2.1.1, gamk(k(x)) = {vp : p ∈ P ∪ {∞}}. In
general, gamk(L) consists of all extensions w to L of these v. Using the PID
R = k[x], the second equality case of (¶) in §2.1.3 applies:

∑

w|v

e(w, v)f(w, v) = [L : k(x)]. (#)

†For the meaning of gam in the context of general commutative rings see [Con70].
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(See (##) below for a generalization.) As also explained in Example 2 in §2.1.1,
the residue field ṽp is an extension of k of degree deg p, where deg∞ := 1. For
w|vp we define the degree by

degw = f(w, vp) deg p = [w̃ : k].

In particular, taking L = k(x), this defines deg vp = deg p and deg v∞ = 1.
This notation is carried over to the place Pw corresponding to w: we define

degPw = degw. The place Pw is called a rational place when degPw = 1.
The degree is now extended linearly to the divisor group Divk(L), which is
the additive free abelian group based on the set {Pw : w ∈ gamkL}:

deg
∑

nwPw =
∑

nw degPw , where nw ∈ Z.

Clearly Div
0
k(L) := {D ∈ Divk(L) : deg(D) = 0}

is a subgroup. For D =
∑
nwPw ∈ Divk(L) we define w(D) = nw, and the

divisor of zeros and the divisor of poles are

Zer(D) =
∑

{w(D)Pw : w(D) > 0}, Pol(D) =
∑

{−w(D)Pw : w(D) < 0}.

Thus D = Zer(D) − Pol(D) and degD = deg Zer(D) − deg Pol(D).

Proposition 2.2.6 (a) For f ∈ L∗, w(f) 6= 0 for only finitely many w ∈
gamkL. Consequently

div(f) :=
∑

w

w(f)Pw ∈ Divk(L).

A divisor of the form div(f) is called a principal divisor. Zer(div(f)) and
Pol(div(f)) are shortened to Zer(f) and Pol(f).

(b) div(f) = 0 iff f is a constant: f ∈ k∗.
(c) Every principal divisor has degree 0. More precisely,

deg Zer(f) = deg Pol(f) = [L : k(f)].

(d) div(f−1) = −div(f), div(fg) = div(f) + div(g), hence the principal divi-
sors form a subgroup of Div

0
k(L).

Proof. (d) is clear once (a) is proved. We prove (a), (b) and (c) together.
If f ∈ k∗ then w(f) = 0 for all w, so let f be nonconstant. Then, by

FF1, k[f ] is a polynomial ring, f playing the role of x now, and L is a finite
extension of k(f). We have vf (f) = 1, v∞(f) = −1, and v(f) = 0 for all other
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v ∈ gamk(k(f)). The finitely many extensions w of vf and v∞ to L are the only
valuations on L for which w(f) 6= 0. Finally, using (#),

deg Zer(f) =
∑

w|vf

w(f) = [L : k(f)],

and similarly

deg Pol(f) = deg Zer(1/f) =
∑

w|v∞

w(f) = [L : k(f)].

Proposition 2.2.7 Let L be a one variable function field over k with constant
field kL and let M be a finite extension of L.

(a) M is a one variable function field whose constant field is an extension
kM of kL satisfying kM ∩ L = kL, hence [kM : kL] ≤ [M : L].

(b) If v ∈ gamkL and w runs through the extensions of v to M , then

∑

w|v

e(w, v)f(w, v) = [M : L]. (##)

(c) If N denotes the norm from M to L then for x ∈M ,

v(Nx) =
∑

w|v

f(w, v)w(x).

Proof. (a) is obvious.
(b) Let x be a transcendental in L, so we have the tower of fields k(x) ⊂

L ⊂M , and let A be the integral closure of k[x] in L. Then
(i) A is a finitely generated k-algebra ([BAC5,p.63]), and
(ii) A is a Dedekind domain (Proposition 2.2.5).

Thus the second equality case of (¶) in §2.1.3 implies (##).
(c) See for example [BAC6,p.149]. Note that their extensions v′ of v to M

include the ramification index, so that v′(z) = v(z) for z ∈ L, and v′(x) may
have a fractional value.

With L, M as in the proposition, let θ : L ↪→ M denote the embedding and
define

θ∗ : DivkL
(L) −→ DivkM

(M)

as the Z-linear extension of

Pv 7−→
∑

w|v

e(w, v)Pw .

Since deg(Pw) = f(w, v) deg(Pv), we have the

Corollary 2.2.8 For A ∈ DivkL
(L),

deg(θ∗A) = [M : L] deg(A).
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Continuing with the same extension M/L, let Ms be the maximal separa-
ble extension of L in M , let w1, . . . , wg be the extensions of v to M , and let
w′

1, . . . , w
′
g be their restrictions to Ms. Since M is purely inseparable over Ms,

each w′
i has a unique extension to M and therefore the w′

i are distinct.
For use in Chapter 6 we state a special case of the preceding proposition:†

Proposition 2.2.9 With the above notation, suppose now that k = k is alge-
braically closed, so that L, Ms and M are all function fields with constant field
k. Then f(wi, v) = f(wi, w

′
i)f(w′

i, v) = 1, hence
∑

e(wi, v) = [M : L],
∑

e(w′
i, v) = [Ms : L], e(wi, w

′
i) = [M : Ms] ∀i.

Therefore if e(w′
i, v) = 1 for 1 = 1, . . . , g (and there are only finitely many v for

which this is not true by Proposition 2.2.5), then

g = [Ms : L].

We quote another useful fact without proof in a

Lemma 2.2.10 Let L be a one variable function field with constant field k and
let M = L(y) be a finite extension, say the minimum polynomial of y over L is
φ. Let v ∈ gamkL with valuation ring V , suppose that y is integral over V , and
let φ have the factorization φ1 · · ·φg over the v-adic completion of K. Then the
φi are in one to one correspondence with the extensions w1, . . . , wg of v to M ,
and degφi = e(wi, v)f(wi, v).

Here are two examples relevant to our work.

Proposition 2.2.11 (a) Let E be the elliptic curve defined by the nonsingular
Weierstrass equation y2 + a1xy + a3 = x3 + a2x

2 + a4x + a6 over the field K,
and let L = K(x, y) be the function field. Then L is a degree 2 Galois extension
of K(x), and for each v ∈ gamK(K(x)) we have

efg = 2.

In the case v = v∞ we have e = 2, hence f = g = 1. Let w∞ denote the unique
extension on L. Then

w∞(x) = −2, w∞(y) = −3.

(b) Let charK 6= 2 and let L = K(x, y) where

y2 = anx
n + an−1x

n−1 + · · · + a0, ai ∈ K, an 6= 0,

and the polynomial on the right has no repeated factors in K[x]. Then A :=
K[x, y] is the integral closure of K[x] in L, and consequently A is Dedekind.
For v∞ we have efg = 2 and

†In §6.1 the theory of one variable function fields is resumed where a self-contained proof
of the Riemann-Roch theorem is presented.
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• if n is odd then e = 2, hence f = g = 1;

• if n is even and
√
an ∈ K then e = f = 1 and g = 2 (the case of two

rational places at infinity);

• if n is even and
√
an /∈ K then e = g = 1 and f = 2.

Remarks. See Propositions 2.2.14 and 2.2.15 for a continuation of these results.
In part (b), the assumption that the polynomial has no repeated factors is

implied by the assumption that it has no repeated roots in an algebraic closure
K. But the converse is not true in general when charK > 0. For example, if K
is an imperfect field of characteristic 3 and t ∈ K∗ − K∗3, then x3 − t has no
repeated factors in K[x], and so the proposition applies to y2 = x3 − t. But the
polynomial has 3 equal roots, hence this Weierstrass equation has ∆ = 0.
Proof. Let v = v∞ and w|v.

(a) We saw in §1.6 that L is separable over K(x) (also over K(y)), and (#)
takes the form efg = 2. From

y(y + a1x+ a3) = x3 + a2x
2 + a4x+ a6

we deduce

w(y) + w(y + a1x+ a3) = ev(x3 + a2x
2 + a4x+ a6) = −3e.

If w(y) ≥ w(x) then since w(x) = −e we would have w(y + a1x + a3) ≥ −e
and the above equation would imply the contradiction −3e ≥ −2e. Hence
w(y) < w(x), so w(y+ a1x+ a3) = w(y), and 2w(y) = −3e. This implies e = 2,
therefore f = g = 1, and w(y) = −3.

(b) The assumptions ensure that L is a quadratic and separable over K(x),
so again we have efg = 2.

Let ξ = α+ βy ∈ L with α, β ∈ K(x) so the Galois conjugate is ξ̄ = α− βy.
We must prove that if both ξ+ ξ̄ = 2α and ξξ̄ = α2−β2(anx

n + · · ·) are in K[x]
then α, β ∈ K[x]. Since charK 6= 2, 2 is invertible and (ξ + ξ̄)/2 = α ∈ K[x],
hence α2 − ξξ̄ = β2(anx

n + · · ·) ∈ K[x]. Since the polynomial has no repeated
factor, β can have no factor in its denominator, i.e., β ∈ K[x].

Since an 6= 0, it follows that 2w(y) = w(anx
n + · · ·) = −ne, hence e = 2

when n is odd. Let n be even. Then

Pw(y/xn/2)2 = Pw(an + an−1x
−1 + · · ·) = a.

Thus the residue field of w contains
√
an, which obliges f = 2 when

√
an /∈ K.

Conversely suppose that an = s2, s ∈ K. Referring to the lemma,

(y/xn/2)2 = s2 + an−1x
−1 + · · ·

is integral over the valuation ring V of v∞ and it remains to show that φ(Y ) =

Y 2 − (s2 + an−1T + · · ·) has roots in the completion V̂ = K[[T ]]. In fact any
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series in V̂ whose constant term is a nonzero square has square roots in V̂ : for
any given b1, b2, . . . ∈ K, write

s2 + b1T + b2T
2 + · · · = (s+ c1T + c2T

2 + · · ·)2
= s2 + 2sc1T + (2sc2 + c21)T

2 + · · ·

and solve succesively for c1, c2, . . .

2.2.3 Elliptic function fields

Proposition 2.2.12 Let E be an elliptic curve defined over the field K by the
nonsingular Weierstrass equation F (x, y) = 0 with function field L = K(x, y)
and affine coordinate ring A = K[x, y]. Then A is the integral closure of K[x]
in L, and consequently A is Dedekind.

Proof. It is convenient to deal separately with 3 cases: charK 6= 2, charK = 2
with j = 0 (the supersingular case), and charK = 2 with j 6= 0 (the ordinary
case). We may make substitutions of the form

x = u2x′ + r, y = u3y′ + su2x′ + t, where r, s, t ∈ K, u ∈ K∗,

then divide the resulting equation by u6, in order to obtain simplified Weierstrass
equations, since K[x] = K[x′] and A = K[x′, y′]. Calculation shows that the
discriminant of the new equation is ∆′ = u−12∆. (Such simplifications are
studied sytematically in Proposition 4.2.2.)

After such a simplification we can revert to the original notation x, y, a1

etc. Then let ξ = α + βy ∈ L with α, β ∈ K(x) so the Galois conjugate is
ξ̄ = α+ β(−y − a1x− a3). We must prove that if both

ξ + ξ̄ = 2α− β(a1x+ a3) and

ξξ̄ = α2 − αβ(a1x+ a3) − β2(x3 + a2x
2 + a4x+ a6)

are in K[x] then α, β ∈ K[x].
First assume char K 6= 2. Then 2 is invertible so we may replace y by y +

(a1x+a3)/2 — in effect we can assume a1 = a3 = 0; and since the discriminant
of the cubic is ∆/16 6= 0, the cubic has no repeated factor. Hence this case is
included in part (b) of the previous proposition.

Now let char K = 2. Since ∆ = a4
1b8 + a4

3 + a3
1a

3
3 6= 0, therefore a1 and a3

are not both 0.
Subcase a1 = 0, a3 6= 0: ξ + ξ̄ = a3β ∈ K[x] hence β ∈ K[x]. Now

ξξ̄ = α2 + αβa3 + β2(x3 + · · ·) ∈ K[x] gives an equation of integral dependence
for α over K[x], hence α ∈ K[x].

Final subcase a1 6= 0: Replacing x, y with

a2
1x+ a3/a1, a3

1y + a4/a1 + a2
3/a

3
1,
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respectively, and dividing the resulting equation by a6
1, we obtain

y2 + xy = x3 + a2x
2 + a6, so ∆ = a6 6= 0,

with new values for a2, a6. Thus our assumptions are that β1 := ξ + ξ̄ = βx ∈
K[x] and, discarding the terms β2(x3 + a2x

2) from ξξ̄,

δ := α2 + αβx + β2a6 ∈ K[x].

If α (resp. β) is in K[x] this gives an equation of integral dependence of β (resp.
α) over K[x], hence both α, β ∈ K[x] and we have the result.

There remains the possibility that α = α1/x and β = β1/x where α1 =
A0 + A1x + · · · and β1 = B0 + B1x + · · · are in K[x] with A0B0 6= 0. But the
last inequality is contradicted by comparing the coefficient of x in α2

1 +α1β1x+
β2

1a6 = δx2.
Referring to Proposition 2.2.11, let P∞ denote the place corresponding to

w∞. Since the integral closure of K[x] in L is the intersection of all valuation
rings Vw for w in gamK(L) except w∞, the following is essentially equivalent to
the proposition.

Corollary 2.2.13 With the notation of the proposition, an element ξ = α+βy
of L, where α, β ∈ K(x), has polar divisor Pol(ξ) = nP∞, where n is a non-
negative integer, iff α and β are polynomials in x satisfying

max{2 deg(α), 2 deg(β) + 3} = n (where deg 0 = −∞).

This proposition and its converse that K[x, y] is not integrally closed when
∆ = 0, at least when K is algebraically closed, exemplify well known general
facts about “normality” in algebraic geometry; in fact a normal domain is
by definition a noetherian Krull domain, equivalently, a noetherian integrally
closed domain.

With E,K,L as in the proposition, let w ∈ gamKL.Then the residue field
w̃ is an extension of K, and the corresponding place Pw : L −→ w̃ is trivial on
K, i.e., Pw is the identity map on K. Recall from §2.2.2 that

degw = degPw = [w̃ : K] <∞.

Consequently
Pw(x), Pw(y) ∈ w̃ ∪ {∞} ⊂ K ∪ {∞},

where K denotes an algebraic closure of K.

Proposition 2.2.14 Let E be an elliptic curve defined over the field K with
function field L = K(x, y), and w ∈ gamKL.

(a) w and Pw are uniquely determined by the values of Pw(x) and Pw(y) in
K ∪ {∞}.

(b) (Pw(x), Pw(y)) ∈ E(w̃) ⊃ E(K) (where (∞,∞) is interpreted as O).
Thus Pw ↔ (Pw(x), Pw(y)) establishes a canonical bijection between the rational
places on L and the points on E defined over K.
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Proof. w∞, which is characterized as the only member of gamKL whose ring
does not contain the coordinate ring A = K[x, y], has degree 1 and corresponds
to O ∈ E(K).

For all other w we have x, y ∈ V (w), and since Pw is a K-algebra homomor-
phism, therefore

(i) (Pw(x), Pw(y)) is in E(w̃), and
(ii) ∀α ∈ A, Pw(α) is uniquely determined by the values Pw(x) and Pw(y).

The kernel M in A is a nonzero prime ideal. Since A is Dedekind, M is maximal
and AM is a valuation ring, which is therefore the ring Vw of w. Thus Vw, w
and Pw are determined by Pw(x) and Pw(y).

Therefore, taking w of degree 1, Pw 7→ (Pw(x), Pw(y)) is an injection from
the set of rational places to E(K).

Conversely let (a, b) ∈ E(K). The ideal M generated by the two elements
x−a, y−b in A is maximal, hence the local ring AM is the ring of a valuation w
extending vx−a. The place sends (x, y) to (a, b) and this implies that the degree
is 1. (In general there are two places over vx−a, the other one corresponding
to [−1](a, b) = (a,−b − a1a − a3) ; but for points (a, b) = [−1](a, b) of order 2,
there is a unique ramified w extending vx−a, as for the point O.)

If P ∈ E(K), a local parameter or uniformizer at P is a uniformizer for
the valuation, canonically associated with P . Thus ±x/y are local parameters
at O since w∞(±x/y) = −2 − (−3) = 1, as we saw in Proposition 2.2.11.

Using Proposition 2.2.11(b) and reasoning as in the previous proof, we have

Proposition 2.2.15 Let charK 6= 2 and L = K(x, y) where

y2 = f(x) = anx
n + an−1x

n−1 + · · · + a0, ai ∈ K,

and the polynomial on the right has no repeated factors in K[x]. Then the places
P of L not at infinity, i.e., those not above P1/x on K(x), are in bijection with
the rational points (a, b) satisfying b2 = f(a).

2.3 The group of reversible power series

Let A be a commutative ring and let R denote the ideal TA[[T ]] in the ring
of formal power series A[[T ]]. For α = a0 + a1T + a2T

2 + · · · ∈ A[[T ]] and
ρ = r1T + · · · ∈ R, we have functional composition

α ◦ ρ = a0 + a1(r1T + r2T
2 + · · ·) + a2(r1T + · · ·)2 + · · ·

= a0 + a1r1T + (a1r2 + a2r
2
1)T

2 + (a1r3 + 2a2r1r2 + a3r
3
1)T

3 + · · · .
If both α and ρ are in R then so is α ◦ ρ. But note that ◦ is always a noncom-
mutative operation on R; for example,

(T + T 3) ◦ (T + T 2) − (T + T 2) ◦ (T + T 3) = T 4 + 3T 5.
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The following rules are easily verified: for α, β ∈ A[[T ]] and ρ, σ ∈ R,

(α ◦ ρ) ◦ σ = α ◦ (ρ ◦ σ),

(α+ β) ◦ ρ = α ◦ ρ+ β ◦ ρ,
(αβ) ◦ ρ = (α ◦ ρ)(β ◦ ρ).

Clearly these results are sufficient to prove the

Proposition 2.3.1 With + inherited from A[[T ]] and ◦ serving as multiplica-
tion, R is a noncommutative ring with T acting as “ 1”.

Next, d/dT denotes as usual the standard A-linear derivation on A[[T ]]:

d

dT
(a0 + a1T + a2T

2 + · · ·) = a1 + 2a2T + · · · .

We also use the prime notation dα/dT = α′, etc., as well as the symbol D for
d/dT . The simple verifications of the following three familiar rules is again left
to the reader: for α, β ∈ A[[T ]] and ρ ∈ R,

D(α+ β) = α′ + β′,

D(αβ) = α′β + αβ′,

D(α ◦ ρ) = (α′ ◦ ρ)ρ′ (the chain rule).

As usual, R∗ denotes the group of units of the ring R.

Proposition 2.3.2 (a) The group R∗ consists of series of the form r1T + · · ·
with r1 ∈ A∗.

(b) R∗ acts on A[[T ]] making A[[T ]] a right R∗-module, i.e., a module over
the integral group ring Z[R∗] as follows. For α ∈ A[[T ]] and ρ ∈ R∗, using
exponential notation,

αρ = (α ◦ ρ)ρ′.

Remarks. The elements in R∗ are called reversible power series, and R∗

is the group of reversible power series.
A[[T ]] has the simpler right R∗-module structure given by α ◦ ρ. However

the action of R∗ given in the proposition will be the one of interest to us later.
Proof. (a) Given ρ = r1T + · · · ∈ R∗ with inverse σ = s1T + · · ·, we see from

ρ ◦ σ = r1s1T + (r1s2 + r2s
2
1)T

2 + · · · = T

that r1 ∈ A∗. Conversely if r1 ∈ A∗ then by comparing coefficients in this
equation we can solve recursively for s1, s2, . . ., obtaining ρ ◦ σ = T . By the
same token we find ρ′ such that σ ◦ ρ′ = T , and applying the associative law to
ρ ◦ σ ◦ ρ′, we find ρ = ρ′, and therefore ρ ∈ R∗.
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(b) We verify the module axioms using the rules above:

(α+ β)ρ = ((α + β) ◦ ρ)ρ′ = (α ◦ ρ+ β ◦ ρ)ρ′ = αρ + βρ;

(αρ)σ = ((α ◦ ρ)ρ′)σ
= ((α ◦ ρ) ◦ σ) (ρ′ ◦ σ)σ′

coincides with
αρ◦σ = (α(ρ ◦ σ)) (ρ ◦ σ)′.

In order to avoid confusion with the ordinary ring inverse we denote the
group inverse of ρ in R∗ by ρ(−1), and in general any power by ρ(n). When it
is necessary to make it clear what ring is being discussed we denote the group
R∗ by R∗(A) or R∗(A, T ) .

Elements of the form T+r2T
2+· · · form a subgroup of R∗. For such elements

the begining of “generic reversion” is

(T + r2T
2 + · · ·)(−1) = T − r2T

2 + (2r22 − r3)T
3 +

(−5r32 + 5r2r3 − r4)T
4 +

(14r42 − 21r22r3 + 6r2r4 + 3r23 − r5)T
5 + · · · .

We will also need formal integration:
∫

(a0 + a1T + · · ·) dT = a0T +
a1

2
T 2 + · · · .

This brings up the matter of having inverses of integers available. Consider the
canonical ring homomorphisms

Z
i−→ A

j−→ A⊗Z Q.

If ker i = nZ, n ≥ 0, we call n the characteristic of A; thus characteristic 0
means that i is injective. A is flat, more precisely flat as a Z-module, when
j is injective; this is equivalent to (since Z is a PID) the additive group of A
being torsion-free. Flat implies characteristic 0, but not conversely as is shown
by the example

∏
Fp, and sometimes in discussions of formal groups these

two conditions are confused. (In this connection we note that [Haz78] defines
“characteristic 0” to mean flat.) To say that A is a Q-algebra is equivalent to
saying that j is an isomorphism. For convenience we denote the tensor product
by AQ; and when A is flat we regard it as a subring of AQ.

Proposition 2.3.3 Let A be flat. Then the set of f ∈ AQ[[T ]] of the form

f =

∞∑

n=1

an

n!
T n, an ∈ A, a1 ∈ A∗

is a subgroup of R∗(AQ). In particular, the coefficients of f (−1) can be written

in the form a′n/n!.
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Proof. Let R∗! denote the set of such f . Clearly R∗! contains the group
identity element T . Secondly, let f and g = b1T + b2T

2/2! + · · · be members
of R∗! and write h = f ◦ g = c1T + c2T

2/2! + · · ·. Then c1 = a1b1 ∈ A∗

and differentiating h(T ) = f(g(T )) n times gives the n-th derivative Dnh as a
polynomial with integer coefficients in the derivatives Dif , Djg, 1 ≤ i, j ≤ n.
Substituting T = 0 thus gives cn as a polynomial with integer coefficients in
ai, bj , which proves that f ◦ g ∈ R∗!. Finally, suppose g = f (−1) so that h = T .
Then these polynomial relations for n > 0 are of the form 0 = cn = a1bn+
(monomials involving the ai and bj with j < n). Since a1 ∈ A∗, this proves by
induction that bn ∈ A.

2.4 Hensel’s lemma

Newton’s method for the approximate numerical calculation of a root ξ of a
differentiable function f is best explained by a picture:

�
�
�
�
�
�
�
�
�

ξ ξ2 ξ1

If ξ1 is an approximation to the root ξ then intersecting the tangent to
the curve y = f(x) at x = ξ1 with the ξ-axis gives the presumably better
approximation

ξ2 = ξ1 −
f(ξ1)

f ′(ξ1)
.

Here f ′ denotes the derivative of f and an obviously minimal requirement for
this to be useful is that f ′(ξ1) 6= 0. In favorable circumstances the formula can
be iterated to give a sequence (ξ1, ξ2, . . .) converging to ξ. In fact this algorithm,
called Newton’s method has wide application in both the archimedean cases
R and C and in the nonarchimedean or ultrametric cases which include the case
of a discrete valuation.

In the latter case problems of convergence tend to be quite trivial. For
example a series x1 +x2 + · · · of elements in a complete discretely valued field K
converges to an element inK iff lim |xi| = 0. Thus one easily proves the following
fact. Let V denote the valuation ring inK and let f(T ) = a0+a1T+· · · ∈ V [[T ]].

If f(t) converges for a particular t ∈ K (which is certainly true if |t| < 1),
then the derivative f ′ = Df = a1 + 2a2T + · · · also converges for T = t.
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In fact we can generalize this to the Taylor series

f(T + ∆) = f(T ) + f1(T )∆ + f2(T )∆2 + · · · ∈ V [[T ]][[∆]]

where f1 = Df and in general fi ∈ V [[T ]] has coefficients which are linear
combinations with integer binomial coefficients of the aj . (Obviously this Taylor
expansion can be defined for a series over any commutative ring V ; when V is
flat (in the present situation that means simply that char K = 0) one has the
formulas fi = Dif/i!, but the series is properly defined in any case.) If f(T )
converges for T = t then so do all the fi(t), and the Taylor series f(t + δ)
converges for all δ satisfying |δ| < 1. Of course if f is a polynomial in T then
there is no restriction on t and δ.

The following result is known as Hensel’s lemma (for discrete valuations);
for later applications we have made a mild generalization from the usual case
of finding a root of a polynomial to finding a root of a power series.

Proposition 2.4.1 Let K be complete with respect to the discrete valuation v,
let V be the valuation ring, let f ∈ V [[T ]] and let ξ1 ∈ V be such that f(ξ1)
converges and

|f(ξ1)| < |f ′(ξ1)|2.
Then Newton’s method produces a convergent sequence (ξ1, ξ2, . . .) whose limit
ξ is a root of f in V . The progress of the convergence is measured by

|ξ − ξi| = |f(ξi)/f
′(ξ1)|.

Moreover, ξ is the only root of f in the closed disc

|ξ − ξ1| ≤ |f(ξ1)/f
′(ξ1)|.

Remarks.
(i) The convergence of the algorithm is quadratic rather than merely linear as

will become clear in the proof. Roughly speaking this means that the accuracy
(“number of digits”) doubles at each iteration. A “save work simplification”
such as

ξi+1 = ξi −
f(ξi)

c

where the denominator c has the constant value f ′(ξ1) produces a sequence that
converges only linearly to the root, and is much less efficient.

(ii) A corollary is that if f ∈ V [T ] is a monic polynomial whose reduction f
to the residue field k has a simple root ξ ∈ k, then the factorization f = (T −ξ)g
in k[T ] can be lifted to V [T ]; for if ξ1 ∈ V is any lifting of ξ, then v(f(ξ1)) > 0
and v(f ′(ξ1)) = 0 since the root is simple.

In fact V is henselian in the sense of the following definition (cf. [Mil80],
p.32): a local noetherian domain R with maximal ideal m and residue field
k = R/m is henselian if for every monic polynomial f ∈ R[T ] and factorization
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f = g0h0 in k[T ] where g0 and h0 are monic and coprime, there exist monic
g, h ∈ R[T ] such that f = gh and g = g0, h = h0.

Proof. The assumption |f(ξ1)| < |f ′(ξ1)|2 guarantees that f ′(ξ1) 6= 0 and
Newton’s method can be written as ξ2 = ξ1 + δ1 where f(ξ1) + δ1f

′(ξ1) = 0.
Let

f(T + ∆) = f(T ) + f1(T )∆ + · · ·

be the Taylor expansion of f , so f1 = f ′. Each fj(ξ1) ∈ V , and |δ1| < |f ′(ξ1)| ≤
1, so δ1, ξ2 ∈ V . Substituting T = ξ1, ∆ = δ1 in the Taylor expansion and
writing C = |f(ξ1)/f

′(ξ1)
2| yields, using f(ξ1) + δ1f

′(ξ1) = 0,

|f(ξ2)| ≤ max{|f2(ξ1)δ21 |, . . . , |fn(ξ1)δ
n
1 |, · · ·} ≤ |δ1|2 = C|f(ξ1)|,

where C < 1. The Taylor expansion for f ′ = g, say, gives

|f ′(ξ2)| = |f ′(ξ1) + δ1g1(ξ1) + δ21g2(ξ1) · · · | = |f ′(ξ1)|

since |δj
1gj(ξ1)| ≤ |δ1| < |f ′(ξ1)| for j > 0.

Thus |f(ξ2)/f
′(ξ2)

2| < C2 and the process can be repeated. By induction,

|f ′(ξi)| = |f ′(ξ1)|
|f(ξi)/f

′(ξi)
2| ≤ C2i−1

|f(ξi+1)| ≤ C2i−1 |f(ξi)|

where ξi+1 = ξi + δi and δi is defined by f(ξi) + δif
′(ξi) = 0. (Of course the

process stops if f(ξi) = 0.) A simple induction gives

|δi| ≤ C2i−1
−1|δ1|.

If i < j then

|ξi − ξj | = |δi + · · · δj−1| ≤ C2i−1
−1|δ1|.

Since C < 1 this shows that (ξ1, ξ2, . . .) is cauchy, say lim ξi = ξ, and since
|f(ξi)| = |δif ′(ξ1)| → 0 and a powerseries function is continuous on a closed
disc in its domain of convergence, therefore f(ξ) = 0. Since |δi| > |δi+1| > · · ·,

|ξ − ξi| = lim
j→∞

|δi + · · · + δj | = lim
j→∞

|δi| = |δi|.

Suppose ξ′ = ξ+η ∈ V is another root of f satisfying |ξ′−ξ1| ≤ |f(ξ1)/f
′(ξ1)|.

Then

|η| = |ξ′ − ξ1 + ξ1 − ξ| ≤ max{|ξ′ − ξ1|, |ξ1 − ξ|}
≤ |f(ξ1)/f

′(ξ1)| < |f ′(ξ1)| = |f ′(ξ)|,
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the last inequality being our basic assumption on ξ1. Hence for i > 1, and
assuming η 6= 0, we have |fi(ξ)η

i| ≤ |η2| < f ′(ξ)η|, which is incompatible with
the Taylor expansion

0 = f(ξ′) = f(ξ + η) = f ′(ξ)η + f2(ξ)η
2 + · · · .

Distinct ξ1 ∈ V can lead to the same root ξ. For instance

f ≡ X2 − 1 mod 16

has the four roots ±1,±7 ∈ Z/16Z, but each of these must lift to one of the two
roots ±1 of f in Q2. In fact 7 lifts to −1 since |7 + 1| = |f(7)/f ′(7)|.

The ‘factor theorem’ for polynomials, that a root corresponds to a linear
factor, extends to power series:

Proposition 2.4.2 Let V be a complete discrete valuation ring, let f ∈ V [[T ]]
and let ξ ∈ V be a root of f : the series f(ξ) converges to 0. Then f(T ) =
(T − ξ)g(T ) where g(T ) ∈ V [[T ]].

Proof. We have g(T ) = f(T )/(T − ξ) = b0 + b1T + · · · ∈ K[[T ]], and we wish
to show that bi ∈ V . This is clear if v(ξ) = 0 since then T − ξ is an invertible
element of V [[T ]] (and we don’t need f(ξ) = 0):

g(T ) =
f(T )

−ξ(1 − T/ξ)
=
f(T )

−ξ

(
1 +

T

ξ
+
T 2

ξ2
+ · · ·

)
∈ V [[T ]].

Thus suppose v(ξ) > 0 and let f =
∑
aiT

i. Then

g(T ) =
f(T ) − f(ξ)

T − ξ
=

1

T − ξ

∞∑

i=0

ai(T
i − ξi)

=

∞∑

i=1

ai(T
i−1 + T i−2ξ + · · · + ξi−1),

so bi = ai+1 + ai+2ξ + ai+3ξ
2 · · · ,

and for each i the series converges to an element of V .

The ring V [[T ]] is in fact a UFD; cf. [BAC7, p.42].

Corollary 2.4.3 (ascribed to Strassmann in [Cas78, p.52])
Let f =

∑
aiT

i ∈ V [[T ]] and suppose |ai| −→ 0. If N denotes the largest
subscript such that |aN | = max{|ai|}, then f has at most N roots in V . It
follows that as T ranges over V , f takes any value at most a finite number of
times, and in particular f cannot be periodic.
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Proof. If ξ ∈ V is a root of f then g = f/(T − ξ) = b0 + b1T + · · · ∈ V [[T ]] and

bi = ai+1 + ai+2ξ + · · · −→ 0.

Also N−1 is the largest subscript such that bN−1 = max{|bi|}. Thus the process
can be repeated on g.

For example the polynomial 2a+T +2bT n, where a, b ∈ Z and n ≥ 2, has at
most one integral root since it has at most one root in Z2 (and therefore exactly
one root in Z2 since Hensel can be applied with T1 = −2a as the starting 2-adic
approximation.)

2.4.1 An application to P -adically reversible series

Let A be a commutative ring and P an ideal in A that is topologically nilpo-
tent, i.e.,

∞⋂

n=1

Pn = 0. (∗)

With {a + Pn : n = 1, 2, . . .} taken as a neighborhood basis at a ∈ A, A is a
(Hausdorff) topological ring. When P = 0 the topology is discrete.

We define v : A −→ {0, 1, 2, . . .} ∪ {∞} by declaring v(a) = 0 if a /∈ P ,
v(0) = ∞ and otherwise v(a) is the smallest n such that a /∈ Pn+1. Clearly

v(a+ b) ≥ min{v(a), v(b)}, v(ab) ≥ v(a) + v(b).

Lemma 2.4.4 (Krull, Chevalley) Let A,P satisfy (∗). One has v(ab) =
v(a) + v(b) for all a, b ∈ A iff

(i) A is an integral domain, and

(ii) P is a prime ideal.

Then, assuming P 6= 0, v extends to a discrete valuation on the quotient field
of A if we define v(a/b) = v(a) − v(b) for a, b ∈ A and b 6= 0.

Proof. If a 6= 0, b 6= 0, ab = 0 then v(ab) = ∞ > v(a) + v(b); if a /∈ P, b /∈
P, ab ∈ P then v(ab) > 0 = v(a) + v(b)); and if a/b = c/d then ad = bc, hence
if v acts like log, then v(a) + v(d) = v(b) + v(c), and v(a/b) is well-defined.

Conversely assume that P is a prime ideal in the integral domain A. By
Corollary 2.1.3, there exists a generalized valuation ring V lying between A and
its quotient field Q whose maximal ideal intersected with A is P . The valuation
ring is discrete because of the special assumption (∗). Hence v acts like log.

We now assume in addition to (∗) that A is P -adically complete, i.e., the
canonical ring homomorphism

A
∼−→ lim
←−

A/Pn (∗∗)
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is an isomorhism. Then a series a1 + a2 + · · ·, where ai ∈ A, converges to an
element of A iff v(ai) −→ ∞ (since then the partial sums form a consistent
sequence mod Pn for ever increasing n). It follows that

a ∈ A∗ and x ∈ P =⇒ a+ x ∈ A∗.

We also assume

A is an integral domain, and P is a prime ideal. (∗ ∗ ∗)

For A,P satisfying (∗), (∗∗) and (∗ ∗ ∗), we define

RP = RP (A, T ) = {a0 + a1T + · · · ∈ A[[T ]] : a0 ∈ P}.

Note that R defined in §2.3 is R0 — the discrete case — except that here we
assume that A is an integral domain; we will have no need for greater generality.
With that minor proviso, the following generalizes Propositions 2.3.1 and 2.3.2.

Proposition 2.4.5 (a) Let A,P satisfy (∗), (∗∗) and (∗ ∗ ∗). Then RP , with
the + of A[[T ]] and ◦ as operations, is a noncommutative ring with T serving
as the ring “ 1”.

(b) The group of units R ∗P consists of the series of the form r0+r1T+r2T
2+

· · · where r0 ∈ P and r1 ∈ A∗.
(c) A[[T ]] is a right R ∗P -module, where, using exponential notation,

αρ = (α ◦ ρ)ρ′, for α ∈ A[[T ]], ρ ∈ R ∗

P .

Remark. The series in R ∗

P are said to be P -adically reversible, and R ∗

P is
the group of P -adically reversible series.
Proof. First one checks that the composition α◦ρ of α = a0+a1T+· · · ∈ A[[T ]]
and ρ = r0 + r1T + · · · ∈ RP is defined. If we write α ◦ ρ = β, then

b0 = a0 + a1r0 + a2r
2
0 + · · · ,

b1 = a1r1 + 2a2r0r1 + 3a3r
2
0r1 + · · · ,

b2 = a1r2 + a2(2r0r2 + r21) + · · · ,
etc.

One easily sees that the series for all the bi converge, hence α ◦ ρ ∈ A[[T ]],
and that RP and R ∗

P are closed under the operation ◦.
The only detail that is not entirely elementary is the existence of inverses.

As in the proof of Proposition 2.3.2, we need only consider one-sided inverses:
given α = a0 + a1T + · · · with a0 ∈ P and a1 ∈ A∗, we wish to calculate
ρ ∈ RP so that β = α ◦ ρ = T . Thinking of b0 = α(r0) as a function of r0, we
have v(α(−a0a

−1
1 )) = v(a2a

2
0a

−2
1 + · · ·) ≥ 2 and v(α′(−a0a

−1
1 )) = v(a1 + · · ·) =

0. Thus Hensel can be applied to the equation α(r0) = 0 with the initial
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approximation r0 = −a0a
−1
1 to obtain r0. We note that inductively at each

step of Newton’s method, α′(ξi) = a1 + 2a2ξi + · · · ∈ A∗, hence ξi+1 ∈ P and
therefore in the limit r0 ∈ P . (It is necessary to make this remark since the
valuation ring involved may be distinctly larger than A.) Then r1, r2, . . . are
calculated directly one after the other:

b1 = r1(a1 + 2a2r0 + 3a3r
2
0 + · · ·) = 1,

b2 = r2(a1 + 2a2r0 + 3a3r
2
0 + · · ·) + (a2r

2
1 + 3a3r0r

2
1 + · · ·) = 0,

etc.

The successive coefficients of r1, r2, . . . are of the form a1 + x where x ∈ P ,
hence they are in A∗.

The R ∗

P -module structure of A[[T ]] can now be verified as in the proof of
Proposition 2.3.2.

Corollary 2.4.6 With A,P as in the proposition and α ∈ R ∗

P , the equation
α(T ) = 0 has a unique root T = r0 in P . This root will be denoted Nα:
α(Nα) = 0.

The uniqueness of Nα is a consequence of the uniqueness of the group inverse
and the fact that b1, b2, . . . are determined once b0 is specified.

Here is an example: R[[S, T ]], the ring of power series in two variables over
the integral domain R, regarded as the ring of series in T over A = R[[S]], with
the prime ideal P = SA. Then R ∗

P consists of all series
∑

∞

i,j=0 rijS
iT j where

rij ∈ R, r00 = 0 and r01 ∈ R∗. For example, let α = aS + bT and β = cS + dT ,
where a, c ∈ R and b, d ∈ R∗. Then

α ◦ β = (a+ bc)S + bdT, α(−1) = −a
b
S +

1

b
T, Nα = −ab−1S.

2.5 Applications to elliptic curves

2.5.1 Infinitesimal shifts

We introduce a technical device that will be useful in the proof of the proposition
in the next section and elsewhere.

Let E be an elliptic curve defined over the field K by the nonsingular Weier-
strass equation

F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0,

and suppose P = (a, b) is point in E(K) that is not in E(K)[2]. Since −(a, b) =
(a,−b − a1a − a3) 6= (a, b), the partial derivative Fy(a, b) 6= 0. Let t be an
indeterminate, so that the power series field K((t)) is complete with respect to
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the t-adic valuation with ring V = K[[t]]. We assign x the value a+ t and apply
Hensel to F = 0 regarded as a function of the variable y starting at y = b:

vt(F (a+ t, b)) ≥ 1, vt(Fy(a+ t, b) = 0.

This leads to a solution y = b+β, where β = β1t+β2t
2 + · · · ∈ tK[[t]], and thus

we obtain a point P ′ = (a+t, b+β) ∈ E(K((t))), which we call an infinitesimal
shift of P — the shift by the infinitesimal t.

If two different shifts of P are needed, another infinitesimal can be intro-
duced; alternatively, one might shift the x-coordinate by t and also by t2, for
instance.

Lemma 2.5.1 With the above notation,
(a) ∀Q ∈ E(K) except Q = −P , the point P ′ + Q = (x3, y3) is t-integral,

i.e., x3, y3 ∈ K[[t]];
(b) [2]P ′ /∈ E(K).

Proof. (a) First we observe that this is true when Q = O since then x3 = a+ t
and y3 = b+β are in K[[t]]. TakingQ = (x1, y1) and P ′ = (a+t, b+β) = (x2, y2)
in the addition formula in Proposition 1.7.1, we see that we wish to prove

vt(λ) = vt

(
b+ β1t+ · · · − y1

a+ t− x1

)
≥ 0.

The only time this is not true is when x1 = a and y1 6= b, i.e., when Q = −P .
Intuitively, this says that when we apply the ring homomorphism K[[t]] −→ K
where t 7→ 0, the equation P ′+Q = R maps to P +Q = R0 where R0 6= (∞,∞)
except when Q = −P .

(b) By definition, x(P ′) = x(P ) + t is not algebraic over K. It follows by
Proposition 1.7.3 that [2]P ′ /∈ E(K).

2.5.2 Reduction mod π : a first look

Let v be a valuation on the field K with ring V , uniformizer π, and residue field
k. Recall from §2.1.2 that each point P in projective space Pn(K) has a set of
v-proper coordinates (X0, . . . , Xn), i.e., min{v(Xi)} = 0, and they are unique
up to multiplication by a unit u ∈ V ∗. Let the canonical surjection V −→ k be
denoted a 7→ ã. If u ∈ V ∗ then ũ ∈ k∗, hence P = (X0, . . .) 7→ P̃ = (X̃0, . . .) is
a well defined map

Pn(K) −→ Pn(k),

called reduction mod π. (Since the element π of K could be simultaneously
a uniformizer for other valuations on K, the terminology is not accurate; but
in practice the context, or clarification if necessary, makes the meaning unam-
biguous.) Obviously this map is surjective.
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Now suppose that E is an elliptic curve defined by a nonsingular Weierstrass
equation

F = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3 = 0,

with all the coefficients ai ∈ V . We denote by F̃ the reduction of F modπ:

F̃ = Y 2Z + ã1XY Z + · · · − ã6Z
3,

which is a Weierstrass equation over k. Affine equations can be reduced in the
same way:

if F = y2 + a1xy + · · · − a6, then F̃ = y2 + ã1xy + · · · − ã6.

Since V −→ k is a ring homomorphism, therefore the quantities associated in
§1.1 to F̃ are b̃2 = ã1

2 +4ã2, etc.,, and in particular, the discriminant of F̃ is ∆̃.
Since all the ai ∈ V , and ∆ is a polynomial in the ai with integer coefficients,
therefore v(∆) ≥ 0 with equality iff ∆̃ 6= 0, i.e., iff F̃ represents an elliptic curve
over k.

If ∆̃ 6= 0 we define the reduction mod π of E to be the elliptic curve over
k defined by F̃ = 0, and denoted Ẽ.

However F̃ must not be taken as the definition of the reduction of E when
∆̃ = 0. The problem is that F may not be “v-minimal”; the relevant definition,
which is not as simple as that of v-proper, will be discussed in Chapter 5. Using
that,

the general definition of Ẽ is given in §7.1

Let us consider an example. If v is the 2-adic valuation on Q then y2 =
x3 +5x2 +8x+16 (∆ = −21215) reduces to the singular equation y2 = x3 +x2.
However if we first substitute x = 4x′, y = 8y′ + 4x′ + 4, and divide by 64, we
obtain the equation

y′2 + x′y′ + y′ = x′3 + x′2, ∆ = −15. A15

The present definition now applies: the reduction mod 2 of A15 is

Ẽ : y2 + xy + y = x3 + x2 /F2.

Proposition 2.5.2 Let v be a valuation on the field K with valuation ring V ,
residue field k and uniformizer π. Let E be an elliptic curve given by a nonsin-
gular Weierstrass equation F defined over V , and suppose that v(∆) = 0. Then
the reduction modπ map P2(K) −→ P2(k) induces a group homomorphism

E(K) −→ Ẽ(k) with kernel E1(K) (the 1-st term in the v-adic filtration).
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Remarks. It follows that E1(K) is a subgroup of E(K) when v(∆) = 0. This
will be superseded by Proposition 2.6.7 where we prove that all terms in the
v-adic filtration are subgroups regardless of the value of v(∆); cf. the discussion
in §2.1.2.

We will take F in projective form, but intuitively the affine form gives the
right result: if (x, y) ∈ E1(K), then x and y have π in their denominators,
and since π 7→ 0 in the reduction, therefore (x, y) 7→ (∞,∞) = the point O at
infinity.
Proof. A point in P ∈ E(K) with v-proper coordinates (X,Y, Z) reduces to
O = (0, 1, 0) iff v(X) > 0 and v(Z) > 0. By definition, this is equivalent to
P ∈ E1(K).

If P1 + P2 + P3 = O, where Pi ∈ E(K), we wish to prove that

P̃1 + P̃2 + P̃3 = O. (¶)

Now Õ = O and, since −(X,Y, Z) = (X,−Y − a1X − a3Z,Z), therefore −̃P =

−P̃ . Thus (¶) is true if some Pi = O, hence we can assume that no Pi = O.
Consider any line L : aX + bY + cZ = 0 in P2(K). The coefficients can be

chosen so that min{v(a), v(b), v(c)} = 0, and then L̃ : ãX + b̃Y + c̃Z = 0 is a
line in P2(k). If L meets E(K) in the points Pi then, since V −→ k is a ring

homomorphism, L̃ meets Ẽ(k) in the points P̃i. This proves (¶) when the P̃i

are distinct.
Suppose P̃1 = P̃2, and suppose to begin with that P1 and P2 are not both

points of order 2, say P1 /∈ E(K)[2]. We replace P1 with an infinitesimal shift
P ′

1 and define P ′

3 = −P ′

1 − P2. Extend v to K((t)) by Proposition 2.1.7 so that
π is still a uniformizer, the reduction homomorphism is now V ((t)) −→ k((t))

and P̃ ′

1 is an infinitesimal shift of P̃1. Using part (b) of the previous lemma, we

see that no two of P̃ ′

1, P̃2, P̃ ′

3 are equal, hence

P̃ ′

1 + P̃2 + P̃ ′

3 = O. (¶′)

Since no Pi = O, by (a) of the lemma, all of P ′

1, P2 and P ′

3 are t-integral, and
therefore the same is true of the three points in (¶′). This allows us to apply
the substitution homomorphism t 7→ 0, which results in (¶).

Finally, consider the case where P1 and P2 are points of order 2. Then
P1 6= P2 since P3 6= O. Therefore charK 6= 2 (cf. Corollary 1.7.7), and the Pi

are the three distinct points of order 3. From Pi = −Pi and −̃Pi = −P̃i, it
follows that P̃i ∈ Ẽ(k)[2], and by assumption, P̃1 = P̃2. Thus we wish to show

that P̃3 = O. In x, y-coordinates, Pi = (ei, gi) where gi = −(a1ei + a3)/2. The
Weierstrass equation in b-form is

η2 = (x− e1)(x− e2)(x − e3) = x3 +
b2
4
x2 +

b4
2
x+

b6
4
, ([)

from which it follows that v(4ei) ≥ 0.
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Consider the case char k 6= 2. Then v(ei) ≥ 0, hence P̃i = (ẽi, g̃i, 1). Since

P̃1 = P̃2, we have ẽ1 = ẽ2. The relation

∆ = 16(e1 − e2)
2(e1 − e3)

2(e2 − e3)
2

then leads to the contradiction ∆̃ = 0. In other words, when char k 6= 2 and P1,
P2 are distinct points of order 2, then P̃1, P̃2 are distinct points of order 2.

We are left with the case charK = 0, char k = 2. By Proposition 1.7.8, when
ã1 = 0 then Ẽ is supersingular and has no points of order 2. Then all P̃i = O
and (¶) is true. The final detail that completes the proof when Ẽ is ordinary,
i.e., when v(a1) = 0, is contained in part (b) of the following proposition; we
include a number of other details that will be useful for working out examples.

Proposition 2.5.3 Let K be a field of characteristic 0 and v a valuation on K
with ring V and residue field k of characteristic 2. Let E be an elliptic curve
defined over V .

(a) If v(∆) = 0 then at least one of v(a1) and v(a3) is 0. If v(a1) > 0 and
v(a3) = 0, then v(∆) = 0, E has supersingular reduction at v, and if (x, y) is a
point of order 2 defined over K then v(x) < 0; in order that such a point exist
it is necessary that v(2) ≥ 3.

(b) Suppose that v(a1) = 0.

(b1) If the three points Pi = (ei, gi) of order 2 are defined over K
then exactly one Pi ∈ E1(K), i.e., for exactly one i, v(ei) < 0; for
that i, v(4ei) = 0.

(b2) If K is v-complete then (at least) the point of order 2 with
v(ei) < 0 is defined over K.

(c) Suppose E(K)[2] contains a fractional point P1 = (e1, g1), v(e1) < 0, but
not necessarily all three points of order 2.

(c1) If v(2) = 1 then v(a1) = 0, P1 = (s/4, t/8) where v(s) = v(t) =
0, and any other points of order 2 present are v-integral.

(c2) If v(2) = 2 then either

• v(a1) = 0 and the conclusions of (c1) are valid, or

• v(a1) = 1, v(a3) > 0, v(∆) ≥ 4, P1 = (s/2, t/2π) where v(π) = 1
and v(s) = v(t) = 0, and any other points of order 2 present are
v-integral.

Proof. (a) Look at the reduction of the Weierstrass equation over k. We

calculate b̃2 = ã1
2, . . . , ∆̃ = ã1

4b̃8 + ã3
4 + ã1

3ã3
3. Now suppose v(a1) > 0 and

v(a3) = 0. Then v(∆̃) = 0 and Ẽ is supersingular by Proposition 1.7.8. Since

Ẽ has no points of order 2, any point P of order 2 in E(K) must reduce to Õ,
i.e., P ∈ E1(K). The remark about v(2) ≥ 3 will follow from part (c).
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(b1) Suppose v(Pi) < 0. Then v(ei) = −2n, v(gi) = v(−(a1ei + a3)/2) =
−3n for some positive integer n. Using v(a1) = 0 and v(a3) ≥ 0 we deduce that
n = v(2), hence v(ei) = −v(4). Comparison of coefficients in ([) gives

e1 + e2 + e3 =
b2
4

= a2 +
a2
1

4
, (1)

e1e2 + e1e3 + e2e3 =
b4
2

= a4 +
a1a3

2
, (2)

e1e2e3 =
b6
4

= a6 +
a2
3

4
. (3)

(1) implies that at least one v(ei) < 0, and then v(ei) = −v(4). Conversely, (3)
implies that at most one v(ei) < 0.

(b2) The values of ei are u/4 where u runs through the roots of f(u) = u3 +
b2u

2+8b4u+16b6. Since v(a1) = 0, therefore v(b2) = 0, hence v(f(−b2)) ≥ 3v(2)
and v(f ′(−b2)) = 0. Thus Hensel produces a point (x, η) = (−b2/4 + · · · , 0)
defined over K.

(c) Suppose v(e1) = −2n, v((a1e1 + a3)/2) = −3n, and v(2) < 3. Then
min{v(a1e1), v(a3)} ≤ −3n+v(2) < 0, hence v(a1e1) = v(a1)−2n = −3n+v(2),
and therefore v(a1) = v(2) − n.

(c1) v(a1) = 1 − n, hence n = 1 and v(a1) = 0. By extending K to include
all three points of order 2 (it is immaterial whether or not v ramifies), the other
remarks follow from (b).

(c2) If n = 2 then v(a1) = 0 and proceed as in (c1). So let n = 1 and therefore
v(a1) = 1. We can write e1 = s/2 where v(s) = 0. Suppose P2, P3 ∈ E(K)[2].
If either is fractional, the corresponding ei = si/2 where v(si) = 0. Thus (3)
implies that not all Pi are fractional. Suppose P2 but not P3 is fractional. (We
cannot appeal to the fact that E1(K) is a subgroup since that is not yet proved.)
Then (2) is

s

2

(s2
2

+ e3

)
+
s2
2
e3 = a4 +

a1a3

2
,

where v(e3) ≥ 0. Since v(a1) = 1, the value of the right side is ≥ −1, whereas
the value of the left side is −4 — a contradiction. Thus P2 and P3 are both
v-integral. Looking at (3) again, v(e1e2e3) ≥ −2 which obliges v(a3) > 0.

Here is an example of the second case of (c2):

y2 +
√

2xy +
√

2y = x3, ∆ = −100, η2 = (x+ 1/2)(x2 + 1),

and in (x, y) coordinates,

P1 =

(
−1

2
,− 1

2
√

2

)
, P2, P3 =

(
±i,−1± i√

2

)
.
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So far we have discussed reduction in terms of a valuation ring. If A is a
Krull domain and P is a minimal prime ideal of A, then by reduction mod P

we understand reduction from the valuation ring AP to the residue field kP =
AP /PP . We saw in Proposition 2.2.4 that when A is a UFD, the coordinates of
a point can be chosen to be simultaneously proper for all P ; but in general the
coordinates must be adjusted to accomodate different P .

For any abelian group Γ, let T (Γ) denote the torsion subgroup. A standard
application of reduction is to obtain information about T (E(K)). For example,
when E is defined over Z, we can reduce E mod p for various primes p to obtain
information about T (E(Q)).

Corollary 2.5.4 Let the elliptic curve E be defined over the Krull domain A
with quotient field K. Let S denote the set of minimal prime ideals P such that
vP (∆) = 0 and the torsion subgroups of the following two groups are finite: the

reduction Ẽ(kP ) mod P , and the first subgroup E1(K) in the P -adic filtration.
If S is not empty, then T (E(K)) is finite, and

|T (E(K))| divides gcd
P∈S

{|T (E1(K))||T (Ẽ(kP ))|}.

Proof. For each P such that vP (∆) = 0, the reduction homomorphism restricts

to T (E(K)) −→ T (Ẽ(kP )) with kernel T (E1(K)).
See §2.10.1 for examples.

2.5.3 Local expansions

Let E be an elliptic curve given by a nonsingular Weierstrass equation y2 +
a1xy+ · · ·−a6 = 0 over the field K and let P ∈ E(K). The place corresponding
to P has degree 1 (cf. §2.2.2), that is, if V is the valuation ring and z is a local
parameter, then the residue field V/V z is K. It follows that the completion of
V is the power series ring

V̂ = lim
←−

V/V zn = K[[z]],

and the completion of the function field L = K(x, y) at this place is the quotient

field Q(V̂ ) = K((z)), the field of formal Laurent series. A pertinent application
of Hensel’s lemma is the calculation of x and y as elements of this field.

The principal case is P = O, but let us first take a numerical example of a
P in the affine part of the plane.

On
E : y2 + xy = x3 + x2 + 4x+ 5, (A89)

P = (−5/4, 5/8) is a point of order 2 in E(Q). The corresponding valuation v
on Q(x, y) is ramified over Q(x), and a local parameter is

z = η = y +
a1x+ a3

2
= y +

x

2
.
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If we substitute x = 2(z− y), the Weierstrass equation becomes g(y) = 0 where

g(y) = (−5 − 8z − 4z2 − 8z3) + (8 + 10z + 24z2)y + (−5 − 24z)y2 + 8y3.

Since

v(g(5/8)) = v

(
−89

8
z + 11z2 − 8z3

)
= 1,

and v(g′(5/8)) = v

(
89

8
− 20z + 24z2

)
= 0,

we can start Hensel at y1 = 5/8. Using the big-O notation (A = B + O(zn)
means v(A −B) ≥ n),

y1 −
(
−89z/8 +O(z2)

)

89/8 +O(z)
= 5/8 + z +O(z2)

— since y = y1 +O(z), there is no point calculating to higher accuracy — and
we take y2 = 5/8 + z. We have y = y2 +O(z2).

The next step happens to involve no truncation:

y3 =
5

8
+ z − z2

89/8
=

5

8
+ z − 8

89
z2,

which is y +O(z4). One more iteration gives

y =
5

8
+ z − 8

89
z2 − 2105

893
z4 − 2153 · 37

895
z6 +O(z8),

“and so on”. Thus

x = 2z − 2y = −5

4
+

24

89
z2 +

2115

893
z4 +

2163 · 37

895
z6 +O(z8).

In the limit we get

(x, y) = (−5/4 + (16/89)z2 + · · · , 5/8 + z + · · ·)

which can now be regarded as a point in E (Q((z))) where z is a trancendental
over Q. With this altered perspective of z, the above point, whose coordinates
now have particular values in the extended ground field K ′ = Q((z)), is one of
the three points of intersection of E with the line x+2y = 2z in the affine plane
over K ′. Actually the other two points of intersection are defined only over the
quadratic extension K ′(

√
−1); we leave the investigation to the reader.

To describe the situation precisely, let L = K(x, y) denote the function
field of E (here K = Q), and let z be transcendental over K. The point
P = (−5/4, 5/8) ∈ E(K) has given rise first to the K-algebra embedding ρ

P
:

K(z) −→ L, defined by z 7→ y + x/2, which makes L into a K(z)-algebra, and



242 CHAPTER 2. FORMAL GROUPS

second to the K(z)-algebra embedding σ
P

: L −→ K((z)) defined by (x, y) 7→
(−5/4 + (16/89)z2 + · · · , 5/8 + z + · · ·). We have the following network of field
extensions:

K(x) K(y) K(z)

L

K((z))

K

�
�

��

�
�

�

�
�

�

@
@

@

@
@

@I2 3 ρ
P3

σ
P

The numbers are degrees: [L : K(x)] = 2, etc.

We now treat the point O on a general E. We choose the local parameter
z = −x/y with the minus sign to make certain formulas come out a little neater.
We apply a linear transformation to translate O to the origin. With the usual
projective coordinates (X,Y, Z), we have x = X/Z, y = Y/Z so that z = −X/Y .
The transformation in matrix notation is




1 0 0
0 0 1
0 −1 0






X
Y
Z


 =




X
Z

−Y


 .

If we define w = −1/y then the new affine coordinates are

z = −X/Y = −x/y and w = −Z/Y = −1/y.

Thus the (z, w)-coordinates of O are (0, 0), and the equation of E in the affine
z, w plane is

z3 + (−1 + a1z + a2z
2)w + (a3 + a4z)w

2 + a6w
3 = 0. (#)

If we regard the left side as a function of w, say f(w), then

f ′(w) = −1 + a1z + a2z
2 + 2(a3 + a4)w + 3a6w

2.

Since z is a local parameter,

v(f(z3)) = v(a1z
4 + · · ·) ≥ 4 and v(f ′(z3)) = v(−1 + · · ·) = 0.
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Thus Hensel can be implemented starting with w1 = z3. The convergence is
very rapid since w = w2 +O(z6), etc., and the result is

w = z3[1 +A1z +A2z
2 + · · ·]

where the first few coefficients are as follows.

i Ai

1 a1

2 a2
1 + a2

3 a3
1 + 2a1a2 + a3

4 a4
1 + 3a2

1a2 + 3a1a3 + a2
2 + a4

5 a5
1 + 4a3

1a2 + 6a2
1a3 + 3a1a

2
2 + 3a1a4 + 3a2a3

6 a6
1 + 5a4

1a2 + 10a3
1a3 + 6a2

1a
2
2 + 6a2

1a4 + 12a1a2a3

+a3
2 + 3a2a4 + 2a2

3 + a6

Since the series for f ′ begins with −1, therefore

Ai ∈ Z[a1, a2, a3, a4, a6], ∀i
where Z denotes Z mod char K.

To obtain the z-expansions of x and y we need to invert the series for w.
(Alternatively, we could have calculated the expansions of x and y directly,

without calculating w, in the following way. Extend the ground field to K((z)),
where z is transcendental over K, and intersect E with the line x = −yz. The
calculation is facilitated by introducing a parameter t and writing the line as
x = t/z2, y = −t/z3. Substituting these values into the Weierstrass equation
and multiplying by z6, the three points of intersection correspond to the roots
of the cubic g(t) = 0 where

g(t) = t3 + (−1 + a1z + a2z
2)t2 + (a3z

3 + a4z
4)t+ a6z

6.

Denoting the z-adic valuation by v, we have

v(f(1)) = v(a1z + a2z
2 + · · ·) ≥ 1,

v(f ′(1)) = v(1 + 2a1z + · · ·) = 0,

hence we can start Hensel at t1 = 1 with the result

t = 1 − a1z − a2z
2 − a3z

3 − (a4 + a1a3)z
4 + · · · +Biz

i + · · · .

However we will need the series for w when we construct the formal group Ê in
§2.5.2.)

The result is

w−1 = z−3[1 +B1z +B2z
2 + · · ·] where
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i Bi

1 −a1

2 −a2

3 −a3

4 −a4 − a1a3

5 −a1a4 − a2a3 − a2
1a3

6 −a6 − a2
1a4 − a2a4 − a2

3 − a3
1a3 − 2a1a2a3

7 −2a1a6 − 2a3a4 − 2a1a2a4 − a2
2a3 − a3

1a4 − 3a2
1a2a3 − 3a1a

2
3 − a4

1a3

Since the series for z−3w begins with 1, therefore all Bi ∈ Z[a1, . . . , a6].
For reference we put the final results in a proposition.

Proposition 2.5.5 Let y2 + a1xy + · · · − a6 = 0 define an elliptic curve. The
expansion at O of (x, y) in terms of the local parameter z = −x/y is

(x, y) = (t/z2,−t/z3), where

t = 1 − a1z − a2z
2 − a3z

3 − (a4 + a1a3)z
4 + · · · +Biz

i + · · · .
The coefficients Bi are in Z[a1, . . . , a6] and can be calculated by the method
described above using Hensel’s Lemma.

Note that the network of fields pictured above is valid if we define

ρ
P
(z) = −x/y, and σ

P
(x, y) = (t/z2,−t/z3).

2.6 Formal groups

Let A be a commutative ring and S and T independent transcendentals. A
power series F ∈ A[[S, T ]] is a commutative formal group if

FG1 F (S, T ) ≡ S + T mod deg 2,

FG2 F (F (R,S), T ) = F (R,F (S, T )) and

FG3 F (T, S) = F (S, T ).

Notice that the associative law implies F (S, 0) = S, i.e., there are no pure
powers in S beyond the first, and similarly F (0, T ) = T . For if k were minimal
such that Sk occurs with nonzero coefficient a, then F (S, 0) = F (S, F (0, 0)) =
F (F (S, 0), 0)) = F (S, 0) + aF (S, 0)k + · · · which is a contradiction. Thus a
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formal group, i.e., a power series satisfying FG1 and FG2, but not necessarily
FG3, has a power series expansion beginning

F = S + T + a11ST + a12ST
2 + a21S

2T + · · · .

It is a fact that the commutative law FG3, equivalently aij = aji ∀i, j is
“almost always” a consequence of the first two axioms: all formal groups over
A are commutative iff the ideal of nilpotent elements of A is torsion-free as an
additive group. In one direction the proof is easy: suppose A contains a torsion
nilpotent element a. By replacing a by an appropriate integer multiple of a
power of itself we can assume a 6= 0, a2 = 0, pa = 0 for a prime p. Then
F (S, T ) = S + T + aSpT is a noncommutative formal group. For the converse
see [Laz54], [Con66], [Hon68] and [Hon70]. Since the noncommutive case will
not play a role in our work we make the terminological convention

formal group means commutative formal group.

There is a unique series NF = NF (S) ∈ SA[[S]] satisfying

F (S,NF (S)) = 0.

We already observed this in §2.4.1 in the case when A is an integral domain
and actually the general case follows by writing A as the quotient of an integral
domain B. However it is simpler to substitute NF = b1S+ b2S

2 + · · · and solve
recursively for the bi. This negative series begins

NF = −S + a11S
2 − a2

11S
3 + (a3

11 + a11a12 + 2a13 − a22)S
4 + · · · .

Let F and G be formal groups over A. A morphism from F to G is a power
series f in one variable over A with 0 constant term such that

f(F (S, T )) = G(f(S), f(T )).

The set of morphisms from F to G is denoted hom(F,G), or when necessary,
homA(F,G). Occasionally we use the categorical notation f : F −→ G.

We now list a few “formalities”, leaving the easy details for the most part
to the reader.

• hom(F,G) is an abelian group: if e, f ∈ hom(F,G) their sum is defined by
(e+ f)(T ) = G(e(T ), f(T )). The 0 series is the group 0 and f(NF (T )) =
NG(f(T )) serves as −f . When checking the group axioms it is essential
that G be commutative, as it is in the case of ordinary groups. Note that
although we can identify hom(F,G) as a subset of the ring R = R(A), the
operation + is (usually) different.
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• If f ∈ hom(F,G) and g ∈ hom(G,H) then g◦f ∈ hom(F,H) and ◦ defines
a bilinear map

hom(F,G) × hom(G,H) −→ hom(F,H).

When we identify both hom(F,G) and hom(G,H) as subsets R, then the
above operation ◦ coincides with multiplication in the ring R. Hence
f ∈ hom(F,G) is an isomorphism iff f ∈ R∗, i.e., the coefficient of T is
in A∗, the inverse isomorphism then being the group inverse f (−1) ∈ R∗:

f (−1) ◦ f = [1]F , f ◦ f (−1) = [1]G.

• end(F ) = endA(F ) = hom(F, F ) is a ring (usually noncommutative) with
unit element represented by the power series T which we denote [1]; in
general for n ∈ Z we write [n] for n ∈ end(F ). Note that [−1] is the power
series NF . Formulas for the first half dozen terms in the series [n] are
given in §2.7. If f ∈ hom(F,G) then ∀n ∈ Z, f ◦ [n]F = [n]G ◦ f .

• If f = a1T + a2T
2 + · · · ∈ hom(F,G) define c(f) = a1. Then c :

hom(F,G) −→ A is an abelian group homomorphism and when F = G it
is a ring homomorhism. In particular, c([n]) = n for n ∈ Z, where Z is the
image of Z in A. Note that c(f) ∈ A∗ ⇔ f ∈ R∗ ⇔ f is an isomorphism.
A strict isomorphism is one with c(f) = 1.

For future reference we repeat:

Proposition 2.6.1 Let F be a formal group over the commutative ring
A and let n ∈ Z. Then c([n]) = n. Hence [n] is an automorphism of F iff
n ∈ A∗.

• If f ∈ hom(F,G) is an isomorphism then F = f (−1)(G(f(S), f(T )), so
F is uniquely determined by G, and of course conversely G is uniquely
determined by F since f (−1) ∈ hom(G,F ) is an isomorphism. We use the
notation F = Gf . Then if e ∈ hom(E,F ) is also an isomorphism we have

(Gf )e = Gf◦e.

Again for reference we put the essential facts in a

Proposition 2.6.2 Let F = F(A) denote the set of formal groups over
A, let F ∈ F and f ∈ R∗, and define

F f = f (−1) (F (f(S), f(T ))) .

Then F f ∈ F and f ∈ homA(F f , F ) is an isomorphism. Moreover, all
isomorphisms to F are obtained this way.
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If also g ∈ R∗ then (
F f
)g

= F f◦g.

Hence R∗ acts on F on the right, and the orbits are the A-isomorphism
classes in F .

• If φ : A −→ B is a homomorphism of commutative rings, in other words
B is an A-algebra, and F = S+T + a11ST + · · · is a formal group over A,
then φ∗F = S+T +φ(a11)ST + · · · is a formal group over B. If f = a1T +
a2T

2 + · · · ∈ homA(F,G), and we define φ∗f = φ(a1)T + φ∗(a2)T
2 + · · ·,

then φ∗f ∈ homB(φ∗F, φ∗G).

A case of importance for us will be the reduction map V −→ k of a
valuation ring to its residue field.

• If B is a commutative A-algebra and I is a topologically nilpotent ideal
in B (see §2.4.1), for example when B is a discrete valuation ring with
maximal ideal I, and assuming that B is I-adically complete (again see
§2.4.1 for the definition), then F induces an abelian group structure on I
by the convergent series

x+
F
y = F (x, y), −

F
x = NF (x).

We denote this group by F (I) to distinguish it from the usual abelian
group I given by the ring operations. Since In are (topologically) closed
subgroups, we have the subgroup filtration

F (I) ⊃ F (I2) ⊃ F (I3) ⊃ · · · .

Later (in Proposition 2.9.2) we will see circumstances in which the groups
F (In) and In are isomorphic. In any case, for n ≥ 1 the identity map

F (In)/F (In+1) −→ In/In+1

is a group isomorphism since for x, y ∈ In,

x+
F
y = F (x, y) = x+ y + a11xy + · · · ≡ x+ y mod I2n.

In the case where B is a complete discrete valuation ring, by one of the
remarks in §2.1, In/In+1 ≈ k+,and so in this case we have

F (In)/F (In+1) −̃→ k+.

We now restrict our attention to the case where B is a complete local ring
with maximal ideal I. (In the present context a local ring is understood
to be commutative.) Localness ensures that an element of B that is not
in I is invertible in B.
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Proposition 2.6.3 Let B be a complete local ring with maximal ideal I,
let F be a formal group over B and let p denote the characteristic of the
field B/I. Then

• if p = 0 then the abelian group F (I) is torsion free;

• if p > 0, in particular when char B = p > 0, then F (I) has no torsion
prime to p: if x ∈ I and [n]F (x) = 0 for some positive integer n, then
[pm]F (x) = 0 for sufficiently large m.

Proof. Suppose [n](x) = 0 where n is positive. In the case p > 0 we
can replace x by [pm](x) for sufficiently large m so that we can assume
gcd(n, p) = 1. We must prove that x = 0.

In both cases n /∈ I, hence n ∈ B∗. By the previous proposition, [n] is
an automorphism of F , hence induces an automorphism on F (I), and in
particular, the kernel is 0.

2.6.1 The additive and multiplicative formal groups

Our first two examples of formal groups are the polynomials

A = S + T, M = S + T + ST = (1 + S)(1 + T ) − 1

which are called, respectively, the additive and the multiplicative formal
group. Alternative notation is Ga and Gm. These are defined over any commu-
tative ring A, and we write AA, MA when necessary. An easy induction gives
∀n ∈ Z

[n]A(T ) = nT, [n]M(T ) = (1 + T )n − 1

(the latter being expanded as a series as usual when n < 0).
Taking A = Z and B = lim←B/In a complete ring as described in the

previous section, for n ≥ 1 we can identify the group A(In) with the additive
group In, and the group M(In) with the multiplicative group 1 + I = {1 + i :
i ∈ I}. With these identifications we have exact sequences of abelian groups:

0 −→ A(I) −→ B −→ B/I −→ 0,

1 −→ M(I) −→ B∗ −→ (B/I)∗ −→ 1.

Also from the discussion in the previous section,

1 + i+ In+1 7−→ i+ In+1, i ∈ In

induces an isomorphism

M(In)/M(In+1) = 1 + In/1 + In+1 −→ In/In+1.
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By Proposition 2.6.2, the construction

Af = f (−1)(f(S) + f(T )), f ∈ R∗(A)

yields all formal groups isomorphic to AA; e.g. when f is the unit element T of
R∗ we get A itself. We will see in §2.7 that when A is a Q-algebra then every
formal groups is of the form Af , i.e., every formal group is isomorphic over A
with A. For example M = AlogM where

logM = (formal)

∫
1

1 + T
dT =

∞∑

n=1

(−1)n−1T n/n.

(The subscript M notation will be explained in §2.9.1.) To verify this state-

ment we need to calculate log
(−1)

M , which we denote expM. We claim that (cf.

Proposition 2.3.3)

expM =
∞∑

n=1

T n/n!.

Now when A = C, the complex field, we have

logM = log(1 + T ), expM = eT − 1, hence

logM ◦ expM = T = expM ◦ logM .

Either of the latter equations implies the other since R(C) is a group. They are
true in Q[[T ]] and therefore also in A⊗Z Q[[T ]] = A[[T ]]. In the same way,

expM(logM(S) + logM(T )) = elog(1+S)+log(1+T ) − 1 = S + T + ST

is true in C[[S, T ]], hence in Q[[S, T ]], hence in A[[S, T ]]. Thus when A is a
Q-algebra and f = logM, then Af = M.

In contrast, we note

Proposition 2.6.4 When A is a commutative ring of prime characteristic p,
then

homA(M,A) = 0.

In particular, A and M are not isomorphic.

Proof. Since [p]A = pT = 0 and [p]M = (1 + T )p − 1 = T p, if f ∈ hom(M,A)
then [p]A ◦ f = f ◦ [p]M is 0 = f(T p), hence f = 0.

Corollary 2.6.5 If V is a discrete valuation ring of residue characteristic p > 0,
then

homV (M,A) = 0.



250 CHAPTER 2. FORMAL GROUPS

Proof. Suppose f ∈ homV (M,A) and f 6= 0, hence charV = 0 by the propo-
sition. Let π denote a uniformizer and φ : V −→ k the reduction map to
the residue field. Then for appropriate n ≥ 0, we have π−nf ∈ V [[T ]] and
φ∗(π

−nf) 6= 0. From f(S + T + ST ) = f(S) + f(T ) we deduce

π−nf(S + T + ST ) = π−nf(S) + π−nf(T ),

hence π−nf ∈ homV (M,A), and therefore φ∗(π
−nf) is a nonzero element in

homk(M,A). This contradicts the proposition.

The story for hom(A,M) is more complicated, as the following three exam-
ples indicate.

(i) If charA = p is prime and the ring endomorphism a 7→ ap of A has
0 kernel, then

homA(A,M) = 0.

For in these circumstances, [p]M ◦ f = f ◦ [p]A =⇒ (f(T ))p = 0 =⇒ f(T ) = 0.
(ii) If charA = 2 and A contains an element ε such that ε2 = 0, then

εT ∈ hom(A,M).
(iii) When A = Zp, the above corollary implies that homZp

(A,M) does not

contain an isomorphism. (Note logM is only in homQ
p

because of denomina-

tors.) But homZp
(A,M) 6= 0, containing for example

expM ◦[p]A = pT + p2T 2/2! + · · · + pnT n/n! + · · · .

In fact vp(p
n/n!) > 0 for n > 0, as follows from the

Lemma 2.6.6 Let n be a positive integer, let its standard p-adic expansion be
a0 + a1p+ · · · + aNp

N where ai ∈ {0, . . . , p− 1}, and put a =
∑N

i=0 ai. Then

vp(n!) =
n− a

p− 1
.

Proof. The integral part or floor of a real number x is the largest integer ≤ x,
and is denoted bxc. (I believe this notation of D. Knuth is becoming standard,
replacing the older [x]. While we’re at it: the ceiling of x is dxe = −b−xc =
the smallest integer ≥ x.)

vp(n!) =
∑

i≥1

bn/pic =
∑

i≥1

(ai + ai+1p+ · · ·)

=
∑

i≥1

ai(1 + p+ · · · + pi−1) =
∑

i≥1

ai
pi − 1

p− 1

=
∑

i≥0

ai
pi − 1

p− 1
since a00 = 0

= (n− a)/(p− 1)
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2.6.2 The formal group of an elliptic curve

Let E be an elliptic curve given by a nonsingular Weierstrass equation with
coefficients a1, . . . , a6 in the integral domain A. We associate to E a formal
group Ê over A, defined as follows. Let K be the quotient field of A and for
i = 1, 2 let

(xi, yi) = (zi/wi,−1/wi) = (ti/z
2
i ,−ti/z3

i )

be independent generic points as constructed in §2.5.3, independent meaning
that the transcendentals zi are independent. The definition is simply

Ê = z3 = −x3/y3 where (x1, y1) + (x2, y2) = (x3, y3),

and + stands for addition of points on E. However there are a few details to be
clarified.

For i = 1, 2 let Ki = K((zi)). First, the addition is taking place in E(M)
where M is the smallest field containing both K1 and K2, namely the quotient
field of the integral domain K1 ⊗K K2. This domain can be identified with
S−1B where B = K[[z1, z2]] and S = {zi

1z
j
2 : i ≥ 0, j ≥ 0}; thus M is more

easily described as the quotient field of B. (There is no need to go to either of
the larger fields K12 = K((z1))((z2)), K21 = K((z2))((z1)). Incidentally, do the
images of these two fields in K12 ⊗M K21 coincide?)

Secondly, we wish to express Ê as a power series in B. If one takes the
formulas for x3 and y3 from Proposition 1.4.1 and substitutes xi = ti/z

2
i , yi =

−xi/zi and ti = 1−a1zi−a2z
2
i −· · · for i = 1, 2, (with the ti truncated for some

desired degree of accuracy), one obtains a complicated and quite unmanageable
expression.

A better way is to work in the z, w-plane. The line joining (z1, w1) and
(z2, w2) is w = λz + ν where, in the notation of §2.5.3,

λ =
w2 − w1

z2 − z1
=

∞∑

n=3

An−3
zn
2 − zn

1

z2 − z1

and ν = w1−λz1. We noted in §2.5.3 that all the An are in the ring Z[a1, . . . , a6] =
R, say, and it follows that λ and ν are in the ring R[[z1, z2]]. Since the trans-
formation from x, y to z, w coordinates is linear, therefore the third point of
intersection of this line with E is −(z3, w3); let us denote the coordinates of this
point (z4, w4). Using the equation labelled (#) in §2.5.3, we see that z1, z2 and
z4 are the three roots of the cubic

z3 + (−1 + a1z + a2z
2)(λz + ν) + (a3 + a4z)(λz + ν)2 + a6(λz + ν)3.

Collecting terms and using the fact that the sum of the roots of a monic poly-
nomial is minus the second coefficient, we obtain

z4 = −z1 − z2 −
a1λ+ a2ν + a3λ

2 + 2a4λν + 3a6λ
2ν

1 + a2λ+ a4λ2 + a6λ3
.
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Since the constant terms of λ and ν are 0, therefore z4 ∈ R[[z1, z2]]. Finally,
since (z3, w3) = −(z4, w4) we have

z3 = −x3

y3
=

x4

y4 + a1x4 + a3
=

−z4
1 − a1z4 − a3w4

= −z4
(
1 − a1z4 − a3z

3
4 [1 + A1z4 + · · ·]

)−1
,

using the z-expansion for w obtained in §2.5.3. Clearly this is also in R[[z1, z2]].
The final result is

Ê = z1 + z2 − a1z1z2 − a2(z1z
2
2 + z2

1z2) + · · ·

where the general terms in the series are aij(z
i
1z

j
2 + zj

1z
i
2) for i < j, and aiiz

i
1z

i
2.

a11 −a1

a12 −a2

a13 −2a3

a22 −3a3 + a1a2

a14 −2a4 − 2a1a3

a23 −4a4 − a1a3 + a2
2

a15 −2a2
1a3 − 2a1a4 − 2a2a3

a24 −a2
1a3 − a1a4

a33 −a2
1a3 − a1a

2
2 + 2a2a3

a16 −3a6 − 2a2
3 − 2a3

1a3 − 2a2
1a4 − 2a2a4 − 4a1a2a3

a25 −9a6 − a3
1a3 − a2

1a4 − a1a2a3

a34 −15a6 − a3
2 + 4a2

3 − a2
1a4 − a3

1a3 + 4a2a4 − 2a1a2a3

A better way, and probably the best way, to calculate these coefficients is to
use the formal logarithm; this will be explained in §2.7.

We have taken the table far enough to see that distinct E give distinct Ê,
that is, we can recover the Weierstrass coefficients a1, . . . , a6 from the coefficients
aij — with the following exceptions:

• a6 remains indeterminate in characteristic 3;

• a4 remains indeterminate in characteristic 2 when j = 0.

The proof of Proposition 2.1.6 can now be completed.
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Proposition 2.6.7 Let E be an elliptic curve defined over the discrete valuation
ring V with quotient field K, let M denote the maximal ideal of the completion
V̂ , let k denote the residue field and k+ the additive group of k. Then for m ≥ 1

(i) Em(K) is a subgroup of E(K) and O 7→ 0 and P = (x, y) 7→ −x/y for
P 6= O define an injective group homomorphism

Em(K) −→ Ê(Mm) ;

this is an isomorphism when K is complete;
(ii) there is an exact sequence of group homomorphisms

0 −→ Em+1(K) −→ Em(K) −→ k+ ;

the map on the right is surjective when K is complete.

Proof. (i) If K̂ denotes the v-adic completion of K, then

Em(K) = Em(K̂) ∩ E(K), m ≥ 1, ¶

and therefore to prove that Em(K) is a subgroup of E(K), it is sufficient to

prove that Em(K̂) is a subgroup of E(K̂).

Now the map Em(K̂) −→Mm defined by O 7→ 0 and P = (x, y) 7→ −x/y for
P 6= O has the inverse 0 7→ O and for z 6= 0, z 7→ (t/z2,−t/z3) in the notation
of Proposition 2.5.5; for v(z) = m > 0 and therefore the series converges to an

element t ∈ K̂ with v(t) = 0. Thus these maps are bijections. Moreover, when

we give the set Mn the group structure Ê(Mn), the inverse map is a group

homomorphism by construction of Ê, and (i) is proved.
(ii) Combining remarks from §2.1 and §2.5, we have group isomorphisms

Em(K̂)/Em+1(K̂) ≈ Ê(Mm)/Ê(Mm+1) ≈Mm/Mm+1 ≈ k+, m ≥ 1.

By ¶ we can regard Em(K)/Em+1(K) as a subgroup of the group on the left,
and (ii) follows.

2.7 The invariant differential of a formal group

Let A be a commutative ring. Recall from [BA3] that the A-linear derivations
are of the form

α
d

dT
, α ∈ A[[T ]],

and so comprise a free A[[T ]]-module of rank 1; and the dual module of A-linear
differentials are of the form

α dT, α ∈ A[[T ]],



254 CHAPTER 2. FORMAL GROUPS

and so also comprise a free A[[T ]]-module of rank 1, which we denote D =
D(A, T ). A member (a0 + a1T + · · ·) dT ∈ D is a normalized differential if
a0 = 1.

Let us now specialize to the case A = R[[S]] where R is an integral domain
and P is the prime ideal SA in A. As we saw in Proposition 2.4.5, D is an
R ∗P -module with the definition

(α dT )ρ = (α ◦ ρ)ρ′ dT.

Since (aα dT )ρ = a(αdT )ρ for all a ∈ A, we can regard D as an A–Z[R ∗
P ]

bimodule.
Let F = F (S, T ) = S + T + a11ST + · · · be a formal group over R and let

F1(S, T ) (resp. F2(S, T )) denote the partial derivative of F (S, T ) with respect
to S (resp. T ):

F1(S, T ) = 1 + a11T + a12(2ST + T 2) + · · · ,

F2(S, T ) = 1 + a11S + a12(S
2 + 2ST ) + · · · .

Note that
F ∈ R ∗

P .

Proposition 2.7.1 There is a unique differential αdT ∈ D satisfying the three
conditions

(i) ∂α/∂S = 0, that is, α ∈ R[[T ]]; we write α = α(T );
(ii) αdT is normalized, i.e., α(0) = 1; and
(iii) αF = α.

It is given by the formula

α =
1

F1(0, T )

=
1

1 + a11T + a12T 2 + · · ·
= 1 − a11T + (a2

11 − a12)T
2 − (a3

11 − 2a11a12 + a13)T
3 + · · · .

Remarks. See the table below for more terms in the series. The differential
described in the proposition is the normalized invariant differential of the
formal group F and will be denoted ωF . The simplest examples are

for A = S + T, F1(0, T ) = 1 and ωF = dT ;

for M = S + T + ST, F1(0, T ) = 1 + T and ωF = (1 + T )−1dT.

Condition (i) cannot be dropped, at least when char R > 0. Here is an
example in characteristic 2 of a normalized A-invariant differential that is not
free of S:

(1 + ST + T 2) dT.
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Proof. A differential α(T ) dT satisfying condition (i) also satisfies (iii) iff

α(F (S, T ))F2(S, T ) = α(T ). (†)

Let us first prove that this is true for α = 1/F1(0, T ), i.e.,

F1(0, T )F2(S, T ) = F1(0, F (S, T )). (††)

By FG2 and FG3 we have the identity

F (S, F (U, T )) = F (U,F (S, T )).

Differentiating this with respect to U and then setting U = 0 results in the
required identity (††).

Secondly, suppose αdT satisfies (iii) and (†). Substituting T = 0 in (†) gives
the identity

α(S)F2(S, 0) = α(0).

Replacing S by T , we see that α(T ) is uniquely determined by α(0), and in
particular, there is just one such α that is normalized.

Here is a table of more terms in the series ωF = 1 +α1T +α2T
2 + · · ·; since

F1(0, T ) has the simple form 1 +
∑
a1iT

i, this is just the “generic inverse”.

i αi where ωF = (1 + α1T + α2T
2 + · · ·)dT

1 −a11

2 a2
11 − a12

3 2a11a12 − a13 − a3
11

4 a2
12 − 3a12a

2
11 + 2a11a13 − a14 + a4

11

5 −3a11a
2
12 + 2a12a13 + 4a12a

3
11 − 3a13a

2
11 + 2a11a14 − a15 − a5

11

6 −6a13a11a12 + a2
13 + 4a13a

3
11 + 2a14a12 − 3a14a

2
11 − a16 + 2a11a15

−a3
12 + 6a2

12a
2
11 − 5a12a

4
11 + a6

11

7 2a11a16 − a7
11 − a17 − 6a14a11a12 + 12a13a12a

2
11 + 2a14a13 + 4a14a

3
11

+2a15a12 − 3a15a
2
11 − 3a13a

2
12 − 3a11a

2
13 − 5a13a

4
11

+4a11a
3
12 − 10a2

12a
3
11 + 6a12a

5
11

Corollary 2.7.2 Let F and G be formal groups over R, with invariant differ-
entials ωF = αF (T ) dT and ωG = αG(T ) dT , and let f(T ) ∈ hom(F,G). Then

ωf
G = f ′(0)ωF , i.e. (αG ◦ f) · f ′ = f ′(0)αF .
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Proof. Differentiate

f(F (S, T )) = G(f(S), f(T ))

with respect to S, and then set S = 0:

f ′(T )F1(0, T ) = G1(0, f(T ))f ′(0).

Since αF = 1/F1(0, T ) and αG = 1/G1(0, T ), the result follows.

Corollary 2.7.3 Let F be a formal group over R and n an integer. Then the
derivative [n]′ ∈ nR[[T ]]. Thus when p is a prime number,

[p](T ) = pλp(T ) + µp(T
p) and [−p](T ) = pλ−p(T ) + µ−p(T

p)

for certain λp, µp, λ−p, µ−p ∈ TR[[T ]].

Proof. By straightforward induction starting with [1] = T we have

[n] ≡ nT mod T 2 ∀n ∈ Z. (¶)

Hence [n]′(0) = n, and with ωF = αdT , F = G and f = [n], the previous
corollary implies

α([n](T )) · [n]′ = nα(T ).

Since α(0) = 1, therefore α ∈ R[[T ]]∗ and [n]′ ∈ nR[[T ]].
For a general formal group F = S + T + a11ST + · · · defined over R, using

(¶), let

[n](T ) = nT +M2(n)T 2 +M3(n)T 3 + · · · .

The quantities M2,M3, . . . can be determined recursively as functions of n and
the coefficients of F by repeated application of

[n+ 1](T ) = F ([n](T ), T ).

For example, the first step gives

[n+1] = F (nT+M2(n)T 2+· · · , T ) = nT+M2(n)T 2+· · ·+T+a11(nT
2+· · ·)+· · ·

hence

M2(n) + a11n = M2(n+ 1).

Since M2(1) = 0, it follows that

M2(n) = (n− 1)na11/2 =

(
n
2

)
a11.

The computer assures us that the results of the next few steps are as follows.
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n Mn where [n]F = nT +M2T
2 +M3T

3 + · · ·

2

(
n
2

)
a11

3

(
n
3

)
a2
11 + 2

(
n+ 1

3

)
a12

4

(
n
4

)
a3
11 +

(
n
3

)
(2n+ 1)a11a12

+ 1
6

(
n
2

) {
3(n2 − n+ 2)a13 + 2(2n− 1)a22

}

5

(
n
5

)
a4
11 + 2

5

(
n+ 1

4

)
(8n+ 1)a2

12

+ 1
10

(
n+ 1

3

) {
2(6n2 − 15n+ 16)a14 + 5(3n− 2)a23

}

+ 1
20

(
n
3

) {
20(2n− 1)a11a22 + 3(14n2 − 13n+ 13)a11a13

+2(11n2 − 27n− 8)a2
11a12

}

6

(
n
6

)
a5
11 + 1

15

(
n
4

)
(26n2 − 75n− 11)a3

11a12

+ 1
60

(
n
3

) {
6(22n3 − 30n2 + n+ 23)a11a14 + 3(32n3 − 105n2 + 81n− 42)a2

11a13

+3(2n− 1)(11n− 29)a2
11a22 + 6(15n3 − 9n2 + 8n+ 12)a12a13

+(68n3 − 138n2 − 125n+ 21)a11a
2
12 + 12(8n2 − n− 4)a12a22

+3(42n2 + n− 21)a11a23

}
+

(
n
2

)2

a33

+ 1
30

(
n
2

) {
5(2n4 − 4n3 + n2 + n+ 6)a15 + 2(2n− 1)(3n2 − 3n+ 4)a24

}

Substituting n = −1 in the first few Mi confirms our earlier formula

[−1] = −T + a11T
2 − a2

11T
3 +

(
a3
11 + a11a12 + 2a13 − a22

)
T 4 + · · · .

Similarly,

[2] = 2T + a11T
2 + 2a12T

3 + (2a13 + a22)T
4 + (2a14 + 2a23)T

5

+(2a15 + 2a24 + a33)T
6 + · · · ,

and so on.
The above corollary implies that the derivative

[n]′ = n+ 2M2T + 3M3T
2 + · · · ∈ nR[[T ]], ∀n ∈ Z.
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Hence for i = 2, 3, . . . and all n ∈ Z,

iMi(n) ≡ 0 mod n (i.e., mod nR).

These requirements, which are ultimately a consequence of the associative law
FG2, produce a sequence of nontrivial conditions:

i = 4, n = 3 : a11a12 − a22 ≡ 0 mod 3,

i = 5, n = 3 : a14 + a23 − a2
12 − a11(a11a12 − a22) ≡ 0 mod 3,

i = 5, n = 4 : 2a23 + a11a13 + 2a2
12 ≡ 0 mod 4,

etc.

2.7.1 The elliptic curve case

Let E be an elliptic curve defined over the field K (of any characteristic), and

assume all the relevant notation involved in Ê(z1, z2) = z3 as defined in §2.6.2.
To streamline the notation for the next proposition, let us replace x2, y2, z2 by
x, y, z respectively, where x = −yz. Thus z1 and z play the roles of S and T of
the previous section.

Proposition 2.7.4 The normalized invariant differential of Ê is

dx

2y + a1x+ a3
=

dy

3x2 + 2a2x+ a4 − a1y
.

Remark. To have ω
Ê

in the format αdz it is necessary to replace the numer-

ators in these fractions by (dx/dz)dz and (dy/dz)dz respectively.
Proof. Differentiate the two equations

x+ yz = 0, (1)

y2 + a1xy + a3y − x3 − a2x
2 − a4xa − 6 = 0 (2)

with respect to z (prime denotes derivative with respect to z), using z = −x/y
to obtain

yx′ − xy′ = −y2, (1′)

(a1y − 3x2 − 2a2x− a4)x
′ + (2y + a1x+ a3)y

′ = 0. (2′)

(2′) establishes the equality of the two forms in the proposition. Solving the
system (1′), (2′) we find

dx/dz

2y + a1x+ a3
=

y2

a3 + x3 − a4x− 2a6
.

By Proposition 2.7.1 we wish to show that

Ê1(0, z) =
a3y + x3 − a4x− 2a6

y2
. (3)
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The left side of this equation, where z3 = −x3/y3 and x3, y3 are given by the
formulas of Proposition 1.71 (with x2 = x and y2 = y), is the value when z1 = 0
of

∂z3
∂z1

=
∂

∂z1
(−x3/y3) = −y−1

3

∂x3

∂z1
+ x3y

−2
3

∂y3
∂z1

.

Noting that x3 = x2 and y3 = y2 when z1 = 0, and substituting x1 = t1/z
2
1 and

y1 = −t1/z3
1 where t1 = 1 − a1z1 − · · · as in §2.5.3, the computer finds that

∂x3

∂z1

)

z1=0

= 2y2 + a1x2 + a3.

It follows by (2′) that

∂y3
∂z1

)

z1=0

= 3x2
2 + 2a2x2 + a4 − a1y2,

and equation (3) now follows.

We specialize the tables of the previous section to obtain ω
Ê

and [n]
Ê

by

substituting a11 = −a1, etc. as in the table in §2.6.2, and writing z for T ;
alternatively, the αi can be calculated directly using the above proposition with
x = t/z2, y = −t/z3 and the series for t determined in §2.5.3

i αi where ω
Ê

= (1 +
∑

∞

i=1 αiz
i) dz

1 a1

2 a2 + a2
1

3 2a1a2 + 2a3 + a3
1

4 a2
2 + 3a2

1a2 + 6a1a3 + 2a4 + a4
1

5 3a1a
2
2 + 6a2a3 + 4a3

1a2 + 12a2
1a3 + 6a1a4 + a5

1

6 24a1a2a3 + 6a2
3 + 20a3

1a3 + 6a2a4 + 12a2
1a4 + 3a6 + a3

2

+6a2
1a

2
2 + 5a4

1a2 + a6
1

7 60a2
1a2a3 + 24a1a2a4 + 12a1a6 + 30a1a

2
3 + 4a1a

3
2 + 30a4

1a3

+20a3
1a4 + 10a3

1a
2
2 + 6a5

1a2 + 12a2
2a3 + 12a3a4 + a7

1
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n Mn where [n]
Ê

= nz +
∑

n≥2Mnz
n

2 −
(
n
2

)
a1

3

(
n
3

)
(a2

1 − 2a2)

4 −
(
n
4

)
a3
1 +

(
n+ 1

3

)
(2n− 3)a1a2 −

(
n
2

)
(n2 + n+ 1)a3

5

(
n
5

)
a4
1 − 2

5

(
n+ 1

4

)
(11n− 18)a2

1a2 + 1
5 + 2

5

(
n+ 1

3

) {
(2n2 − 3)a2

2 − 6(n2 + 1)a4

}

+ 1
5

(
n
2

)
(3n3 − 7n2 − 7n− 12)a1a3

6 −
(
n
6

)
a5
1 + 1

15

(
n+ 1

4

)
(2n− 5)(13n− 24)a3

1a2

+ 1
15

(
n+ 1

3

) {
18(2n− 5)(n2 + 1)a1a4 − (17n3 − 30n2 − 23n+ 45)a1a

2
2

}

+ 1
30

(
n
2

) {
10(n4 + n3 − 3n2 − 6n− 6)a2a3

−(8n4 − 37n3 + 48n2 + 33n+ 120)a3
1a3

}

Of course now the congruences iMi(n) ≡ 0 mod n are automatically satisfied
since the Weierstrass coefficients can be chosen arbitrarily.

Again one can assign any integer value to n, e.g.,

[−1] = −z − a1z
2 − a2

1z
3 − (a3

1 + a3)z
4 − (a4

1 + 3a1a3)z
5

−(a5
1 + 6a2

1a3 + a2a3)z
6 + · · · .

We tabulate a few more cases where ±n is a prime number (cf. the λ, µ notation
of Corollary 2.7.3):

[2] = 2
{
z − a2z

3 − (6a4 + 3a1a3 − a2
2)z

5 + · · ·
}

+
{
−a1z

2 + (a1a2 − 7a3)z
4 + (−6a1a4 − 2a2a3 − 7a2

1a3 − a1a
2
2)z

6 + · · ·
}

[3] = 3
{
z − a1z

2 + (4a1a2 − 13a3)z
4 − (32a4 + 3a1a3 − 8a2

2 + 2a2a
2
1)z

5 + · · ·
}

+
{
(a2

1 − 8a2)z
3 + (48a1a4 + 57a2a3 − 30a2

1a3 − 44a1a
2
2 + a2a

3
1)z

6 + · · ·
}

[5] = 5
{
z − 2a1z

2 + 2(a2
1 − 4a2)z

3 − (62a3 + a3
1 − 28a1a2)z

4

+ (41a2a
3
1 + 624a1a4 + 426a2a3 − 124a2

1a3 − 348a1a
2
2)z

6 + · · ·
}

+
{
(−1248a4 + 306a1a3 + 376a2

2 + a4
1 − 222a2a

2
1)z

5 + · · ·
}
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[−2] = (−2)
{
z + (2a2

1 − a2)z
3 + (3a4

1 − 8a2a
2
1 + 15a1a3 + a2

2 − 6a4)z
5 · · ·

}

+
{
−3a1z

2 + (−5a3
1 + 7a1a2 − 9a3)z

4

+ (−7a5
1 + 30a2a

3
1 − 67a2

1a3 − 11a1a
2
2 + 54a1a4 + 2a2a3)z

6 + · · ·
}

[−3] = (−3)
{
z + 2a1z

2 + (5a3
1 − 12a1a2 + 14a3)z

4

+ (7a4
1 − 34a2a

2
1 + 54a1a3 + 8a2

2 − 32a4)z
5 + · · ·

}

+
{
(8a2 − 10a2

1)z
3

+ (−28a5
1 + 231a2a

3
1 − 420a2

1a3 − 164a1a
2
2 + 528a1a4 + 78a2a3)z

6 + · · ·
}

2.8 Formal groups in characteristic p

Let A be a commutative ring of characteristic p where p is a prime number,
and let f : F −→ G be a formal group morphism defined over A. If f 6= 0 the
height of f is the largest integer h ≥ 0 such that

f(T ) = f1(T
ph

)

for some f1 ∈ A[[T ]]. The notation used is ht(f) = h. It is convenient to assign
ht(0) = ∞. The height of a formal group F is defined to be ht(F ) =ht([p]F ).
Since p = 0 in A, by Corollary 2.7.3 we have ht(F ) ≥ 1. Here are two examples:

[p]A = pT = 0, hence ht(A) = ∞;

[p]M = (T + 1)p − 1 = T p, hence ht(M) = 1.

Let h = ht(f) and f(T ) = f1(T
ph

). Since the derivative

f ′(T ) = phT ph
−1f ′

1(T
ph

),

therefore h > 0 iff f ′(T ) = 0. Of course the latter implies that f ′(0) = 0. What
is not immediately obvious is that the converse is true:

Proposition 2.8.1 Let f : F −→ G be a nonzero morphism of formal groups
defined over A where charA = p is a prime number. Let h =ht(f) and f(T ) =

f1(T
ph

).
(a) ht(f) > 0 iff f ′(0) = 0.
(b) f ′

1(0) 6= 0.
(c) Assume for this part that A is an integral domain. If g : G −→ H is also

a morphism defined over A then

ht(g ◦ f) = ht(f) + ht(g).
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Proof. (a) If f ′(0) = 0 then by Corollary 2.7.2

(αG ◦ f)f ′ = (1 + · · ·)f ′(T ) = 0,

hence f ′(T ) = 0.
(b) We deduce (b) from (a) by showing that f1 is a morphism of height 0.

Let q = ph and define

F1 = F q =
(∑

aijS
iT j

)q

=
∑

aq
ijS

qiT qj.

F1 can be regarded as a series in the two variables S1 = Sq, T1 = T q, and
clearly F1(S1, T1) is a formal group — in the axioms FG1–FG3 for F , raise the
equations to the power q. Moreover, f1 ∈ homA(F1, G) as we now verify:

f1(F1(S1, T1)) = f1(F (S, T )q)

= f(F (S, T ))

= G(f(S), f(T ))

= G(f1(S
q), f1(T

q))

= G(f1(S1), f1(T1)).

If k =ht(f1) and f1(T ) = f2(T
pk

) then f(T ) = f2(T
ph+k

). Thus k = 0 since h
is maximal.

(c) By (b) we have f1(T ) = aT + · · · where a 6= 0, and similarly g1(T ) =
bT + · · · where b 6= 0 and g(T ) = g1(T

pm

) where m =ht(g). Now

(g ◦ f)(T ) = g1

((
f1

(
T ph

))pm)
= abT ph+m

+ · · ·

is of the form s
(
T ph+m

)
where s(T ) ∈ A[[T ]] and s′(0) = ab 6= 0. Hence

ht(g ◦ f) = h+m.
We will take up this topic again in Chapter 6 where we will prove the follow-

ing. Let E be an elliptic curve defined over an integral domain of characteristic
p > 0. Then ht(Ê) = 1 or 2:

• if E is ordinary then ht(Ê) = 1;

• if E is supersingular then ht(Ê) = 2.

For example in characteristic 2, from the previous section we have

[2] = a1T
2 + (a1a2 + a3)T

4 + a1(a1a3 + a2
2)T

6 + · · · .

Recall that E is ordinary (resp. supersingular) when a1 6= 0 (resp. a1 = 0 and
then a3 6= 0 in order that ∆ 6= 0).
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2.9 Formal groups in characteristic 0

2.9.1 The formal logarithm

Recall from §2.3 that when the commutative ring A is flat we can regard it as
a subring of AQ = A⊗Z Q.

Let A be flat and let F be a formal group over A with differential

ωF =
1

F1(0, T )
dT = (1 − a11T + · · ·)dT.

The formal logarithm of F is the formal antiderivative

logF (T ) =

∫
ωF = T − a11

2
T 2 +

a2
11 − a12

3
T 3 · · · ∈ AQ[[T ]] .

Note that logF is usually not in A[[T ]]. The formal exponential, denoted
expF , is defined to be the reverse series in R∗1(AQ, T ); by Proposition 2.3.3 it

has the form

expF = log
(−1)
F =

∑

n≥1

bn
n!
T n, bn ∈ A.

Using the “generic reversion” formula of §2.3 (or more easily by using Maple
or Mathematica on the computer) we find that the first few values of bn are as
follows. (The coefficients αn−1/n in logF are immediately obtained from the
tables of α’s given in §§2.6–2.6.1.)

n bn where expF =
∑∞

n=1(bn/n!)T n

1 1

2 a11

3 a2
11 + 2a12

4 a3
11 + 8a11a12 + 6a13

5 a4
11 + 22a2

11a12 + 42a11a13 + 16a2
12 + 24a14

6 a5
11 + 52a3

11a12 + 192a2
11a13 + 136a11a

2
12

+264a11a14 + 180a12a13 + 120a15

We already mentioned the explicit examples logM and expM in §2.6.1.

Proposition 2.9.1 Let A be flat and F a formal group over A. Let A = S+T
denote the additive formal group as usual. Then

logF : F −→ A, expF : A −→ F
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are strict isomorphisms, inverse to each other, defined over AQ.

Hence over a Q-algebra, all formal groups are strictly isomorphic, all being
strictly isomorphic to the additive formal group;† in other words, the set of all
formal groups is {

f (−1) (f(S) + f(T )) : f ∈ R∗
}
.

Proof. Let ωF = α dT . By Proposition 2.7.1,

(α(F (S, T ))
∂F (S, T )

∂T
dT = α(T ) dT.

Formal integration gives

logF F (S, T ) = logF (T ) + C(S)

where C(S) ∈ AQ[[S]] is a “constant of integration”. Substituting T = 0 shows

that C(S) = logF (S), hence logF ∈ homAQ
(F,A). Since c(logF ) = 1, in the

notation of §2.6, log is a strict isomorphism, and its inverse is expF by definition.

For an elliptic curve E, the beginning of the series for exp
Ê

can be obtained

by substituting a11 = −a1, etc in expF , or by calculating log
Ê

(−1) directly.
Then

Ê = exp
Ê

(
log
Ê

(S) + log
Ê

(T )
)
,

which is probably the most efficient way of calculating the series Ê.

2.9.2 Formal groups over discrete valuation rings

Recall that an element z in an abelian group is a torsion element if [n]z = 0
for some positive integer n; then the smallest such n is the order of z. Thus 0
is a torsion element of order 1. The torsion elements form a subgroup.

Proposition 2.9.2 Let V be a complete discrete valuation ring of characteris-
tic 0, with residue field k of characteristic p ≥ 0, and let M denote its maximal
ideal. Let F be a formal group defined over V , and let T denote the torsion
subgroup of F (M).

(a) Suppose p > 0. Then

• T is a finite p-group of order

|T | ≤ p

p− 1
v(p);

†This does not mean that all formal groups over Q, for example, are “the same”. This
point will be made forcibly when we discuss the Atkin, Swinnerton-Dyer congruences in a
later chapter.
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• if z ∈ T then
v([p]z) ≥ pv(z);

for nontorsion elements we have only

v([p]z) ≥ min{v(p) + v(z), pv(z)};

• if z is a nonzero element of T , say the order of z is pn, then

v(z) ≤ v(p)

pn − pn−1
.

(b) logF induces a group homomorphism

F (M) −→ K+

into the additive group of K; the kernel contains T .
(c) Define

n0 =

{
0 if p = 0,
v(p)/(p− 1) if p > 0.

Then for n > n0, logF induces a group isomorphism

F (Mn) −→ Mn,

addition in the latter group being ordinary ring addition. The inverse isomor-
phism is induced by expF . Hence

• for n > n0, F (Mn) is torsion-free; in particular, T = 0 when p = 0;

• when p > 0 and v(z) > n0,

v([p]z) = v(p) + v(z).

Proof. (a) The finiteness of T was first proved (as far as I know) in [Fle-Oes90],
and we follow their method.

By Proposition 2.6.3, T is a p-group. Let H be any finite subgroup of T ,
and let its exponent be pn so that H′ = H[pn−1] (the elements in H annihilated
by pn−1) is a subgroup of index ≥ p. Let H − H′ = {z1, . . . , zh}, where h =
|H| − |H′| ≥ (1 − 1/p)|H|.

Write [p](T ) = Tu(T ) where u(0) = p, and define w(T ) = u([pn−1](T )) so
that

w(0) = p and [pn](T ) = [p]([pn−1](T )) = [pn−1](T )w(T ).

Since [pn](zi) = 0 = [pn−1](zi)w(zi) and [pn−1](zi) 6= 0, we have w(zi) = 0, ∀i.
By Proposition 2.4.2,

w(T ) = (z1 − T )(z2 − T ) · · · (zh − T )g(T ) where g(T ) ∈ V [[T ]].
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Putting T = 0 we deduce that

v(p) ≥ v(z1) + · · · + v(zh) ≥ h ≥ (1 − 1/p)|H|.

Since H is an arbitrary finite subgroup of T , it follows that T itself is finite and
of order ≤ v(p)/(1 − 1/p).

Next, take H to be the cylic subgroup generated by an element z of order pn.
Then each of the h = φ(pn) = pn−pn−1 elements zi = [mi]z = miz+ · · ·, where
1 ≤ mi < pn and p 6 |mi, has value v(zi) = v(z). Thus v(p) ≥ v(z1) + · · ·+ v(zh)
gives the estimate v(p) ≥ (pn − pn−1)v(z).

Earlier proofs of this estimate (e.g. in [Sil86, p.123]) are based on Corol-
lary 2.7.3:

[p](T ) = pλ(T ) + µ(T p)

for certain λ, µ ∈ V [[T ]], and the expansion of λ begins T + · · ·. Thus for z ∈M ,

v(pλ(z)) = v(p) + v(z + · · ·) = v(p) + v(z) and v(µ(zp)) ≥ pv(z),

and therefore
v([p]z) ≥ min{v(p) + v(z), pv(z)}. ¶

The earlier proofs now proceed by induction on the order pn. However now we
already know that

v(z) ≤ v(p)
/
pn−1(p− 1) ≤ v(p)/(p− 1),

hence in ¶ the minimum is pv(z).

For the proof of (b) and (c) we require the

Lemma 2.9.3 As in the proposition, let K be complete with respect to the val-
uation v, with ring V and maximal ideal M , and of characteristic 0 with residue
characteristic p ≥ 0.

(i) A series of the form

a(x) =

∞∑

n=1

an

n
zn, an ∈ V

converges to an element in K for z ∈M ;
(ii) a series of the form

b(x) =

∞∑

n=1

bn
n!
zn, bn ∈ V

converges in K for z satisfying v(z) > 0 if p = 0 or v(z) > v(p)/(p−1) if p > 0.
If b1 ∈ V ∗ then

v(b(z)) = v(z).
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Proof of the lemma. Recall that to prove convergence one proves that the
value of the n-th term → ∞ as n → ∞. Thus the convergence of both series
is obvious when p = 0: v(n) = 0 for all n ≥ 1, so v(anz

n/n) ≥ nv(z) and
v(bnz

n/n!) ≥ nv(z). The last statement in (ii) is also clear when p = 0: for
n ≥ 2, v(bnz

n/n!) ≥ 2v(z) > v(b1z) when v(b1) = 0. Thus suppose p > 0.
(i) v(anz

n/n) ≥ nv(z) − v(n) → ∞ since v(z) > 0 and v(n) is at most the
real logarithm of n to the base p.

(ii)

v(bnz
n/n!) ≥ nv(z) − (n− 1)v(p)/(p− 1) using Corollary 2.6.6

= v(z) + (n− 1)

(
v(z) − v(p)

p− 1

)

−→ ∞ by the assumption on v(z).

Also when v(b1) = 0,

v(bnz
n/n!) > v(z) = v(b1z) for n ≥ 2,

so the value of the series is v(z).

We now complete the proof of the proposition. As we saw in §2.9.1, logF

and expF are examples of the types of series in (i) and (ii) respectively.
(b) By (i), logF (z) converges for z ∈M . Since

logF F (z1, z2) = logF (z1) + logF (z2)

is true as a power series identity, it is true for the covergent series when z1, z2 ∈
M . Thus z 7→ logF (z) is a homomorphism. Its kernel must contain all torsion
elements of F (M) since charK = 0 and therefore K+ is torsion free.

(c) By parts (i) and (ii) of the lemma, logF (z) and expF (z) converge for
z ∈Mn. We have seen that logF is homomorphic, and the identities

logF (expF (z)) = z = expF (logF (z))

complete the proof.

Here is an example of a nontorsion point with v([p]z) = v(p)+ v(z) < pv(z):
over the 3-adic field,

y2 + y = x3 + x2 A43

has the point P = (−2/9, 1/27). In the notation of §2.1.2,

v(P ) = v(z) = −v(x)/2 = 1,

and v([3]P ) = −v(13337 · 8191 · 3−411−259−2)/2 = 2.
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Similarly, for

Q = (369/64, 4941/512) on y2 + xy + y = x3 − x2, A53

for the 2-adic valuation one finds

v(Q) = 3, v([2]Q) = 4.

Here is part (c) of the proposition stated for the elliptic curve case.

Corollary 2.9.4 Let E be defined over the valuation ring V with quotient field
K of characteristic 0, and residue field k of characteristic p ≥ 0; let v denote the
valuation map v, and E(K) ⊃ E1(K) ⊃ · · · denote the v-adic filtration. Then
Em(K) is torsion-free for

• m > 0 if p = 0,

• m > v(p)/(p− 1) if p > 0.

It is not necessary to assume that K is complete — we can regard Em(K)

as a subgroup of Em(K̂).

2.10 The Nagell-Lutz theorem for Krull domains

The original theorem refers to elliptic curves defined over Z and is usually stated
as follows: if P = (s, t) is a non-zero rational point of finite order on

E : y2 = x3 + bx+ c where b, c ∈ Z, (1)

then s, t ∈ Z and either t = 0 (then P has order 2) or t2|4b3 +27c2. This form of
the theorem, as given by Nagell [Nag35] and Lutz [Lut37], is awkward to apply,
and can be inefficient, when one or more of the coefficients a1, a2, a3 is nonzero.
For in general one must first complete the square in y, then the cube in x and
finally clear denominators. The problems are illustrated by the example

Y 2 +XY + Y = X3. A26

Substituting X = (x − 3)/36, Y = (y − 3x − 99)/216 gives an equation of the
form (1) with

b = 27 · 23, c = 54 · 181, 4b3 + 27c2 = 2931213.

This yields an uncomfortably large class of candidate divisors t2. The ‘right’
way to state Nagell-Lutz for Z is given in Proposition 2.10.4 below; for this
example it reduces the number of candidates to two. But first we prove some
general results.
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Nagell-Lutz type theorems involve two estimates for the coordinates x, y of
torsion points: one which bounds the denominators, the other the numerators.
In the original theorem quoted above, the denominators are 1; in general the
denominator bound is obtained by applying Proposition 2.9.2 to Ê. (Nagell
and Lutz had less precise information since formal group theory was not yet
well developed.) The bound for the numerators comes from the identity proved
in Proposition 1.7.12(b); in the theorem quoted above it takes the form y2|(4b3+
27c2).

The first step is to bound denominators.
A point P on an elliptic curve defined over an integral domain A is said to

be integral, or if necessary, A-integral, when
(i) P 6= O, say P = (x, y), and
(ii) x ∈ A, y ∈ A.

When A is integrally closed, e.g. when A is Krull, it is sufficient to check that
one of x, y is in A because of the Weierstrass equation.

Proposition 2.10.1 Let A be a Krull domain, let E be an elliptic curve defined
over A, let K denote the quotient field of A, and let P = (x, y) be a nonzero
point in E(K).

(a) If [n]P is integral for some n ∈ Z then P is integral.
(b) Now let P be a torsion element of order m ≥ 2. Then either P is integral,

or m is a prime power, say m = pn.
Suppose x /∈ A. Then

• if charK > 0, then p = charK;

• if charK = 0, then for all essential valuations v of A,

v(x) < 0 =⇒ p = char k where k is the residue field of v, hence v(p) > 0,

and v(x) ≥ −2 v(p)/(pn − pn−1)
⌋

(integral part).

Hence px ∈ A except possibly when p = 2, n = 1 and then 4x ∈ A.

Proof. (a) If P is not integral then x /∈ A, which is to say v(x) < 0 for some
essential valuation v, and then in fact v(P ) = ν where v(x) = −2ν, v(y) = −3ν,
and P ∈ Eν for the filtration associated to v, as explained in §2.2.2. We can
regard E as being defined over the v-adic completion of K. Since Eν is a
subgroup, [n]P ∈ Eν for all n ∈ Z and therefore [n]P is not integral.

(b) The case where char K > 0 is covered by Proposition 2.6.3. Thus assume
char K=0.

Suppose [m]P = O and v(x) < 0. Then applying Proposition 2.9.2 to F = Ê,
we see that m = pn where p > 0 is the residue characteristic, so v(p) > 0, and
n ≥ 1. The lower bound for v(x) = −2v(z) follows from that proposition. Then
v(px) ≥ 0, or v(4x) ≥ 0 when pn = 2, are simple deductions.
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Examples

1. The two variable polynomial ring A = Z[a, b] is a UFD, hence is Krull.
The curve

E : y2 + abxy + by = x3 + ax2 + x

is elliptic since ∆ is a nonzero polynomial, and (0, 0) is a point of infinite order
because

[−2](0, 0) = (1/b2, 1/b3)

has infinite order, by the proposition with the b-adic valuation.

Under most specializations the order of (0, 0) remains infinite. E.g. if we set
b = 3, then ∆ is a nonzero polynomial in a, and (1/9, 1/27) has infinite order
by applying the proposition with the 3-adic valuation on A = Z[a]. (By Gauss’s
Lemma, Proposition 2.1.7, the 3-adic valuation on Z extends to Z[a].)

2. Let us take example 1 with a = b2 over the polynomial ring F2[b] in
characteristic 2:

y2 + b3xy + by = x3 + b2x2 + x, ∆ = b4 (mod 2).

Of course we still have

[2](0, 0) = (1/b2, 1/b3),

but now this is the unique point of order 2, by Proposition 1.7.3; this is consistent
with the proposition since charK = 2. Thus (0, 0) and −(0, 0) = (0, b) are points
of order 4.

3. Over the polynomial ring Z[a], y2 − y = x3 + (4a − 1)x − a has ∆ =
−(256a − 37)(4a − 1)2. By the proposition, if (1/4, 3/8) has finite order then
the order must be 2; but that is not the case since

−(1/4, 3/8) = (1/4, 5/8).

By the same token, (1/4, 3/8) has infinite order when we specialize a to any
value in Z.

Now let us describe the second ingredient in Nagell-Lutz type theorems.
From Proposition 1.7.12(b), if E is defined over any field K and P = (x, y) ∈
E(K) is such that [2]P 6= O, not necessarily of finite order, then

(σ − x([2]P )τ)κ2 = ∆ ¶

where
κ2 = (2y + a1x+ a3)

2

= 4x3 + b2x
2 + 2b4x+ b6,

σ = 12x3 − b2x
2 − 10b4x+ b2b4 − 27b6,

τ = 48x2 + 8b2x+ 32b4 − b22.
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The subscript 2 has been dropped from σ and τ to simplify the notation. Recall
that when charK 6= 2, κ = 2η and then a nonzero point has order 2 iff η = 0
(cf. Proposition 1.7.3).

This implies for example that if E is defined over the integral domain A and
the points P and [2]P are both integral (hence σ, τ ∈ A and [2]P 6= O), then
κ2|∆ in A, and, when also b6 = 0 (hence x(P ) 6= 0 since [2]P 6= O) then x(P )|κ2

and therefore x(P )|∆.

We introduce some convenient notation that will be used not only in the rest
of this chapter, but will be standard for the rest of the notes:

T denotes the torsion subgroup of E(K),
and T ∗ the set T with O removed.

When necessary we write T E/K .
When A is Krull of characteristic 0 and P ∈ T ∗ has order > 2, then also

[2]P ∈ T ∗ and we can use the lower bound on v(x([2]P )) from the previous
proposition:

Proposition 2.10.2 Let E be an elliptic curve defined over the integral domain
A with quotient field K, and let P = (x, y) ∈ E(K) where [2]P 6= O.

(a) If P and [2]P are A-integral then κ2|∆, and if also b6 = 0 then x 6= 0
and x|∆.

(b) Now let A be a Krull domain of characteristic 0 and P an integral point
in T ∗. Then for all essential valuations v,

2v(κ) ≤
{
v(∆) if v(x([2]P )) ≥ 0,
v(∆) + 2

⌊
v(p)/(pn − pn−1)

⌋
if v(x([2]P )) < 0,

where pn denotes the order of [2]P in the latter case.

The simplest Nagell-Lutz type theorem that avoids all denominator problems
is the following.

Proposition 2.10.3 Let A be a Krull Q-algebra, let E be defined over A and
let P ∈ T ∗. Then P is A-integral, hence η ∈ A, and either η = 0 (when P is of
order 2) or η2|∆.

Remark. Since 2 and 3 are invertible in A we can take the equation of E in
the form y2 = x3 + bx+ c and then the statement becomes

y = 0 or y2| 4b3 + 27c2;

when there is a point of order 2 we can take the equation in the form y2 =
x(x2 + ax+ b) and then the statement is

y = 0 or y2| b2(a2 − 4b).
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Proof. Since A is a Q-algebra, charK = 0 and for the residue field k of every
essential valuation, char k = 0. By Proposition 2.10.1, every nonzero torsion
point is integral. The rest follows from ¶ since 2 is now a unit.

Example 1 Let t be an indeterminate and

E : y2 = x3 − t(t− 1)2x, ∆ = 64t3(t− 1)6, j = 1728.

T = (0, 0) is a point of order 2. We will show that T E/K = {O, T} where K is
the field C(t) by applying the proposition to the Krull Q-algebra C[t]; it follows
that T E/K = {O, T} when K is Q(t) or R(t), for example, or even K = Qp(t)
(p any prime) since there are field embeddings Qp(t) ↪→ C(t).

Since 0 is the only root of x3 − t(t− 1)2x in C(t), if (x, y) is a torsion point
distinct from O and T , then x, y ∈ C[t], y 6= 0 (hence x 6= 0) and y2

∣∣t3(t − 1)6 ,
and in particular, deg y ≤ 4. From the equation for E we deduce that

2 deg y =

{
deg x + 3 if deg x < 2,
3 deg x if deg x ≥ 2.

Hence the possibilities for (deg x, deg y) are (1, 2) and (2, 3). From y2 = x(x2 −
t(t − 1)2) we see that if y is divisible by t or by t − 1, then so is x, and
any irreducible divisor of x also divides y. Combining these observations with
y2

∣∣t3(t − 1)6 and the degree constraints leaves the possibilities

x = c(t − 1), y = d(t − 1)2;
x = ct(t − 1), y = dt(t − 1)2;
x = c(t − 1)2, y = d(t − 1)3,

where c, d ∈ C∗. (Prima facie, T might be infinite.) Substituting into the
equation, the last one is quickly eliminated, and the first two uncover the points
(and only these points)

±P1 = (1 − t,±(t − 1)2) and ± P1 + T = (t(t − 1),±t(t − 1)2).

Now [2]P1 = ((t + 1)2/4, (t + 1)(t2 − 6t + 1)/8)

is of infinite order since y2 6 |∆, hence so is P1. Thus T = {O, T}.
If we extend the field to C(t, t′) where t′4 = t(t − 1)2, and substitute x =

t′2x′, y = t′3y′, the equation becomes y′2 = x′3 − x′ whose division polynomials
are all defined over Z. Now T is infinite (in a later chapter we will see that it
is the divisible group (Q/Z)⊕ (Q/Z)) which is typical of constant E, i.e., j is
in the field of constants C of the function field; see the example in §4.3.

Example 2 We leave the necessary calculations for this example to the
reader.

y2 + 6xy + (t + 3)(t2 + 3)y = x3, ∆ =
[
−3(t + 1)(t + 3)(t2 + 3)

]3
,
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or η2 = x3 + 9x2 + 3(t+ 3)(t2 + 3)x+
1

4
(t+ 3)2(t2 + 3)2.

Again T denotes the torsion subgroup of E(C(t)).
There is no solution x with η = 0 : by degree considerations we would have

x = c0+c1t+c2t
2, and then substituting and comparing coefficients shows there

is no solution.
Thus for (x, η) ∈ T ∗ we have η ∈ C[t], η 6= 0, and η2|∆. One finds that

T = C3 ⊕ C3,

where C3 is the cyclic group of order 3, and the 8 points of order 3 in (x, η)-
coordinates are as follows. Let ζ = (−1 +

√
−3)/2.

P1 =
(
0, (t+ 3)(t2 + 3)/2

)
,

P2 =
(
−(t2 + 3),

√
−3(t+ 1)(t2 + 3)/2

)
,

P3 = P1 + P2 =
(
−ζ(t+ 3)(t−

√
−3),

√
−3(t+ 1)(t+ 3)(t−

√
−3)/2

)
,

P4 = P1 − P2 = P3 (complex conjugate),

and the negatives −Pi = (xi,−ηi) of these four points.
This is a non-constant curve with

j = 2123
t3(t2 + 3t+ 3)3

(t+ 1)3(t+ 3)3(t2 + 3)3
,

and it can be shown that in every finite extension of C(t), T remains finite; cf.
the discussion in the opening section of the next chapter.

2.10.1 Nagell-Lutz for Z

In the following proposition we combine Nagell-Lutz with reduction mod p. For
E/Z, and for a prime p not dividing ∆, we let Ẽp denote the reduction of

E mod p as defined in §2.5.2.

Proposition 2.10.4 Let E be an elliptic curve defined over Z, let P = (x, y) ∈
T ∗, and η = y + (a1x+ a3)/2. Then

(a) P is integral except possibly for one point of order 2 of the form (s/4, t/8),
where s and t are odd integers. In order that this unique nonintegral torsion
point exist, it is necessary that a1 be odd;

(b) u = 0 ⇔ [2]P = O, and otherwise

any a1, any a3 =⇒ 2η ∈ Z and (2η)2|4∆
a1 even, any a3 =⇒ 2η ∈ Z and (2η)2|∆
a1 and a3 even † =⇒ η ∈ Z, 16|∆, and η2| 1

16∆
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(c) Let S denote the set of primes p not dividing ∆. Then

|T | divides gcd
p∈S

{tp|Ẽp(Fp)|},

where tp =

{
2 if p = 2 and T contains a fractional point of order 2,
1 otherwise.

In particular,

• if a1 is even and a3 is odd then E has supersingular reduction at 2 and T
has order 1, 3 or 5;

• if a1 and ∆ are odd then E has ordinary reduction at 2 and |T | divides 8.

Remark. The finiteness of T , which of course is a corollary of the proposition,
also follows from

Mordell’s theorem: E(Q) is a finitely generated abelian group.

This is a special case of the Mordell-Weil theorem which will be proved in the
next chapter.
Proof. (a) Suppose P is a nonintegral point of order m. Since pn = 2 is the
only case where v(p)/(pn − pn−1) ≥ 1, by Proposition 2.10.1 we have m = 2
and 4x ∈ Z. Thus P is a point of order 2, and the remaining details follow from
Proposition 2.5.3(c1).

(b) The statement concerning η = 0 is just a reminder; cf. Proposition 1.7.1.
Thus suppose η 6= 0.

By (a), x, y ∈ Z hence 2η = 2y + a1x + a3 ∈ Z; also [2]P is integral except
possibly when a1 is odd and [2]P has order 2, and then 4x([2]P ) ∈ Z. The first
two implications now follow from relation ¶ of the previous section. Finally, let
a1 and a3 be even. Then 4|b2, 2|b4, 4|b6, hence 4|σ and 16|τ . Thus ¶ implies
that 4(2η)2|∆.

(c) The first statement follows from Corollary 2.5.4. When a1 is even and
a3 is odd, then ∆ is odd by Proposition 2.5.3(a). Thus reduction mod 2 of the

Weierstrass equation produces a supersingular elliptic curve Ẽ over F2. Also
the kernel T (E1(Q)) of the reduction of the torsion subgroup is trivial, i.e.,

t2 = 1, hence the reduction homomorphism embeds T as a subgroup in Ẽ(F2).
From the table at the end of Chapter 1, the possible orders of the latter group
are 1, 3 and 5. Similarly when a1 and ∆ are odd, T , possibly divided by a
subgroup of order 2, embeds in Ẽ(F2), and the latter group has order 2 or 4.

†This case includes the original Nagell-Lutz theorem.
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Examples over Q.
1. The curves E15 and F15 (§1.7) and C17 (§1.7.1) have a point of order 2

of the form (s/4, t/8), and a1 = 1. The curve A26: y2 +xy+ y = x3 has a1 = 1
but no points of order 2.

2.
y2 + xy = x3 − 39x+ 90 C21

or (2η)2 = 4x3 + x2 − 156x+ 360 = (4x− 15)(x2 + 4x− 24).

There is one point of order 2

(x, η) = (15/4, 0) or (x, y) = (15/4,−15/8),

and any other point of finite order satisfies 2η ∈ Z and

(2η)2 |4∆ = 22387.

2η = 3 is the smallest positive value that yields a rational solution, namely
x = 3. This gives the point P = (x, y) = (3, 0) ∈ E(Q), which could still be a
point of infinite order. As it turns out, P has order 8:

n [n](3, 0) order 2η = 2y + x
1 (3, 0) 8 3
2 (6, 6) 4 18
3 (−3, 15) 8 27
4 (15/4,−15/8) 2 0
5 (−3,−12) 8 −27
6 (6,−12) 4 −18
7 (3,−3) 8 −3

By the last point in the proposition, |T | = 8 and therefore T = C8 =
�
P�.

(Reduction mod 2 is less work than testing the remaining potential 2η.)
Note that the occurrence of 2η = ±18 shows that the factor 4 cannot be

omitted from 4∆ in the first case in (b) of the proposition.
3.

y2 + y = x3 + x2 − 3x+ 1 or (2η)2 = 4x3 + 4x2 − 12x+ 5. B37

There is no rational root x when η = 0, i.e., no point of order 2. Thus η 6= 0,
2η ∈ Z and

(2η)2 = (2y + 1)2 |∆ = 37,

hence 2η = ±1. Both values yield rational x and we find that the torsion
subgroup of B37(Q) (in x, y coordinates, as usual) is C3 = {O, (1, 0), (1,−1)}.

4.
y2 + y = x3 − x or (2η)2 = 4x3 − 4x+ 1. A37



276 CHAPTER 2. FORMAL GROUPS

As in the previous example, there are no points of order 2, ∆ = 37 and the only
candidates are 2η = ±1. Taking 2η = 1 we obtain the point P = (0, 0) and we
calculate

n [n](0, 0) [−n](0, 0)
1 (0, 0) (0,−1)
2 (1, 0) (1,−1)
3 (−1,−1) (−1, 0)
4 (2,−3) (2, 2)
5 (1/4,−5/8) (1/4,−3/8)
6 (6, 14) (6,−15)

By Proposition 2.10.4, the fifth line of this table shows that (0, 0) is a point
of infinite order, and therefore the torsion subgroup of A37(Q) is trivial. In
fact A37(Q) =�(0, 0)

�
≈ Z, as we will see in Corollary 3.7.3, and then it will be

an easy matter to see that all the Z-integral points are contained in the above
table.

5. Although the gcd in part (c) of the proposition stabilizes after a finite
number of p (and in practice, a relatively small number), this final value may still
be a proper multiple of |T |. This phenomenon will be illustrated in the present
example. The theoretical explanation will be given in Chapter 6; for now we
can describe the situation as follows. As a temporary definition, we say that two
elliptic curves E and E′ defined over Z are isogenous if |Ẽ(Fp)| = |Ẽ′(Fp)| for
all primes p not dividing the discriminant of either curve. Note that the groups
Ẽ(Fp) and Ẽ′(Fp) need not be isomorphic. Then the gcd is always a multiple
of the largest among |T (E′(Q))| where E′ runs through the (at most 8) curves
isogenous to E.

The following three E are isogenous, as will be explained in Chapter 6. We
(that is, apecs) tabulate Ẽ(Fp) for a few good p, i.e., p 6= 11.

y2 + y = x3 − x2, ∆ = −11 A11,

y2 + y = x3 − x2 − 10x− 20, ∆ = −115 B11,

y2 + y = x3 − x2 − 7820 − 263580, ∆ = −11 C11.

good p A11(Fp) B11(Fp) C11(Fp)
2 C5 C5 C5

3 C5 C5 C5

5 C5 C5 C5

7 C10 C10 C10

31 C25 C5 ⊕ C5 C25

47 C2 ⊕ C20 C2 ⊕ C20 C2 ⊕ C20

53 C60 C2 ⊕ C30 C2 ⊕ C30

101 C5 ⊕ C20 C5 ⊕ C20 C100
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Nagell-Lutz says to try

(2η)2 = (2y + 1)2
∣∣−11 resp. − 115 , i .e.,

y = 0,−1, resp. 0,−1, 5,−6, 60,−61.

There results (abbreviating the curve names)

T (A(Q)) = {O,P = (0, 0), [2]P = (1,−1), [3]P = (1, 0), [4]P = (0,−1)}
T (B(Q)) = {O,P = (5, 5), [2]P = (16,−61), [3]P = (16, 60), [4]P = (5,−6)}
T (C(Q)) = {O}

Thus reduction mod p tells us that |T (C(Q))| is a divisor of 5, but never
reveals that the actual value is 1.

In fact in the three cases this is the whole group E(Q). This is proved
for A11 in Corollary 3.7.2, and in Chapter 6 we will see that if E and E′ are
isogenous over Q then E(Q) and E′(Q) have the same rank.

When Nagell-Lutz gives a long list of candidates, this problem of “isogeny
bloat” can make the determination of T a lot of work. An alternative work-
around is to jettison Nagell-Lutz and carry out these two steps:

1. by reduction mod approriate p, find a multiple N of |T |;
2. find the rational roots of the division polynomials ψn for divisors n of N .

(As soon as a new torsion point is found, the group generated by all the points
found so far is calculated. Thus only n = pm that are prime powers need be
taken, and of course if ψpm has no rational roots then there is no need to look
at higher powers of p.)

When applied to the example C11, step 1 gives N = 5, so |T | = 1 or 5.
For step 2 we use the apecs command div(5) whose value is ψ5 (al5 in apecs
notation), and the Maple command roots which finds the rational roots of a
polynomial:

roots(div(5));===> [ ],

the empty list, hence there are no points of order 5, and T = O. ∗

The ‘roots of ψn’ method of determining T can be applied to E over other
fields. Some examples over quadratic fields are given in the following section.

2.10.2 Nagell-Lutz for quadratic fields

An algebraic number field, or simply number field, is an extension field of
Q of finite degree. The degree of a number field is the degree [K : Q]. Number

∗div(5) yields ψ5 = 5X12 + · · · + 26251755532203500725560, which would be somewhat
daunting to treat by hand. But Maple’s roots is very fast. As of version 4.37, the apecs
procedure tor uses the roots(div(n)) approach. This was brought on by an innocuous
looking example whose ∆ was highly composite — Nagell-Lutz had over 36,000 candidate
divisors, and the old tor would have taken an absurdly long time. The present tor did the
job in a matter of seconds.
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fields of degree 2, 3, . . . are referred to as quadratic fields, cubic fields, . . . .
The ring of integers in a number field K is the integral closure of Z in K; this
ring is a Dedekind domain.

Let K be a number field of degree d with ring of integers O. We recall some
basic number theory: let p be a prime number and let the principal ideal pO
have the prime ideal factorization

pO = Pe1

1 · · · Peg

g .

ei is the ramification index of P i over p. The field extension degree

fi = [O/Pi : Z/pZ]

is the inertial degree of Pi over p, and we have

g∑

i=1

eifi = d.

The possibilities range from g = 1, f1 = d: p is inert, to g = d when necessarily
all ei = 1 and all fi = 1: p splits. If any ei > 1 one says that p is ramified,
or, more precisely, that P i is ramified.

If v denotes the p-adic valuation on Q, then the extensions of v to K are the
Pi-adic valuations (see §2.2.1); let us denote them w1, . . . , wg. Thus wi(p) = ei.
One refers to the Pi that occur in the factorization of pO, and the corresponding
wi, as the primes and the valuations that lie over p, or are above p, and one
writes Pi|p, wi|v.

Now let E be an elliptic curve defined over O and consider the torsion
subgroup T of E(K). Proposition 2.10.1 says that in order that a point P =
(x, y) of T be fractional, i.e., x /∈ O, say w(x) < 0, the order of P must be a
prime power pn, w must lie over p and p must be sufficiently ramified at w. In
the other direction, Proposition 2.10.2 gives “upper bounds” on P .

Let us write the details for quadratic fields in a corollary.

Corollary 2.10.5 Let K be a quadratic field with ring of integers O, and let E
be an elliptic curve defined over O. The possible orders for a fractional torsion
point P = (x, y) are

(a) 2;

(b) 3 if 3 is ramified;

(c) 4 if 2 is ramified.

Hence if E ⊃ E1 ⊃ · · · is the filtration for a valuation of residue characteristic
≥ 5, then the torsion subgroup of E1(K) is trivial.

In case (a) there is at most one such P with w(x) < 0 for each valuation w
over 2, and in cases (b) and (c) there is at most one such pair P, −P . Further
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details in these cases are as follows, where w denotes a valuation on K and,
κ = 2η = 2y + a1x+ a3.

(a) If w|2 then w(x) = −2 if 2 is unramified, and w(x) = −2 or −4 if 2 is
ramified. For all w not above 2, w(x) ≥ 0.

(b) If w is the unique valuation above 3, then w(x) = −2 and w(κ) ≤
w(∆)/2 + 1. If w 6 |3, then w(x) ≥ 0 and w(κ) ≤ w(∆)/2.

(c) If w is the unique valuation above 2, then w(x) = −2, w(x([2]P )) = −4,
and w(κ) ≤ w(∆)/2 + 1. If w 6 |2, then w(x) ≥ 0 and w(κ) ≤ w(∆)/2.

If P is an integral torsion point of order > 2 then for all w

w(κ) ≤ w(∆)/2 − min{0, w(x([2]P ))}.

Proof. The possibilities for the factorization of pO are P1, P1P2 and P2
1, and

the three cases of fractional P = (x, y) ∈ T follow from w(x) < 0 =⇒ w(x) ≥
−2bw(p)/(pn − pn−1)c.

There can be at most one such P in case (a) with w(x) < 0 by Proposi-
tion 2.5.3.

In case (b), two such pairs ±P and ±P ′ would give rise to two more ±(P+P ′)
and ±(P − P ′). Each pair is determined by an x-coordinate with w(x) = −2
which is a root of ψ3 = 3X4 + · · · + b8. The product of these x’s is b8/3, and
we have a contradiction from w(b8/3) ≥ −2.

Similarly in case (c), the x-coordinate is a root of ψ4/κ = 2X6 + · · · .
The remaining statements are straightforward interpretations of Proposi-

tion 2.10.2.

We now consider a few examples.
Example 1 Let us determine the group of torsion points of

E : y2 + xy + y = x3 + 4x− 6 C14

over the field K = Q(
√
−3). The roots of

ψ2
2 = κ2 = 4x3 + x2 + 18x− 23

are 1, −5

8
± 7

8

√
−7 =

1 + 7ω

4
, −6 + 7ω

4
,

where ω is the algebraic integer (−1 +
√
−7)/2. Calculation shows that the

points of order 2 are

(1,−1),

(
1 + 7ω

4
,−5 + 7ω

8

)
,

(
−6 + 7ω

4
,
2 + 7ω

8

)
,

of which only the first is in E(K). With η = y + (x+ 1)/2 and x1 = x− 1, the
Weierstrass equation becomes

η2 = x1(x
2
1 + (13/4)x1 + 8).
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Since
√

8 /∈ K∗, by Proposition 1.7.3(c) there are no points of order 4 in E(K).
The roots of

ψ3 = 3x4 + x3 + 27x2 − 69x− 26

are 2, −1/3, −1 ± 2
√
−3,

and one finds that all 8 points of order 3 are rational over K:

(2, 2), (2, −5),

(
−1

3
, −1

3
± 14

9

√
−3

)
,

(−1 ± 2
√
−3, −5), (−1 ± 2

√
−3, 5 ∓ 2

√
−3).

Finally, there are no other points of finite order in E(K), and so the torsion
group has order 18; for otherwise there would be an integral point P of order
p, for some prime p ≥ 5, and [2]P would also be integral. The verification can
then be completed by checking all possible κ ∈ O satisfying

κ2
∣∣∆ = −2673 = −26(3 + ζ)3(2 − ζ)3,

where ζ = (−1 +
√
−3)/2, the last product being the prime factorization in the

PID O. Thus

κ = (1 + ζ)α2β(3 + ζ)γ(2 − ζ)δ with α mod 6, β ≤ 3, γ ≤ 1, δ ≤ 1.

The number of candidate values of κ2 is 48, already a substantial number for
one of the simplest examples. However, reduction mod appropriate π relieves
us of this burden. Noting that 13 = (4 + 3ζ)(1 − 3ζ) is split and is prime to ∆,
reduction of E modπ = 4 + 3ζ gives the upper bound 18.

Example 2 We consider the points of order 2 of example 1 over the field
Q(

√
−7). Again O = Z[ω], where ω = (−1 +

√
−7)/2, is a PID, and this time

O∗ is simply ±1. We find 2 = −ω(1 + ω), and using the norm N(a + bω) =
a2−ab+2b2 as an aid, we find that 23 = (5+ω)(3−2ω). Thus the factorizations
of x for the fractional points (x, y) of order 2 are

1 + 7ω

4
=

3 − 2ω

ω2
, −6 + 7ω

4
=

5 + 2ω

(1 + ω)2
,

which are in agreement with the above corollary So we can indeed have two
fractional points of order 2 when 2 splits.

Example 3 The points of order 2 on

y2 + xy + y = x3 + x2 − 10x− 10 C15

are (−1, 0), (3,−2), (−13/4, 9/8),
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and from ψ4/κ = 2x6 + 5x5 − 95x4 − 390x3 − 1390x2 − 1436x+ 1120

we find that the points of order 4 are

(−2, 3), (−2,−2), (8, 18), (8,−27), (−7, 3 ± 15i),

(
1

2
,
−3 ± 15i

4

)
, (−1 + 3i, 6 ± 6i), (−1 − 3i, 6 ± 6i),

where i2 = −1. Note that 2 = i(1 + i)2 is ramified in Q(i).
So far, the torsion points listed give a group of type C4 ⊕C4 in E(Q(i)); in

fact this is clearly the whole T (E(Q(i))) by reduction mod π = 1 + i to Ẽ(F2).
We have

[2]

(
1

2
,
−3 ± 15i

4

)
=

(−13

4
,
9

8

)
.

This gives an example of type (c) of the corollary.
Applying Proposition 1.7.3 to (8,−27), we find that

(3ε + 2, 3), where ε = (−1 +
√

5)/2,

is a point of order 8, and thus we have a subgroup of type C8⊕C2 in E(Q(
√

5)).
Since there are infinitely many units ±εn in O = Z[ε], Nagell-Lutz gives infinitely
many candidates, and now reduction modπ is a practical necessity. In fact
11 = (−3 + ε)(4 + ε) splits in Q(

√
5), and |E(F11)| = 16, so we have all of T .

Example 4 Here is an example of isogeny bloat, as discussed in the previous
section. Over Q(

√
2), A14: y2 + xy + y = x3 − x has |T | = 6 (with all points

actually defined /Q), but reduction modπ always gives a multiple of 12. This
is because the isogenous curve B14: y2 + xy + y = x3 − 11x + 12 over Q(

√
2)

has |T | = 12. We leave the detailed verification to the reader, who may prefer
simply to call on apecs (version ≥ 5.1) and type

Qfin(2);ell(1, 0, 1,−1, 0);Torq();

There is another method to determine T :

T E/K = {P ∈ E(K) : ĥ(P ) = 0}

where ĥ is the canonical height, to be defined in the next chapter. This applies
to a class of K that includes all number fields. But for number fields this method
is not practicable, and is only of theoretical interest.



Chapter 3

The Mordell-Weil theorem

The Mordell-Weil theorem for elliptic curves is this:

If K is a finitely generated field and E is an elliptic curve defined
over K, then the group E(K) is finitely generated.

By finitely generated field we mean finitely generated over the prime subfield.
Then, as an abstract abelian group, E(K) has the form

T ⊕ Zr

where T is finite and Z denotes the infinite cyclic group. The non-negative
integer r is called the rank of E over K.

Mordell proved the theorem for K = Q in [Mor22].
In his thesis [Wei29], Weil generalized Mordell’s theorem in two ways: he

proved that if K is a number field and A is an abelian variety defined over K,
then the group A(K) is finitely generated. (In this introduction to Chapter 3,
we use some technical terms that will be defined properly only later. Abelian
varieties are projective group varieties; elliptic curves are abelian varieties of
dimension 1. Actually, Weil proved his result only for A that are Jacobians of
curves — it was subsequently discovered that not every abelian variety is the
Jacobian of a curve. But this would appear to be a minor point since every
abelian variety is isogenous to a factor of a Jacobian.)

Extending Weil’s result, Néron in his thesis [Nér52] proved that A(K) is
finitely generated if K is finitely generated. However, it is customary to call any
of these theorems the Mordell-Weil theorem. A proof of Néron’s generalization
is given in [Lan83, ch.6].

The proof is split into two parts: the weak Mordell-Weil theorem, which is
the statement that the quotient group E(K)/[m]E(K) is finite for some inte-
ger m ≥ 2, and the construction of a height function h : E(K) −→ R with
appropriate properties.

301
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In this chapter we will prove the Mordell-Weil theorem for elliptic curves
defined over the following types of fields:

• number fields, and

• finitely generated fields of characteristic > 2.

Thus the fields that are missing from our treatment of the theorem are
finitely generated fields of characteristic 0 or 2 that are transcendental over the
prime subfield. The reasons are:

• our proof of weak Mordell-Weil (with m = 2) requires charK 6= 2;

• our height function (in the form implemented) lacks a key finiteness prop-
erty when charK = 0 and the transcendence degree ≥ 1.

The proof will be essentially elementary, quoting results as needed from
standard commutative algebra and number theory. The first section in this
chapter contains a definition and some preliminary observations that will be
used in the weak Mordell-Weil theorem.

After the proof we construct the canonical height and show some basic prop-
erties. Then we discuss ways of estimating r, and consider various examples.

There is also a relative theory due to Lang and Néron, which in the case of
elliptic curves amounts to the following two statements; cf. [Lan83, p.139]. Let
K be a finitely generated separable extension of the field K1 such that K1 is
algebraically closed in K, and let E be an elliptic curve defined over K with
invariant j.

(i) If E is defined over K1, then the quotient group E(K)/E(K1) is finitely
generated. Hence if E(K1) is finitely generated, then so is E(K).

(ii) If j /∈ K1 then the group E(K) is finitely generated. For example, if t is
an indeterminate and E is defined over C(t) with j /∈ C, then E(C(t)) is finitely
generated. This is true in particular if E is defined over Q(t) with j /∈ Q, and
then there exists a number field F such that

E(C(t)) = E(F (t)).

(Assuming G := E(C(t)) is finitely generated, the existence of F is easily ex-
plained: If P = (x, y) ∈ G then [Q(x, y) : Q] < ∞; otherwise x, y would contain
a transcendental, say α and since E is defined over Q, α could be replaced
by any other transcendental, giving uncountably many points. Letting P run
through a finite set of generators, together their coordinates generate a finite
extension F of Q, and every point in G is defined over F . We note that F is
normal over Q, since (x, y) ∈ G implies that every conjugate (xσ, yσ) ∈ G.)
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3.1 F2-Krull domains

Let R be a Krull domain. The free abelian group on the essential valuations of
R modulo principal divisors is the class group, and is denoted Cl(R).

We call R an F2-Krull domain if it satisfies the following two finiteness
conditions, where C2 denotes the cyclic group of order 2, and ⊗ and hom refer
to Z-modules:

R∗/R∗2 ≈ C2 ⊗ R∗ is finite,

and Cl(R)[2] ≈ hom(C2,Cl(R)) is finite.

It is precisely these two finiteness properties that support the proof of weak
Mordell-Weil, as we will see. We make two elementary observations:

Lemma 3.1.1 Suppose R is an F2-Krull domain. Then so are
• the polynomial ring R[{ti}] for an arbitrary set of indeterminates, and
• R[1/d1, . . . , 1/dm] for nonzero elements d1, . . . , dm ∈ R.

Proof. Let Rt = R[{ti}]. Then Rt is Krull by [BAC7, Prop.13], extended to
the case of infinitely many ti by Exercise 8 for §1. Trivially, R∗

t = R∗. Also,
Cl(Rt) =Cl(R) by [BAC7, Prop.18] and the fact that any divisor involves only
finitely many ti. Thus the F2-properties are preserved in polynomial extensions.

Secondly, the set of essential valuations v of R for which v(di) > 0, for
some i, is finite by the definition of Krull domain; let D denote the free abelian
subgroup of the divisor group generated by these v. By [BAC7, Prop.6], R′ :=
R[1/d1, . . . , 1/dm] is Krull, and from [Lan83, p.41] we have the (elementary)
exact sequences

0 −→ R∗ −→ R′∗ −→ D,

D −→ Cl(R) −→ Cl(R′) −→ 0.

Letting D1 and D2 denote an appropriate subgroup and factor group respec-
tively of D, these yield the short exact sequences

0 −→ R∗ −→ R′∗ −→ D1 −→ 0, (1)

0 −→ D2 −→ Cl(R) −→ Cl(R′) −→ 0. (2)

Tensoring (1) with C2 gives the exact sequence

C2 ⊗ R∗ −→ C2 ⊗ R′∗ −→ C2 ⊗D1.

The group on the left is finite by assumption, and the one on the right is finite
since D1 is finitely generated. Hence the group in the middle is finite.

Applying hom(C2,—) to (2) gives

hom(C2, Cl(R)) −→ hom(C2,Cl(R′)) −→ ext1(C2,D2).
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Since ext1(C2,Z) = C2, and D2 is finitely generated, therefore ext1(C2,D2) is
finite. Again the middle term is sandwiched between two finite groups and is
therefore finite.

Example 1 The ring of integers R in a number field is F2-Dedekind. In
fact the group R∗ is finitely generated and Cl(R) is finite. These basic facts can
be found in any text on algebraic number theory.

Example 2 Only certain texts on algebraic number theory, such as [Wei67],
contain the function field analog of example 1: let R be the integral closure of
the one variable polynomial ring Fq[t] in a finite separable extension of Fq(t).
Then again R∗ is finitely generated and Cl(R) is finite.

Example 3 A field K is F2-Krull when it is algebraically closed or real
closed since then Cl(K) = 0 and K∗/K∗2 = 1 or C2 respectively. Thus the
polynomial rings K[t1, . . . , tn], where K = C or R are F2-Krull.

Example 4 Examples 1 and 2 generalize as follows.

We define a ring to be FT (for finite type) if it is finitely generated as a ring
over the prime subring Z. Note the minor conflict of terminology: the finitely
generated fields Q and Fp(t) are not FT.

Let the field K be finitely generated over the prime subfield K0; let charK =
p ≥ 0; let R1 denote the integral closure of Z in K; and let K1 denote the
algebraic closure of K0 in K. Thus K1 = Q(R1), where Q denotes quotient
field.

When p = 0, K1 is a number field with R1 as ring of integers; when p > 0,
then R1 = K1 = Fq for some power q of p. In any case, R1 is FT.

Choose a separating transcendence basis t1, . . . , tn of K over K1 (cf. [Zar-
Sa58, p.105, theorem 31]); let R2 = R1[t1, . . . , tn] and K2 = Q(R2) = K1({ti});
thus K is a finite separable extension of K2, and R2 is FT. R3 denotes the
integral closure of R2 in K; thus Q(R3) = K. By [Zar-Sa58, p.264], R3 is a
finite R2-module, hence is FT. By Propositions 12 and 13 of [BAC7], all the Ri

are Krull; thus we say that R1, R2 and R3 are FT-Krull.
We have the following results of Roquette [Roq58]; see also [Lan83, p.37].

R1 Let R be an FT domain. Then the group of units R∗ is finitely generated.
R2 If R is FT-Krull, then the divisor class group Cl(R) is finitely generated.

Consequently, an FT-Krull domain is F2.
Although these theorems can hardly be described as standard number theory,

we will assume them so that weak Mordell-Weil applies to all finitely generated
fields (of characteristic 6= 2), as will be explained in the next section. Of course
in the case of number fields we only need to quote the standard theorems.

If the conclusion of the lemma is true for the integral closure of R in a finite
separable extension of the quotient field, and if we we could obtain a reasonably
simple proof of this, then we would have a self contained proof of weak Mordell-
Weil, sans Roquette. Lang remarks [Lan83, p.43] that R2 is a comparatively
deep theorem.
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3.2 The weak Mordell-Weil theorem

Let K be a field of characteristic 6= 2, but, for the moment, otherwise arbitrary,
and let E be an elliptic curve defined over K. We take the equation in b-form

η2 = x3 + (b2/4)x2 + (b4/2)x + b6/4 = f(x),

and coordinates of points are (x, η)-coordinates.
Let the cubic factor over K as

η2 = (x − e1)(x − e2)(x − e3). (1)

The number of ei in K can be 0, 1 or 3. Thus the 2-division points are (ei, 0),
i = 1, 2, 3, and the polynomial discriminant D of f is related to the elliptic curve
discriminant ∆ by

D = (e1 − e2)
2(e1 − e3)

2(e2 − e3)
2 = ∆/16.

We define the field Li = K(ei), the factor group Γi = L∗
i /L∗2

i and a map
φi : E(K) −→ Γi as follows. First, φi(O) = 1L∗2

i ; second, if P ∈ E(K), P 6= O
and x(P ) 6= ei, then

φi(P ) = (x(P ) − ei)L
∗2
i .

We notice that when x(P ) 6= ei+1 or ei+2 (taking subscripts mod 3), equation (1)
implies, since Γi is “mod squares”,

φi(P ) = (x(P ) − ei+1)(x(P ) − ei+2)L
∗2
i .

Third, we take this as our guide to complete the definition:

φi(ei, 0) = (ei − ei+1)(ei − ei+2)L
∗2
i .

Define Φ : E(Q) −→ Γ1 × Γ2 × Γ3 by

Φ(P ) = (φ1(P ), φ2(P ), φ3(P )).

Proposition 3.2.1 (The weak Mordell-Weil theorem)
Let K be a field of characteristic 6= 2. Then, with the above notation,

(a) φi is a group homomorphism, hence so is Φ;
(b) kerΦ = [2]E(K); if E(K)[2] = O then ∀i, kerφi = [2]E(K).

Now suppose K is the quotient field of an F2-Krull domain R, e.g. when K is
finitely generated, and charK 6= 2. Then

(c) imΦ is finite.

Hence the group E(K)/[2]E(K) is finite.

Proof. (a) We must show that for P1, P2 ∈ E(K), φi(P1 +P2) = φi(P1)φi(P2).
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• P1 = O or P2 = O : clear;

• P1 = −P2 6= O : clear from x(P1) = x(P2);

• for P /∈ E(K)[2], φi([2]P ) ≡ 1: this follows from Corollary 1.7.4 with x
replaced by x − ei;

• the general case (none of the above): let P1 + P2 = −P3, let (x, η)(Pj) =
(xj , ηj), and let η = mx+c be the line through (x1, η1) and (x2, η2). Then
the equation

(mx + c)2 = (x − e1)(x − e2)(x − e3)

has the roots x = x1, x2, x3, hence

(x − e1)(x − e2)(x − e3) − (mx + c)2 = (x − x1)(x − x2)(x − x3).

Substituting x 7→ ei shows that φi(P1)φi(P2)φi(P3) is a square.

(b) is an immediate from Proposition 1.7.3 and the remark that when E(K)[2] =
O, Li are conjugate cubic extensions of K.

(c) For notational convenience, let us prove that imφ1 is finite. Over L1

write the Weierstrass equation as

η2 = (x − e1)(x
2 + Ax + B) = (x − e1)F.

Choose d1, . . . , dm ∈ R so that e1, A,B, 1/D ∈ R′ := R[1/d1, . . . , 1/dm]. Since
D is a polynomial in e1, A, and B, therefore D is in the unit group R′∗. By
Lemma 3.1.1, R′ is F2-Krull.

Let ε1, . . . , εt be elements of R′∗ that represent the classes of R′∗/R′∗2; let
I1, . . . , Ih be divisors representing Cl(R′)[2]; and fix generators of the principal
divisors 2Ii = (mi).

Let P = (x, η) be a nonzero element in E(K) with x 6= e1. We claim
that for every essential valuation w of R′, w(x − e1) is even. This is true if
w(x − e1) < 0, equivalently w(x) < 0 since e1 ∈ R′, as we saw in §2.1.2. Thus
suppose w(x−e1) > 0, and let w′ be any extension of w to K(e1, e2, e3). We have
w′(x−e2) = 0 and w′(x−e3) = 0 since otherwise one of e1−e2 = (x−e2)−(x−e1)
or e1−e3 would have positive w′-value, hence w′(D) > 0 and therefore w(D) > 0,
contradicting the fact that D ∈ R′∗. Thus w′(F ) = w′((x − e2)(x − e3)) = 0,
hence w(F ) = 0 and therefore w(x − e1) = 2w(η) − w(F ) is even.

It follows that the principal divisor (x− e1) can be written as 2N , for some
divisor N ∈Cl(R′)[2]. Let N be in the class of Ij , say N = Ij +(z). This implies
the equality of divisors (x− e1) = (mj) + 2(z) = (mjz

2), hence x− e1 = umjz
2

for some u ∈ R′∗. Writing u = εα1

1 · · · εαt

t u2
1 where αi ∈ {0, 1}, we have

x − e1 = εα1

1 · · · εαt

t mj(zu1)
2.

Allowing for P = O and the possibility x = e1, we have proved that |im φ1| ≤
2 + 2th.
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There is an alternative to the Roquette approach to weak Mordell-Weil: that
of Lang-Tate (cf. [Lan83, p.156]), and that is the approach taken in [Lan83] —
of course for abelian varieties of any dimension and allowing characteristic 2; it is
also the approach in [Sil86] — but there only for number fields. In the end, both
approaches use the two finiteness theorems, so the Lang-Tate approach seems a
little more round-about, at least in the elliptic curve case when charK 6= 2.

3.3 Heights

The additive group Q+ is countable and has the weak Mordell-Weil property

Q+/[2]Q+ = 0,

yet is not finitely generated. The extra ingredient that allows us to prove that
E(K) is finitely generated for appropriate K is the existence of a height function
on the group E(K), in the sense of the following definition.

A height function on an abelian group A is a map

h : A −→ R≥ (the set of real numbers ≥ 0)

satisfying

H1 For every α ∈ R≥, there are only finitely many P ∈ A with h(P ) < α.
H2 For every Q ∈ A there exists β(Q) ∈ R such that

h([2]P − Q) > 2h(P ) − β(Q), ∀P ∈ A.

Here we are following Cassels [Cas66, p.258]. The number h(P ) is called the
height of P .

Proposition 3.3.1 Let A be an abelian group for which A/[2]A is finite and
there exists a height function h. Then A is finitely generated.

Proof. Let Q1, . . . , Qn be representatives of the cosets of [2]A in A, and let
B denote the subgroup generated by the Qi and the finitely many P ∈ A for
which h(P ) < α := max{β(Qi) : 1 ≤ i ≤ n}. The conclusion will follow from
B = A. Suppose, however, there exist P ∈ A−B; by H1 we can choose such a
P with minimal height. Let P = [2]P1 − Qi. Then P1 /∈ B and therefore

h(P1) ≥ h(P ) = h([2]P1 − Qi)

> 2h(P1) − β(Qi) ≥ 2h(P1) − α.

This implies h(P1) < α, hence P1 ∈ B, a contradiction.
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Actually for our applications to elliptic curves, we will construct an h defined
for all x ∈ K, and then we define

h(O) = 0, and for P = (x, y) ∈ E(K), P 6= O, h(P ) = h(x).

For the cases of Mordell-Weil proved in this chapter, the h constructed satisfies

H1a For every α ∈ R≥, there are only finitely many x ∈ K with h(x) < α.

Thus H1a is a property of the field K. Clearly

H1a =⇒ H1

for the group A = E(K), for every elliptic curve E defined over K.
Then we will prove that for any given elliptic curve E defined over K, h

satisfies the following two conditions, where P,Q denote elements of E(K).

H2a h([2]P ) = 4h(P ) + O(1), ∀P,

where O(1) denotes a function of P that is bounded above and below by con-
stants that are independent of P (but of course may depend on E);

H2b for every Q there exists γ(Q) ∈ R such that

h(P + Q) < 2h(P ) + γ(Q), ∀P.

Notice that H2a and H2b imply H2: by replacing P by [2]P − Q in H2b
and then using half of H2a, we obtain

2h([2]P − Q) > h([2]P ) − γ(Q) > 4h(P ) − γ(Q) − C.

In the next subsection we construct h on number fields, and in the follow-
ing subsection on function fields, which includes all remaining types of finitely
generated fields. Then we prove that h satisfies H2a and H2b in all cases, and
H1a in the cases of number fields and finitely generated fields of of positive
characteristic. An explicit example of an E(K) satisfying H1 but not H1a will
be given in §3.4.1.

3.3.1 Heights in number fields

Let K be a number field and v a valuation on K. If v lies over the p-adic
valuation on Q, then (see §2.10.2) we have the ramification index ev = v(p) and
the inertial degree fv = [R1/Pv : Fp], where R1 is the ring of integers in K and
Pv = {a ∈ R1 : v(a) > 0}. Thus R1/Pv = Fpfv . We define the v-adic absolute
value by

|0|v = 0, and for x ∈ K∗, |x|v = |R1/Pv|−v(x) = p−fvv(x).
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This absolute value satisfies |xy|v = |x|v|y|v and the ultrametric triangle
inequality

|x + y|v ≤ max{|x|v, |y|v},
which of course implies the ordinary, or archimedean triangle inequality

|x + y|v ≤ |x|v + |y|x.

Another fact that follows from the definition is that if x ∈ Q and |x|p denotes
the p-adic absolute value, i.e., the definition applied to the case K = Q, then

for x ∈ Q, |x|v = |x|evfv
p . (¶)

There is also a relative version of (¶). The multiplicativity of e and f in towers
implies that if L is a number field containing K and w is an extension of v to
L, then, using the notation explained in §2.1.3,

ew = e(w, v)ev, fw = f(w, v)fv.

Consequently,

for x ∈ K, |x|w = |x|e(w,v)f(w,v)
v . (¶′)

Each of the [K : Q] embeddings K ↪→ C gives rise, by restricting the usual
absolute value, to an archimedean absolute value on K. It is convenient to
denote the embeddings by v : K ↪→ C, and call v an archimedean valuation,
though of course it is not a valuation; the archimedean absolute value is defined
by |x|v = |v(x)|. The set of these [K : Q] archimedean absolute values is denoted
M∞(K); for each prime number p, we let Mp(K) denote the set of valuations
on K above p; and we define M(K) to be the union of all these sets:

M(K) =
⋃

p≤∞

Mp(K).

For v ∈ M∞(K) we define ev = fv = 1, and if w extends v to a finite
extension L of K, which is indicated notationally by w|v, we define† e(w, v) =
f(w, v) = 1. Thus (¶) and (¶′) are true for all v ∈ M(K). Since each v ∈
M∞(K) has [L : K] distinct extensions w, therefore

∑

w|v

e(w, v)f(w, v) = [L : K] ([)

is also true for all v ∈ M(K).

†This is non-standard: when a real embedding v : K ↪→ R extends to a pair of conjugate
complex embeddings w, w : L ↪→ C, then |x|w = |x|w = |x|w, and the usual procedure is to
count only one w, put e(w, v) = 2, and say that v ramifies in L. According to our definition,
non-real archimedean absolute values occur in pairs of identical twins.
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A basic theorem of number theory is the product formula:

for x ∈ K∗,
∏

v∈M(K)

|x|v = 1.

For example for Q(i), since the factorizations of 2, 3, 5 are i(1+i)2, 3, (1+2i)(1−
2i) respectively, and there is one conjugate pair of embeddings Q(i) ↪→ C,

∏ ∣∣∣∣
1 + i

15

∣∣∣∣
v

= 2−1325151

√
2

152

√
2

152
= 1.

We define the Weil height on K:

for x ∈ K, h(x) =
∑

v∈M(K)

log max{|x|v, 1}, thus h(0) = 0,

and then for an elliptic curve E/K we define

h(O) = 0, and for P 6= O, h(P ) = h(x(P )).

It is clear that h(P ) ≥ 0.
If x = r/s where r, s ∈ K, s 6= 0, then adding

∑
v∈M(K) log |s|v, which is 0

by the product formula, allows h(x) to be written as

h(r/s) =
∑

v∈M(K)

log max{|r|v, |s|v}.

In the case K = Q, the formula simplifies dramatically: if r and s are
coprime positive integers, then

h(±r/s) = log max{r, s}.

This makes the H1a property obvious for Q. In this form, h is often called
the naive height on Q; the exponentiated form H(±r/s) = max{r, s} was what
Mordell used in his original proof [Mor22].

We write hK for h when it is necessary to identify the field.

Proposition 3.3.2 Let K be a number field.
(a) For all x, y ∈ K,

h(xy) ≤ h(x) + h(y),

and h(x + y) ≤ h(x) + h(y) + ν log 2

where ν is the number of archimedean v ∈ M(K).
(b) Let L be a finite extension of K. Then

for x ∈ K, hL(x) = [L : K]hK(x).
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Proof. (a) As a temporary notation, put Hv(x) = max{|x|v, 1}, hence h(x) =
log

∏
v Hv(x). Since |xy|v = |x|v|y|v, therefore Hv(xy) ≤ Hv(x)Hv(y). Adding

over v and taking the logarithm gives the estimate for h(xy).
For v ∈ M∞(K),

Hv(x + y) ≤ max{|x|v + |y|v, 1} ≤ 2Hv(x)Hv(y)

as one sees case by case. For example, when |x|v ≤ 1, |y|v ≤ 1, and |x|v + |y|v >
1, the inequality is |x|v + |y|v ≤ 2; when |x|v ≥ 1 and |y|v ≥ 1, the inequality
is |x|v + |y|v ≤ |x|v|y|v + |x|v|y|v; and so on. We can drop the factor 2 in
non-archimedean cases because of the ultrametric triangle inequality:

Hv(x + y) ≤ max{max{|x|v, |y|v}, 1} = max{Hv(x),Hv(y)} ≤ Hv(x)Hv(y),

the last inequality again being checked case by case.
(b) For v ∈ M(K), let w1, . . . , wg be the extensions to L. Then by (¶′),

g∑

i=1

log max{|x|wi
, 1} =

g∑

i=1

log max{|x|e(wi,v)f(wi,v)
v , 1}

= log max{|x|[L:K]
v , 1} by ([)

= [L : K] log max{|x|v, 1}.

3.3.2 Heights in function fields

Let K1 be a field. A function field over K1 is a field K containing K1 as a
subfield such that

• K1 is algebraically closed in K, and

• K is finitely separably generated over K1: there exists a finite (separating)
transcendence basis t1, . . . , tn with n > 0 such that K is a finite separable
extension of K2 = K1(t1, . . . , tn).

This is indicated notationally by K/K1, and K1 is called the constant field.
In example 3 of §1 we saw how every finitely generated field K, if not finite

or a number field, is a function field over the algebraic closure K1 of the prime
subfield in K.

We now define a height function h on an arbitrary function field K/K1.
With K2 = K1(t1, . . . , tn) as in the definition, we write K2 = Q(R2), where
R2 = K1[t1, . . . , tn], and let R denote the integral closure of R2 in K; thus
Q(R) = K.

The essential valuations of the Krull domain R2 can be grouped into the sets
Si, 1 ≤ i ≤ n, described as follows. If

Fi = K1(t1, . . . , ti−1, ti+1, . . . , tn),
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then v ∈ Si means that v is the valuation on K = Fi(ti) that is trivial on Fi

and is associated with a monic irreducible polynomial p ∈ Fi[ti]; we let deg v
denote the degree of that polynomial in the variable ti, that is, the degree of
the residue field of v over Fi. Not included in Si is the 1/ti-adic valuation v1/ti

;
see §2.1.1, example 2. The residue field of v1/ti

is Fi, hence deg v1/ti
= 1. We

define
Mi(K) = Si ∪ {v1/ti

},
and then Mi(K) denotes the set of all valuations w on K extending some
v ∈ Mi(K2). Also define

deg w = f(w, v) deg v,

where f(w, v), as usual, denotes the degree of the residue field of w over that
of v. We choose a real number c satisfying 0 < c < 1 and define the absolute
values

|0|v = 0 and for x 6= 0, |x|v = cv(x) deg v,

where v ∈ Mi and Mi denotes either Mi(K2) or Mi(K).
If K ′ is a finite separable extension of K, then from the definitions

for x ∈ K, |x|w = |x|e(w,v)f(w,v)
v , (¶′)

just as we had in the number field case.
There is a product formula for each i:

∏

v∈Mi

|x|v = 1 ∀x 6= 0.

This is quite obvious in the case R2. For example consider

x = t31 + 1/t2.

As a polynomial in t1, x is irreducible; we denote the corresponding valuation
vx ∈ M1(K2). The product formula for i = 1 written additively is

∑

v(x) deg v = vx(x) deg vx + v1/t1(x) deg v1/t1 = 1 · 3 + (−3) · 1 = 0.

The factorization of x into a “constant” in F2 times monic polynomials in t2 is

x = t31(t2 + 1/t31)t
−1
2 ,

and the formula when i = 2 is 1 − 1 = 0. In general for x ∈ Fi[ti], as p
ranges over the monic irreducible factors of x,

∑

vp(x) deg vp is the degree of
the polynomial x in ti, which is cancelled by the term v1/ti

(x). This extends to
the quotient field K2: for x, y ∈ Fi[ti], y 6= 0,

∑

v∈Mi(K2)

v(x/y) deg v =
∑

v(x) deg v −
∑

v(y) deg v = 0 − 0 = 0.
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The proof of the product formula for Mi(K) goes as follows. Let v ∈
Mi(K2). Because K is a finite separable extension

∑

w∈Mi(K), w|v

e(w, v)f(w, v) = [K : K2]. (1)

Let N denote the norm map from K to K2, and let x ∈ K∗. Then
∑

w∈Mi(K), w|v

w(x)f(w, v) = v(N(x)). (2)

(1) and (2) are standard results (see [BAC6, p.148–9] or [Lan83, p.14–19]) and
so will be assumed as background material; (1) was already mentioned in §2.1.3.
Multiplying (2) by deg v and adding over v, we see that the product formula for
Mi(K) follows from that of Mi(K2).

Define M(K) = M1(K) ∪ · · · ∪ Mn(K). Thus for x ∈ K∗, we have the
product formula in additive notation

∑

v∈M(K)

v(x) deg v = 0.

We define the height on K by

h(0) = 0, and for x ∈ K∗, h(x) =
∑

v∈M(K)

max{−v(x) deg v, 0}.

Thus h(x) ≥ 0 for all x. By the product formula, for any y ∈ K∗,

h(x) =
∑

v

max{−v(xy) deg v,−v(y) deg v}.

In particular, if x ∈ K∗ is written as a fraction r/s, r, s ∈ K∗, then

h(r/s) =
∑

v

max{v(r), v(s)}deg v

=
∑

v

max{−v(r),−v(s)}deg v.

The last equality would look most peculiar if we were not in possession of the
product formula!

As in the case K = Q, the product formula yields a dramatic simplification
when K = K1(t1, . . . , tn) is a purely transcendental function field. Then if
x = r/s is a quotient of polynomials,

h(r/s) =

n
∑

i=1

max{degi(r), degi(s)},
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where degi denotes the degree in the variable ti. Notice that the H1a property is
obvious when K1 is finite: there are only finitely many polynomials of bounded
total degree. However, since the elements of K1 all have height 0, H1a fails
when K1 is infinite.

Proposition 3.3.2 is also true for function fields; of course now ν = 0:

Proposition 3.3.3 Let K/K1 be a function field.
(a) For all x, y ∈ K,

h(xy) ≤ h(x) + h(y),

and h(x + y) ≤ h(x) + h(y).

(b) Let L be a finite separable extension of K. Then

for x ∈ K, hL(x) = [L : K]hK(x).

The relation ([) of the previous section, and (¶′) are true, and the proof is
unchanged from that of the previous proposition.

Note that the constant field of L is a finite separable extension of K1.

3.4 Completion of the proof of Mordell-Weil

Proposition 3.4.1 Let K be a either a number field or an arbitrary function
field. Let h be the height on K as defined above, and let E be an elliptic curve
defined over K.

(a) Then h applied to the abelian group E(K) satisfies H2a and H2b.
(b) Assume now that K is either a number field or a finitely generated field

of positive characteristic. Then h also satisfies H1a.
Consequently, Mordell-Weil is proved for elliptic curves over number fields

and over finitely generated fields of characteristic > 2.

Proof.
(a) If K is a number field, let R denote the integral closure of Z in K;

if K is a function field then, as before, let R denote the intergral closure of
R2 = K1[t1, . . . , tn] in K. Thus in both cases, K = Q(R). We require a lemma.

Lemma 3.4.2 Let f(X) and g(X) be coprime polynomials over K, and let
d = max{deg f, deg g}. Then for all x ∈ K such that g(x) 6= 0,

h(f(x)/g(x)) = d h(x) + O(1)

where O(1) denotes a function of x that is bounded above and below by constants
that depend only on f and g, and not on x.
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Proof. By multiplying f and g by an appropriate nonzero member of R, we can
assume that their coefficients are in R. Also choose r, s ∈ R so that x = r/s. If
f(X) = a0 + a1X + · · · + adX

d, where some of the higher ai are 0 if deg f < d,
we define the homogeneous form

f(X0, X1) = Xd
0f(X1/X0) = a0X

d
0 + a1X

d−1
0 X1 + · · · ,

and similarly g(X0, X1) = Xd
0 g(X1/X0). Thus

f(x)/g(x) = f(s, r)/g(s, r), where f(s, r), g(s, r) ∈ R.

We first prove the easier half

h(f(x)/g(x)) =
∑

v

log max{|f(s, r)|v, |g(s, r)|v} ≤ d h(x) + C

for some constant C. Now

|f(s, r)|v ≤
(
|a0|v|sd|v + · · · + |ad|v|r|dv

)

≤ (|a0|v + · · · + |ad|v)max{|r|v, |s|v}d

≤ C1 max{|r|v, |s|v}d,

where C1 = max
v

{|a0|v + · · · + |ad|v}.

(There are only finitely many v for which some |ai|v 6= 0 or 1, and so this
maximum exists.) Similarly

|g(s, r)|v ≤ C2 max{|r|v, |s|v}d, ∀v,

and therefore the inequality is satisfied with C = log max{C1, C2}.
Since f and g are coprime, by Euclid’s algorithm there exist polynomials

a and b such that a(X)f(X) + b(X)g(X) = 1. Multiplying by an appropriate
nonzero k ∈ R, we can assume that a, b ∈ R[X], and

a(X)f(X) + b(X)g(X) = k.

If e = max{deg a,deg b}, we also define a(X0, X1) = Xe
0a(X1/X0) and b(X0, X1) =

Xe
0b(X1/X0). Thus

a(X0, X1)f(X0, X1) + b(X0, X1)g(X0, X1) = kXd+e
0 . (1)

Since max{deg f, deg g} = d, the reciprocal polynomials

f̃(X) = Xdf(1/X) and g̃(X) = Xdg(1/X)
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are also coprime; say a′(X)f̃(X)+b′(X)g̃(X) = k′ ∈ R−{0}, with a′, b′ ∈ R[X].
Interchanging the roles of X0 and X1, we have

Xd
1 f̃(X0/X1) = f(X0, X1), Xd

1 g̃(X0/X1) = g(X0, X1),

and
a′(X0, X1)f(X0, X1) + b′(X0, X1)g(X0, X1) = k′Xd+e

1 , (2)

where a′(X0, X1) = Xe
1a′(X0/X1), b′(X0, X1) = Xe

1a′(X0/X1).

By the half of the lemma already proved, we can choose a common constant C
so that if c is any one of a, b, a′, b′, then

|c(s, r)|v ≤ C max{|r|v, |s|v}e, ∀v.

Then (1) implies

|r|d+e
v = |k|−1

v |a(s, r)f(s, r) + b(s, r)g(s, r)|v
≤ C max{|r|v, |s|v}e(|f(s, r)|v + |g(s, r)|v)

≤ 2C max{|r|v, |s|v}e max{|f(s, r)|v, |g(s, r)|v.}

(2) yields a similar upper bound for |s|d+e, say with constant C ′. Hence, with
C ′′ = 2 max{C, C ′},

max{|r|v, |s|v}d+e ≤ C ′′ max{|r|v, |s|v}e max{|f(s, r)|v, |g(s, r)|v.} ∀v.

This implies

d h(x) = d
∑

v log max{|r|v, |s|v}

≤ h(f(s, r)/g(s, r)) + log(C ′′) = h(f(x)/g(x)) + log(C ′′).

Proof of H2a: From Proposition 1.7.1, if P = (x, y) is in E(K), and not in
E(K)[2], then x([2]P ) = f(x)/g(x) where f and g are polynomials of degrees 4
and ≤ 3 respectively. (When char K = 2, g = a2

1x
2 + a2

3.) Also gcd(f, g) = 1
by Proposition 1.7.9. By the lemma,

h([2]P ) = 4h(P ) + O(1).

Proof of H2b: We can assume that neither of P, Q is O, and that P 6= ±Q.
From the formula in Proposition 1.7.1, with P = (x1, y1), Q = (x2, y2) and
P + Q = (x3, y3),

x3 = −x1 − x2 − a2 + a1λ + λ2 where λ =
y2 − y1

x2 − x1
.
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When we put all terms over the denominator (x2 − x1)
2 and substitute y2

1 =
−a1x1y1 − a3y1 + x3

1 + · · · from the Weierstrass equation, we obtain

x3 =
A1x

2
1 + A2x1 + A3 + A4y1

(x2 − x1)2
,

where the Ai are polynomials in x2, y2 and the Weierstrass coefficients. (If it
were not for the term in y1, the lemma would immediately complete the proof.)
Let x1 = r/s2, y1 = t/s3 where r, s, t ∈ R. From the b-form of the Weierstrass
equation y2

1 = x3
1 + (b2/4)x2

1 + · · ·, we obtain the estimate

2 log max{|t|v, |s|3v} ≤ 3 log max{|r|v, |s|2v} + O(1),

and then, as in the easy half of the lemma, we deduce that

h(x3) < 2h(x1) + γ

where γ depends only on E and Q.
(b) To prove H1a, we can replace K by a finite separable extension L. For

by Propositions 3.3.2 and 3.3.3,

{x ∈ K : hK(x) < α} ⊂ {x ∈ L : hL(x) < [L : K]α}.

Thus we can assume that K is Galois over F , where F is either Q or
Fq(t1, . . . , tn); say the Galois group is G. Letting G act on K on the right,
the left action on M(K) is defined by (σw)(x) = w(xσ). Since hK is a sum over
all w ∈ M(K),

for x ∈ K and σ ∈ G, hK(xσ) = hK(x).

For a given positive α, let x ∈ K∗ satisfy h(x) < α, and therefore h(xσ) < α,
∀σ ∈ G. Let M(X) = XN + s1X

N−1 + · · · + sN be the minimum polynomial
of x over F . The coefficients sj are symmetric functions in the conjugates xσ

of x over F . By the propositions just quoted,

hK(sj) = hK

(∑
xσ1 · · ·xσj

)

<

(
N
j

)
jα +

[(
N
j

)
− 1

]
ν log 2.

It follows that for all j, hF (sj) < α′ for an appropriate α′, hence x is a root of
M(X) of degee at most [K : F ] and whose coefficients have bounded height.

Thus the proof of H1a is reduced to the cases K = Q and K = Fq(t1, . . . , tn):
those cases imply that the set of M(X) is finite, hence the set of x is finite. And
both these cases are obviously true as remarked in §3.3.1 and §3.3.2 respectively.

The standard theory of finitely generated abelian groups and Corollary 1.7.9
yield
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Corollary 3.4.3 Let E be an elliptic curve defined over K where K is either a
number field or a finitely generated field of characteristic > 2. Then E(K) has
the form

E(K) = Zr ⊕ T , r ≥ 0,

where T is the finite torsion subgroup and has the form

T = Cm1
⊕ Cm2

where m1 |m2 .

Also, charK, when positive, does not divide m1.
Hence for a positive integer m,

E(K)/[m]E(K) = (Z/[m]Z)
r ⊕ Cd1

⊕ Cd2
where di := gcd(m,mi).

When T is cyclic then m1 = 1; and when T = 0 then m1 = m2 = 1.

3.4.1 Function fields in characteristic 0

We add a few remarks concerning the unfinished proof of Mordell-Weil for func-
tion fields whose constant fields are number fields.

There would appear to be two ways to bridge the gap:

[A] Accept a less elementary proof which uses tools from algebraic geometry.

[B] Add an archimedean component ha to h which satisfies H2a and H2b,
hence the augmented height h′ = h+ha still satisfies H2a, H2b, and such
that h′ also satisfies H1a.

Or, we might settle for a partial result:

[C] Prove Mordell-Weil for E defined over function fields with constant field
a number field K1 for which j /∈ K1.

A We may as well consider the case of an arbitrary function field K/K1

(in for a penny, in for a pound), and an elliptic curve defined over K. There are
two cases: j /∈ K1 and j ∈ K1.

In the first case, H1 is true (and H1a may be false), but the proof of this is
much more difficult than that of Proposition 3.4.1(b), and would seem to require
considerable input from algebraic geometry (see [Lan83, ch.6] and [Sil94, ch.3]).
Consider Example 1 from §1.7: over K = Q(t),

E1 : y2 = x3 + tx2 − tx, has j = 28(t + 3)3/(t + 4) /∈ Q = K1.

The point (0, 0) has order 2 (but the points defined over Q do not form a
subgroup because E1 is not defined over Q), and the point P = (1, 1) has
infinite order (since, for example, [3]P = (a2/d2, ab/d3) where d = (t+2)(t+3)
cannot be a torsion point by Proposition 2.10.3 — Nagell-Lutz). H1 says that
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the set of P ∈ E1(K) with x(P ) = r/s, r, s ∈ Q[t] and max{deg(r), deg(s)} < α
is finite. But H1a is false for K = Q(t) since hK(x) = 0 ∀x ∈ Q.

In the second case, where j ∈ K1, there is a finite extension K ′ of K, in
fact a quadratic extension except possibly when j = 0 or j = 1728 (this will
be explained in detail in the next chapter) such that E is isomorphic over K ′

(in a sense defined in the next chapter) to an elliptic curve E′ defined over K1.
The result is: E′(K ′)/E′(K1) is finitely generated. When E′(K1) is known to
be finitely generated, e.g. when K1 is a number field, this implies that E′(K ′)
itself is finitely generated.

First let us record an almost trivial instance, except that the proof quotes
two results from elementary algebraic geometry that will be discussed only in
Chapter 6.

Proposition 3.4.4 Let E be an elliptic curve defined over the field K1, and let
K denote the purely transcendental extension K1(t1, . . . , tn). Then

E(K) = E(K1).

Remark. Of course this does not extend to general function fields. For example
if E is given by the equation y2 = x3 +Bx+C, B,C ∈ K1, and K = K1(t)(θ =√

t3 + Bt + C), then E(K) contains the point (t, θ) not in E(K1).

Proof. It is sufficient to treat the one variable case since that implies in suc-
cession

E(K1(t1, . . . , tn)) = E(K1(t1, . . . , tn−1))

= E(K1(t1, . . . , tn−2)), etc.

Thus suppose E(K1(t)) contains a point (x, y) /∈ E(K1). Since K1 is alge-
braically closed in K1(t) and E is defined over K1, therefore both x and y are
transcendental over K1. Thus K1(x, y) is a function field of genus 1. This con-
tradicts Lüroth’s theorem which says that K1(x, y) = K1(t

′) for some t′ ∈ K1(t),
which has genus 0.

Over K = Q(t) consider the curves

E2 : y2 = x3 − 4t2x + 4t3, and E3 : y2 = x3 − 4x + 4

both with j = −21033/11. By methods to be developed, one finds that E3(Q)
is infinite cyclic, generated by P = (2, 2). (Nagell-Lutz discovers P and shows
that the torsion subgroup is trivial; thus at this point it is certain that E3(Q)
has the form Zr for some integer r ≥ 1.) Since these infinitely many points all
have K-height 0, H1 is false for E3(K).

Over the quadratic extension K ′ = Q(
√

t) we have the group isomorphism

E3(K
′) −→ E2(K

′) where (a, b) 7−→ (at, bt
√

t)
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and the result says that E3(K
′) is finitely generated. We can actually prove

this because in this example it happens that K ′ is purely transcendental over
Q, and therefore by the proposition,

E3(K
′) = E3(Q) = 〈(2, 2)〉 ≈ E2(K

′) = 〈(2t, 2t
√

t)〉.

B I do not know if such an h′ exists, although the main result of Altman
in [Alt72] perhaps suggests that it should. However the obvious candidates
do not seem to work in Lemma 3.4.2. To simplify notation, let us work over
K = Q(t) = Q(Z[t]). Then for r/s ∈ K, where r, s are coprime polynomials in
Z[t], we can try

ha(r/s) = log max{|r|, |s|}
where |–| extends the absolute value on Q in some manner to K.

Inspecting the proof of that lemma, it seems that |–| is required to have the
following four properties for r, s ∈ Z[t]:

(o) For every α, the set {r : |r| + deg(r) < α} is finite;
(i) |r + s| ≤ |r| + |s| (or conceivably ≤ C1(|r| + |s|));
(ii) |rs| ≤ C2|r||s|;
(iii) |r2| ≥ C3|r|2 for some C3 > 0.

Let r = a0 + a1t + · · · + amtm. If τ ∈ C is a transcendental number, then
f(r) = a0 + a1τ + · · · is a ring embedding Z[t] ↪→ C, hence |r| = |f(r)| satisfies
(i) to (iii) — but not (o).

The following candidates all satisfy (o).

• |r| = max{|ai|} satisfies (i) but not (ii): when all ai = 1, |r| = 1 but
|r2| = m + 1;

• Lang’s ‘size’ function [Lan66, p.49]) is the log of

|r| = max{|a0|, . . . , |am|, em}.
He observes that

|rs| ≤ (|r||s|)3 ;

it is easy to reduce the exponent to 2, but it cannot be reduced to 1.

• regarding r as a function of the complex variable t,

|r| = exp

∫ 1

0

log |r(e2πiτ )| dτ

violates (i): improving a result of Mahler, Duncan [Dun66] shows that for
polynomials r, s of degree ≤ m,

|r + s| ≤
(

2m
m

)1/2

(|r| + |s|) ,

but it seems (?) one cannot prove (i) with C1 independent of m.
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• |r| = |a0| + · · · + |am| satisfies (i) and (ii) but randomized computer ex-
amples with large m indicate that inf |r2|/|r|2 = 0, which also rules out
modifications of this |r| such as |r|2deg r and max{|r|, 2deg r}.

• |r| =
(∑ |ai|2

)1/2
satisfies (i) and (iii) with C3 = 1. However ran-

domized examples indicate that sup |r2|/|r|2 = ∞, which also rules out
modifications like those in the last example. And the same story for

|r| = (
∑ |ai|p)1/p

seems to be true for all p > 1.

C If E is defined over K where K is a finite extension of the purely tran-
scendental extension K1(t1, . . . , tn) of the number field K1 and j /∈ K1, then
we can choose t = one of the ti such that j /∈ the algebraic closure K2 of
K1(t1, . . . , ti−1, ti+1, . . . , tn) in K. We can choose an embedding K2 ↪→ C and
we have

E is defined over a finite extension K ′ of C(t) and j /∈ C.

In particular, j 6= 0 or 1728, and (as will be explained in the next chapter),
replacing K ′ by a quadratic extension E is isomorphic with the generic-j curve

E′ : y2 + xy = x3 − 36

j − 1728
x − 1

j − 1728
,

and statement [C] would follow from

E′(K ′) is finitely generated.

It may be feasible to give an elementary proof of this by showing that the
height function h as defined in §3.3.2 satisfies H1 (though not H1a).

3.5 The canonical height

For any field K, K denotes an algebraic closure,
and K

s
denotes a separable algebraic closure.

Let x ∈ Q, and let K be a number field containing x. By Proposition 3.3.2,
the absolute height

habs(x) =
1

[K : Q]
hK(x)

is independent of the choice of K, and so is well-defined. A similar definition can
be made in the function field case, based on Proposition 3.3.3 with K1(t1, . . . , tn)
playing the rôle of Q, but now habs is “less absolute” since it depends on the
choice of the separating transcendence basis. Thus if K is either a number field
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or a function field with chosen transcendence basis, and E is an elliptic curve
defined over K, then for P ∈ E(K

s
), habs(P ) is unambiguous.

For any finite separable extension L of K, the absolute height satisfies H2a
and H2b on the group E(L) since hL does. For such E/K the canonical height
(of Néron and Tate) is defined by

ĥ(P ) = lim
N→∞

habs([2
N ]P )

4N
.

That the limit exists is the first thing proved in the next proposition.
The Néron-Tate height pairing is defined by

〈P,Q 〉 =
1

2

(
ĥ(P + Q) − ĥ(P ) − ĥ(Q)

)
for P,Q ∈ E(K

s
).

CAUTION: There are two normalizations of the canonical height:
the larger one adopted here (and in [Cre92], [Kna92]), and the
smaller one

ĥsm =
1

2
ĥ, so 〈P, Q 〉 = ĥsm(P + Q) − ĥsm(P ) − ĥsm(Q),

as in [Hus87], [Sil88], and [Sil90].†. In [Sil86], the larger ĥ is used,

but 〈P, Q 〉 is defined without the factor 1/2. ‡

Proposition 3.5.1 Let E be a number field or a function field, and E an elliptic
curve defined over K. In the following statements, P, Q,R denote arbitrary
points in E(K

s
) unless indicated otherwise.

(a) The limit defining ĥ(P ) exists; ĥ(P ) ≥ 0, ∀P , and ĥ(O) = 0.
(b) Let L be a finite separable extension of K. Then

∀ P ∈ E(L), ĥ(P ) = habs(P ) + O(1),

where O(1) denotes a function of P that is bounded above and below by constants
that depend only on E and L, and not on P . Hence the axiom H1 can be
expressed in terms of the canonical height:

H1 ∀α, {P ∈ E(K) : ĥ(P ) < α} is finite.

(c) ĥ([2]P ) = 4ĥ(P ), hence

ĥ(P ) = 〈P, P 〉.
† apecs calculates ht= ĥsm.
‡ With this mixed notation the regulator (see below) should be defined as

det(2−1〈Pi, Pj〉).
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(d) If h′ : E(K
s
) −→ R satisfies (b) and (c), then h′ = ĥ.

(e) The parallelogram law: 〈P,−Q 〉 = −〈P, Q 〉, equivalently,

ĥ(P + Q) + ĥ(P − Q) = 2ĥ(P ) + 2ĥ(Q).

(f) ĥ is a quadratic form on E(K
s
), i.e.,

(1) ĥ is even: ĥ(−P ) = ĥ(P ), and

(2) the Néron-Tate pairing is symmetric and bilinear.

Consequently,

• for all m ∈ Z,
ĥ([m]P ) = m2ĥ(P ),

hence ĥ(P ) = lim
N→∞

habs([N ]P )

N2
;

• if T is a torsion point then for all P , ĥ(P + T ) = ĥ(P ). In particular,

ĥ(T ) = 0, and therefore 〈P, T 〉 = 0;

• for any P1, . . . , Pm, let (〈Pi, Pj〉) denote the m×m symmetric height pair-
ing matrix ; then for any row vector of integers N = (n1, . . . , nm), using
matrix multiplication,

ĥ(n1P1 + · · · + nmPm) = N (〈Pi, Pj〉)N tr,

where tr denotes the transpose. More generally, if N = (njk) is an s × m
matrix of integers and P ′

j =
∑

k njkPk, then

(
〈P ′

j , P
′
k〉

)
= N (〈Pi, Pj〉)N tr.

If the Pi are linearly dependent mod torsion, i.e., there are integers n1, . . . , nm,
not all 0, and a torsion point T such that n1P1 + · · · + nmPm = T , then

det (〈Pi, Pj〉) = 0.

(g) When extended to the real vector space E(K
s
)⊗Z R, ĥ is positive semi-

definite; therefore we have
— the Cauchy-Schwartz inequality:

〈P1, P2〉2 ≤ ĥ(P1)ĥ(P2),

— hence the triangle inequality:
√

ĥ(P1 + P2) ≤
√

ĥ(P1) +

√
ĥ(P2);
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Remark. For converses to various statements in (f), and cases when ĥ is
positive definite, see the next proposition. In [Ser89, p.43], Serre poses the
question: assuming K = Q, does 〈P, Q 〉 = 0 imply that at least one of P,Q is
a torsion point? As far as I know, this question remains unanswered.
Proof. For convenience, throughout this proof h stands for habs.

(a) Let P be defined over the finite separable extension L, and set aN =
h([2N ]P )/4N . By H2a for E(L), there exists a constant C such that for all
N ≥ 1, |aN − aN−1| < C/4N . Hence for 0 ≤ M < N ,

|aN − aM | ≤ |aN − aN−1| + |aN−1 − aN−2| + · · · + |aM+1 − aM | < C/(3 · 4M ),

which proves that the sequence is Cauchy. Since h([2N ]P ) ≥ 0 with equality
when P = O, the other comments follow.

(b)

|ĥ(P ) − h(P )| = lim
N→∞

|aN − a0| ≤ C/3.

(c)

ĥ([2]P ) = lim (h([2N+1]P )/4N )

= lim ((4h([2N ]P ) + O(1))/4N ) = 4ĥ(P ).

(d) follows from 4Nh′(P ) = h′([2N ]P ) = h([2N ]P ) + O(1) and the definition

of ĥ.
(e)

The “proof” of (e) that appeared here was nonsense, as a student
at Rutgers found out. For the time being I must simply refer to
the proof given in [Sil86, Theorem 6.2, p. 216].

(f) (1) follows from x(−P ) = x(P ). The symmetry of the pairing is evident.
We wish to show that

T (P, Q,R) := 〈P + Q, R〉 − 〈P,R〉 + 〈Q,R〉,
= ĥ(P + Q + R) − ĥ(P + Q) − ĥ(P + R) − ĥ(Q + R)

+ĥ(P ) + ĥ(Q) + ĥ(R)
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is identically 0. From the last expression, T is a symmetric function of the three
variables, and from the previous expression and the first form of the parallelo-
gram law, T (P, Q,−R) = −T (P, Q, R). Thus

T (−P,−Q,−R) = (−1)3T (P,Q, R).

But ĥ(−S) = ĥ(S) ∀S implies the opposite: T (−P,−Q,−R) = T (P,Q, R).

Consequently, ĥ([m]P ) = 〈[m]P, [m]P 〉 = m2〈P, P 〉 = m2ĥ(P ). Hence,
with all limits for N → ∞,

lim (h([N ]P )/N2) = lim ((ĥ([N ]P ) + O(1))/N2

= lim (ĥ(P ) + O(1)/N2) = ĥ(P ).

If T has order m, then

ĥ(P + T ) = ĥ([m](P + T ))/m2 = ĥ([m]P )/m2 = ĥ(P ).

Let A = (〈Pi, Pj〉). The fact that the pairing is bilinear implies that

(
〈P ′

j , P
′
k〉

)
= NAN tr,

which reduces to ĥ(n1P1 + · · ·) when N is 1 × m.
Let F = F (n1, . . . , nm) denote the m-ary quadratic form with coefficient

matrix A. We will show in a moment that F is positive semi-definite, i.e., the
eigenvalues of A are all ≥ 0. Assuming this, when there is linear dependence
mod torsion among the Pi, so that F (n1, . . .) = ĥ(T ) = 0 with not all ni = 0,
then F is not positive definite: at least one eigenvalue is 0, and the determinant
is 0.

(g) On the contrary, there would be real numbers α1, . . . , αm and points

P1, . . . , Pm such that for the extended ĥ,

ĥ(α1P1 + · · · + αmPm) =

m∑

i,j=1

αiαj〈Pi, Pj〉 < 0.

With P1, . . . , Pm fixed, ĥ is a continuous (quadratic) function of the real vari-
ables α1, . . . , αm, and therefore the above inequality is true with the αi replaced
by sufficiently close rational approximations. Then, multiplying through by a
common denominator, we can assume that the αi are integers. This contradicts
ĥ(P ) ≥ 0∀P ∈ E(K

s
).

We recall a proof of Cauchy-Schwartz, independent of the foregoing. For all
integers m and n,

0 ≤ ĥ(mP1 + nP2) = 〈mP1 + nP2,mP1 + nP2〉
= m2ĥ(P1) + 2mn〈P1, P2〉 + n2ĥ(P2).
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Since this homogeneous quadratic in m and n is never negative, its discriminant
satisfies

〈P1, P2〉2 − ĥ(P1)ĥ(P2) ≤ 0.

This gives Cauchy-Schwartz, which we can write as

|〈P1, P2〉| ≤
√

ĥ(P1)

√
ĥ(P2).

Multiplying this by 2 and adding ĥ(P1) + ĥ(P2) to both sides gives the triangle
inequality.

Exercise: Let E/K be as in the proposition and let P1, P2, . . . ∈ E(K).
From the parallelogram law we deduce

ĥ(P1 + P2) ≤ 2ĥ(P1) + 2ĥ(P2),

hence

ĥ(P1 + P2 + P3) ≤ 2ĥ(P1 + P2) + 2ĥ(P3) ≤ 4ĥ(P1) + 4ĥ(P2) + 2ĥ(P3),

the latter exhibiting a peculiar asymmetry. Prove that for real numbers ti

ĥ(P1 + · · · + Pn) ≤ t1ĥ(P1) + · · · + tnĥ(Pn)

is a valid rule (for all such E/K and all Pi ∈ E(K)) iff the matrix




t1 − 1 −1 . . . −1
−1 t2 − 1 . . . −1
...

...
−1 −1 . . . tn − 1




is positive semi-definite. For example,

ĥ(P1 + P2) ≤ 3ĥ(P1) +
3

2
ĥ(P2).

(Hint: The determinant of the matrix is

t1 · · · tn
(
1 − t−1

1 − · · · − t−1
n

)
.

Let δ(1, . . . , n) denote this determinant and for any subsequence i1, . . . , im of
1, . . . , n, let δ(i1, . . . , im) denote the determinant of the m×m matrix associated
to the numbers ti1 , . . . , tim

. Then from [Gan60, vol.1, p.307], the condition is
that all these principal subminors δ(i1, . . . , im) ≥ 0.)

The next proposition is concerned with E(K) for which we have proved
Mordell-Weil: K is a number field or a finitely generated field of characteristic
> 2. Thus E(K) can be written as a direct sum T ⊕Zr where T is the torsion
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subgroup and r is the rank (over K). A Mordell-Weil basis of E(K) is a Z-
basis Q1, . . . , Qr of the free part; thus every P ∈ E(K) is uniquely expressible
in the form

P = n1Q1 + · · · + nrQr + T, ni ∈ Z and T ∈ T .

The regulator of E/K is the r × r determinant

Reg(E/K) = det (〈Qi, Qj〉) (= 1 when r = 0).

It will be proved in the next proposition that Reg(E/K) is a well-defined positive
number.

Proposition 3.5.2 Let K be either a number field or a finitely generated field
of characteristic > 2, and let E be an elliptic curve defined over K. Thus E(K)
is finitely generated. Let T denote the torsion subgroup and let Q1, . . . , Qr be a
Mordell-Weil basis.

(a) For P ∈ E(K
s
),

ĥ(P ) = 0 ⇐⇒ P ∈ T .

(b) ĥ extended to the real vector space E(K
s
) ⊗ R is positive definite.

For the remainder of the proposition, P1, . . . denote points in E(K).‡

(c) P1, . . . , Pm are dependent mod T , i.e., n1P1 + · · · + nmPm ∈ T for some
integers n1, . . . , nm not all 0, iff

det (〈Pi, Pj〉) = 0.

Otherwise this determinant is positive. In particular

Reg(E/K) > 0.

(d) Suppose P1, . . . , Pr are independent mod T , and let q denote the index
in E(K) of the subgroup generated by the Pi together with T . Then

det (〈Pi, Pj〉) = q2 Reg(E/K).

Hence the regulator is characterized as the smallest height pairing determinant
of r independent points; and r points in E(K) constitute a Mordell-Weil basis
iff their height pairing determinant equals the regulator.

(e) Suppose for some α > 0 and for some integer m > 1, the image of the

finite set S = {P : ĥ(P ) ≤ α} in the group G := E(K)/[m]E(K) generates G
(for example if S surjects onto G). Then S contains a Mordell-Weil basis.

‡K may be replaced by any finite separable extension in order to accommodate points
P1, . . . , Pi ∈ E(K

s
).
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Proof. (a) In the previous proposition we saw that ĥ(P ) = 0 for P ∈ T . The

converse follows from H1: if ĥ(P ) = 0 then ĥ([m]P ) = m2ĥ(P ) = 0, hence the

set {P, [2]P, [3]P, . . . } ⊂ {P ′ : ĥ(P ′) < 1 (say) } is finite.

(b) By H1, when r > 0, ĥ assumes a minimum positive value µ1 on E(K), or,

what amounts to the same thing, on E(K)/T = Zr = ZQ1+· · ·+ZQr. By (a), ĥ

is positive on the latter group: ĥ(n1Q1+ · · ·+nrQr) = 0 =⇒ n1 = · · · = nr = 0.
It is still conceivable that h(α1Q1 + · · ·) = 0 for some α1, . . . ∈ R not all 0.

Suppose this is the case, i.e., suppose ĥ is not definite. Then, using the notation
of the remark above, the diagonalized form of ĥ is λ1x

′2
1 + · · ·+λsx

′2
s , where the

λi are positive, but s < r. Then

B := {(x′
1, . . .) ∈ Rr : λ1x

′2
1 + · · · + λsx

′2
s ≤ µ1/2}

is convex, symmetric with respect to the origin, and has infinite volume since
s < r. Translating back by the orthogonal transformation, B′ = BM is also
convex and symmetric, and has infinite volume. By a standard result of the
geometry of numbers,† B′ contains a nonzero integral point P = (n1, . . . , nr).

Then 0 < ĥ(P ) ≤ µ1/2, contradicting the minimality of µ1.
(c) and (d) We proved in the previous proposition that the height pairing

determinant is 0 when the Pi are dependent. Now if Q1, . . . , Qr is any Mordell-
Weil basis, then (〈Qi, Qj〉) is the symmetric matrix of a concrete realization

of the positive definite form ĥ. Consequently the determinant of this matrix
is positive. Next, if P1, . . . , Pr are independent mod T , then by basic abelian
group theory, there exists a Mordell-Weil basis Q′

1, . . . such that for 1 ≤ i ≤ r,
Pi = diQ

′
i where the di are positive integers, each a multiple of the preceding:

di−1|di for 2 ≤ i ≤ r. Moreover, q = d1 · · · dr. The displayed formula in (d)
follows from the bilinearity of height pairing and elementary determinant theory.

An independent set P1, . . . , Pi of fewer than r points can be augmented to an
independent set P1, . . . , Pr. The height pairing determinant of the augmented
list is positive, i.e., ĥ(n1P1 + · · ·+nrPr) > 0 unless all nj = 0. Hence ĥ(n1P1 +
· · · + niPi) > 0 unless n1 = · · · = ni = 0, which means that the i × i height
pairing determinant of the original list of points is positive.

(e) This result, attributed to Zagier in [Sil90, Prop. 7.2], sharpens earlier
statements such as the “descent lemma” in [Ser89, p. 53].

Since ĥ(T ) = 0 ∀T ∈ T , therefore S ⊃ T , hence S contains in fact a set of
generators for the whole group E(K). Here is a proof by contradiction.

Suppose Q /∈ 〈S 〉, the subgroup generated by S; we can choose Q of minimal
height (H1 again). Let Q = P + [m]R where P ∈ 〈S〉, hence P + Q and R are
not in 〈S 〉. By minimality,

ĥ(P + Q) = ĥ(P ) + ĥ(Q) + 2〈P, Q 〉 ≥ ĥ(Q),

†[Har-Wr54, theorem 446] is often quoted; see also [Cas91, ch.4] for the generalization by
van der Corput.
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hence 2〈P,Q 〉 ≥ −ĥ(P ), and therefore

m2ĥ(R) = ĥ(Q − P ) = ĥ(Q) + ĥ(P ) − 2〈P,Q 〉 ≤ ĥ(Q) + 2ĥ(P ) < 3ĥ(Q).

Thus

ĥ(R) <
3

m2
ĥ(Q) ≤ 3

4
ĥ(Q),

which contradicts the minimality of ĥ(Q).

Corollary 3.5.3 Let E/K be as in the theorem and suppose that for some α > 0

the set S := {P ∈ E(K) : ĥ(P ) ≤ α} contains r independent points P1, . . . , Pr

such that the subgroup H of E(K) generated by {P1, . . . , Pr} ∪ T contains S.
Then H = E(K), that is, P1, . . . , Pr constitute a Mordell-Weil basis.

Proof. Choose a prime p not dividing either |T | or the index i := [E(K) : H].
The first assumption on p implies that V := E(K)/[p]E(K) is a vector space
over Fp of dimension r. To deduce the corollary from statement (e) of the
proposition, it remains to show that the images of the Pi are linearly independent
in V . If not, there would be a relation

[p]P = [n1]P1 + · · · + [nr]Pr

for some P ∈ E(K) with not all nj ≡ 0 mod p. But the existence of such a P
implies that p|i, which contradicts the second assumption on p.

3.5.1 Calculating the canonical height: a first look

h denotes habs

Because of poor convergence, in the case of number fields, limh([N ]P )/N2

does not afford a good method of calculating ĥ(P ). There is a practical algo-
rithm for this due to Tate, as refined by Silverman [Sil88] (the bibliography there
contains references to the work of others), but we must postpone its description
because it involves a number of matters not yet discussed. Thus for the time
being, we suppose we can calculate ĥ(P ) to any desired degree of accuracy, if
necessary using the limit formula and persistence. Here is a numerical example
over K = Q.

The first curve in the lists [AntIV] and [Cre92] with a point P of infinite
order is

y2 + y = x3 − x, P = (0, 0). A37

Calculation produces the following results:
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n h([2n]P )/4n h([3n]P )/9n

1 0 0
2 0 0
3 .0433 .0480
4 .05029 .05119
5 .0511006 .05106
6 .0511008 .0511134
7 .0511014 .05111151
8 .0511034
9 .05111065

10 .05111140815

The actual value to 11 decimal places, as calculated by the Tate-Silverman
algorithm is†

ĥ(P ) = .05111140824 .

Thus the results in the table give us several digits of accuracy, but at great
cost: the numerator and denominator of x([210]P ) each contain more than 5800
digits, while those of x([37]P ), over 11,000. And we must maintain the exact
rational values of the coordinates because we need to know x([N ]P ) in lowest
terms, after cancellation of common factors.

Also, to make effective use of Proposition 3.5.2(e) one needs an explicit value
of U in

h(P ) − ĥ(P ) < U, ∀P ∈ E(K).

({P : h(P ) < α + U} contains the set S of statement (e).) At this point we
state two estimates for U ; the first due to Silverman [Sil90] is widely used, the
second due to Siksek [Sik95] is very recent. The proofs depend on facts that we
have not yet sufficiently discussed and must be postponed; the proof of Siksek’s
estimate will be given in Chapter 7, and that of Silverman somewhat later.

In all the examples I have seen, Siksek’s estimate is better, i.e., smaller,
and in many cases substantially smaller; we present the example A37(Q) after
stating the two estimates. However, their approaches to the problem are quite
different making a general comparison difficult. Silverman also gives a lower
bound L < h − ĥ, which we also quote.

If |x|′v and ĥsm denote the absolute values and canonical height as defined
in [Sil90], the relation with our notation is

|x|v =

{
|x|′v if v ∈ M∞(K),
|x|′evfv if v ∈ Mp(K), p < ∞,

and ĥ(P ) = 2ĥsm(P ).

†This is 2 ∗ ht(0) as calculated by apecs.
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Note also that there is only one |x|′v for a conjugate pair of embeddings K ↪→
C, whereas there are two identical |x|v. Silverman’s result, incorporating the
improvement in a special case due to Tate ([Sil90, Theorem 4.1]), in our notation
is:

Let E be an elliptic curve defined over a number field K. Define

h∞(x) =
1

[K : Q]

∑

v∈M∞(K)

max{1, log |x|v},

and M =
1

6
h(∆) +

1

6
h∞(j) + h∞(b2/12) +

{

0 if b2 = 0,
log 2 if b2 6= 0,

Then one can take

L = −2.14 − M,

U = 1.946 + M +
1

12
h(j) − 1

4

∑

∗

log max{1, |j|v},

where the sum is over those valuations on K for which v(j) = −1
and v(c4) = 0.

Siksek’s estimate for U is as follows. Let v ∈ M(K) and let Kv denote the
completion as usual. The precise definition of the quantities σv that appear in
the estimate† can only be given in Chapter 7; for now we must be content with
the bound σv ≤ 1/3. Define the polynomials

f(x) = 4x3 + b2x
2 + 2b4x + b6, f1(x) = x4f(1/x),

g(x) = x4 − b4x
2 − 2b6x − b8, g1(x) = x4g(1/x).

Thus from §1.7.2, if P = (x, y) ∈ E(Kv), then the x-coordinate of [2]P is
g(x)/f(x) = φ2/ψ2

2 . From the identity in Proposition 1.7.12(b), f(x) and g(x)
cannot simultaneously be 0; since g1(0) = 1, it follows that f1(x) and g1(x)
cannot simultaneously be 0.

Next define

Dv = {x ∈ Kv : |x|v ≤ 1 and f(x) ∈ K2
v},

D′
v = {0} ∪ {x ∈ K∗

v : |xv|v ≤ 1 and f1(x) ∈ K2
v},

dv = inf
x∈Dv

max{|f(x)|v, |g(x)|v},

d′
v = inf

x∈D′

v

max{|f1(x)|v, |g1(x)|v}.

†These quantities are called µv in [Sik95], but we had already appropriated the symbol µ

for successive minima; see the next section.
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Since the two D are compact subsets of Kv (in the v-adic topology), the two
inf are attained; and since the two polynomials cannot both be 0 in either case,
we have dv > 0 and d′v > 0. Finally, define

εv = 1/ min{dv, d′
v}.

Let E be an elliptic curve defined over a number field K. Then
∀Q ∈ E(K),

h(Q) − ĥ(Q) ≤ U =
1

[K : Q]

∑

v∈M(K)

σvnv log(εv),

where nv = evfv (= 1 when v is archimedean with our conventions
concerning M∞). Moreover, for all v, 0 ≤ σv ≤ 1/3, and for nonar-
chimedean v with residue characteristic p,

0 ≤ nv log(εv) ≤ 2

⌊

v(∆)

2

⌋

log p.

In [Sik95, Lemma 2.3(5)] the upper bound for nv log(εv) has 4∆ in place of ∆.
The present version, which is an improvement when p = 2, was not noticed
before the paper was printed. In working out numerical examples one usually
uses better bounds, especially for the σv — as will be explained in Chapter 7.

For E = A37, b2 = 0, c4 = 48, ∆ = 37, j = 21233/37, hence

Silverman: − 4.08 < h(Q) − ĥ(Q) < 3.947 ∀Q ∈ E(Q).

In Siksek’s estimate, with an obvious simplification of notation, εp = 0 for
all primes p, and the only contribution to U is ε∞:

f(x) = 4x3 − 4x + 1, g(x) = x4 + 2x2 − 2x + 1,

f1(x) = x4 − 4x3 + 4x, g1(x) = x4 − 2x3 + 2x2 + 1.

One finds that d∞ = g(λ2) = .6115−, where λ2 is the middle root of f , and that
d′
∞ = g1(0) = 1. Thus ε∞ = 1/.6115− = 1.635, and

h(Q) − ĥ(Q) <
1

3
log(1.635) = .164 .

From above we have ĥ(P ) = ĥ(0, 0) = .051, hence for Q ∈ E(Q) (cf. Proposi-
tion 2.2.2),

{Q : ĥ(Q) < .051} ⊂ {Q : h(Q) < .051 + .164 = .215}

=
{(m

e2
,

n

e3

)

∈ E(Q) : max{|m|, e2} < exp(.215) = 1.24
}

.
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The last set consists of

P = (0, 0), −P = (0,−1), [2]P = (1, 0),

[−2]P = (1,−1), [3]P = (−1,−1), [−3]P = (−1, 0).

It follows that ĥ(P ) = .051 . . . is the first successive minimum, as defined in
the next section (taking the upper bound .164 on faith — a proof for infidels is
given in Corollary 3.7.6, where it is also proved that the rank of E(Q) is 1).

Let us now consider a function field example in positive characteristic:

P0 = (1, 1) on E : y2 = x3 + tx2 − tx over Fp(t),

where p is an odd prime and t is a transcendental. Let Pν = [2ν ]P0 and let
x(Pν) = mν/e2

ν , where mν and eν are relatively prime polynomials. By Corol-
lary 1.7.2,

x(Pν+1) =
(m2

ν + te4
ν)2

4mνe2
ν(m2

ν + tmνe2
ν − te4

ν)
.

By an induction left to the reader, t does not divide mν or eν , and there is no
cancellation in the above fraction. Hence

deg mν = 2 · 4ν−1, deg eν = 4ν−1 − 1,

ĥ(P0) = lim
ν→∞

4−ν max{deg mν , deg e2
ν} =

1

2
,

a rational number! In fact in the function field case, canonical heights are always
rational numbers, being expressible in terms of “intersection numbers” — but
that is another long chapter in algebraic geometry. (One expects canonical
heights in the number field case to be either 0 or transcendental, but I don’t
know of any results in that direction.)

3.5.2 The successive minima

Notation: for P1, . . . ∈ E(K), r(P1, . . . , Pi) denotes the rank of the subgroup of
E(K) generated by the set {P1, . . . Pi}.

Property H1 as stated in Proposition 3.5.1(b) permits us to define the suc-
cessive minima of E(K) as the increasing sequence of positive real numbers

µ1 ≤ µ2 ≤ · · · ≤ µr for which there exist Pi ∈ E(K) with ĥ(Pi) = µi such that
for all P ∈ E(K),

ĥ(P ) ≤ µi =⇒ r(P1, . . . , Pi, P ) = i.

In other words, assuming r > 0, among all P with ĥ(P ) > 0, some P1 is
chosen with minimum positive canonical height. Then inductively, having cho-
sen P1, . . . , Pi, as long as i < r, among all P that increase the rank, i.e.,
r(P1, . . . , Pi, P ) = i + 1, Pi+1 is chosen with minimum canonical height.
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(This definition raises the question, at least when K is a number field: Can
µi = µi+1 ? I guess that this never happens when K = Q, but can happen
for other number fields. The latter is suggested by this: if E is defined over a
subfield K0 of K, then K0-conjugate points in E(K) have the same canonical
height. For example when E is y2 = x3 + x2 − 1 the points P = (1 + i, 1 +

2i) and P̄ = (1 − i, 1 − 2i) have the same height ĥ(P ) = ĥ(P̄ ) = .4436 by
Silverman’s algorithm mentioned in the previous section. One can check that
they are independent, however they do not provide an example of µ1 = µ2 since
ĥ(P + P̄ ) = ĥ(1,−1) = .3539).

Proposition 3.5.4 Let K be a number field or a finitely generated field of char-
acteristic > 2, let µ1, . . . , µr be the successive minima of E/K , let P1, . . . , Pr be

independent points in E(K) such that ĥ(Pi) = µi, and let H be the subgroup
generated by {P1, . . . , Pr} ∪ T .

(a) µ1 · · ·µr ≤ ΓrReg(E/K),

where Γ1 = 1, Γ2 = 4/3, Γ3 = 2, Γ4 = 4, Γ5 = 8, Γ6 = 64/3, Γ7 = 64,
Γ8 = 256, and for r ≥ 9,

Γr =

(
4

π

)r

Γ
(r

2
+ 1

)2

.

(b) [G : H]2 ≤ Γr det(〈Pi, Pj〉)
µ1 · · ·µr

,

hence if the right side is < 4 then P1, . . . , Pr form a Mordell-Weil basis.
(c) (Minkowski) In any case if r ≤ 4 then P1, . . . , Pr form a Mordell-Weil

basis.

Remark. It may be that the restriction r ≤ 4 in statement (c) can be lifted,
at least when K is a number field. Let us elucidate the situation.

Let F (x1, . . . , xr) be a real positive definite quadratic form. Then F satisfies

H1 ∀α > 0, {N = (n1, . . . ) ∈ Zr : F (n1, . . . ) < α} is finite.

(For let A be the symmetric matrix of F , so F (x1, . . .) = XAXtr where X =
(x1, . . .), and let M be a diagonalizing orthogonal matrix, i.e., the substitution
X = X ′M gives F = λ1x

′2
1 +· · ·+λrx

′2
r , where the eigenvalues λi are all positive.

Then F < α implies that the squared length X ′X ′tr is bounded. Since M is
orthogonal, x2

1 + · · · = XXtr = X ′X ′tr is bounded.)
Thus the successive minima 0 < µ1 ≤ · · · ≤ µr can be defined: choose

a nonzero P1 ∈ Zr with minimum “height” F (P1) = µ1. Inductively, with
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P1, . . . , Pi chosen and i < r, choose Pi+1 ∈ Zr with minimum F (Pi+1) = µi+1

subject to increasing the dimension, i.e., Pi+1 not in the subspace of Rr spanned
by P1, . . . , Pi. We adapt a proof of Minkowski, following [Cas78, p.257], to yield:
if r ≤ 4, then independent points P1, . . . , Pr chosen to give the successive minima
form a basis of Zr.

The result actually given by Minkowski (Cassel’s Lemma 1.2‡) is this: let
Q1, . . . , Qr be a basis of Zr, ordered so that Mi = F (Qi) satisfy 0 < M1 ≤ · · · ≤
Mr, and suppose that for 1 ≤ J ≤ r,

Q = s1Q1 + · · · + sJQJ , sj ∈ {0, 1,−1}, sJ = 1 =⇒ F (Q) ≥ MJ .

If r ≤ 4, then the basis Q1, . . . , Qr is Minkowski reduced, i.e., ∀i, Qi has
minimum height among all Q such that Q1, . . . , Qi−1, Q can be included in a
basis of Zr. There are counterexamples when r > 4. Here Q1, . . . is assumed to
be a basis to begin with, whereas we want to prove that a certain sequence P1, . . .
is a basis. Nevertheless, a similar proof works. Cassels also gives references for
the difficult analysis of cases with higher r.

But do the quadratic forms that occur as ĥ have special properties not
shared by all positive definite forms that allow (c) to be extended to higher r ?
Corollary 3.5.3 with α = µr doesn’t immediately apply since conceivably we
could have situations such as ĥ(P ′

r) = µr, [3]P ′
r = P1 + [5]Pr.

Proof. (a) This is a standard result for positive definite quadratic forms. See
[Cas78,p.262] and [Sie88,p.26]. For r ≤ 8 the constants Γr are best possible; see
[Cas59,p.332].

(b) follows from (a) and Proposition 3.5.2(d).

(c) We suppose by induction on J that for any choice of independent P1, . . . , PJ

whose heights are the successive minima, that there exists a Mordell-Weil basis
P1, . . . , PJ , QJ+1, . . . , Qr. This is true when J = 0.

Assuming the result for J , consider any

P = p1P1 + · · · + pJPJ + qJ+1QJ+1 + · · · + qrQr

such that P1, . . . , PJ , P are independent, with ĥ(P ) = µJ+1; then some qi 6= 0.
In fact by elementary group theory, the Qi can be chosen so that qJ+1 > 0
and qi = 0 for i > J + 1. Among all the possibilities for the Qi and P with
ĥ(P ) = µJ+1, qJ+1 > 0 and qi = 0 for i > J + 1, choose QJ+1, . . . , Qr with

ĥ(QJ+1) minimal; and then among the P choose one with qJ+1 positive and

minimal. Since P1, . . . , PJ , QJ+1 are independent, therefore ĥ(QJ+1) ≥ µJ+1.
We will prove that qJ+1 = 1, hence P can replace QJ+1 in the basis, and the
induction proceeds with PJ+1 = P .

For convenience write Qi = Pi and qi = pi, for 1 ≤ i ≤ J , and now for
i ≤ J , replace Qi by −Qi as necessary, so that in P = q1Q1 + · · · + qJ+1QJ+1

‡In two of the displayed formulas in the bottom third of p.258, fnn should be fkk.
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all qi ≥ 0. Let S = {i : qi > 0}, thus J + 1 ∈ S, and let S′ = S − {J + 1}.
Define Q =

∑
i∈S Qi. Also let hij = 〈Qi, Qj 〉 for i, j ≤ r.

By definition of µi and the fact that Qi + Qj could replace Qj in the basis,

therefore ∀ i, j ≤ J + 1, ĥ(Qi + Qj) = hii + hjj + 2hij ≥ hjj . Thus

∀ i, j ≤ J + 1, hii + 2hij ≥ 0. (¶)

Since P1, . . . , PJ , Q, QJ+2, . . . , Qr is a basis which gives the same qJ+1 and
qi = 0 for i > J + 1, by minimality we have

ĥ(Q) − ĥ(QJ+1) =
∑

i,j∈S

hij − hJ+1,J+1 ≥ 0.

Call this quantity A. An easy calculation shows that

ĥ(P ) − ĥ(P − Q) = A + 2B where B =
∑

i∈S′

(ai − 1)
∑

j∈S′

hij .

It remains to show that B ≥ 0; for then ĥ(P − Q) ≤ µJ+1, and the coefficient
of QJ+1 in P − Q is qJ+1 − 1. If qJ+1 > 1 then, by definition of the successive
minima, ĥ(P − Q) = µJ+1 and the minimality of qJ+1 is contradicted.

B ≥ 0 follows from

∑

j∈S′

hij = (2 − |S|/2)hii +
1

2

∑

j∈S′, j 6=i

(hii + 2hij) ≥ 0,

which in turn follows from (¶) and 2 − |S|/2 ≥ 2 − r/2 ≥ 0 — provided r ≤ 4.

3.6 Algorithms for Mordell-Weil bases: a first

look

Let E be an elliptic curve defined over the field K such that E(K) is finitely
generated. The explicit determination of

G := E(K) = T ⊕ Zr = T ⊕ 〈P1, . . . , Pr〉

can be attempted along the following lines; we say attempted because to date
there is no algorithm that is guaranteed to work, even for E/Q.

0. Determine a suitable Weierstrass equation for E/K .
1. Determine T .
2. Find an upper bound r1 for the rank.
3. Find a lower bound r0 for the rank, and keep at this step and step 2 until

r0 = r1. Then the common value is the rank r.
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This step is almost always carried out by finding actual points Q1, . . . , Qr

that are independent mod torsion, so that

H := T ⊕ 〈Q1, . . . , Qr〉

is of finite index in G.
4. Estimate the index [G : H] and refine Q1, . . . , Qr until H = G.

Throughout this section we consider only E defined over number fields K
since the case of function fields has a decidedly different flavor. As in the
previous section, h denotes habs, and U denotes an upper bound for h(P )− ĥ(P )
for all P ∈ E(K).

The following elaborations of steps 0–4 are at times rather terse since they
involve concepts that will be explained only later; for example we use the terms
twist and isogeny which are defined only in Chapters 4 and 6 respectively. And
a few new terms (L-function, root number,. . . ) are employed without giving a
forward reference.

0 Starting with a Weierstrass equation over K, we obtain one over the ring
of integers O of K by substituting x/d2, y/d3 for x, y for appropriate d. When
possible (e.g. when the class number of O is 1) the Laska-Kraus algorithm, to
be discussed in Chapter 5, transforms E to “global minimal form”.

1 Five inputs to this part of the algorithm, not necessarily in the order in
which they should be applied, are

(i) T = {P ∈ G : ĥ(P ) = 0} ⊂ {P ∈ G : h(P ) < U}.

The implementation of this and of step 3 below requires a “search engine” to
find all P ∈ E(K) with h(P ) < a given α — what is needed is an efficient
procedure to find all x ∈ K satisfying

h(x) < α, and 4x3 + b2x
2 + 2b4x + b6 ∈ K∗2. (¶)

Of course the engine first filters out x that do not satisfy some obviously nec-
essary condition; e.g if σ : K ↪→ R, and if the image of the polynomial in (¶)
has three real roots λ1 < λ2 < λ3, then only x in the intervals λ1 ≤ x ≤ λ2 and
λ3 ≤ x need be considered. But otherwise the engine works by brute force — it
tests all filtered x — unless E(K) contains a point of order 2 (and O has class
number 1), and then the engine take can take advantage of the special form
that a point (x, y) ∈ E(K) must have, as will be explained in Proposition 3.6.4.

(ii) The reduction Ẽ of E mod a “good” prime ideal I of O generally induces

an injection T ↪→ Ẽ(O/I), hence limiting T .
(iii) In some cases information about isogenies defined over K can be used.

Occasionally information about twists of E can be informative; see Chapter 8.
(iv) Nagell-Lutz: indications are given in §2.10.
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(v) Explicit bounds on T : in a famous theorem, Mazur determined all the
possible T when K = Q; building on ideas of Mazur and Kamienny, Merel
[Mer96] has proved the “strong boundedness conjecture”: |T | ≤ cn where cn

depends only on n := [K : Q], and not on the particular field K. Darmon
[Dar96] gives an excellent overview of all this work. For details see Chapter 8.

2 First, one must not forget that E ’s which are isogenous over K have the
same r and so one should choose the “simplest” representative.

The “easy” case is when E(K) contains a point of order 2. Then simple
2-descent can (often) be applied, and may in fact determine r; see §3.6.1 below.
Most of what has been done for the situation when there is no 2-torsion is
concentrated on the case K = Q. For example we give Billing’s upper bound
for r in §3.7, which however is practicable only for E/Q with relatively small ∆.

An upper bound for r due to Mazur (Theorem 9.9 in [Maz72]) that applies to
certain E/Q possessing a rational isogeny is sometimes useful; and many more

special results will be presented later.
The best general method to attempt to find r of E(Q) is Cremona’s finely

tuned version of the Birch, Swinnerton-Dyer enumeration of principal homoge-
neous spaces (torsors); this will be described in a later chapter.

Again for E/Q, assuming the Birch, Swinnerton-Dyer conjecture and the

Riemann Hypothesis for the L-function of E, Mestre has given a conjectural
upper bound for r whose integral part is often equal to r (provided ∆ is not
terribly big). Assuming “only” the Birch, Swinnerton-Dyer conjecture, formulas
of Rohrlich for the root number determine at least the parity of r in many cases.
One hopes that the missing cases of the formulas will be forthcoming, but in the
meantime one can evaluate the L-function at two convenient points to determine
the sign of the functional equation, hence (conjecturally) the parity of r, again
only for reasonably sized ∆.

3 In general one hopes to converge on the value of r by obtaining “theo-
retical” upper bounds in step 2 coupled with lower bounds obtained by finding
points that are independent mod T , usually by the search engine. (There are
Heegner points and Monsky points that are calculated rather than found, but
these seem to be restricted to special E/Q with r = 1.) The independence of

the points Q1, . . . , Qr is usually checked by det(〈Qi, Qj〉) > 0; of course when
r = 1 all we need is Q1 /∈ T .

4 Let hi := ĥ(Qi) and arrange the Qi so that h1 ≤ h2 ≤ · · · ≤ hr. Typically
by using the search engine and the value of U one knows all points P ∈ E(K)

for which ĥ(P ) ≤ some α which allows one to conclude that the first so many
of the hi are actually the successive minima, say

h1 = µ1, . . . , hq = µq and hi ≥ µq+1 for q + 1 ≤ i ≤ r.

For example, by searching up to ĥ(P ) ≤ h1 one knows that h1 = µ1 — if any

P with 0 < ĥ(P ) < h1 were found, P would be taken as a new Q1 to get an
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improved H. (The old Q1 may become a new Qi for some i > 1; in any case
it, along with its canonical height, are not simply discarded.) When r = 1 one

need only check that there are no P ∈ E(K) with 0 < ĥ(P ) ≤ h1/4 to verify
that h1 = µ1.

When
q = r ≤ 4,

no further work is needed: Q1, . . . , Qr is a Mordell-Weil basis by Minkowski’s
theorem (Proposition 3.5.4(c)).

However it is frequently too costly to search far enough to have q = r, even
when r ≤ 4. When we have at least q ≥ 1, Proposition 3.5.4(b) and µi ≥ µq = hq

for i > q give us

[G : H]2 ≤ R :=
Γr det(〈Qi, Qj〉)
h1 · · ·hq−1h

r−q+1
q

.

We wish to determine which primes p ≤
√

R actually divide [G : H], i.e., when
there is there a point P ∈ E(K) satisfying a relation

[p]P = [n1]P1 + · · · + [nr]Pr + T, T ∈ T ,

with not all nj ≡ 0 mod p. We quote the following efficient algorithm from
[Sik95] which typically eliminates most p and for the remaining p imposes con-
ditions on the nj .

Siksek’s sieve:
Choose Pr+1, . . . , Pr+s ∈ E(K) whose images form a basis of the Fp-vector

space T /pT . We suppose for convenience that the p-primary part of T is cyclic,
so s = 0 or 1.

Let n = (n1, . . . , nr+s) denote an element of Zr+s and n̄ its reduction mod p
in Fp

r+s. Define

Vp =



n̄ ∈ Fp

r+s : if n ∈ Zr+s and n ≡ n̄ mod p then

r+s∑

j=1

njPj ∈ [p]E(K)



 .

Clearly Vp is an Fp-subspace, and the index is divisible by p iff Vp is nonzero.
Next, let v be a non-archimedean valuation of K such that
(1) the Weierstrass equation of E is v-integral and v(∆) = 0, so as in §2.5.2

reduction mod p gives an elliptic curve Ẽ over the residue field kv;† and
(2) the p-primary component of Ẽ(kv) is cyclic and non-trivial. Thus Ẽ(kv) =

Cpim ⊕ Cn where i ≥ 1, n ≥ 1 and p 6 |mn, so |Ẽ(kv)| = lp where l = pi−1mn.

Let P ′
j = [l]Pj . If P̃ ′

j = O for j = 1, . . . , r + s, then sieving by v gives no

result and we select a new v. However if P̃ ′
1 = · · · = P̃ ′

i−1 = O and P̃ ′
i 6= O,

then

†Later we will be able to state this more flexibly as let E have good reduction Ẽ at v.
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— the subgroup [l]Ẽ(kv) is cyclic of order p;

— it contains all P̃j ; and

— it is generated by P̃i.
Let P̃j = mjP̃i. It follows that every ā ∈ Vp must satisfy the linear relation

∑
mjaj ≡ modp.

By testing an appropriately large number of v, either we find r + s independent
relations of this sort, and then p is eliminated, or the dimension of Vp appears
to stabilize at some positive value. This completes the sketch of Siksek’s sieve.

It remains to deal with p that pass through the sieve: given Q, find a solution
P of [p]P = Q or determine that there is no solution in E(K).

When p = 2 the preferred method is that of Washington (Proposition 1.7.5(a′)).
For p > 2, I know of no such magic bullet. Cremona ([Cre92]) and Siksek
([Sik95]) suggest (in the number field case) using the complex parametrization
by the Weierstrass ℘-function; but that must await a later chapter.

3.6.1 Simple 2-descent

Let K be a field of characteristic 6= 2. Then on the elliptic curve

E : y2 = x(x2 + ax + b), where ∆ = 16b2(a2 − 4b) 6= 0,

T = (0, 0) is a point of order 2; indeed the Weierstrass equation of any elliptic
curve with a point of order 2 over a field K with charK 6= 2 can be put in this
form by a simple transformation of variables.

If we set
x = (y/x)2, y = y(x2 − b)/x2,

then a calculation shows that

y2 = x(x2 + a x + b), where a = −2a, b = a2 − 4b.

Moreover, the discriminant of this Weierstrass equation is

∆ = 16b
2
(a2 − 4b) = 162b(a2 − 4b)2 6= 0.

Let us denote this elliptic curve E. Also recall the notation of Proposition 3.2.1
for e1 = 0: φ1 : E(K) −→ Γ1 = K∗/K∗2, where

φ1(O) = 1K∗2, φ1(T ) = e2e3K
∗2 = bK∗2,

otherwise φ1(x, y) = xK∗2.

Similarly we have the homomorphism φ1 : E(K) −→ K∗/K∗2.
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Lemma 3.6.1 With the above notation, define α : E(K) −→ E(K) by

α(O) = α(T ) = O,

and for any other (x, y) ∈ E(K), by

α(x, y) =
(
(y/x)2, y(x2 − b)/x2

)
.

Then α is a group homomorphism with kerα = {O, T} and im α = kerφ1.

Remark. In Chapter 6 we will see all of this in a broader context: “E is E
divided by the subgroup {O, T}, and α : E −→ E is a 2-isogeny”, the cardinal 2
referring to the size of kerα. Then the proof that α is a homomorphism will be
subsumed in a more general result.
Proof. Let Pi ∈ E(K), i = 1, 2, 3, be such that

P1 + P2 + P3 = O,

and define S = α(P1) + α(P2) + α(P3). We must prove that S = O.
First suppose that none of the Pi is O or T , equivalently no α(Pi) = O, and

that the Pi are distinct; we will refer to this as the general case. The line L in
in P2(K) containing the three Pi does not contain O as a fourth point, hence
the equation of L has the form Y = λX +νZ. Since also T is not a fourth point
on L, therefore ν 6= 0. One finds (or cribs from [Sil-Ta92, p.81]) that the three
points α(Pi) lie on the line Y = λX + νZ where

λ =
λν − b

ν
, ν =

ν2 − aλν + bλ2

ν
.

This proves S = 0 in the general case when the three points α(Pi) are distinct.
Still in the general case, suppose that α(P1) = α(P2). Since α(P3) 6= O,

therefore α(P1) /∈ E(K)[2]. This implies that P1 /∈ E(K)[2] because of the rule

α(−P ) = −α(P ), (1)

which follows from the definition of α and −(x, y) = (x,−y). For i = 1, 2
replace Pi by an infinitesimal shift by ti (see §2.5.1), where t1, t2 are independent
transcendentals, and define P ′

3 = −P ′
1 − P ′

2, S′ = α(P ′
1) + α(P ′

2) + α(P ′
3). Since

y(P1) 6= 0, the definition of α shows that the three α(P ′
i ) are distinct; for

[2]α(P1) = −α(P2), for instance, would imply the equality of non-constant
power series in different variables. Thus S′ = 0. The definition of α allows us
to substitute t1 = 0 and t2 = 0 to obtain S = O.

There remain the cases where one or more of the Pi ∈ {O, T}. The result
is clear by (1) when some Pi = O. Thus assume, say, P3 = T . Suppose first
P1 /∈ E(K)[2]. Let P ′

1 be an infinitesimal shift of P1, and define P ′
2 = P2,

P ′
3 = −P ′

1 − P ′
2, and S′ as before. Then none of P ′

i ∈ {O, T}, so by what we
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have already proved, S′ = 0, and again substituting 0 for the infinitesimal gives
the result. The final case is when the Pi are the three points of order 2. Then
α(P1) = α(P2) = T , α(P3) = α(T ) = O, and again S = O.

This completes the proof that α is a homomorphism.
From the definition, kerα = {O, T}. To prove im α = kerφ1, we must show

that
(i) T = (0, 0) ∈ im α ⇔ b ∈ K∗2, and
(ii) for (x, y) ∈ E(K) with x 6= 0, (x, y) ∈ im α ⇔ x ∈ K∗2.

Proof of (i): Since α(O) = α(T ) = O 6= T ,

(0, 0) =
(
(y/x)2, y(x2 − b)/x2

)
⇔ x 6= 0 and y = 0

⇔ ∃ a root x ∈ K of x2 + ax + b

⇔ the discriminant a2 − 4b = b ∈ K∗2.

Proof of (ii): Here we follow [Sil-Ta92, p.84]. If P = (x, y) ∈ E(K)−{O, T},
then φ1α(x, y) = (y/x)2K∗2 = 1K∗2. Conversely if (x, y) ∈ E(K) with x =
w2 6= 0, then for i = 1, 2 define

xi =
1

2

(
x − a + (−1)i y

w

)
, yi = (−1)iwx.

First we must verify that (xi, yi) ∈ E(K). Using y2 = x(x2 + a x + b), one
calculates x1x2 = b, hence xi 6= 0. What needs to be verified is

y2
i

x2
i

= xi + a +
b

xi
, i .e., x = x1 + a + x2,

and that is now obvious.
Again using x1x2 = b, we calculate

α(xi, yi) = ((yi/xi)
2, yi(x

2
i − b)/x2

i )

= (w2, w(x2 − x1)) = (x, y).

Since E has the same type of Weierstrass equation as E, we can apply the

same procedure: we have a homomorphism α : E(K) −→ E(K) where

E : y
2

= x
(
x

2
+ a x + b

)
,

a = −2a = 4a, b = a2 − 4b = 16b.

There is an obvious isomorphism τ : E(K) −→ E(K) given by τ
(
x, y

)
=

(x, y) =
(
x/4, y/8

)
. Composing this with α gives a homomorphism

β = τα : E(K) −→ E(K)
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where β(O) = β(T ) = O, and otherwise

β (x, y) =

(
y2

4x2 ,
y

(
x2 − b

)

8x2

)
.

Noting that the factor 1/4 is a square, the results of the previous lemma apply
equally well to β:

kerβ = {O, T}, im β = kerφ1.

Thus βα and αβ are endomorphisms of the groups E(K) and E(K) respectively.

Lemma 3.6.2 Again with charK 6= 2 and the above notation,

βα = [2]E , αβ = [2]E .

Proof. First let us prove βα(P ) = [2]P, ∀P ∈ E(K). This is clear if P = O
or T . If P = (x, 0), x 6= 0, is another point of order 2, then βα(P ) = β(0, 0) =
O = [2]P .

Thus we can assume that both x and y are nonzero in P = (x, y). By
Corollary 1.7.2 and with a little help from the computer one now verifies that
[2]P and βα(P ) both coincide with

(
(x2 − b)2

4y2
,
(x2 − b)(x4 + 2ax3 + 6bx2 + 2abx + b2)

8y3

)
.

Second, αβ(P ) = [2]P, ∀P ∈ E(K) can be proved by a similar calculation,
or, as pointed out in [Sil-Ta, p.82], we can argue as follows. From the description
of im α in the previous lemma, ∃P ∈ E(K ′), where K ′ is at most a quadratic
extension of K, such that α(P ) = P . Then

αβ(P ) = αβα(P ) = α([2]P ) = [2]α(P ) = [2]P.

Proposition 3.6.3 Let K be a field of characteristic 6= 2; let

E : y2 = x(x2 + ax + b), ∆ = 16b2(a2 − 4b) 6= 0,

E : y2 = x(x2 + a x + b), a = −2a, b = a2 − 4b

be elliptic curves defined over K; let φ1 : E(K) −→ K∗/K∗2 and φ1 : E(K) −→
K∗/K∗2 be the homorphisms of the weak Mordell-Weil theorem associated to the
points T = (0, 0) and T = (0, 0) of order 2; and suppose that E(K) is finitely
generated with rank r. Then
(a) E(K) is also finitely generated, with the same rank r, and the orders of
the torsion subgroups are equal within a factor of 2: |T E | = 2i|T E | where
i ∈ {−1, 0, 1}.

(b) 2r =
|im φ1||im φ1|

4
.
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Remarks. It will be convenient, especially for the examples, to have briefer
notation for the terms in the numerator of the formula:

For the rest of this chapter, let ϕ and ϑ
denote im φ1 and im φ1 respectively.

Thus ϕ and ϑ are subgroups of K∗/K∗2, and the formula for 2r implies that
|ϕ||ϑ| ≥ 4. Since φ1(T ) = bK∗2, therefore ϕ contains at least {1, b} (the elements
represent cosets of K∗2); however when b is a square this collapses to {1}. We
will see examples of ϕ = {1}, and then it must be that |ϑ| ≥ 4. Similarly
ϑ ⊇ {1, b}, where the latter may collapse to {1}.

Determining or estimating the rank by means of this formula in conjunction
with some method of estimating |ϕ| and |ϑ|, we will refer to as simple 2-
descent. CAUTION: this is non-standard; 2-descent usually refers to
the homomorphism [2] : E −→ E and our 2-descent would be called α-descent,
with α as in Lemma 3.6.1.
Proof. We use α and β as described earlier in this section. Since β : E(K) −→
E(K) with kernel of order 2, therefore E(K) is finitely generated with rank
r ≤ r, and with |T E | ≤ 2|T E |. The opposite inequalities provided by α prove
that r = r and that |T E |/|T E | is 1/2, 1 or 2.

We can write E(K) as
T 2 ⊕ T odd ⊕ Zr

where T 2 is the 2-primary part of the torsion subgroup. By Corollary 1.7.7,
if there is only one point of order 2, i.e., if b = a2 − 4b is not a square, then
T 2 = C2n for some n > 0, while if there are three points of order 2, i.e., if b is a
square, then T 2 = C2n ⊕ C2m for appropriate n,m. Thus by elementary group
theory, the index [E(K) : [2]E(K)] = 2r+t where 2t = |E(K)[2]|.

By Lemma 3.6.2, we have the subgroup inclusions

E(K) ⊇ βE(K) ⊇ [2]E(K) = βαE(K),

hence 2r+t = [E(K) : βE(K)][βE(K) : βαE(K)].

By the “isomorphism theorems”,

βE(K)

βαE(K)
≈ E(K)

αE(K) + kerβ

≈ E(K) /αE(K)

[αE(K) + kerβ] /αE(K)

≈ E(K) /αE(K)

kerβ /[kerβ ∩ αE(K)]
,

hence 2r+t =
[E(K) : βE(K)][E(K) : αE(K)]

[kerβ : kerβ ∩ αE(K)]
.
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Since im α = kerφ1, therefore [E(K) : αE(K)] = |ϑ|, and similarly [E(K) :
βE(K)] = |ϕ|. Thus it remains to verify

[kerβ : kerβ ∩ αE(K)] = 22−t =

{
2 if b is not a square,

1 if b is a square.

This follows from the fact that when b = d2, then E(K)[2] contains the points
((−a± d)/2, 0) which map under α to T , and when b is not a square, T /∈ imα.

3.6.2 Simple 2-descent over UFD’s

In this section, R denotes a UFD of characteristic 6= 2. We suppose that a
set {π} of irreducible elements has been chosen, so that unique factorization
takes the form z = u

∏
πvπ(z), u ∈ R∗, and gcd(z, z′) =

∏
πmin{vπ(z),vπ(z′)} is

uniquely defined.
We consider E and E as in the previous section with a, b ∈ R. As we will

see in the next proposition, ϕ, and analogously ϑ, has a simple description in
terms of quartic diophantine equations of the form

N2 = b1M
4 + aM2e2 + b2e

4, where b1, b2 ∈ R, b1b2 = b, (1)

where a solution N,M, e ∈ R is sought with e 6= 0. Such a solution corresponds
to a rational point (u, v) = (M/e,N/e2) on the curve

v2 = b1u
4 + au2 + b2. (1′)

This curve is an example of a torsor.† The torsor (1′) is termed elliptic when it
has a rational point, i.e., a point (u, v) with u, v in the quotient field K of R, or
when b1 ∈ K∗2. (The latter corresponds to the rational point (u′, v′) = (0,

√
b1)

where u′ = 1/u, v′ = v/u2; see rational places in Chapter 6.)
The torsor (1′) is obviously elliptic when b2 is a square, say b2 = q2: it

contains the rational point (u, v) = (0, q). Applying Proposition 1.2.1 and
replacing x by x − a we obtain E ! The birational transformations are

x =
[
au2 + 2q(v + q)

]
/u2, y = 2q

[
au2 + 2q(v + q)

]
/u3,

u = 2qx/y, v = qx
[
x2 − b

]
/y2.

Using the final statement in Proposition 1.2.1, and remembering that we re-
placed x by x − a, we see that in this birational correspondence the point
(0,−q) on the torsor corresponds to the point T = (0, 0) in E(K), while (0, q)
corresponds to O.

†Another term is principal homogeneous space. General definitions can only be given
later.
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In Chapter 6 we will prove that the torsor (1′) is elliptic iff it is birationally
equivalent to E; it would be awkward to prove this generalization right now.

Here is an application, where r denotes the rank of E(K) (and of E(K) by
the previous proposition):

r > 0 ⇔ E(K) is infinite

⇔ v2 = bu4 + au2 + 1 has infinitely many points defined over K.

By infinite descent we will understand the technique of proving r = 0 by
showing, using whatever means, that this particular torsor has only finitely
many points. In a typical application when R = Z, one shows that the only
solution in non-negative integers N, M, e of N2 = bM4 +aM2e2 + e4 with e > 0
and gcd(M, e) = 1 is M = 0, N = e = 1. For example, Mordell [Mor67]
shows this is so for N2 = pM4 + e4 where p is any prime ≡ 1 mod 8 for which
x4 ≡ 2 mod p has no solution (p = 17, 41, 97, . . .). We prove this in a different
way in example 4 below. (For yet another treatment see [Sil86, p.317].)

When we say, e.g., that ϕ consists of certain elements p, q, . . . of K∗, we
mean “modulo square factors”, since the actual elements of ϕ are the cosets
pK∗2, qK∗2, . . . . Thus p ∈ ϕ is short for pK∗2 ∈ ϕ.

Proposition 3.6.4 † Let

E : y2 = x(x2 + ax + b)

be an elliptic curve defined over the UFD R, where charR 6= 2. Then ϕ consists
of 1 together with those divisors b1 of b for which

N2 = b1M
4 + aM2e2 + b2e

4, where b1b2 = b, (1)

has a solution N, M, e ∈ R with e 6= 0, in other words, the torsor

u2 = b1v
4 + av2 + b2. (1′)

is elliptic. Then (
b1M

2

e2
,
b1MN

e3

)
∈ E(K). ‡

When (1) has a solution then it has a solution satisfying

e 6= 0, and gcd(M, e) = 1.

The same group ϕ is obtained by taking those b1 for which (1) has a solution
satisfying

e 6= 0, and gcd(N, M) = gcd(N, e) = gcd(M, e) = 1. (2)

†We preserve the notation of Tate’s 1961 lectures at Haverford College [Tat61].
‡Although this point is contributing to ϕ, and therefore is contributing in some sense to

r, nevertheless it does not necessarily have infinite order: it may be in T − [2]T .
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Remarks. If b1 and b′1 are two divisors of b related in the manner i2b1 = j2b′1,
then their complementary divisors are related by j2b2 = i2b′2, and a solution
N, M, e of (1) gives the solution

(ijN)2 = b′1(jM)4 + a(jM)2(ie)2 + b′2(ie)
4.

Thus one need only check one representative divisor of b in b1K
∗2. However this

remark no longer applies if (2) is imposed, as will be explained in the proof.
Work can also be saved using the fact that ϕ is a group. For example,

b1, b
′
1 ∈ ϕ ⇒ b1b

′
1 ∈ ϕ, and since ϕ contains b (take N = e = 1, M = 0),

therefore b1 ∈ ϕ ⇔ b2 ∈ ϕ. Thus there is no point in considering cases where b2

is a square, hence in practice we never have M = 0.
If N, M, e satisfy (1) and (2), then also

gcd(M, b2) = 1, gcd(e, b1) = 1.

Of course the same remarks apply to ϑ.
Proof. Suppose (x, y) ∈ E(K) where x 6= 0, so that x ∈ ϕ. Since E is defined
over the UFD R, by Proposition 2.2.2, we can write

x =
m

e2
, y =

n

e3
,

where gcd(m, e) = gcd(n, e) = 1. (If n = 0 then e must be a unit.) The
Weierstrass equation, cleared of denominators, is

n2 = m(m2 + ame2 + be4). (3)

Let b1 = u gcd(m, b), with u a unit to be chosen in a moment, and let m = b1m1,
b = b1b2, so that gcd(m1, b2) = 1. Equation (3) shows that b2

1|n2, say n = b1n1.
Hence (3) becomes

n2
1 = m1(b1m

2
1 + am1e

2 + b2e
4). (4)

Since gcd(m1, b2) = gcd(m1, e) = 1, the two factors on the right in (4) have
gcd = 1. It follows that each of these factors is a unit times a square, and now
we choose u so that m1 = M2. Then M divides n1, say n1 = MN , and (4)
becomes

N2 = b1M
4 + aM2e2 + b2e

4. (1)

Thus φ(x) = φ(b1M
2/e2) = b1K

∗2.
Conversely, if b1b2 = b and (1) is satisfied by N,M, e ∈ R, with e 6= 0, then

the Weierstrass equation is satisfied by (x, y) = (b1M
2/e2, b1MN/e3).

If gcd(M, e) = d, then d2|N and (1) is satisfied by N ′ = N/d2, M ′ = M/d
and e′ = e/d, and gcd(M ′, e′) = 1. Thus, if (1) has a solution with e 6= 0,
then it has one with e 6= 0 and gcd(M, e) = 1. But it need not have a solution
also satisfying gcd(N, M) = 1, for example. Now we use the fact that ϕ is mod
squares.
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Let gcd(N, M) = g, so that g2|b2, say b2 = g2b′2, M = gM ′, N = gN ′:

N ′2 = b′1M
′4 + aM ′2e2 + b′2e

4, where b′1 = b1g
2.

Thus the net effect is to transfer a square factor from b2 to b1, which has no
effect on the determination of whether or not b1 belongs to ϕ. In this way we
can assume that gcd(N,M) = 1. Similarly by transfering a square factor from
b1 to b2 we can also assume that gcd(N, e) = 1.

3.6.3 Examples over Q

We illustrate the previous proposition with some E defined over the UFD Z.
Actually every subring of Q is a PID, but when E is defined over Z, taking
R larger than Z introduces more units, hence more divisors of b and b, hence
unnecessary work.

Here are two simple deductions from the previous proposition.

Corollary 3.6.5 Let r denote the rank of E(Q) where

E : y2 = x(x2 + ax + b), a, b ∈ Z, b = a2 − 4b, bb 6= 0.

(a) If either b < 0, or a ≤ 0 and b > 0, then ϕ contains only positive divisors
of b; similarly if either b < 0, or a ≥ 0 and b > 0, then ϑ contains only positive
divisors of b.

(b) Let ω(b) denote the number of distinct primes dividing b. Then

r ≤ ω(b) + ω(b) − 1.

Proof. (a) Completing the square in (1) gives

N2 = b1

(
M2 + ae2/2b1

)2 − be4/4b1.

This is not possible when b1 < 0, b < 0 and e 6= 0 since the right side is negative.
Similarly the right side is negative when b1 < 0, a ≤ 0 and b2 < 0.

(b) The bound r ≤ ω(b) + ω(b) is obtained from 2r = |ϕ||ϑ|/4 simply by
allowing for all of the 2ω(b)+1 possible positive and negative square-free divisors
b1 of b, and similarly for b. Now b and b can’t both be negative since 4b+b = a2.
It follows from (a) that negative divisors are disallowed in at least one of ϕ, ϑ.

Example 1
E : y2 = x3 + x, ∆ = −26, A64

E : y2 = x3 − 4x, ∆ = 212. B64

Here b = 1, b = −22, hence r = 0 by the corollary. Nagell-Lutz (Proposi-
tion 2.10.4) informs us that the point (0, 0) is the only non-zero torsion point
on A64, and therefore

A64(Q) = {O, (0, 0)} = C2,
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our first explicit determination of a Mordell-Weil group.
For this curve ϕ = {1}, and therefore |ϕ||ϑ|/4 = 1 implies that ϑ = {±1,±2}.

Naturally one is curious about the rational points on the corresponding torsors:

N2 = −M4 + 4e4 : e = 1, M = 0, N = 2 ;

N2 = ±2M4 ∓ 2e4 : e = M = 1, N = 0.

The Fermat curve v2 = u4 + 1 is transformed, by Proposition 1.2.1 via
u = 2x/y, v = −1 + 2x3/y2, to B64. Let us complete the determination of
B64(Q). To begin with,

B64(Q)[2] = {O, (0, 0), (2, 0), (−2, 0)}.

By Nagell-Lutz, any other point (x, y) would have y = ±2m, m ≤ 4. Then
x(x2 − 4) = 22m, hence x > 2 and x = 2k where k > 1. But then x2 − 4 =
4(x2(k−1) − 1) contains a prime > 2 — a contradiction. Thus

B64(Q) = {O, (0, 0), (2, 0), (−2, 0)} = C2 ⊕ C2.

Changing to projective coordinates x = X/Z, y = Y/Z and u = U/W, v =
V/W , the birational transformation from B64 to the Fermat curve is

(X, Y, Z) 7−→ (U, V, W ) = (2XY, Y 2 +8XZ, Y 2) = (2Y Z, X2 +4Z2, X2 − 4Z2).

Two expressions for (U, V, W ) are needed to cover all points on E — the first
expression is not defined at (X,Y, Z) = (0, 0, 1), while the second is not defined
at (0, 1, 0). That the two expressions agree when they are both defined can
be checked using Y 2Z = X3 − 4XZ2. We note that both points (±2, 0, 1)
map to the singular point (0, 1, 0) on the Fermat curve. Thus the points on
V 2W 2 = U4 + W 4 in P2(Q) are (0, 1,±1), (0, 1, 0). We can state this slightly
differently:

Corollary 3.6.6 (Fermat) The only rational points (r, s, t) ∈ Q3 on the sur-
face

r2 = s4 + t4

are (r, s, t) = (±q2, q, 0) and (±q2, 0, q) for q ∈ Q.

Indeed each point (u, v) on v2 = u4 + 1, namely one of (0,±1), gives rise to the
curve of rational points (q2v, qu, q), q ∈ Q, contained in the surface. The only
rational points in the surface that are not in one of these curves are those of the
form (±q2, q, 0), q ∈ Q∗.

For the direct proof by ‘Fermat descent’, see [Har-Wr54, Thm.226].

Example 2 The complete list of examples for which the corollary gives
r = 0 is as follows:
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— with b = 1: a = 0 (A64), a = 1 (A48) and a = −1 (A24);
— (a, b) = (±6, 1) and (±3, 2) in effect repeat the example (0,−1) given in

the next group: A32 appears, in one guise or another, as E or E;
— with b = −1: any a such that a2 + 4 = pn is a prime power, viz. a =

0,±1,±2,±3,±5,±7,±11,±13,±15,±17,±27, . . .. The only cases of n > 1
that I know of are 02 + 4 = 22, 22 + 4 = 23 and 112 + 4 = 53.

Example 3 The first curve in the catalog in [AntIV] or [Cre92] with a point
of order 2 is

y2 + xy + y = x3 − x, ∆ = −28. A14

In fact, Nagell-Lutz quickly confirms that the torsion subgroup is

T = {O, (−1, 0; 2), (0,−1; 3), (0, 0; 3), (1,−2; 6), (1, 0; 6)} = C6,

where the notation is (x, y; n) for a point (x, y) of order n.
If we replace x, y by (x − 4)/4, (y − x)/8, the Weierstrass equation assumes

the ‘a-b’ form we have been using:

E : y2 = x(x2 − 11x + 32), a = −11, b = 32,

E : y2 = x(x2 + 22x − 7), a = 22, b = −7.

Since 32 ≡ 2 mod squares, by part (a) of the corollary, ϕ = {1, 2}.
For ϑ the starting position is

{1,−7} ⊆ ϑ ⊆ {1,−7,−1, 7},

and we must determine whether

N2 = −M4 + 22M2e2 + 7e4 (∗)

has a solution.
We don’t notice any solutions with small values of the variables, so we at-

tempt to prove that there is no solution. An obviously necessary condition for a
solution to exist in that there be a solution in every field containing the quotient
field of R. This time Q ↪→ R is of no help, so we consider Q ↪→ Qp for appro-
priate p and seek solutions N, M, e ∈ Zp with e 6= 0. As will be explained in the
next section, the only p that can possibly give information in this example are
2 and 7. The latter does not help, i.e., (∗) has a solution in Z7: choose N = 0
and e = 1 so that (∗) becomes the equation f(M) = −M4 + 22M2 + 7 = 0.
Then v7(f(1)) = v7(28) > 0 and v7(f

′(1)) = v7(40) = 0, so Hensel’s lemma
(Proposition 2.4.1) can proceed from M = 1.

However (∗) has no solution in Z2 with e 6= 0. For suppose N, M, e is such
a solution; we can assume that gcd(M, e) = 1, i.e., M and e are not both
multiples of 2. Then, by looking at (∗) mod 8, M and e must be odd, i.e.,
M = 2M1 + 1 and e = 2e1 + 1 for some M1, e1 ∈ Z2, and then N = 2N1. The
equation takes the form N2

1 = 3 + 4i for some i ∈ Z2, which is impossible.
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Conclusion: |ϑ| = 2, r = 0 and therefore

A14(Q) = C6.

Example 4 The first curve in the catalog with r > 0 and nontrivial torsion
is

y2 + xy = x3 − x, ∆ = 65. A65

Nagell-Lutz informs us that

T = {O, (0, 0)} = C2.

The substitutions x, y 7→ x/4, (y − x)/8 yield

E : y2 = x(x2 + x − 16), a = 1, b = −16,

E : y2 = x(x2 − 2x + 65), a = −2, b = 65.

Incidentally, substituting x, y 7→ 4x + 1, 4x + 8y in the equation for E gives

y2 + xy = x3 + 4x + 1, ∆ = −652, T = {O, (−1/4, 1/8)}. B65

{±1} ⊆ ϕ ⊆ {±1,±2} leads us to consider

N2 = 2M4 + M2e2 − 8e4.

This has no solution with e 6= 0 in Q5 or in Q13 because the quadratic form

z2 = 2x2 + xy − 8y2

has no non-trivial solution in either of these fields. It is time to remind ourselves
how such statements concerning quadratic forms can be determined effortlessly.

We interrupt the sequence of examples to recall some basic facts
about quadratic forms over global and local fields.

3.6.4 The Hilbert norm residue symbol

In this section K denotes a global field of characteristic 6= 2 and Kv its comple-
tion at v ∈ M(K). We recall the basic facts concerning the (quadratic) norm
residue symbol (s, t)v, defined for all v ∈ M(K) and s, t ∈ K∗

v . These facts are
taken from the excellent sequence of exercises at the end of [Cas-Fr67].

• (s, t)v = ±1.

• (s, t)v = 1 except possibly when v is archimedean or when one of v(2),
v(s), v(t) is non-zero.
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• (s, t)v = 1 iff z2 = sx2 + ty2 has a non-trivial solution x, y, z ∈ Kv;
non-trivial means that at least one of x, y is non-zero.

• (s, t)v = (t, s)v.

• (s, tt′)v = (s, t)v(s, t′)v, hence (s, tt′2)v = (s, t)v, and therefore (s, t)v can
be described by a finite table of values since K∗

v/K∗2
v is finite of order 4n

where n =





1 if v(2) = 0,
1/2 if v is real archimedean,
1/4 if v is complex archimedean,

#residue field otherwise.

• (s,−s)v = 1.

• (s, t)v = 1 if s + t ∈ K∗2, in particular, (s, 1 − s)v = 1 for s 6= 1.

• If v is archimedean, then (s, t)v = 1 except when v is real and s and t are
both negative in the embedding v : K ↪→ Kv = R.

• Product formula:
∏

v(s, t)v = 1; hence the number of v such that (s, t)v =
−1 is even. This formula embraces the law of quadratic reciprocity in-
cluding the two supplementary laws.

• Hasse principle for quadratic forms: A non-degenerate quadratic form
f(x1, . . . , xn) over K represents 0 over K, i.e., there exist c1, . . . , cn ∈ K
not all 0 such that f(c1, . . . , cn) = 0 iff f represents 0 over Kv for all
v ∈ M(K). In particular, if s, t ∈ K∗ then sx2 + ty2 − z2 represents 0
over K iff (s, t)v = 1 ∀v ∈ M(K).

The values of the symbol in the case K = Q are as follows. We write (s, t)p

in place of (s, t)vp
.

(s, t)∞ = 1 except when s < 0 and t < 0.
From the facts listed above, we can assume that s and t are square-free

integers. When p = 2, two useful rules are

• when s is odd and s ≡ s′ mod 8 then (s, t)2 = (s′, t)2;

• (any u ∈ Z) (1 + 4u, t)2 = (−1)uv2(t).

With these facts one can evaluate any (s, t)p for s, t ∈ Q∗ using the following
tables (cf. [Tat61]).

For an odd prime p, let p = (−1)(p−1)/2 = the Legendre symbol (−1/p), and
let q, q′ (resp. g, g′) denote any quadratic residues (resp. quadratic non-residues)
mod p.
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s\t q g qp gp

q′ + + + +
g′ + + − −

q′p + − p −p
g′p + − −p p

For p = 2 the table is

s\t 1 −3 3 −1 2 −6 6 −2

1 + + + + + + + +
−3 + + + + − − − −

3 + + − − − − + +
−1 + + − − + + − −

2 + − − + + − − +
−6 + − − + − + + −

6 + − + − − + − +
−2 + − + − + − + −

Proposition 3.6.7 Let K be a global field of characteristic 6= 2 and let b1, a, b2 ∈
K with b1, b2 and b = a2 − 4b1b2 all non-zero. In order that

N2 = b1M
4 + aM2e2 + b2e

4 (])

have a solution N,M, e ∈ K with e 6= 0, it is necessary that for all v ∈ M(K)
that are archimedean or for which at least one of v(2), v(b1), v(b) is non-zero,
the norm residue symbol

(b1, b)v = 1.

The number of v for which (b1, b)v = −1 is even.†

In terms of presently used notation we have

b1 ∈ ϕ =⇒ (b1, b)v = 1,

and similarly
b1 ∈ ϑ =⇒ (b1, b)v = 1.

Remarks. The condition (b1, b)∞ = 1 in the case K = Q, i.e., b1 > 0 when
b < 0, was already noted in Corollary 3.6.5.

For the v omitted in the proposition, namely those non-archimedean v ∈
M(K) for which v(2) = v(b1) = v(b) = 0, the norm residue symbols (b1, b)v = 1
automatically, as follows from properties listed above. More than that, (]) has

†However it must not be construed that the number of v for which (]) has no non-trivial
solution in Kv is even. The equation (∗) in Example 3 of the previous section fails to have a
solution in Q2 only.
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a solution in Kv for such v. This follows from the theorem of F.K. Schmidt that
a curve of genus 1 over a finite field has a place of degree 1, hence is an elliptic
curve, as we will explain in Chapter 6; but the proof of this stronger statement
must wait until then.

Thus in practice there are three steps in attempting to determine ϕ (and
analogously three steps for ϑ) as follows. Start with the group G1 of divisors
b1 of b mod squares. Also, in practice, sufficient information about the norm
residue symbols should be gathered so that the evaluation of the symbols is
essentially a table look-up; see the tables for Q below.

1. A preliminary, easy sieving of G1 by the norm residue test: (b1, b)v = 1
for the finitely many v specified in the proposition. The b1 that survive form
a subgroup G2 since (b1, b)v(b′1, b)v = (b1b

′
1, b)v, a fact which can be exploited

when G1 is large.
2. For b1 ∈ G2, determine when there actually are solutions in Kv for all v

(i.e., for all the v in the proposition, presuming the theorem of F.K. Schmidt).
This is do-able: if π denotes a uniformizer, then for successively higher n, con-
sider all possible N, M, e not all 0 in N2 ≡ b1M

4 + · · · mod πn until either
(i) Hensel’s lemma applied to one of the three variables gives a solution, or
(ii) there are no such solutions of the congruence, and therefore no solution

in Kv.
And of course in practice there are shortcuts and efficiencies. It is a fact that

the b1 that survive this step form a subgroup G3, known as the Selmer group.
This will be a major topic in Chapter 10. However in the next section we
can continue our examples without relying on unproved statements: we simply
define G3 to be the subset of G1 for which there are solutions in Kv for all the
v specified in the proposition.

3. There is no Hasse principle at work here: in general one only knows that
ϕ ⊆ G3 and there may very well be inequality. For b1 ∈ G3 one alternates
between a search for a global solution, i.e., a solution in K, and applying some
special argument, perhaps using a finite extension of K, to prove that there is
no global solution.

At present there is no effective algorithm known for step 3. This re-
mains one of the major unsolved problems concerning elliptic curves
over global fields.

Proof. For (]) to have a solution it is necessary that the quadratic form

z2 = b1x
2 + axy + b2y

2 = b1(x +
a

2b1
y)2 − b

4b1
y2

have a solution x, y ∈ Kv for each v with x and y not both 0. This implies that
(b1,−b/4b1)v = (b1, b)v(b1,−b1)v = (b1, b)v = 1. Applying this result to b1 ∈ ϑ,

we have (b1, b)v = (b1, 16b)v = (b1, b)v = 1.
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3.6.5 Continuation of examples over Q

In example 3 above, (∗) passes the norm residue test (−1, 32)2 = (−1, 2)2 = 1,
yet (∗) has no solution in Z2. The proof was quite easy. In example 6 below
there occurs a similar situation, but the proof that there is no solution in Zp is
considerably more subtle.

Example 4 (continued). (2, 65)p is 1 when p is ∞ or 2, but is −1 when p
is 5 or 13. Thus ϕ = {±1}.

We must remember when we switch to ϑ, the norm residue criteria take the
form (b1, b)v = 1 where b1|b. Since b < 0, all b1 < 0 are eliminated, and since
(5,−1)p = 1 ∀p, we are left to consider

{1, 65} ⊆ ϑ ⊆ {1, 5, 13, 65}.

We spot the solution N = 4, M = e = 1 of

N2 = 5M4 − 2M2e2 + 13e4,

and so ϑ = {1, 5, 13, 65}. This proves that A65(Q) and B65(Q) have rank 1.
Moreover this solution tells us that

(b1M
2/e2, b1MN/e3) = (5, 20) ∈ E(K),

and applying β : E(Q) −→ E(Q) (defined just before Lemma 3.6.2),

β(5, 20) = (4,−4) ∈ E(Q).

The transformation equations given earlier yield

(1,−1) ∈ A65(Q), and (1, 2) ∈ B65(Q).

Calculations as done in §3.5.1 for A37, still taking the formula for U on faith,
show that in both cases these points represent the first (and only) successive
minimum. Thus

A65(Q) = {O, (0, 0)} ⊕ Z(1,−1), (65a)

B65(Q) = {O, (−1/4, 1/8)} ⊕ Z(1, 2). (65b)

Actually we can give direct, elementary proofs of both (65a) and (65b) without
referring to heights at all; but first we must prove a lemma.

Some terminology: when the elliptic curve E is defined over a subfield K of
R and ∆ > 0, let λ < λ′ < λ′′ denote the x-coordinates of the 2-division points,
i.e., the roots of x3 + (b2/4)x2 + (b4/2)x + b6/4. Then Eo(K) = {(x, y) ∈
E(K) : x ≥ λ′′} ∪ {O} is a subgroup of E(K) called the even or neutral
component; {(x, y) ∈ E(K) : x ≤ λ′} is called the odd component. When
the odd component is non-empty it is a coset of Eo(K) and Eo(K) has index 2
in E(K).
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Recall that according to our earlier definition, a Mordell-Weil basis Q1, . . . , Qr

does not contain generators of the torsion subgroup T . In general, E(K) is (in-
ternally) the direct sum of T and 〈Q1, . . . , Qr〉. In the case r = 1, we also refer
to Q1 as a free generator.

Lemma 3.6.8 Let the elliptic curve E be defined over Z and satisfy the follow-
ing four conditions.

(i) the rank of E(Q) is 1;

(ii) E(Q) contains a point Q of infinite order such that Q + T is integral for
all T ∈ T , in particular, Q itself is integral;

(iii) ∆ > 0;

(iv) the odd component contains a rational point.

Then a free generator R is to be found among the finitely many integral points
in the odd component.

Proof. Let R be a free generator. Then [n]R = Q + T for some n ∈ Z and
T ∈ T . By assumption (ii) and Proposition 2.10.1(a), R is integral. Since R+T ′

is a free generator for T ′ ∈ T , all R + T ′ are integral, and we wish to show that
some R + T ′ is in the odd component. If not, then R is in the even component
and therefore also all T ′ are in the even component. But then E(Q) = 〈R 〉⊕T
is contained in the even component, contrary to (iv).

There are only finitely many integral points (x, y) in the odd component
since λ ≤ x ≤ λ′.

A65 satisfies the four conditions with Q = (1, 0), Q+T = (−1, 1), where T =
(0, 0) has order 2. Checking the integral x between λ ≈ −1.13 and λ′ = 0, we find
that the only integral points in the odd component are Q+T , −Q+T = (−1, 0)
and T . Thus both ±Q + T (and therefore also both ±Q) are free generators.

The lemma does not apply to B65 directly since ∆ = −652 < 0, however
(65a) implies (65b) as follows. Combining the isomorphisms A65(Q) ≈ E(Q)
and B65(Q) ≈ E(Q) with α gives a homomorphism α′ :A65(Q) −→B65(Q);
β′ :B65(Q) −→A65(Q) is defined similarly, and the composition of these two
homomorphisms in either order is multiplication by 2. Now ker(α) is the torsion
subgroup T A of A65(Q), and similarly ker(β′) = T B . In

T A ⊕ Z
α′

−→ T B ⊕ Z
β′

−→ T A ⊕ Z

im(α′) = iZ ⊂ Z for some positive integer i and similarly im(β′) = jZ ⊂ Z.
From β′α′ = [2], we deduce ij = 2. Since

(−1, 1)
α′

7−→ (0, 1)
β′

7−→ (4,−10) = [2](−1, 1),
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we use Proposition 1.7.3 to test whether (0, 1) is a free generator or twice a free
generator of B65(Q). We find

(0, 1) = [−2](1, 2),

and so (1, 2) is a free generator.

Corollary 3.6.9 Suppose E/Z satisfies (i)–(iii) of the lemma and that the odd

component contains no integral points. Then the odd component contains no
rational points.

Rohrlich mentioned the example y2 = x(x2 + 6x + 2) in connection with
Mazur’s ideas on the (real) topology of rational points. Here T = {O, (0, 0)},
the rank of E(Q) is 1 by simple 2-descent, Q = (1, 3) is a point of infinite order,
and Q + (0, 0) = (2,−6). There are no integral (x, y) with λ = −3 −

√
7 < x <

λ′ = −3+
√

7, and so no rational points at all on the odd component. Replacing
x by x−2 gives the curve 896D1 in Cremona’s catalog [Cre92]. Another example
in that catalog is 336E5: y2 = x3 − x2 − 12544x + 544960. We will return to
this subject in a later chapter.

We mention the following simple result; however it cannot be used effectively
since we have no control over denominators to limit searches.

Lemma 3.6.10 Let E be an elliptic curve defined over Q with ∆ > 0. Then the
odd component contains either no rational points, or else it contains a Mordell-
Weil basis.

Proof. Let C denote the set of rational points on the odd component, suppose
C 6= ∅, and let Q1, . . . , Qr be a Mordell-Weil basis. If C contains a torsion point
T , then for each Qi /∈ C replace Qi by Qi + T to obtain a Mordell-Weil basis
⊂ C. Thus suppose T ⊂ Eo(Q). Let [n1]Q1 + · · ·+[nr]Qr +T ∈ C. Subtracting
T and appropriate even multiples of the Qi (all these points are in Eo(Q)), and
renumbering the Qi, we obtain Q1 + · · ·+ Qk ∈ C where we can suppose that k
is minimal. Then k = 1, for otherwise Q1 + · · · + Qk−1 and Qk are in EO(Q)
and so is their sum. Thus Q1 ∈ C, and in the basis we can replace any Qi /∈ C
with Qi + Q1 to obtain a basis contained in C.

Example 5 Euler proved, in effect, that for E : y2 = x3 + 1, E(Q) has
rank 0; his proof by infinite descent is reproduced in [Dic52, vol.II, p.533]. Nagell
[Nag25], also using infinite descent, generalized this as follows. Our proof uses
the norm residue criteria (Proposition 3.6.7), and it is interesting to see by
comparison how efficient that approach is.

Proposition 3.6.11 Let D be a nonzero integer and let E be the elliptic curve
defined over Q by the equation y2 = x3 + D3. If

p prime, p|D =⇒ p = 3 or p ≡ 5 mod 12,

then the rank of E(Q) is 0.
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Remark. As a convenience, and not because of any particular difficulty, the
determination of T is postponed to Corollary 7.3.4. The upshot is that

E(Q) = T = {O, (−D, 0)} = C2

except (assuming D is square-free — see the begining of the following proof)
when D = 1 and then

E(Q) = T = {O, (−1, 0), (0,±1), (2,±3)} = C6.

Proof. We can assume that D is square-free; for if D = d2D1, then replacing
x, y with d2x, d3y results in the equation y2 = x3 + D3

1.
Replacing x with x − D, the equation becomes

E : y2 = x(x2 − 3Dx + 3D2),

which is paired with
E : y2 = x(x2 + 6Dx − 3D2).

Thus
{1, 3} ⊆ ϕ, {1,−3} ⊆ ϑ,

and we will exclude all other divisors of b = 3D2 and b = −3D2 by the norm
residue tests.

Suppose b1 is a square-free divisor of 3D that is a member of ϕ. If b1 is divis-
ible by a prime p ≡ 5 mod 12, then (b1, b)p = (b1,−3)p = −1, a contradiction.
Since b = −3D2 < 0, therefore b1 > 0, hence b1 = 1 or 3.

Similarly a square-free divisor b1 of 3D that is divisible by a prime p ≡
5 mod 12 cannot be a member of ϑ since (b1, b)p = (b1, 3)p = −1. Finally,
−1 /∈ ϑ since (−1, b)3 = (−1, 3)3 = −1.

Example 6 An integer N is a quartic residue mod p if it is a fourth
power mod p, i.e., if x4 ≡ N mod p has a solution x ∈ Z. Some authors use the
term biquadratic, but quartic is shorter. Recall that the quadratic fields Q(i)
(i =

√
−1), Q(

√
2) and Q(

√
−2) have class number 1, i.e., the rings of integers

Z[i], Z[
√

2] and Z[
√
−2] are PID’s. Also, the fundamental unit 1+

√
2 of Z[

√
2]

has norm −1; thus a prime splits in one of these fields iff it is the norm of an
integer in the corresponding PID.

Lemma 3.6.12 Suppose p is a prime ≡ 1 mod 8, so that it splits in the three
fields Q(i), Q(

√
2) and Q(

√
−2), say

p = (A + 4Bi)(A − 4Bi) = A2 + 16B2

= (C + D
√

2)(C − D
√

2) = C2 − 2D2,

= (F + G
√
−2)(F − G

√
−2) = F 2 + 2G2,

where A,B, . . . , G ∈ Z. Also let i and
√

2 denote a root in Fp of x2 + 1 and
x2 − 2 respectively.
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(a) The eight elements of Fp, ±1 ± i and ±1 ±
√

2, are all either quadratic
residues or quadratic nonresidues.

(b) The following are equivalent:

(i) 2 is a quartic residue mod p;

(i′) when p ≡ 1 mod 16 : 1 + i is a quadratic residue mod p;
when p ≡ 9 mod 16 : 1 + i is a quadratic nonresidue mod p;

(ii) B is even, i.e., p has the form A2 + 64B2
1 ;

(iii) C is a quadratic residue mod p;

(iii′) there are nonzero integers U,C ′, D′, where C ′ is a quadratic residue mod p,
such that

pU2 = C ′2 − 2D′2 ;

(iv) F is a quadratic residue mod p;

(iv′) there are nonzero integers V, F ′, G′, where F ′ is a quadratic residue mod p,
such that

pV 2 = F ′2 + 2G′2 .

Proof. (a) (1+ i)(1− i) = 2 and (1+
√

2)(1−
√

2) = −1 are squares in Fp. The
proof of this part is completed by noting the identity from [Str-Top94,p.1143]

(1 +
√

2)(1 + i) = (1 + ζ8)
2

where ζ8 = (1 + i)/
√

2 is an 8th root of unity.
(b) The equivalence of (i) and (ii) was conjectured by Euler and proved by

Gauss (cf. [Cox89, p.20]). For Dirichlet’s beautiful proof see [Ire-Ro82, p.64,
exercise 26] and [Sil86, p.318].

To prove the equivalence of (i) and (i′), we note that p ≡ 1 mod 16 iff Fp

contains the 16th root of unity
√

(1 + i)/
√

2, i.e., (1 + i)/
√

2 is a quadratic

residue. Thus when p ≡ 1 mod 16, either i + i is a quadratic residue and 2 is a
quartic residue, i.e.,

√
2 is a quadratic residue (e.g. when p = 113), or 1+ i and√

2 are both quadratic non-residues (e.g. when p = 17). When p ≡ 9 mod 16,
Fp contains only 8th roots of unity, hence 1+i and

√
2 cannot both be quadratic

residues. In fact exactly one is. For suppose
√

1 + i and 4
√

2 are both quadratic
over Fp. Since this field has a unique quadratic extension,

√
1 + i = a + b 4

√
2

for some a, b ∈ Fp, b 6= 0. Squaring shows that 2ab 4
√

2 = 0, i.e., a = 0 and
(1 + i)/

√
2 = b2 in Fp which means that p ≡ 1 mod 16. (Examples: 1 + i is a

quadratic residue mod 41; 2 is a quartic residue mod 73.)
Assume (iii′). By replacing U,C ′, D′ by U/d, C ′/d,D′/d where d =

gcd(U,C ′, D′), we can assume that d = 1, hence p 6 |C ′D′. The Legendre symbol
(D′/p) = 1 for any p ≡ 1 mod 8, in particular, (D/p) = 1; for (−1/p) = (2/p) =
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1, and if q is an odd prime divisor of D′ then q 6 |U and p ≡ C ′2/U2 mod q,
hence 1 = (p/q) = (q/p). †Thus D′2 is a quartic residue mod p and therefore
2 ≡ C ′2/D′2 mod p is a quartic residue mod p iff C ′ is a quadratic residue mod p.
This argument applies in particular to (iii).

The proof of (iv)⇔ (i)⇔ (iv′) is entirely similar: one finds that (G′/p) = 1,
say G′ ≡ H2 mod p, and Fp contains a fourth root of −1, ζ := (1 + i)/

√
2,

so 2 ≡ F ′2/ζ4H4 mod p is a quartic residue iff F ′ is a quadratic residue, in
particular, iff F is a quadratic residue.

We put the results of the next example in

Proposition 3.6.13 Let p be a prime number.
(a) The rank r of E(Q), where E : y2 = x3 + px, satisfies

r = 0 if p = 2,
r = 0 if p ≡ 7, 11 mod 16,
r ≤ 1 if p ≡ 3, 5, 13, 15 mod 16,
r ≤ 2 if p ≡ 1, 9 mod 16, i.e., p ≡ 1 mod 8.

In the last case, r = 0 if 2 is not a quartic residue mod p.
(b) The rank r of E(Q), where E : y2 = x3 − px, satisfies

r = 1 if p = 2,
r = 0 if p ≡ 3, 11, 13 mod 16,
r ≤ 1 if p ≡ 5, 7, 9, 15 mod 16,
r ≤ 2 if p ≡ 1 mod 16.

Remarks. We do not pause to determine the torsion subgroup. Actually this
subgroup is O, (0, 0) for all the E(Q) and E(Q) involved in the proposition; a
comprehensive result is given in Corollary 7.3.6.

For the proof by infinite descent of the r = 0 cases of part (a) of the propo-
sition, see [Mor69, p.23].

There is a general conjecture (the parity conjecture: (−1)r = WE , the root
number of E — to be defined later‡) that implies in the cases of the proposition
where r ≤ 1, that actually r = 1; and in the cases where r ≤ 2, that r = 0
or 2. Mordell [Mor67, p.3] conjectured that when p = A2 + 64B2

1 , then r > 0
for y2 = x3 +px and so r = 2 by the parity conjecture; however computers have
found this to be false, the first counter-example being p = 257 = 12 + 64 · 22 for

†The idea of using quadratic reciprocity in this way seems to have originated with
C. -E. Lind (cf. [Cas66, p.284]).

‡The term parity conjecture has been employed by others to mean something else. As
will be explained later, the parity conjecture in the sense defined here is a consequence of
the Taniyama conjecture coupled with the Birch, Swinnerton-Dyer conjecture. The E of the
proposition satisfy the the Taniyama conjecture since they are CM — they have complex
multiplication by i. It should also be mentioned that the parity conjecture for these E is
included in an earlier conjecture of Selmer [Sel54a].
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which r = 0. Recently Rose [Ros95] found that of the 625 primes of this form
less than 50000, r = 2 in 367 cases, while r = 0 in the remaining 258 cases.

Heegner has suggested several similar examples, but I do not know the
present-day status of his arguments; cf. [Mor67, p.4].

Bremner ([Mol89]) has carried out extensive numerical calculations for y2 =
x3 + px when p ≡ 5 mod 8.

Monsky [Mon92] has proved, among other results, that r = 1 for y2 = x3+px
when p ≡ 5 mod 16 by constructing a rational point using modular functions.

Proof. First consider

E : y2 = x3 + 2x, E : y2 = x3 − 8x.

The norm residue test leaves

ϕ = {1, 2}, {1,−2} ⊆ ϑ{±1,±2},

so we consider
N2 = −M4 + 8e4, gcd(M, e) = 1.

Reduction mod 4 implies M = 2M1 and N = 4N1, hence e = 2e1, contradicting
gcd(M, e) = 1. This eliminates −1 and 2 from ϑ, and r = 0.

In part (b) when p = 2, the point P = (−1, 1) on E(Q) has infinite or-
der since [2]P = (9/4,−21/8) is fractional, cf. Proposition 2.10.4. The initial
estimate |ϕ||ϑ| ≤ 8 now confirms that r = 1.

Thus the remainder of the proof consists of finding upper bounds for r when
p is an odd prime. We need to consider the following equations.

(α) N2 = −M4 + pe4;
(β) N2 = −M4 + 4pe4;
(γ) N2 = 2M4 +2upe4 (u = 1 or −1), or 2N2

1 = M4 +upe4 where N = 2N1;
(δ) N2 = −2M4 + 2pe4, or 2N2

1 = −M4 + pe4 where N = 2N1.
In all four equations we can assume that gcd(M, e) = 1. This implies that p 6 |M
and p 6 |N . Also e is odd (hence e4 ≡ 1 mod 16) since e even =⇒ M odd and
then none of the equations is possible mod 4.

We first gather information on (α)–(δ) by elementary congruence considera-
tions involving the Legendre symbol (x/p) or the non-solvability of the equation
in Q2.

(α) implies (−1/p) = 1, hence there is no solution when p ≡ 3 mod 4. Also
there is no solution in Q2 when p ≡ 13 mod 16 since M and N have opposite
parity and the possible values of p ≡ N2 + M4 mod 16 are 1,5, and 9.

(β) As in (α), there is no solution when p ≡ 3 mod 4.
(γ) implies (2/p) = 1, hence there is no solution when p ≡ ±3 mod 8. Now

M must be odd and up ≡ 2N2
1 − 1 ≡ 1, 7 or 15 mod 16. Hence there is no

solution in Q2 when u = 1, p ≡ 9 mod 16, or when u = −1, p ≡ 7 mod 16.
(δ) implies (−2/p) = 1, hence no solution when p ≡ 5 or 7 mod 8. Also, there

is no solution in Q2 when p ≡ 11 mod 16 since, as in (γ), p ≡ 2N2
1 + 1 ≡ 1, 3,

or 9 mod 16.
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Now let us go through the various cases of the proposition for odd p.
(a) Since b = −4p < 0, therefore −1 /∈ ϕ and ϕ = {1, p}. We have

{1,−p} ⊆ ϑ ⊆ {±1,±2,±p,±2p}.

When p ≡ 7 or 11 mod 16, the eliminations for (β), (γ) and (δ) leave |ϑ| = 2,
hence r = 0.

When p ≡ 3, 5, 13, 15 mod 16, the eliminations for, respectively, (β) and (γ),
(γ) and (δ), (γ) and (δ), (β) and (δ) leave |ϑ| ≤ 4, hence r ≤ 1 in these four
cases.

That leaves p ≡ 1 or 9 mod 16 with no eliminations, hence |ϑ| ≤ 8 and r ≤ 2.
Part (b) is sorted out in a similar manner.

It remains to prove that when p ≡ 1 mod 8 if either (β) or (γ) with u = −1
has a solution in Z with e 6= 0 then 2 is a quartic residue mod p. It is not hard
to check that both have solutions in all local fields Qq, so the proof must be of
a different kind than we have used thus far.

In the case (γ), i.e., pe4 = M4 − 2N2
1 , the conclusion is immediate from

criterion (iii′) of the lemma.
To treat (β) we use the unique factorization in the PID Z[i]. Taking (β)

mod 4 shows that M and N are even, say M = 2M1 and N = 2N1:
(β′) N2

1 = −4M4
1 + pe4

Since e is odd, N1 is odd, hence N2
1 ≡ 1 mod 8, and pe4 ≡ p ≡ 1 mod 8. Thus

(β′) implies M1 = 2M2, and our assumption is

(ii′) ∃ nonzero integers e,N1,M2 such that pe4 = N2
1 + 64M4

2 .

We wish to prove (ii′)=⇒(ii) of the lemma.
We have p = ππ where π = A + 4Bi is irreducible. Assuming (ii′), we wish

to prove that B is even. To see the idea of the proof, consider the simplest case
e = 1. Then

p = ππ = αα where α = N1 + 8M2
2 i.

This implies π = A + 4Bi = N1 ± 8M2
2 i, hence B is even.

In general let e =
∏

σjσj

∏
qk where σj = sj + 2tji and qk ≡ 3 mod 4

are irreducible; σj = π is not excluded. The σj must occur in conjugate pairs
since e is real. Then N2 ≡ −M4 mod qk where qk

6 |M , which is not possible for
qk ≡ 3 mod 4, so in fact no qk is present. Thus

ππ
∏

σ4
j σj

4 = αα.

Since gcd(N1,M2) = 1, α = N1 + 8M2
2 i cannot contain the prime σjσj = pj as

a factor. Thus we can choose notation so that

N1 + 8M2
2 i = π

∏
σ4

j = (A + 4Bi)
∏

(sj + 2tji)
4

=⇒ N1 ≡ A + 4Bi mod 8 =⇒ B ≡ 0 mod 2.
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The statements of the proposition which leave the rank ambiguous can be
made more explicit by bringing in relevant torsors. We give one example. When
p ≡ 5 mod 8 we have

{1,−p} ⊂ ϑ ⊂ {±1,±p},
hence r = 1 iff −1 ∈ ϑ (equivalently p ∈ ϑ). Re-writing the torsor N2 =
−M4 + 4pe4 yields the following.

If p is a prime ≡ 5 mod 8 and E : y2 = x3 + px then the rank of
E(Q) is 1 iff

∃u, v ∈ Q such that p = u2 + 4v4, and then

P =

(
u2

4v2
,

u3

8v3
+ uv

)
(¶)

is a point of infinite order. [As remarked after the proposition, the
parity conjecture implies that this is true for all p ≡ 5 mod 8, and
Monsky has proved it is true for p ≡ 5 mod 16.]

Sometimes the representation p = u2 + 4u4 appears when p is written as
the sum of two integer squares, e.g. 5 = 12 + 4 · 14; but usually one must look
harder , e.g.

37 =

(
151

25

)2

+ 4

(
3

5

)4

.

The first expected example of r = 2 in part (a) is p = 73 = 32 + 64. Since
p = 32 + 4 · 24, (¶) gives the point

P =
(

(3/4)2, 3 · 137/26
)

∈ E(Q).

However this turns out not to be one of the successive minima. A search for
points, and calculations as indicated in §3.5.1, find that the successive minima
are P1, P2 where

P1 = (36, 222), ĥ(P1) = 3.699981,

P2 =
(

73 · (3/2)2, 3 · 7 · 11 · 73/8
)

, ĥ(P2) = 4.366662,

P = −P1 + P2 + (0, 0), ĥ(P ) = 4.9486.

Since r < 5, by Minkowski’s result (Proposition 3.5.4(f)), P1, P2 is a Mordell-
Weil basis.

Here is an example of rank 2 in case (b): the successive minima of y2 =
x3 − 17x over Q are

P1 = (17, 68), ĥ(P1) = 1.172183,

P2 = (−4, 2), ĥ(P2) = 1.755026.
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For the next few p ≡ 1 mod 16, those with r = 2 in case (b) are p = 97, 241, 257,
337, 401, . . . , while those with r = 0 are p = 113, 193, 353, . . . . I do not know
any succinct criterion, such as we had in case (a), that guarantees r = 0.

The final proposition of this section treats an example considered by Stroeker
and Top [Str-Top94]. The analysis is quite similar to that of the preceding
proposition, but there are a few twists and turns, so a proof is included.

Proposition 3.6.14 Let p be a prime number.
(a) The rank r of E(Q), where E : y2 = x(x2 − 2px + 2p2), satisfies

r = 0 if p = 2 or if p ≡ ±3 mod 8,
r ≤ 1 if p ≡ −1 mod 8,
r ≤ 3 if p ≡ 1 mod 8.

In the last case, r ≤ 1 unless p ≡ 1 mod 16 and 2 is a quartic residue mod p.
(b) The rank r of E(Q), where E : y2 = x(x2 + 2px + 2p2), satisfies

r = 0 if p = 2,
r ≤ 1 if p ≡ ±3 mod 8,
r ≤ 2 if p ≡ ±1 mod 8,

When p ≡ 1 mod 8 then r = 0 unless 1 + i is a quadratic residue mod p, where
i denotes (either) root of u2 = −1 in Fp.

Remarks. Again the parity conjecture implies that when r ≤ 1, 2 or 3 then r
is, respectively 1, 0 or 2, 1 or 3. Cf. [Str-Top94, 1.2 and 1.4].

r = 3 actually occurs in case (a); Stroeker and Top note the examples
p = 337 and 1201. Examples of r = 2 in case (b) seem to be fairly common:
p = 31, 41, 47 . . . .

Eventually one wants to see the Selmer groups more explicitly, as is done for
the case (a) curves in [Str-Top94]; this will be done in Chapter 10.
Proof. The p = 2 cases are left to the reader.

Cases (a) and (b) can be treated together:

E : y2 = x(x2 − 2spx + 2p2),

E : y2 = x(x2 + 4spx − 4p2)

where s = 1 for case (a) and s = −1 for case (b). For both cases,

{1, 2} ⊂ ϕ ⊂ {1, 2, p, 2p}, {1,−1} ⊂ ϑ ⊂ {±1,±2,±p,±2p}.

Thus r ≤ 3 in all cases. The following facts complete the proof.

p ∈ ϕ =⇒

N2 = pM4 − 2spM2e2 + 2pe4, say N = pN1,
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=⇒ pN2
1 = M4 − 2sM2e2 + 2e4.

Since we can assume that gcd(M, e) = 1, this equation implies that 2 6 |N1. Hence

p ≡ 1 − 2se2 + 2e4 ≡
{

1 mod 8 in case (a),
1 mod 4 in case (b).

Also, p 6 |e and u4 − 2su2 + 2 has a root in Fp, i.e., at least one of s ± i is a
quadratic residue. When p ≡ 1 mod 8, by the lemma this is so iff 1 + i is a
quadratic residue.

2 ∈ ϑ =⇒

N2 = 2M4 + 4spM2e2 − 2p2e4, say N = 2N1,

=⇒ 2N2
1 = M4 + 2spM2e2 − p2e4.

This implies, since gcd(M, e) = 1, that 2 6 |Me. Hence M4 ≡ p2e4 ≡ 1 mod 8.
From 2N2

1 ≡ 2sp mod 8 we deduce that p ≡ 1 (resp. 3) mod4 in case (a)
(resp. (b)).

In case (a) we can improve this to p ≡ 1 mod 8. For suppose p ≡ 5 mod 8.
Then since the Legendre symbol (2/p) = −1, p must divide M and N1, say
M = pM1, N1 = pN2, hence 2N2

2 = p2M4
1 + 2pM2

1 e2 − e4, where p 6 |N2e. Thus
2N2

2 ≡ −e4 mod p, contradicting (−2/p) = −1.
When p ≡ 9 mod 16 in case (a) we wish to prove that 2 is a quartic residue.

We will derive a contradiction by assuming the contrary, which by the lemma
means that 1 + i is a quadratic residue. Thus all of ±1 ±

√
2 are quadratic

residues. Following [Str-Top94,p.1145], we factor over Z[
√

2]:

2N2
1 = (M2 + (1 +

√
2)pe2)(M2 + (1 −

√
2)pe2).

The two factors on the right have greatest common divisor
√

2, hence

M2 + (1 +
√

2)pe2 = εα2
√

2

for ε, α ∈ Z[
√

2] where ε is a unit, and so can be written in the form (±1±
√

2)n.
Thus under the homomorphism Z[

√
2] −→ Fp the equation takes the form

M2 ≡ β2
√

2 where β2 ≡ εα2. This means that 2 is a quartic residue after all.

p ∈ ϑ =⇒ N = pN1 :

pN2
1 = M4 + 4sM2e2 − 4e4

where p 6 |Me. Thus u4 +4su2−4 has a root in Fp. Since u2 = 2(−s±
√

2) ∈ Fp,
therefore p ≡ ±1 mod 8 and at least one of −s ±

√
2 is a quadratic residue.

When p ≡ 1 mod 8, by the lemma the latter is true iff 1 + i is a quadratic
residue.
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In case (a) when p ≡ 1 mod 8 we can prove that in fact p ≡ 1 mod 16.
Stroeker and Top again use the arithmetic of Z[

√
2]; for variety we use a Lind-

type argument. Write

pN2
1 = 2M4 − (2e2 − M2)2, where p 6 |Me,

and let q be an odd prime divisor of 2e2 −M2. Clearly q 6= p and q 6 |Me. Since
2e2 ≡ M2 mod q, therefore (2/q) = 1. Hence from pN2

1 ≡ 2M4 mod q we deduce
(p/q) = 1, so by reciprocity (q/p) = 1. Thus 2e2 − M2 = 2αβ where α ≥ 0, β
is odd, and (β/p) = 1, say β ≡ γ2 mod p. Hence 2M4 ≡ 22αγ4 mod p which
implies that 2 is a quartic residue mod p. Since we already have

√
1 + i ∈ Fp,

this implies that Fp contains the 16th root of unity
√

(1 + i)/
√

2. This means

that p ≡ 1 mod 16.

2p ∈ ϑ =⇒ N = 2pN1 :

2pN2
1 = M4 + 2sM2e2 − e4.

Since gcd(M, e) = 1, therefore gcd(2p,Me) = 1. Thus u4 + 2su2 − 1 has a
root in Fp. Since u2 = −s ±

√
2, this implies that p ≡ ±1 mod 8, and when

p ≡ 1 mod 8 that 1 + i is a quadratic residue.
Since M and e are odd, M4 ≡ e4 ≡ 1 mod 16, hence 2pN2

1 ≡ 2sM2e2 mod
16, and pN2

1 ≡ sM2e2 ≡ s mod 8. It follows that p ≡ 1 (resp. −1) mod 8 in
case (a) (resp. (b)).

In case (a) a Lind-type argument applied to 2pN2
1 = (M2+e2)2−2e4, which is

left to the reader, shows that 2 is a quartic residue mod p, hence p ≡ 1 mod 16.

Concerning E(Q) with larger r,

it is conjectured that every integer r ≥ 0 occurs; this remains an
outstanding open problem.

It is not even known if r is unbounded. Basing their work on a construction
of Mestre, Nagao [Nag94] and Fermigier [Fer96] found E/Q for which r is at

least 21, resp. at least 22. We will return to this and related matters on several
occasions in later chapters.

3.6.6 Second descent

For simplicity we restrict the discussion in this section to E/Z .
In the notation we have been using, let

E : y2 = x(x2 + ax + b), E : y2 = x(x2 + ax + b), a, b ∈ Z

where a = −2a, b = a2 − 4b,
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and suppose we have not been able to find a rational point on the locally solvable
torsor

u2 = b1v
4 + av2 + b2, b1b2 = b.

As usual we can assume that b1 is square-free, 6= 1 and 6= the square-free part
of b. The following procedure, referred to as second descent, can sometimes
discover a rational point (u, v) or prove that there is none. (By Proposition 3.6.4,
a point (u, v) transforms to the point (b1v

2, b1uv) ∈ E(Q).)
Since the quartic is locally solvable, by the Hasse principle the associated

quadratic
u2 = b1w

2 + aw + b2

does have a rational point, say (u0, w0). We note that w0 = 0 will not occur
at this stage since then b2 is a square and the quartic has an obvious rational
point. (b1 = b/b2 ≡ b mod squares would already be in ϕ. Of course the present
discussion applies equally to ϑ.)

As explained in §1.4.3, all rational points on the quadratic are given para-
metrically by

w =
w0t

2 − 2u0t + a + b1w0

t2 − b1
=:

f(t)

g(t)
,

u =
−u0t

2 + (a + 2b1w0)t − u0b1

t2 − b1
.

Letting 2 denote (various) rational squares, we wish to find w = 2, i.e., we
seek t ∈ Q such that

f(t) = δ ∗ 2 and g(t) = δ ∗ 2 (∗)

for some nonzero squarefree δ ∈ Z.
Let k denote the denominator of w0. Since u2

0 = b1w
2
0 + aw0 + b2, therefore

ku0 ∈ Z, hence kf ∈ Z[t]. It follows that

R := resultant(kf, kg) = λkf + µkg

for some linear λ, µ ∈ Z[t],∗ and calculation shows that R = k4b.
Suppose t = t1/t2, where gcd(t1, t2) = 1, is a solution to (∗). Then

[t2λ(t)]
[
t22kf(t) + [t2µ(t)]

[
t22kg(t) = t32k

4b ∈ Z

where the factors in square brackets are integers. Thus δn = t32k
4b for some

n ∈ Z. Now δ is square-free, also t22g(t) = t21 − b1t
2
2 = δ ∗ 2 and gcd(t1, t2) = 1.

∗Explicit values can be calculated using the formula for R in [Con82, p.213]:

λ = k2(2u0t + a + 2b1w0),

µ = k2(−2u0w0t + 4u2

0
− aw0 − 2b1w2

0
).
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It follows that no prime dividing δ divides t2, and therefore δ|kb. Thus we obtain
a finite list of candidate δ.

Consider first the special case δ = 1. The homogeneous form of the equation
t2 − b1 = s2 is T 2 − b1U

2 = S2 which has the solution (T, U, S) = (1, 0, 1). The
general solution is

(δ = 1) t =
τ2 + b1

2τ
, τ a parameter. (1)

In general, since g(t) = δ ∗ 2 implies an equation of the form

δt2 − δb1 = s2, (∗∗)

we have the norm residue conditions (cf. §3.6.4)

(δ, δb1)p = 1 for p = ∞ and all prime divisors of δb1,

which may eliminate some δ 6= 1.
Suppose that δ 6= 1 and that δ survives the norm residue conditions so that

there is a solution (s0, t0) of (∗∗). (The homogeneous equation δT 2−δb1U
2 = S2

does not have a solution with U = 0 since δ is not a square.) If it happens that
f(t0) = δ ∗ 2, then the procedure is done — we have found a rational point on
the original quartic. Otherwise we look at the general solution

(δ 6= 1) t =
t0τ

2 − 2s0τ + δt0
τ2 − δ

, τ a parameter. (2)

Since we want f(t) = δ ∗ 2, clearing denominators and substituting for t
according to (1) or (2), we seek a value of τ such that, respectively,

4τ2f(t) = 2 or δ(τ2 − δ)2f(t) = 2.

Thus we obtain a list of one or more equations of the form

quartic in τ = 2.

These equations are called the descendant quartics. The procedure now is
to eliminate the descendant quartics that are not everywhere locally solvable,
i.e., not solvable in R or some Qp. (There is an algorithm for this involving
Hensel’s lemma; but we postpone the description to a later chapter when we
have the theorem of F.K. Schmidt alluded to in §3.6.4.) If none survive then
the original quartic has no rational points — the torsor is not elliptic — and
the procedure is done. Finally, one searches for a rational point on one of the
surviving descendant quartics.

Example (i)

E : y2 = x(x2 − 8x + 1), E : y2 = x(x2 + 16x + 60),
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a = −8, b = 1, a = 16, b = 60,

and our usual starting position is

ϕ = {1}, {1, 15} ⊆ ϑ ⊆ {±1,±2,±3,±5,±6,±10,±15,±30},

hence for the common rank r of E(Q) and E(Q)we have the estimate

0 ≤ r ≤ 2.

But for 2r = |ϕ||ϑ|/4 to make sense, ϑ must contain at least four elements.
These are supplied by the other points of order 2 on E, (−6, 0) and (−10, 0):

{1,−6,−10, 15} ⊆ ϑ.

Apecs assures us that all the torsors corresponding to the elements in the
upper bound {±1, . . . ,±30} are elliptic. Second descent and the Hensel lemma
algorithm alluded to above are of course fully implemented in apecs.

We apply second descent to u2 = −v4 +16v2 −60, where b1 = −1, b2 = −60
and ϑ is taking the place of ϕ. Let us choose the point (u0, w0) = (0, 6) on the
corresponding quadratic u2 = −w2 + 16w − 60, so k = 1 and

w =
6t2 + 10

t2 + 1
.

Since E is playing the role of E, the correct value for the resultant is R = k4b =
16 — we must avoid the mistake of taking the value k4b = 1. Since b1 < 0, (∗∗)
shows that we need only consider positive δ, hence the list of candidates for δ
is 1,2.

δ = 1

t =
τ2 − 1

2τ

and the descendant quartic works out to

6τ4 + 28τ2 + 6 = 2.

This has no solution in Q2, hence none in Q. For, by elementary reasoning, τ
must be a 2-adic unit, and for such τ ,

6τ4 + 28τ2 + 6 ≡ 8 mod 16,

which can never be a square in Q2.
δ = 2 (∗∗) has the solution (s0, t0) = (2, 1), hence

t =
τ2 − 4τ + 2

τ2 − 2
.
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The descendant quartic divided by the square 16 is

2(τ4 − 3τ3 + 5τ2 − 6τ + 4) = 2.

As in the case δ = 1, this has no solution in Q2. For clearly τ must be a 2-adic
integer and by taking τ = 1, . . . , 15 one finds that 2(τ4 − · · · + 4) is never a
square mod16.

We have eliminated b1 = −1 and made progress:

0 ≤ r ≤ 1.

Next, second descent on u2 = 2v4 + 16v2 + 30 appears to be a tad arduous
(with (u0, w0) = (4,−1) we have to deal with the four possibilities ±1,±2 for
δ), so we take u2 = −2v4 + 16v2 − 30. On the quadratic we choose the point
(u0, w0) = (0, 3), so k = 1 and

f(t) = 3t2 + 10, g(t) = t2 + 2.

Again R = 16, (∗∗) eliminates δ < 0, and we are left with δ = 1 or 2. We leave
it to the reader to check that neither descendant quartic is solvable over Q2.

Since −6 ∈ ϑ and −2 6∈ ϑ therefore −6/− 2 = 3 6∈ ϑ; and by similar
elementary reasoning we arrive at ϑ = {1,−6,−10, 15} and r = 0.

Example (ii) We say that a rational number n/d is large when max{|n|, d}
is a large integer, and that a rational point (x, y) is large when x is large.
Sometimes a relatively small rational point on one of the descendant quartics
can produce a spectacularly large point on the torsor, one that could not have
been found in a reasonable amount of time in a straightforward search.

Apecs supplied the following unexceptional example, chosen more or less at
random. One of the descendant quartics produced by second descent on

E : y2 = x(x2 + 1001x + 1001)

is −4τ4 + 242τ3 + 371τ2 − 1246τ + 588 = σ2

which was found to have the rational point

(τ, σ) = (−12/137, 496518/1372).

This transforms to the E(Q) point

(1373811990322540873104/5472621892,

56203398158350303467901361175108/5472621893).
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3.6.7 A transcendental example

Let t be an indeterminate and

E : y2 = x3 − t(t − 1)2x, ∆ = 64t3(t − 1)6, j = 1728.

We will show that the rank r of E(C(t)) is 2 by applying Proposition 3.6.4 with
respect to the PID C[t]. We note that besides the usual automorphism P =
(x, y) 7→ −P = (x,−y), this group also has complex multiplication by i =

√
−1

(to be discussed in Chapter 9):

P = (x, y) 7−→ P = (−x, iy).

That this is a group automorphism, where of course we define O = O, is imme-
diate from the addition formulas (Proposition 1.7.1).

In Example 1 following Proposition 2.10.3 we determined the torsion sub-
group T of E(C(t)) to be of order 2: T = {O, T = (0, 0)}; and in the course
of applying Nagell-Lutz we uncovered the point P1 = (1− t, (t− 1)2) of infinite
order.

Proposition 3.6.4 with R = C[t] and K = C(t) gives ϕ = {1, t, t−1, t(t−1)};
for C∗2 = C∗, hence the set of divisors of b = −t(t − 1)2 mod squares is the
indicated set, and φ1(T ) = −t(t − 1)2K∗2 = tK∗2, and φ1(P1) = (1 − t)K∗2 =
(t − 1)K∗2. Similarly for

E : y2 = x3 + 4t(t − 1)2x,

we find the points (0, 0) and (2i(t − 1), 2(1 + i)(t − 1)2), hence ϑ = {1, t, t −
1, t(t − 1)}. Thus 2r = 4 × 4/4 = 4, and r = 2.

We notice the point† P2 = (2it, (1− i)t(t+1)) ∈ E(C(t)), which has infinite
order since y2 6 |∆, and the relations

P1 = P1 − P2 + T, P2 = [2]P1 − P2.

An easy induction using the addition formulas shows that for all nonzero integers
m, [m]P2 = (ifm, (1 − i)gm) where fm, gm ∈ R(t), hence [m]P2 /∈ E(R(t)),
whereas for all integers n and h, clearly

[n]P1 + [h]T ∈ E(R(t)).

Thus if [m]P2 + [n]P1 + [h]T = O, then m = 0, hence [n]P1 ∈ T which implies
n = 0. It follows that

T ⊕ 〈{P1, P2}〉
sits as a subgroup of finite index in E(C(t)). Actually the index is 1 ([Cohn80]),
but we lack the tools for a proof at this point in the notes. (Exercise. By
Proposition 1.7.5(b), the index is odd.)

†discovered by searching for P = (x, y) where x|∆ as suggested by Proposition 2.10.2(a).
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3.7 Billing’s upper bound for the rank

In this section we find an upper bound for the rank of E(Q) where E is an
elliptic curve defined over Q which does not have a point of order 2 defined
over Q, and so the method of simple 2-descent of the previous sections is not
available.

Let E be defined over Z:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ Z.

By Mordell’s theorem we can write

E(Q) = T ⊕ Zr, T finite.

We define the 2-minimal b-form as

E′ : y′2 = x′3 + 22i−2b2x
′2 + 24i−1b4x

′ + 26i−2b6

where i ∈ Z is chosen minimal such that E′ is defined over Z. Then

x′ = 22ix, y′ = 23iη = 23i−1(2y + a1x + a3)

define an isomorphism between E(Q) and E′(Q), and in particular, the two
groups have the same rank r. We let f = f(x′) = x′3 + ax′2 + bx′ + c denote
the right side in the equation of E′. The polynomial discriminant of f is

Df = −4a3c + a2b2 + 18abc − 4b3 − 27c2 = 212i−4∆,

where ∆ is the usual discriminant of E.
Now assume that E(Q)[2] = O, so f is irreducible over Q. Let the roots of

f in C be λ, λ′, λ′′. Then

Df =
1 λ λ2

1 λ′ λ′2

1 λ′′ λ′′2

2

= (λ − λ′)2(λ′ − λ′′)2(λ′′ − λ)2.

Let O be the ring of integers in the cubic field L = Q(λ), and let 1, α, β be an
integral basis of O. For any γ ∈ L, we let γ′, γ′′ denote its conjugates. Then
the field discriminant is

DL =
1 α β
1 α′ β′

1 α′′ β′′

2

.

Let I = I(λ) denote the index of λ:

I = [O : Z[λ]] =
√

Df/DL.
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I has the property that if γ ∈ O, γ /∈ Z[λ] and pγ ∈ Z[λ] for a prime p, then
p|I. Of course DL is uniquely determined by L: if γ, δ, ε is another integral basis
then, using matrix notation, (γ, δ, ε) = (1, α, β)M where M is a 3 × 3 integral
matrix with determinant ±1. There is little room to choose Df ; even replacing
λ by dλ where d is a nonzero integer gives the curve

y′2 = x′3 + adx′2 + bd2x′ + cd3

which is obtained from the equation for E′ by replacing x′, y′ with x′/d, y′/d
√

d.
Unless d is a square, this twist of E can very well have an r different from that
of E.

We make a definition:

An elliptic curve E defined over Z is quasi-supersingular at 2 if
it satisfies the four conditions

(QSS1) E(Q)[2] = O, so with the above notation, L = Q(λ) is a cubic
field;

(QSS2) 2 is ramified in L; let v denote the valuation on L with v(2) ≥ 2;

(QSS3) v(λ) ≥ 2;

(QSS4) there exists an odd integer N such that for all (x, y) ∈ [N ]E′(Q),
where E′ is the 2-minimal b-form of E, we have v(x) ≤ 0.

Lemma 3.7.1 An E defined over Z with supersingular reduction at 2 † is quasi-
supersingular at 2; furthermore, 2 is totally ramified in L and π = λ/2 is a
uniformizer for the valuation v.

Proof. Since a1 is even and a3 is odd, by the formulas in §1.1, we can write
b2 = 4β2, b4 = 2β4 where β2, β4 ∈ Z, and b6 is odd. Thus

π3 + 2β2π
2 + 2β4π + 2b6 = 0

which is Eisenstein at 2. This proves (QSS1)–(QSS3).

In (QSS4) we can take N = 15. For by Proposition 2.10.4(c), if Ẽ denotes

the reduction of E mod 2, |Ẽ(F2)| = 1, 3 or 5. Thus [15]E(Q) ⊆ E1(Q) where
E1(Q) is the kernel of the reduction homomorphism, i.e., O and all nonzero
points of the form P = (m/(2e)2, t/(2e)3) ∈ E(Q) where m, e, t ∈ Z and m and
t are odd. The 2-minimal b-form is y′2 = x′3 + b2x

′2 + 8b4x
′ + 16b6, and the

isomorphism θ : E −→ E′ is defined by θ(x, y) = (x′, y′) = (4x, 8y+4a1x+4a3).
Thus the points θ(P ) ∈ [15]E′(Q) have x(θ(P )) = m/e2 where m is odd.

An element of L is defined to be positive if its image is positive under the
embedding L −→ R defined by λ 7→ the smallest of the 1 or 3 real roots of f .

†For the moment we interpret this assumption to mean that a1 is even and a3 is odd; cf.

Proposition 2.10.4(c). After we clarify the notion of isomorphism between elliptic curves in
the next chapter, we can understand this to mean that E is Q-isomorphic to an elliptic curve
defined over Z with a1 even, a3 odd.
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Proposition 3.7.2 Let E be an elliptic curve defined over Z and suppose
E(Q)[2] = O; let the 2-minimal b-form be

E′ : y′2 = x′3 + ax′2 + bx′ + c = f(x′),

where f(x′) is irreducible over Q, let λ be a root of f(x′), let L = Q(λ), let L
have discriminant DL and ring of integers O, let I denote the index of Z[λ] in
O, and let Cl(O) denote the ideal class group of O.

(a) [Bil38] The rank r of E(Q) satisfies

r ≤ nL + 2np + nq + nh,

where

nL =

{
1 if DL < 0,
2 if DL > 0,

np = the number of primes p dividing I which factor into three

distinct prime ideals in O,

nq = the number of primes q dividing I whose factorization into

prime ideals in O has the form PP ′ or P 2P ′, P 6= P ′,

nh = dimF2
Cl(O)[2].

(b) This upper bound for r can be reduced by 1 in either of the following
situations.

(b1) The following two conditions are satisfied:

(i) The polynomial f is irreducible mod 2 (hence O/[2] ≈ F8,
and T = {c0 + c1λ + c2λ

2 : ci ∈ {0,±1, 2} is a set of
representatives for the elements of O/[4]);

(ii) O contains a positive unit ε such that for all α ∈ T , εα2

is not congruent mod4 to 1 or any one of c0 − λ where
c0 ∈ {0,±1, 2}.

(b2) The following two conditions are satisfied:

(i) E is quasi-supersingular at 2; let v be the unique valuation
on L with v(2) > 1, and let V be the ring of v and π a
uniformizer;

(ii) O contains a unit ε ≡ 1 + π mod π2V .

Proof.
(a) For ideals A,B in O, define the ideal greatest common divisor by

igcd(A,B) = Pmin{vP (A),vP (B)}
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where the product is over the prime ideals P in O and vP (A) denotes the
exponent of P in the prime ideal factorization of A. For γ ∈ O, let [γ] denote
the principal ideal γO. The norm from L to Q, both for elements and ideals, is
denoted N.

A nonzero point in E′(Q) has the form (m/e2, n/e3) where m, e, n ∈ Z,
e > 0 and gcd(m, e) = 1, equivalently gcd(n, e) = 1. Let

ϕ = φ1 (E′(Q)) =
{
(m − λe2)L∗2 : (m/e2, n/e3) ∈ E′(Q)

}
∪ {1L∗2}.

By Proposition 3.2.1, ϕ ≈ E′(Q)/[2]E′(Q). Since |T | is odd, therefore [2]T = T ,
hence |ϕ| = 2r. Thus we wish to obtain an upper bound on the dimension of
the F2-vector space ϕ.

From
n2 = (m − λe2)(m − λ′e2)(m − λ′′e2)

we see that any prime ideal occuring to an odd power in [m − λe2] must also
divide [γ] where γ = (m−λ′e2)(m−λ′′e2). Now igcd([m−λe2], [γ]) divides the
different

(λ − λ′)(λ − λ′′) = f ′(λ) = 3λ2 + 2aλ + b;

for if P is any prime ideal such that vP (m − λe2) > 0, then vP (e) = 0 and
the Taylor expansion of f about the point x = λ, f(x) = (x − λ)f ′(λ) + · · ·,
when evaluated at x = m/e2 and multiplied by e6, shows that vP (f ′(λ)) ≥
min{vP (m − λe2), vP (γ)}. It follows that igcd([m − λe2], [γ]) also divides
N(f ′(λ)) = −Df . Thus we can write

[m − λe2] = AB2 (∗)

where A is a square-free ideal dividing Df . There are only finitely many possi-
bilities for A. (In fact we are in the process of proving weak Mordell-Weil for
the class of E at hand.) This equation implies

N(m − λe2) = n2 = N(A)N(B)2,

hence N(A) is a square.
For ν = 1, 2, 3 and a prime p, let Pν , P ′

ν , . . . denote distinct prime ideals
with N(Pν) = pν (when such exist). If p is a prime divisor of Df there are five
possible factorizations of [p]:

1. [p] = P3;

2. [p] = P 3
1 ;

3. [p] = P 2
1 P ′

1;

4. [p] = P1P2;

5. [p] = P1P
′
1P

′′
1 .

In cases 1 and 2, igcd(A, [p]) = [1] since otherwise we would have vp(N(A)) =
3 or 1, respectively, contrary to the fact that N(A) is a square.
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In case 3, either igcd(A, [p]) = [1] or P1P
′
1|A and vp(N(A)) = 2.

Similarly in case 4, either igcd(A, [p]) = [1] or P1
6 |A, P2|A and vp(N(A)) = 2.

In case 5, besides igcd(A, [p]) = [1] there are three possibilities: A is divisible
by precisely two of P1, P

′
1, P

′′
1 , and again vp(N(A)) = 2.

We can now prove
p |N(A) =⇒ p| I.

In case 3 we have P1P
′
1| [m − λe2], so

[p]
∣∣P 2

1 P1
′2 and P 2

1 P1
′2

∣∣ [m − λe2]2,

hence γ :=
m2 − 2λme2 + λ2e4

p
∈ O and pγ ∈ Z[λ].

Since p 6 |e, therefore γ /∈ Z[λ], which implies p|I.
In cases 4 and 5 we must have p 6 |DL since any prime dividing DL is ramified.

Thus p |Df and p 6 |DL, hence p|I.
It follows that the number of possible A is at most 22np+nq , where np (resp.

nq) is the number of prime divisors of I of type 5 (resp. of type 3 or 4).
For each A that occurs we choose a particular equation (∗) and write it as

[µA] = AB2
A. In the list of µA we include µ[1] = 1, which may not actually arise

from an equation (∗), but corresponds to the point O. Then any equation (∗)
can be written

[m − λe2] = [µA](BB−1
A )2.

Thus the ideal class of BB−1
A belongs to Cl(O)[2]. If J1, . . . , Jnh

are ideals whose
classes form a F2-basis of the latter group, and J2

i = [ξi] where ξi ∈ O, then

(BB−1
A )2 = [α2ξν1

1 ξν2

2 · · ·]

for some α ∈ L∗ and νi ∈ {0, 1}. Thus

m − λe2 = uµAα2
nh

i=1

ξνi

i (∗∗)

where u is a unit in O.
We are at liberty now to choose λ as a real root of f , and in the case

Df > 0, as the smallest of the three real roots. This implies m − λe2 > 0, and
in particular, all µA > 0. Replacing ξi by −ξi as necessary, we can choose all
ξi > 0, and then u > 0. The group of positive units in O is free of rank nL.
Thus the number of distinct m − λe2 mod L∗2, i.e., |ϕ|, is at most 2n where
n = nL + 2np + nq + nh.

(b) The upper bound for dimF2
ϕ just stated was obtained by allowing in the

right side of (∗∗) all positive units u, all 22np+nq values of µA including µA = 1,
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and all possible combinations of νi ∈ {0, 1}. Thus we can reduce the estimate
by 1 when we can show that one of these values does not actually occur.

(b1) Let P = (m/e2, n/e3) ∈ E′(Q) and define z = m − λe2. If e is even
then m and n are odd and the Weierstrass equation implies that n2 ≡ m3 mod 4,
hence z ≡ m ≡ 1 mod 4. If e is odd then z ≡ c0−λ mod 4 where c0 ∈ {0,±1, 2}.

Thus assumption (ii) implies that ε, which was counted as a possible right
side in (∗∗) in our initial estimate, does not in fact occur.

(b2) Assume the two conditions in (b2) and let N denote the odd integer
specified in (QSS4). Because of the isomorphism

[N ]E′(Q)/[2N ]E′(Q) ≈ E′(Q)/[2]E′(Q),

we have

ϕ = {φ1(P ) : P = (m/e2, n/e3) ∈ [N ]E′(Q)} ∪ {1L∗2},

where m,n, e ∈ Z with m,n odd. Since 2 and λ are 0 mod π2V , therefore
m − λe2 ≡ 1 mod π2V . Each α ∈ O is congruent modπ2V to one of

0, 1, π, 1 + π,

hence α2 is congruent modπ2V to either 0 or 1. Thus εµ1α
2 ≡ 1 + π or

0 mod π2V does not occur on the right side of (∗∗).

3.7.1 Examples

The first example is due to Washington [Was87, Th.1]; the L that arise were
named the simplest cubic fields by Shanks. (For a generalization see [Kaw-
Na92].)

Corollary 3.7.3 With the notation of the proposition, let E be given by

y2 = f(x) = x3 + Mx2 − (M + 3)x + 1

where M is a positive integer such that M2 + 3M + 9 is square-free. Then E′

coincides with E, L is a cyclic cubic extension of Q and

r ≤ 1 + nh.

Proof. f is irreducible over Q since it is irreducible mod 2, and L is cyclic over
Q since Df = (M2 + 3M + 9)2. In fact

λ′ = 2 − (M + 1)λ − λ2, λ′′ = −(2 + M) + Mλ + λ2.

These three roots are units since their norm is −1. Choosing the notation so
that λ < λ′ < λ′′ in a real embedding, one finds that λ is negative and λ′ and
λ′′ are positive.
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In the Corollary to his Proposition 1, Washington proves that 1, λ, λ2 form an
integral basis. We take this fact as ‘background’ number theory; it implies that
I = 1, hence np = nq = 0. Thus part (a) of the proposition yields r ≤ 2 + nh,
and it remains to check that (b1) applies.

In fact computer calculation shows that for all nonzero α ∈ T , λ′′α2 ≡
c0 + c1λ + c2λ

2 mod 4 where c2 6≡ 0 mod 4. †

In the following examples, reference will be made to the tables of cubic
fields in Appendix B of [Coh93], and for ‘pure’ cubic fields Q( 3

√
m), to Table 1

in [Cas50]. The next example will be the key to proving in chapter 8 that no
E/Q has a point of order of order 11 defined over Q.

Corollary 3.7.4 For

E : y2 + y = x3 − x2, ∆ = −11, A11

the rank of E(Q) is 0. More precisely,

E(Q) = {O, (0, 0), (1, 0), (1,−1), (0,−1)} = C5.

Proof. That the torsion subgroup T = C5 as indicated is an easy application
of Nagell-Lutz and is left to the reader.

Condition (b2)(i) of the proposition is met since A11 has supersingular
reduction at 2; f = x3

1 − 4x2
1 + 16, so Df = −2811 and π3 − 2π2 + 2 = 0 is the

Eisenstein equation. The discriminant of the order Z[π] is −44, and so L must
be the unique cubic field of discriminant −44. In fact calculation shows that,
using the notation of Table B.3 of [Coh93, p.509], α = ε = 1 − π and h = 1.
Thus condition (ii) is met. Since O = Z[α] = Z[π], the index I = 23, hence
np = nq = 0, and r = 0 follows.

The preceding corollary was first proved by Billing and Mahler [Bil-Ma40];
they used part (a) of the proposition, but an ad hoc argument in place of (b2)
that applied only to A11. We will find (b2) useful also for other curves.

Corollary 3.7.5 For the curve

E : y2 + y = x3 − 7, ∆ = −39, B27

E(Q) has rank 0 and T = {O, (3, 4), (3,−5)}. The 2-minimal b-form of this
curve is

y′2 = x′3 − 432,

hence, by Corollary 1.4.3, we have Euler’s result that Fermat’s last theorem is
true for exponent 3.

†λ′ does not work: λ′α2 ≡ 1 − λ for appropriate α.
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Proof. E has supersingular reduction at 2, and T is as stated by Nagell-Lutz.
L = Q(π) where π = 3

√
2 with integral basis 1, π, π2, DL = −108, I = 63 and

h = 1. Thus nL = 1, np = nq = nh = 0. Since ε = 1 + π + π2, (b2) gives r = 0.

Corollary 3.7.6 For

E : y2 + y = x3 − x, ∆ = 37, A37

E(Q) = 〈(0, 0)〉 ≈ Z. The integral points on E(Q) are precisely the ten listed
in the table in example 4, §2.10.1.

Proof. This is another example that enjoys the reduction afforded by part (b2)
of the proposition. Again the reduction at 2 is supersingular. In this case,
Df = 2837, π3 − 4π + 2 = 0, O = Z[π], and L is the unique totally real cubic
field of discriminant 148. Using table B.4 [ibid.] one finds, after some minor
calculation, that α = 1 + π + π2, ε1 = α, and ε2 = −3 + π2. Condition (b)(ii) is
satisfied by ε = ε1. We have I = 8 hence np = nq = 0, and h = 1 hence nh = 0.
This time nL = 2 so r ≤ 1. Since (0, 0) has infinite order, r = 1.

The discriminant ∆ = 37 is positive; the real points of order 2 have x-
coordinates approximately −1.1, .27, and .84, hence the integral points in the
odd component are precisely the four points Q = (0, 0), −Q = (0,−1), [3]Q =
(−1,−1), and [−3]Q = (−1, 0). By Lemma 3.6.8, Q is a free generator. Noting
that

[8]Q = (21/52, 69/53), [12]Q = (23 · 59/292, 23 · 23 · 157/293)

are fractional, the determination of all integral points follows from an application
of part (b) of the

Lemma 3.7.7 (a) Let E be an elliptic curve defined over Z and let Q ∈ E(Q).
Then there is an integer a ≥ 0 such that [2i]Q is integral (resp. non-integral)
for 0 ≤ i < a (resp. i ≥ a).

(b) Let E/Z satisfy conditions (i)–(iv) of Lemma 3.6.8 and

(v) the torsion subgroup T of E(Q) has odd order, for example T = O.
Then all integral points can be determined by the following algorithm:
— Let R1, . . . , Rn be the integral points in the odd component;
— for each Ri let ai be the smallest positive integer such that [2ai ]Ri is

non-integral.
Then the integral points in E(Q) are precisely

[2j ]Ri : 1 ≤ i ≤ n, 0 ≤ j < ai.

Proof. (a) We first note that E(R)[3] = C3. Geometrically this is clear: a
point S 6= O is of order 3 iff [2]S = −S iff S is a flex, i.e., the tangent at S cuts
through the curve. There are no flexes on the odd component (algebraically one
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says that S = [2]([2]S) is on the even component) and there are precisely two
flexes in the affine part of the plane on Eo(R) for the following reason. Think of
tracking the slope of the tangent on the upper branch of the curve starting from
the leftmost point on Eo(R) and letting x increase. The tangent at the leftmost
point is vertical, then the slope becomes finite and at first decreases, then attains
a minimum — at the upper flex — and then increases monotonically to ∞ since
y ∼ x3/2.

Algebraically this can be proved by calculating the Sturm sequence for the
3-division polynomial ψ3. One finds that for all E/R, ψ3 has two real roots and

a pair of conjugate complex roots. For one of the real roots the values of y are
real, while for the other they are complex. (This involves some work, but it is
a good refresher course in Sturm theory.)

As a temporary notation, let ξ denote the x-coordinate of the two real flexes,
define the left half to be {(x, y) ∈ Eo(Q) : x ≤ ξ} and the right half to be
the complement of the left half in Eo(Q).

Now let Q ∈ E(Q). Since [nn′]Q integral implies that [n]Q is integral
(Proposition 2.10.1(a)), the point is to prove that a is finite. Since O is non-
integral by definition, the statement is clear for Q ∈ T by Proposition 2.10.4(a).
Thus we assume that Q is a point of infinite order in the neutral component
such that all [2i]Q are integral, and wish to derive a contradiction.

Let mi denote the absolute value of the slope at (xi, yi) := [2i]Q and M the
slope at the upper flex. If [2i]Q is in the left half then, since mi > M , [2i+1]Q
is in the right half. If [2i]Q is in the right half then xi+1 ≤ xi − 1, and therefore
for some j > 0, [2i+j ]Q is in the left half. Thus we would accumulate infinitely
many distinct integral points in the left half; but this is not possible since the
range of x in the left half is finite.

(b) Since |T | is odd, every T ∈ T can be written uniquely as [2]T ′, and T
is contained in the neutral component. Let R be a free generator in the odd
component (the existence was proved in Lemma 3.6.8), so every point in E(Q)
is uniquely expressible in the form [n]R + T . Suppose [n]R + T is integral,
where n = 2jm, m odd. Then [n]R + T = [2]([2j−1m]R + T ′) implies that
[2j−1m]R + T ′ is integral. Continuing in this way, we find that [m]R + T ′′ is
integral for some T ′′ ∈ T . Also [m]R+T ′′ is in the odd component since [m]R is
in the odd component and T ′′ is in the even component. Hence [m]R+T ′′ = Ri

for some i, and [n]R + T = [2j ]Ri.

We state the remaining examples more concisely; as before, α, h, ε, refer to
the tables in [Coh93].

y2 + y = x3 − x2 − 736x − 18020, ∆ = −11 · 476 A11 ∗ (−47)

is the quadratic twist of A11 by −47 — to be explained in the next chapter.
For this curve, T = O, f = x3 − 4x2 − 2923x − 24721471, Df = −2811 · 476,
L = Q(π) where π3 − 2π2 − 2723π − 2 · 721471 = 0, DL = −44, ε = α =
(15 + π)/47 ≡ 1 + π mod 2, I = 23473, [47] = P1P

′
1P

′′
1 , np = 1, nq = 0,
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h = 1 hence nh = 0, (b2) applies and r ≤ 2. In fact r = 2, two independent
points being Q1 = (110, 1104) and Q2 = (205/4, 2205/8) with height pairing
determinant

det (〈Qi, Qj〉) =
1.0073 .3145
.3145 1.7887

= 1.703 .

For a connection between this curve and the Galois theory of Q, see [Ser92, p.53].
Also, the significance of r > 0 for this curve will come out in §7.3.1: m = −47
is an ‘extraordinary’ value.

Here is an example where the reduction in (b) of the proposition does not
apply.

E : y2 = x3 − x + 1 = f, ∆ = −2423 C92

has T = O. A root of f is λ = −1/α = −ε where α3 + α2 − 1 = 0 and
L = Q(λ) = Q(α); Df = DL = −23, I = 1, h = 1. Hence r ≤ nL = 1. In fact
E(Q) = 〈(1, 1)〉.

Here is an example that brings nh into play. The cubic field with smallest
discriminant and h > 1 is L = Q(α) where a3 + 4α − 1 for which DL = −283
and h = 2, so nh = 1. We take

E : y2 = x3 + 4 − 1

so by construction, I = 1. Thus r ≤ 2 and in fact E(Q) = 〈Q1, Q2〉 where
Q1 = (1, 2) and Q2 = (5, 12) are independent.

Of course the above examples were carefully chosen; “usually” r is less than
the bound given by the proposition. Then to determine r another approach
is needed. In [Bir-Sw63], Birch and Swinnerton-Dyer introduce the method
of classifying torsors of E defined over Q. In [Cre92], Cremona describes the
method in detail and uses it to determine the ranks of the elliptic curves in his
catalog; but for this, one must refer to the second (1997) edition for the latest
refinements including his remarkable criterion to test the equivalence of two
quartics. This affords a great simplification to the method (and is incorporated
in the apecs procedure Crem.)

3.7.2 An example of Selmer

We now fulfill a promise made in Chapter 1.

Corollary 3.7.8 The Selmer curve

3U3 + 4V 3 + 5W 3 = 0

has a point in P2(R) and in each P2(Qp), but no point in P2(Q).
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Proof. We first prove that the set of rational points is empty. As explained in
§1.4.1, this will follow if we prove that the only point in P2(Q) on

X3 + Y 3 + 60Z3 = 0

is (X,Y, Z) = (1,−1, 0). By Proposition 1.4.1, this curve is birationally equiv-
alent with the Weierstrass equation y2 = x3 − 432 · 602. Replacing x, y with
4x, 8y and dividing the equation by 64, this becomes

E : y2 = x3 − 223552.

By Nagell-Lutz, T = O, and we wish to prove that r = 0.
This will follow from the proposition using part (b2), but this time the curve

is only quasi-supersingular and not supersingular at 2.
We take π = 3

√
30 and calculate Df = −2431354, λ = 3π2, L = Q(λ) = Q(π).

From [Cas50, Table 1], an integral basis is 1, π, π2, hence DL = −223552(= a6!)
and I = 2 · 345, a positive fundamental unit is ε = 1 + 9π − 3π2 and the class
number h = 3.

These data give nL = 1, np = nq = nh = 0, hence part (a) of the proposition
gives r ≤ 1, and it remains to show that E is quasi-supersingular at 2. (QSS1)–
(QSS3) are clear from the preceding. We now verify (QSS4) with N = 1.

Let (x, y) ∈ E(Q). Clearly x 6= 0. Suppose x = 2ax1 where a > 0 and
v(x1) = 0. Then y = 2y1 where v(y1) = 0 and

y2
1 = 23a−2x3

1 − 3552.

If a ≥ 2 we deduce the contradiction 1 ≡ −3 mod 8; if a = 1 we deduce
1 ≡ 2x1 − 3 mod 8, hence the contradiction x1 ≡ 2 mod 4. We conclude that
v(x) ≤ 0. This completes the proof that E(Q) = O.

It remains to prove that the Selmer curve has points defined over every local
field K.

K = R: no problem.
K = Q2: take V = 0, W = 1 and apply Hensel to f(U) = 3U3 + 5 starting

at U = 1.
K = Q3: take U = 0, W = −1 and apply Hensel to f(V ) = 4V 3−5 starting

at V = 2.
K = Q5: take V = −1, W = 0 and apply Hensel to f(U) = 3U3−4 starting

at U = 2.
K = Qp, p > 5: use Hensel’s lemma starting with a point (U, V, W ) defined

over Fp with not all three of U, V, W ≡ 0 mod p, whose existence is guaranteed
by the following lemma.

Lemma 3.7.9 Let q be a prime power and a, b, c ∈ Fq. Then P2(Fq) contains
a point on

aU3 + bV 3 + cW 3 = 0. (])
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Remark. This can be regarded as another example of the theorem of Schmidt
mentioned in the remarks after Proposition 3.6.7 (together with degenerate cases
where 3abc = 0). However we have the following direct and elegant proof by
M. Hall, Jr., as reported in [Sel54, p.218].
Proof. If abc = 0, say a = 0, we can take U = 1, V = W = 0. Thus suppose
abc 6= 0. If q ≡ 0 or 2 mod 3 then each element of Fq has a unique cube root,
and therefore there is no shortage of solutions. Thus suppose q ≡ 1 mod 3. Then
the set of nonzero cubes form a subgroup K0 of Fq

∗ of order q = (q − 1)/3; we
denote the cosets by K1, K2.

If two of a, b, c are in the same coset, say a and b, then a = bv3 for some
v and we can take (U, V,W ) = (1,−v, 0). The hard case is when the three
coefficients lie in the three cosets, say a ∈ K0, b ∈ K1 and c ∈ K2. We want to
prove there are xi ∈ Ki such that x0 + x1 + x2 = 0, for there are U, V, W such
that x0 = aU3, x1 = bV 3 and x2 = cW 3.

We define a 3 × 3 matrix of integers by

αij = #{x ∈ Ki : x + 1 ∈ Kj}.

We have
α00 + α01 + α02 = q − 1

since the one member −1 of K0 is ‘lost’ due to −1 + 1 = 0. Otherwise the q
members of Ki when augmented by 1 are distributed without loss among the
three Kj :

α10 + α11 + α12 = q, α20 + α21 + α22 = q.

Thus
α10 + α11 + α12 = α00 + α01 + α02 + 1. ([)

Since x 7→ −x effects a permutation on each of the sets Ki, and

xj = xi + 1 =⇒ −xi = −xj + 1,

where xi denotes a typical member of Ki, therefore the matrix is symmetric:

αji = αij .

The map x 7→ x−1 defines a pemutation on K0 and interchanges K1 and K2.
We interpret subscripts mod 3; thus x−1

i ∈ K−i = K3−i, and x−1
i xj ∈ Kj−i.

Since
xj = xi + 1 =⇒ x−1

i xj = 1 + x−1
i ,

we have αij = α−i,j−i, which implies in particular that α11 = α20 = α02. Thus
([) becomes

α12 = α00 + 1 ≥ 1.

This means there are x1, x2 such that x2 = x1 +1, or x0 +x1 +(−x2) = 0 where
x0 = 1.
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For an outline of a different approach to the corollary, see [Cas66, p.206].
In [Sel51], Selmer gives extensive theory and tables of results concerning

diophantine equations of the type aU3 + bV 3 + cW 3 = 0 defined over Q. The
examples are not always as ‘easy’ as the one we have just worked out. E.g., he
shows that

U3 + 10V 3 + 33W 3 = 0

has no point in P2(Q), yet has points defined over every local field as in the
example in our corollary, but this time X3 +Y 3 +330Z3 = 0 has infinitely many
points. (In Proposition 1.4.4 we have a rational map going in one direction
only.) Nagell’s algorithm converts the latter cubic to the Weierstrass form y2 =
x3 − 3552112 which has the point (91, 136) of infinite order. Thus the method
of proof of the preceding corollary does not apply to this example.



Chapter 4

Twists

Taking elliptic curve to mean a Weierstrass equation, we define the notion of
isomorphism betwen elliptic curves and describe simplified representatives of
the isomorphism classes. When elliptic curves ‘become’ isomorphic over some
extension field they are called twists of one another; we will see that this is
so iff they have the same j-invariant. The last section considers elliptic curves
over finite fields, studiously postponing (to Chapter 6) the proof of the Rie-
mann Hypothesis for E/Fq

to emphasize the elementary nature of the results,

in particular Corollary 4.7.11 which was previously thought to be rather more
difficult to obtain. For the same reason, the introduction of Galois cohomology
is postponed to a later chapter.

4.1 Isomorphisms of elliptic curves

Let E be an elliptic curve defined over the field K by the Weierstrass equation
F = y2 + a1xy + · · · − a6 = 0 with function field L = K(x, y) and point O
at ∞. Recall from §2.2.2 that associated to O is a valuation w∞ in gamK(L)
characterized by the property that x has negative value, and in fact w∞(x) =
−2, w∞(y) = −3. If E′ is another elliptic curve over K with data L′ = K(x′, y′),
a′

i, w∞
′, we wish to study K-isomorphisms, that is, K-algebra isomorphisms,

L −→ L′ that preserve O in the sense that the image of x has negative w∞
′-

value. (Later, once we have defined morphisms between algebraic varieties, we
will properly describe this as an isomorphism f : E′ −→ E preserving O.) To
simplify notation we take L = L′ and seek x′, y′ ∈ L with appropriate properties.

For later purposes it is convenient to include in the discussion the invariant
differential encountered in Chapter 2:

ω =
dx

2y + a1x + a3
=

dx

Fy(x, y)
=

−dy

Fx(x, y)
=

dy

3x2 + 2a2x + a4 − a1y
.

401
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Proposition 4.1.1 With E, L, w∞ as above and x′, y′ ∈ L, the following are
equivalent:

(i) x′, y′ satisfy a Weierstrass equation y′2+a′
1x

′y′+ · · ·−a′
6 = 0, w∞(x′) < 0

and K(x′, y′) = L;
(ii) there are r, s, t ∈ K and u ∈ K∗ such that

x = u2x′ + r,

y = u3y′ + su2x′ + t,

equivalently,
u2x′ = x − r,

u3y′ = y − sx + sr − t.

Then

u3(2y′ + a′
1x

′ + a′
3) = 2y + a1x + a3, u−1ω′ = ω,

and
ua′

1 = a1 + 2s

u2a′
2 = a2 − sa1 + 3r − s2

u3a′
3 = a3 + ra1 + 2t

u4a′
4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st

u6a′
6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u4b′4 = b4 + rb2 + 6r2

u2b′2 = b2 + 12r

u4c′4 = c4, u6c′6 = c6, u12∆′ = ∆, j′ = j.

Proof. If x′ and y′ are defined as in (ii) then obviously (i) is true. Conversely
assume that x′, y′ satisfy the conditions in (i). Proposition 2.2.9(a) applied to
the Weierstrass equation satisfied by x′, y′ implies that w∞ is the only valua-
tion in gamKL for which x′ has negative value, in fact the values of x′, y′ are
−2,−3 respectively. Therefore for all w 6= w∞, w(x′) ≥ 0, w(y′) ≥ 0 hence by
Proposition 2.2.10

x′, y′ ∈
⋂

w 6=w∞

V (w) =
⋂

AP = A = K[x, y].

Thus x′ = α1y + α2, y′ = α3y + α4 for some αi ∈ K[x]. Now for αi 6= 0,
w∞(αi) = −2 deg αi is even and w∞(αiy) = −2 deg αi − 3 is odd. Therefore
w∞(x′) = min{w∞(α1y), w∞(α2)} = −2 forces α1 = 0, deg α2 = 1. Similarly
we see that deg α3 = 0 and deg α4 ≤ 1 or α4 = 0. Substituting into the
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Weierstrass equation for x′, y′ shows that the leading coefficients of α2, α3 can
be written as u−2, u−3 respectively for some u ∈ K∗.

The remaining formulas are best checked on the computer.

Let τ = [r, s, t, u] denote the transformation described in the proposition.
The set of these transformations comprise a group G :

[r′, s′, t′, u′][r, s, t, u] = [r + u2r′, s + us′, t + u2sr′ + u3t′, uu′],

[0, 0, 0, 1] acts as 1,

and τ−1 = [−u−2r,−u−1s, u−3(rs − t), u−1].

The group G acts on the set W of Weierstrass equations, which for the
present discussion can be identified with the set K5 = {(a1, a2, a3, a4, a6)},
according to the formulas of the proposition:

[r, s, t, u](a1, a2, a3, a4, a6) = (u−1(a1 + 2s), . . .) .

The set W is partitioned as E ∪ S, where E consists of the non-singular Weier-
strass equations — those for which ∆ 6= 0 — and S consists of the singular
equations. G acts separately on E and S.

For example τ = [0, 1, 4, 2] transforms

E = (0, 1, 0, 8, 16), i.e., y2 = x3 + x2 + 8x + 16 with ∆ = −213 ∗ 13

to τE = (1, 0, 1, 0, 0), i.e., y2 + xy + y = x3 with ∆ = −26.

However we will not continue to use the (a1, . . .) notation, but rather use ex-
pressions such as ‘let E be the equation y2 = x3 + · · ·’.

At this point we take as the definition of elliptic curve (defined over K) a
Weierstrass equation E ∈ E (whose coefficients a1, . . . , a6 lie in K), and we define
the transformations τ described in the proposition as isomorphisms from one
elliptic curve to another. Thus two elliptic curves are isomorphic over K, or
are K-isomorphic, when they fall in the same G-orbit of E . Typical notation
is τE = E′. When the identity of K is clear, we say simply that E and E′

are isomorphic. The orbit is an abstract elliptic curve, and the individual
members of the orbit are referred to as models of the abstract elliptic curve;
these terms are qualified by defined over K when necessary.

These isomorphisms have a concrete meaning in terms of points on the
curves.

Proposition 4.1.2 Let E and [r, s, t, u]E = E′ be isomorphic elliptic curves
defined over the field K. Then

(a, b) 7→ (a′, b′) = (u−2(a − r), u−3(b − sa + sr − t))

augmented by OE 7→ OE′ defines a group isomorphism

E′(K) −→ E(K).
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Proof. At some level all of this is ‘obvious’; but let us attempt to give a
reasoned account.

Let X, Y be independent transcendentals over K and let F be the polynomial
Y 2+a1XY +a3Y −X3−a2X

2−a4X−a6, so that the affine coordinate ring of E
is A = K[X, Y ]/(F ) where the denominator (F ) is the principal ideal generated
by F . The statement that (a, b) ∈ E(K) is equivalent to the statement that
the ideal (X − a, Y − b) generated by the two polynomials X − a and Y − b
contains (F ) (so that the surjective K-algebra homomorphism K[X, Y ] −→ K
determined by X 7→ a, Y 7→ b factors through A).

Define the polynomials

X ′ = u−2(X − r), Y ′ = u−3(Y − sX + sr − t);

then
X = u2X ′ + r, Y = u3Y ′ + su2X ′ + t,

and K[X ′, Y ′] = K[X, Y ]. When we substitute these expressions for X, Y into
F , divide by u6 and collect terms, we obtain a polynomial F ′ in X ′, Y ′ that is
the Weierstrass polynomial for E′. Since u is a unit, (F ′) = (F ). Also

(X ′ − a′, Y ′ − b′) = (u−2(X − a), u−3(Y − b − s(X − a))) = (X − a, Y − b).

Thus (a, b) ∈ E(K) ⇔ (a′, b′) ∈ E′(K), and so we at least have a map E(K) −→
E′(K), which we denote τ . Since OE′ 7→ OE and (a′, b′) 7→ (u2a′ + r, u3b′ +
su2a′ + t) define an inverse, τ is a bijection.

Since the transformations between the X, Y and X ′, Y ′ coordinates are lin-
ear, colinearity of points is preserved, hence τ is a homomorphism. In detail,
we pass to projective coordinates: X = U/W , Y = V/W , and X ′ = U ′/W ′,
Y ′ = V ′/W ′, so the transformations are U = u2U ′+rW , V = u3V ′+su2U ′+tW ′

and W = W ′. Substitution shows that if (ai, bi, ci), i = 1, 2, 3 are the points
of intersection of the line αU + βV + γW = 0 with E, then their images
(a′

i, b
′
i, c

′
i) are the points of intersection of α′U ′ + β′V ′ + γ′W ′ = 0 with E′,

where α′ = u2(α + sβ), β′ = u3β and γ′ = rα + tβ + γ are not all zero.
The following obvious corollary is worth stating explicitly.

Corollary 4.1.3 Isomorphic E/K have isomorphic m-torsion subgroups
E(K)[m] for every positive integer m.

The subgroup {τ : τE = E} of G that stabilizes E is the automorphism

group of E (over K) and is denoted autKE. The automorphism groups of
isomorphic E are conjugate subgroups of G. The group autKE always contains
at least the two elements [1] and [−1] = [−1]E = [0,−a1,−a3,−1]. ‡ Note that
as elements of G, [−1] 6= [1], (even when charK = 2 because then ∆ 6= 0 implies
that at least one of a1, a3 6= 0), but their action on E is identical.

‡Later we will see that autKE is the group of invertible elements in a ring endKE; for
the time being we can think of [−1] as the endomorphism of the abelian group E(L) given by
[−1](x, y) = (x,−y − a1x − a3).
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4.2 Simplified Weierstrass equations

For general K there is no canonical way to pick models of elliptic curves, that
is, particular representatives of the G-orbits, but at least each orbit contains a
subset of simplified forms as we now describe. We also describe the stabilizer of
this subset in terms of the following subgroups of G:

R = {[r, 0, 0, u]},
S = {[0, s, 0, 1]},
T = {[s2, s, t, u]}, (characteristic 2 only),

U = {[0, 0, 0, u]}.

where r, s, t run through K and u through K∗.
We have the semidirect product decomposition

1 −→ G1 −→ G
p

−→
←−
s

K∗ −→ 1

where G1 = {[r, s, t, 1]} and the projection p[r, s, t, u] = u is split by the section
s(u) = [0, 0, 0, u]; cf. [Con82], p.401. U is isomorphic (via s) with the mul-
tiplicative group K∗ and S with the additive group K+, while R and T are
noncommutative being describable as semidirect products.

Lemma 4.2.1 Let charK 6= 2 or 3 and let E be defined over K with covariants
c4, c6. Then E is K-isomorphic to its c-form

E1: y2 = x3 − c4

48
x − c6

864
.

Hence if E′ is also defined over K, with covariants c′4, c′6, then E and E′ are
K-isomorphic iff ∃u ∈ K∗ such that

c4 = u4c′4, c6 = u6c′6.

Remarks. The assumption 1728 = 2633 6= 0 in K and the relations

c3
4 − c2

6 = 1728∆, c′4
3 − c′6

2
= 1728∆′

mean that any two of the equations

c4 = u4c′4, c6 = u6c′6, ∆ = u12∆′

implies the third.
For alternative criteria that E and E′ be K-isomorphic, see Proposition 4.4.1.

Proof. First complete the square in y and then complete the cube in x:

[−b2/12, 0, 0, 1][0,−a1/2,−a3/2, 1]E = E1.
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This is the change to (ξ, η) coordinates mentioned at the beginning of chapter 1.
If E and E′ are K-isomorphic, say [r, s, t, u]E = E′, then the relations be-

tween their covariants follow from the transformation equations of the previous
proposition.

Conversely assume these relations. Then E is K-isomorphic to

[0, 0, 0, u]E1: y2 = x3 − u4c4

48
x − u6c6

864

= x3 − c′4
48

x − c′6
864

which in turn is K-isomorphic to E′.

Proposition 4.2.2 For each E ∈ E there exists a τ ∈ G such that the equation
for E′ = τE has the following simplified form according to the case indicated
in the boxed assumptions. A particular τ (which is not unique) is given in each
case.

The subgroup stabilizing the class of simplified forms is denoted stab in each
case; for classes (a), (b) and (d), for each allowed value j0 of j, the group stab
is also the subgroup stabilizing the subset of that class with j = j0.

†

(a) charK 6= 2, 3

y2 = x3 + a′
4x + a′

6, c′4 = c4 = −48a′
4, c′6 = c6 = −864a′

6,

hence ∆′ = −16(4a′
4
3

+ 27a′
6
2
), j = −483a′

4
3
/∆′;

τ = [−b2/12, 0, 0, 1][0,−a1/2,−a3/2, 1]; stab = U ;

(b) charK = 3 and j 6= 0, i.e., E ordinary

y2 = x3 + a′
2x

2 + a′
6, c′4 = c4 = a′

2
2
, c′6 = c6 = −a′

2
3
,

hence ∆′ = −a′
2
3
a′
6, j = −a′

2
3
/a′

6;

τ = [−b4/b2, 0, 0, 1][0, a1, a3, 1] = [−b4/b2, a1, a3 − a1b4/b2, 1]; stab = U ;

(c) charK = 3 and j = 0, i.e., E supersingular

y2 = x3 + a′
4x + a′

6, c′4 = c4 = c′6 = c6 = j = 0, ∆′ = −a′
4
3
;

†For example, the subset of class (a) with j = 1728 consists of the equations y2 = x3+a4x,
a4 ∈ K∗ and the stabilizing subgroup of this subset is again U . This observation is used in
the proof of Proposition 4.7.6 where we count E defined over a finite field with given j. We
note also that all these curves have a point of order 2, namely (0, 0). In fact, an elliptic curve
of invariant 1728 has a point of order 2 either always, sometimes, or never according as char K
is, respectively, not 2 or 3, 3, or 2.



4.2. SIMPLIFIED WEIERSTRASS EQUATIONS 407

this simplified form exists with a′
6 = 0 iff E(K) contains a point of order 2; ‡

τ = [0, a1, a3, 1]; stab = R;

(d) charK = 2 and j 6= 0, i.e., E ordinary

y2 + xy = x3 + a′
2x

2 + a′
6, c′4 = c′6 = 1, ∆′ = a′

6, j = 1/a′
6;

τ = [a3/a1, 0, a4/a1 + a2
3/a3

1, a1]; stab = S;

(e) charK = 2 and j = 0, i.e., E supersingular

y2 + a′
3y = x3 + a′

4x + a′
6, c′4 = c′6 = j = 0, ∆′ = a′

3
4
.

τ = [a2, 0, 0, 1]; stab = T ;

Moreover, for each of the five classes, stab has the following strong stabilizing
property: if σ ∈ G is such that σE = E′ for any particular pair E,E′ in that
class then σ ∈ stab.

Proof. (a) The existence of the simplified form is given by the lemma. Clearly
any element σ ∈ U stabilizes this class and also stabilizes any subclass with j
fixed since E and τE have the same j-invariant by the previous proposition. If E
and E′ are two such simplified forms and σ = [r, s, t, u] is an isomorphism from E
to E′, then, since charK 6= 2, 3, the transformation equations give in succession
2s = 0, hence s = 0, then 3r = 0, hence r = 0, then 2t = 0, hence t = 0. This
proves σ ∈ U and the strong stabilizing property. The determination of stab
and the verification of the strong stabilizing property in the remaining cases is
equally straightforward, so the details will be omitted. Similarly τE = E′ for
the stated τ in each case is left to the reader.

(b) and (c) Since char = 3 we can at least complete the square in y and so

assume a′
1 = a′

3 = 0. Then c′4 = a′
2
2

hence j := c′4
3
/∆ is 0 ⇔ a′

2 = 0. If a2 6= 0,
[a4/a2, 0, 0, 1] yields a′

4 = 0.

Assuming the form (c), if a′
6 = 0 then (0, 0) is a point of order 2. Conversely

if (r, 0) is a point of order 2 then, since charK = 3, [−r, 0, 0, 1] gives a new
equation of the same type but with a′

6 = 0.

(d) and (e) Since char = 2 we have c4 = a4
1, hence j = 0 ⇔ a1 = 0. All that

remains is to verify that τE = E′ in the two cases.

Since we will have occasion to refer to these special Weierstrass equations,
we make a formal definition. A Weierstrass equation of one of the types listed
in the foregoing proposition is a simplified Weierstrass equation of class (a),
(b), (c), (d) or (e).

‡By Corollary 4.1.3, the existence of a point of order 2 does not depend on the equation
chosen in the isomorphism class of E.
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4.3 Twists, quadratic and otherwise

An elliptic curve defined over K can be regarded as being defined over any
extension field F of K.

Proposition 4.3.1 For elliptic curves E, E′ defined over K with respective
invariants j, j′, the following are equivalent

• E and E′ are F -isomorphic for some extension F of K;

• E and E′ are K-isomorphic where K denotes the algebraic closure of K;

• j = j′.

Remark. It will be seen in the proof that usually F can be taken to be a
quadratic extension, and in any case a finite extension of K. This will be made
explicit in Proposition 4.4.1.
Proof. If τE = E′ with τ defined over F then j = j′ by Proposition 4.1.1
(with F written in for K) and, incidentally, τ ∈ stab as classified in the previous
proposition, by the strong stabilizing property.

Conversely let j = j′. We will construct a K-isomorphism τ = [r, s, t, u] from
E to E′. (This construction will be examined more closely in Proposition 4.5.1;
at the moment we only wish to prove existence.) We can assume that E and
E′ are both in simplified form, and the assumption j = j′ assures that they are
in the same class. We treat the five classes separately. For each class we make
a choice of τ = [r, s, t, u] ∈ stab that satisfies the five transformation equations
ua′

1 = a1 + 2s through u6a′
6 = a6 + etc.

(a) By the formulas for j and j − 1728 given in § 1.2,

j = j′ =⇒ c3
4/∆ = c′4

3
/∆′, j − 1728 = j′ − 1728 =⇒ c2

6/∆ = c′6
2
/∆′,

hence c′4
3
c2
6 = c3

4c
′
6
2
.

We can choose u ∈ K so that

c4 = u4c′4, c6 = u6c′6;

this is clear if either c4 = c′4 = 0 or c6 = c′6 = 0 and otherwise take

u =

√

c′4c6

c4c′6
.

That τ = [0, 0, 0, u] is an isomorphism from E to E′ was already observed in
the proof of Lemma 4.2.1

(b) Since E and E′ are in simplified form we have ai = a′
i = 0 for i = 1, 3, 4,

and all of a2, a
′
2, a6, a

′
6 are nonzero since the discriminants are nonzero. Also

j = j′ =⇒ −a2
3/a6 = −a′

3
2
/a′

6.
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For τ = [0, 0, 0, u] ∈ stab = U the transformation equations reduce to

u2a′
2 = a2, u6a′

6 = a6

which have the solution u =
√

a2/a′
2.

(c) This time, using 3 = 0 in K, the equations reduce to

u4a′
4 = a4 (6= 0) and u6a′

6 = a6 + ra4 + r3

which can be solved successively for u, r ∈ K to give τ = [r, 0, 0, u] ∈ R.
(d) Since j = j′ ⇒ a6 = a′

6, there is only one equation that is not automati-
cally satisfied: a′

2 = a2+s+s2. Taking either root s ∈ K gives τ = [0, s, 0, 1] ∈ S.
(e) We have ai = a′

i = 0 for i = 1, 2, and 2 = 0, and we want τ = [s2, s, t, u] ∈
T . The equations to be satisfied are

u3a′
3 = a3 (6= 0),

u4a′
4 = a4 + sa3 + s4

u6a′
6 = a6 + s2a4 + s6 + ta3 + t2.

These can be solved successively for u, s, t ∈ K.

Two elliptic curves E, E′ defined over K satisfying the conditions of the
above proposition are twists (of each other).

Example. Let K be a function field with constant field K0, and let E be
defined over K. Then E is said to be constant when j ∈ K0, and in that case
for some finite extension F of K, E is F -isomorphic to an E′ defined over K0.
An instance of this occured in Example 1 following Proposition 2.10.3; there
F = C(t, t′) was of degree 4 over K = C(t).

Given E with invariant j, the smallest field over which there is defined a twist
is K0(j) where K0 denotes the prime subfield of K. For j is a rational function
in the coefficients a1, . . ., and so the field must contain K0(j). Conversely if
j 6= 1728, 0 the “generic-j” curve

y2 + xy = x3 − 36

j − 1728
x − 1

j − 1728

is defined over this field and has j-invariant = j. When j = 0, 1728 take
y2 = x3 + 1, y2 + y = x3 + x respectively (the latter when charK = 2 or 3).

If τ = [r, s, t, u] we use the convenient abbreviation K(τ) := K(r, s, t, u).
Clearly

K(τ−1) = K(ατ) = K(τα) = K(τ) ∀α defined over K. ¶

When E′ = τE, where E′ and E are defined over K, the transformation equa-
tions imply that K(τ) is a finite extension of K: u12 = ∆/∆′ ∈ K∗, and then,
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at least when char K 6= 2, 3, the equations for a1, a2, a3 show in succession that
s, r, t ∈ K(u). When charK = 2 or 3 one needs to use the other equations; a
careful analysis of the extension K(τ)/K is made in Proposition 4.5.1 below.†

When E and E′ are twists we call the minimal [K(τ):K] for an isomorphism
τE = E′ the degree of the twist. Thus there are twists of degree 1, in which
case E and E′ are K-isomorphic, twists of degree 2, and, as we will see in the
next proposition, possibly higher degree twists only when j = 0 or 1728. We
define quadratic twist to mean a twist of degree ≤ 2 : it is convenient to allow
the possibility that E and E′ are already isomorphic over K. Most quadratic
twists can be constructed as follows.

If charK 6= 2 , we can take a b-form for E in the notation

y2 = x3 + a2x
2 + a4x + a6.

For d ∈ K∗, the quadratic twist by d of E, denoted by any one of d ∗E, Ed,
E ∗ d is given by

y2 = x3 + da2x
2 + d2a4x + d3a6 ; (s)

replacing x, y with dx, d2y gives the equivalent quasi-Weierstrass form

dy2 = x3 + a2x
2 + a4x + a6.

The latter form makes it obvious that E and Ed are isomorphic over K(
√

d).
For a full-blown Weierstrass equation, the first version works out to (see the
proof of the next proposition for details)

y2 + a1xy + a3y =

x3 + (a2d + a2
1(d − 1)/4)x2 + (a4d

2 + a1a3(d
2 − 1)/2)x+

a6d
3 + a2

3(d
3 − 1)/4.

If charK = 2 the definition one should adopt, now for any d ∈ K, is

y2 + a1xy + a3y = x3 + (a2 + a2
1d)x2 + a4x + a6 + a2

3d.

This assumes a simpler appearance when E is in the simplified form of class (d)
or (e):

If E : y2 + xy = x3 + a2x
2 + a6 or y2 + a3y = x3 + a4x + a6,

then

Ed : y2 + xy = x3 + (a2 + d)x2 + a6 or y2 + a3y = x3 + a4x + a6 + a2
3d. (s′)

†The set of isomorphisms τ from E to E′ defined over any extension field of K is the
(reducible) algebraic variety in affine 4-space consisisting of the solutions [r, s, t, u] of the set
of 5 transformation equations for a1, . . . , a6. Since a1, . . . , a′

1, . . . are all in K, these solutions
are all algebraic over K, so this variety is 0-dimensional and consists of finitely many points.
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Proposition 4.3.2 Let E be an elliptic curve over the field K and d ∈ K, with
d 6= 0 when charK 6= 2. Let ϑ be a root of

ϑ2 = 1/d if charK 6= 2, ϑ2 + ϑ = d if charK = 2,

so K(ϑ) is a separable extension of K of degree ≤ 2. Define

τ =

{

[0, a1(ϑ − 1)/2, a3(ϑ
3 − 1)/2, ϑ] if charK 6= 2,

[0, a1ϑ, a3ϑ, 1] if charK = 2.

(a) τE = Ed, hence Ed is a quadratic twist of E.
(b) If charK 6= 2, 3, and j = 1728, then E has an exceptional quadratic

twist† E′ : their simplified forms are

E: y2 = x3 + ax, E′: y2 = x3 − 4ax

with isomorphism [0, 0, 0, 1 +
√
−1]E′ = E.

(c) All twists are quadratic except when j = 1728 or 0, and then there may be
twists of higher degree. Except when charK = 2 or 3 and j = 0, every quadratic
twist of E is K-isomorphic to Ed for some d ∈ K, or to the exceptional twist
E′ in paragraph (b).

(d) If charK 6= 2 (resp. charK = 2), then d 7→ τ defines a group homomor-
phism from the multiplicative group K∗ (resp. the additive group K+) to the
group G. Thus

if charK 6= 2, (E ∗ d1) ∗ d2 = E ∗ (d1d2), (E ∗ d) ∗ (d−1) = E, E ∗ 1 = E;

if charK = 2, (E ∗ d1) ∗ d2 = E ∗ (d1 + d2), (E ∗ d) ∗ (−d) = E, E ∗ 0 = E.

(e) If E1 and E2 are K-isomorphic, then so are their twists Ed
1 and Ed

2 : if
σE1 = E2 where σ = [r, s, t, u] and τi denotes τ as defined for Ei, i = 1, 2, then
σdEd

1 = Ed
2 where

σd = τ2στ−1
1 =

{

[rd, s, t + a1r(1 − d)/2, u] if charK 6= 2,
σ (!) if charK = 2.

(f) Suppose E has invariant j 6= 1728 or 0. Then E ∗ d1 and E ∗ d2 are
K-isomorphic iff

d1 =

{

d2u
2 when charK 6= 2 for some u ∈ K∗,

d2 + s + s2 when charK = 2 for some s ∈ K.

†In terms to be explained later, this is a sort of “rational manifestation” of complex
multiplication by i, the simplest example being the 2-isogeny

A32 : y2 = x3 − x −→ B32 : y′2 = x′3 + 4x′, where

x′ =
x2 − 1

x
, y′ =

x2 + 1

x2
y.
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Remarks. When charK 6= 2 or 3, an E with j = 1728 is K-isomorphic
with its c-form Ec : y2 = x3 + bx, and a twist, in other words any E′ with
j = 1728, is K-isomorphic with an equation of the form E′

c : y2 = x3 + b′x.
Since E′

c = [0, 0, 0, 4

√

b/b′]Ec, E and E′ are isomorphic over the field K( 4

√

b/b′).
Hence the twist can be quadratic or of degree 4.

We note also that E ∗ (−1) is K-isomorphic with E since Ec ∗ (−1) : y2 =
x3 + (−1)2bx is unchanged. Thus paragraph (f) cannot be extended to include
j = 1728.

The previous remarks also apply when charK = 3 to E with j = 0 and a
point of order 2; cf. Proposition 4.2.2.

Similarly, twists with j = 0 (still with charK 6= 2, 3), which can be taken in
the form y2 = x3 + a6, are isomorphic over K( 6

√

a6/a′
6), and the twist can be

quadratic, or of degree 3 or 6.
In general there are other twists of degree 2 when charK = 2 or 3 and

j = 0. These are the classes (c) and (e) of Proposition 4.2.2 where stab is a
2-parameter subgroup of G, and it is hard (unnatural?) to sort out which twists
are quadratic.

Proof. (a) and (b): We will require the following notation. In the group G of
K-isomorphisms, define

λ = λE =







[0,−a1/2,−a3/2, 1] if charK 6= 2,
[a3/a1, 0, (a2

1a4 + a2
3)/a3

1, a1] if charK = 2 and j 6= 0,
[a2, 0, 0, 1] if charK = 2 and j = 0,

so that λE is in b-form or simplified form of type (d) or (e). Secondly, define

µ =

{

[0, 0, 0, ϑ] if charK 6= 2
[0, ϑ, 0, 1] if charK = 2;

Then calculation shows that τ = λ−1µλ. Thus λ brings the Weierstrass equation
into b-form or simplified form, then µ effects the twist in the simplified form (s)
or (s′), and finally λ−1 restores the twisted equation to a-form. Of course if E is
in b-form or simplified form, then λ = 1 and τ = µ. In any case, K(τ) = K(ϑ)
is of degree ≤ 2 over K.

(c) Let E and E′ = σE be twists.
Case 1: j 6= 1728 or 0 and charK 6= 2. Applying the K-isomorphisms λE

and λE′ , we can assume that E and E′ are already in b-form. The stabilizer R of
the set of b-forms enjoys the “strong stabilizing” property: σE = E′ =⇒ σ ∈ R,
say σ = [r, 0, 0, u] for r, u in some extension field. Since j 6= 0 or 1728, none
of c4, c6, c

′
4, c

′
6 is 0, hence u4c′4 = c4 and u6c′6 = c6 imply that u2 ∈ K∗. To

complete the proof that the twist is quadratic in this case, we prove that r ∈ K.
If charK 6= 3 this follows from u2b′2 = b2+12r; if charK = 3 the transformation
equation for a4, with s = t = 3 = 0, reduces to u4a′

4 = a′
4 + 2ra2. Since j 6= 0

and a1 = 0, therefore a2 6= 0, hence r ∈ K.
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Writing d = 1/u2 ∈ K∗, we have

σ = [ru−2, 0, 0, 1][0, 0, 0, u] = [rd, 0, 0, 1]µ,

hence E′ = [rd, 0, 0, 1]Ed is K-isomorphic withEd.
Case 2: j = 1728 or 0 and charK 6= 2 or 3. When j = 1728, resp. j = 0, by

a K-isomorphism we can take E in c-form:

y2 = x3 + a4x, a4 6= 0, resp. y2 = x3 + a6, a6 6= 0.

We can also take E′ = τE in c-form, and then the transformation equations
imply that τ = [0, 0, 0, u] where u4 = a4/a′

4, resp. u6 = a6/a′
6. Assuming the

twist is quadratic, we must ascertain when the polynomial U4 −a, resp. U6 −a,
has a quadratic factor. There are the obvious cases

U4 − d2 = (U2 − d)(U2 + d), U6 − d3 = (U2 − d)(U4 + dU2 + d2)

which correspond to twists of the form Ed, and just the one “nonobvious” case

U4 + 4b4 = (U2 − 2bU + 2b2)(U2 + 2bU + 2b2)

which gives rise to the exceptional quadratic twist.
Case 3: j 6= 0 and charK = 2. Applying the K-isomorphisms λE′ and

λ, we can assume that E and E′ are in class (d) of Proposition 4.2.2. The
transformation equations for σ ∈ stab= S reduce to a′

2 = a2 + s + s2, a′
6 = a6,

so again the twist is (separable) quadratic, and E′ = E ∗ (a2 + a′
2).

(d) is clear from the formula τ = λ−1µλ and the fact that µ = 1 when d = 1,
resp. d = 0, in the two cases.

(e) again is by direct calculation.
(f) First, let charK 6= 2. Let c4, c6 denote the covariants of E and γ4, γ6,

resp. γ′
4, γ

′
6, those of E ∗d1 and E ∗d2. Then γ4 = c4d

2
1, γ6 = c6d

3
1, and similarly

for γ′
4, γ

′
6.

If E ∗ d2 = [r, s, t, u]E ∗ d1 then γ4 = u4γ′
4 and γ6 = u6γ′

6. Since j 6= 1728, 0,
neither of these quantities is 0, hence d2

1 = d2
2u

4 and d3
1 = d3

2u
6, and we conclude

that d1 = d2u
2.

Conversely for any u, d ∈ K∗, [0, 0, 0, 1/u](E ∗ d) = E ∗ (du2).
Second, let charK = 2. Since j 6= 0, therefore a1 6= 0.
If E ∗ d2 = [r, s, t, u](E ∗ d1), then the transformation equations

ua1 = a1,

u3a3 = a3 + ra1,

u2(a2 + a2
1d2) = a2 + a2

1d1 + sa1 + r + s2

imply in succession that u = 1, r = 0 and d2 = d1 + S + S2 where S = s/a1.
Conversely for any s, d ∈ K, [0, a1s, 0, 1](E ∗ d) = E ∗ (d + s + s2).
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4.4 The isomorphism algorithm

The two propositions in this section collect some facts in a convenient form
that are implicit in the previous section, and do not contain any essentially new
results.

We have just seen that it is very easy to decide when two elliptic curves E
and E′ defined over K with invariants j and j′ are twists: iff j = j′. Obviously
some additional condition is needed to insure that they are K-isomorphic.

Proposition 4.4.1 Let E, E′ be two elliptic curves defined over K; let un-
primed data such as j refer to E, and primed data j′ etc. to E′. Then E is
K-isomorphic to E′ iff j = j′ and the following condition is satisfied.

(i) charK 6= 2, j 6= 0 or 1728

√

c6/c′6 ∈ K;

(ii) charK 6= 2 or 3, j = 1728

4

√

c4/c′4 ∈ K;

(iii) charK 6= 2 or 3, j = 0

6

√

c6/c′6 ∈ K;

(iv) charK = 3, j = 0 With E, and similarly E′ in simplified form

y2 = x3 + a4x + a6,

K contains u := 4

√

a4/a′
4 and, for some choice of u,

a root of r3 + a4r + a6 − u6a′
6 = 0;
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(v) charK = 2, j 6= 0 With E, and similarly E′ in simplified form

y2 + xy = x3 + a2x
2 + a6,

K contains a root s of s2 + s + a2 + a′
2 = 0;

(vi) charK = 2, j = 0 With E and similarly E′ in simplified form

y2 + a3y = x3 + a4x + a6,

K contains u := 3

√

a3/a′
3 and, for some choice of u, roots s, t of

{

s4 + a3s + a4 + u4a′
4,

t2 + a3t + s6 + a4s
2 + a6 + u6a′

6.

Proof. If there is an isomorphism τ = [r, s, t, u]:E −→ E′ then by Proposi-
tion 4.1.1,

j = j′, c4 = c′4u
4, c6 = c′6u

6.

We recall that

j = 0 ⇐⇒ c4 = 0 since j = c3
4/∆ and

j = 1728 ⇐⇒ c6 = 0 since j − 1728 = c2
6/∆.

(i) Since j 6= 0, 1728, none of c4, c
′
4, c6, c

′
6 is 0. If τ exists then

√

c6/c′6 =

u3 ∈ K. Conversely suppose j = j′ and
√

c6/c′6 = a2, a ∈ K∗. Then

j =
c3
4

∆
=

c′4
3

∆′
, j − 1728 =

c2
6

∆
=

c′6
2

∆′
,

hence if we set b = c′4c6/c4c
′
6 then c4 = c′4b

2, c6 = c′6b
3. It follows that b = u2

where u = a/b. When charK 6= 3 (resp. = 3) we take E and E′ in the simplified
form (a) (resp. (b)) of Proposition 4.2.2. Then (in both situations) [0, 0, 0, u] is
the required isomorphism.

(ii) If τ exists we have c4 = c′4u
4 6= 0, so 4

√

c4/c′4 ∈ K. Conversely suppose

j = j′ and 4

√

c4/c′4 = u, u ∈ K. Taking E and E′ in the simplified form (a),
with a6 = a′

6 = 0, [0, 0, 0, u] is the required isomorphism.
The proof of (iii) is similar to that of (ii).
In cases (iv), (v) and (vi) we can assume that E and E′ are in the simplified

forms of (c), (d) and (e) respectively of Proposition 4.2.2. Then the conditions
are just the obviously necessary and sufficient conditions for the existence of
τ given by the transformation equations of Proposition 4.1.1 in these special
cases. (The polynomials required to have roots in these cases will be examined
more carefully in Proposition 4.5.1 below.)

As a simple example, an application of (i) (resp. (v)) recovers the case
charK 6= 2 (resp. charK = 2) of Proposition 4.3.2(f).
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Proposition 4.4.2 When charK 6= 2 or 3, the following algorithm decides
whether E and E′ are K-isomorphic (automatically taking care of cases where
j = 0 or 1728); all exits from the procedure are via the return command.

if j 6= j′ then return("no")

if ∆/∆′ /∈ K∗12 then return("no")

if
√
−1 ∈ K then return("yes")

choose any u ∈ K∗ such that ∆ = ∆′u12

if c6 = c′6u
6 then return("yes")

return("no")

Proof. By Proposition 4.1.1 it is necessary that j = j′, ∆ = ∆′u12 and c6 =
c′6u

6 for some u ∈ K∗. This verifies the "no" returns. We now explain the
"yes"’s.

The relations

j = c3
4/∆ = c′

3
4/∆′, ∆ = ∆′u12

imply c3
4 = c′

3
4u

12, hence c4 = c′4u
4ρ where ρ3 = 1, ρ ∈ K. Replacing u by

uρ2 we can assume that c4 = c′4u
4. Next, the relation 1728∆ = c3

4 − c2
6 and the

analogous one for E′ imply that c2
6 = c′26 u12, hence c6 = ±c′6u

6. If the + sign
obtains or if we can replace u by u

√
−1 to change the sign to +, then we have

the required τ . We have now exhausted the possibilities for u and the response
"yes".

We quote a set of 8 examples from [Com-Na87] which we will refer to again
later to illustrate various phenomena. The curves are E1, . . . , E8 and are defined
over various quadratic fields Q(

√
d). In each case ε stands for a fundamental

unit: ε = 8 + 3
√

7, 32 + 5
√

41, 8 +
√

65 for d = 7, 41, 65 respectively; and σ
stands for the nontrivial automorphism of the field. Thus εσ = ε−1, −ε−1, −ε−1

respectively.‡ For all the Ei, a1 = 1 and a3 = a6 = 0.

d a2 a4 ∆ j
E1 7 −8ε ε3 ε6 2553

Eσ
1 = E2 7 −8ε−1 ε−3 ε−6 2553

E3 41 0 −ε ε4 (ε − 16)3/ε
Eσ

3 = E4 41 0 ε−1 ε−4 ε(ε−1 + 16)3

E5 65 8ε ε3 ε6 2573

E6 65 40ε + 1 25ε3 (5ε)6 2573

E7 65 2ε ε2 ε6 173

E8 65 10ε + 1 25ε2 (5ε)6 173

‡We use exponential notation for Galois action; thus Galois modules are right modules.
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In general for any automorphism σ of the field K and E with Weierstrass coef-
ficients a1, . . ., we let Eσ denote the curve with Weierstrass coefficients aσ

1 , . . ..
Since ∆ and j are rational functions in a1, . . . , a6, Eσ has discriminant ∆σ and
j-invariant jσ. Thus it is immediate that E3 and E4 are not isomorphic: their
invariants are unequal.

Next let us check that E1 and E2 are not isomorphic over K = Q(
√

7). The
discriminant of E2 is σ(ε6) = ε−6, so in the algorithm we can take u = ±ε. We
find that c′6ε

6/c6 = −1 (to decide whether this ratio is 1 or −1 of course requires
only a rough calculation) and since

√
−1 /∈ K we conclude that they are not

isomorphic.
The algorithm applied to the curves E5, E

σ
5 proceeds quite similarly except

this time the ratio is +1, and therefore they are isomorphic over Q(
√

65). Sim-
ilarly Ei is isomorphic to Eσ

i for i = 6, 7, 8.

4.5 Automorphisms and fields of definition

Let E, E′ be two elliptic curves defined over the field K, and for any field F
containing K, let IsomF (E,E′) denote the set of isomorphisms from E to E′

defined over F . Clearly

IsomF (E′, E) = {τ−1 : τ ∈ IsomF (E,E′)}

and IsomF (E,E) = autF E.

Let K be an algebraic closure K, and Ksep the separable closure of K in K.
If τ ∈ IsomK(E,E′) and σ ∈ autKE, then τ ◦σ is another isomorphism, and

every isomorphism τ ′ from E to E′ is of this form: take σ = τ−1 ◦ τ ′.
In the next proposition we see that autKE is finite and that most of the time

K(τ) is a quadratic extension of K and in any case is a separable extension.

Proposition 4.5.1 (a) The group autKE is finite. Its order n is 2 with the
following exceptions:

— when charK 6= 2 or 3 : if j = 0 then n = 6, while if j = 1728 then n = 4;
— if charK = 3 and j = 0 then n = 12;
— if charK = 2 and j = 0 then n = 24.
(b) If τ is an isomorphism from E to E′ then K(τ) is a finite separable†

extension of K; the degree [K(τ):K] divides n with the following exceptions:
when j = 0 and charK is, respectively, not 2 or 3, 3, 2, then the degree can be,
respectively, 4, 8, one of 9, 16, 18.

(c) The subgroup index i = [autKE : autKE] is 1 with the following excep-
tions:

†We do not assume that K is perfect since we will want to consider examples such as
y2 = x3 + tx2 − tx where K = Fp(t).
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— if j = 1728, charK 6= 2 or 3, and
√
−1 /∈ K then i = 2;

— if j = 0, charK 6= 2 or 3, and
√
−3 /∈ K then i = 3;

— if j = 0, charK = 3 and E is in simplified form we present the values of
i in a table:

r3 + a4r − a6

has a root in K
√−a4 ∈ K i

and
√
−1 ∈ K
yes yes 1
no yes 2
yes no 3
no no 6

— if j = 0, charK = 2 and E is in simplified form, then i is 24 divided by
the number of solutions (u, s, t) in K3 of the system

u3 = 1,

s4 + a3s + a4(u + 1) = 0,

t2 + a3t + a3s
3 + a4s

2 = 0.

Proof. By Corollary 4.3.1, E and E′ have the same invariant j. In the proof
we deal tandemly with the “isomorphism case” (τ :E −→ E′) and the “auto-
morphism case” (τ ∈ autKE and all a′

i = ai.)
For each class we simplify the Weierstrass forms of E and E′ as in Propo-

sition 4.2.2 by applying appropriate isomorphisms defined over K — this does
not change j or K(τ) and replaces autKE by an isomorphic group (a conjugate
subgroup in G as explained in Section 2).

Case 1 : charK 6= 2 or 3. Let E, E′ be in simplified form. As in Proposi-
tion 4.4.1, cases (i)–(iii), j = j′ implies c′34 c2

6 = c3
4c

′2
6 which allows us to choose

u ∈ Ksep such that
u4c′4 = c4, u6c′6 = c6.

Then τ = [0, 0, 0, u] is an isomorphism from E to E′.
Conversely any isomorphism is in stab = U and we have u4a′

4 = a4, u6a′
6 =

a6. If j 6= 0 or 1728 we deduce u2 ∈ K so [K1 : K] ≤ 2 and for automorphisms
u2 = 1. Thus autK = {[1], [−1]} and all is clear in these cases.

Next for the cases j = 0, resp. j = 1728 (still with char 6= 2, 3) we have
u6 ∈ K, resp. u4 ∈ K for an isomorphism, and the possibilities u6 = 1, resp.
u4 = 1 for automorphisms. Now u6 ∈ K =⇒ [K(u):K] = 1, 2, 3, 4 or 6 † and
u4 ∈ K =⇒ [K(u):K] = 1, 2 or 4. Again all is clear. Incidentally for the cases
so far

autKE = {[0, 0, 0, u] : un = 1]}
†Here is an example of degree 4: K = Q(t), t transcendental, E: y2 = x3+1, E′: y2 = x3+

t3 so Isom
K

(E, E′) = {[0, 0, 0, u]: u ∈ {±t−1/2,±t−1/2(1±
√
−3)/2}}. If τ = [0, 0, 0, t−1/2(1+√

−3)/2] then [K(τ): K] = 4.
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is cyclic.

Case 2 : charK = 3. Consider an isomorphism [r, 0, 0, u] ∈ stab mapping E
to E′, both in simplified form. If j 6= 0 then a2 6= 0, u2a′

2 = a2 and we are in
the situation with n = 2 as before. If j = 0 then a2 = 0, a4 6= 0 (in order that
∆ 6= 0), and

u4a′
4 = a4, u6a′

6 = a6 + ra4 + r3.

For an isomorphism we have u4 ∈ K, hence K(u)/K is a separable extension of
degree dividing 4 and, since the derivative of the last equation for r is 3r +a4 =
a4 6= 0, K(u, r)/K(u) is separable of degree 1, 2 or 3.‡ For automorphisms,
u4 = 1 gives 4 possibilities for u, and for each u the other equation gives 3
possibilities for r which are distinct since the derivative is nonzero. Thus aut
has order 12 in this case; in fact it is the unique noncommutative semidirect
product of C4 by C3, as one can easily verify. We must check that [Kaut : K] | 12.
When u = ±1 the equation for r is r(r2 + a4) = 0, thus Kaut contains

√−a4.
When u = ±

√
−1 the equation for r is r3+a4r−a6 = 0. The result follows from

the fact that the discriminant of this cubic, in characteristic 3, is −a3
4 which is

a square once
√−a4 is adjoined. (If r = θ is one root the others are θ±√−a4.)

Conversely suppose j = j′. If j 6= 0, we choose r = 0 and u ∈ Ksep to satisfy
u2a′

2 = a2, while if j = 0 we choose u, r ∈ Ksep to satisfy u4a′
4 = a4, u6a′

6 =
a6 + ra4 + r3. In both cases [r, 0, 0, u] is an isomorphism in stab.

Case 3 : charK = 2, j 6= 0. If j = j′, i.e., a6 = a′
6 then there are two

isomorphisms [0, s, 0, 1] given by the two roots of the separable equation s2 +
s + a2 = a′

2, and once again we have the simple n = 2 situation.

Case 4 : charK = 2, j = 0. The a3-equation in the simplified form is
u3a′

3 = a3, hence 3 values for u and [K(u):K] = 1, 2 or 3. The a2-equation
gives r = s2 which when substituted into the a4-equation gives the separable
quartic

s4 + a3s + a4 = u4a′
4,

hence 4 distinct roots for each value of u, and [K(u, s):K(u)] = 1, 2, 3 or 4.
The a6-equation is the separable quadratic for t

t2 + a3t + s6 + s2a4 + a6 = u6a′
6,

thus 2 distinct roots for each pair s, u, and [K(u, s, t):K] = 1 or 2. (It is not
hard to construct examples of [K(τ):K] = 9, 16 and 18 .) From this we see
that n = 24.

Now let us show that [Kaut : K]|24. Taking ai = a′
i, the equations become

‡Here is an example of [K(τ): K] = 8: K = F3(s, t) where s and t are independent
transcendentals, E: y2 = x3 − sx, E′: y2 = x3 − stx so Isom

K
(E, E′) = {[r, 0, 0, u]: r ∈

{0,±√
s}, u ∈ {±t−1/4, ±

√
−1t−1/4}}, whereas aut

K
E = {[r, 0, 0, u]: r ∈ {0, ±√

s}, u ∈
{±1, ±

√
−1}}. — 12 in all. If τ = [

√
s, 0, 0,

√
−1t−1/4] then [K(u, r): K] = 2 and [K(τ): K] =

8.
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u3 = 1,

s4 + a3s + a4(u + 1) = 0,

t2 + a3t + a3s
3 + a4s

2 = 0.

Let 1, ζ, ζ2 = 1 + ζ denote the values of u. When u = 1 the values of s are
0, α = 3

√
a3, ζα, ζ2α. If s = θ is a root when u = ζ2 then the other roots† are

θ+α, θ+ζα, θ+ζ2α and the roots when u = ζ are ζθ, ζθ+α, ζθ+ζα, ζθ+ζ2α.
If t1 denotes one value of t then the other value is t1 + a3. When s = 0, then
t1 = 0; when s = α then

t1 = ζa3 + ζθ2α + ζ2θα2

with similar expressions when s = ζα, ζ2α; when u = ζ2 (resp. ζ) then t1 = ζs3

(resp. ζ2s3).Thus K(ζ, α, θ) is a normal extension of K of degree dividing 24.
Part (c) now follow easily; we leave the details to the reader. In the case

j = 0, charK = 2 we did not state the results more explicitly in tabular form
as we did when charK = 3 since the situation is rather complicated with many
subcases.

The most exotic aut that occurs in the above proposition is a group of order
24. As will be seen in a later chapter, it is the semidirect product of the cyclic
group of order 3 by the quaternion group of order 8; a concrete realization is
SL2(F3). Once we have defined and identified endKE as the maximal order
of Hurwitz quaternions in the skew field of rational quaternions, then a more
natural definition of aut is the group of units ±1, ±i, ±j, ±k, (±1±i±j±k)/2.

The group of order 12 that occurs in characteristic 3 can be described as the
semidirect product of the cyclic group of order 4 by the cyclic group of order 3.

4.6 Legendre and Deuring forms

A Legendre form is an elliptic curve with an equation

y2 = x(x − 1)(x − λ);

for this equation

c4 = 16(λ2 − λ + 1), ∆ = 16λ2(λ − 1)2, j =
28(λ2 − λ + 1)3

λ2(λ − 1)2
.

In order that ∆ 6= 0, it is necessary that charK 6= 2 and that λ 6= 0 or 1. The
points (0, 0), (1, 0), (λ, 0) have order 2.

†I am indebted to Y. Zhang for supplying some of the details.
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Proposition 4.6.1 Let K be a field of characteristic not 2 and let E be an
elliptic curve defined over K. Then

(a) E is K-isomorphic to a Legendre form defined over K iff the following
two conditions are met:

(i) |E(K)[2]| = 4, i.e., all points of order 2 are defined over K, say

y2 = (x − a)(x − b)(x − c), (∗)

(we may take E in b-form since char K 6= 2)
(ii) and at least one of ±(a − b), ±(b − c), ±(c − a) is a square in K∗.

Suppose this is the case, say E is K-isomorphic to the Legendre form with
parameter λ. Then the Legendre forms with parameter λ′ that are K-isomorphic
with E are as follows.

• if λ ∈ K∗2 then λ′ = 1/λ;

• if −λ ∈ K∗2 then λ′ = (λ − 1)/λ;

• if λ − 1 ∈ K∗2 then λ′ = 1/(1 − λ);

• if 1 − λ ∈ K∗2 then λ′ = λ/(λ − 1);

• if −1 ∈ K∗2 then λ′ = 1 − λ.

(b) In general, E acquires a twist in Legendre form over a separable extension
K(λ) of degree at most 6, and E is isomorphic to a Legendre form over a
separable extension of degree at most 12.

Proof. (a) A Legendre form obviously satisfies (i) and (ii). Conversely, suppose
b−a = u2. Then [a, 0, 0, u] transforms (∗) to Legendre form with λ = (c−a)/(b−
a).

The Weierstrass coefficients of the Legendre form are a1 = a3 = a6 = 0,
a2 = −(λ + 1), a4 = λ. Suppose [r, s, t, u] transforms this Legendre form to
another with parameter λ′. The transformation equation ua′

1 = a1 + 2s shows
that s = 0, similarly that for a3 shows t = 0, and now the transformation
equation for a6 is 0 = rλ− r2(λ + 1) + r3, whence r = 0, 1 or λ. The equations
for a2 and a4 are

−u2(λ′ + 1) = −(λ + 1) + 3r,

u4λ′ = λ − 2r(λ + 1) + 3r2.

One now deals with the three values of r separately, using simple calculations.
For example when r = 0 one deduces λ(1− u−2) = u2 − 1, hence either u = ±1
(no change in the Legendre form), or λ = u2 and then λ′ = 1/λ. The two other
cases are only slightly more involved.
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(b) For the first statement it is only necessary to choose λ as any root of

256(λ2 − λ + 1)3 − λ2(λ − 1)2j(E) = 0.

We check the separability when charK = 3. If j = 0 then λ = −1 so K(λ) = K
is a separable extension. Otherwise it follows by the derivative test: the above
polynomial for λ and its derivative have no common root.

For the last statement we can take E in the form y2 = x3 +ax2 +bx+c. The
root field of the cubic is a separable extension since the polynomial discriminant
1
16∆ 6= 0. Then adjoining a square root if necessary as explained in (a) allows
one to write the equation in Legendre form.

When K = R and ∆ > 0, one of ±(a − b) in condition (a)(ii) is positive,
and so we can state the classical case E/R as follows.

Corollary 4.6.2 Let E be defined over the real field R. Then E is R-isomorphic
with a Legendre form y2 = x(x − 1)(x − λ), λ ∈ R, iff ∆ > 0; and then the
other possible choices for the parameter are as follows.

λ < 0 : λ′ = (λ − 1)/λ or λ/(λ − 1);

0 < λ < 1 : λ′ = λ/(λ − 1)/ or 1/λ;

1 < λ : λ′ = 1/λ or 1/(1 − λ).

The Deuring form is

y2 + δxy + y = x3;

for this Weierstrass equation

c4 = δ(δ3 − 24), ∆ = δ3 − 27, j = δ3(δ3 − 24)3/(δ3 − 27).

The point (0, 0) has order 3.

Proposition 4.6.3 Let the elliptic curve E be defined over the field K. Then,
except when charK = 3 and j = 0, there exists an extension K(δ) of degree at
most 12 over which E acquires a twist in Deuring form. When charK 6= 3, the
extension K(δ)/K is separable for every choice of δ.

Proof. Choose δ to be any root of

δ3(δ3 − 24)3 − (δ3 − 27)j(E) = 0,

except that when charK = 3, when the equation is δ12 − δ3j = 0, we require
δ 6= 0. The corresponding Deuring normal form is defined over K(δ) and has
the same j as E. The formula for j makes it clear that we have considered all
possibilities for δ.

When charK 6= 3, let ε = δ3. Then it is easy to prove (we omit the details)
that K(ε)/K and K(δ)/K(ε) are separable.
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4.7 Finite fields

We conclude this chapter with examples of E ∗ d defined over finite fields Fq

where q = pn is a prime power.
For a positive integer m and field K, we let µm(K) denote the group of m-th

roots of 1 in K. We regard K as a subfield of an algebraic closure K, so that

µm(K) ∩ K = µm(K).

The following elementary lemma will be used on several occasions.

Lemma 4.7.1 Let p be a prime, let n be a positive integer, let q = pn, and let
m be a positive divisor of q − 1.

An element c ∈ Fq
∗ is an m-th power in Fq

∗ iff c(q−1)/m = 1, and then c
has m distinct m-th roots in Fq. In particular, taking c = 1, Fq contains all m
m-th roots of 1 : µm(Fq) =µm(Fq). In any case, c(q−1)/m ∈µm(Fq).

Thus the following are equivalent:

• m is a divisor of p − 1;

• c(q−1)/m ∈ Fp for all c ∈ Fq;

• Fp contains all the m-th roots of 1.

Proof. This is all immediate from the fact that Fq
∗ is cyclic: if g is a generator

then the m-th powers in Fq
∗ are the (q − 1)/m elements of the form gjm,

j mod (q − 1)/m, and these are the roots of the polynomial x(q−1)/m − 1, i.e.,
the (q − 1)/m-th roots of 1. Replacing m in this by its complementary divisor
(q − 1)/m, the m-th roots of 1 are gj(q−1)/m, j mod m. In general, for any M ,
the smallest overfield of Fq containing µM (Fq) is Fqk where k is minimal such
that M |(qk − 1).

ge ∈ Fp iff e is a multiple of (q − 1)/(p − 1). In particular, gj(q−1)/m ∈ Fp
∗

∀j when m divides p − 1.

4.7.1 The trace of Frobenius: preliminaries

Let E(a) denote the Weierstrass equation for E in which the value a has been
substituted for the variable x, and define the symbol (E(a)/q) be 1 less than
the number of solutions y ∈ Fq of the equation E(a). For example when E is
y2 + xy = x3 + 1 and K = F2 then E(0) is the equation y2 = 1 which has the
single root y = 1, hence (E(0)/2) = 0; E(1) is the equation y2 + y = 0 has two
roots hence (E(1)/2) = 1. Similarly when K = F3 we find (E(x)/3) = 1, 0, 1
when x = 0, 1, 2 respectively.

From the definition of (E(x)/q) it follows that the number of points on E
defined over Fq (remember to add 1 for the point at ∞) is

|E(Fq)| = 1 +
∑

x∈Fq

(

1 +

(

E(x)

q

))

= q + 1 +
∑

x∈Fq

(

E(x)

q

)

.
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We write this as q + 1 − t and call t the trace of Frobenius:

t = t(E, q) = −
∑

x∈Fq

(

E(x)

q

)

.

The following is immediate from Proposition 4.1.2.

Lemma 4.7.2 The trace of Frobenius is an Fq-isomorphism invariant: if E
and E′ = τE are elliptic curves over Fq where τ is an isomorphism defined
over Fq, then

t(E′, q) = t(E, q)

When p is odd and E is in Weierstrass b-form y2 = f(x) = x3 + · · · then
(E(a)/q) is the (generalized) Legendre symbol (d/q) where d = f(a), whose
values are given by

(

d

q

)

=







1 when d is a quadratic residue, i.e. d ∈ Fq
∗2,

0 when d = 0,
−1 when d is a quadratic nonresidue, i.e. neither of the above.

When q is odd, any E is isomorphic to its b-form, and so by the lemma we
can assume that E is the b-form in order to calculate t(E, q). Then, multiplying
the right side of the b-form by 4, which does not affect the value of the Legendre
symbol, we have

Proposition 4.7.3 For q odd

t(E, q) = −
∑

x∈Fq

(

4x3 + b2x
2 + 2b4x + b6

q

)

Recall Euler’s relation: when q is odd and d ∈ Fq then d(q−1)/2 is in the
prime subfield Fp and

(

d

q

)

≡ d(q−1)/2 mod p.

This is the case m = 2 of Lemma 4.7.1.
In order to deal with cases q = 2n of characteristic 2 we define the symbol

(

d

2n

)

=

{

1 when s2 + s = d has a solution s ∈ F2n ,
−1 when it does not.

For example (0/2) = 1 and (1/2) = −1.
Since the terminology is available for use in the characteristic 2 case, we

define d to be a quadratic residue in F2n when (d/2n) = 1, and a quadratic
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nonresidue when (d/2n) = −1. Here are some simple facts whose proofs we
leave to the reader:

(i)

(

d1 + d2

2n

)

=

(

d1

2n

)(

d2

2n

)

;

(ii) exactly half the elements of F2n are quadratic residues — they form an
additive subgroup of F2n of index 2.

(iii)

(

d2

2n

)

=

(

d

2n

)

, hence for k ≥ 0,

(

d2k

+ d

2n

)

= 1.

Again by the lemma, for purposes of calculating t(E, 2n), we can assume
that E is in one of the simplified forms (d) or (e) of Proposition 4.2.2.

Proposition 4.7.4 Let E be an elliptic curve defined over F2n .
(i) When j 6= 0 we can write E in the simplified form

y2 + xy = x3 + a2x
2 + a6, ∆ = a6, j = 1/a6,

and then

t(E, 2n) = −
∑

x∈F2n
∗

(

(x3 + a2x
2 + a6)/x2

2n

)

.

(ii) When j = 0 we can write E in the simplified form

y2 + a3y = x3 + a4x + a6, ∆ = a4
3,

and then

t(E, 2n) = −
∑

x∈F2n

(

(x3 + a4x + a6)/a2
3

2n

)

.

Proof. (i) Since F2n is perfect, (E(0)/2n) = 0. When x 6= 0 and we substitute
y = xs, the equation can be written as s2 + s = (x3 + a2x

2 + a6)/x2, and the
formula for t follows.

(ii) In this case we can substitute y = a3s, and the equation can be written
s2 + s = (x3 + a4x + a6)/a2

3.

Proposition 4.7.5 Let E be an elliptic curve defined over the finite field Fq

and let d ∈ Fq. When q is odd assume that d 6= 0. Then

t(Ed, q) =

(

d

q

)

t(E, q).

Hence if d is a quadratic nonresidue, E 7→ Ed sets up a bijection between the
set of E which have q + 1 − t points and the set of those which have q + 1 + t.
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Proof. First let q be odd. Then t(Ed, q) is given by the formula in Proposi-
tion 4.7.3 with b2, b4, b6 replaced by db2, d2b4, d3b6 respectively. Replacing x
by dx in the sum we have

t(Ed, q) = −
∑

x∈Fq

(

d3

q

)(

4x3 + b2x
2 + 2b4x + b6

q

)

=

(

d

q

)

t(E, q).

Second let q = 2n. If j 6= 0 then t(Ed, 2n) is given by the first formula of
the previous proposition with a2 replaced by a2 + d:

t(Ed, 2n) = −
∑

x∈Fq
∗

(

(x3 + a2x
2 + a6)/x2 + d

2n

)

=

(

d

q

)

t(E, 2n),

using the basic rule ((d′ + d)/2n) = (d′/2n)(d/2n). The proof when j = 0 is
similar: in the second formula of the previous proposition a6 is replaced by
a6 + a2

3d.

4.7.2 An application of Burnside’s formula

Proposition 4.7.6 Let ν = ν(q, j) denote the number of Fq-isomorphism classes
of elliptic curves with given j. Then ν = 2 except for certain cases when j = 0
or 1728 as detailed in the following table.

q j ν
1 or 5 mod 12 1728 4

1 mod 6 0 6
3n, n odd 0 4
3n, n even 0 6
2n, n odd 0 3
2n, n even 0 7

Remark. In passing from one field Fq to an overfield Fqk , in general some non-
isomorphic E over Fq become isomorphic over the larger field; but the proposi-
tion assures that except in some cases where j = 0 or 1728, new isomorphism
types appear to compensate for this loss exactly.

Proof. The value ν = 2 when j 6= 0, 1728 is immediate from earlier results:
since the quadratic residues form a subgroup of index 2 in Fq

∗ (resp. in Fq
+

when q is even), Proposition 4.3.2(f) implies that for each j ∈ Fq\{0, 1728},
there are precisely two Fq-isomorphism classes of E with invariant j; they are
represented by the generic-j curve and a twist of it by a quadratic nonresidue.

However it is interesting to see a quite different method of proof, a method
which will uniformly determine ν in all cases. The method is Burnside’s theorem:
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Let the finite group Γ act on the finite set X. Then the number of
orbits is the average size of Fix(g) = {x ∈ X: gx = x}:

#orbits =
1

|Γ|
∑

g∈Γ

|Fix(g)|.

We use Burnside’s theorem to determine ν in the simplest case (p > 3,
j 6= 0, 1728) and the hardest case (the bottom line of the table), leaving the
intermediate cases to the reader.

Case p > 3, j 6= 0, 1728: As explained in Proposition 4.2.2, the isomorphism
classes that we wish to enumerate are the orbits of the group U acting on the
set X of Weierstrass equations

E: y2 = x3 − (c4/48)x − (c6/864)

whose invariant is the given j. For such E we have c4c6 6= 0 and

∆ =
c3
4

j
=

c2
6

j − 1728
.

Thus |X| is the number of pairs c4, c6 ∈ Fq
∗ satisfying the equation (j −

1728)c3
4/j = c2

6. There are (q − 1)/2 choices of c4 to make c3
4(j − 1728)/j a

quadratic residue, and then two choices for c6. Hence |X| = q − 1.
Consider any τ = [0, 0, 0, u] ∈ U with Fix(τ) 6= ∅, say E ∈Fix(τ). The

transformation equations u4a4 = a4, u6a6 = a6 imply that u2 = 1, i.e., u = ±1.
For both values we have Fix(τ) = X. Since |U | = q − 1, Burnside’s formula
gives

ν =
1

q − 1
[(q − 1) + (q − 1)] = 2,

all other τ ∈ U contributing |Fix(τ)|=0 to the sum.

Case q = 2n, j = 0: X = {E: y2 + a3y = x3 + a4x + a6, a3 6= 0}, and
Γ = T = {τ = [s2, s, t, u]}, hence

|X| = |T | = (q − 1)q2 = (2n − 1)22n.

We must calculate |Fix(τ)| for each τ ∈ T .
Case u = 1, s = 0:

— If t = 0, we have |Fix(1)| = (2n − 1)22n.

— If t 6= 0, the transformation equations, with a′
i = ai∀i, reduce to

ta3 + t2 = 0, hence a3 is determined by τ while a4, a6 can be chosen
arbitrarily. Thus |Fix(τ)| = 22n. The number of such τ is 2n − 1
and therefore they contribute a total of (2n − 1)22n to the sum in
Burnside’s formula.
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Case u = 1, s 6= 0: the equations are 0 = sa3+s4 and 0 = s2a4+s6+ta3+t2.
With any t, these equations determine a3 and a4, while a6 is arbitrary. Thus
|Fix(τ)| = 2n, and since the number of these τ is (2n − 1)2n, the contribution
to the sum is (2n − 1)22n.

Case u = ζ, a primitive cube root of 1 in F2n , which exists since n is even.
After this case is completed, the contributions to the sum will be multiplied by
2 to cover the case u = ζ2.

— Subcase s = 0: The equations are ζa4 = a4, hence a4 = 0, and
0 = ta3 + t2. If t = 0 any a3 ( 6= 0 so that ∆ 6= 0) is allowed, while
if t 6= 0 then a3 is determined by τ . For any t, a6 can be chosen
arbitrarily, and the contribution of these two “subsubcases” to the
sum is

1 · (2n − 1)2n + (2n − 1) · 2n = (2n − 1)2n+1.

— Subcase s 6= 0: the equations are

0 = (ζ + 1)a4 + sa3 + s4,

0 = s2a4 + s6 + ta3 + t2.

Solving the first equation for a4, using 1/(ζ+1) = ζ, and substituting
in the second yields

0 = a3(ζs3 + t) + (ζ + 1)s6 + t2.

— If t = ζs3, the last equation is satisfied. since there
are 2n − 1 choices for s, a3 is arbitrary nonzero, a4 is
determined and a6 is arbitrary, the contribution is (2n −
1) · (2n − 1)2n.

— If t 6= ζs3, then a3 is determined and the contribution
is (2n − 1)2 · 2n.

Remembering to multiply the u = ζ contributions by 2 to account for u = ζ2,
adding up all these contributions and dividing by |T | = (2n −1)22n gives ν = 7.

We can now easily obtain the total number of isomorphism classes of E over
Fq by adding up appropriate ν’s in the table in the proposition. For example
when p > 3 (resp. p = 2 or 3), the first line in the table contributes ν = 2 for
each of the q − 2 (resp. q − 1) values of j 6= 0 or 1728.

Corollary 4.7.7 The number N of isomorphism classes of elliptic curves E
over Fq where q = pn is as follows:
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q N
2n, n odd 2n+1 + 1
2n, n even 2n+1 + 5
3n, n odd 2(3n + 1)
3n, n even 2(3n + 3)
1 mod 12 2q + 6
5 mod 12 2q + 2
7 mod 12 2q + 4
11 mod 12 2q

When enumerating E of one type or another over finite fields, one often
obtains more elegant results by assigning the “weighted” cardinality 1/|autFq

E|
to E, rather than the natural cardinality 1. A formula for the sum of the relevant
weighted cardinalities is referred to as a mass formula. The following mass
formulas exhibit a striking simplification of the results of the previous corollary.

Corollary 4.7.8 Let S denote the set of Fq-isomorphism classes [E] of elliptic
curves E/Fq

, and let Sj denote the subset of S represented by E with the given

invariant j. Then

∑

[E]∈Sj

1

|autFq
E| = 1, hence

∑

[E]∈S

1

|autFq
E| = q.

Remark. For an exquisite proof that does not plod through case by case, see
([How93]). It would take us too far afield at present to provide the background
for that proof, and so it will be necessary for us to “get our hands dirty” – again.
Proof. We obtain a proof by combining results of the present proposition (made
more explicit when p = 2, 3) with parts (a) and (c) of Proposition 4.5.1. For
convenience we write a for |autFq

E| and a for |aut
Fq

E|, so that a = a/i in the

notation of Proposition 4.5.1. Also |Sj | is denoted ν in the present proposition.
For each j 6= 0 or 1728 we have ν = 2, and for each of these two [E] we have

a = a = 2, which proves the mass formula for these j.
Next let j = 1728 and p > 3. For q ≡ 1 mod 4, resp. q ≡ 3 mod 4, we have

ν = 4, resp. 2, and
√
−1 ∈ K, resp. /∈ K, hence a = 4/1 = 4, resp. a = 4/2 = 2

— again the formula is verified.
Now let j = 0, p > 3. For q ≡ 1 resp. 5 mod 6 we have ν = 6, resp. 2,

and
√
−3 ∈ K resp. /∈ K, so a = 6/1 = 6 resp. 6/3 = 2, and the formula is

established. This completes the proof of the mass formulas for p > 3.
There remain the four cases q = 3n, 2n, n odd or even, all with j = 0. In

each case we list representatives of the ν members of S0. And in each case,
rather than writing out all the details, we supply notes that make it easy to

(i) authenticate the list, that is, check that no two E in the list are Fq-
isomorphic by the tests given in Proposition 4.4.1, and
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(ii) with the help of Proposition 4.5.1, determine the values of a for all the
E in the list, hence prove the mass formula.

Case 3n, n odd.

y2 = x3 + x (a = 2) y2 = x3 − x (a = 6),
y2 = x3 − x + c (a = 6), y2 = x3 − x − c (a = 6).

Notes. Since q − 1 ≡ 2 mod 4, therefore Fq
∗4 = Fq

∗2. Since (−1/q) = −1, it
follows that {r3 + r: r ∈ Fq} coincides with Fq, whereas {r3 − r: r ∈ Fq} is an
additive subgroup of index 3 — we write coset representatives as 0,±c.

Case 3n, n even.

y2 = x3 + x (a = 12) y2 = x3 + x + d (a = 6),
y2 = x3 + ρx (a = 4), y2 = x3 + ρ3x (a = 4),
y2 = x3 + ρ2x (a = 12), y2 = x3 + ρ2x + e (a = 6).

Notes. ρ denotes a primitive root: Fq
∗ = 〈ρ�; coset representatives of {r3 + r},

resp. {r3 + ρ2r} are 0,±d, resp. 0,±e; for k = 1 and 3, the group {r3 + ρkr} is
all of Fq.

Notes for the two cases q = 2n. We let Q2 (resp. Q4) denote the additive
subgroup {x2 + x: x ∈ Fq} (resp. {x4 + x:x ∈ Fq}). Of course Q2 is the group
of quadratic residues. Since

(

x4 + x

2n

)

=

(

x4

2n

)(

x

2n

)

=

(

x

2n

)(

x

2n

)

= 1,

Q4 is a subgroup of Q2. The group index is 1 (resp. 2) when n is odd (resp.
even); this follows from the fact that Fq contains a primitive cube root of unity
— an element ζ satisfying ζ2 = ζ + 1 — iff n is even.

Case 2n, n odd.

y2 + y =







x3, a = 2,
x3 + x, a = 4,
x3 + x + 1, a = 4.

Notes. Since q−1 ≡ 1 mod 3, every element of Fq has a unique cube root; coset
representatives for Q2 = Q4 are 0 and 1.

Case 2n, n even.

y2 + ρy = x3, (a = 6), y2 + ρy = x3 + α, (a = 6),

y2 + ρ2y = x3, (a = 6), y2 + ρy = x3 + β, (a = 6),

y2 + y = x3, (a = 24), y2 + y = x3 + γ, (a = 24),

y2 + y = x3 + δx, (a = 4).
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Notes. ρ denotes a primitive root; α (resp. β) denotes a nontrivial coset repre-
sentative of {x2 + ρx: x ∈ Fq} (resp. {x2 + ρ2x: x ∈ Fq}) in Fq. We have

A ζA

Q4 ζ2A

ζ ∈ Fq and [Q2:Q4] = 2. Since ζ(x4 + x) = (ζx)4 + ζx,
therefore ζQ4 = Q4. Let A denote the complement Q4\Q2.
Then Fq is partitioned into the four cosets Q4, A, ζA and
ζ2A.

In the list of curves, we can take any γ ∈ Fq\Q2 and δ ∈ Fq\Q4.

4.7.3 The trace of Frobenius: continuation

For E over Fq, any q, but with j 6= 0, 1728 we define

χ(E) =

(

e

q

)

where e =







c6 if q is odd
a1a2 + a3

a3
1

if q is even.

When j = 1728 and q = pn where p ≡ 1 mod 4, we define (using Lemma 4.7.1)

χ(E) = c
−(q−1)/4
4 ∈ Fp;

and when j = 0 and q = pn where p ≡ 1 mod 6, we define

χ(E) = c
−(q−1)/6
6 ∈ Fp.

There will be no need to make a more careful definition involving quartic and
sextic reciprocity symbols, nor to define χ(E) in the remaining cases.

Lemma 4.7.9 When defined, χ(E) is an Fq-isomorphism invariant: if E′ =
τE where τ is an isomorphism defined over Fq, then (with equality in Fp un-
derstood in the cases j = 0 and 1728)

χ(E′) = χ(E).

Proof. If τ = [r, s, t, u] then, with e′, c′4, c
′

6 referring to E′, we have
— when j 6= 0, 1728:

e′ = c6u
6 if q is odd, e′ = e +

(

s

a1

)2

+

(

s

a1

)

if q is even;

hence (e/q) = (e′/q) in both cases;
— when j = 1728,

c′4
(q−1)/4

= (c4u
−4)(q−1)/4 = c

(q−1)/4
4 ,

and similarly when j = 0.
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Proposition 4.7.10 Let E be an elliptic curve defined over Fq where q = pn,
and as usual let j denote its invariant.

(a) For any q and any j 6= 0 or 1728, χ(E)t(E, q) is an absolute invariant:
if E′ is also defined over Fq with invariant j, then

χ(E)t(E, q) = χ(E′)t(E′, q).

(b) t(E, q) = 0, hence |E(Fq)| = q+1, in each of the following circumstances:

(i) j = 1728 and q ≡ 7 or 11 mod 12, i.e., p ≡ 3 mod 4, p > 3 and n is odd;

(ii) j = 0 and q ≡ 5 mod 6, i.e., p ≡ 5 mod 6 and n is odd;

(iii) j = 0, q = 3n, n odd, and E has a point of order 2 (which is the case, for
example, when ∆ is a quadratic nonresidue: (∆/q) = −1);

(iv) j = 0, q = 3n, any n, and (∆/q) = −1.

In the remaining cases we have analogous results, but only mod p :
(a′) If j = 1728 and p ≡ 1 mod 4, or j = 0 and p ≡ 1 mod 6, then

χ(E)t(E, q) ≡ χ(E′)t(E′, q) mod p.

(b′) t ≡ 0 mod p in each of the following cases:
j = 1728 and p ≡ 3 mod 4, n even;
j = 0 and p ≡ 5 mod 6, n even;
j = 0, q = 3n or 2n, any n. (This includes earlier cases of q = 3n where

t = 0 — to simplify the statement.)

Remarks. Here is an example which shows that the ‘mod p’ qualification
cannot be removed in general from statement (b′).

y2 + y = x3 − 860x + 9707

has ∆ = −433 and j = −2183353, hence defines an elliptic curve over Fp for
p 6= 43. For the first few primes we have

j ≡ 0 mod p for p = 2, 3, 5 and j ≡ 6 ≡ 1728 mod 7;

t(E, p) = 0 and t(E, p2) = −2p for p = 2, 3, 5, 7.

The values of t(E, p) at least can be verified without too much trouble by hand
(see §4.7.4 for hints and useful tables), and there is a theoretical reason (the
Riemann Hypothesis for E/Fq

— see §4.7.5) why t(E, p) = 0 ⇒ t(E, p2) = −2p.

In fact for every E/Q there are infinitely many p satisfying t(E, p) = 0 (Elkies’

theorem, [Elk89]).
y2 + y = x3 − 7x + 6
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has ∆ = 5077 (a prime) and j = 2123373/5077, hence

j ≡ 0 mod p for p = 2, 3, 7 and j ≡ 3 ≡ 1728 mod 5.

One finds t(E, 2) = −2, t(E, 4) = 0; t(E, 3) = −3, t(E, 9) = 3, t(E, 27) = 0
(E has a point of order 2 over F27, but not over F3 or F9; also (∆/3) = 1);
t(E, 5) = −4, t(E, 25) = 6; t(E, 7) = −4, t(E, 49) = 2.

We will encounter both these curves again because of their special properties;
in terms to be explained later, the first curve has everywhere good reduction
in an abelian extension of Q and has integral j-invariant (cf. [Con93]), while
the second played a key role in solving a problem of Gauss (cf. [BGZ85] and
[Zag84]).
Proof. (a) Let E have invariant j 6= 0, 1728, there being no restriction on q.
We know (Proposition 4.3.2) that E is Fq-isomorphic to some twist Ed

j of the

generic-j curve, and by lemmata 4.7.2 and 4.7.9, we can assume that E = Ed
j :

E :











y2 + xy = x3 +
d − 1

4
x2 − 36d2

j − 1728
x − d3

j − 1728
(q odd)

y2 + xy = x3 + dx2 + 1/j (q even)

By the previous proposition,

(

d

q

)

t(E, q) = t(Ej , q).

This quantity depends only on j. Since

χ(E) =















(−jd3/(j − 1728)

q

)

=

(

d

q

)(−j(j − 1728)

q

)

(q odd)

(

d

q

)

(q even)

we see that χ(E)/ (d/q) depends only on j. Hence χ(E)t(E, q) depends only on
j, and we have the desired conclusion

χ(E)t(E, q) = χ(E′)t(E′, q).

(b) When j = 1728, p > 2 and E has a point of order 2 (which is automatic
when p > 3 — cf. Proposition 4.2.2), we can take E in the form y2 = x3 +
ax. When q ≡ 3 mod 4, which is so in (b)(i) and (iii), we have (−1/q) =
(−1)(q−1)/2 = −1, hence

(

x3 + ax

q

)

= −
(−x3 − ax

q

)
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and therefore the q − 1 terms with x 6= 0 in the sum t = t(E, q) occur in
cancelling pairs. Thus t = 0.

Similarly in cases (ii) and (iv) we get cancelling pairs. We can assume that
E has the form y2 = f(x) where f(x) = x3 + a, respectively x3 + ax + b. Both
cases follow from the fact that x 7→ f(x) is a bijection, so the quadratic residues
cancel the quadratic nonresidues in the sum t(E, q). In case (ii) this is because
q ≡ 2 mod 3 and therefore every element has a unique cube root: x 7→ x3 is a
bijection. In the other case, if c ∈ Fq and f(x) = c has a root ρ then, because
the characteristic is 3, the other roots are ρ ±

√
−a. Since ∆ = −a3, therefore

by assumtion the other roots are not in Fq. Thus for each c, f(x) = c has at
most one root and therefore exactly one root since there are q values of x and q
values of c. Incidentally, f(x) = 0 has a unique root, i.e., E(Fq) has a unique
point of order 2, as remarked in the proposition.

(a′) and (b′): We state a sequence of results which together complete the
proof, without specifically labelling each case of (a′) and (b′).

First let us dispose of characteristic 2. When p = 2 and j = 0, by Propo-
sition 1.7.10, E(F2n) has no point of order 2 so |E(F2n)| = 2n + 1 − t is odd,
hence t is even. Thus assume p ≥ 3.

Consider the case j = 0, q = 3n, E has no point of order 2, and (∆/q) = 1.
We can take E in the form y2 = f(x) = x3+ax+b where ∆ = −a3 and therefore
(−a/q) = 1. If c ∈ Fq and f(x) = c has a root ρ ∈ Fq, then the other roots
ρ ±

√
−a are also in Fq, and the three roots are distinct since the derivative

f ′(x) = a 6= 0. The values c which do occur do not include 0 since E has
no point of order 2, and therefore the 3 values of x giving f(x) = c contribute
either +3 or −3 to the sum t, according as c is a quadratic residue or not. Hence
t ≡ 0 mod 3.

We recall that for k ∈ Z

∑

x∈Fq
∗

xk =

{

−1 if k ≡ 0 mod q − 1

0 otherwise
¶

This is a simple consequence of the fact that Fq
∗ is cyclic.

When E is of the form y2 = x3 + ax, ¶ can be applied to

t = −
∑

x∈Fq
∗

(

x3 + ax

q

)

≡ −
∑

x∈Fq
∗

(x3 + ax)(q−1)/2 mod p

by expanding the terms on the right and adding like powers of x:

t ≡ −
(q−1)/2

∑

i=0

∑

x∈Fq
∗

(

(q − 1)/2
i

)

x2i+(q−1)/2a(q−1)/2−i mod p.
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By ¶, the only contribution occurs when 2i + (q − 1)/2 = q − 1, which requires
q ≡ 1 mod 4 and then

t ≡
(

(q − 1)/2
(q − 1)/4

)

a(q−1)/4 mod p.

Case p ≡ 3 mod 4, n even: we can choose a such that a(q−1)/4 /∈ Fp, for
instance a a generator of Fq

∗; c.f. Lemma 4.7.1. Since t and the binomial
coefficient are integers, we draw the following purely ‘combinatorial’ corollary:

(

(q − 1)/2
(q − 1)/4

)

≡ 0 mod p for q = pn, n even and p ≡ 3 mod 4.

(I do not know an attractive, direct proof of this congruence; but at least I now

know ‘the reason why’, for example,

(

4
2

)

is divisible by 3.) Going back to

arbitrary a, we have t ≡ 0 mod p for all E occuring in this case.
Case p ≡ 1 mod 4: Since c4 = −48a, we see that χ(E)t(E, q) has a constant

value mod p for E with j = 1728:

χ(E)t(E, q) ≡ (−3)−(q−1)/4

(

(q − 1)/2
(q − 1)/4

)

mod p.

Similarly, when E has the form y2 = x3 + a and q ≡ 1 mod 6, ¶ implies

t(E, q) ≡
(

(q − 1)/2
(q − 1)/6

)

a(q−1)/6 mod p,

which leads in the same way to

(

(q − 1)/2
(q − 1)/6

)

≡ 0 mod p for q = pn, n even and p ≡ 5 mod 6,

hence t ≡ 0 mod p in such cases; and when p ≡ 1 mod 6, χ(E)t(E, q) has a
constant value mod p.

Corollary 4.7.11 ([Cox89, p.320]) Let E, E′ be defined over Fq where q = pn,
and suppose t(E, q) 6≡ 0 mod p. Then E,E′ are Fq-isomorphic iff

j(E) = j(E′) and t(E, q) = t(E′, q).

Remarks. In Chapter 1 we classified elliptic curves defined over fields of char-
acteristic p > 0 into two types: supersingular and ordinary. (The definitions
are given just before Proposition 1.7.10.) We will prove in Chapter 6 that the
E considered in this proposition are precisely the ordinary ones, in other words,
for E defined over Fq,
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• E is supersingular iff t(E, q) ≡ 0 mod p, hence

• E is ordinary iff t(E, q) 6≡ 0 mod p.

This will amount to proving the following two facts:

(a) if t(E, q) ≡ 0 mod p then t(E, qf ) ≡ 0 mod p for all f > 0, hence E is
supersingular as defined in Chapter 1;

(b) if t(E, q) 6≡ 0 mod p then t(E, qf ) ≡ 1 for some f > 0, so |E(Fqf )| ≡
0 mod p, hence E(Fqf ) contains a point of order p, and E is ordinary as defined
in Chapter 1.

Accepting these statements, from the proposition, E is supersingular when
j = 0 and p = 2, 3 or q ≡ 5 mod 6; and when j = 1728 and q ≡ 3 mod 4. An
example where j 6= 0 or 1728 is y2 = x3−4x+4 over F13. This curve has j = 5;
note that 1728 ≡ 12 mod 13. The computer tells us that E(F13) has order 14
and that one generator of this cyclic group is the point (x, y) = (2, 2).

Thus the corollary can be stated:

two ordinary elliptic curves defined over Fq are isomorphic over Fq

iff they have the same invariant and the same trace.

Proof. Obviously the two conditions are necessary. Conversely assume these
two conditions.

If j 6= 0 or 1728 the result follows from Proposition 4.7.5: since the j’s are
equal, E′ = Ed for some d, and since the t’s are equal and nonzero, (d/q) = 1.
This means that the curves are Fq-isomorphic.

The remaining cases follow from the present proposition and Proposition 4.4.1.
For suppose j = 1728 (resp. 0). Since t 6≡ 0 mod p, we have p ≡ 1 mod 4 (resp.

mod 6) and therefore χ(E) ≡ χ(E′) mod p. Hence c′4
(q−1)/4 ≡ c

(q−1)/4
4 mod p

(resp. c′6
(q−1)/6 ≡ c

(q−1)/6
6 mod p). By Lemma 4.7.1 this implies that 4

√

c4/c′4 ∈
Fq (resp. 6

√

c6/c′6 ∈ Fq), hence E and E′ are Fq-isomorphic.

4.7.4 Examples

We present some tables that allow us to calculate |E(Fq)| quickly for the first
few values of q. We write Fq = Fp(θ). Reminder: quadratic residue has an
unconventional meaning when q is even — see Section 4.7.1.
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q θ quadratic residues

2 − 0

3 − 1

4 θ2 = θ + 1 0, 1

5 − 1, 4

7 − 1, 2, 4

8 θ3 = θ + 1 0, θ, θ2, θ2 + θ

9 θ2 = 2 1, 2, θ, 2θ

11 − 1, 4, 5, 9, 10

etc.

We denote the entry for j in the following tables by t(j). When j 6= 0 or
1728, t(j) is the trace of Frobenius of a curve with the given j as invariant and
with χ(E) = 1. ‡ It follows from Proposition 4.7.10 that

when j 6= 0, 1728, t(E, q) = χ(E)t(j).

The entries for j = 0 and j = 1728 (the latter being distinguished by the
symbol †) are, when p > 3, t(E0, q) for a curve with c6 = 1, resp. c4 = 1 and
therefore

when j = 0, t(E, q) ≡ c
(q−1)/6
6 t(j) mod p;

when j = 1728, t(E, q) ≡ c
(q−1)/4
4 t(j) mod p.

When p = 2 resp. 3 the entries for j = 0 are the traces of Frobenius of the two
special curves y2 + y = x3 and y2 = x3 + x.

When Proposition 4.7.10 does not state that t = 0, one must use some
additional information to obtain t exactly. Various points are illustrated by
examples after the tables.

We present the tables of t(j) for the prime fields up to p = 17 followed by
tables for q = 4, 8, 9.

‡Specifically,

t(j) =

(

1728 − j

q

)

t(Ej , q) when p 6= 2, t(Ej , q) when p = 2.
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Table of t(j). A † means j ≡ 1728 mod p.

p\j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 0† −1

3 0† 1 −2

5 0 2 3 −4† −1

7 −1 −3 −4 −1 −2 2 0†
11 0 0† 4 −6 3 5 1 −2 4 −2 3

13 −5 6 1 5 −2 0 2 4 −3 1 −4 2 6†
17 0 −6 −3 −1 4 4 6 −3 0 2 −6 8† −7 −3 −2 −5 2

q = 4 : q = 8 : q = 9 :

θ2 = θ + 1 θ3 = θ + 1 θ2 = 2

j t(j)

0 −4

1 −3

θ 1

θ + 1 1

j t(j)

0 0

1 5

θ −3

θ + 1 1

θ2 −3

θ2 + 1 1

θ2 + θ −3

θ2 + θ + 1 1

j t(j)

0 −6

1 −5

2 −2

θ 1

θ + 1 −2

θ + 2 4

2θ 1

2θ + 1 −2

2θ + 2 4

We illustrate the use of the tables by considering the curve

y2 + xy + y = x3 − 3x + 1. A105

We will use E loosely to denote the curve given by this equation interpreted
over various fields K. As a curve over Q it has data

c4 = 112, c6 = −13 ∗ 97, ∆ = 3 ∗ 5 ∗ 7, j =
116

3 ∗ 5 ∗ 7
,

and is therefore singular when charK = 3, 5 and 7; we considered this example
at the end of Chapter 1 where we saw that the singularity in each of these three
characteristics is split multiplicative. We notice the point P = (1,−1) ∈ E(Q)
of order 2. (As an exercise in Nagell-Lutz and simple 2-decent, the reader may
verify that E(Q) = {O, (1,−1)}.)

When we regard E as an elliptic curve over Fq (with p 6= 3, 5, 7), (1,−1) will
remain as a point of order 2, and therefore we can predict that |E(Fq)| is even.



4.7.5 A PREVIEW OF SOME FUTURE TOPICS 439

We simplify the notation t(E, q) to tq.
Let q = 2. Then j = 1 in F2 and in the notation used to define χ(E), e = 1

and (e/q) = (1/2) = −1 from the table of quadratic residues. The t-table entry
for j = 1 is −1, hence t2 = −1 ∗ (−1) = 1 and |E(F2| = 2. This is confirmed by
direct inspection:

E(F2) = {O, (1, 1)}.
Of course here (1,−1) = (1, 1). When we enlarge the field to F4, e stays the same
but it is now a quadratic residue, i.e., (1/4) = 1. We have t4 = 1 ∗ (−3) = −3
and |E(F4)| = 8. Similarly over F8 we find t8 = −1 ∗ 5 = −5 and |E(F4)| = 14;
this does not contradict the previous result since F4 is not a subfield of F8.

Next, j ≡ 0 mod 11 and 11 ≡ 5 mod 6, so t11 = 0.
j ≡ 12 ≡ 1728 mod 13 and c4 ≡ 4 mod 13 and therefore

t13 ≡ 43 ∗ 6 ≡ 7 mod 13.

We also know that t13 is even and, as a very crude estimate, |t13| ≤ 12 which is
obtained by taking an isomorphic curve y2 = x3 + ax so that

|t13| ≤
∑

x∈F13

∣

∣

∣

∣

(

x3 + ax

13

)∣

∣

∣

∣

≤ 12.

This is sufficient information to determine that t13 = −6 and |E(F13)| = 20.
j ≡ 14 6≡ 1728 mod 17, also c6 ≡ 14 mod 17. Using quadratic reciprocity,

χ(E) = (e/q) = (2/17)(7/17) = (3/7) = −1, hence t17 = −t(14) = 2.

Thus |E(F17)| = 16.
Finally we consider the supersingular examples over F3 and F2. Over F3,

the three curves y2 = x3 + x + a, a ∈ {0, 1,−1} are isomorphic and have t = 0;
the remaining three curves with j = 0 are y2 = x3 − x + a where a = 0, 1,−1
and they have t = 0,−3, 3 respectively. Over F2, y2 + y = x3 + a, a ∈ {0, 1} are
isomorphic and have t = 0, while y2 + y = x3 + x + a, a = 0, 1 have t = −2, 2
respectively.

4.7.5 A preview of some future topics

There are a number of interesting matters concerning the trace of Frobenius
whose discussion must be postponed.

— The Riemann Hypothesis (R.H.) for E/Fq
: for any E over Fq, we have

|t| ≤ 2
√

q. This was conjectured by E. Artin in his thesis and subsequently
proved by Hasse [Has33]. Let us elaborate a little.

In Chapter 6 we define the Frobenius endomorphism of E and show that it
has a representation as a linear operator on a 2-dimensional vector space over
the complex field. The characteristic polynomial is x2 − tx + q, and therefore
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the trace of this operator is t, hence the name trace of Frobenius. Thus the
R.H. is the statement that the two eigenvalues are conjugate complex numbers,
or both equal 2

√
q. Let us denote these two numbers π and π. Then for all

positive integers k
t(E, qk) = πk + πk.

Hence the group order |E(Fq)| immediately determines |E(Fqk)| for all over-
fields.

Manin [Man56] gave an elementary proof of the R.H. in the case q = p.
Subsequently Chahal [Cha95] gave a simplified proof extended to q = pn, but
only for p ≥ 5. The proof given in Chapter 6, based on the general notion of
isogeny, is shorter and applies to all q.

— When does there exist an E with a given t within the range allowed by the
R.H.? For now we only quote the answer; references are [Wat69] and [Rüc87].

The t satisfying |t| ≤ 2
√

q that actually occur are those that satisfy
one of the following conditions; q = pn as usual.

(a) gcd(t, p) = 1;

(b) n even, t = ±2
√

q;

(c) n even, p 6≡ 1 mod 3, t = ±√
q;

(d) n odd, p = 2 or 3, t = ±p(n+1)/2;

(e) n odd, t = 0;

(f) n even, p 6≡ 1 mod 4, t = 0.

Thus all values allowed by the Riemann Hypothesis occur for the prime field
Fp; however no E defined over F8 has t = ±2, i.e., |E(F8)| = 7 and 11 do not
occur.

— How many E for a given (allowable) t? For the prime field Fp the number
of equations y2 = x3 + bx + c with the given t (where |t| < 2

√
p) is given by a

precise formula involving the “weighted Hurwitz class number” — see [Cox89,
p.319].

— When j = 0, resp. 1728 and q = p ≥ 5 there are explicit formulas for t that
involve sextic, resp. quartic reciprocity symbols; the proofs involve Gauss and
Jacobi sums. See the last chapter in the text by Ireland and Rosen [Ire-Ro82].

— Let E be defined over Z (for simplicity) so that apart from finitely many
‘bad’ primes, E mod p is an elliptic curve and on the basis of the R.H. we can
write t(E, p) = 2

√
p cos θp where 0 < θp < π. Suppose that E does not have

complex multiplication; this term will be defined in Chapter 9. Then the Sato-
Tate conjecture is that if ST(x, a, b) denotes the number of p < x such that
a < θp < b (where 0 ≤ a < b ≤ π), and π(x) denotes the number of p < x then

lim
x→∞

ST(x, a, b)

/

π(x)
b

a

sin2 θ dθ =
2

π
.
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The number 2/π on the right is
(∫ π

0
sin2 θ dθ

)−1
. In other words, θp follows a

sin2 distribution: for large x and small positive dθ, the number of p < x with
θp between θ and θ + dθ is approximately

2

π
π(x) sin2 θ dθ.

See [Cas66] for original references.
— Elkies [Elk89] solved a long outstanding problem by proving that there

are infinitely many p for which θp = π/2, i.e., for which E is supersingular.



Chapter 5

Minimal Weierstrass

Equations

The basic ideas of this chapter are illustrated by the example of the elliptic
curve

E : y2 = x3 +
1

4
x2 +

1

2
x +

1

4
, ∆ = −26

defined over Q. The Q-isomorphism [0, 0, 0, 2−1] (using the notation introduced
in §4.1) can be used to “clear denominators” — the transformed equation E′

has all ai ∈ Z, hence we say that it is defined over Z:

E′ = [0, 0, 0, 2−1]E : y2 = x3 + x2 + 8x + 16, ∆ = −21313.

Among all the E′ isomorphic to E and defined over Z there are those with
minimal |∆|; these are called Z-minimal (Weierstrass) models. For this example
one such model is

[0, 1/2, 1/2, 1]E : y2 + xy + y = x3, ∆ = −26. A26

This minimal model is unique if we also impose the requirements a1, a3 ∈ {0, 1}
and a2 ∈ {−1, 0, 1}.

To analyze this concept in greater generality, one first considers local minimal
models: for a valuation v, Weierstrass equations with all v(ai) ≥ 0 and with
v(∆) minimal. Then one attempts to globalize, say to a Krull domain A: find a
Weierstrass equation with coefficients ai ∈ A which is simultaneously v-minimal
for all essential valuations v. When the ring is not a PID, such global minimal
models do not always exist.

The key tool, at least for fields of characteristic 0, is a result of Kraus that
is presented in Section 2. It will be used to obtain a much improved version of
Laska’s algorithm — we call it the Laska-Kraus algorithm — which finds global

501
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minimal models of E defined over number fields, or determines that none exists.
The simplicity of the algorithm in the case of Z is particularly striking. Kraus’s
result will also be essential to the solution of several other problems.

5.1 Some definitions

Let E and E′ be elliptic curves over the field K. If A is a subring of K, or
more generally a subring of an extension field of K, we say that E and E′ are
A-isomorphic if there exists a transformation τ = [r, s, t, u] as in the previous
chapter with r, s, t ∈ A and u ∈ A∗ such that τE = E′. We also call such a τ
an A-isomorphism.

This definition can be expressed in terms of a more primitive concept: a
transformation τ = [r, s, t, u] is A-integral if r, s, t, u ∈ A. Since

τ−1 = [−u−2r,−u−1s, u−3(rs − t), u−1],

τ is an A-isomorphism iff both τ and τ−1 are A-integral.
We say that E is defined over A, or that E is A-integral, when all the ai ∈

A; this can be indicated by the notation E/A. The quantities b2, . . . , b8, c4, c6, ∆
are then all in A; however j = c3

4/∆ of course need not be in A.
We define two polynomials:

Ψ2(x) := x3 − 3c4x − 2c6,

Ψ3(x) := x4 − 6c4x
2 − 8c6x − 3c2

4;

Their discriminants are

Dis (Ψ2) = 2836∆, Dis (Ψ3) = −22439∆2,

and their relations to the division polynomials are

Ψ2(12x + b2) = 432ψ2
2 , hence Ψ2(b2) = 2433b6,

Ψ3(12x + b2) = 6912ψ3, hence Ψ3(b2) = 2833b8.

Here are some identities that we will use; the last three can be checked on the
computer.

Ψ3(x)′ = 4Ψ2(x), (#i)

Ψ3(x) = 4xΨ2(x) − 3(x2 − c4)
2, (#ii)

(x2 − c4)
3 = Ψ2(x)(x3 + 2c6) + 3(c4x + c6)

2 + 1728∆, (#iii)

(x2 − 3c4)Ψ3(x) + (x2 − c4)
3 = 2Ψ2(x)2 + 243∆, (#iv)

Let v be a valuation on K, let E be an elliptic curve defined over K, and
let a, b, c denote v(c4), v(c6), v(∆) respectively. Since c3

4 − c2
6 = 1728∆, the



5.2. KRAUS’S THEOREM 503

minimum among 3a, 2b, c + v(1728) occurs at least twice. To discuss candidate
triples of values we define a signature to be an ordered triple a, b, c where a, b ∈
{0, 1, 2, . . .} ∪ {∞} with a, b not both ∞, and c ∈ {0, 1, 2, . . .}; and we define a
signature a, b, c to be admissible when the minimum among 3a, 2b, c+v(1728),
with natural definitions concerning ∞, occurs at least twice. For example, when
v(3) = 1, no signature of the form a, 1, c is admissible since v(1728) = 3v(3) = 3
and the minimum among 3a, 2, c + 3, which is either 0 or 2, occurs only once.
Most, but not all, admissible signatures actually occur; see Proposition 5.2.3.

By elementary reasoning one compiles the list of admissible signatures
(w denotes v(1728)):

2d, 3d, c, c, d ∈ {0, 1, 2, . . .}, c ≥ 6d − w,
a, b, 3a − w, a, b ∈ {0, 1, 2, . . .} ∪ {∞}, w/3 ≤ a < ∞, 3a/2 < b,
a, b, 2b − w, a, b ∈ {0, 1, 2, . . .} ∪ {∞}, w/2 ≤ b < ∞, 2b/3 < a.

The following notation is convenient.

Let a and m be integers with m positive. The symmetric residue

of a mod m is the unique integer denoted mods (a,m) satisfying

mods (a, m) ≡ a mod m, and − m/2 < mods (a,m) ≤ m/2.

5.2 Kraus’s theorem

Let V be a discrete valuation ring with quotient field K, and let v : K −→
Z∪{∞} denote the valuation map as usual. Thus a K-isomorphism τ = [r, s, t, u]
is V integral when v(r), v(s), v(t) and v(u) are all ≥ 0, and is a V -isomorphism
when additionally v(u) = 0.

Now let K be a field of characteristic 6= 2 or 3. Then 1728 6= 0 in K, and
a pair of elements c4, c6 ∈ K for which ∆ := (c3

4 − c2
6)/1728 6= 0 unambiguosly

determines a K-isomorphism class of elliptic curves by the c-form

η2 = ξ3 −
c4

48
ξ −

c6

864
;

(Lemma 4.2.1 explains to what extent conversely the isomorphism class of these
curves determines the pair c4, c6.)

Question: When are two given elements c4, c6 of V realized as the covariants
of some Weierstrass equation defined over V ?

First, if char ṽ 6= 2, 3, equivalently v(2) = v(3) = 0, the c-form makes it clear
that arbitrarily chosen c4, c6 ∈ V , subject only to ∆ 6= 0, occur for some E
defined over V .
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In contrast there is considerable linkage between v(c4) and v(c6) when
charK = 0 and the residue field characteristic is 2 or 3.† The next proposition
is due to Kraus [Kra89]; we have written the criteria in the case p = 2 in a
different way and we have added uniqueness statements that will be needed in
applications.

Proposition 5.2.1 Let charK = 0, let v be a valuation on K with ring V and
residue field characteristic p, and let c4, c6,∆ be elements of V satisfying

c3
4 − c2

6 = 1728∆ 6= 0. (¶)

Then c4, c6 occur as the covariants of some E/V iff:

• when p = 3 ∃ϑ ∈ V satisfying

Ψ2(ϑ) ≡ 0 mod 27;

this is always true when v(c4) = 0 (take ϑ = −c6/c4) and when v(c6) ≥ v(27)
(take ϑ = 0); moreover for any such ϑ,

ϑ2 ≡ c4 mod 3 and ϑc4 + c6 ≡ 0 mod 3;

when a solution exists it is unique mod 3: if ϑ is a solution then so is ϑ +
3α, ∀α ∈ V , and conversely the difference between any two solutions is of the
form 3α, α ∈ V ; if E/V is a model with these covariants then a solution is
ϑ = b2;

• when p = 2 ∃θ, τ ∈ V satisfying

Ψ3(θ
2) ≡ 0 mod 256 and Ψ2(θ

2) ≡ −16τ2 mod 64;

when a solution exists it is unique mod 2: if θ, τ is a solution then so is θ +
2α, τ + θα(θ +α)+2β ∀α, β ∈ V and all solutions are obtained this way; if E/V

is a model with these covariants then a solution is θ = a1, τ = a3 + a1a2. These
requirements simplify in the following cases:

(i) when v(c4) = 0: iff ∃x ∈ V satisfying c6 ≡ −x2 mod 4 (take θ =
c4/x, τ = −(x2 + c6)/(4x));

(ii) when v(c4) ≥ v(16): iff ∃x ∈ V satisfying c6 ≡ 8x2 mod 32 (take θ =
0, τ = x).

Proof. p = 3 If E/V exists with the specified covariants then ϑ = b2 satisfies

Ψ2(ϑ) ≡ 0 mod 27, ϑ2 ≡ c4 mod 3, ϑc4 + c6 ≡ 0 mod 3.

†The logically remaining cases are char K = 2 and char K = 3. But then the question is
not meaningful; or perhaps one should say, this is not the right question in these cases.
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Conversely if ϑ ∈ V satisfies Ψ2(ϑ) ≡ 0 mod 27, applying the transformation
[ϑ/12, 0, 0, 1] to y2 = x3 − (c4/48)x − (c6/864) gives

y2 = x3 + (ϑ/4)x2 + (ϑ2 − c4)/48x + Ψ2(ϑ)/1728.

This has covariants c4, c6 and we must prove that ϑ2 ≡ c4 mod 3, so this equa-
tion is defined over V , and that c4ϑ + c6 ≡ 0 mod 3. Using Ψ2(ϑ) ≡ 0 mod 27
and c3

4 ≡ c2
6 mod 27 which comes from (¶), we obtain

(c4ϑ + c6)
3 ≡ 3c6(c4ϑ + c6)

2 mod 27,

hence c4ϑ + c6 ≡ 0 mod 3. Now the identity (#iii) implies ϑ2 ≡ c4 mod 3.
If ϑ is a solution and α ∈ V then Taylor’s expansion gives

Ψ2(ϑ + 3α) = Ψ2(ϑ) + (3ϑ2 − 3c4)(3α) + (3ϑ)(3α)2 + (3α)3

≡ 0 mod 27

since ϑ2 ≡ c4 mod 3.
Conversely if ϑ and ϑ + 3α are solutions, we wish to prove that v(α) ≥

0. Denoting v(3) and v(α) by e and β, the values of the terms in the above
congruence are

≥ 3e, ≥ 3e + β, ≥ 3e + 2β, 3e + 3β, ≥ 3e,

meaning that v(Ψ2(ϑ)) ≥ 3e, . . . , v((3α)3) = 3e + 3β, and the last value ≥ 3e
corresponding to the term on the right represented by 0 mod 27. The minimum
value must occur at least twice in an equation, and therefore 3e + 3β ≥ at least
one of the other values. Hence β ≥ 0.

p = 2

If there exists such an E then, since 3 is invertible in V , we can apply the
transformation [−a2/3, 0, 0, 1] to obtain a′

1 = a1, a
′
2 = 0, a′

3 = a3 − a1a2/3 and
with no change in c4, c6,∆. Dropping the primes from the notation, a2 = 0
hence b2 = a2

1. Taking θ = a1 and τ = a3 we have

Ψ3(θ
2) = 2833b8 ≡ 0 mod 256,

Ψ2(θ
2) = 2433b6 ≡ −16τ2 mod 64.

Conversely suppose we have θ, τ . To prove the existence of E/V we begin
by choosing a1 = θ and a2 = 0; we must prove that v-integral a3, a4, a6 can be
chosen so that

c4 = θ4 − 24(θa3 + 2a4),

c6 = −θ6 + 36θ2(θa3 + 2a4) − 216(a2
3 + 4a6).
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The assumptions imply that

16θ2Ψ2(θ
2) − Ψ3(θ

2) ≡ 0 mod 256

which can be rewritten by a simple calculation as

(θ4 − c4 − 8τθ)(θ4 − c4 + 8τθ) ≡ 0 mod 256.

Thus at least one factor on the left is divisible by 16. We choose the sign of τ
so it is the left factor and then

a3 := τ, a4 := (θ4 − c4 − 24τθ)/48

are v-integral. Now a6 is determined by the equation for c6 and it remains to
check that v(a6) ≥ 0. Multiplying the equation for c6 by 2 this follows from

1728a6 = −2c6 − 2θ6 + 72τθ3 + 3θ2(θ4 − c4 − 24τθ) − 432τ2

≡ −2c6 + θ6 − 3c4θ
2 + 27(θ6 − 3c4θ

2 − 2c6) mod 64

≡ 28(θ6 − 3c4θ
2 − 2c6) mod 64

≡ 0 mod 64.

Suppose that θ, τ is a solution and α, β ∈ V . The two congruences and the
identity (#ii) imply θ4 − c4 ≡ 8θτ mod 16. Using also the identity Ψ3(x)′ =
4Ψ2(x) and writing (θ +2α)2 = θ2 +4γ, Taylor expansion of Ψ3(θ

2 +4γ) yields

Ψ3(θ
2) + 4(−16τ2)(4γ) + (6θ4 − 6c4)(4γ)2 + (4θ2)(4γ)3 + (4γ)4

≡ 0 mod 256.

An equally straightforward calculation shows that the second congruence is
satisfied by θ + 2α and τ + θα(θ + α) + 2β = τ + θγ + 2β.

Conversely suppose θ, τ and θ+2α, τ +θα(θ+α)+2β are both solutions; we
wish to prove that v(α) ≥ 0, equivalently v(γ) ≥ 0 where γ = α2 + θα as above,
and v(β) ≥ 0. Denoting v(2) and v(γ) by e and δ, the values of the terms in
the above congruence are

≥ 8e, ≥ 8e + δ, ≥ 8e + 2δ, ≥ 8e + 3δ, 8e + 4δ, ≥ 8e,

where the last value is that of the term represented by 0 mod 256. As in the
case p = 3, 8e + 4δ ≥ at least one of the other values. Hence δ ≥ 0. Secondly,
the Ψ2 congruences imply

−16((τ + θγ + 2β)2 − τ2) ≡ 3(θ4 − c4)(4γ) + 3θ2(4γ)2

≡ 32θτγ + 48θ2γ2 mod 64

which reduces to
64β2 + 64β(τ + θγ) ≡ 0 mod 64.
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Again the principle that the minimum value must be attained at least twice
yields the result v(β) ≥ 0.

Now suppose v(c4) = 0, equivalently v(c6) = 0 by (¶). If E/V exists then

−c6 ≡ b3
2 ≡ a6

1 mod 4

is a square mod 4. Conversely suppose −c6 ≡ x2 mod 4. We can write this as

x2 = −c6(1 + 4a), a ∈ V.

Secondly, (¶) and v(c6) = 0 imply

c3
4 = c2

6(1 + 64b), b ∈ V.

Defining θ = c4/x we have

c4 =
θ4(1 + 4a)2

1 + 64b
, c6 = −

θ6(1 + 4a)3

(1 + 64b)2

and substituting these values we immediately find

Ψ3(θ
2) ≡ 0 mod 256, Ψ2(θ

2) ≡ −16a2θ6 mod 64,

so we can take τ = aθ3 ≡ (x2 + c6)/(4x) mod 2.
Finally suppose v(c4) ≥ 4e where e denotes v(2). If E/V exists then from

the formulas for the b’s and c’s we see in succession that v(a1) ≥ e, v(b4) ≥ e,
v(b2) ≥ 2e, hence

c6 ≡ −216b6 ≡ 8a2
3 mod 32.

Conversely if c6 ≡ 8x2 mod 32 then θ = 0, τ = x satisfy the requirements.
Here is an example from [Kra89] that illustrates the non-redundancy of the

conditions in the case p = 2: let π6 = 2, K = Q(π) or Q2(π), c4 = 8π2, and
c6 = 8π3. Thus v(2) = 6, v(c4) = 20 and v(c6) = 21. Then θ = π5 satisfies
Ψ3(θ

2) ≡ 0 mod 256 but

Ψ2(θ
2) = −16π3(1 + π9)

is not of the form −16τ2 mod 64.
For the globalization of Kraus’s theorem to number fields see §5.2.2; for the

special case Q see Proposition 5.6.1.

5.2.1 The case v(p) = 1

When v(p) = 1 the statements of Kraus’s theorem simplify considerably, and
since this includes the important special cases K = Q and Qp, p = 2, 3, we put
the results in a corollary.

The admissible signatures in the two cases at hand are
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p = 3
2d, 3d, c, c, d ∈ {0, 1, 2, . . .}, c ≥ 6d − 3,

a, b, 3(a − 1), 1 ≤ a < ∞, 3a/2 < b ≤ ∞,
a, b, 2b − 3, 2 ≤ b < ∞, 2b/3 < a ≤ ∞.

For any triple c4, c6, ∆ ∈ V satisfying (¶), we have either v(c4) = 0, equivalently
v(c6) = 0, or v(c6) ≥ 2.

p = 2
2d, 3d, c, c, d ∈ {0, 1, 2, . . .}, c ≥ 6(d − 1),

a, b, 3(a − 2), 2 ≤ a < ∞, 3a/2 < b ≤ ∞,
a, b, 2(b − 3), 3 ≤ b < ∞, 2b/3 < a ≤ ∞.

For any triple c4, c6, ∆ ∈ V satisfying (¶), we have either v(c4) = 0 or v(c4) ≥ 2.

Corollary 5.2.2 Suppose v(p) = 1 (for example when v is the p-adic valuation
on K = Q or Qp). Then elements c4, c6,∆ of V satisfying (¶) are the covariants
of some E/V

• when p = 3: iff v(c6) 6= 2;

• when p = 2: iff either of the special cases (i) or (ii), that is, iff either

v(c4) = 0 and c6 ≡ −x2 mod 4 has a solution x ∈ V , or

v(c4) ≥ 4 and c6 ≡ 8x2 mod 32 has a solution x ∈ V .

Proof. First let p = 3. By the proposition, the covariants occur for some E/V

when v(c4) = 0 (equivalently v(c6) = 0) or when v(c6) ≥ v(27) = 3. From
our list the only undecided admissible signatures are 1, 2, 0 and a, 2, 1, a ≥ 2.
In these cases Ψ2(ϑ) ≡ 0 mod 27 has no solution as we see by writing it as an
equation ϑ3 − 3c4ϑ − 2c6 = 27z, v(z) ≥ 0 and applying the principle that the
minimum value must be attained at least twice.

The case p = 2 is treated in the same way. When v(c4) = 2 or 3, Ψ3(θ
2) ≡

0 mod 256 is seen to have no solution, and all the remaining admissible cases
fall under special cases (i) or (ii) of the proposition.

The following proposition clears up a minor point.

Proposition 5.2.3 When v(2) = 1 or v(3) = 1 all admissible signatures a, b, c
occur as the values of some triple c4, c6,∆ ∈ V satisfying (¶), with one ex-
ception: when the residue field is F2 (so p = 2), the admissible signatures
2d, 3d, 6d − 6, 1 ≤ d < ∞ do not so occur.

Proof. For convenience we say that the signature a, b, c occurs via c4, c6 when
a = v(c4), b = v(c6) and c = v(∆) where ∆ = (c3

4 − c2
6)/1728.

p = 3
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1. Given an admissible triple a, b, c of the type where c + 3 = min{3a, 2b},
so that a ≥ 1 and b ≥ 2, one may take, for example,

c4 = −4 ∗ 3a, c6 = 8 ∗ 3b, ∆ = −33a−3 − 32b−3.

This is valid also when one of a, b is ∞, provided one interprets 3∞ as 0.
2. 0, 0, 0 is the signature of A11 for which

c4 = 16, c6 = −8 ∗ 19, ∆ = −11.

3. If 0, 0, c occurs via c4, c6, then a simple calculation that we leave to the
reader shows that 0, 0, c + 1 occurs via c4, c6 + 3δ for appropriate δ ∈ V .

4. For d ≥ 1 the signature 2d, 3d, 6d − 3 occurs: take e.g.

c4 = −4 ∗ 32d, c6 = 8 ∗ 33d, ∆ = −2 ∗ 36d−3.

5. For d ≥ 1 the signature 2d, 3d, 6d − 2 occurs: take e.g.

c4 = 4 ∗ 32d, c6 = 16 ∗ 33d, ∆ = −36d−2.

6. If 2d, 3d, c occurs via c4, c6 where d ≥ 1 and c > 6d − 3, say c = 6d − 3 +
e, e ≥ 1, then simple calculation shows that 2d, 3d, c+1 occurs via c4, c6+δ where
δ is chosen to satisfy the following condition, where c6 = γ33d and ∆ = ∆03

c:

δ ≡ 32
∆0

γ
3e−1 + ε3e mod 3e+1.

This concludes the proof that when v(3) = 1, all admissible 3-adic signatures
occur as the covariant signatures of some E/K , and in fact for some E/V except
when v(c6) = 2 by the previous corollary.

p = 2

1. The admissible signature a, b, c where 3a 6= 2b (and therefore c + 6 =
min{3a, 2b}, a ≥ 2, b ≥ 3) occurs:

c4 = 3 ∗ 2a, c6 = 9 ∗ 2b, ∆ = 23a−6 − 3 ∗ 22b−6.

Again one of a, b can be ∞ provided 2∞ is understood to be 0.
2. The signature 2d, 3d, 6d−6 for d ≥ 1 does not occur when the residue field

is F2 because c4 = 22dγ4, c6 = 23dγ6 =⇒ ∆ = 26d−6(γ3
4 −γ2

6)/27 and the image
of γ3

4 − γ2
6 in the residue field is obliged to be 1 − 1 = 0, hence v(γ3

4 − γ2
6) ≥ 1.

On the other hand, if the residue field properly contains F2 then we can choose
γ4 = 1 and take any γ6 ∈ V whose image in the residue fied is not 0 or 1.

3. The curve A15: y2 + xy + y = x3 + x2 has c4 = 1, c6 = −161, ∆ = −15,
hence 0, 0, 0 occurs.

4. For d ≥ 1, the signature 2d, 3d, 6d − 5 occurs: take c4 = −17 ∗ 22d, c6 =
23d, ∆ = −91 ∗ 26d−5.
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5. If 2d, 3d, 6d − 6 + e occurs, where d ≥ 0, e ≥ 1 (e ≥ 6 when d = 0), then
2d, 3d, 6d − 5 + e occurs. For let c4 = γ42

2d, c6 = γ62
3d and ∆ = ∆02

6d−6+e,
and define c′4 = c4 + δ2e for any δ ∈ V satisfying

δ ≡ −
9∆0

γ2
4

+ 2ε mod 2e+2, where ε = 0 if e = 1, ε = 1 if e > 1.

5.2.2 The globalization of Kraus’s theorem to number fields

Let K be a number field of degree n over Q with ring of integers O and with a
chosen integral basis ω1, . . . , ωn. Thus a typical member of O is

α =
∑

niωi, ni ∈ Z.

Let m be a positive integer. Then α ≡ 0 mod m, i.e., α = mβ for some β ∈ O,
iff m|ni ∀i. We define

mods (α, m) =
∑

mods (ni,m)ωi

(the symmetric residue mods (ni,m) was defined in §5.1), and say that α is
restricted mod m or m-restricted if mods (α, m) = α. Clearly

mods (α, m) ≡ α mod m.

A Weierstrass equation E/O is of restricted type if a1 and a3 are 2-restricted

and a2 is 3-restricted. Of course this property depends on the choice of integral
basis. In the case K = Q, O = Z, restricted type means

a1, a3 ∈ {0, 1} and a2 ∈ {−1, 0, 1}.

Proposition 5.2.4 Given E/O there exists a unique O-isomorphism of the

form τ = [r, s, t, 1] such that E′ = τE is of restricted type; E′ and τ can be
determined by the following sequence of calculations.

a′
1 = mods (a1, 2),

s = (a′
1 − a1)/2,

a′
2 = mods (a2 − sa1 − s2, 3),

r = (a′
2 − a2 + sa1 + s2)/3,

a′
3 = mods (a3 + ra′

1, 2),

t = rs + (a′
3 − a3 − ra′

1)/2,

a′
4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st,

a′
6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.
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Proof. The transformation rules of Proposition 4.1.1 show that the Weierstrass
coefficients of τE are a′

i as stated. By definition of a′
1, a

′
2, a

′
3, E′ is of restricted

type. Since τ is restricted to have 4-th term u = 1, it is unique.
Note that E′ in general is not unique when we relax the definition of τ =

[r, s, t, u] to allow u ∈ O∗. For example when O = Z[i], so O∗ = {±1,±i}, with
integral basis {1, i}, then E : y2 = x3 + 1 and [0, 0, 0, i]E : y2 = x3 − 1 are
Z[i]-isomorphic and are both of restricted type. However these two curves have
different c6. Uniqueness of the restricted model is restored when the covariants
are prescribed, as will be explained in the next proposition.

Lemma 5.2.5 Let b ∈ O and suppose x2 ≡ b mod 4 has a solution x = a ∈
O. Then the congruence has a unique 2-restricted solution in O, namely x =
mods (a, 2).

Proof. Set a = mods (a, 2). Then a = a + 2c for some c ∈ O, so a2 ≡ a2 ≡
b mod 4. If a′ is another solution of the congruence and we set a′ = a + d, then
2ad + d2 ≡ 0 mod 4. Hence if P |2, i.e., if P is any prime ideal divisor of 2O,
then vP (d(2a + d)) ≥ 2vP (2) which implies vP (d) ≥ vP (2). Thus d/2 ∈ O and
therefore if a′ is also restricted then d = 0.

The next proposition is the globalization of Kraus’s theorem to number
fields.

Proposition 5.2.6 (a) Let c4, c6 be elements of O such that ∆ = (c3
4−c2

6)/1728
is a nonzero element of O. Then ∃ Weierstrass model E/O with these covariants

iff ∃ϑ, θ, τ ∈ O satisfying

Ψ2(ϑ) ≡ 0 mod 27, Ψ3(θ
2) ≡ 0 mod 256, Ψ2(θ

2) ≡ −16τ2 mod 64.

When ϑ exists it is unique mod 3: ϑ + 3α is also a solution ∀α ∈ O and all
solutions are obtained this way. When θ, τ exist they are unique mod 2 in the
following sense: the other solutions are θ+2β, τ +θβ(θ+β)+2γ where β, γ ∈ O.

(b) When ϑ, θ and τ satisfying the three congruences exist, there exists a
unique model E/O of restricted type with the given covariants (that is, unique

once an integral basis ω1, . . . , ωn has been chosen). It can be calculated from ϑ
and θ by the following steps.

1. Let a1 = mods (θ, 2), and then let a2 = mods (ϑ − a2
1, 3).

2. Define b2 = a2
1 + 4a2, then b6 = Ψ2(b2)/432.

3. Then x2 ≡ b6 mod 4 has a solution x ∈ O. Let a3 = mods (x, 2).
4. Let a4 = (b2

2 − c4 − 24a1a3)/48 and a6 = (b6 − a2
3)/4.

Proof. (a) Let P denote a typical prime ideal divisor of 3O. If E/O exists

then it is defined over OP ⊃ O, hence by the local result there exists ϑP ∈ OP

satisfying Ψ2(ϑP ) ≡ 0 mod 27OP . By the approximation theorem for Dedekind
domains we choose ϑ ∈ O such that

ϑ ≡ ϑP mod 3OP , ∀P |3,
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where the notation ∀P |3 is short for “every prime divisor P of 3”. Again by
the local result, Ψ2(ϑ) ≡ 0 mod 27OP . Hence if we write Ψ2(ϑ) = 27λ, then
vP (λ) ≥ 0 ∀P |3, and also ∀P 6 |3 since Ψ2(ϑ) ∈ O. Therefore λ ∈ O and so
Ψ2(ϑ) ≡ 0 mod 27O.

Similarly by the approximation theorem we choose θ, τ ∈ O so that

θ ≡ θP mod 4OP ∀P |2,

τ ≡ τP mod 2OP ∀P |2.

(If one makes the coarser approximation

θ ≡ θP mod 2OP ∀P |2, say θ = θP + 2αP ,

then one has the more complicated looking

τ ≡ τP + αP τP (αP + τP ) mod 2OP .)

Conversely if ϑ, θ, τ exist then the local criteria are satisfied for the finite set
S of prime ideal divisors P of 2 and 3. Hence for each P ∈ S ∃ a transformation
[rP , sP , tP , 1] defined over K from

E : y2 = x3 −
c4

48
x −

c6

864

to an OP -integral curve with the given covariants. By the approximation the-
orem, we pick r, s, t ∈ K P -adically integral for all P /∈ S, and sufficiently
P -adically close to rP , sP , tP respectively so that the transformed curve is still
OP -integral ∀P ∈ S. Then [r, s, t, 1] applied to E gives an O-integral model
with the given covariants.

If ϑ and ϑ + 3α are two solutions in O, we wish to prove that α ∈ O. The
local results imply that vP (α) ≥ 0 ∀P |3, and vP (α) = vP (3α) ≥ 0 ∀P 6 |3, hence
the result. Similarly the statements concerning the uniqueness of θ and τ follow
from details given in Proposition 5.2.1.

(b) Suppose ϑ, θ and τ exist. Then by part (a) an EO exists with the
given covariants, and by the previous proposition we can assume that E is of
restricted type. Let a1 = θ + 2d; we wish to prove that d ∈ O. By the local
Kraus theorem, since one solution of the Ψ3 congruence is a1 and other solutions
differ by a multiple of 2, we have vP (d) ≥ 0∀P |2, hence d ∈ O as required. Since
a1 is 2-restricted it follows that a1 = mods (θ, 2). By part (a), θ ∈ O is unique
mod 2O hence a1 is unique.

Similarly the local result for primes over 3 states that one solution of the
Ψ2 congruence is b2 ≡ a2

1 + a2 mod 3, and as in the case a1, we find that a2

restricted mod 3 is unique and is given by a2 = mods (ϑ − a2
1, 3).

To complete the proof of uniqueness of E it remains to prove that a3 re-
stricted mod 2 is unique, for then a4 and a6 are determined by the formulas
defining c4 and c6. If there is a prime P over 2 whose residue field is larger than
F2 then it is incorrect to argue as follows.
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One solution is τ = a3+a1a2 and since “solutions are unique mod 2”
therefore a3 = mods (τ + a1a2, 2); and since a3 is 2-restricted it is
unique.

The trouble is the general solution has the form τ = a3 + a1a2 +βτ(β + τ)+ 2γ
and the term βτ(β + τ) can be nonzero mod 2. In other words, one may start
with the ‘wrong’ τ .

However we can prove uniqueness as follows. Since a1 and a2 are unique at
this point, so are b2 = a2

1 + 4a2 and b6 = Ψ2(b2)/432. Thus a2
3 = b6 − 4a6 is

unique mod 4 and therefore by the Lemma, a3 is unique mod 2, hence unique
since it is 2-restricted.

5.3 Local minimal models and δv

We return to the local situation of a discrete valuation ring V with quotient
field K of any characteristic.

E is minimal (with respect to the valuation v) if E is defined over V and the
nonnegative integer v(∆) is minimal among all K-isomorphic E′ defined over V .
Then E is called a minimal Weierstrass model (for v), the name Weierstrass
being inserted when necessary to distinguish it from the Néron minimal model
which is a much more sophisticated construction to be discussed later.

Lemma 5.3.1 If E and E′ are defined over V and are K-isomorphic with
v(∆) ≥ v(∆′), e.g. E′ minimal, then any K-isomorphism τ = [r, s, t, u] from E
to E′ is V -integral.

Proof. From v(∆′) = 12v(u) + v(∆) < ∞ and v(∆′) ≤ v(∆) we deduce
v(u) ≥ 0, i.e., u ∈ V . The relations from § 3.1

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

and the fact that V is integrally closed imply in succession that 3r, 4r ∈ V hence
r ∈ V . Next

u2a′
2 = a2 − sa1 + 3r − s2

u6a′
6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

show that s, t ∈ V .
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Proposition 5.3.2 Every elliptic curve defined over K has a minimal Weier-
strass model for v. It is unique up to V -isomorphism. If char ṽ 6= 2 then it
exists in b-form

y2 = x3 +
b2

4
x2 +

b4

2
x +

b6

4
;

if char ṽ 6= 2 or 3 then it exists in c-form

y2 = x3 − c4

48
x − c6

864
.

Proof. If n = min{v(ai)} then a transformation [0, 0, 0, πn], where π denotes
a uniformizer for v, clears denominators so there is a model defined over V .
The existence and uniqueness statements now follow from the lemma. When
char ṽ 6= 2 (and 6= 3) then 2 (and 3) are invertible in V , so completing the
square (and cube) as in the proof of Lemma 4.2.1 can be done over V .

Corollary 5.3.3 The signature v(c4), v(c6), v(∆) is the same for all v-minimal
models of an elliptic curve defined over K.

For another signature has the form v(u−4c4), v(u−6c6), v(u−12∆) and v(u) =
0 by the proposition.

We fix the notation

δv = δv(E) = v(∆)

where ∆ is the discriminant of any
v-minimal model of E.

We also use the notation δπ for δv where π is a uniformizer, for example δ2 when
K = Q, when that is more convenient. We do not introduce special notation
for the other two members of the signature of a v-minimal model.

The transformation equation

u12∆′ = ∆

shows that for any model
v(∆) ≡ δv mod 12

and if 0 ≤ v(∆) < 12 then E is minimal. For example over K = Q

y2 = x3 + 16, with c4 = 0, c6 = −2933, ∆ = −21233

is transformed by τ = [0, 0, 4, 2] to

y2 + y = x3, with c4 = 0, c6 = −2333, ∆ = −33 (A27)
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which is a 2-minimal model, i.e., minimal for the 2-adic valuation. In fact A27

is Z-minimal, that is, simultaneously minimal for all the p-adic valuations, a
matter that we will return to shortly. In this case there is no 2-minimal model
in b-form, a fortiori none in c-form.

The converse criterion is not true: a minimal model may have v(∆) ≥ 12,
and in fact it is easy to produce examples with arbitrarily large v(∆). For the
transformation equation

u4c′4 = c4

shows that E is minimal when v(c4) < 4. Thus

y2 + xy + y = x3 − 454x − 544 (H30)

with c4 = 21769, c6 = 437147, ∆ = 23 ∗ 3 ∗ 512

is Z-minimal. In general one can take for instance (say char ṽ 6= 2, 3 for simplic-
ity)

y2 = x3 − 3(1 + πN )x − 2(1 + πN ),

where v(π) = 1, which has v(c4) = 0, hence is v-minimal, and

v(∆) = v(2633(1 + πN )2πN ) = N.

Proposition 5.3.4 Let V be a valuation ring with quotient field K, valuation
map v, uniformizer π, and residue field k. Let E be an elliptic curve defined
over V with signature

a = v(c4), b = v(c6), c = v(∆).

(a) E is v-minimal iff the following condition, labelled (α), is not true.

(α) E is K-isomorphic to an E′ defined over V with signature a − 4, b − 6,
c − 12 (which implies a ≥ 4, b ≥ 6, c ≥ 12).

Consequently, if any of a < 4, b < 6 or c < 12 is true, then E is v-minimal.
(b) Let charK 6= 2 or 3. Then condition (α) is equivalent to

(β) c′4 = c4π
−4, c′6 = c6π

−6 occur as the covariants of some E′

defined over V .

That is, E is v-minimal iff (β) is not true, and then

v(∆) < max{12 + 12v(2) + 3v(3) − v(j) , 12 + 10v(2) + 6v(3) − v(j − 123)}.

(c) If char k 6= 2 or 3 (hence charK 6= 2 or 3 and v(2) = v(3) = 0), then E
is minimal iff

either v(∆) < 12 or v(c4) < 4

(equivalently, either v(c4) < 4 or v(c6) < 6). Therefore if E is any model then

δv = v(∆) − 12min{bv(c4)/4c, bv(∆)/12c}.
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Proof. (a) If such an E′ exists then it is V -isomorphic to E by Lemma 5.3.1,
and so E is not v-minimal. The converse follows from the trivial technical-
ity: if E has v-minimal model E′′ with c′′4 = c4π

−4N , c′′6 = c6π
−6N , then

E′ = [0, 0, 0, π−(N−1)]E′′ is defined over V and has covariants c4π
−4, etc., hence

signature a − 4, b − 6, c − 12.

(b) If E′ satisfies condition (α) then, for an appropriate unit u ∈ V ∗,
[0, 0, 0, u]E′ serves as the E′ in (β). Conversely if E′ satisfies (β), then E
and E′ have the same j-invariant, hence are K-isomorphic by Proposition 4.4.1,
(i)–(iii). Therefore E′ satisfies (α).

If we suppose the inequality not satisfied then we have both

v(j∆) = v(c3
4) ≥ 12 + 12v(2) + 3v(3),

and

v((j − 1728)∆) = v(c2
6) ≥ 12 + 10v(2) + 6v(3).

Then y2 = x3 − c4

243π4
x − c6

2533π6

is V -isomorphic to E and has smaller v(∆).

(c) When char k 6= 2 or 3, any two c4, c6 ∈ V such that c3
4 6= c2

6 are the
covariants of an E′ defined over V , e.g. y2 = x3 − c4x/48 − c6/864. Thus (b)
follows from (c).

Here are two Z-minimal examples illustrating part (b) of the proposition.

y2 = x3 + 4x, c4 = −263, ∆ = −212, j = 1728; (B32)

y2 + xy + y = x3 − x2 + 25x + 1 (H162)

c4 = −355, ∆ = −2 ∗ 312, j = 3353/2, j − 1728 = −34/2.

5.3.1 The special cases v(3) = 1 and v(2) = 1

Under either assumption v(3) = 1 or v(2) = 1, the field K is of characteristic 0;
of particular interest are K = Q,Q2 and Q3.

Proposition 5.3.5 Supposing v(p) = 1, where p = 2 or 3, the complete list of
possible signatures of v-minimal E/V is as follows. Conversely any E/V with
one of these signatures is v-minimal, and such E/V actually occur for each of
the signatures, unless noted otherwise. (The footnotes refer to certain 2-adic
signatures only.)
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p = 3 p = 2

0, 0, c c ≥ 0
2, 3, c c ≥ 3
4, 6, c c = 9, 10, 11
1, b, 0 3 ≤ b ≤ ∞
2, b, 3 4 ≤ b ≤ ∞
3, b, 6 5 ≤ b ≤ ∞
4, b, 9 7 ≤ b ≤ ∞

5, 8, 12
a, 3, 3 3 ≤ a ≤ ∞
a, 4, 5 3 ≤ a ≤ ∞
a, 5, 7 4 ≤ a ≤ ∞
a, 6, 9 5 ≤ a ≤ ∞

a, 7, 11 5 ≤ a ≤ ∞
a, 8, 13 6 ≤ a ≤ ∞

0, 0, c c ≥ 0 †
4, 6, c c ≥ 6 §‡
6, 9, c c ≥ 12 §
4, b, 6 7 ≤ b ≤ ∞
5, b, 9 8 ≤ b ≤ ∞

6, b, 12 10 ≤ b ≤ ∞
7, b, 15 11 ≤ b ≤ ∞
a, 3, 0 4 ≤ a ≤ ∞ †
a, 5, 4 4 ≤ a ≤ ∞
a, 6, 6 5 ≤ a ≤ ∞
a, 7, 8 5 ≤ a ≤ ∞

a, 8, 10 6 ≤ a ≤ ∞
a, 9, 12 7 ≤ a ≤ ∞ ¶

a, 10, 14 7 ≤ a ≤ ∞

†A covariant triple c4, c6, ∆ of some E/K with the given signature might not
pass the criterion of Proposition 5.2.1 (special case (i) or (ii)), and such a triple
will not occur as the covariants of any E/V ; however there do exist (other) E/V

with this signature, and any such E/V is 2-minimal.
§The lowest value of c is not included when the residue field is F2.
‡An E/V with this signature is not necessarily 2-minimal when c ≥ 12.
¶An E/V with this signature is not necessarily 2-minimal when a ≥ 8.

Proof. First we verify that there exist E/V with the stated signatures. Since
the signatures satisfy v(c6) 6= 2 when p = 3 and v(c4) is 0 or ≥ 4 when p = 2,
as they must by Corollary 5.2.2, much of this follows from Proposition 5.2.3.
The only cases that require additional comment are the two tagged with †. For
the case of 2-adic signature 0, 0, c, the curve A15 serves as an example of E/V

when c = 0 — see step 3 in the proof of Proposition 5.2.3, case p = 2 — and
in the induction to 0, 0, c + 1 as explained there in step 5, only c4 is altered: c6

keeps the value −161, hence the congruence c6 ≡ −x2 mod 4 has a solution, as
required by Proposition 5.2.1, special case (i). The other case is a, 3, 0 where
4 ≤ a ≤ ∞. We use the construction in step 1 of the proof referred to above. In
this case it gives c4 = 3 ∗ 2a (= 0 if a = ∞), c6 = 9 ∗ 8, hence the requirements
of special case (ii) are met.

Next we prove the minimality of an E/V with one of these signatures, apart
from the exceptions allowed by the tags ‡ and ¶. Let c4, c6,∆ be the covariants
of E. We wish to prove that 2−4c4, 2−6c6, 2−12∆ are not the covariants of some
E′

/V . For many cases this is obvious from either a < 4, b < 6 or c < 12. The
explanation for the 3-adic signatures 5, 8, 12 and 6, 8, 13 is that the reduced sig-
nature would have v(c6) = 2, which is disallowed by Corollary 5.2.2. Similarly,
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2-adic signatures with a = 5, 6 or 7 are minimal since the reduced signature
would have v(c4) = 1, 2 or 3, which are disallowed. Also special case (ii) of
Proposition 5.2.1 disallows 2-adic signatures of the form a−4, 4, 2, (7 ≤ a ≤ ∞),
hence all a, 10, 14, (7 ≤ a ≤ ∞), are 2-minimal. However special case (ii) does
permit some a − 4, 3, 0, and therefore a, 9, 12 may or may not be 2-minimal,
depending on the particular c6 that is involved. Similarly, 4, 6, c with c ≥ 12
may or may not be 2-minimal, depending on c6.

Finally we check that no 2 or 3-minimal signature is missing from the lists.
This amounts to verifying that if an admissible signature a, b, c (as listed in
§ 5.2.1) satisfies the requirements of Corollary 5.2.2 and is not in the present
list, then a− 4, b− 6, c− 12 is in the present list and appears without the tag †.
This is straightforward.

Here are a few examples of the earliest appearance of an admissible signature
in the catalogs [AntIV] and [Cre92]. This requires calculation since the catalogs
do not contain the values of c4, c6; in some cases one has to go quite far in the
catalog.

3-adic signatures: 0, 0, 0 : A11; 0, 0, 1 : A15; 2, 3, 4 : E162; 1,∞, 0 : A32;
2, 4, 3 : A1459; ∞, 3, 3 : A27.

2-adic signatures: 0, 0, 0 : A15; 0, 0, 1 : B14; 0, 0, 39 : D2858; 4, 6, 6 : does not
occur; 4,∞, 6 : A32; ∞, 6, 6 : 2∗A27 (beyond the catalog listing).

5.4 Unramified base change

For a given field K with valuation v a base change or extension is a pair
K ′, v′ consisting of an extension field K ′ of K and a valuation v′ extending v:
for x ∈ K

v′(x) = e(v′, v)v(x).

Typically π, π′ denote uniformizers and k, k′ denote residue fields of v, v′ respec-
tively.

The base change is unramified if

(i) the residue field extension k′/k is separable and

(ii) e(v′, v) = 1; this allows us to choose π′ = π and often we will simplify
the notation to the mildly inaccurate v(x) ∀x ∈ K ′.

Examples of unramified base change are: K ′ = K̂nr, the maximal unramified
extension of the completion of K; or, more mundanely, a finite extension where
v′ is an unramified extension of v — of course some of the other extensions of
v to K ′ may be ramified.

Let S be a set of representatives of k in V so that the elements of K are
uniquely represented as sums

∑
siπ

i, si ∈ S. We can choose a set S′ ⊂ V ′ of
representatives of k′ that contains S; when e(v′, v) = 1, an element

∑
s′iπ

i of
K ′ is in K iff all s′i ∈ S.
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Proposition 5.4.1 Let K ′, v′ be an unramified extension of K, v and let E be
an elliptic curve defined over V . Then E is v′-minimal iff it is v-minimal.

Proof. Suppose τ = [r, s, t, u] is defined over V ′ and transforms E to a curve E′

defined over V ′ with smaller v(∆), i.e., v(u) > 0; let us call such a τ reducing.
We must prove that there is a reducing transformation defined over V . We
can assume that u = π: with the given r, s, t, clearly [r, s, t, π] is reducing. Let
char k = p ≥ 0, so charK = 0 or p.

If p 6= 2, 3 the result is trivial: since 2 and 3 are invertible in V , E is
V -isomorphic to its c-form

y2 = x3 − c4

48
x − c6

864
,

and similarly E′ is V ′-isomorphic to

y2 = x3 − c4π
−4

48
x − c6π

−6

864
.

With the Weierstrass equations in this form the transformation is simply [0, 0, 0, π]
and the reducing property amounts to the two conditions v(c4) ≥ 4, v(c6) ≥ 6.

Secondly suppose p = 3. Since 2 is invertible in V we can take the equation
of E in b-form

y2 = x3 +
b2

4
x2 +

b4

2
x +

b6

4
,

and similarly for E′. The transformation equation for a′
1, namely πa′

1 = a1 +2s
with a′

1 = a1 = 0, implies s = 0, and similarly the equation for a′
3 implies t = 0.

Thus τ = [r, 0, 0, π]. Next, by analyzing

π2b′2 = b2 + 12r,

π4b′4 = b4 + rb2 + 6r2,

π6b′6 = b6 + 2rb4 + r2b2 + 4r3,

we prove in successsion
(a) for all ρ ∈ V ′, [r + ρπ2, 0, 0, π] is reducing, hence we can assume r =

r0 + r1π, ri ∈ S′;
(b) r0 ∈ S and r1 ∈ S so r ∈ V and τ is defined over V , hence the result.
Proof of (a). Let us denote the right sides of the above transformation

equations by g6, g4, g2, regarded as functions of r. We must show that gi(r +
ρπ2) ≡ 0 mod πi for i = 2, 4, 6 so that the new b′2, b

′
4, b

′
6 determined by this

modified r are in V ′.

g2(r + ρπ2) = g2(r) + 12ρπ2

= (b′2 + 12ρ)π2 ≡ 0 mod π2;

g4(r + ρπ2) = g4(r) + ρπ2(b2 + 12r) + 6ρ2π4

= (b′4 + b′2ρ + 6ρ2)π4 ≡ 0 mod π4;

g6(r + ρπ2) = (b′6 + 2b′4ρ + b′2ρ
2 + 4ρ3)π6 ≡ 0 mod π6.
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Proof of (b). Write 3 = φπ where v(φ) ≥ 0. (When charK = 3, φ = 0
and v(φ) = ∞.) The equation for b2 shows that b2 = β2π, β2 ∈ V , and
now the equation for b4 shows that b4 = β4π, β4 ∈ V . Using these facts in
g6(r) ≡ 0 mod π6, we deduce

g6(r) ≡ 4r3
0 + b6 ≡ 0 mod π.

At the residue field level this is a purely inseparable equation for r̃0, hence
r̃0 ∈ k. This implies r0 ∈ S.

Writing
b6 + 2r0b4 + r2

0b2 + 4r3
0 = α ∈ V,

we find

g6(r) = α + 2πr1(π
4b′4) − π3(8r3

1 + r2
1(φr0 + β2)) ≡ 0 mod π6

hence α = βπ3 where β ∈ V and

8r3
1 + r2

1(φr0 + β2) ≡ −β mod π.

But
φr0 + β2 ≡ πb′2 ≡ 0 mod π,

hence the purely inseparable equation r3
1 ≡ β mod π. As with r0, this implies

r1 ∈ V .

The case p = 2 proceeds similarly except it is more intricate. This time
we use the transformation equations for the ai. Since 3 is invertible in V we
can assume a2 = 0, and as explained above, we are dealing with a reducing
transformation [r, s, t, π] defined over V ′. This time there are four steps to
obtain a reducing transformation defined over V :

(a) for any ρ, σ, τ ∈ V ′,

[r + ρπ3, s + σπ, t + τπ3, π]

is also reducing, hence we can assume

r = r0 + r1π + r2π
2, s = s0, t = t0 + t1π + t2π

2;

(b) r0, r1, s0, t0, t1 ∈ S;
(c) λ can be chosen in V ′ so that r2 + λπ2 and t2 − s0λπ2 are in S;
(d) ∀λ ∈ V ′, [r + λπ2, s0, t − s0λπ2, π] is reducing.

The transformation equations are

πa′
1 = a1 + 2s

π2a′
2 = −sa1 + 3r − s2 (a2 = 0)

π3a′
3 = a3 + ra1 + 2t

π4a′
4 = a4 − sa3 − (t + rs)a1 + 3r2 − 2st

π6a′
6 = a6 + ra4 + r3 − ta3 − t2 − rta1
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Let f1, . . . f6 denote the right sides of these equations. The first three equations
imply

a1 = α1π, a3 = α3π, where αi ∈ V, r ≡ s2 mod π.

We write 2 = φπ where v(φ) ≥ 0.
Proof of (a). First we change s: we wish to prove that fi(s+σπ) ≡ fi(s) mod

πi for i = 1, . . . , 6; we have temporarily suppressed r and t from the notation
— we have simplified fi(r, s, t) to fi(s). These are easy and we only indicate
the calculation for one:

f4(s + σπ) = f4(s) − σπ2(α3 + rα1 + φt)

= f4(s) − σπ2a′
3π

2 ≡ f4(s) mod π4.

Next we change r; to shorten the exposition we only work through the most
complicated of the five cases:

f6(r + ρπ3) = f6(r) + ρπ3a4 + 3r2ρπ3 + 3rρ2π6 + ρ3π9 − ρπ3ta1

≡ f6(r) + ρπ3(a4 + 3r2 − ta1)

≡ f6 + ρπ3(π4a′
4) + ρπ3s(a3 + ra1 + 2t)

≡ f6(r) + ρπ3s(π3a′
3) ≡ f6(r) mod π6.

Similarly it is easily verified that fi(t + τπ3) ≡ fi(t) mod πi.
Proof of (b). From the a4 equation, remembering that a1, a3 and 2 are

≡ 0 mod π, we get 3r2 + a4 ≡ 0 mod π, hence r2
0 + a4 ≡ 0 mod π. Since this is

a purely inseparable equation over the residue field, therefore r0 ∈ S.
Next, from the a6 equation, −t2 + r3 + ra4 + a6 ≡ 0 mod π hence t20 + r3

0 +
r0a4 + a6 ≡ 0, so we have a purely inseparable equation for t0 at the residue
field level and therefore t0 ∈ S. Similarly from f2 we find s2

0 + r0 ≡ 0 mod π
hence s0 ∈ S. Let 3r0 − s2

0 = πλ, λ ∈ V .
Again f2 implies

−s0πα1 + 3r1π + λπ ≡ 0 mod π2

hence r1 ≡ an element of k, therefore r1 ∈ S.
If we write q = r0 + r1π then taking all the π2 terms in f6 yields

r2(a4 + 3q2) − t1(α3 + φt0 + qα1) − t21 ≡ γ mod π3

for some γ ∈ V . But a4 +3q2 ≡ 0 mod π by the a4 equation, and the coefficient
of t1 is also 0 modπ by the a3 equation. Thus by the usual argument, t1 ∈ S.

Proof of (c). At this point the a6 equation gives for some δ ∈ V (the
congruences are modπ6)

δ ≡ r2π
2(a′

4π
4 + sa3 + rsa1 + 2st − 3rr2π

2)

−t2π
3(π2a′

3 − r2πa1) − t22π
4

≡ r2π
2s(a3 + ra1 + 2t) − 3rr2

2π
4

−t2π
5(a′

3 − r2α1) − t22π
4

≡ r2π
2s(π3a′

3) + &c.
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We deduce rr2
2 + t22 ≡ ε mod π for some ε ∈ V . Using r ≡ s2

0 as noted
earlier and the purely inseparable form of (s0r2 + t2)

2 ≡ ε mod π, we find
s0r2 + t2 ≡ ζ mod π, some ζ ∈ V .

Proof of (d). It remains to check that fi(r+λπ2, t−s0λπ2) ≡ fi(r, t) mod πi.
Only the cases i = 4 and 6 require any work; we set out the former case:

f4(r
′, t′) = f4(r, t) + 3(2rλπ2 + λ2π4) + 2s2

0λπ2

≡ f4(r, t) + 2π2λ(r0 + s2
0)

≡ f4(r, t) mod π4

since r0 + s2
0 ≡ 2s2

0 mod π.

Corollary 5.4.2 Let v be a valuation on K with ring V .

(a) Let E be an elliptic curve defined over K and let K ′, v′ be an unramified
extension. Then

δv(E) = δv′(E).

(b) Let u ∈ K∗ and suppose that v is unramified in the extension K(
√

u)/K.
Let E be defined over K, and let Eu denote the twist of E by u. Then†

δv(E) = δv(Eu).

(c) Let charK 6= 2 or 3. The status of a pair of elements c4, c6 ∈ K, in the
sense of Kraus, is unchanged in an unramified extension K ′, v′: the pair occurs
as the covariants of a Weierstrass equation defined over V iff it does so over
V ′.

Proof. (a) We can take E as a v-minimal model, so δv = v(∆). By the
proposition, E is also v′-minimal and δv′ = v(∆).

(b) Let v′ be an extension of v to K(
√

u). By part (a), δv(E) = δv′(E)
and δv(Eu) = δv′(Eu). But E and Eu are isomorphic over K(

√
u), hence

δv′(E) = δv′(Eu).

(c) We apply Proposition 5.3.4(b).

Suppose the pair c4, c6 is realized over V ′ but not over V . By replacing
it with the pair c4π

4i, c6π
6i for appropriate i we can assume in addition that

c4π
4, c6π

6 is realized by a model E defined over V . Then E is v-minimal hence,
by the proposition, v′-minimal; but this contradicts the fact that c4, c6 is realized
over V ′.

†The general question of how twisting affects δv will be considered in §5.7.
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5.5 Global minimal equations and AE

Let A be a Krull domain with quotient field K and let E be an elliptic curve
defined over K. If d is a common denominator of the Weierstrass coefficients,
then the transformation [0, 0, 0, d−1] produces a model defined over A. Thus let
us assume that E is defined over A.

The set S of essential valuations v such that δv > 0 is a subset of {v : v(∆) >
0}, and is therefore a finite set. If v(∆) = δv ∀v we say that E (and ∆) is A-

minimal, or that E is a global minimal model. In this section we develop
criteria for such models to exist.

Of particular interest in arithmetical algebraic geometry are the Dedekind
domains A that arise as the integral closure of Z (resp. k[t] where k is a field
and t a transcendental) in a finite extension of Q (resp. k(t)). In the first case
— the case when K is a number field — we will prove in a later chapter the
following theorem of Shafarevich: given a finite set S0 of valuations there are
up to isomorphism only finitely many E for which S ⊂ S0. For example, with
A = Z, since

y2 = x3 − 3(1 + 5N )x − 2(1 + 5N )

has δ5 = N , these curves are are not isomorphic over Q, hence as we increase
N we are bound to introduce more and more primes into S. In the same vein,
here is the complete list of Z-minimal ∆ that contain only the prime 2:

±26, 27, −28, ±29, ±212, 213, −214, ±215.

This list was determined by Ogg [Ogg66] and then expanded by Coghlan (see
[AntIV, p.123–134]) to include all Z-minimal ∆ of the form ±2a3b. Note that a
Z-minimal isomorphism class has a unique associated ∆ since the only units in
Z are ±1 and (±1)12∆ = ∆.

Recall that ∀v, v(∆) ≡ δv mod 12. The Weierstrass divisor of E is

A = AE =
∑ 1

12
(v(∆) − δv)Pv,

where the sum is over all essential valuations. Let cl indicate the class of a
divisor in the divisor class group. Then, following Silverman [Sil84], clA is the
Weierstrass class of E. It follows that

cl
∑

δvPv = cl ((∆) − [12]A) = [12]cl (−A)

is a multiple of 12; when A is a Dedekind domain we often switch to multiplica-
tive notation, so the latter is described as a 12-th power in the ideal class group.
When a global minimal model exists then

∑

δvPv is realized as the divisor of
the discriminant ∆ of a globally minimal Weierstrass equation.

For minimal twists and the associated divisor A∗
E , see §5.7.3.
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Proposition 5.5.1 Let E be defined over the Krull domain A.
(i) If an A-minimal model exists then it is unique up to A-isomorphism and

the divisor A is principal.
(ii) Partial converse: if A is principal and 6 ∈ A∗ then E has a minimal

model.
(iii) If A is a Dedekind domain we can remove the extra condition in (ii):

an A-minimal model of E exists iff the ideal

AE =
∏

P (v(∆)−δv)/12

is principal.

Remarks. For a K-isomorphism τ = [r, s, t, u], the discriminant of τE is
u−12∆, hence

AτE = AE − div(u).

This verifies that whether AE is principal or not depends only on the K-
isomorphism class of E.

There is no difficulty allowing non-integral models defined over K : then the
divisor A is not effective, that is, not all the coefficients are ≥ 0; when divisors
are written multiplicatively this means A is a fractional ideal.

I don’t know if the converse of (i), that is (ii) with the extra condition
removed, is true for UFD’s, even in particular cases such as Z[t].
Proof. (i) If E has an A-minimal model E′ then AE′ = 0 and from ∆ = u12∆′

we see that AE = div(u) is principal.
If E′ and E′′ are both A-minimal models of E then there exists a K-

isomorphism τ from E′ to E′′. By Lemma 5.3.1 τ is AP -integral for each
minimal prime ideal P of A, and therefore is defined over ∩AP = A since A is
Krull.

(ii) When 2 and 3 are both units in A we can assume that all Weierstrass
equations are in c-form. In particular, let E be given by y2 = x3 + bx + c.
Any transformation [r, s, t, u] between two such equations has r = s = t =
0. Thus for each essential valuation v, E has a v-minimal model of the form
[0, 0, 0, dv]E : y2 = x3 + bd−4

v + cd−6
v , for some dv ∈ K∗ with v(dv) = v(∆)− δv.

When A =div(u) is principal, v(u) = v(dv), and therefore dv can be replaced
by u for each v. Thus [0, 0, 0, u]E is an A-minimal form.‡

(iii) Suppose that A = Au is principal. Let S be the finite set of v for which
v(∆) > 0, and for each v ∈ S let [rv, sv, tv, u] denote a v-isomorphism from
E to a v-minimal form. Let r ∈ A satisfy v(r − rv) ≥ N where N is large,
for all v ∈ S; such an r exists by the approximation theorem for Dedekind
domains. Similarly choose s and t in A v-adically close to sv, tv ∀v ∈ S. With
N large enough to ensure that the right sides of the transformation equations

‡If we assume only that 2 is invertible, then the equations are only in b-form, and we have
to contend with transformations of the form [r, 0, 0, u].
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for τ = [r, s, t, u], namely a1 +2s, etc. have for each v ∈ S the same v-adic value
as the “local” versions a1 + 2sv, etc., it is clear that E′ := τE is defined over A
and is A-minimal.

Here is an amusing example due to Setzer [Set78].

Corollary 5.5.2 If all δv = 0, and A is a Dedekind domain whose class group
contains no elements of orders 2 or 3 then E has an A-minimal model.§

Proof. (∆) = A12
E is principal and therefore so is AE .

Examples E6 and E8 from the table in §4.4 are defined over the Dedekind
domain A = Z[(1 +

√
65)/2] and have no A-minimal model. For in both cases

all v(∆) = 0 except for the ramified prime P over 5 and there v(∆) = 12. Thus
by Proposition 5.3.4(c), AE = P which is not principal. Setzer’s result doesn’t
apply to these examples since the class number of Q(

√
65) is 2.

5.6 The Laska-Kraus algorithm

We now describe an improved form of Laska’s algorithm [Las82] which produces
for a given E defined over a number field K a minimal model with respect to the
ring of integers O = OK when it exists. Because of the substantial simplification
that occurs, we present separately the case O = Z. The cases implemented in
apecs, at the time of writing, are Z and quadratic fields of class number 1, so
that O is a PID.

5.6.1 The case Z

Proposition 5.6.1 Let c4, c6,∆ be elements of Z such that

c3
4 − c2

6 = 1728∆ 6= 0.

In order that there exist a Weierstrass equation /Z with these covariants, it is
necessary and sufficient that

(i) v3(c6) 6= 2, and
(ii) either (iia) c6 ≡ −1 mod 4

or (iib) c4 ≡ 0 mod 16 and c6 ≡ 0 or 8 mod 32.

Proof. If such an equation exists then the necessity of (i) and (ii) is an immedi-
ate consequence of Corollary 5.2.2. It is only the converse that requires a little

§As will be explained in Proposition 6.1.1, the condition δv = 0 can be expressed as ‘E has
good reduction at v’. Thus Setzer’s result can be stated: if E has good reduction everywhere
and A has class number prime to 6 then E has a global minimal model.
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explanation. By that corollary there exist transformations [rp, sp, tp, 1], p = 2, 3
from

E : y2 = x3 − c4

48
x − c6

864
.

to Z(p)-integral curves each with the given covariants. By the approximation
theorem we can pick r, s and t sufficiently p-adically close to rp, sp and tp re-
spectively for p = 2, 3 and p-adically integral for p ≥ 5 so that [r, s, t, 1] applied
to E gives a curve over Z with the given covariants.

Here are some examples which fail one or both criteria of the proposition.

c4 c6 ∆ condition(s) violated
±12 0 ±1 (ii)

0 72 −3 (i)
−15 9 −2 (i) and (ii)

52 ±368 3 (ii)
33 −207 −4 (i) and (ii)
76 ±640 17 (ii)

Thus starting with any model over Z, to find a Z-minimal model one could go
through the finite list of integers u such that c4u

−4, c6u
−6 are integers and test

each pair according to the above proposition. This was the original approach of
Laska (in general one needs to take only non-associated u’s, i.e., one from each
coset modulo O∗); however now we have efficient ways of calculating all the δv,
hence AE and when principal, say AE = Ou, we need only deal with one u.

As defined in §5.2.2, an E/Z is of restricted type if

a1, a3 ∈ {0, 1}, and a2 ∈ {−1, 0, 1}.

All the E in [AntIV] and [Cre92] are of restricted type.

Proposition 5.6.2 Each E1 defined over Z is Z-isomorphic to a unique E/Z
of restricted type. Given c4, c6, ∆ ∈ Z satisfying the conditions of the previous
proposition, the construction of this curve of restricted type is as follows:

a1 = mods (c4, 2),

a2 = mods (−c6 − a1, 3),

a3 = mods (Ψ2(b2)/16, 2)

= mods ((b3
2 − 3c4b2 − 2c6)/16, 2), where b2 = a1 + 4a2,

a4 = (b2
2 − 24a1a3 − c4)/48,

a6 = (−b3
2 − c6 + 36b2(a1a3 + 2a4) − 216a3)/864.

Remark. It is the special circumstance Z∗ = {±1} that gives uniqueness; cf.
the example following Proposition 5.2.4.
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Proof. Applying Proposition 5.2.4, let E = [r1, s1, t1, 1]E1 be of restricted type.

Now Z-isomorphisms between elliptic curves have the form τ = [r, s, t, u]
where u ∈ Z∗ = {1,−1}. Suppose E′ = τE is also of restricted type. We
can assume that u = 1: if u = −1, transform the two sides with [−1]E′ =
[0,−a′

1,−a′
3,−1] using [−1]E′E′ = E′. By the uniqueness statement of Propo-

sition 5.2.4, we have τ = [r1, s1, t1, 1], hence E′ coincides with E.

The formulas to calculate a1, . . . , a6 from given c4, c6 are immediate from the
relations stated in § 1.1, noticing that a2

1 = a1 since a1 ∈ {0, 1} and similarly
a2
3 = a3. For example

a2 = b2 − a2
1 − 3a2 ≡ b2 − a2

1 = b2 − a1 ≡ b3
2 − a1 ≡ −c6 − a1 mod 3,

hence a2 = mods (−c6 −a1, 3), and similarly for a1, a3. The formulas for a4 and
a6 are just the definitions from § 1.1 of c4 and c6 rewritten.

Corollary 5.6.3 Each E/Q has a unique Z-minimal model of restricted type.

Proof. Since Z is a PID a Z-minimal model always exists. Putting it in
restricted form does not destroy the minimality since the transformation used
has u = 1. The uniqueness follows from the proposition.

With these results we can now present the complete algorithm for Z; only
a few details are not immediately clear from the preceding, and these will be
explained after stating the algorithm. In the pseudo-code, a statement such as
Let u = upd is computerese for “ replace u by upd ”.

The input to the algorithm consists of integers ∆ 6= 0, c4, c6 satisfying
1728∆ = c3

4 − c2
6; it is not required that the criteria of Proposition 5.6.1 be

satisfied — see the notes after the algorithm.† The output consists of the Weier-
strass coefficients, here denoted a′

1, . . . , a
′
6, of the unique Z-minimal equation of

restricted type E′ that is Q-isomorphic with

y2 = x3 − c4

48
x − c6

864
.

†To allow the input of rational covariants, preface the algorithm with commands that
replace the input with d12∆, d4c4, d6c6 for appropriate d ∈ Z to convert these three quantities
into integers.
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Let u = 1, g =gcd(c2
6, ∆)

Loop on {p : p|6g}

Let v = vp, d = bv(g)/12c, u = upd

If p = 2 then

Let a = c42
−4d, b = c62

−6d

If v(a) = 0 and mods (b, 4) = −1 then

Let τ = −(b + 1)/4

Else if v(a) > 3 and mods (b, 32) ∈ {0, 8} then

Let τ = b/8

Else

Let u = u/2, τ = 0

End if

Else if p = 3 then

If v(c6) = 6d + 2 then let u = u/3 End if

End if

End loop

Let
c′4 = c4u

−4,

c′6 = c6u
−6,

a′
1 = mods (c′4, 2),

a′
2 = mods (−a′

1 − c′6, 3),

a′
3 = mods (τ + a′

1a
′
2, 2),

b′2 = a′
1 + 4a′

2,

a′
4 = (b′2

2 − c′4 − 24a′
1a

′
3)/48,

a′
6 = (36b′2(a

′
1a

′
3 + 2a′

4) − b′2
3 − c′6 − 216a′

3)/864

Return(a′
1, . . . , a

′
6)

The denominator of u is a divisor of 6 and can be > 1 when the integers
∆, c4, c6 do not satisfy the criteria (i) and (ii) of Proposition 5.6.1; that is
the reason for including p = 2 and 3 in the p-loop even when p 6 |g. In many
applications one begins with an E/Z, with ∆, c4, c6 calculated, and then the

criteria are automatically satisfied. In that situation one may wish to append the
calculation of the transformation T = [r, s, t, u] from E to E′: u is determined by
the algorithm and then s, r, t are calculated from the transformation equations
of Proposition 4.1.1:

s = (ua′
1 − a1)/2,
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r = (u2a′
2 − a2 + sa1 + s2)/3,

t = (u3a′
3 − a3 − ra1)/2.

T can be used to transfer points between E and E′. (If there is an initial
transformation ai 7→ diai to clear denominators then this T should be multiplied
by [0, 0, 0, d−1].)

The method used to calculate a′
3 is different from the one stated in the

previous proposition, and depends on the fact that the residue field of v2 is F2,
rather than some extension of F2: in the notation of Proposition 5.2.1, case
p = 2, the general form of τ is

τ = a3 + a1a2 + θα(θ + α) + 2β ≡ a3 + a1a2 mod 2

for all θ, α ∈ Z. Moreover every case over Z is one of the special cases (i) or (ii)
of that proposition (cf. Corollary 5.2.2). The algorithm calculates τ according
to the information given for these special cases in Proposition 5.2.1, and then
calculates a′

3 = mods (τ + a′
1a

′
2, 2).

We illustrate the algorithm with two examples of particular interest: E/Q
with j = 1728 = 123 and j = 0. We also include the case j = 663 since
such curves occur naturally in the discussion of j = 123. (E/Q with j = 663

arise from applying 2-isogenies to curves with j = 123, as will be explained in
Chapter 6.)

First we make a convenient definition: for s ∈ Q∗ and a positive integer n,
the n-th power free part of s is the unique n-th power free integer N such
that s = Ntn where t ∈ Q∗ and also N > 0 when n is odd.

Corollary 5.6.4 Let E/Q have invariant j = 123, 663 or 0 and covariants

c4, c6,∆. Then the Z-minimal model of restricted type is as follows.

j = 123

Emin : y2 = x3 + Bx,

covariants : −48B, 0, −64B3

where B is the 4-th power free part of −27c4. Hence a Weierstrass equation
y2 = x3 + a4x is Z-minimal iff a4 is 4-th power free.

j = 663

Emin : y2 = x3 − 11D2x − 14D3,

covariants : 24 · 3 · 11D2, 26 · 33 · 7D3, 29D6

where D is the square free part of 77c4c6.

j = 0
Emin : y2 = x3 + C,

covariants : 0, −864C, −432C2
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where C is the 6-th power free part of −54c6 except when C has the form
16(4c+1), c ∈ Z, and then the minimal model is obtained by the transformation
[0, 0, 4, 2], i.e., the substitutions x = 4x′, y = 8y′ + 4:

Emin : y′2 + y′ = x′3 + c,

covariants : 0, −216(4c + 1), −27(4c + 1)2.

Proof. Let j = 1728. Then E is Q-isomorphic to all curves of the form

y2 = x3 − u4c4

48
x, u ∈ Q∗,

and in particular to y2 = x3 +Bx where B is the 4-th power free part of −27c4.
With this curve as input, that is, with c4 = −48B, c6 = 0,∆ = −64B3, it
is a simple matter to trace through the algorithm to find that this curve is
Z-minimal. We mention two points:

(i) it would not improve the algorithm to replace g = gcd(0, ∆) = 64|B|3
with gcd(c3

4, ∆);
(ii) in the loop when p = 3, we have v(c6) = ∞ 6= 6d + 2.
The curve

E1 : y2 = x3 − 11x − 14

has j = 663 and every E/Q with j = 663 is isomorphic to a quadratic twist of

E, hence to a curve of the type displayed in the corollary. Again the algorithm
immediately shows that these curves are Z-minimal.

When j = 0, E is isomorphic to y2 = x3 + C which has covariants c4 =
0, c6 = −2533C, ∆ = −2433C2. With this input, the algorithm validates the
stated results. (Of course one can also use Proposition 5.6.1 directly.)

5.6.2 The general number field case

We use the notation of §5.2.2. It is assumed that algorithms for ordinary and
ideal arithmetic in the number field K are in place. In particular our algo-
rithms assume that an integral basis has been chosen, so that mods (α, m) is
unambiguously defined for α ∈ O. Also they call two special procedures. The
first, which we label Factor, factorizes a given ideal into prime ideal powers; the
second, labelled Gen, determines whether a given ideal is principal, and when
so finds a generator. Specifically, Factor(∆O) returns a list factors consisting
of quadruples P, c, v, p where ∆O =

∏

P c is the factorization, v is the P -adic
valuation on K and p is the residue field characteristic; when P or v is chosen,
the other three items in the quadruple are assigned the corresponding values.
Thus a sequence of pseudo-code such as

Call Factor(∆O)
Loop on v ∈ factors
If p = 2 then . . .
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should be self-explanatory. Calling Gen(AE) assigns to u a value which is either
the word FAIL, meaning AE is not principal hence E does not have a global
minimal model, or a generator: AE = uO. As in the algorithm for Z, Let

m = m − 1 is pseudo-code for “replace m by m − 1”, for instance.
The following algorithm takes as input the Weierstrass coefficients a1, . . . , a6

of an E/O (we don’t take the trouble to allow the input of any c4, c6, ∆ ∈ O
satisfying c3

4 − c2
6 = 1728∆ as we did in the case O = Z) and outputs either

the message that E does not have a global minimal model, or the Weierstrass
coefficients a′

1, . . . , a
′
6 of a global minimal model E′ of restricted type, together

with a transformation [r, s, t, u] : E −→ E′. The algorithm first determines all
δv, hence AE . In order to make the presentation not too cumbersome, when the
residue characteristic p = 3 or 2, to calculate δv the algorithm calls the procedure
labelled L3 or L2; these procedures are presented after the algorithm.

The coding is for the most part clear from the preceding results of this
chapter, with frequent references to the boxed relations in §1.1 and the trans-
formation formulas in Proposition 4.1.1. Thus we feel it necessary to add only
one explanatory remark concerning L3. In an actual implementation there are
some obvious programming details that are not spelled out in the code, e.g. a
preliminary preparation for table look-up of the unique 2-restricted solution x
of x2 ≡ b mod 4 (or possibly x =FAIL) — at least when more than one E is
being considered (as opposed to considering a fixed E over varying K).

The main algorithm:

Input c4, c6, ∆ of E/O
Let AE = 1
Call Factor(∆O)
Loop on v ∈ factors
Let a, b, c = v(c4), v(c6), v(∆)
Let m = min{ba/4c, bb/6c, bc/12c}
If m = 0 Then Let δv = c
Else if p ≥ 5 Then Let δv = c − 12m
Else if p = 3 Then Call L3
Else Let c′′4 = c4, c′′6 = c6, N = 0; Call L2; Let δv = δv − N
End if

Let AE = AE ∗ P (c−δv)/12

End loop

Call Gen(AE)
If u =FAIL Then Return(“Global min. model does not exist”)
Else

Let c′4 = c4u
−4, c′6 = c6u

−6

Loop on 2-restricted soln.’s a′
1 of a′

1
4 ≡ c′4 mod 8

Let s = (ua′
1 − a1)/2

If s 6∈ O Then Next a′
1 End if

Loop on 3-restricted soln.’s a′
2 of a′

2
3 ≡ −c′6 − a′

1
6

mod 3
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Let r = (u2a′
2 − a2 + sa1 + s2)/3

If r 6∈ O Then Next a′
2 End if

Let

b′2 = a′
1
2

+ 4a′
2,

b′4 = (b′2
2 − c′4)/24,

b′6 = (−b′2
3

+ 36b′2b
′
4 − c′6)/216

If b′4 6∈ O Or b′6 6∈ O Then Next a′
2 End if

If x2 ≡ b′6 mod 4 has a sol.’n Then

Let a′
3 be the unique 2-restricted sol.’n

Else Next a′
2

End if

Let t = (u3a′
3 − a3 − ra1)/2

Let a′
4 = (b′4 − a′

1a
′
3)/2

If t 6∈ O Or a′
4 6∈ O Then Next a′

2 End if

Let a′
6 = (b′6 − a′

3
2
)/4

If a′
6 ∈ O Then Return(a′

1, . . . , a
′
6, r, s, t, u) End if

End a′
2-loop

End a′
1-loop

End if

The procedure L3:

If v(3) = 1 Then

If b = 2 + 6m Then Let δv = c − 12(m − 1)
Else Let δv = c − 12m
End if

Else

If a = 4m Or b ≥ 6m + v(27) Then
Let δv = c − 12m

Else

Let n = 0
Loop on α in a set of coset rep.’s of O/P 6m+v(3)−min{2v(b2),v(9),4m}

Let ϑ = b2 + 3α, d = bv(Ψ2(ϑ)/27)/6c
If d ≥ m Then

Let n = m
Exit this loop

Else

If d > n Then Let n = d End if

End if

End loop

Let δv = c − 12n
End if

End if

Return(δv)
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Note. Let us explain the exponent on P in the α-loop. Of course the objective
is to get as small an exponent as possible; it may well be that this exponent
can be improved. Let π denote a uniformizer for v. Since E is defined over the
valuation ring of v, by Proposition 5.2.1 we know that Ψ2(b2) ≡ 0 mod 27. We
wish to find ϑ = b2 + 3α which maximizes n, subject to n ≤ m, in

Ψ2(ϑ) = ϑ3 − 3c4ϑ − 2c6 = 27π6nλ, v(λ) ≥ 0.

Then, since v(c4) ≥ 4m ≥ 4n and v(c6) ≥ 6m ≥ 6n, we have v(ϑ) ≥ 2n and
defining ϑ1 = ϑπ−2n, c′4 = c4π−4n, c′6 = c6π

−6n,

ϑ3
1 − 3c′4ϑ1 − 2c′6 ≡ 0 mod 27.

When n is maximal this means that δv = c − 12n.
To avoid duplication of effort in the loop we wish to know what i ≥ 0

guarantees that if α′ = α + πiλ, v(λ) ≥ 0, and ϑ′ = ϑ + 3πiλ, then Ψ2(ϑ
′) ≡

Ψ2(ϑ) mod 27π6m. Now

Ψ2(ϑ
′) − Ψ2(ϑ) = 9πiλ

[

ϑ2 + 3πiλϑ + 3π2iλ2 − c4

]

= 9πiλµ say,

and using v(ϑ) = v(b2 + 3α) ≥ min{v(b2), v(3)}, one can check that i = 6m +
v(3) − min{2v(b2), v(9), 4m} implies that the value of each of the four terms in
µ is at least min{2v(b2), v(9), 4m}, which guarantees that v(Ψ2(ϑ

′) − Ψ2(ϑ)) ≥
v(27) + 6m.

The procedure L2:
Let π ⊂ O be a uniformizer for v
Let

c′6 = c′′6π−6m, δv = −1
Ψ′

2 = x3 − 3c′′4x − 2c′′6
Ψ′

3 = x4 − 6c′′4x2 − 8c′′6x − 3c′′4
2

If a = 4m And x2 ≡ −c′6 mod 4 has a sol.’n x ∈ O
Or a ≥ 4m + v(16) And 8x2 ≡ c′6 mod 32 has a sol.’n x ∈ O
Then Let δv = c − 12m

Else if v(2) > 1 Then

Let n = 0, δv = c
Loop on α in a set of coset rep.’s of O/P 8m+v(16)

Let θ = a1 + 2α, d = min
{⌊

v(Ψ′
3(θ

2)/256)/8
⌋

, m
}

If d > n Then

Let n′ = 0
Loop on β in a set of coset rep.’s of O/P 6m+v(2)

Let τ = a3 + a1a2 + θα(θ + α) + 2β
Let e = min

{⌊

v((Ψ′
2(θ

2) + 16τ2)/64)/6
⌋

, m
}
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If e > n′ Then

Let n′ = e
If e > n Then

Let n = min{d, e}, δv = c − 12n
If n = m Then Return(δv)
Exit both α and β loops

End if

End if

End if

End β loop
End if

End α loop
End if

If δv = −1 Then

If m = 1 Then δv = c Return(δv)
Else

Let a = a − 4, m = m − 1, c′′4 = c′′4π−4, c′′6 = c′′6π−6, N = N + 12
Call L2
Return(δv)

End if

End if

Return(δv)

5.7 How twisting affects minimal models

We assume throughout this section that char K 6= 2, for twisting in character-
sitic 2 takes a different turn, as it were, and requires separate treatment; cf.
§4.3.

5.7.1 The local case

Recall from §5.3 that δv(E) denotes v(∆min) where ∆min is the discriminant of
a v-minimal model of E. How do δv(E) and δv(Eu) compare? A particular case
was already treated in Corollary 5.4.2. We make two simple observations:

(i) Since twisting by a square gives a K-isomorphic curve, we can assume
that v(u) = 0 or 1.

(ii) E and Eu appear symmetrically in the discussion: (Eu)u−1

= E. Thus
in part (c) of the next proposition, we can choose the notation so that δv(Eu) ≥
δv(E).

In the case of residue field characteristic 2, it is very confusing to deal with
δv alone; it is much better to consider the whole v-adic signature to sort out
the different cases. We include a detailed statement of the possibilities when
v(2) = 1 in the following
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Proposition 5.7.1 Let char K 6= 2, let v be a valuation on K with residue
field k, let u ∈ K∗ with v(u) = 0 or 1, and let E be an elliptic curve defined
over K; let the covariants of a v-minimal model of E be c4, c6, ∆ and define
λv = min{3v(c4), 2v(c6), v(∆)}.

(a) If char k 6= 2 then

δv(Eu) = δv(E) ± 6v(u).

In particular, δv(Eu) = δv(E) when v(u) = 0. If char k 6= 2 or 3, then the sign
is + when λv < 6 and − when λv ≥ 6.

(b) If char K = 0 and v(3) = 1, hence char k = 3, then when v(u) = 1

δv(Eu) =

{

δv(E) + 6 if λv < 6 or v(c6) = 5,
δv(E) − 6 if λv ≥ 6 and v(c6) 6= 5.

(c) If char k = 2 (hence char K = 0 since we have assumed char K 6= 2),
and let us say δv(Eu) ≥ δv(E), then

δv(Eu) = δv(E) + 6v(u) + 12ν where ν ∈ Z and 0 ≤ ν ≤ v(2).

In particular, δv(Eu) = δv(E) when v is unramified in the extension K(
√

u)
(e.g. when z2 ≡ u mod 8 has a solution z ∈ K).

(d) Let v(2) = 1, so charK = 0 and char k = 2, assume (for convenience)
that E is v-minimal, and let sig(E) = v(c4), v(c6), v(∆) denote the 2-adic signa-
ture of E (so the third member is v(∆) = δv(E)). Then the value, or two possible
values, of δv(Eu) can be read from the following table, with the natural conven-
tions for the symbol ∞. If sig(E) = a, b, c then the symbol • in the column
headed v(u) = 0 (resp. v(u) = 1) stands for a, b, c (resp. a + 2, b + 3, c + 6).

sig(E) sig(Eu) when v(u) = 0 sig(Eu) when v(u) = 1
0, 0, c (c ≥ 0) • or∗ 4, 6, c + 12 6, 9, c + 18
4, 6, c (c ≥ 6) • or† 0, 0, c − 12 •

6, 9, c (c ≥ 12) • 4, 6, c − 6 or§ 0, 0, c − 18
4, b, 6 (7 ≤ b ≤ ∞) • •
5, b, 9 (8 ≤ b ≤ ∞) • •

6, b, 12 (10 ≤ b ≤ ∞) • 4, b − 3, 6
7, b, 15 (11 ≤ b ≤ ∞) • 5, b − 3, 9

a, 3, 0 (4 ≤ a ≤ ∞) • or∗ a + 4, 9, 12 •
a, 5, 4 (4 ≤ a ≤ ∞) • •
a, 6, 6 (5 ≤ a ≤ ∞) • • or¶ a − 2, 3, 0
a, 7, 8 (5 ≤ a ≤ ∞) • •

a, 8, 10 (6 ≤ a ≤ ∞) • a − 2, 5, 4
a, 9, 12 (7 ≤ a ≤ ∞) • or‡ a − 4, 3, 0 a − 2, 6, 6

a, 10, 14 (7 ≤ a ≤ ∞) • a − 2, 7, 8

∗ The first alternative if u ≡ z2 mod 4 has a solution, the second if not.
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† The second alternative if c ≥ 12 and 2−6c6u ≡ −z2 mod 4 has a solution, the
first otherwise.
‡ The second alternative if a ≥ 8 and 2−9c6u ≡ z2 mod 4 has a solution, the
first otherwise.
§ The second alternative if c ≥ 18 and c6u

−9 ≡ −z2 mod 4 has a solution, the
first otherwise.
¶ The second alternative if a ≥ 6 and 2−9c6u

3 ≡ x2 mod 4 has a solution, the
first otherwise.

Remark. In the situation of footnote † or ‡ to the table in part (d), the
congruence cannot have a solution when u ≡ 1 mod 4 since otherwise sig(E)
could be reduced and E would not be v-minimal. It follows that the first
alternative obtains when u ≡ 1 mod 4.
Proof. Replacing E with a K-isomorphic curve replaces Eu with a K-isomorphic
curve, so we can assume that E is v-minimal, i.e., defined over V with v(∆(E)) =
δv(E). Since charK 6= 2, K-isomorphisms change the discriminant by 12-th
power factors. Thus

δv(Eu) ≡ v(∆(Eu)) ≡ v(∆(E)) + 6v(u) = δv(E) + 6v(u) mod 12,

say
δv(Eu) = δv(E) + 6v(u) + 12ν, some ν ∈ Z. (#)

(a) By Proposition 5.3.2 we can assume that E is in b-form. Then, since
char, k 6= 2, 2 is invertible in V and Eu is V -integral. Hence

δv(Eu) ≤ v(∆(Eu)) = v(∆(E)) + 6v(u) = δv(E) + 6v(u).

Since the roles of E and Eu can be interchanged, the result just obtained implies
δv(E) ≤ δv(Eu) + 6v(u). Hence ν = 0 or − 1 in (#). When char k 6= 2, 3, then
λv = min{3v(c4), v(∆} and we can apply Proposition 5.3.4(c):

δv(Eu) = δv(E) + 6v(u) − min{b(v(c4) + 2v(u))/4c, b(v(∆) + 6v(u))/12c}.

Hence ν = 0 when λv < 6, i.e., either c4 < 2 or v(∆) < 6, and ν = 1 otherwise.
(b) Again we can assume that E = E′, so if the signature of E is a, b, c then

that of Eu is a+2, b+3, c+6. This can be reduced to a− 2, b− 3, c− 6, that is,
c43

−2, c63
−3 are the covariants of some E′

/V which is then a v-minimal model

of Eu, precisely when λv ≥ 6 (in order that all of a− 2, b− 3, c− 6 are ≥ 0) and
b − 3 6= 2 (to satisfy Corollary 5.2.2).

(c) Define

c′4 = (4u)2c4, c′6 = (4u)3c6, ∆′ = (4u)6∆.

These are the covariants of the curve [0, 0, 0, 1/2]Eu which is K-isomorphic with
Eu. Since v(c′4) ≥ v(16) and v(c′6) ≥ v(64), so that c′6 ≡ 8x2 mod 32 has the
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solution x = 0, special case (ii) of Proposition 5.2.1 is satisfied, hence c′4, etc.
occur as the covariants of some E1 defined over V . This implies that

δv(Eu) ≤ v(∆(E1)) = v(∆′) = v(∆) + 6v(u) + 12v(2).

This proves that ν ≤ v(2).
When z2 ≡ u mod 8 has a solution then Hensel’s lemma shows that z2 = u

has a solution in the local field Kv. Hence the local degree ef = [Kv(
√

u) :
Kv] = 1, so no extension of v to K(

√
u) can be ramified. We mention this case

because the details concerning the congruences in Proposition 5.2.1 can be made
explicit: if θ, τ are solutions of the congruences for the covariants c4, c6 of E,
then applying Newton’s method once to z2 ≡ u mod 8 to obtain z2

1 ≡ u mod 64,
an easy calculation shows that θz1, τz3

1 are solutions of the congruences for
c4u

2, c6u
3.

(d) We can assume that E is v-minimal, hence c4, c6, ∆ ∈ V and therefore
the covariants u2c4, u

3c6, u
6∆ of Eu are also in V . If the signature of E is

a, b, c then that of Eu is a + 2, b + 3, c + 6. Referring to the table for p = 2 in
Proposition 5.3.5, the table of the present proposition is produced case by case,
testing whether the signature of Eu can be reduced a notch to a−2, b−3, c−6,
or can stay the same, or must be jacked up to a + 6, b + 9, c + 18. And in any
particular case where there are two possibilities, it is clear which prevails. For
instance when a, b, c = 0, 0, c and v(u) = 0, the alternative 4, 6, c + 12 obtains
when u ≡ z2 mod 4 has no solution, since c6 ≡ −x2 mod 4 has a solution by
Proposition 5.2.1, and therefore c′6 = u3c6 ≡ −x2 mod 4 does not.

When v is unramified in K(
√

u) then v(u) = 0 (since v(u) was assumed to
be 0 or 1), and ν = 0 by Corollary 5.4.2.

5.7.2 The global case

Let A be a Krull domain and E an elliptic curve defined over A. It is not
generally true that the existence of an A-minimal model for E implies the same
for twists Eu. In fact one can expect quite the opposite, as is explained in the
next proposition; the number theory case is due to Silverman [Sil84].

As in §2.2, Cl(A) denotes the divisor class group, and cl(D) the class of a
divisor D.

Proposition 5.7.2 Let A be a Krull domain and E/A an elliptic curve. Then
the map A − {0} −→ Cl(A) defined by

u 7−→ cl (AEu)

is surjective in the following two cases:
(i) 2 is invertible (2 ∈ A∗) and Cl(A) is finite.
(ii) A is the ring of integers in a number field.
Hence in these cases when the class number > 1, every E/A has a twist for

which there is no global minimal model.



538 CHAPTER 5. MINIMAL WEIERSTRASS EQUATIONS

Proof. (i) Let K denote the quotient field of A. Suppose u ∈ A is such that

v(∆(E)) > 0 =⇒ v(u) = 0.

Since 2 ∈ A∗, residue field characteristic 2 does not occur, and by the previous
proposition, for all v

δv(Eu) = δv(E) + 6v(u) − 12bv(u)/2c.

(In the local calculation to determine δv(Eu), when v(u) > 1 we can apply the
transformation [0, 0, 0, πbv(u)/2c] to Eu, where π is a uniformizer for v, to reduce
v(∆(Eu)).) Since

v(∆(Eu)) = v(∆(E)) + 6v(u),

and AE =
∑

v

1

12
(v(∆(E)) − δv(E))Pv,

therefore
AEu = AE +

∑
bv(u)/2cPv = AE + D, say,

and it remains to show that u can be chosen so that cl(D) falls in a given class
c.

Since c can be written as c1 + c2 where c1 has odd order 2m + 1 and c2 has
order of the form 2n, and since the composition of twists is a twist, the general
statement will follow from the two particular cases c = c1, c = c2.

By Proposition 2.2.3(b), choose a squarefree D1 =
∑

Pi ∈ [−2]c1 with sup-
port disjoint from that of div(2∆(E)), so that [2m+1]D1 = div(u) is principal.
Then since vPi

(u) = 2m + 1 and v(u) = 0 for all other v, in the formula above
D =

∑
[m]Pi ∈ c1.

Secondly choose squarefree Di ∈ [2i]c2, 0 ≤ i ≤ n−1, with mutually disjoint
support and also with support disjoint from the support of div(2∆(E)). Thus

[2]P0 + P1 + · · · + Pn−1 = div(u)

is principal. Then D = D1 ∈ c2.
(ii) For Silvermans’s proof (which I have not personally verified to the last

detail) see [Sil84].

When K = Q Proposition 5.7.1 can be globalized in another way. We write
δp and λp for δvp

and λvp
.

Proposition 5.7.3 Let E be defined over Z and Z-minimal, let the covariants
of E be c4, c6, ∆, let u be a square-free integer and let ∆′ be the minimal dis-
criminant of the quadratic twist E ∗ u. Then ∆ and ∆′ have the same sign and
the same p-adic values except for the prime divisors p of u and, when u is odd,
possibly also p = 2:



5.7. HOW TWISTING AFFECTS MINIMAL MODELS 539

• If p is an odd prime divisor of u then vp(∆
′) = vp(∆)± 6; the sign is + if

λp < 6 or if p = 3 and v(c6) = 5, otherwise the sign is −.

• The value of D := v2(∆
′) − v2(∆) is as follows:

u ≡ 1 mod 4 : D = 0;

u ≡ 3 mod 4 : D is

12 if sig(E) = 0, 0, c or a, 3, 0,

−12 if sig(E) = 4, 6, c or a, 9, 12,

0 otherwise;

u ≡ 2 mod 4, say u = 2w : D is

18 if sig(E) = 0, 0, c;

−18 if sig(E) = 6, 9, c with c ≥ 18 and 2−9c6w ≡ −1 mod 4;

6 if v(c4) = 4 or 5, or v(c6) = 3, 5, or 7 , or sig(E) = a, 6, 6 with
a ≥ 6 and 2−6c6w ≡ −1 mod 4;

−6 otherwise.

Proof. Since ∆ = u6w12∆′ for some w ∈ Q∗, the statement that ∆, ∆′ have
the same sign is clear. The rest is a straightforward application of the Proposi-
tion 5.7.1.

Here are two particular examples of the corollary. If E is the curve

y2 + y = x3 − x2, c4 = 24, c6 = −23 ∗ 19, ∆ = −11, (A11)

u is a square-free integer, and ∆′ denotes the discriminant of a Z-minimal model
of the twist Eu, then

∆′ =

{
u6∆ if u 6≡ 3 mod 4,
212u6∆ if u ≡ 3 mod 4.

The results come out slightly differently for the curve

y2 + xy + y = x3 + x2, c4 = 1, c6 = −7 ∗ 23, ∆ = −15. (A15)

Then

∆′ =

{
u6∆ if u ≡ 1 mod 4,
212u6∆ if u 6≡ 1 mod 4.

In both these examples we notice that we always have vp(∆
′) ≥ vp(∆) for

all p. The curves A11 and A15 are examples of global minimal twists, which
are discussed in the next section.
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5.7.3 Minimal twists

We are led inexorably to the definition

δ∗v(E) = min{δv(E′) : E′ is a twist of E , i.e., E′ is defined over K

and has the same j-invariant as E}

A twist E′ of E which has v(∆(E′)) = δ∗v(E) is a v-minimal twist of E.
Then E′ is v-minimal, but it need not be a v-minimal model of E since E and
E′ are not necessarily K-isomorphic. Moreover, different v-minimal twists of E
need not be K-isomorphic, though of course they are twists of one another. For
example, if E′ : y2 = x3 + bx + c is a v-minimal twist (hence char ṽ 6= 2) and u
is an element of K such that v(u) = 0 and

√
u /∈ K, then y2 = x3 + bu2x + cu3

is another v-minimal twist of E′ that is not K-isomorphic with E′.

With K fixed, δ∗v(E) depends on E only up to twists, and therefore a valid
alternative notation, which we will use occasionally, is δ∗v(j).

For example Corollary 5.6.4 yields the results for K = Q:

δ∗2(1728) = 6, δ∗p(1728) = 0 for all p > 2;

δ∗2(663) = 9, δ∗p(663) = 0 for all p > 2;

δ∗3(0) = 3, δ∗p(0) = 0 for all p 6= 3.

When j 6= 1728 or 0, all twists are quadratic (Proposition 4.3.2) and Propo-
sition 5.7.1 implies various relationships between δv and δ∗v which we repeat for
future reference.

Proposition 5.7.4 Let char K 6= 2, let v be a valuation on K with residue field
k, let E be a v-minimal elliptic curve defined over K with invariant j 6= 1728
or 0 and covariants c4, c6,∆ and, as in the previous proposition, define λv =
min{3v(c4), 2v(c6), v(∆)}.

(a) If char k 6= 2 then δ∗v(E) = δv(E) − 6 or δv(E). If char k 6= 2 or 3 then
δ∗v(E) = δv(E) − 6 when λv ≥ 6, and δ∗v(E) = δv(E) when λv < 6.

(b) If char K = 0 and v(3) = 1 then

δ∗v(E) =

{
δv(E) − 6 when λv ≥ 6 and v(c6) 6= 5
δv(E) otherwise

(c) If char k = 2 then δ∗v(E) = δv(E) − 6x for some integer x satisfying
0 ≤ x ≤ 2v(2) + 1. (When v(2) = 1 the detailed conditions for the four
possible values for x are given in the previous proposition.)
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Now let E be defined over the quotient field K of a Krull domain A. Let
V denote the set of essential valuations and let P denote the set of minimal
prime ideals of A; it is convenient to have available notation for both bijections
V ↔ P : let them be denoted v 7→ Pv and P 7→ vP . Then a twist E∗ of E is
a global minimal twist or an A-minimal twist if E∗ is defined over A and
(cf. Proposition 5.5.1)

for all v ∈ V, v(∆(E)) = δ∗v(E).

Such an E∗ is automatically A-minimal.
For example we have the Z-minimal twists (cf. Corollary 5.6.4)

y2 = x3 − x, ∆ = 64 (A32) and y2 + y = x3, ∆ = −27 (A27)

with j = 1728 and 0 respectively. Other easy cases are:

• if 2 is invertible in A, hence char K 6= 2, then y2 = x3 − x/4 has j = 1728
and ∆ = 1, hence is a global minimal twist, and δ∗v(1728) = 0 for all v;
this includes the case j = 0, charK = 3;

• if 3 is invertible in A, hence charK 6= 3, then y2 + y = x3 has j = 0 and
∆ = −27, hence is a global minimal twist, and δ∗v(1728) = 0 for all v.

If an A-minimal twist exists, it is not usually unique (up to A-isomorphism);
this was already mentioned above in the local case A = V . In the case of
A = Z, Proposition 5.7.3 shows that in many cases E and E ∗ (−1) have the
same p-signature for all primes p but are not Q-isomorphic. For example,

y2 = x3 − x2 + x, c4 = −32, c6 = −224, ∆ = −48 A24

y2 = x3 + x2 + x, c4 = −32, c6 = 224, ∆ = −48 A24 ∗ (−1) = A48

are both Z-minimal twists with j = 211/3, but they are not isomorphic over Q.
Apart from this lack of uniqueness, and technical complication caused by

non-quadratic twists when j = 1728 or 0, we can imitate what was done in
Proposition 5.5.1. Define the divisor

A∗ = A∗
E = A∗

j =
∑

v∈V

1

6
(v(∆) − δ∗v(E))Pv.

Note the fraction 1/6 instead of 1/12 that occurs in the sum for AE . If τE is a
twist where τ = [r, s, t, u], and j 6= 1728 or 0 to ensure that u2 ∈ K∗, then

A∗
τE = A∗

E − div(u2).

Thus the property of A∗ being principal is preserved under twisting (when
j 6= 1728 or 0).
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Proposition 5.7.5 Let A be a Krull domain with quotient field K of charac-
teristic 6= 2, and let E be an elliptic curve defined over K with j 6= 1728 or 0.

(i) If an A-minimal twist of E exists then A∗
E is principal.

(ii) Partial converse: if A∗
E is principal and 6 ∈ A∗, then E has an A-

minimal twist.
(iii) If A is a Dedekind domain we can remove the extra condition in (ii):

an A-minimal twist of E exists iff the ideal

A∗
E =

∏

v∈V
P

(v(∆)−δ∗

v)/6
v

is principal.

Proof. (i) Suppose E∗ is an A-minimal twist. Since j 6= 1728 or 0, by Proposi-
tion 3.3.2, E∗ is K-isomorphic with Ed for some d ∈ K∗, say E∗ = [r, s, t, u]Ed.
Then the discriminant of E∗ is u−12d6∆, hence

A∗
E = div(u2d−1)

is principal.
(ii) Since 2 and 3 are invertible, we can take the equation of E in c-form

y2 = x3 + bx + c. Then A∗
E is still principal, say A∗

E = div(u). For v ∈ V, there
is a v-minimal twist Ev which we can take in c-form. Then the transformation
from E to Ev is necessarily of the form [0, 0, 0,

√
dv] for some dv ∈ K∗, i.e.,

Ev has the equation y2 = x3 + bd−2
v x + cd−3

v . It follows that v(dv) = v(u) and
therefore each dv can be replaced by u. Hence E ∗ (u−1) is an A-minimal twist.

The proof of (iii) is similarly an obvious adaptation of the proof of Proposi-
tion 5.5.1(iii).
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