
Lecture 1

Renzo Cavalieri

Enumerative Geometry

Enumerative geometry is an ancient branch of mathematics that is concerned
with counting geometric objects that satisfy a certain number of geometric con-
ditions. Here are a few examples of typical enumerative geometry questions:

Q1: How many lines pass through 2 points in the plane?

Q2: How many conics pass through 5 points in the plane?

Q3: How many rational1 cubics (i.e. having one node) pass through 8 points in
the plane?

Qd: How many rational curves of degree d pass through 3d− 1 points in the
plane?

OK, well, these are all part of one big family...here is one of a slightly different
flavor:

Ql: How many lines pass through 4 lines in three dimensional space?

Some Observations:

1. I’ve deliberately left somewhat vague what the ambient space of our geo-
metric objects: for one, I don’t want to worry too much about it; second, if
you like, for example, to work over funky number fields, then by all means
these can still be interesting questions. In order to get nice answers we will
be working over the complex numbers (where we have the fundamental
theorem of algebra working for us). Also, when most algebraic geometers
say things like “plane”, what they really mean is an appropriate com-
pactification of it...there’s a lot of reasons to prefer working on compact
spaces...but this is a slightly different story...

2. You might complain that the questions may have different answers, be-
cause I said nothing about how the points are distributed on the plane.
Even in Q1, if you take the two points to coincide, then you actually have

1Rational means that “it can be parameterized”. I.e. there exists a function from a line to
your curve that is generically one-to-one. Alternatively, your curve is the image in the plane
of (f(t), g(t)), where f and g are polynomials of degree 3.
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infinitely many lines going through them... that’s why, in enumerative
questions like the Qd’s, it is somewhat implicit that the points are taken
to be in general position. What does this mean exactly? Well, there
is a technical definition which I do not want to get into at this point, but
think of it this way. If you were to be blinfolded and spun around before
tossing each point onto the plane, then with probability one they will land
in general position.

In other words, what I am saying is that the disposition of the points is
not “too special” (e.g. if the two points don’t coincide for Q1) then there
should be one nice finite answer for all the Qd’s.

Problem 1. What does “too special” mean for Q2 and Q3? And if you
like this game...try and see if you can say it for general d...

3. When your points wander around and get “out” of general position often
times your number of solutions to an enumerative question jumps to ∞.
However, it should not (and in fact it doesn’t!) jump from a finite
number to another finite number. This somewhat heuristic idea is called
the principle of conservation of numbers, and was used in the old
days to solve enumerative questions: if you are able to place your points
in any position (even if it is special) in such a way that you are able to find
an answer and it is finite, then that is the right answer for your question
in general!

Problem 2 (Challenge). Use the principle of conservation of numbers to
answer Ql.

4. Notice that for an enumerative question to have any hope to have a good
answer, you have to impose the right number of conditions to your ob-
jetcs...in all of the Qd’s, if you ask for incidence to more than 3d − 1
points, then you find no curve at all; if you ask for fewer than 3d − 1
points, then you get infinitely many curves...

Problem 3. Using the footnote, figure out why 3d−1 is the right number
of points for the Qd’s.

Solving Q2

Any conic in the plane is the zero set of a degree 2 polynomial in x, y:

C = {a1x
2 + a2xy + a3y

2 + a4x + a5y + a6 = 0}

Therefore I can think that the sextuple of numbers (a1, . . . , a6) identifies uniquely
a conic in the plane. I.e. there is a function:{

sextuples
(a1, . . . , a6)

}
→

{
conics in
the plane

}
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There is a lot of redundancy, however, since any two proportional sextuples will
identify the same conic. But if we mod out by the equivalence relation

(a1, . . . , a6) ∼ (λa1, . . . , λa6),

for any λ 6= 0, then we obtain a bijection:{
sextuples

(a1, . . . , a6)

}
/ ∼ ↪→

{
conics in
the plane

}
OK, so we have gotten ourselves an “algebraic” way of thinking of our set

of conics. Can we translate in this language what it means for a conic to pass
through a given point, say, for example P = (8, 23)?

It means that:

82a1 + (8)(23)a2 + 232a3 + 8a4 + 23a5 + a6 = 0

In other words, passing through a point corresponds to satisfying a linear equa-
tion in the coefficients (a1, . . . , a6).

Our question Q2 therefore translates to solving a homogeneous linear
system of five equations in six variables. Linear algebra now tells us that if the
rank of the corresponding matrix is 5 (which is precisely our general position
condition!) then there is exactly a one parameter homogenous family of solutions
- which is precisely a proportionality class of sextuples - which is precisely one
conic!

Problem 4. Now that you know what the number is, devise an efficient method
to find the solution given 5 specific points. I mean, nobody really wants to solve
a linear system of rank 5 if he has the option not to, right?

Geometric Interpretation

What we did in the previous paragraph has a geometric interpretation: the
moduli space of all conics in the plane is a 5-dimensional projective space (you
don’t know what that is? Hang on, it is coming up in the next section! For the
moment think of C5). Passing through one point defines a hyperplane - and five
general hyperplanes in a five dimensional space intersect in exactly one point.

This suggests a general (geometric) strategy to approach an enumerative
question:

1. Understand the moduli space of (all) the geometric objects you are looking
for.

2. Translate the geometric conditions you want to satisfy to subvarieties of
your moduli spaces.

3. Intersect the above subvarieties.
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Thus an enumerative question is really, in disguise, a question about intersec-
tion theory on moduli spaces.

This new point of view is interesting, fascinating and powerful...however it
doesn’t mean that we have an easy way to the solution of enumerative ques-
tions...for example, for the Qd’s, you can solve Q3 by generalizing the method
of Q2:

• the space of all cubics is P9.

• passing through a point is still a hyperplane.

• having a node corresponds to a degree 12 hypersurface in P9.

And therefore there are 12 rational cubics through 8 points in the plane.
The number of quartics (that incidentally is 620) was obtained in a similar

way after a huge amount of hard work, which showed that this was not the right
avenue to use in pursuing a solution to the general Qd.

The key to solve this question, was to change the point of view and con-
sider the “right” moduli spaces for the problem. The problem was solved in
the nineties by none the less than M. Kontsevich...but I am getting ahead of
myself...we’ll come back to this.

Our First Moduli Spaces: Pn

We want projective space Pn to be the moduli space of lines through the origin
in Cn+1. We also will see that it is a compactification2 of affine space Cn.
Of course I am going to cheat a bit and present the dimension two case, and
over the reals too - and will leave it to you as a useful exercise to generalize to
arbitrary dimensions and to complex numbers.

P2: Take One!

One way to identify a line through the origin in R3 is to simply give a point
on it, provided that the point is different from the origin. This means giving a
triple of complex numbers (z1, z2, z3) 6= (0, 0, 0). Again, there is redundancy in
this description, since two triples identify the same line if they are proportional
to each other.

We therefore need to mod out by the equivalence relation

(z1, z2, z3) ∼ (λz1, λz2, λz3),

λ 6= 0, to obtain:

P2 =
R3 r {(0, 0, 0)}

∼
(1)

2This means that Pn is a compact space and it contains Cn as a dense open set.
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This is a nice very symmetric description to describe P2 as a set, and it also
provides a set of homogenous coordinates. However it doesn’t tell us much
about the structure of P2.

Problem 5. Does a polynomial F(X, Y, Z) give a function on P2?

P2: Take Two!

One way to get rid of (most of) the redundancy is, instead of picking any point
in R3 to represent a line, to allow only points that live on a sphere.

Figure 1: Lines through the origin in R3 intersect the sphere in two antipodal
points.

If we do so, each line corresponds to precisely two antipodal points on the
sphere, and therefore

P2 =
Sphere

P ∼ −P
(2)

This allows us to give a topology to P2, namely the quotient topology induced
from the map from the sphere. Also, since we know the sphere is compact
and the image of a compact space via a continuous function is compact, we
immediately deduce that P2 is compact.

Problem 6. Try to prove that P2 is non-orientable3. One way to show this
is to show that it contains a Mobius strip.

P2: Take Three!

Yet another way to parameterize lines through the origin in R3 is the following:
consider the plane {z = 1}. Most every line hits this plane in precisely one
point. Unfortunately we are missing some lines...namely all those that live in
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Figure 2: Mapping from lines in R3 to the plane z = 1.

the plane {z = 0}. Notice that such set of all lines through the origin in a plane
is precisely a projective space of dimension 1 (a projective line).

As a set,

P2 = R2 t P1. (3)

Problem 7. Show that with the topology given above, R2 is an open dense set
in P2. This shows that P2 is a compactification of the plane.

P2: Take Three and a Half!

The previous section should leave us slightly unhappy, because the asymmetry
of it: the projective plane knows nothing about any particular R2 being spe-
cial...therefore our idea is now to consider all possible planes to play the role of
screens. This defines an atlas for P2 that allows us to show that P2 is in fact a
smooth differentiable manifold.

Just to be lazy, instead of considering all charts, we choose a minimal atlas
consisting of three charts.

ϕz : Uz = R2 −→ P2

(x, y) 7→ (x : y : 1)

ϕy : Uy = R2 −→ P2

(x, z) 7→ (x : 1 : z)

ϕx : Ux = R2 −→ P2

(y, z) 7→ (1 : y : z)

3Here it is essential that we work over R.
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Problem 8. Describe the transition functions and check that they are differen-
tiable on the overlaps.

Problem 9. Define a topology on P2 as follows: a set U ⊂ P2 is open if all
of its preimages ϕ−1

x (U), ϕ−1
y (U), ϕ−1

z (U) are open sets of the plane with the
euclidean topology. Show that this is indeed a topology, that it makes the three
ϕ maps continuous, and that the images ϕx(R2), ϕy(R2), ϕz(R2) become open
dense sets of P2. Show that this coincides with the quotient topology defined
before!

Some more food for thoughts...

Problem 10. 1. Prove that the following are equivalent definitions for the
concept of a line in P2:

(a) the set of solutions of a homogeneous degree 1 polynomial in X, Y, Z.
I.e. the set of points in P2 that satisfy an equation of the form:

aX + bY + cZ = 0.

(b) a line in one of the charts, plus a uniquely determined point in the
complement of the chart.

(c) a plane through the origin in R3.

2. Prove that any two lines in P2 intersect in exactly one point.

3. In general it makes no sense to ask “where does a polynomial in X, Y, Z
vanish in P2... for example, take the polynomial

f(X, Y, Z) = X + Y + Z2

f(−2, 1, 1) = 0, and f(−4, 2, 2) 6= 0... but (−2 : 1 : 1) and (−4, 2, 2) are
the same point in P2.

However, in exercise 1, we have defined lines as the solutions of certain
polynomial equations...what saved the day in that case? In general, under
which conditions are the zeroes of a polynomial a well-defined notion in
P2? Make your guess for what should be a projective algebraic curve of
degree d.

4. Decide whether the following plane conic (ordinary plane, not P2!) is a
parabola, an ellipse or a hyperbola.

x2 + 4xy + 4y2 + 342x + 57y − 22 = 0

Hint: think of the plane as one chart for P2. Using what you discovered
in exercise 3, think of how to view this conic in P2, then ask yourself how
do an ellipse, a parabola, a hyperbola intersect the line at infinity (i.e. the
complement of the chart).
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5. Show that the complex projective line is the one point compactification of
C, and it is therefore homeomorphic to a sphere.

6. Try to generalize all of this to Pn.

What Do We Want From A Moduli Space?

Let us extrapolate from the previous discussion what are the “qualities” we
appreciate in a moduli space M:

m1: Points in the space M are in bijection with the objects we wish to param-
eterize.

m2: The moduli space has a natural topology (differentiable structure, alge-
braic structure ... in general a structure similar to the objects you wish to
parameterize). Such topology agrees with the intuitive notion of “small
perturbation of the objects”.

m3: Families of objects, i.e. a morphism of spaces

Y
↓
X,

where the preimage of any x ∈ X is one of our objects, should correspond
to functions

f : X →M.

m4: If the moduli space is a compactification of some other natural object,
then what you have to add to compactify is some combination of “smaller
moduli spaces of the same type”. I know, this is kind of vague...but think
of how Pn compactifies Cn by adding a Pn−1. Hopefully we will see more
examples of this idea.

G(k, n): Projective Space’s Big Brothers

Let us consider an n-dimensional vector space V , and choose once and for all a
basis e1, . . . , en. For a fixed k ≤ n we call Grassmannian the moduli space of
linear subspaces of V of dimension k. We denote this space by G(k, n).

Problem 11. Convince yourself that G(1, n + 1) = Pn. Also, G(n, n + 1) ∼= Pn

We will try to get an intuition about the following
Fact: G(k, n) is a smooth compact (in fact projective) manifold of dimension
k(n− k).

But all of this will have to wait until next time...in the mean time, you can
start and think about the specific case of G(2, 3) (where you know that the
answer should be P2 AND you can draw pictures!), by trying to unravel the
following mystery picture.
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z

x
y

x=1
y=1

Π (z  ,z  )1 2

z1

z2

Figure 3: A natural chart for G(2, 3).

9



Lecture 2

Renzo Cavalieri

G(k, n): Projective Space’s Big Brothers

Let us consider an n-dimensional vector space V , and choose once and for all a
basis e1, . . . , en. For a fixed k ≤ n we call Grassmannian the moduli space of
linear subspaces of V of dimension k. We denote this space by G(k, n).

We now work towards the understanding of the following
Fact: G(k, n) is a smooth compact (in fact projective) manifold of dimension
k(n − k).

G(2,3): a Motivating Example

As usual we start from a (relatively) simple case to gather intuition and motiva-
tion for the general theory. We already know that G(2, 3) ∼= P2, because to any
plane in R3 we can associate in a canonical and unique way the perpendicular
line through the origin. However, we are going to ignore this fact and find charts
for G(2, 3) in terms of the planes that G(2, 3) parameterizes.

Look at figure 1!
Here we have chosen the two planes x = 0 and y = 0 as screens. Most every

plane in R3 will intersect each of these two planes in a line. Then we further
intersect with the vertical lines y = 1 and x = 1, and we find two points. A
general plane defines these two points, and conversely, given two points on those
vertical lines uniquely determines a plane in R3. But the only free coordinate for
those two points is the z coordinate, therefore we have an R

2 worth of generic
planes, or, if we prefer, a map:

φx,y : R2 → G(2, 3)
(z1, z2) 7→ plane through

0, (1, 0, z1), (0, 1, z2)

The planes that are not in the image of this chart are those that contain the
z axis. There is a projective line worth of them: since one dimension is “taken”
by the z axis, all we need to identify one of these planes is the perpendicular
direction, therefore reducing our problem to parameterizing lines through the
origin in the horizontal plane.

At the end of the day we have recovered what we already knew:

G(2, 3) = R
2 ⊔ P

1 = P
2

1
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Problem 1. Find out the transformation between these charts for G(2, 3) and
the charts given by associating to a plane its perpendicular line and then using
the standard charts for P2.

G(k,n) is a Manifold

Let us now try to generalize what we have done. We will do it in two ways.

Geometric Approach

What did we do in the previous section?

1. We chose k linear subspaces L1, . . . , Lk of V of dimension n− k +1. Each
of them intersects a general k-subspace of Rn in line. Let us call these
lines ℓ1, . . . , ℓk.

2. Inside each of the Li, we chose a hyperplane Hi not through the origin.
At this point the intersection

Hi ∩ ℓi = Pi

is one point in an n − k dimensional linear space.

3. The coordinates of the Pi’s inside the Hi’s define the chart to the Grass-
mannian. Since we are free to choose k points inside n − k dimensional
linear spaces we see that the dimension of G(k, n) is k(n − k).

4. What are the k-subspaces that are not in the image of this chart? Those
that intersect any of the subspaces Li in more than just a line!

Algebraic Approach

If you prefer linear algebra here’s another approach. To give a k-subspace of
V you can simply give k linearly independent vectors v1, . . . , vk ∈ V , or, if you
prefer, a (k × n) matrix of maximal rank:

A =











v11 v12 . . . v1n

v21 v22 . . . v2n

...
...

...
...

vk1 vk2 . . . vkn











Of course there is a lot of redundancy in this description, because we can
choose to arbitrarily change the basis for our k-subspace. This corresponds to
multiplying A on the left by a matrix in GL(k). Now let us choose k columns,
for example the first k, just so we don’t get a headache with general notation.
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If the determinant of the k × k minor is different from zero, then there is a
unique matrix in Υ ∈ GL(k) (namely the inverse of that minor) such that

ΥA =











1 0 . . . 0 v1(k+1) . . . v1n

0 1 . . . 0 v1(k+1) . . . v2n

...
...

...
...

...
...

...
0 0 . . . 1 vk(k+1) . . . vkn











We see immediately that the remaining coefficients give local coordinates for
the chart, and that they correspond to a copy of Rk(n−k).

What’s the Complement of a Chart?

Algebraically, the k-subspaces that are not parameterized in the chart above
are those such that the determinant of the chosen k × k minor vanishes.

For the particular chart above, this corresponds to k-subspaces that intersect
the space {x1 = x2 = . . . = xk = 0} in more than just a point. By distinguishing
all possible cases, you should now tackle the following

Problem 2 (Challenge).

G(k, n) = R
k(n−k)⊔G(1, k)×G(k−1, n−k)⊔G(2, k)×G(k−2, n−k)⊔. . .⊔G(k−1, k)×G(1, n−k)

G(k,n) is Projective

We still need to veryfy that G(k, n) is compact. We do so by showing that
G(k, n) is a closed subvariety of an appropriate projective space.

Our approach is again to try and reproduce what we did with projective
space when we constructed homogeneous coordinates for Pn. As usual, rather
than going crazy with indices, let’s work with a specific example: G(2, 4).

Start from a point P ∈ G(2, 4), that we think as a 2 × 4 matrix A.

A =

[

x1 y1 z1 w1

x2 y2 z2 w2

]

We want to associate to this matrix a well chosen set of numbers. The
problem is, as usual, that A is not the only matrix that represents P . Any
matrix ΥA also represents the same point in G(2, 4), provided that Υ is an
invertible 2 × 2 matrix. Therefore we try and choose as coordinates numbers
that will be as unperturbed as possible by the multiplication by Υ.

Take the determinants of all 2 × 2 minors of the matrix A:

(u0, . . . , u5)(A) =

(∣

∣

∣

∣

x1 y1

x2 y2

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

z1 w1

z2 w2

∣

∣

∣

∣

)

What happens when you multiply on the left by Υ?

(u0, . . . , u5)(ΥA) =

(

det(Υ)

∣

∣

∣

∣

x1 y1

x2 y2

∣

∣

∣

∣

, . . . , det(Υ)

∣

∣

∣

∣

z1 w1

z2 w2

∣

∣

∣

∣

)
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Yes! All numbers are multiplied by the same constant det(Υ)! This means
that this construction associates to a point in G(2, 4) a proportionality class of
sextuples - i.e., a point in P5.

Problem 3. Show that in general this construction defines a(n injective) map:

H : G(k, n) → P(n

k)−1

We know however that G(2, 4) is 4 dimensional, so the image of the previous
map cannot be all of P5.

Problem 4. Show that the points in the image of H must satisfy the homoge-
neous quadratic equation:

u0u5 + u1u4 + u2u3 = 0.

Problem 5. Generalize all of this for G(k, n)

Moduli Spaces of Points on P1
C

M0,n

A family of moduli spaces of a completely different flavor parameterizes config-
uration of labelled points on the complex projective line (a.k.a. the Riemann
Sphere). To make the problem more interesting than just taking product spaces,
we introdce the following rules:

1. We parameterize configurations of n labelled points (P1, . . . , Pn) on P1
C
.

2. No two points are allowed to coincide.

3. We introduce the following equivalence relation:

(P1, . . . , Pn) ∼ (Q1, . . . , Qn)

if there exists an automorphism ϕ of P1
C

such that

ϕ(Pi) = Qi

For reasons that will become apparent later, this moduli space is denoted M0,n.

Problem 6. In case you are not familiar with automorphisms of P1, try to
convince yourself that an automorphism

ϕ : P
1 → P

1

can be expressed in any of these three equivalent ways:

• a pair of homogeneous polynomials of degree 1.

(y0 : y1) = (ax0 + bx1 : cx0 + dx1)
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• a Mobius transformation (on one chart):

y =
ax + b

cx + d

• a 2 × 2 invertible (!) matrix:

[

y0

y1

]

=

[

a b

c d

] [

x0

x1

]

Conclude the following:

1. There is a 3 dimensional group of automorphisms of P1.

2. There is a unique automorphism that sends any three (distinct) points
P1, P2, P3 to any other three points Q1, Q2, Q3.

Let us now explore some of these moduli spaces:

M0,3: by 2. above this moduli space is just one point, because any triple of points
can be moved via a unique automorphism to the configuration 0, 1,∞.

M0,4: P1 r {0, 1,∞}. Spend your automorphism to send the first three points
to 0, 1,∞, then the fourth point is free to roam on the sphere, except on
those three points.

M0,5: M0,4 × M0,4 r ∆. Here ∆ means “the diagonal” in the product space.

M0,n: Mn−3
0,4 r all diagonals. Here by diagonal I mean any subpace of the prod-

uct space where at least two coordinates are the same.

We have a very good understanding of these moduli spaces. Unfortunately, they
are very much not compact. The quest for a good compactification leads us to
yet another family of moduli spaces, which is by far more interesting!

M 0,n

The winning idea here is very simple and elegant. We enlarge the class of objects
that we wish to parameterize to include some “degenerate” objects. By doing
so we construct a compact space that contains M0,n as a dense open set.

Heuristically, when two points (or more) want to come together...we don’t
allow them to. At the moment in which they would crash together, we make
them “jump” on a new sphere attached to the old one at the point of collision.
Let us be a little more formal now.

Definition 1. A tree of projective lines is a connected curve with the fol-
lowing properties:

1. Each irreducible component is isomorphic to P1.
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2. The points of intersection of the components are ordinary double points.

3. There are no closed circuits, i.e., if a node is removed then the curve
becomes disconnected.

Each irreducible component is called a twig. We draw a marked tree as in
Figure 2, where each line represents a twig.

Figure 2: stable marked trees.

Definition 2. A marked tree is stable if every twig has at least three special
points (marks or nodes).

Problem 7. This stability condition is equivalent to the existence of no non-
trivial automorphisms of the tree that fix all of the marks.

Problem 8. Show that if we define M0,4 to be the moduli space of isomorphism
classes of four pointed stable trees, we obtain M0,4

∼= P1.

Fact: The moduli space M0,n of n-pointed rational stable curves compact-
ifies M0,n.

One of the exciting features of this theory is that all these spaces are related
to one another by natural morphisms. Consider the map

πi : M0,n+1 → M0,n,

defined by forgetting the i-th mark. It is obviously defined if the i-th mark does
not belong to a twig with only three special points. If it does belong to such a
twig, then our resulting tree is no longer stable. In this case, we must perform
contraction.

Contraction: We need to consider two cases:

1. The remaining two special points are both nodes. We make the tree
again stable by contracting this twig so that the two nodes are now
one (see Figure 3).
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Figure 3: contracting a twig with only two nodes.

2. There is one other mark and one node on the twig in question. We
make the tree stable by forgetting the twig and placing the mark
where the node used to be (Figure4).
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Figure 4: contracting a twig with one node and one mark.

The boundary

The boundary is all we have added to make our space compact, i.e. the
complement of M0,n in M0,n. It consists of all nodal stable curves.

Fact: the boundary is a union of irreducible components, corresponding to
the different possible ways of arranging the marks on the various twigs.

Problem 9. Show that the codimension of a boundary component equals the
number of nodes in the curves in that component.

Problem 10. Notice that the irreducible components of the boundary are iso-
morphic to products of moduli spaces of rational stable curves with strictly fewer
number of points.
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Figure 5: irreducible components of the boundary of M0,4
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Figure 6: boundary cycles of M0,5
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In Figures 5 and 6 we draw all boundary strata for M0,4 and M0,5.
There is plenty more to be said about the spaces M0,n, their relationships,

and their boundaries, but time is short and we need to get to Kontsevich’s proof
by next week, so I’ll stop here. The book [KV99] is an excellent reference for
beginners.

Moduli Spaces of Curves

We are going to wrap up the day with a whirlwind tour of higher genus...this
will be unbelievably fast and imprecise, but hopefully it will make you want to
know more about these topics!

Recall that a projective variety is the zero set of a bunch of homogeneous
polynomials in some projective space Pn.

Definition 3. A projective curve is a projective variety of dimension 1.

Problem 11. Show that P
1 is a projective curve.

A large class of examples is given by plane curves: zero sets of one homoge-
neous polynomial in x, y, z, considered as varieties in P2.

If we work over the complex numbers, then curves are really “surfaces”.
It is not hard to see that projective curves actually are complex manifolds
(well, smooth curves are, singular curves are...almost everywhere). The complex
structure forces orientability, and being a closed subset of Pn tells us that they
are compact.
Fact: topologically, projective curves are all “doughnuts”. The number of holes,
called the genus, is the unique discrete topological invariant.

Let’s point out, at the cost of being boring, that P1 is THE smooth curve of
genus 0.

Why did I write “THE”? It was not a typo, nor a language mishap. In fact
it is true that any smooth curve of genus 0 is isomorphic to P1. That is why
moduli spaces of genus 0 curves are not very interesting by themselves, and we
had to “spice them up” by adding mark points!

Let me point out another feature, that I find quite amazing. While we
are not too surprised that an algenraic curve is a complex manifold (after all
polynomials are holomorphic functions), it is kind of amazing that the converse
is true as well, i.e. any compact complex manifold of complex dimension 1 is in
fact algebraic. And more is true in general.
Fact.The following mathematical structures on a topological surface of genus g

are equivalent:

1. A structure of an algebraic curve.

2. A complex structure.

3. (for g ≥ 2) A hyperbolic structure (i.e. a metric with constant negative
curvature) up to isotopy.

10
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While P1 is the unique curve of genus 0, for higher genera there are lots and
lots of curves (or of complex structures, or of hyperbolic metrics).

In fact there is a 3g− 3 dimensional moduli space of smooth curves of genus
g, called Mg. It is homeomorphic to the quotient of a ball by a finite group,
called the mapping class group...but this is another story.

Again, Mg is very much non compact, because curves can degenerate. Again,
the solution is to allow nodal curves to enter the picture.

Definition 4. A stable curve of genus g is:

1. A connected nodal curve.

2. The genus of the curve is g. For nodal curves the genus is counted in the
following way:

(a) add the genus of all irreducible components.

(b) add the number of loops created by the irreducible components.

3. Each component of genus 0 must have at least three nodes.

4. Each component of genus 1 must have at least one node.

Problem 12. Make sense of the above definition by drawing some pictures!

The moduli space of stable curves of genus g, denoted Mg is a compactifi-
cation of Mg.

Of course, if you want, you can do all of the above with marked points as
well. The corresponding moduli space is denoted Mg,n and it is a moduli space
of dimension 3g − 3 + n.
Final Observation: look at the boundary of Mg. Its components are isomor-
phic to products of moduli spaces of marked curves! So, even if you only care
about unmarked curves, studying moduli spaces of marked curves is essential in
order to understand the boundary.

I have quickly told you the existence of a huge network of interesting geo-
metric spaces connected by a ton of natural maps. I hope I conveyed the fact
that we just scratched the very tip of a huge iceberg. Let me leave you with
some reading reccommendations, for anyone eager to know a little more. The
book [HM98] is certainly a pleasant and innstructive read. The survey by Ravi
Vakil (The moduli space of curves and Gormov-Witten theory - available on the
ArXiv), starts basic and gets steep quickly, but it’s very well done. Realistically,
the first 10 pages may be accessible to a general audience, but that would still
be a lot of good stuff.

References

[HM98] Joe Harris and Ian Morrison. Moduli of Curves. Springer, 1998.

[KV99] Joachim Kock and Israel Vainsencher. Kontsevich’s formula for rational
plane curves. IMPA, 1999.
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Lecture 3

Renzo Cavalieri

Goal of the Day

The goal of today is to find an answer for our old friend

Qd: What is the number of rational curves of degree d through 3d− 1 points in

the plane?

We will tackle this question by introducing moduli spaces of stable maps, and
we will sketch the proof of Kontsevich using Gromov-Witten invariants. Before
we do so though, I want to go back to Q3, where I told you the answer was 12,
and present a classical proof of this fact. Hopefully the amount of cleverness
needed for this proof will convince you of the need for a new idea to approach
the general question.

Sketch of Classical Proof for 12 Rational Cubics

Since we know that passing through 8 points corresponds to 8 linear conditions,
we need to show that being a rational (aka nodal) cubic cuts a hypersurface of
degree 12 in the P

9 parameterizing cubics in P
2.

We therefore consider a general line (with coordinate t) in the space of cubics:
it has the form

f(x, y) + tg(x, y) = 0, (1)

where f and g are polynomials of degree 3. Figure 1 illustrates the situation.
On the right hand side we (attempted to) draw the total space S of the family
over the t-line. This means, we consider the surface in P

1 × P
2 cut out by

equation (1). Or, another way to think of it, the fiber over a particular point t̄

is precisely the cubic {f(x, y) + t̄g(x, y) = 0} living in the P
2-plane t = t̄.

We now compute the Euler characteristic of the total space of S in two
different ways, and use this to compute the number of nodal cubics in this
family.

Global description: S is “almost” equal to P
2, because, for any point P ∈ P

2

different from the 9 points of intersection of f and g, there is exactly one
cubic in the family containing P . Those 9 points, on the other hand, are

1
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f=0

g=0

f(x,y)+t g(x,y)=0

P
1

P
2

S ⊂ P
1 × P

2

t = 0 t = ∞

↓ ↓

tnodal

Figure 1: A general line in the space of cubics obtained as the linear span of
f = 0 and g = 0. On the right hand side, S is the total space of the family.
Notice that this surface contains 9 “horizontal” lines.

contained in every single cubic of the family, giving rise to the 9 horizontal
lines drawn in the picture. We therefore see that:

S = P
2

r 9points ⊔ 9P
1

(those with a little bit of experience in algebraic geometry will have rec-
ognized S as the blow-up of P

2 at the 9 points above). Therefore

X (S) = 3 − 9 + 18 = 12 (2)

Fiberwise description: now consider the family S fiber by fiber. The general
fiber is a smooth cubic, which is a torus and has Euler Characteristic 0.
There are a number nnod of nodal cubics, which contribute 1 to the Euler
Characteristic. I.e.

X (S) = nnod (3)

And equating (2) and (3) gives precisely what we want: there are 12 nodal
cubics in the family!

Moduli Spaces of Rational Stable Maps

Seen how much cleverness was required to solve Q3 this way, we are going to
radically change our point of view. Instead of thinking of a rational curve of

2
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degree d as of a curve of degree d that happens to have enough nodes as to be
rational, we think of it as the image of a map ϕ : P

1 → P
2 of degree d.

Problem 1. Describe the moduli space of maps ϕ : P
1 → P

2 of degree d1 . Find

that its dimension is 3d − 1!

Problem 2. Introduce marks in the picture. Realize that each mark increases

the dimension by 1.

As usual, this moduli space is not very interesting, and further it is not
compact. And, as usual, it is the compactification that makes things a lot more
interesting.

Definition 1. An n-pointed rational stable map is a map ϕ : C → P
2,

where:

1. C is a n-marked tree of projective lines.

2. Every twig in C mapped to a point must have at least three special points

on it.

Problem 3. Realize that condition 2 is equivalent to asking that the map has

only finitely many automorphisms. Since I haven’t told you what an automor-

phism of a map is, this might be a bit tricky...however I will leave as part of the

exercise figuring out what the natural concept of an automorphism might be in

this case.

Fact/Definition:The moduli space of rational stable maps of degree d

to P
2 with n marks (in short M0,n(P2, d)) is a smooth2 compactification of

the moduli spaces of n-pointed maps from a smooth P
1.

Natural Maps

There are natural maps between moduli spaces of stable maps:

evaluation maps: there are as many of these maps as there are marks.

evi : M0,n(P2, d) → P
2

(C, ϕ, P1, . . . , Pn) 7→ ϕ(Pi)

forgetting points:

forgi : M0,n(P2, d) → M0,n−1(P
2, d)

(C, ϕ, P1, . . . , Pn) 7→ (C, ϕ, P1, . . . , Pi−1, Pi+1, . . . , Pn)

1A given geometric map can have more than one algebraic expression! This introduces an
equivalence relation that you have to keep in account when answering this question.

2This is special to genus 0 and the target being a “convex” variety.
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ϕ(P1)

ϕ(P2)

ϕ(P3)

P
2C

ϕ

−→

Figure 2: A rational stable map of degree d to P
2

forgetting the map:

f : M0,n(P2, d) → M0,n

(C, ϕ, P1, . . . , Pn) 7→ (C, P1, . . . , Pn)

Problem 4. What I just wrote is true generically, but there are cases in which

you need to contract twigs and such to make things well defined. Make all of

this rigorous.

The boundary

The boundary can be described in terms of moduli spaces of maps of smaller
degree. But in this case, we can’t just take products, as we want to make sure
that the points corresponding to the node “end up” in the same place on the
target (see Figure 3). Therefore we have to take a fiber product with respect to
the appropriate evaluation morphisms.

In the example of Figure 3, the boundary stratum is isomorphic to:

B ∼= M0,2∪{•}(P
2, d1) ×ev•×ev⋆

M0,1∪{⋆}(P
2, d2)

Remark. Recall that taking a fiber product is equivalent to intersecting the
ordinary product with the pullback of the diagonal, i.e. :

M0,2∪{•}(P
2, d1)×ev•×ev⋆

M0,1∪{⋆}(P
2, d2) = M0,2∪{•}(P

2, d1)×M0,1∪{⋆}(P
2, d2)∩(ev• × ev⋆)

−1(∆P2×P2)
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Figure 3: A boundary stratum.

Gromov-Witten Invariants

Finally we are ready to define our heroes: Gromov-Witten invariants. These
are simply top intersections of special classes on moduli spaces of stable maps:
take a closed subvariety α of the target space, and consider:

ev∗i (α).

I.e., all maps from pointed curves such that the i-th mark lands in α! We call
this is a Gromov-Witten class.

Problem 5. Show that a Gromov-Witten class has codimension in the moduli

space of stable maps equal to the codimension of α in the target space.

We define a Gromov-Witten invariant to be an intersection of Gromov-
Witten classes that consists of a finite number of points. We denote it:

〈α1 . . . αn〉
P
2

0,d :=

∫

M0,n(P2,d)

ev∗1(α1) ∩ . . . ∩ ev∗n(αn),

where the integral sign simply represents “counting the number of such points”.
The invariant is 0 if the intersection of the classes is either empty or of positive
dimension.

Some properties of Gromov-Witten Invariants

Here are some basic properties of Gromov-Witten invariants.
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Degree 0: the only (possibly) nonzero degree 0 invariants are those with ex-
actly 3 mark points and sum of the codimensions of the three classes equal
to the dimension of the target. In that case.

〈α1α2α3〉
X
0,0 = α1 ∩ α2 ∩ α3

Fundamental class insertions: any Gromov-Witten invariant containing a
fundamental class insertion vanishes, unless it is of degree 0 and three
pointed, in which case:

〈α1α21〉
X
0,0 = α1 ∩ α2

Writing what we just said in a formula:

〈α1α2 . . . αn−11〉
X
0,d = 0

Divisor equation: if one of the insertions is a hypersurface D of degree e, then

〈Dα2 . . . αn−11〉
X
0,d = de〈α2 . . . αn−11〉

X
0,d

Kontsevich’s Proof

Believe it or not, we know enouhg about Gromov-Witten invariants to answer
our question Qd. Throughout this section, we call P (the class of) a generic
point in P

2, ℓ (the class of) a generic line in P
2, 1 the fundamental class of P

2.
Also, we denote Nd the answer to Qd, i.e.

Nd : number of rational curves of degree d through 3d − 1 points in P
2.

We can interpret Nd as a Gromov-Witten invariant:

Nd = 〈 P . . . P
︸ ︷︷ ︸

3d−1 times

〉P
2

0,d

So what? We still do not know how to compute it...well, wait just one more
second. Kontsevich’s genius was to...break the symmetry a bit, and break one
of the points into two lines, so as to consider:

C = ev∗1(ℓ) ∩ ev∗2(ℓ) ∩ ev∗3(P ) ∩ . . . ∩ ev∗3d(P )

Counting dimensions, we see that C is a curve in M0,3d(P
2, d). We are now

going to intersect this curve with two equivalent hypersurfaces, and extract from
equating the result a recursion that computes Nd.

WDVV

Recall our forgetful morphisms from a while ago...now we are going to use them.
We are going to forget a bunch of marks (all of them minus 4), and we are going
to forget the map. All together we obtain:

F : M0,3d(P
2, d) −→ M0,4 = P

1

6
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We consider the hypersurface F−1(point) ⊂ M0,3d(P
2, d). Since any two

points in P
1 are equivalent, we can really choose any point we want. We are

going to choose two special points, corresponding to the boundary divisors in
Figure 4. By doing so, we obtain:

C ∩ F−1(Q1) = C ∩ F−1(Q2) (4)

Q1=
2 3

41
∼

23

41
=Q2

Figure 4: Two equivalent points in M0,4

All we have left to do is now interpret what (4) means. On the left hand
side we have to restrict our attention to boundary divisors that have the first
two marks on one twig, the third and fourth on the other. On the right hand
side, 1 and 3 are together, and so are 2 and 4.

Recall the structure of the boundary: we have to take fiber products over
the evaluation morphisms of two moduli spaces of maps of degrees adding to d,
where our original set of marks has been partitioned in two, and then we have
to add one mark on each twig that will become the node.

By mentioning the fact that ∆P2×P2 is equivalent to P × 1+ℓ× ℓ +1×P , we
finally can write (4) as follows:

left hand side:

∑

d1+d2=d

(

〈ℓℓ ∗ ∗ ∗ 1〉P
2

0,d1
〈P ∗ ∗ ∗ PP 〉P

2

0,d1
+ 〈ℓℓ ∗ ∗ ∗ ℓ〉P

2

0,d1
〈ℓ ∗ ∗ ∗ PP 〉P

2

0,d1
+

+〈ℓℓ ∗ ∗ ∗ P 〉P
2

0,d1
〈1 ∗ ∗ ∗ PP 〉P

2

0,d1

)

right hand side:

∑

d1+d2=d

(

〈ℓP ∗ ∗ ∗ 1〉P
2

0,d1
〈P ∗ ∗ ∗ ℓP 〉P

2

0,d1
+ 〈ℓP ∗ ∗ ∗ ℓ〉P

2

0,d1
〈ℓ ∗ ∗ ∗ ℓP 〉P

2

0,d1
+

+〈ℓP ∗ ∗ ∗ P 〉P
2

0,d1
〈1 ∗ ∗ ∗ ℓP 〉P

2

0,d1

)

Here, we put ∗ ∗ ∗ to mean that one needs to distribute the remaining
marks in all possible ways.

This looks like a huge combinatorial mess, but in fact it is not that bad,
because a lot of the terms vanish. In fact, it is much more convenient to
tackle the question by analyzing what are the terms that do not vanish!
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First observe that of all the terms that contain a 1, there is only one that
is non-zero, and it contributes precisely Nd. What are left are the terms
with no 1. Notice that we can pull out the ℓ’s with the divisor axiom.
Now, for those guys not to vanish the only possibility is that the number
of points on both sides be the “right one” (i.e. 3di − 1 on each side). At
the end of the day, and I am more than glad to leave the actual derivation
as a good exercise, one gets the recursive equation:

Nd =
∑

d1+d2=d,d1,d2>0

Nd1
Nd2

[

d2
1d

2
2

(
3d − 4

3d1 − 2

)

− d3
1d2

(
3d − 4

3d1 − 1

)]

Finally, by inputting N1 = 1, we obtain N2 = 1, N3 = 12, N4 = 620,
N5 = 87304 ...
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