ELLIPTIC FUNCTIONS AND ELLIPTIC CURVES

(A Classical Introduction)

Jan Nekovar
0. Introduction

(0.0) Elliptic curves are perhaps the simplest ‘non-elementary’ mathematical objects. In this course we
are going to investigate them from several perspectives: analytic (= function-theoretic), geometric and
arithmetic.

Let us begin by drawing some parallels to the ‘elementary’ theory, well-known from the undergraduate
curriculum.

(0.0.1) Function theory: (below, R(x,y) is a rational function)

Elementary theory This course
arcsin, arccos elliptic integrals
J R(z,\/f(z))dz, deg(f) =2 J R(z,/f(x))dx, deg(f)=3,4
sin, cos elliptic functions
(periodic with period 2m) (doubly periodic with periods wy,ws)
(0.0.2) Geometry:
Elementary theory This course
conics (e.g. circle, parabola ...) elliptic curves
g(z,y) =0, deg(g) =2 g(z,y) =0, deg(g) =3

(e-g y* = f(x), deg(f) =3)
families of elliptic curves
(parametrized by modular functions)

(0.0.3) Arithmetic:

Elementary theory This course
Pythagorean triples rational solutions of
a’+b*=c>  (a,bceEN) gla,y) =0, deg(g) =3
division of the circle (roots of unity) division values of elliptic functions
cyclotomic fields two-dimensional Galois representations
complex multiplication

(0.0.4) Elementary theory from a non-elementary viewpoint. In the rest of this Introduction we are
going to look at the left hand columns in 0.0.1-3 from an ‘advanced’ perspective, which will be subsequently
used to develop the theory from the right hand columns.
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0.1. The circle
Consider the unit circle

C:z?+y*=1
with a distinguished point O = (1,0).

(0.1.0) Transcendental parametrization of the circle. The points on C can be parametrized by the
(oriented) arclength s measured from the point O:

The formulas
(ds)® = (dx)* + (dy)?, 0=d(2® +y*) = 2(xdx + ydy)

yield

2 _ (dy)Q ds dy dx

2 T Y

__Y
dx = . dy, (ds)

hence

s = / Tt (0.1.0.0)
Vit .1.0.
with the inverse function
y = y(s) = sin(s)

and

i.e.

P = (a(s), y(s)) = (cos(s), sin(s)).

(0.1.1) Addition of points on C' (“abelian group law”). We can use the parametrization from (0.1.0)
to add points on C' by adding their corresponding arclengths from O. In other words, if we are given two
points

Pj = (x;,y;) = (cos(s;), sin(s;)) (j=1,2)
on C corresponding to s; resp. sa, we let
P = P1 H PQ = (COS(51 + SQ),SiIl(Sl + 52))

be the point of C' corresponding to s; + s3. This makes the points of the circle C' into an abelian group with
neutral element O.



The addition formulas

cos(s1 + s3) = cos(sy1) cos(s2) — sin(s) sin(sz) (0.1.1.0)
sin(sy + $2) = cos(s1) sin(s2) + cos(sz) sin(s1) o
for the transcendental functions cos, sin becomes algebraic when written in terms of the coordinates of the
points on C:

(x1,y1) B (22, y2) = (z122 — Y1Y2, T1Y2 + T2y1) (0.1.1.1)

(and similarly for the inverse —(x,y) = (z,—y)). If we consider (0.1.0.0) as a definition of the (inverse of)
sin, then the formulas (0.1.1.0-1) can be written as

Y1 dt Y2 dt Y3 dt
— = ——— 0.1.1.2
i = 0112

Ys = y1\/1 =y + 2y /1 — o7 (0.1.1.3)

Let us repeat the key point once again: (0.1.1.2) is an addition formula for the transcendental function
arcsin(y) (defined as the integral of the algebraic function 1/v/1 — ¢2), given by an algebraic rule (0.1.1.3).

Is this just an accident, or a special case of some general principle? We shall come back to this question
several times during the course.

where

(0.1.2) Geometric description of the group law on C. There is a simple geometric way to construct
the point P = P; B Ps:

R

draw a line through O parallel to the line P; Ps; its second intersection with C' (apart from O) is P = PHDP;.
(0.1.3) Exercise. Why is the statement in 0.1.2 true? What happens if Py = Py?

0.2. A rigorous formulation

Attentive readers will have noticed that the discussion in Sect. 0.1 was not completely correct. The problem
lies in the square root 4/1 — y2, whis is not a single-valued function. How does one keep track of the correct
square root?

(0.2.0) The idea of a Riemann surface. The solution, proposed by Riemann, is very simple: one works,
in the complex domain, with both square roots simultaneously. This means that the set of the real points
of the circle C'

C(R) ={(z,y) e R*|2” +y* =1}

(previously denoted simply by C') should be considered as a subset of its complex points
C(C) ={(zx,y) € C*|2* +y* =1} :
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The set C(C) is a “Riemann surface”, realized as a (ramified) two-fold covering of C by the projection
map p2(z,y) = y. The function p;(x,y) = = (resp. the differential w = dy/xz = —dz/y) is a well-defined
(i.e. single-valued) holomorphic function (resp. holomorphic differential) on C(C), replacing the multivalued

function /1 — y2 (resp. differential dy/+/1 — y?) from 0.1.

Informally, a Riemann surface is an object on which one can define holomorphic (resp. meromorphic)
functions and differentials in one complex variable. Riemann surfaces are natural domains of definitions of
(holomorphic) functions that would otherwise be multivalued when considered as functions defined on open

subsets of C (such as y/1 — y? in the above example). We shall recall basic concepts of this theory in 1.3
below.

(0.2.1) The Abel-Jacobi map. In our new formulation, the integral (0.1.0.0) should be replaced by

P P
d

/w:/ & (0.2.1.0)

0] o

where P = (zp,yp) € C(C) is a fixed complex point on C. At this point another ambiguity appears: the
integral (0.2.1.0) depends not just on the point P, but also on the choice of a path (say, piece-wise infinitely
differentiable)

a:0 — P.
What happens if we choose another path a’ : O — P:

a

a

The composite path a * (—a’), which is obtained by going first from O to P along a and then from P to O
along —a’ (= o’ in the opposite direction), is then a closed path. As

dw =0

(which is true for every holomorphic differential on every Riemann surface), Stokes’ theorem

/ w:/dwzo
2A A

implies that the integral



[

along any closed path b (more generally, along any differentiable 1-cycle b) depends only on the homology
class of b in the homology group

[b] € H1(C(C),Z).

In our case,

is an infinite cyclic group generated by the homology class of the cycle v = C(R) (say, with the positive
orientation). This means that

fax (~)] = nb)
for some integer n € Z, hence the ambiguity of the integral (0.2.1.0)

/wf/w:n/w:Zﬂ'nEZWZ
a a’ ¥

is an integral multiple of the ‘period of w along +’, namely

1
dt
w=2 = 27.
/7 /_1m

To sum up, the integral (0.2.1.0) is well-defined only modulo the group of periods

{/w| ] € Hi(C(C), Z)} = 2Z.
b

The corresponding ‘Abel-Jacobi map’

P
C(C) — C/277Z, P / w (mod 27Z) (0.2.1.1)
o

is then a complex variant of arcsin.
(0.2.2) Exercise. Show that the map (0.2.1.1) defines a bijection C(C) — C/27Z (resp. C(R) —
R/27Z), the inverse of which is given by the map s — (cos(s),sin(s)).

(0.2.3) A useful substitution. Using the complex variable z = x + iy, one can identify the set of real
points C'(R) of the circle with the subset

{zeC*|2zz=1} CC*

of the multiplicative group of C. The discussion from 0.2.1 then applies to C* and the holomorphic differential
dz/z on C*, with period

dz

— = 2m
5 Z

(as H1(C*,Z) = Z[y]). The corresponding variant of (0.2.1.1) is the (bijective) logarithm map

P

d

log : C* — C/2niZ, PH/ % (mod 2miZ), (0.2.3.0)
1 z

which restricts to a bijection between C(R) and 27iR/27iZ and whose inverse is given by exp.
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0.3. Geometry of the circle

In this section we consider only geometric properties of C' involving rational functions of the coordinates x
and y, not the transcendental parametrization by (cos(s),sin(s)).

(0.3.0) Projectivization of C. Writing the affine coordinates z,y in the form @ = X/Z,y =Y /Z, where
X,Y, Z are the homogeneous coordinates in the projective plane P?(C), we embed the affine circle C' into
its projectivization
C:X2+Y? =22
which is obtained from C' by adding two points at infinity
C(C)N{Z=0}={(1:+i:0)}.
(0.3.1) Circle = line. This is one of the small miracles that occur in the projective world. In fact, much

more is true (if you are not sure about the precise definitions, see 1.3.7 below):

(0.3.1.0) Exercise. If V C P2 is a smooth projective conic over a field F, O € V(F) an F-rational point
of V and L C P% an F-rational line not passing through O, then the central projection from O to L defines
an isomorphism of curves (over F')

p: V5L (5 PL)

)

P
L p(P)

(0.3.1.1) Example. F=Q,V=C:X2+Y2=22L:X =0:

As

a short calculation yields



2 -1 2t y 1+2
L ——— - 4= - . 0.3.1.1.0
TTerr YT err -z g ( )

These formulas define p on the affine parts of C resp. L; using homogeneous coordinates x = X/Z,y =Y/Z
and t = u/v, we see that the inverse of p is given by the formula

pli(uiv) = (X:Y:2Z) = (u?—0v?: 2uw:u? +0?).

Note that p induces a bijection between C'(C) —{O} and C — {+£i}, sends O to the point at infinity (¢ = 00)
of L and p((1: £i:0)) = Fi.

(0.3.1.2) Exercise. Can one generalize 0.3.1.0 to higher dimensions, e.g. to the case of smooth quadrics
V C P% (such as X¢ + X? + X3 = X3, if 2 is invertible in F)?

0.4. Pythagorean triples

It is time to turn our attention to number theory (at last!).

(0.4.0) A Pythagorean triple a,b, ¢ is a solution of the diophantine equation

a? +b* =2, (a,b,c € N);

it is primitive if ged(a,b,c) = 1. The first few primitive Pythagorean triples are

3+ 42 = 5

52 + 122 =132

@5 72 (0.4.0.0)
7% + 242 = 252,

Each Pythagorean triple defines a rational point (a/c,b/c) € C(Q) on the circle. Conversely, a rational point
(z,y) € C(Q) with zy # 0 defines a unique primitive Pythagorean triple a, b, ¢ satistying (|z|, |y|) = (a/c,b/c).

The set of (primitive) Pythagorean triples has a well-known explicit description, which can be deduced
by many different methods. We shall recall only three of them:

(0.4.1) Geometric method. One can explicitly describe the rational points on C as follows.

(0.4.1.0) The isomorphism p~! : P! =5 C from 0.3.1.1 is defined over Q, hence induces a bijection between
the sets of rational points

p i PHQ) = QU {c} = C(Q) = C(Q),

given by the formula

292 2 t2—-1 2
T T ( ) _ ( ) (0.4.1.0.0)

u? +v2 u2 + v2 24+17¢24+1
(and p~'(c0) = O = (1,0)).

(0.4.1.1) Exercise. Show that (0.4.1.0.0) yields the following parametrization (up to a permutation of a
and b) of all Pythagorean triples:

a=w?—v)w, b=2ww, c=w>+0")w, u,v,weN, u>v, ged(u,v)=1.
Where does the permutation of a and b enter the picture?
(0.4.2) Algebraic method. The following statement is a special case of “Hilbert’s Theorem 90”.
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(0.4.2.0) Exercise. If L/K is a finite Galois extension of fields with Gal(L/K) cyclic, then the sequence

Np/k

L* l1-0o L* K*,

where o is a generator of Gal(L/K), is exact. In other words, for A\ € L*,

A-o(N) 02\ 0" A =1 = (Guel*) A= ﬁ

(0.4.2.1) Special case: K=Q,L=Q(i), \=z+1iy (z,y € Q), 0(\) =z —iy. Then

NN =22 112 =1 < @uveQ) A=
u—
which is equivalent to
(u +iv)? u? —v? 2w

W= (u — ) (u + v) T U + 02 +Zu2—|—v2’

which is nothing but the formula (0.4.1.0.0)! This observation leads to an elegant description
a+ib= (u+iv)? (0.4.2.1.0)
of all primitive Pythagorean triples (up to a permutation of a and b):

2

(2+0)2=3+4i

3+20)2=5+12

( .)2 _ (0.4.2.1.1)
(4+30)2=7+24i

(4 +1i)% =15+ 8i.

(0.4.3) Arithmetic method. This is based on the factorization
(a+ib)(a —ib) = a® + b = 2.
(0.4.3.0) Arithmetic of Gaussian integers. The ring
Z[i) ={z+iy|z,y € Z}
is a unique factorization domain with units

Z[i]* = {+1, +i}.

A prime number p factors into a product of irreducible factors in Z[i] as follows:

(i) 2= (—i)(1+41)?, with 1 + i irreducible.
(ii) If p =3 (mod4), then p is irreducible.
(iii) If p=1 (mod4), then p = 77, where m = u + iv, u? + v? = p; both 7 and 7 are irreducible.

(0.4.3.1) Exercise. If a,b,c is a primitive Pythagorean triple, then c is odd and ged(a + ib,a —ib) = 1 in
Z[i]. Deduce that either a+ib = d? or b+ia = d? is a square of some d € Zl[i]; writing d = u + v, we obtain
again (0.4.2.1.0).

(0.4.4) Do the methods from 0.4.1-3 generalize? Try to apply them to the following questions.
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(0.4.4.0) Exercise. Suppose that we replace the square in (0.4.2.1.0) by a higher power. What is the
arithmetical meaning of the numbers we obtain, such as

(2+0) =2+ 113, (3+2i)3=—-9+46i?

Are they again solutions of some diophantine equations? If yes, are there any other solutions?

(0.4.4.1) Exercise. Let d € Z, v/d ¢ Z. Find all solutions of

22 —dy? =1 (z,y € Q).

(0.4.4.2) Exercise. Can one use 0.3.1.2 to describe explicitly all rational points on the n-dimensional unit
sphere, i.e. all solutions of

x%+x§+...+xi:1 (Zoy...,2n € Q)?

0.5. The group law on the circle revisited

(0.5.0) Multiplication formulas for the group law. For an integer n > 1, put

n factors

and

[=n](z,y) = [nl(z, —y)

(= multiplication by n (resp. —n) in the sense of the group law on C'). The expression [n](x,y) is given by
a pair of polynomials of degree n with integral coefficients, the first few of which are

[1(z,y) = (=, )

2)(z, y) = (22 — 1, 2zy)

8](z,y) = (42° — 3z, 3y — 4y°)

[4)(x,y) = (8z* — 822 + 1,823y — 4xy)
[5](z,y) = (162° — 202° + 5, 16y° — 20y> + 5y).

Note that

[_3] (ZE, y) = (1,3’ y3) (mOd 3)7 [5}(1‘17 y) = (':C57 y5) (mOd 5)
The following exercise shows that this is no accident.

(0.5.1) Exercise (Congruences for the multiplication). Let p > 2 be a prime; put p* = (—1)®=1/2p,
Then

p¥](2.) = (a7, 47) (mod p).
[Hint: use the substitution z = x + iy.]

(0.5.2) Exercise. (i) For every (commutative) ring A, the formula (0.1.1.1) defines a structure of an
abelian group on

C(A) = {(a,y) € A?|2® +y* = 1}.
(ii) If2 is invertible in A and there exists A € A satisfying A?> + 1 = 0, then the formula

(,y)—z=2+Xy

9



defines an isomorphism of abelian groups
C(A) = A*

(here A* denotes the multiplicative group of invertible elements of A).
(iii) Assume that F is a field of characteristic char(F) # 2 over which the polynomial A\* + 1 is irreducible.
For a fixed root v/—1 of \> + 1 = 0 (contained in some extension of F'), the map

(T,y) —2z=z+V-1y

defines an isomorphism of abelian groups
C(F) = Ker (NF(H)/F F(VZI) — F) :

the latter group is isomorphic to F(\/—1)*/F* [Hint: see (0.4.2.0).]

(0.5.3) Exercise (Structure of C(F) for finite fields). Let p > 2 be a prime and F,, an algebraic closure
of F.

(i) Describe the structure of C(F,) as an abstract abelian group.

(ii) For each n > 1, describe the structure of C(Fp»), using 0.5.2.

(iii) Describe the structure of C(Fyn), using (i) and 0.5.1. [Hint: i = {a € F,|a”"~' = 1}.]

(iv) Show that

o 1-T o
exp Z Mzm _ ) e ifp=1 (mod4)
= o if p =3 (mod4).

(0.5.4) Exercise (Structure of C(Q)). (i) The torsion subgroup of C(Q) is equal to
C(Q)tors = {(£1,0), (0, £1)}.

(ii) The quotient group C(Q)/C(Q)+ors Is a free abelian group with countably many generators. Can one
explicitly describe a set of its (free) generators? [Hint: combine 0.4.2 with 0.4.5.0.]

0.6. Galois theory

(0.6.0) Division of the circle (Gauss). For every integer n > 1, the points dividing the circumference
of the (real) circle C(R) into n equal parts

T~
C
~
form the n-torsion subgroup of C'
CR)n ={(z,y) € C(R)[[n](z,y) = O} (= C(C)n). (0.6.0.0)

Under the transcendental parametrization
(cos,sin) : R/27Z — C(R),
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the subgroup C(R),, corresponds to %27TZ/27TZ; the formula (0.6.0.0) implies that the coordinates of points
in C(R),, are algebraic numbers of degree < n.
It is more convenient to use the isomorphism 0.2.3 (+ 0.5.2)

C(C) =5 C", (a,y) 2= +iy,

under which C(R),, = C(C),, corresponds to the group of n-th roots of unity pu, = p,(C); here we use the
notation

Ha(A) = {z € Ala" = 1)

for any (commutative) ring A.

The field Q(u,) generated over Q by the elements of p, is, in fact, generated by any primitive n-
th root of unity (i.e. a generator of the cyclic group p,). These primitive roots of unity form a subset
ul = {¢%a € (Z/nZ)*} C pn (for fixed ¢ € p¥) of cardinality (n); they are the roots of the n-th
cyclotomic polynomial

@, (x) = [] (X -0

CEns,

The first few polynomials ®,,(X) are equal to

P X)=X -1, P(X)=X+1, O3(X)=X>+X+1, OX)=X2+1,
Ds(X) =X+ X3+ X2+ X +1, P(X)=X2-X+1, Dpp(X)=X*—X>+1.

(0.6.1) Exercise (Properties of ®,,). (i) The polynomial ®,,(X) is equal to

,(X) = [J(x™/¢ — 1)@,
d|n

where (d) is the Mébius function
0, if d is not square-free
(-1)!, if d is a product of | > 0 distinct primes.
(ii) The polynomial ®,(X) has coefficients in Z.
(iii) If n = p* is a prime power, then ®,(X) is irreducible over Q. [Hint: Consider ®,.(X +1).]
*(iv) If n = p* is a prime power and p { m, then ®,,(X) is irreducible over Q(ji,,). [Hint: Combine the

method from (iii) with elementary algebraic number theory.]
(v) Foreachn > 1, ®,(X) is irreducible over Q.

(0.6.2) The Galois representation on p,. It follows from 0.6.1(ii) and (iv) that Q(u,) is the splitting
field of ®,,(X) (hence Galois) over Q, of degree

[Q(kn) : Q] = deg(®n) = |pp| = [(Z/nZ)*| = p(n).

The action of any field automorphism o € Gal(Q(u,)/Q) of Q(u,) (over Q) preserves u, and commutes
with its group law (= multiplication). It follows that its action on pu,, is given by

o:(— (" (VC € pn)

for some element
0 = \u(0) € (Z/nZ)* = GL.(Z/nZ).
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The corresponding map

Xn : Gal(Q(un)/Q) — GL1(Z/nZ)

(the “cyclotomic character”) is a homomorphism of groups; it is perhaps the simplest example of a Galois
representation.

The Galois theory of the extension Q(u,)/Q can be summed up by the statement that x,, is an isomor-
phism (it is injective almost by definition, and its domain and target have the same number of elements).

(0.6.3) Kummer theory. Suppose that F'is a field containing pu, (i.e. the set pu,(F) = {x € F|2" =1}
has n elements) and a € F*. Fix a separable closure F*? of F and an element b = {/a € F*? satisfying
b™ = 1. Then the formula

o o(¥/a)/ Va

defines a homomorphism of groups
do : Gal(F*P/F) — un(F),
which does not depend on the choice of b and whose kernel is equal to Gal(F**?/F({/a)). The map
ar 0q
defines an homomorphism of abelian groups
0 : F* — Hom(Gal(F*P/F), un(F))
with kernel
Ker(6) = F*".

The special case of Hilbert’s Theorem 90 stated in 0.4.2.0 implies that the map ¢ is surjective, hence induces
an isomorphism of abelian groups

§: F*/F*™ — Hom(Gal(F*?/F), i, (F)). (0.6.1.0)

In fact, it is possible to give a unified interpretation of both the logarithm map (0.2.3.0) and the isomorphism
(0.6.1.0).
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I. Elliptic Integrals and Elliptic Functions

This chapter covers selected topics from classical theory of (hyper)elliptic integrals and elliptic functions.
It is impossible to give an exhaustive list of references for this enormous subject. For general theory (and
practice), the following books can be useful: [McK-Mo], [La], [Web].

1. Elliptic Integrals

By definition, an elliptic (resp. hyperelliptic) integral is an expression of the form

1= [ R/ do.

where R(z,y) € C(z,y) is a rational function and f(x) € C[z] a square-free polynomial of degree n = 3,4
(resp. n > 4).

If n = 1,2, the integral is an elementary function; for example, if f(z) = 1 — 22, then the substitution
x = (t*—1)/(t* + 1) from 0.3.1.2 transforms I into an integral of a rational function of ¢.

Where do (hyper)elliptic integrals occur in nature? We begin by two geometric examples.

1.1 Arclength of an ellipse

(1.1.1) An ellipse

(§)2+(%)2:1 (@>b>0)
y
b
a X

can be parametrized by © = acosf,y = bsinf. Its arclength s satisfies
(ds)? = (dz)? + (dy)? = (a®sin® @ + b? cos® 0)(df)? = a*(1 — k? cos® §)(dh)?,
where k? = 1 — b?/a?. Normalizing the long axis of the ellipse by taking a = 1, we have b = v/1 — k2 and

1 — k222

de = —sinfdf, (dr)*>=(1-2?)(d)? (ds)?= 2
—x

(d)?,

hence

1— k222 1 — k222
s = -5 dg;' = dSU
1—x V= 22)(1 - k222

1.2 Arclength of a lemniscate

(1.2.1) Lemniscate. Recall that, given two distinct points F}, F» in the plane, the lemniscate with the
foci Fi, F is the set of points P in the plane satisfying
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|F\P| - |E,P| = |F0) - [F:0), (1.2.1.1)
where O is the midpoint of the segment Fj F5.

Choosing a coordinate system in which O = (0,0), F; = (—a,0), F> = (a,0), the (square of the) equation
(1.2.1.1) for the point P = (x,y) can be written as

a'=((z+a)?+1)((z—a)?+y?) = (@° +y° +d°)* — (2a2)?,

which is equivalent to
(22 +y*)? = 2a% (2% — o).
For a = 1/v/2 we obtain a particularly nice equation
(2172 + y2)2 _ $2 _ y2’
which becomes

r? = cos 20 (12.1.2)

in the polar coordinates x = rcosf, y = rsin6.
(1.2.2) Arclength. The equation (1.2.1.2) implies that rdr = — sin(260)d#, hence

r2(dr)? = (2sin? 0)(2 cos® 0)(dh)? = (1 — ) (1 4+ 72)(dB)* = (1 — r*)(dh)>.

It follows that the arclength s of the lemniscate satisfies

(@) = )+ 20 = ar)? (14 2 ) = 190

hence

dr
S:/\/T—r‘l' (1.2.2.1)

1.3 The lemniscate sine

(1.3.1) The sine function is defined as the inverse of the integral (0.1.0.0) that computes the arclength of
the unit circle. In a similar vein, the ‘sine of the lemniscate’ sl is defined as the inverse function to the
integral (1.2.2.1). In other words, if

Toodt

then we put
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which corresponds to the following picture:

As in 0.2, the integral (1.3.1.1) can be interpreted as an integral on the Riemann surface

V(C) ={(z,y)|y* =1—2a"}
associated to the curve
Viyt=1-a" (1.3.1.2)

As a result, the function sl(s) will make sense also for complex values of s.
The substitution ¢ := —t (resp. t = it) implies that

sl(—s) = —sl(s), sl(is) =1isl(s). (1.3.1.3)
Denoting by

Q_/l dt
2 0o V1—t4
the length of the ‘quarter-arc’ of the lemniscate between (0,0) and (1,0), then

sl(

%) =1, sl()=0, sl(Q+s)=sl(—s)=—sl(s). (1.3.1.4)

(1.3.2) The previous discussion should be compared to the corresponding picture for the circle, given by

the equation

r =sinf

in polar coordinates (this is a slightly different parametrization than in 0.1):

0,1)

(0.0)

In this case
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(ds)? = (dr)? + r2(d6)? = (cos 0 + sin? ) (d)? = (d6)? = _l(‘ﬁ“)rw

hence

(1.8.3) The main difference between the functions sin and sl is the following: the sine function is periodic

sin(s + 27) = sin(s)
with periods 27Z, while the formulas (1.3.1.3-4) imply that

sl(s +29Q) = sl(s)
sl(s+2iQ) = isl(s/i+2Q) =i sl(s/i) = sl(s),

hence sl is doubly periodic, with periods (at least) in the square lattice 2QZ + 2iQZ.
1.4 Fagnano’s doubling formula for sl

(1.4.1) Recall that integrals of the form [ R(x, /1 — z2)dz can be computed by the substitution
2t , (112’

The lemniscatic integral (1.3.1.1) involves v/1 — r? instead of v/1 — 22, so it would be fairly natural to try
to apply the substitution (1.4.1.1) with

i.e. change the variables by

2 _ 2u? . V2u 14 1—ut\?
1+ut’ V14 ut’ '

r

It follows that

hence

dr _ 3 du
o Vi VTra

This is almost the same integral as before, except for the factor v/2 and a change of sign inside the square
root. In order to get back the minus sign, we make another substitution

(1.4.1.1)

_ e27rz/8,U _ +Z’U

V2

u (= ut = —vt),
which yields
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Lo At <1+”4)2 (1.4.1.2)

V1=t 11—t
and
dr . dv

(1.4.2) Doubling formula for the sine. An elementary variant of (1.4.1.2-3) is provided by the doubling
formula for the sine function: if u = sin(s), then

sin(2s) = 2uy/1 — u?. (1.4.2.1)
The substitution
y =2uv1—u?
therefore yields
y? = 4u?(1 — u?), 1—y?=(1-2u%?, 2ydy = Su(1 — 2u?) du,
hence

dy _s du
Vi—y?2  V1—u?

Integrating the formula (1.4.2.2), we obtain the identity

(1.4.2.2)

we started with.

(1.4.3) Complex multiplication by 1+ 4. In the similar vein, the formula (1.4.1.3) can be integrated
into

[ @ 1 4ie=(1+9)

Vgt
VI—th /0 N

where

. /” dt
o VI—tt
the first identity in (1.4.1.2) then can be rewritten as
(1+1d)sl(z)

sl((1+i)z) = N (1.4.3.1)

This formula, which should be compared with (1.4.2.1), is the simplest non-trivial example of what is usually
referred to as “complex multiplication”.

(1.4.4) The doubling formula. In order to obtain a formula for multiplication by 2 = (1 +4)(1 — i), we
iterate the substitution (1.4.1.2), with i replaced by —i:

, o (L= 1_v4_<1+w4>2 dv — 1) dw
V1—wt’ I—wi) ' Tt V1—wt

which yields
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(1491 —dw 2wyl —w! dr _y dw
SV oicet . 1iwt  Viesd S icet

This can be rewritten as

25l(z)+/1 — sl*(x)

sl(2w) = 1+ sl4(x) ’

(1.4.4.1)

which is Fagnano’s doubling formula.

(1.4.5) Addition formula. Is there an addition formula for sl(x1 +x2) in terms of sl(x1) and sl(x5) which
would specialize to (1.4.4.1) if z1 = x5 = 27 A natural guess, namely that

)/1— si( I(a2)\/1— si*
sl(ar +a5) £ 2 Ha) sti(wz) + sl(zs) sth@) (1.4.5.1)

1+ sl2(zy1)sl?(x2) ’

which is equivalent to the addition formula

w1 t w2 dt ws d
— + —_ = ——— (mod 2QZ + 2i07Z
/0 V1—tt 0o V1-—tt 0 \/1—t4( )
with

VAR Rl AT (1.4.5.2)

1 + wiw3

w3 =

turns out to be correct.

(1.4.6) Euler’s addition formula. In fact, Euler discovered and proved a common generalization of both
(1.4.5.2) and the addition formula for sin(s). Euler’s result is the following: if

f(t) =1+ mt? + ntt,

then

/O“ \/% " /0 \/th(—t) B /0 (1.4.6.1)

(modulo periods), where

_ /I + 0/ F(w)
w = . (1.4.6.2)
1 — nu2v?
For (m,n) = (—1,0) (resp. = (0,—1)) this reduces to the addition formula for sin (resp. for si).

Euler’s proof of (1.4.6.1-2) was based on a clever calculation, and therefore was not interesting at all (it
can be found, e.g., in [Mar]). What was missing was a general principle behind various addition formulas,
not a verification — however ingenious — of a particular formula. Such a principle was discovered by Abel;
his approach will be discussed in the next section (where we also deduce Euler’s formula from Abel’s general
results).

2. Abel’s Method
2.1 Addition formulas for cos,sin revisited

(2.1.1) We are going to analyze in great detail the geometric interpretation of the addition formulas for
cos, sin from 0.1.1-2:
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if L, L are lines intersecting the circle C(R) in pairs of points

LQC(R) :{Pl,PQ}, ZQC(R) Z{Fl,ﬁg},

then (using the usual notation w = dy/x = —dx/y, O = (1,0))

. Py Py Py P
L is parallel to L = / w —|—/ w= / w —l—/ w (mod2rnZ). (2.1.1.1)
o o o o

Assuming that neither L nor L is vertical, we can write their equations in the form

L:y=azx+b, L:y=ax+b; (2.1.1.2)

then

L is parallel to L <= a = a. (2.1.1.3)

(2.1.2) Exercise. Show that, conversely, (2.1.1.1) implies the addition formula (0.1.1.1). [Hint: Choose L
such that O € L.]

(2.1.3) We shall try to prove (2.1.1.1) algebraically, by computing the partial derivatives of its left hand
side with respect to the parameters a,b. It will be natural to consider the parameters a, b as having complex
values.

Denoting the line L from (2.1.1.2) by Lgp, the coordinates (z,y) of the points in the intersection
L,(C)NC(C) are the solutions of the equations

y=ax+b, 4y =1;

thus y is uniquely determined by z, which is in turn a root of the polynomial

F(x) = 2%+ (ax + b)* =1 = (a® + 1)2? + 2abz + (b* — 1) = 0.

This is a quadratic equation of discriminant

disc(F) = 4(a®b* — (0* — 1)(a® + 1)) = 4(a® + 1 — b?),

unless a = +i. What makes these two values of a so special?

(2.1.4) About a = +i. The answer is simple if we pass to homogeneous coordinates: by Bézout’s Theorem,
every projective line in P2(C) intersects the projectivization C(C) of the affine circle C(C) in two points (if
we count them with multiplicities). Recalling that C (C) has precisely two points at infinity Py = (1 : £i : 0),
we see that the projectivization

Lop:Y =aX +bZ
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of the affine line L, ; contains Py if and only if @ = £¢. This implies that

(C(C) N Las(C) = C(C) N Lay(C)] = a # i,

Perhaps we could remedy the situation by working with C and anb from the very beginning? Unfortunately,
the differential w has a pole at each of the points P = Py, which means that the integral

P
IR
O

cannot be defined at them. As a result, we have to exclude the values a = +i and work with a smaller
parameter space

B = {(a,b)|a,be C, a# £i}.

Denote by

Y ={(a,b) € Bla®> +1—0b*=0}

the “discriminant curve” of the polynomial F.
(2.1.5) Intersecting C with L,;. If (a,b) € B, then the discussion in 2.1.3 implies the following
description of C(C) N Ly 5(C):

(2.1.5.1) If (a,b) ¢ X, then the line L, ;,(C) intersects C(C) transversally at two points P; = (z;,y;) (j = 1,2),
where y; = ax; + b,

2ab b2 —1

F(x) = (@ + 1)(z — x1)(x — z2), ml—i—mg:—GQ—H, TN = g

(2.1.5.2) If (a,b) € X, then the line L, ;(C) is tangent to C(C) at a point P; = (z1,y1) (and has no other
intersection with C'(C)), where

F(z) = (a®> 4+ 1)(z — 21)?, x1 = —a/b, y1 =ax1 +b=1/b.
In order to emphasize the dependence of the points P; on the parameters, we sometimes write P;(a, b)

for P;. In the case (2.1.5.2), we formally denote P, = P.
(2.1.6) The key calculation. For (a,b) € B, put

Pl(a,b) Pg(a,b)
I(a,b) z/ w +/ w (mod 27Z) € C/27Z.
o o

In 2.1.7 we prove the following simple formula for the infinitesimal variation of I(a, b), assuming that (a,b) &
>

dyj/l'j, lf.’EJ #0
dI(a,b) = I, da + I} db = w1 + wa, wj = . (2.1.6.1)
—dzx;/y;, if y; #0,

where I/, = 81 /0a denotes the partial derivative with respect to a (and similarly for b).
Perhaps the best way to understand this formula is to compute its right hand side: by differentiating
the equations

2?4yt =1, y=axr+b

satisfied by the pairs (z;,y;) (j = 1,2) with respect to all variables, we obtain

2xdx 4+ 2ydy = 0, dyzadx—kmda—kdbz—%dy—kxda—kdb,
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hence

d
(z + ay)?y =z da + db.
As
x4 ay = (a® + 1)z + ab,
we obtain
dyj Zj 1
=== = ————db. 2.1.6.2
+ (a2 + 1)z; + ab ( )

o S/ N |
i x; (a2 + 1)z; + ab “
Combined with (2.1.6.1), this yields the following formulas for the partial derivatives of I on B — X:

, T To 22179(a® + 1) + ab(zy + x2)

Lo = (a2 4+ 1)x1 +adb + (a2 + Dxg +ab (a2 +1)2z129 + (a2 + 1)ab(xy + x2) + a2b?
200 —1) —2a%?/(a®+1) 200°—a®—1)/(a®+1) 2
T (a2 4+1)(b2 — 1) — 22262 + a2 b2 —a?—1 a2+ 1
= 1 N 1 _ (a® +1)(z1 +x2)+2ab:0
7 (@ +1)ay +ab (a2 + 1)z +ab b2 —a? -1 '

As observed in 2.1.1-2, the vanishing of I} = 0 implies the addition formula (0.1.1.1). Our calculation is a
priori valid for (a,b) € B — X, and therefore establishes (0.1.1.1) only for (x1,y1) # (22, y2). However, both

sides of

T1,Y1 T2,Y2 T1T2—Y1Y2,Z1Y2+T2Y1

/ w —|—/ w= / w (mod 27Z)
o 1e) o

are holomorphic functions of P, = (z1,y1) and Py = (2, y2), hence the formula is still valid if we let P; tend
to PQ.

(2.1.7) In this section we give the promised proof of (2.1.6.1), which is just a variant of the fact that the
derivative of the integral of a fuction is the function itself. For fixed (a,b) € B — X, let Py = (x1,y1) #
Py = (z2,y2) be the intersection points of L, ;(C) with C(C). For all values of (@,b) in a sufficiently small
neighbourhood U of (a,b) in B — X, the intersection points Py = (T1,7,) # P2 = (T2,7,) of L;3(C) with
C(C) are holomorphic functions of (@,b) (by Theorem on Implicit Functions; see 3.4.2 below) and each P;
lies in a contractible neighbourhood U; of P;. If x; # 0 (resp. y; # 0), we can also assume that Z; # 0
(resp. 7; # 0), by shrinking U if necessary. We wish to compute the partial derivatives of

_ P,y P
I(a,b) :/ w+/ w
o o
at (a,b). If z; # 0 (resp. y; # 0), then

P; P; P; Ui dy Ti  dr
/ w—/ w:/ w:/ — resp. :/ -— .
o o P; y; L z; Y

J

This equality is to be understood as follows: we fix a path p; from O to P; and a path ¢; from P; to ?j

contained in U;. As Uj is contractible,
/ w- / w= / wec
Pj*q; pPj q;

does not depend on the choices of the paths.
Observing that
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([ #)en=2 ()

(and similarly for partial derivatives with respect to b), we obtain

Vi dy 1 (9y; 9y, z dy;
d — b) = — | =ZL(a,b)da + —Z(a,b)db | = | =2 b 2.1.7.1
([ #) -2 (G- Brans) - (B)on.
at least in the case x; # 0; if z; = 0, then
Y, I
d (/ @> (a,b) = (_@> (a,b). (2.1.7.2)
y T Yj

Taking the sum of (2.1.7.1) (resp. (2.1.7.2) if x; = 0) over j = 1,2 yields the formula (2.1.6.1), save for the
notation: the variables from 2.1.6 did not have bars above them.

(2.1.8) What is a correct interpretation of the sum w; + ws in (2.1.6.1)7 Put

S ={(z.y,a,b)| (a,b) € B, 2® +y* =1,y = ax + b};

then the projection

p:S—>B7 p(xvyaa7b):(a7b)

is a covering of degree 2, unramified above B — ¥ (and ramified above ¥). Viewing w = dy/x = —dz/y as a
holomorphic differential on S, then

w1 + W = Pyw

is the “trace” of w with respect to the map p. The definition of p, above B — X is not difficult (see 77 below),
but its extension to the ramified region above ¥ requires some work. In our calculation of dI(a,b) in 2.1.6,
the term b — a® — 1 disappeared from the denominators; this indicates that p.w should indeed make sense
everywhere in B.

2.2 Example: Hyperelliptic integrals
Let us try to generalize the calculation from 2.1.6.

(2.2.1) The first thing that we need to understand is the vanishing of the sum

1 1
=0
(a®>+ 1D)xy + ab + (a® + 1D)xo + ab

(2.2.1.1)
over the roots x1,zs of the polynomial
F(z) = (a* + 1)2? + 2abz + (b? — 1).
Noting that
2 1 /
(a*+ Dz +ab= §F (z),
we see that (2.2.1.1) is a special case of the following
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(2.2.2) Exercise. Let F(z) € C[z] be a polynomial of degree deg(F) = n > 2 with n distinct roots
X1,...,2Tn, and p(z) € Clx] a polynomial of degree deg(yp) < n — 2. Then

n
=

e(x;) _
< F'(z;) v

(2.2.3) Exercise. According to the calculation in 2.1.6,
F'(x1)F'(x3) = 4((a® + 1)y + ab)((a® 4+ 1)y + ab) = 4(b* — a® — 1) = disc(F).
Does this identity generalize to polynomials of arbitrary degree?

(2.2.4) Hyperelliptic integrals. We are now ready to generalize the calculation from 2.1.6 (cf. [Web],
Sect. 13). Instead of the circle C' we consider the curve

Viy® = fla),
where f(x) € Clz] is a polynomial of even degree deg(f) = 2m > 2 with 2m distinct roots. We shall be
interested in addition formulas for integrals of the form
/P ¥ dx B P oak da
o Vf(x) o ¥

on V(C), where O € V(C) is fixed (for k > 0).
As y? = f(z) on V, intersecting V with a general family of curves

Ro(z,a) + Ri(z,a)y + -+ + Ry (z,a)y™ =0 (R € Clz,al)
(where a = (a1, ..., a,)) amounts to intersecting V' with a simpler family
D, : P(m,a) - Q(m,a)y =0,
where

P=Ro+ fRy+ f°Ra+ -+, —Q=Ri+ fRs+ f*Rs +---

are polynomials P,Q € C[z,a] = Clz,a1,...,a,]. The x-coordinates of the points in the intersection
V(C) N D,(C) are the roots of the polynomial

F(z,a) = P*(z,a) — f(2)Q*(x,a),
which generalizes the polynomial F'(x) from 2.1.6. We have
P(m,a):p(a);];dp_l,-.-.’ Q(x,a)zq(a)de+~-~, f(q;):'rm2m_|_...7

where
dp = deg,(P), dg := deg,(Q), p,q € Cla] — {0}, re C*.

We make the following assumptions:

(2.2.4.1) The degree of F' in the variable z is equal to
deg, (F) = 2N := max(deg, (P?),deg, (fQ?%)) = 2 max(dp,dg + m).

This is always true if dp # dg + m; if dp = dg + m, then this condition amounts to the requirement
that
p(a)* —rq(a)* € Cla] - {0}.
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(2.2.4.2) The discriminant disc, (F) of F with respect to the variable z (a generalization of 4(b*> — a® — 1) from
2.1) is not identically equal to zero as a polynomial in a.

(2.2.4.3) The resultant Res, (P, Q) of P and @ with respect to the variable = is not identically equal to zero as
a polynomial in a.

Put

H(a) = (p(a)?* — rq(a)?)disc, (F)Res, (P, Q), B =1{acC"|H(a) #0}.

The assumptions (2.2.4.1-3) imply that, for each a € B, the polynomial F(z,a) has 2N distinct roots
Z1,...,29n depending on a (as holomorphic functions of a), none of which is a root of the polynomial
Q(z,a). This means that

(VQGB) V(C)QDG(C):{PM"WP?N}? Pj:Pj(a):(gjj7yj):(xJ7 (‘ij )/Q(x]a ))
(2.2.5) For a € B we can imitate the calculation from 2.1.6 to compute the infinitesimal variation

dl = I/ da := I, day +---+ I, da,

of the sum

Z/ o dr (k> 0),

which should be understood as in 2.1.7: we consider only the values of I(a) for @ € B lying in a sufficiently
small neighbourhood of a, and we let the paths O —~ P;(@) vary only in small neighbourhoods of the
endpoints. The differential dI is then well defined and independent of the choices of the paths. A global
definition of the integrals I(a) requires a non-trivial analysis of their periods; see 77 below.

We begin by differentiating the equations

v =f(z), yQ-P=0,

obtaining
ydy = frdz,  (yQ, — Pp)dx+ Qdy + (yQ,, — P,)da =0,
hence
!
(yQ; - P+ Qs > dz + (yQ!, — P.)da = 0. (2.2.5.1)
Differentiating F' = P? — fQ? and using y@Q = P, we see that
/ 2 ' _9pPP! 2 £/ ) a4
2y 2yQ 2yQ

Substituting to (2.2.5.1) we obtain

dr _20WQ,—Pl) , _ 2APQL—QP)

y F] F] ’

hence

2N k 2N / /
£ da,
1 ( (z5,95) j=1

j= Y T=x;

which implies (as in 2.1.7) that
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Kl 221\5/%(“) zF dx _ 221\5 20%(PQ,, — QP,) . (2.2.5.2)
day — Jo Y =1 B =

Combining (2.2.5.2) with Exercise 2.2.2, we obtain the following addition theorem (a special case of Abel’s
Theorem).

(2.2.6) Proposition. If the assumptions (2.2.4.1-3) are satisfied, k > 0 and
(VI=1,....,r)  k+deg,(PQ, —QP,)<2N -2, (2.2.6.1)
then the sum I(a), defined locally on B after appropriate choices of the paths, is locally constant.
(2.2.7) Let us analyze the condition (2.2.6.1) in more detail. Firstly,
PQ., — QP = W(a)z®Te ...
where

) ) P q
Wi(a) = pq,, — qpa, =

Py
is the Wronskian of p,q € Clay, ..., a,] with respect to the variable a;. This implies that
dp—i—dQ7 ile(a);éO

(Va€ B)  deg,(PQ,, —QPF;,) =
<dp+dg —1, ile((l):O.

Secondly,

m— 2, ifdp=dg+m
2N—2—(dp—|—dQ)=2maX(dp,dQ+m)—(dp+dQ)—2=
>m—1, lfdp#dQ‘Fm

It follows that (2.2.6.1) is satisfied in each of the following cases:

(2.2.7.1) dp # dg +m, 0<k<m-1.

(2.2.7.2) dp = dg +m, 0<k<m-2.

(2.2.7.3) dp =dg +m, 0<k<m-—-1, (MaeB)(Vi=1,...r) Wi(a) = 0.
The last condition is equivalent to

(Va,b € B) the vectors (p(a),q(a)), (p(b),q(b)) are linearly dependent

(which is a generalization of (2.1.1.3)).

In particular, if we fix the degrees dp,dg > 0 and consider the intersections of V' with the universal family

Cop:(ap+arz+ -+ adpxd”) =y(bg+brz+---+ bdedQ) (2.2.7.4)

(where ag, .. .,bq, are independent variables), we obtain common addition formulas for all integrals

/kadx
) y

0<k<m-—1, dp #dg +m
0<k<m-—2, dp = dQ +m (2275)
k=m-—1, dp =dg +m, bag = caap (c € C* constant).

Q

provided
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(2.2.8) Change of variables in hyperelliptic integrals. Suppose that f(z) € C|x] is a polynomial of

degree n > 1 with n distinct roots aj, ..., a,. For every invertible complex matrix
a b
g = S GLQ(C)7
c d
the change of variables
@) aT + b
z=g9() =
g cr +d

transforms f(x) into

(E5) =@ ai@

and dx into

(af+ b) (ad — be) dx
d{—
T +d

T (@t d?

where f(Z) € C[Z] is a polynomial of degree n (or n— 1) with the set of roots {g~*(a1),...,97 (an)} — {00}
If n = 2m is even, it follows that the hyperelliptic integral

[ Bt Vi) ds (R(a.y) € Cla.v)

is transformed into

t/ﬂﬁdﬂ@ﬂf (R(z.7) € C.7).

If m > 2, then we can choose ¢ such that g+

form

maps three of the roots a; into 0, 00,1, which yields f of the

2m—3
f@=az@-1) [[ @-8).
j=1
In particular, for n = 4, we obtain the Legendre normalization:

f@ =z -1)(T - N).
Other normalizations of elliptic integrals were considered by Jacobi:
fl@) = (1 —a*)(1 - k*2?)

(cf. 1.1) and Weierstrass:

f(x) = 42° — g2z — g3
(cf. 7.1.8 below).

2.3 Euler’s addition formula

(2.3.1) Let us prove Euler’s formula (1.4.6.1-2) by Abel’s method. The formula involves the differential
w = dz/y on the Riemann surface V(C), where V is the curve

Viy?=f(z) =1+ ma? +na’
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(assuming that f has four distinct roots). We shall consider intersections of V' with auxiliary curves

Dop:y= 1+ az + bx?.
The intersection V(C) N Dy (C) consists of the point O = (0,1) and three other points — possibly with
multiplicities — (x;,y;) (j = 1,2, 3), where
Yj =1—|—ascj+bx?
and x1, 2, x3 are the roots of the polynomial

(1+ ax + bx?)? — (1 + ma® + na?)

= (b —n)z® + 2abx® + (a® + 2b — m)z + 2a =
x

= (b2 —n)(z —x1)(x — z2)(x — x3).

It follows that

2ab
T1+ X2 + 23 = R n bxizow3,
hence
e FLF T2
3 1-— bﬁCl.’L‘Q.

Dividing the formulas

T1y2 — Toyr = (21 — x2) + b(w125 — 2220) = (27 — 22)(1 — bxy23)
aty; — w5yt = (27 — 23)(1 — natad)
by each other, we obtain

(x1 + 22)(1 — na2a3)

T1Y2 + Toy1 =

1—bzixo ’
hence
T1Y2 + Tay1
—r3 = ———————. 2.3.1.1
BT nrr3 ( )

The special case of Abel’s Theorem proved in 2.2.7 (for m =2, k =0, dp = 4, dg = 0) implies that the sum

(z1,91) (z2,y2) (%3,y3)
/ w+/ w+/ W (2.3.1.2)
O O O

(modulo periods) is equal to a constant independent of (a, b), at least if x1, 29, x3 are distinct. Taking a = 0,

we have (z1,y1) = O and (22,y2) = (—x3,ys), which implies that the constant is equal to
/12 dx n 2 dx —0

o Vf@) Jo  f@)

as f(—z) = f(z). Combining (2.3.1.2-3), we obtain

(z1,y1) (w2,y2) (—z3,y3)
/ w+/ w z/ w (2.3.1.4)
O (@] (@]

(modulo periods), with —z3 given by (2.3.1.1). This is precisely Euler’s formula, assuming that x1, 24, 23 are
distinct. However, the left hand side of (2.3.1.4) is a holomorphic function of Py = (z1,y1), Po = (22,y2) €
V(C), and so is the right hand side, provided the denominator in (2.3.1.1) does not vanish. This implies
that (2.3.1.4) also holds in the case (z1,y1) = (72,%2), provided nz] # 1.

(2.3.1.3)
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(2.3.2) Question. We have found 4 intersection points of V(C) and D, ;(C). According to Bézout’s
Theorem, the projective curves associated to V and D, should have 2 - 4 = 8 intersection points. Where
are the remaining 8 — 4 = 4 points?

(2.3.3) Exercise. Let f(x) = 23 + Az + B be a cubic polynomial with distinct roots. Show that Abel’s
method applies to the differential w = dx/y on the curve V : y? = f(z) and the family of lines L, 1, : y = ax+b.
Deduce an explicit addition formula for the integral

/P dx
o Vi3+Ar+ B’

Are some choices of the base point O better than others?

(2.3.4) Exercise. Generalize the calculations from 2.2.5-7 to the case when deg(f) = 2m — 1 > 3 is an
arbitrary odd integer.

2.4 General Remarks on Abel’s Theorem
(2.4.1) Abel was interested in addition formulas for general integrals of the form

P
/ w,
o

where w is an algebraic differential on the set of complex points V(C) of an algebraic curve V, O € V(C) is
a fixed base point and P € V(C) a variable point. His main insight was to consider sums

Pi(X) Pa(X)
/ w.'.._'_/ w,
O o

where Py(A),..., Py(\) are the intersection points of V with an auxiliary algebraic curve C), depending on
a parameter A = (A1,...,A.) € C". More precisely, the points in the intersection V' (C) N Cy(C) naturally
appear with multiplicities reflecting the order of contact between the two curves:

R
Formally, we consider V(C) N C)(C) as a “divisor” on V(C), i.e. a formal linear combination
D) =Y ni(\)(B(N) (nj(A) € Z, P;(X) € V(C))
J

(in our case all coefficients n;(\) are positive) and put

D) P\
/ w = an(/\)/ w (2.4.1.1)

(@] (@]

(which is well defined modulo the periods of w).
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(2.4.2) Abel’s Theorem states that, for suitable differentials w and certain families of auxiliary curves Cj,
the “Abel sum” (2.4.1.1) (modulo periods) does not depend on A. This can be reformulated intrinsically as
follows: geometric properties of V' and of the family C define an equivalence relation

D(\) ~ D(N)

D
/ w
o
(modulo periods) depends only on the equivalence class of the divisor D. We have seen several examples of
this phenomenon:
(2.4.3) Circle. V=C:2?2+y?>=1,w=dy/z, O = Ly :y = ax +b, where a # =i is fixed and \ = b is
variable.

on the intersection divisors, and the value of

(2.4.4) Hyperelliptic integrals. V :y? = f(x), where f(z) is a polynomial of even degree 2m > 4 with
distinet roots, w = 2¥ dz/y (0 < k <m —2),

Ox=Cup:(ap+arx+ - +ag2) =y (by+ bz + -+ bdedQ).
This also works for k = m — 1, if we require in addition that by, = caq, (c € C* constant) if dp = dg + m.
(2.4.5) Elliptic integrals. V : y? = f(x), where f(x) is a polynomial of degree 3 with distinct roots,
w=dx/y, C\:y=azx+b (A= (a,b)).
(2.4.6) Questions: (i) In each of the above examples, what exactly is the equivalence relation on divisors
defined by the intersections with the family C\?

(ii) Does this equivalence relation admit an intrinsic description in terms of V' alone?
(iii) For which differentials does Abel’s Theorem hold?

(iv) Conversely, if the integrals
D D’
fye= ),
o o

are equal (modulo periods) for sufficietly many differentials w, does it follow that D ~ D’? Consider, for
example, the intersections of the circle C'(C) with the family of conics

CL ta12” + aswy + asy® + aaxr + asy + ag = 0, p=(a,...,a).
Denoting the intersection divisor C(C) N C}, by D’(p), under what conditions on ji1, 2 does one have

D’ (p1) D’ (n2)
/ wz/ w (mod2nZ)?

o o
See 3.8 below for the answer.

3. A Crash Course on Riemann Surfaces

This section contains a brief survey of basic facts on Riemann Surfaces. More details can be found in ([Fo],
Ch. 1, Sect. 1,2,9,10; [Fa-Kr 1], Ch. 1; [Ki], Ch. 5,6). For elementary properties of holomorphic functions in
one variable we refer to ([Ru 2], Ch. 10). Complex manifolds of higher dimension are discussed in [Gr-Ha|
and [Wei 1].

3.1 What is a Riemann surface?

(3.1.1) A Riemann surface is a geometric object X locally isomorphic to an open subset of C. These
local pieces are glued together so that one can work with holomorphic (resp. meromorphic) functions and
differentials globally on X. We have already encountered several examples of Riemann surfaces, such as
P!(C), C(C) (= the complex points of the circle), C/27Z (= a cylinder), C/Z + Zi (= a torus). Here is
the standard (fairly impenetrable) definition.
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(3.1.2) Definition. A Riemann surface X is a connected Hausdorff topological space with countable basis
of open sets, equipped with a (holomorphic) atlas (more precisely, an equivalence class of atlases). An atlas
on X consists of a set of local charts (U,, ), where {U,} is an open covering of X and ¢, : Uy — ¢0(Uy)
is a homeomorphism between U, and an open subset of C. The local charts are required to be compatible
in the following sense: for each pair (U, ¢a), (Ug, ¢g) of local charts, the transition function

¢po s da(Us NUs) — ¢p(Us NUp)

is holomorphic. Two atlases are equivalent if their union is also an atlas.

(3.1.3) Definition. Let X be a Riemann surface. A local coordinate at a point x € X is a local chart
(Uas 2o) satisfying x € U, and z,(z) = 0.

(3.1.4) Remarks and examples. (1) One can replace C by C™ in 3.1.2; the geometric object X is then
called a complex manifold of dimension n.

(2) Morally, X is constructed by gluing the open sets ¢o(Uy) C C together along ¢, (U, N Ug), using the
transition functions ¢g o ¢!

(3) If zo is a local coordinate at x € X, other local coordinates are given by power series ) -, ¢,2} with
non-zero radius of convergence and ¢; # 0. B

(4) An open connected subset U C C is a Riemann surface, with one chart U — C given by the inclusion.
For each a € U, z4(2) = z — a is a local coordinate at a.

(5) X = PY(C) is a (compact) Riemann surface, with two charts U3 = X — {oc}, Uy = X — {0}, and
¢; : Uy — C given by ¢1(2) = 2, ¢2(2) = 1/z. The intersection Uy N Uz = C*, which means that X
is obtained from two copies of C glued along C* by the map z +— 1/z (this can be visualized using the
stereographic projection). For x = ¢ € C (resp. = ), 24(2) = z — a (resp. z4(2) = 1/z) is a local
coordinate at x.

3.2 Holomorphic and meromorphic maps

(3.2.1) Holomorphic maps and functions

(3.2.1.1) Definition. A map f: X — Y between Riemann surfaces X,Y is holomorphic at a point

x € X if there exist local charts (Uy, ¢o), © € Uy on X and (Vs,v3), f(x) € Vg on'Y such that the function
vpo fody’: palUa) — ¥5(Vs)

is holomorphic at ¢, (x). The map f is holomorphic if it is holomorphic at all points = € X.

(3.2.1.2) In the above definition, one can replace “there exist local charts” by “for all local charts”.

(3.2.1.3) If f is holomorphic (at x), it is continuous (at z).

(3.2.1.4) Definition. A holomorphic function on a Riemann surface X is a holomorphic map f : X —
C. Denote by O(X) the set of holomorphic functions on X (it is a commutative ring containing C).

(3.2.1.5) If Y is a Riemann surface, X a topological space and f : X — Y an unramified covering, then
there exists a unique structure of a Riemann surface on X for which f is a holomorphic map.

(3.2.1.6) If Y is a Riemann surface and G a group of holomorphic automorphisms of Y satisfying
(Vy €Y) (AU 3 y open) (Vg € G —{1}) g(U)NU =1,

then the projection f:Y — G\Y = X is an unramified covering and there exists a unique structure of a
Riemann surface on X (equipped with the quotient topology) for which f is a holomorphic map.

(3.2.1.7) Example: 3.2.1.6 applies, in particular, to quotients f : C — C/L of C by discrete (additive)
subgroups, i.e. by L = Zu or L = Zu + Zv, where u,v € C are linearly independent over R.
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(3.2.2) Meromorphic functions

(3.2.2.1) Definition. A meromorphic function on a Riemann surface X is a holomorphic map f :
X — PY(C) such that f(X) # {oo}. Denote by M(X) the set of meromorphic functions on X (it is a field
containing C).

(3.2.2.2) If X C C is an open subset of C, then 3.2.2.1 is equivalent to the usual definition.

(3.2.2.3) If (Uy, 24) is a local coordinate at z € X and f € M(X), then f o 2,! has a Laurent expansion

(fozg (=)= D anz"
n>ngo
converging in some punctured disc {z € C|0 < |z| < r}. One often writes “f =" a,22" in U,.
(3.2.2.4) Definition. The order of vanishing of a non-zero meromorphic function f € M(X) — {0} at

x € X is defined as
ord;(f) =min{n € Z|a, #0} € Z

(3.2.2.5) The integer ord,(f) does not depend on the choice of a local coordinate; f is holomorphic at x

<= ordz(f) > 0.
(3.2.2.6) Example: Let X = P!(C) and f(z) = [[;(z—a;)"s, where a; € C are distinct and n; € Z. The
description of local coordinates on X from 3.1.4(5), together with the identity

f() = /272 [[a—a;/z)m
imply that

ord,, = nj, ordeo (f) = —an.
J

(3.2.2.7) ord, is a discrete valuation: If f,g € M(X) — {0}, then

ordy(fg) = ords(f) +ords(g),  orda(f +g) = min(ord,(f), ordz(g))

(with equality if ord, (f) # ord.(g)).

(3.2.2.8) If f € M(X)—{0}, then the set Z(f) = {x € X |ord,(f) # 0} is a closed discrete (= the induced
topology on Z(f) is discrete) subset of X. In particular, if X is compact, then Z(f) is finite.

(3.2.2.9) If g,h € M(X) satisty g(x) = h(z) for all z € A, where A C X is a closed non-discrete subset of
X, then g = h (apply 3.2.2.8 to f =g —h).

(3.2.2.10) If f : X — Y is a non-constant holomorphic map and g : ¥ — P!(C) a meromorphic function
on Y, then f*(g) = go f: X — P!(C) is a meromorphic function on X. The map f*: M(Y) — M(X)
is an embedding of fields (over C).

(3.2.3) Structure of non-constant holomorphic maps

(3.2.3.1) Proposition—Definition. Let f : X — Y be a non-constant holomorphic map between Rie-

mann surfaces and x € X. Then there exist local coordinates z, (resp. zg) at x (resp. f(z) € Y) such
that

(20 fozg')(z) =2° (“z8 = 257),
where e = e, > 1 is an integer, called the ramification index of f at x (it does not depend on any choices).
The ramification points of f are the points x € X with e, > 1; they form a discrete subset of X.

(3.2.3.2) Corollary. A non-constant holomorphic map between Riemann surfaces is open.

(3.2.3.3) Corollary of Corollary. If X is a compact Riemann surface, then O(C) = C.

Proof. If not, then there is a non-constant holomorphic map f : X — C; its image f(X) C C is both
compact and open, which is impossible.
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(3.2.3.4) Corollary. If f : X — Y (as in 3.2.3.1) is bijective, then e, = 1 for every x € X and
f~':Y — X is holomorphic.

(3.2.3.5) Proposition. Let f : X — Y be as in 3.2.3.1. Assume, in addition, that f is proper, i.e.
f~YK) c X is compact for every compact subset K C Y (this holds, for example, if both X and Y are
compact). Then there is an integer deg(f) > 1 (“the degree of f”) such that

(VyeY) Z ey = deg(f).
zef~1(y)
Ife, =1 for all x € X, then f is an unramified covering.

(3.2.3.6) Example: If X =Y = C and f(z) = 22, then e, = 1 (resp. e, = 2) for z # 0 (resp. z = 0) and
deg(f) = 2.

(3.2.3.7) Example: If X is compact, f: X — Y = P!(C) is a non-constant meromorphic function and
y =0 (resp. y = o0), then e, = ord,(f) (resp. e, = —ord,(f)) for each = € f~1(y). In particular,

deg(f) = > ordy(f)=— Y ordu(f).

F(@)=0 F@)=o0

3.3 Holomorphic and meromorphic differentials

(3.3.1) Holomorphic functions revisited. Let X be a Riemann surface with an atlas {(Ua, ¢a)}-
holomorphic function f : X — C defines, for each a, a holomorphic function f, = fo ¢ ! € O(¢pa(Us)
On ¢4 (U, NUg) these functions satisfy the compatibility relation

A
).

fﬁ Owaﬁ = fou

where 9,5 = ¢gog, ! denotes the transition function. Writing z, for the standard coordinate on C D ¢, (U,),
we can reformulate the compatibility relation as follows:

fa(za) = fa(23) = f3(ap(za))-
Meromorphic functions on X admit an analogous description, with f, € M(¢(Uy)).

(3.3.2) Definition. A holomorphic differential w on X is defined by a collection of holomorphic functions
9o € O(¢(Uy)) such that the formal expressions wy, = go(2a) dzo are compatible on ¢, (U, NUp) as follows:

Ja (Za) dze = 95(#@5(%)) dzﬁ = 9gp (%5(%)) 1/’;5(2(1) dzq,

le. go = (ggo 1/)045)1//&5. The set of holomorphic differentials on X will be denoted by Q'(X) (it is an
O(X)-module).

(3.3.3) Definition. A meromorphic differential on X is defined by a collection of meromorphic functions
Ja € M(0o(Uy)) satisfying the same compatibility relations as in 3.3.2. Meromorphic differentials form a
vector space over M(X), which will be denoted by QL . .(X).

mer

(3.3.4) Examples: (i) If f € O(X) (resp. € M(X)) is given by a collection f,(z4) as in 3.3.1, then
the collection of functions g, = f/(z4) defines a differential df € Q'(X) (resp. € QL. (X)), for which
(df)a = f(;(zoz) dze = dfa~

(ii) If f:Y — X is a holomorphic map and w € Q(X), one can define the pull-back f*(w) € Q'(Y) as
follows: let (Uy, o) be an atlas of X and assume that w is given is given by a collection g, € O(pn(Uy))
as in 3.3.2. Choose an atlas (Vg, %) of Y such that, for each 3, f(V3) C U, for some a = j(5). In terms
of the standard coordinates zg on Vs (resp. zo = zj(3) on Us = Uj(g), the map f is defined by the formula
za = f3(28), where fg = ¢q0 fo wgl. The differential f*(w) is then given by the collection of functions
(95(3) © fa)f5 € O(¥p(Vs)). The same construction works for meromorphic differentials. In particular,
f*(dh) =d(ho f) for any h € M(X).
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(3.3.5) Definition. Let w € Q]

mer(X) — {0} and x € X. Choose a local coordinate (U, z,) at x and write
Wo = foz(zoz) chw

fa(za) = Z anzy.

n>no

The order of zero of w and its residue at x are defined as

ord, (w) = ord,(fa), res; (w) = a_j.

(3.3.6) Exercise. Show that both ord, (w) and res, (w) are independent on the choice of a local coordinate.

(3.3.7) Example: For X = P1(C) and w = dz (where z is the standard coordinate on C = X — {o0}),
w = d(z — a) for every a € C, hence ord,(dz) = 0. Taking v = 1/z as a local coordinate at co € X, the
identity dz = —u~2 du shows that ord., (dz) = —2.

(3.3.8) Lemma. If f € M(X)— {0} and ord,(f) # 0, then ord, (df) = ord,(f) — 1.

anzy, where m = ord,(f) # 0 and a,, # 0.

Proof. In a local coordinate 2, at z, we have fo(za) = 32,5,
Then (df)a = ", Manzl " dza, hence ord, (df) =m — 1.

(3.3.9) The statements in 3.2.2.8-9 hold for meromorphic differentials.

(3.3.10) The Residue Theorem. If X is a compact Riemann surface and w € QL (X) — {0}, then

Z res, (w) = 0.

zeX

(3.3.11) Corollary. If X is a compact Riemann surface and f € M(X) — {0}, then

Z ord,(f) = 0.

zeX

Proof. The meromorphic differential w = df /f satisfies res,(w) = ord,(f) for each z € X. (Alternatively,
one can apply 3.2.3.5 to f : X — P1(C), using 3.2.3.7.)

(3.3.12) Exercise. Deduce 2.2.2 from 3.3.10.

(3.3.13) Lemma. If f : X — Y is a non-constant holomorphic map between Riemann surfaces, x € X
and zg a local coordinate at f(x) € Y, then

ord, (f*(dzg)) = ey — 1.
Proof. Using 3.2.3.1, we can assume that f is given by zg = 25*, where z, is a local coordinate at x, hence

ord, (f*(dzg)) = ord, (d(257)) = ord, (ez 25" tdzy) = €, — 1.

(3.3.14) Lemma. Let X be a Riemann surface. If wi,ws € QL . (X)—{0}, then there exists a meromorphic
function f € M(X) — {0} such that w; = fwa.

Proof. If wq,ws are given locally by (non-zero) meromorphic functions ¢1 4, 92« satisfying the compatibility
relations from 3.3.2, then the quotients (¢1,a/g2,o) define a (non-zero) meromorphic function f, as in 3.3.1.

Thus wy = fws.

33



(3.3.15) Theorem [Fa-Kr 1, Ch. 2]. Let X be a Riemann surface. Then M(X) # C and QL (X) # {0}.

mer

(3.3.16) Corollary. For every Riemann surface X, the vector space QL (X) has dimension 1 over M(X).

mer

(3.3.17) We refer to ([Fo], Ch. 1, Sect. 9, 10; [Fa-Kr 1], 1.3, 1.4 and [Ki], Sect. 6.1) for the calculus of
differential forms and their integration on Riemann surfaces.

3.4 Theorem on implicit functions
(3.4.1) Example: Consider the circle C : f(z,y) =22 +y?> — 1 =0.

(0]

As 0f/0x(0,1) = 0, the tangent to C at the point (0, 1) is horizontal. Moreover, for every open set U > (0,1)
(either in R? or in C?), the intersection of U with C' (i.e. with either C(R) or C(C)) is not a graph of any
function y — (z(y)), because there are two possible values of x for y arbitrarily close to 1. On the other
hand, it is given by a graph of a function = — y(z)) (for sufficiently small U). This is a special case of the
following result.

(3.4.2) Theorem on Implicit Functions (holomorphic version). Let U C C? be an open set, f €
O(U) a holomorphic function of (x,y) € U and Z = {(x,y) € U| f(x,y) = 0} its set of zeros. Assume that
P = (zp,yp) € Z is a point satisfying 0f /0x(P) # 0 (i.e. “the tangent to Z at P is not horizontal”). Then
there exists an open set V. .C U, V' 5 P, such that 9f/0z(Q) # 0 for all Q € ZNV, the horizontal projection

p2: ZNV —p(ZNV) 3 yp, pa(x,y) =y

is a homeomorphism and its inverse is given by y — (z(y),y), where x(y) is a holomorphic function on the
open set p2(ZNV) 3 yp.

(3.4.3) Exercise. Generalize 3.4.2 to a system of holomorphic equations

f1(217~~~7zn):"':fm(zlv~~~azn):0 (m<n)

3.5 Orientation of Riemann surfaces

(3.5.1) Orientation of real vector spaces. Let V be a (non-zero) real vector space of finite dimension
n. The set B(V') of (ordered) bases of V' is a principal homogeneous space under GL(V') (i.e. for each pair
of bases u,v there exists a unique element g € GL(V') satisfying g(u) = v). This defines a natural topology
on the set B(V) (exercise: how?). By definition, two bases u, v define the same orientation of V iff they lie
in the same connected component of B(V), i.e. iff v = g(u) with g € GL(V)° contained in the connected
component of the identity of GL(V), i.e. iff det(g) > 0.

Equivalently, fix a volume element w on V' (i.e. a non-zero element of the highest exterior power of the
dual space V*). Then the bases u, v define the same orientation of V' iff w(uq, ..., uy,) and w(vy, ..., v,) have
the same sign.

(3.5.2) Orientation of C. The standard orientation of C (considered as a real vector space) is given
by the ordered basis 1,i. Let x,y be the real and imaginary part, respectively, of the canonical complex
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coordinate z = z + iy on C. Then the standard volume element w = z A y satisfies w(1,7) > 0. In spite of
appearances, this “standard” orientation of C is not canonical: it depends on the choice of i. Some algebraic
geometers therefore keep track of ¢ (more precisely, of 274) in all the formulas.

(3.5.3) Orientation of a Riemann surface. The construction from 3.5.2 can be used to define an
orientation of any Riemann surface X. If {(U,, do)} is an atlas of X, one can use the local charts to
transport the standard orientation of C to X, at least infinitesimally (i.e. to the tangent spaces of X). We
must check that these orientations agree on the intersections U, NUg. Let us decompose the local coordinates
Za, 23 (at the same point x € X)) into their real and imaginary components zo, = To + Wa, 23 = Tg + 1Y3.
For small € > 0, the vectors ¢, ie based at 0 = z,(x) are mapped by the transition function 1,3 = 23 o 25t
to

95 | .Oyp 2
€ . —i—zawa + O(e%)

; dzp | Oys 2
i€ — e —Haya + O(e%).

This implies that the infinitesimal change of orientations is given by the sign of the determinant of the
(non-singular) Jacobian matrix
925 Oys
0T Ox o
M= <8_5 %) '

0Yya  OYa
Hovever, the Cauchy-Riemann equations tell us that the matrix M is of the form

A -B
M= :
B A

where A, B are real valued functions; thus det(M) = A? + B? > 0, which proves the compatibility of the
two orientations.

(3.5.4) Explicitly, if (Ua, zq) is a local coordinate on X, V' C U, an open subset and f : V — Rxq a
non-negative (differentiable) function for which f~%(0) C V is a discrete set, then

3 / fdza ANdZq > 0,
2 Jv
as
%d(x +iy) Ad(z — iy) = dz A dy.
In particular, if w € Q*(V) — {0}, then
i

—/wmzi/|fa(za)\2dzaAdza>o (3.5.4.1)
2 Jy 2 ),

(writing we = fo(2a) dza)-

3.6 Genus and the Riemann-Hurwitz formula

(3.6.1) The genus. Let X be a compact Riemann surface. By 3.5.3, X is orientable, hence homeomorphic
to a sphere with g handles. The integer g = g(X) > 0 is called the (topological) genus of X.

(3.6.2) The Euler (— Poincaré) formula. For every triangulation of X, denote by s; the number of
simplices of dimension i = 0, 1,2 in the triangulation. Then

S0 — 81+ 82 =2 —2¢g(X).
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(3.6.3) The Riemann-Hurwitz formula. Let f: X — Y be a non-constant holomorphic map between
compact Riemann surfaces. Then

29(X) —2 = (2(Y) — 2)deg(f) + > (ea — 1).
reX

(3.6.4) Exercise. Prove 3.6.3 by considering suitably compatible triangulations of X and Y.

(3.6.5) Example: If X is a compact Riemann surface and f : X — P1(C) is a holomorphic map of
degree deg(f) = 2, then

29(X)—2=-4+|9], S={reXl|e,=2}={r e X|e, #1};

thus there are |S| = 2n (n > 1) ramification points of f and g(X)=n — 1.
3.7 Smooth complex plane curves are Riemann surfaces

(3.7.1) Smooth affine plane curves

(3.7.1.1) An affine plane curve over a field K is a polynomial equation

Ve fz,y) =0,

where f(x,y) € K|[z,y] is a polynomial with coefficients in K. Note that, with this definition, the curves
“y = 0" and “y? = 0”7 are not the same objects.

(3.7.1.2) Definition. Let L D K be a field and P = (xp,yp) € V(L) a point on V with coordinates in L.
We say that P is a smooth point of V' if

af . of
(555 m) 2 0.0

(3.7.1.3) Examples: (i) Each point of V;:y =0 is smooth.
(i) No point of Va5 :y? =0 is smooth.
(iii) The point (0,0) is not smooth on either of the curves
Va:y? —a® =0, Vity? —a?(x+1).
All other points on V3, V, are smooth.

(3.7.1.4) Exercise. Smoothness of P on V is invariant under every affine change of coordinates

x=azx + by +c, Y =da’ +ey + f, ae — bd # 0.

(3.7.1.5) Definition. We say that V' is a smooth affine plane curve over K if every point P € V(K)
is smooth on V' (where K is an algebraic closure of K ).

(3.7.1.6) Exercise. IfV is smooth, then
(Vfield LD K)(VQ € V(L)) Q is smooth on V.

[Hint: Use the Nullstellensatz.]

(3.7.2) Proposition. If K C C is a subfield of C and V is a smooth affine plane curve over K, then:

(i) The set of complex points V(C) of V' has only finitely many connected components.

(ii) Each connected component X of V(C) has a natural structure of a Riemann surface (in which the
functions x,y are holomorphic on X ).
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(iii) IfV : f(x,y) = 0 is geometrically irreducible (i.e. if the polynomial f is irreducible in K[z,y] <= f
is irreducible in Clz,y]), then V(C) is connected.

Proof. We can assume that K = C. (i) Exercise. (ii) Put

X ={P = (zp,yp) € X |0f/0x(P) # 0}, X, ={P = (xp,yp) € X|0f/0y(P) # 0}.

By 3.7.16, X = X, UX,. If P € X, (resp. P € X,), then 3.4.2 (Theorem on Implicit Functions) tells
us that there exists an open neighbourhood Up, (resp. Up,) of P contained in X, (resp. in X,) such
that the function y — yp (resp. x — xp) defines a homeomorphism between Up, (resp. Up,) and an
open neighbourhood Wp of 0 € C, and that X NUp, = {(fr(2),2 +yp)|z € Wp} (resp. X NUpy =
{(z+zp, fr(2) ]|z € Wp}), where fp(z) is a holomorphic function in Wp.

We want to show that the collection {(Up,,y —yp)|P € X} U{(Upy,x —zp)| P € X,} defines an
atlas on X.

If P,@Q € X, then the local coordinates y — yp and y — yg are compatible on Up, NUqg », 88 y —yg =
y—yp + (yp — yg) is a holomorphic function in y — yp (and similarly for the local coordinates x — zp and
x —aq for P,Q € Xy).

IfPeX,, Qe X,andU =Up, NUg,y # 0, then U C X, N X, and for R € U, z(R) —zq is a
holomorphic function of y(R) — yp (and vice versa), again by 3.4.2.

(iii) After a linear change of coordinates we can assume that

flay) =y" +ar(@)y" "+ + an() (aj(z) € Clz], n > 1)

(by an elementary case of the Noether normalization Lemma). As f is ireducible in C[z,y] = C[z][y], it is
irreducible in C(z)[y], hence the discriminant of f with respect to the y-variable disc, (f) € Clz] is non-zero.
It follows that

S = {z € C|discy(f)(z) =0}
is a finite subset of C. The projection p : V(C) — C (p(x,y) = z) on the first coordinate axis has the
following properties:
(a) (YVzeC) #p '(z)<n.
(b) (VzeC-18) #piz)=n.
() (V(z,y) ep(C—9)) f/0y(z,y) #0.

The Theorem on Implicit Functions implies that the restriction of pto Y = p~1(C—95) = V(C)—p~1(9)
is an unramified covering. As Y is dense in V(C), it is sufficient to prove that Y is connected.

Elementary properties of unramified coverings imply that, for each connected component Y; of Y, the
restriction of p to p; : ¥; — C — S is also an unramified covering. In particular, Y =Y;U--- Yy is a disjoint
union of N < n connected components, thanks to (a). Applying the Theorem on Implicit Functions again,
we see that, locally on C — S, the projection p; admits sections given by the formulas

z — (z,8:(x)), 1<i<ry),

where each s; is holomorphic. The coefficients of the polynomial

Tj

fi =TI =si(x)) € 0(C - 9y

=1

are holomorphic functions defined globally on C — S, which yields a factorization

f="J1fn €Clz,yl

The same argument as in the proof of the Gauss Lemma (“the contents of a product of polynomials is equal
to the product of the contents of the factors”) shows that each factor f; is contained in C[z,y]. Irreducibility
of f then implies that N = 1 as claimed.
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See also ([Ki], 7.22) or ([Fo], 8.9) for variants of this proof.

(8.7.3) Example: For the circle V. =C : 2?2 +4y*> -1 =0and P = (zp,yp) € C(C), y — yp is a local
coordinate at all P # (0,+1) and = — zp is a local coordinate at all P # (£1,0).

(3.7.4) Smooth projective plane curves

(3.7.4.1) A projective plane curve over a field K is a polynomial equation

V:F(X,Y,Z) =0,
where F(X,Y,Z) € K[X,Y, Z] is a homogeneous polynomial of degree d > 1 with coefficients in K.
(3.7.4.2) Let P= (Xp:Yp: Zp) € V(L) be a point on V with homogeneous coordinates in a field L D K.
The point P is contained in one of the standard affine planes {X # 0}, {Y # 0}, {Z # 0} covering P?. If,
for example, Yp # 0, then P € V(L), where
Vo flu,v) = F(u,1,v) =0

is the equation of the affine plane curve

VN{Y #£0} c{Y #0} = A2

written in the affine coordinates u = X/Y,v = Z/Y on {Y # 0} = A% We say that P is a smooth point
of V if it is a smooth point of V.

(3.7.4.3) Exercise. Show that P is a smooth point of V if and only if

oF OF oF
(5x(P) 5P 557 ) # 0.0.0)

Deduce that the definition of smoothness in 3.7.4.2 does not depend on any choices and is invariant under a
projective change of coordinates (by an element of PGL3). [Hint: Use the fact that XDx + Y Dy + ZDy
(where Dy = 0/0T ) acts on F by multiplication by deg(F).]

(3.7.5) Proposition. If K C C is a subfield of C and V is a smooth projective plane curve over K, then:
(i) The polynomial F(X,Y, Z) is irreducible in C[X,Y, Z].

(ii) The set of complex points V(C) of V is connected.

(iii) V(C) has a natural structure of a compact Riemann surface.

Proof. (i) Exercise (use Bézout’s Theorem). (ii) See 3.7.2(iii). (iii) Exercise (use 3.7.2 and the compactness
of P?(C)).

(3.7.6) Example: For the projective circle V = C : X2+ Y2 — 22 =0, C(C) = P}(C) (cf. 0.3.1.0 and
3.8.4 below).

(3.7.7) A hyperelliptic example: Let K be a field of characteristic char(K) # 2 and

f(@)=ao(x— 1) (z —an) = apx” + 12"~ + -+ + a, € Klz]

a polynomial with coefficients in K of degree n > 3 with distinct roots a1,...,a, € K. Consider the affine
plane curve

Viy?—f(z)=0

and the corresponding projective plane curve

ViY2Z2" 2 —ap(X —arZ) - (X —anZ) = Y222 — (X" + a1 X" Z + -+ anZ") =0
(where x = X/Z,y =Y/Z).
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We are looking for non-smooth points on V.IfP= (z,y) € V(K) is a non-smooth point on V, then

y?— fx)=0, 2y=0, —f'(z)=0.

As 2 is invertible in K, it follows that y = 0, hence f(x) = f'(x) = 0. This contradicts our assumption that
f has only simple roots, hence the affine curve V' is smooth.
What about the points at infinity? There is only one such point O, as

VIE)-V(E)=V(E)N{Z=0}={0=(0:1:0)},

contained in the standard affine piece {Y # 0}. Passing to the affine coordinates v = X/Y = z/y,v =
Z]Y = 1]y, the point O corresponds to (u,v) = (0,0), and the affine curve V N {Y # 0} is given by the

equation

Z\"? X Z X Z

y) “l\ly -oy) oy oy ) =0
ie.

glu,v) = v"% — (apu™ + aru™ v+ + a,v™) = 0.

As

P o 1, ifn=3

%90,00=0,  Z(0,0) =

du v 0, if n > 3,

it follows that O = (0 : 1 : 0) is a smooth point of V if and only if n = 3.
(3.7.8) The hyperelliptic example continued: If n = 2m > 4 is even, then there is a simple way to
resolve the singularity of the curve V at O: the polynomial
g(u) = u®" f(1/u) = azmu®™ + -+ + a1u + ag
has distinct roots and satisfies g(0) = ag # 0. Consider the affine plane curves
Viy?—f(z)=0, W:v®—g(u)=0;

they are both smooth. The formulas

u=1/z, v=y/z™, x=1/u, y=uv/um. (3.7.8.1)
define an isomorphism

Vn{z#£0 —Wn{u#0}

Imitating the construction of P!(C) by gluing together two copies of C along C* via the map 1/z (cf.
3.1.4(5)), we can glue together V and W along their open subsets V N{z # 0} (resp. WN{u # 0}) according
to the formulas (3.7.8.1). The resulting object will be a projective curve U (exercise!) which is smooth
(although we have not yet defined smoothness for non-plane curves). There are exactly two points O+ in

U(K) - V(K) ={0+ = (u,v) = (0,£Vao) };

they correspond to the two branches of 1% meeting at O, i.e. to the two choices of a sign in the asymptotic
behaviour

(,y) — O1 <= z— 00, y/z™ — ++/ap.

(3.7.9) Exercise. Resolve the singularity of V at O if n =2m —1 > 5 is odd.
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3.8 Geometry of the circle revisited

We are now ready to answer Question 2.4.6(iv) about the values of integrals of w = dy/z on (the complex
points of) the circle C': 2% + y? = 1.

(3.8.1) Let us return to the situation considered in 2.1 (in the light of the discussion in 2.4): intersecting
the affine circle C(C) with two lines

Lop:y—ar—>b=0, La/yb/:y—a/x—b’:O

(where a,a’ € C — {%i}) we obtain intersection divisors

D=(P)+(P), D' =(P)+(P)
on C(C). We know that (using the notation from (2.4.1.1))

D D’
aza':>/ wE/ w (mod 27Z)
o o)

(in fact, it is easy to see that the converse implication also holds). Our goal is to find an abstract reformulation
of the condition “a = a’”. To this end, consider the function

y—axr—> Y —aX —-bZ

vy A G g A

where ¢ € C* is a constant, to be specified later. What can we say about f? It is a meromorphic function
on the projective circle C(C), with zeros at Py, P, and poles at Pj, Pj. More precisely, the divisor of f,
defined as

div(f) =) _ordp(f)(P),
P

is equal to

div(f) = (P1) + (P2) = (P{) = (P;) = D - D".
We can also look at the behaviour of f at the two points at infinity Py = (1:4i:0) € C(C) — C(C):

JP) =il Py =

i—a'’

—i—a'
Choosing ¢ so that f(Py) =1, we have

(t —a')(—i—a) _ 1+ad +i(a’ —a)
(i—a)(—i—a') 14ad —i(a —a)

f(P-) =
hence

a=d < f(P)=f(P.)=1
This suggests the following tentative answer to Question 2.4.6(iv).

(3.8.2) Conjecture. Let Dy =}, m;(P;), D2 =}, ni(Qr) be two divisors on C(C) of the same degree
>_;my = >,k and such that P; # Py # Qy for all j, k. Then

D1 D»> ~
/o w= /o w (mod27Z) <= (g € M(C(C))*) ¢g(Py)=g9g(P-)=1, D; — Dy =div(g)
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(the implication “—=" being a special case of Abel’s Theorem).

(3.8.3) Exercise. Generalize the calculation from 3.8.1 to the case when Lq Is replaced by the curve
(2.2.7.4). What is the relation to the conditions (2.2.7.5) and to 3.8.27

(3.8.4) Exercise. The map
c(C) — C7, (z,y) — z=z+1iy

extends to a holomorphic isomorphism of Riemann surfaces A : C(C) — PY(C), under which P, (resp.
P_) is mapped to 0 (resp. 00) and A*(dz/z) = idy/x = iw.

(3.8.5) Proof of Conjecture 3.8.2. Applying A, we are reduced to prove the following statement about

the multiplicative group C*:
Let Dy =3, m;(P;), Da = > ; ni(Qy) be two divisors on P!(C) of the same degree >_;mj = ny and

such that P; # 0,00 # Qy for all j, k. Writing D = Dy — Dy =3 _,(b;) — >_,(a;), then

dz b dz . 1 N .
/D — = Z/ - = 0€ C/2miZ < (g e M(P(C))*) g¢(0) =g(o0) =1, div(g) = D.

z

Noting that (cf. 3.9.7 below)

fz) = H j - Zj (3.8.5.1)

is the unique function f € M(P'(C))* satisfying div(f) = D and f(co) = 1, the statement follows from the

fact that
dz b;
exp /_>: - = f(0),
([4 T =10

as
d d

—Z—OEC/27TZZ = exp(/ —Z>:1€C*.
D % D Z

(3.8.6) The additive group (C,+). Let us try to apply the same argument to the differential w = dz €
QYC). If D = >-5(b5) = >25(ay) (aj,b; € C) is a divisor of degree zero, then the function f(z) defined by

(3.8.5.1) is, as in 3.8.5, the unique function f € M(P!(C))* satisfying div(f) = D and f(cc) = 1. The
integral

b.
/dz::§ /sz:E b~ a;eC
b i i i

has a well-defined value in C (there are no periods, as C is simply connected). Writing the power series
expansion of f at the point co in terms of the local coordinate w = 1/z, we see that

f= H1_ =1+ Zaj Zb w+ O(w?),

hence

/dZ:O = Zaj—ijzo <= ordeo(f —1) > 2.
D

J J
3.9 Divisors on Riemann surfaces

Throughout 3.9, X is a Riemann surface. The results from 3.8 suggest that the following objects could be
of interest.
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(3.9.1) Definition. A divisor on X is a locally finite formal sum

D= np(P) (np € Z),
PeX
where “locally finite” means the following: denoting by supp(D) := {P € X |np # 0} the support of D,
we require that, for each compact subset K C X, the intersection K N supp(D) be finite (in particular, if
X itself is compact, then “locally finite” = “finite”). The set Div(X) of all divisors on X is an abelian
group with respect to addition. The divisor D is effective (notation: D > 0) if all coefficients np > 0 are
non-negative.

(3.9.2) Definition. The divisor of a meromorphic function f € M(X)* (resp. the divisor of a
meromorphic differential w € QL (X) —{0}) is

div(f) = Z ordp(f)(P), div(w) = Z ordp(w)(P)
pPex Pex
(the sums are locally finite, as observed in 3.2.2.8 and 3.3.9, respectively). The divisors of the form div(f)
(f € M(X)*) are called principal divisors; they form a subgroup P(X) C Div(X).
(3.9.3) Definition. If X is compact, then the degree of a divisor D =), np(P) € Div(X) is deg(D) =
S pnp € Z (a finite sum!). Denote by Div’(X) = Ker(deg : Div(X) — Z) the subgroup of divisors of
degree zero. By 3.3.11, P(X) is in fact contained in Div’(X).

(3.9.4) The map div : M(X)* — Div(X) is a homomorphism of groups (because of the first statement in
3.2.2.7) with image P(X). If X is compact, then the kernel of div is equal to C*, by 3.2.3.3.

(3.9.5) Definition. The divisor class group of X is the quotient abelian group Cl(X) = Div(X)/P(X).
If X is compact, then the subgroup of divisor classes of degree zero is denoted by C1°(X) = Div®(X)/P(X).

~— —

(3.9.6) To sum up, if X is compact, then there are exact sequences
0— C* — M(X)*5Div(X) — CU(X) — 0
0 —C" — M(X)*iDivO(X) — CI°%(X) —0

0 — Cl(X) — CUX)-2&7 — 0.
(3.9.7) Exercise. Show that CI°(P(C)) = 0.
(3.9.8) Exercise. Show that M(P!(C)) = C(z), i.e. every meromorphic function f on P1(C) is a rational
function in the standard coordinate z. [Hint: Consider the divisor of f.]
(3.9.9) If X is not compact, then every divisor on X is principal, i.e. Ci(X) = 0 ([Fo], 26.5).

(3.9.10) Exercise-Definition. Let f : X — Y be a non-constant proper holomorphic map between
Riemann surfaces. Then the map

yey zeX
defines a homomorphism of abelian groups f* : Div(Y) — Div(X) satisfying
(Vg e M(Y)")  f*(div(g)) = div(go f)
(VD € Div(Y)) deg(f*(D)) = deg(f) deg(D) (provided X is compact).

(3.9.11) Definition. Let X be a compact Riemann surface and m = Y mp(P) > 0 an effective divisor
with support S = supp(m). Define

Divg(X) = {D € Div(X) [supp(D) NS =0},  Dive(X) = Divg(X) N Div’(X),
Po(X) ={div(f)| f e M(X)*, (VP € S)ordp(f —1) > mp}
Cln(X) = Divg(X)/Pn(X), CI%(X) = Divy(X)/Pu(X).
The abelian group Cly,(X) is called the divisor class group of X with respect to the modulus m.

(3.9.12) Using this notation, the calculations from 3.8.5-6 can be reformulated as follows.
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(3.9.13) Proposition. (i) The maps
Div?opo}(Pl(C)) — C/2miZ, w=dz/z
D~ / w, o )
D Div{,,(P*(C)) — C, w=dz
induce isomorphisms of abelian groups

(ii) The maps
(C*, %) — Cllyy4(00)(P'(C)), @+ the class of (a) — (1)

(C,+) — Clg(oo)(Pl(C))7 a +— the class of (a) — (0)
are isomorphisms of abelian groups.

(3.9.14) Corollary. The maps

x

P +— the class of (P) — (O), D — / &y
D

induce isomorphisms of abelian groups
(C(C),B) =5 ClYp, y, (p,(C(C)) = C/2nZ.

Proof. Apply the isomorphism A from Exercise 3.8.4.

(3.9.15) Why is this interesting? The point is that the group law “B” on C(C), which was originally
defined by transporting the additive group law “+” on C/27Z via the composite bijection

Py
C(C) = CJ2rZ, pH/ dy
o) X

admits a purely algebraic description, via the bijection

C(C) =5 Clfp, 4 (py(C(C)), P+ the class of (P) - (O).

(3.9.16) Exercise. Let m = (ay) + --- + (an) + (00) € Div(P(C)), where ay,...,a, € C (n > 0) are
distinct points in C. Determine CI3,(P*(C)), by generalizing 3.9.13(i).

4. Cubic curves y? = f(z)
4.1 Basic facts
(4.1.1) Let

f(x) = (= e1)(z — e2)(z — e3) = 2° + az® + bx + ¢ € Cla]

be a cubic polynomial with distinct roots e; € C. Let E be the projectivization of the affine plane curve
2 .
y* = f(z), ie.

E:YZ=(X-e12)(X —exZ)(X — e37)
(where x = X/Z,y = Y/Z). We know from 3.7.7 that E is a smooth projective plane curve over C with

a single point at infinity O = (0:1:0) (E(C)Nn{Z =0} = {O}). By 3.7.5, E(C) is a compact Riemann
surface (one can observe directly that E(C) is connected; see the pictures in [Re], p.44 or [Cl], 2.3).
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(4.1.2) Exercise. Show that the projection map

p:E(C) —PYC), plz,y)=z, p0)=c
is holomorphic, of degree 2 and the set of ramification points {(ey,0), (e2,0), (e3,0),0} (with ramification
indices equal to 2).

(4.1.3) Corollary. By the Riemann-Hurwitz formula, the genus g = g(E(C)) of E(C) satisfies 2g — 2 =
(=2)-244(2—1) =0, hence g =1.

4.2 Holomorphic differentials on E(C)

(4.2.1) The affine coordinates x and y are non-constant meromorphic functions on E(C) satisfying y? =
f(x); thus

dx dy 1
w=—= € User
2y f'(2)

is a (non-zero) meromorphic differential on E(C).

(E(C))

(4.2.2) Proposition. w is a holomorphic differential on E(C) without zeros, i.e. ordp(w) = 0 for all
P e E(C) (<= div(w) =0).

Proof. Let P = (xp,yp) € E(C) —{O} be a point on the affine curve
V=E—{0}:h(z,y) =y*~ f(x) =0.

We know that P is a smooth point; this means that either 0 # dh/0x(P) = —f'(xp), in which case y — yp
is a local coordinate at P and

ordp(w) = ordp (%) =0,

or 0 # 0h/0y(P) = 2yp, in which case © — zp is a local coordinate at P and

wdete) =orts (12721 o,

For P = O we pass to the coordinates u = x/y,v = 1/y used in 3.7.7; then O corresponds to (u,v) = (0,0)
and the affine part EN{Y # 0} of FE is given by the equation

g(u,v) =v — (u—e1v)(u — eqv)(u — e3v) = 0.

As 0g/0v(0,0) # 0, u is a local coordinate at O, hence

3
ordp(u) =1, ordp(v) > 1, ordo(u —ejv) > 1, ordp(v) = Zordo(u —ejv) > 3.
j=1
By 3.2.2.7, we have
3
ordop(u — ejv) = min(1, ordp (v)) = 1, ordp(v) = Zordo(u —e;v) =3,
j=1
hence (using 3.3.8)

ordp(y) = ordp(1/v) = -3, ordp(z) = ordp(u/v) = -2, ordp (dz) = -3, ordp(dz/2y) = 0,

as claimed.
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(4.2.3) Proposition. w generates the space of holomorphic differentials on E(C): Q'(E(C)) = C - w.

Proof. If w1 € QY(E(C)) — {0}, then w; = f - w for some (non-zero) meromorphic function f € M(E(C))
(by 3.3.14). As w; is holomorphic, we obtain from 4.2.2
(VP € E(C)) 0<ordp(wi)=ordp(w)+ ordp(f) = ordp(f),
hence f € O(E(C)) is holomorphic; however, O(E(C)) = C, by 3.2.3.3.
(4.2.4) Analytic genus. Let X be an arbitrary compact Riemann surface. The dimension of the space of
holomorphic differentials
Jan(X) == dimc Q' (X)

is sometimes referred to as the analytic genus of X. It follows from the Riemann-Roch Theorem (see 77
below) that

(Vw € QL (X) = {0}) deg(div(w)) = 2gan(X) — 2 (4.24.1)

(note that deg(div(w)) does not depend on the choice of w, by combining 3.3.16 and 3.3.11).
If f: X — Y is a non-constant holomorphic map between compact Riemann surfaces and w €
QL. (Y) — {0}, then Lemma 3.3.13 implies that

mer
div(f*(w)) = f*(div(w)) + > (ea (4.2.4.2)
reX
Combining (4.2.4.1-2) with 3.9.10 we obtain the Riemann-Hurwitz formula 3.6.3, this time for the ana-
lytic genus. As g,,(P}(C)) = 0 = g(P!(C)) (exercise!), letting f : X — P1(C)) be any non-constant
meromorphic function, the comparison of the two Riemann-Hurwitz formulas shows that

Jan(X) = g(X). (4.2.4.3)

In particular,

if g(X)=1, then (Vwe QYX)-{0}) div(w)=0, (4.2.4.4)

as div(w) is an effective divisor of degree 0.
For X = E(C), we have verified (4.2.4.1,3,4) explicitly.

(4.2.5) Hyperelliptic curves. Let f(z) € Clz] be a polynomial of even degree deg(f) = 2m > 4 with
distinct roots. As in 3.7.8, put g(u) = u*™ f(1/u) € Clu] and consider the smooth affine plane curves over
C

Viy?— f(x) =0, W:v? —g(u) =0

and the isomorphism

u=1/z, v=y/z™, x=1/u, y=v/u™ (4.2.5.1)

between VN{z # 0} = V {P+,P Yand Wn{u #0} =W —{04,0_}, where Py = (x,y) = (0, £+/f

O+ = (u,v) = (0,£+/9(0)) (we have O1 # O_, but the points P, P_ are not necessarily dlStlnCt). Gluemg
together V(C) and W(C) along their open subsets V(C) — {P4, P_}, W(C) — {O4, O_} using the formulas
(4.2.5.1), we obtain a Riemann surface X (cf. 4.2.6(i)). In fact, X = U(C), where U is the curve from 3.7.8.

(4.2.6) Exercise. Let p: X — P1(C) be the map

p(z,y) = (z: 1), (x,y) € V(C); p(u,v) = (1:uw), (u,v) € W(C).

Show that
(i) The natural topology on X is Hausdorff.
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(ii) X is connected (draw a picture! — see [Ki], 1.2.3).

(iii) p is a proper holomorphic map of degree deg(p) = 2.

(iv) X is compact.

(v) The ramification points of p are (z,y) = (z;,0), where z1, ..., %2y € C are the (distinct) roots of f(x).

(4.2.7) Tt follows from 4.2.6 and 3.6.5 that g(X) = m — 1. The same calculation as in the first half of the
proof of Proposition 4.2.2 shows that the meromorphic differential

d 2d
= _x = /y 6 QIlneI‘
( Iz

is holomorphic on V(C) and has no zeros there. Similarly, du/v is holomorphic on W(C) and has no zeros
there. The formulas (4.2.5.1) imply that, for each k € Z,

(X)

k ok dx um k=2 dy
riw = =— ;
Y v

hence

div(zFw) = k(Py) + k(P_) + (m —k —2)(0O4) + (m — k —2)(0_), deg(div(z*w)) = 2m — 4 = 2¢9(X) — 2,
as

div(z) = (Py) + (P-) — (04) — (O-), div(u) = —div(z).
It follows that
z* dx
)
in fact, the differentials (4.2.7.1) form a basis of Q!(X), as dimc(Q2'(X)) = g(X) = m — 1. This is why they
appeared in (2.2.7.5)!
In the special case m = 2 (<= deg(f) = 4), we obtain that div(w) = 0, verifying (4.2.4.4) explicitly.
The proof of 4.2.3 then yields directly Q'(X) = C - w, without using the general theory invoked in 4.2.4.

eNX) <= 0<k<m—2; (4.2.7.1)

(4.2.8) Exercise. Let V : f(z,y) = 0 be a smooth affine plane curve over C of degree deg(f) = d > 1
such that its projectivization V : F(X,Y,Z) = Zf(X/Z,Y/Z) = 0 C P? intersects the line at infinity
at d distinct points V(C)N{Z = 0} = {P1,...,P;}. Show that V is smooth and that the divisor of the

meromorphic differential
_dx dy

w=-—=——¢eQL _(V(C))-{0
oo (V(C)) - {0}
is equal to
d
div(w) = (d—=3)Y_(F)),

j=1
hence the genus of V(C) is equal to
(d—1)(d—-2)

g(V(C)) = 1+ div(w)/2 = 5

Deduce that the differentials

giylw  (0<id,j;i+j<d—3)

form a basis of Q}(V(C)), hence
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QNV(C)) = {h(z,y)w| h(z,y) € Clz,y], deg(h) < d — 3}.

4.3 Topology of E(C)

(4.3.1) We know from 4.1.3 that E(C) is a compact oriented surface of genus ¢ = 1. This implies
that the fundamental group m(E(C),0) is abelian, naturally isomorphic to the first homology group
H,(E(C),Z) =~ Z2. Choose a Z-basis [y1],[12] of H1(E(C),Z) = Z[v1] ® Z[Y2] and put

wj:/ weC (1=1,2).
(]
The group of periods of w on E(C) is then equal to
L= {/ w|v a closed path on F(C)} = Zw; + Zws C C.
2l

(4.3.2) Proposition. L is a lattice in C, i.e. the periods wi,ws € C are linearly independent over R. More
precisely, if [y1], [y2] are represented by closed paths 1, v2 based at O, disjoint outside O, with tangent vectors
to v2,71 (in this order) forming a positively oriented basis of the tangent space at O, then Im(w;ws) > 0.

Proof. Cutting E(C) along the paths -1, 72, we obtain a simply connected domain D. For P € D, define
f(p) = fg w, where the integral is taken along (any) path in D. This defines a holomorphic function
f € O(D) satisfying df = w. As

d(fo)=df N\w+ fdo=w A
in D, Stokes’ theorem yields

3/' wAT =~ | fa@. (4.3.2.1)
2 Jec) 2 Jop

As the values of f(P) on two points of 9D corresponding to the same point of v; (resp. v2) differ by wsy
(resp. by wy), the integral (4.3.2.1) is equal to

7
5 (wlwg — wlwg) = Im(wlwg).

(see ([Gr-Hal, Sect. 2.2; [MK], 3.9) for a more general calculation). Proposition follows, as (4.3.2.1) is
positive by (3.5.4.1)

(4.3.3) Corollary. The quotient C/L is a compact Riemann surface and the canonical projection C —
C/L is an unramified covering.

(4.3.4) Attentive readers will have noticed that the proof of Proposition 4.3.2 works for any non-zero
holomorphic differential ¢ on any compact Riemann surface X of genus 1. However, it follows from the
Riemann-Roch Theorem that every such pair (X, ¢) is isomorphic to (E(C),w), for a suitable cubic polyno-

mial f(x).
4.4 The Abel-Jacobi map

(4.4.1) Asin 0.2.1, one can define the Abel-Jacobi map for E(C) by the formula

P
a: E(C)— C/L, a(P) = /O w (mod L).

This is a holomorphic map satisfying o*(dz) = w and the induced map on homology groups
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a, : H(E(C),Z) — H1(C/L,Z) = L

is an isomorphism, as
{/ dz |~ a closed path on C/L} = L.
~

Above, the canonical identification of L and the first homology group of C/L is defined as follows: one
associates to each u € L the homology class of the projection to C/L of any path in C from 0 to u (this is
well-defined, as C is contractible).

(4.4.2) Theorem. The map o : E(C) — C/L is an isomorphism of compact Riemann surfaces.

Proof. By 3.2.3.4 it is sufficient to show that « is bijective. For each P € E(C),

ordp(a®(d(z — a(P)))) = ordp(a™(dz)) = ordp(w) =0,
hence ep = 1, by 3.3.13 (in other words, we use (4.2.4.2) for f = « and w = dz). This implies that « is an
unramified covering, by 3.2.3.5. As the induced map on fundamental groups
7T1(E(C), O) = Hl(E(C)v Z)L)Hl(C/L7 Z) = 7."1((3/L7O)

is an isomorphism, theory of covering spaces implies that « is a bijection, as required.
(4.4.3) The inverse of . The Abel-Jacobi map « is an analogue of the function arcsin (resp. log) from
0.1 (resp. 0.2.3). Its inverse is then a natural generalization of the functions (sin, cos) (resp. exp).
For 2 € C/L—{0}, a=1(z) € E(C)—{O} is given by a pair of holomorphic functions U,V on C/L—{0}:
a™H(z) = (U(2),V(2)) = (z,y).
The relations y? = f(z) and dz/2y = a*(dz) imply that

V(2)? = f(U(2) = U(2)® + aU(2)* + bU(z) + ¢,
U'(2)dz/2V (2) = dz = U'(2) = 2V (2),

hence

U'(2)? =4(U(2) 4+ aU(2)* + U (2) + ¢).

The functions U(z), V(z) are meromorphic on C/L and satisfy

ordg(U(z)) = ordp(z) = -2, ordog(V (z)) = ordo(y) = =3,

by the calculation at the end of the proof of 4.2.2.

U(z) and V (z) are prototypical examples of elliptic functions, i.e. doubly periodic (with respect to wy
and wg) meromorphic functions on C. It would be interesting to have a more direct construction of these
functions. This will be (among others) the subject matter of the next three sections.

(4.4.4) Tt follows from (4.2.4.4) that the discussion in 4.4.1 and the proof of Theorem 4.4.2 apply to any
compact Riemann surface X of genus 1 and any non-zero holomorphic differential w € Q'(X) — {0} (in
particular, to X and w from 4.2.7 for m = 2).
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5. Elliptic functions (general theory)
5.1 Basic facts

Throughout Section 5, L C C is a lattice, i.e. an additive subgroup of the form L = Zw; + Zws, where
w1, ws € C are linearly independent over R.

(5.1.1) Change of basis. We have L = Zw] + Zw)}, if and only if
W) = aw; + bw a b
Lo ( € GLy(Z).
Wy = cwiy + dwa, c d

Recall that GL,(R) denotes, for every commutative ring R, the group of those invertible n X n matrices
with coefficients in R whose inverse also has entries in R (i.e. whose determinant is invertible in R).

We often consider only positively oriented bases wy,ws, i.e. those for which Im(w;/w2) > 0. In that
case the new basis w], wj is positively oriented if and only if

a b
( d) € {g € GLy(Z)|det(g) > 0} = SLo(Z).

c

(5.1.2) A function F : C — C (resp. — P1(Q)) is called L-periodic if it factors as

F:c2.c/L—L-C  (tesp. —L-P(C)),
ie. if
F(z+u)=F(z) (z€C,uel).
As the projection pr is an unramified covering, F' is holomorphic (resp. meromorphic) if and only f is.

(5.1.3) Definition. An elliptic function (with respect to L) is a meromorphic function f € M(C/L)
(equivalently, an L-periodic meromorphic function F = f o pr € M(C)).

(5.1.4) Lemma. A holomorphic elliptic function is constant.

Proof. C/L is a compact Riemann surface.

(5.1.5) Our goal is to describe explicitly all elliptic functions with respect to L. We begin by investigating
their divisors.

5.2 Divisors of elliptic functions
(5.2.1) Proposition. Let f € M(C/L) —{0}. Then

D ordy(f)=0€Z

z€C/L

Z ord,(f)-z=0€ C/L

z€C/L

(in the second statement, the sum is taken with respect to the addition on C/L).

Proof. Compute the integral of f'(z)/f(z)dz (resp. of zf'(2)/f(z)dz) over the boundary dD of a funda-
mental parallelogram D = {z = a + t1w1 + tows |0 < t1,t9 < 1} for the action of L on C (for a € C chosen
in such a way that f(z) has no zeros nor poles on 9D). See ([La], Ch.1, Thm. 2,3; [Si 1], Ch. VI, Thm. 2.2)
for more details.

(5.2.2) This result can be reformulated as follows: the group of principal divisors P(C/L) € Div?(C/L) is
contained in the kernel of the “sum” homomorphism
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B : Div(C/L) — C/L, > ni(P) Y n,P (5.2.2.1)

(where the second sum is the addition on C/L). In other words, B induces a homomorphism (surjective)

B:ci°(c/L) — C/L. (5.2.2.2)
The next step is to show that the conditions in 5.2.1 characterize divisors of elliptic functions, i.e. that
(5.2.2.2) is an isomorphism generalizing the isomorphisms from 3.9.13(ii) and 3.9.14.

5.3 Construction of elliptic functions (Jacobi’s method)

(5.3.1) Change of variables. It is often useful to normalize the lattice L and the torus C/L by the
following changes of variables (isomorphisms of compact Riemann surfaces):
C/(Zw, + Zws) ~ C/(Z1 + Z), Z— 2/we (5.3.1.1)

(where 7 = w1 /wa, Im(7) > 0) and

C/(ZT +Z) = C* /4%, 2 t = 2T (q=e*™7,0< |q| < 1). (5.3.1.2)

In other words, we get rid of the period 1 by applying the exponential map

c}/zi}c}*7 Z’_>627Tiz,
which replaces the additive periodicity with respect to 7 by the multiplicative periodicity with respect to q.

(5.3.2) Multiplicative periodicity. In terms of the multiplicative variable ¢ = exp(27iz), an elliptic
function f € M(C*/q?%) is the same thing as a meromorphic function f € M(C*) satisfying

flat) = £t (teC, lal <1). (5.3.2.1)

A natural attempt to construct such a function would be to consider the following infinite product:

t)=[] 9(a"t) (5.3.2.2)

nez

for a suitable function g(t). Taking the simplest choice of g(¢) = 1 — ¢ (which has a simple zero at the origin
t = 1 of the multiplicative group C*), we see that the two parts of the infinite product

[Ta-g¢=]]a-qt) [[Q-q") (5.3.2.3)
neZz n>0 n<0
have a completely different behaviour: as »° -, |¢"| < oo, the product over n > 0 is convergent, but the
terms of the product over n < 0 have absolute values tending to infinity (since [¢7!| > 1).
This means that we have to modify the terms corresponding to n < 0 in (5.3.2.3) to ensure the conver-
gence. A natural guess would be to replace (1 — ¢"t) by (1 — ¢~"t~1), i.e. to consider the function

oo
(1—1t) H 1—q"t)(1—q"t™h) (te C*, |q| < 1). (5.3.2.4)

(5.3.3) Proposition. (i) The infinite product (5.3.2.4) is uniformly convergent on compact subsets of C*
to a holomorphic function a(t) € O(C*).
(ii) The function a(t) has simple zeros at the points t = ¢"r (n € Z) and no other zeros in C*.

(iii) a(qt) =1 —t1)/(1 —t)a(t) = -t a(t) (t e C*).

Proof. (i),(ii) This follows from the convergence of > |¢|™, by ([Ru 2], Thm. 15.6). The formula in (iii) is
proved by a direct calculation.
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(5.3.4) Back to the additive variables. Rewriting a(t) in terms of the additive variable z € C, we
define

A(z) = a(e*™).
By 5.3.3, A(z) is a holomorphic function on C with simple zeros at the points of the lattice z € Z7 +Z (and
no other zeros) satisfyng
A(z+1) = A(z)

Az +7) = —e 2™ A(2). (5.3.4.1)

Using these properties of A(z) we are now ready to prove the promised converse of 5.2.1.

(5.3.5) Proposition. Let L C C be a lattice and D = 3, n;(P;) € Div(C/L) a divisor satisfying 3 n; =
0€Zand) njP;=0¢cC/L. Then D = div(f) for some meromorph1c function f € M(C/L) — {0} (f is
determined up to mu1t1pl1cat1on by a constant, by 3.9.4).

Proof. Applying (5.3.1.1), we can assume that L = Z7 + Z, Im(7) > 0. Writing D = ) ((P;) — (Q,)) with
> P; =3 Qj € C/L (where the points P;,Q; € C/L are not necessarily distinct), there exist representatives
a; (resp. b;) of P; (resp. Q;) in C such that > a; = > b; € C. Define

z—aj

A(z — b))

This is a meromorphic function on C satisfying F(z +1) = F(z) and

F(z+7) A(z—a;+71) A(z—10y) )
= = —2mi((z — a;) — (z — b;))) = 1
F(Z) E[ A(Z _ a]) A(Z . bg 4 T) ]}Iexp( 7T’L((Z a‘]) (Z ]))) )
since > a; = Y b;. This means that F' is L-periodic, F' = f o pr for some f € M(C/L). As each term
Az — aj)
A(Z — bj)
has simple zeros (resp. simple poles) at the points a; + L (resp. b; + L), the divisor of f is equal to
> ((pr(a;)) — (pr(b;))) = 22((F;) — (Q;)) = D

(5.3.6) Theorem. The homomorphism B : Div(C/L) — C/L defined in (5.2.2.1) induces an isomorphism
of abelian groups
ci°(c/L) = /L,

with inverse given by the map
a — the class of (a) — (0).

Proof. Combine 5.2.1 and 5.3.5.
(5.3.7) One can deduce from this isomorphism all function theory on the torus C/L.
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6. Theta functions

We shall only scratch the surface of the enormously rich theory of theta functions, which is treated in great
detail in [Mu TH] (and also in [Web], [Mu AV], Ch. 1; [MK]; [Gr-Ha], 2.6, [Wei 1] and [Fa-Kr 2]).

6.1 What is a theta function?

(6.1.1) Definition. A theta function (with respect to a lattice L C C) is a holomorphic function F(z) €
O(C) satistying the functional equations

F(z +u) = 2= p(3) (z€C, uelL) (6.1.1.1)
(for some constants a(u),b(u) € C depending on u € L).

(6.1.2) Tt is sufficient to check the condition (6.1.1.1) for u belonging to a set of generators of L. This
means that a theta function with respect to L = Zw; + Zw, is characterized by the functional equations

F(Z + UJl) — ea1z+b1F(Z)

6.1.2.1
F(z 4+ wy) = e®* b2 (), ( )

where a1, as,b1,bo € C. Jacobi’s method of constructing elliptic functions (with respect to L) consists in
taking a quotient Fi/F» of two non-zero solutions of (6.1.2.1).

(6.1.3) Example: If L =Z7 +Z, g = exp(2mit) and t = exp(2miz), then the function

o
Q- JJa-qta—qth)
n=1

from 5.3.4 is a theta function (with respect to L).
(6.1.4) Question. What is a theta function? It is certainly not a function on C/L (unless it is constant).

(6.1.5) Answer. Theta functions are sections of line bundles on C/L.
6.2 A digression on line bundles

Line bundles on Riemann surfaces are discussed in ([Fol, Sect. 29, 30); general theory of vector bundles over
complex manifolds is treated in [Gr-Ha]. We follow closely (a small part of) [Mu AV], Ch. 1.

(6.2.1) Definition. Let X be a complex manifold (e.g. a Riemann surface). A (holomorphic) line
bundle over X is a complex manifold £ equipped with a surjective holomorphic map p : £ — X such
that:

(i) The fibre %, = p~(x) over each x € X is a vector space over C of dimension 1.

(ii) & is locally isomorphic to the product X x C in the following sense: there exists an open covering {U, }
of X and holomorphic isomorphisms fo, : p~1(Us) — U, x C which make the diagram

p_l(Ua) — Uy xC
Ik [
UO( _ UO(
commutative and induce linear maps on the fibres over each x € U, (above, pr denotes the projection on
the first factor). A (holomorphic) section of .Z is a holomorphic map s : X — £ such that po s = id.
The set T'(X,.%) of holomorphic sections of £ is a module over O(X). An isomorphism between £ and
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another (holomorphic) line bundle p' : ¥’ — X is a holomorphic isomorphism f : ¥ — &' satisfying
p' o f = p, which is linear on each fibre p~1(x) (v € X).

(6.2.2) More generally, if we replace C in 6.2.1(ii) by CV (and 1 in 6.2.1(i) by N), we obtain the definition
of a (holomorphic) vector bundle of rank N over X. Line bundles are much easier to study then vector
bundles of rank N > 1; the main reason being that the group of automorphisms of the fibre GL;(C) = C*
is abelian.

(6.2.3) Examples: (1) The trivial line bundle is the product pr : X x C — X. There is a canonical
isomorphism

O(X) = T(X,X x C), f=s(z) = (z, f(z)).

(2) If p: %2 — X is a (holomorphic) line bundle and f : Y — X is a holomorphic map (where Y is
another complex manifold), then the pull-back of .Z via f

L ={,0) eY xZ|f(y) =pl)}

with the map ¢(y,£) = y is a (holomorphic) line bundle over Y.
(3) By definition of the projective space,

PY(C) ={V c C""' | dim(V) = 1}.
The tautological line bundle over PV (C) is

L ={(v,V) e CN T xPN(C)|lveV}

together with the map p(v,V) =V.

(6.2.4) The basic setup. Assume that Y is a complex manifold, G a group acting on Y by holomorphic
automorphisms and that the action of each g € G — {e} has no fixed points (i.e. gy # y for all y € ).

We are going to construct line bundles on the quotient X = G\Y from lifts of the G-action from Y to
the trivial line bundle Y x C. The reader should keep in mind the following two examples:

(A) Y =C, G =L (alattice acting by translations), X = C/L.
(B) Y =CN*l {0}, G = C* (acting by multiplication), X = PY(C) (N > 1).
(6.2.5) Lifted action. In order to lift the G-action from Y to the trivial line bundle ¥ x C we must

construct, for each ¢ € G, a holomorphic map g : Y x C — Y x C which makes the following diagram
commutative:

Y xC g Y xC
lpr lpr (6.2.5.1)
Y g Y,

acts on each fiber {y} x C by a linear automorphism and such that

9192 = G192 (91,92 € G). (6.2.5.2)

In concrete terms, the linearity on the fibers amounts to

9y, t) = (9y, a4(y) 1), (yeY, teC) (6.2.5.3)

where a4 : Y — C* is an invertible holomorphic function on Y. The identity (6.2.5.2) is then equivalent to

Qg1g2(Y) = g, (92()) g, (y)- (6.2.5.4)

Conversely, if ay : Y — C* is a set of holomorphic functions satisfying the identity (6.2.5.4), then (6.2.5.3)
defines the lift of the G-action from ¥ to Y x C.
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(6.2.6) A remark for Bourbakists (only). The identity (6.2.5.4) is, essentialy, a 1-cocycle identity for
the G-action on the group O(Y)* of invertible holomorphic functions on Y. Note, however, that G acts
on O(Y)* on the right (by « * g(y) = a(gy)), since we have started with a left G-action on Y. It is more
customary to let G act on Y on the right, which then leads to the “usual” 1-cocycle relation for a left G-
action on O(Y)*. Of course, if the group G is abelian (which is the case in the two examples 6.2.4(A),(B)),
there is no difference between left and right actions.

(6.2.7) Example: If, for each g € G, oy(y) = a4 is a constant function, then (6.2.5.4) says that the map
p:G—C", p(g9) = ay

is a group homomorphism. Using this observation, we can define for each integer d € Z a lifted action in
Example 6.2.4(B) by the formula

9y, t) = (9y,9"t). (6.2.7.1)

(6.2.8) Definition of .#. Given the lifted action as in 6.2.5, the commutativity of the diagram (6.2.5.1)
implies that the projection pr induces a map between the quotient spaces

p:Z=G\(Y xC)— G\Y =X, p(@(y, 1)) = m(y).

where

7Y — G\Y, T:Y xC— G\(Y xC)

denote the canonical projections. In the generality we are considering, . and G are merely topological
spaces (equipped with the quotient topology) and p is a continuous map. However, the fact that G acts on
Y without fixed points implies that

Ty, t1) =Ty, ta) <= t1 = ta, (6.2.8.1)

hence each fibre p~!(w(y)) consists of the distincts points 7(y,t) (t € C). Moreover, the structure of the
complex vector space on p~1(w(y)) (using the coordinate t) depends only on 7(y) (as each g acts linearly on
the fibers of pr).

(6.2.9) Sections of ¥. Disregarding for the moment the question of holomorphic structure, we want
to describe set-theoretical sections of p : £ — X, i.e. maps s : X — & satisfying pos = id. The
commutative diagram

Y xC T, G\(Y xC)
[ K
Y N G\Y
together with (6.2.8.1) imply that that there is a uniquely determined function ' : Y — C such that

som(y) =7(y, F(y)) (Vy €Y). (6.2.9.1)

For which functions F' does (6.2.9.1) define a (set-theoretical) section s of .#? The necessary and sufficient
condition is that the R.H.S. of (6.2.9.1) should depend only on 7 (y), i.e.

T(g9y, F(gy)) = 7(y, F(y)) (Vy €Y, Vg € G),

which is equivalent to

m(gy, F(gy)) = 7(y, F'(y)) = 7(g(y, F(y))) = 7(gy, ag(y) F(y)),
hence, by (6.2.8.1), to
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F(gy) = a4(y) F(y) (Vy €Y, Vg € G). (6.2.9.2)

Note the similarity to the functional equation (6.1.1.1) of theta functions!

(6.2.10) In good circumstances, both X and . are complex manifolds, p : ¥ — X is a line bundle and
the description (6.2.9.1-2) of the sections of . also holds in the holomorphic category, inducing a bijection
between

(X, %) — {F € O(Y) | F satisfies (6.2.9.2)}.

The line bundles . on X obtained by this construction are not completely arbitrary: by definition, their
pull-backs to Y are trivial, 7*(.%) =Y x C.

(6.2.11) Exercise. Show that such “good circumstances” occur in the situation of 3.2.1.6 (in particular,
in Example 6.2.4(A)).

(6.2.12) Example: In the situation of 6.2.4(B), I'(X,.Z) is isomorphic to the complex vector space of
holomorphic functions

F:CcNt_ 10} — C, F(gy) = ¢ F(y) (Vg € C*). (6.2.12.1)

(6.2.13) Exercise. Show that the space (6.2.12.1) consists of all homogeneous polynomials of degree d
(resp. is trivial) if d > 0 (resp. if d < 0). Show that the case d = —1 corresponds to the tautological line
bundle from 6.2.3(3).

(6.2.14) Equivalent lifts. We obtain isomorphic objects if we reparametrize the trivial line bundle
Y x C — Y (linearly along the fibers), i.e. by a holomorphic isomorphism (a “gauge transformation”)

7Y xC-5Y xC, (y,t) = (y, By) 1),

where 3 : Y — C* is an invertible holomorphic function. This leads to a new lift gV of the G-action,
given by the commutative diagram

~

YyxC -2 YxC

[ |

-~
new

YyxCc 2 vxCcC.

Inother words,

(9y, ™ (y) B(y) t) = g"" (r(y, 1)) = r(G(y, 1) = r(9y, ag(y) t) = (9y, B(gy) ag(y) 1),

which is equivalent to

anv(y) = 29 o () (e, g€ q) (6.2.14.1)

g B(y)
In other words, a;" and «, differ by a 1-coboundary.
Under this reparametrization, . does not change, but the projection map 7 : Y x C — £ is replaced
—~new

by 7% satisfying 7"V o r = 7. Similarly, the description of the sections (6.2.9.1-2) of .Z still holds, if we
replace F(y) by

F*(y) = By) F(y). (6.2.14.2)

(6.2.15) Tensor products. All standard constructions of linear algebra can be applied to vector bundles.
In particular, given two (holomorphic) line bundles .2, %’ on X, one can form new line bundles .¥ ® %’
and £~ (the dual of .&).
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We do not give here the definition in the general case, only for £ constructed as in 6.2.8: if £ (resp.
") is constructed from the functions {ay(y)} (resp. {c(y)}) satisfying (6.2.5.4), then £ ® 2" (resp. £~ 1)
is defined using {oy(y)a, (y)} (vesp. {ay(y)~'}). In particular, there is a product

Nx, £)ecl(X, %) —-T(X, 202,

defined as follows: if s € I'(X,.Z) (resp. s’ € I'(X,£")) corresponds to a function F : ¥ — C (resp.
F':Y — C) satisfying (6.2.9.2) (resp. its analogue with o} (y) instead of ay(y)), then the tensor product
s ® s’ corresponds to the function F(y)F’(y).

(6.2.16) Exercise. Let . be a line bundle on a compact Riemann surface X. If both ¥ and £~ have a
non-zero holomorphic section, then £ is (isomorphic to) the trivial line bundle. [This gives a quick proof of
the case d < 0 in 6.2.15.]

6.3 Theta functions revisited

(6.3.1) Let us apply the general discussion from 6.2.4-15 to the objects from Example 6.2.4(A): Y = C,
G = L (alattice in C acting by translations), X = C/L. Following 6.2.5, we need a collection of holomorphic
functions ay,(z) € O(C) (u € L) satisfying

Qyto(2) = ay(z +v) ay(2) (u,v € L, z€ C); (6.3.1.1)

they define an action

U(z,t) = (2 +u, au(2)t) (we L)
on Cx C and — by 6.2.11 — a holomorphic line bundle .¥ = L\(C x C) over X. The sections of .Z correspond
to holomorphic functions F' € O(C) satisfying
F(z+u) = ayu(z) F(z) (ue L, z€C). (6.3.1.2)

If the functions «,(z) are replaced equivalent functions

B(z + u)
B(z)

where 3 : C — C* is an invertible holomorphic function, then the line bundle remains the same.

o (z) =

ay(2), (6.3.1.3)

(6.3.2) Proposition. (i) Every holomorphic line bundle on C/L is obtained by the above construction.
(ii) For every solution {cu,(z)} of (6.3.1.1) there is an equivalent solution (6.3.1.3) of the form

AoV () = (W= Hb(w) (a(u),b(u) € C).
(6.3.3) We are not going to prove 6.3.2 in this course. However, a few comments may be helpful:
(1) The statement (i) is a consequence of the fact that every (holomorphic) line bundle on C is trivial.
(2) In fact, if Y is a non-compact Riemann surface, every (holomorphic) line bundle on Y is trivial ([Fo],
30.3). This applies, in particular, to C and the unit disc A = {z € C||z| < 1}. If X is a Riemann surface
not isomorphic to P1(C), the the universal covering Y of X is isomorphic either to C or to A, and X = G\Y,
where the fundamental group G = 71 (X, z) acts on Y as in 3.2.1.6. This implies that every (holomorphic)
line bundle on X can be obtained by the construction 6.2.8 applied to this particular pair Y, G.

(3) An elegant cohomological proof of the classification of line bundles over n-dimensional complex tori
C"/L can be found in ([Mu AV], Ch. 1). See also [Wei 1] and [MK].

(6.3.4) The integrality condition. Assume that £ is the line bundle on C/L defined by the collection
of functions

o (z) = et W=Fb) (a(u),b(u) € C).
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The associativity condition (6.3.1.1) is then equivalent to

a(u+v) = a(u) + a(v)

6.3.4.1
b(u+v) = b(u) + b(v) + a(u)v (mod 27iZ). ( )
Interchanging v and v in (6.3.4.1), we see that the alternating bilinear form
u v
(u,v) — € 2miZ (u,v € L) (6.3.4.2)
a(u) a(v)

on L has values in 2miZ. Topologists will recognize in this bilinear form the first Chern class of .Z

c1(&) € H*(C/L,2niZ) = Hom(A?H,(C/L, Z),2miZ).

If L = Zw; + Zws, then the relations (6.3.4.1) determine the constants a(u), b(u) (v € L), as long as we know
the values of a(w;),b(w;) € C (j = 1,2), which should satisfy

w1 (%))
€ 2miZ. (6.3.4.3)

a(wr) a(ws)
See ([Mu AV], 1.2) for general formulas for a(u), b(u).

(6.3.5) The simplest line bundle on C/L. Assume that wo = 1, w1 = 7 (Im(7) > 0). After a
reparametrization (6.3.1.3) with 8(z) = exp(Az2 + Bz + C) (for suitable A, B,C € C), we can assume that
a(1) = b(1) = 0. The integrality condition (6.3.4.3) then becomes

T 1
€ 2mil.

Consider the simplest non-trivial value —a(7) = 2mi. The sections of the associated line bundle £ then
correspond to holomorphic functions F' € O(C) satisfying

F(z4+1)=F(2)
F(Z + 7_) _ 6727”"”1’(7)F(z).

Is there a “simplest” choice of the parameter b(7)? After a change of variables by the translation

T.:z—z+c

(which amounts to replacing . by its pull-back T*.Z), the constant b(7) is replaced by b(7) — 2mic. It is
natural to choose ¢ for which F'(z) = F(—z) would be an even holomorphic section; putting z = —7/2 we
obtain b(7) = —mir.
We denote by .Z (until the end of Sect. 6) the line bundle on C/Z7t + Z corresponding to the values
a(l) =b(1) =0, a(t) = —2mi, b(r) = —mit.
A section s € I'(C/Z7 + Z, &) is then given by F(z) € O(C) satisfying
Flz+1)=F(z

(1) (2), . (6.3.5.1)

F(z+7) = e 2mMETRIR(2).

(6.3.6) Proposition (Basic theta function). The space of holomorphic solutions of (6.3.5.1) is equal to

C - 6(z), where
0(2) =0(z7) = Y g /2m = Y emimiraming,

nez neZ
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In other words, T(C/Zt+Z, %) =C-0(z).

Proof. Assume that F € O(C) satisfies (6.3.5.1). The first relation implies that F(z) = f(e?™*) for some
f € O(C*) which can be expanded to a convergent Laurent series

&)= ant" (t = ™).
neZ
The second relation is equivalent to
3 0™ = fat) = (0 = 3 ang A = Y g2
nez nez neZ

(where ¢'/2 = ™), hence to

ans1 = ¢"?a, (neZ) < a,= q”2/2a0 (neZ) < f(t)=ap Z q”2/2t" =ap0(z).
neZ

As |g| < 1, the series defining 6(z) is uniformly convergent for ¢ contained in a compact subset of C*, and
so defines a holomorphic function. Reversing the calculation, we see that 6(z) satisfies (6.3.5.1).

(6.3.7) Further theta functions. For fixed a,b € {0,1} = Z/2Z, denote by x4 : L — L/2L — {£1}
(where L = Z7 + Z) the character
Xap(m +n7) = (=1)meFn (m,n € Z).

By 6.2.7, the constant functions {x,(u)} define a line bundle on C/Z71 + Z, which will also be denoted
by Xa,p- For each m € Z, a section s € I'(C/Z7 + Z, £®™ ® Xa,) corresponds to a holomorphic function
F € O(C) satistying
F(z+1)=(-1)*F(z
(1) = )b (2 ) . (6.3.7.1)
F(z+7) = (=1)le 2mmET2 P ().

We first consider the case m = 1.

(6.3.8) Proposition. For m =1 and a,b € {0, 1}, the space of holomorphic solutions of (6.3.7.1) is equal
to C - 04p(2), where

ar +b

).

. a . a b ; TiaT
Qab(z) _ eab(Z;T) _ Z ewz(n+§)27—+27m(n+§)(z+%) — aaO(Z + 5;7_) _ eTrw(er%)Jr i 000(2 +
nez

In other words, T'(C/ZT+Z, L @ Xap) = C-0a(2). (Of course, Oyo(z) = 6(z).)

Proof. As in 6.3.6.

(6.3.9) Warning about normalizations. Our definition of ,,(z) is the same as in [MK] and [Mu TH]
(except that Mumford uses a/2,b/2 instead of a,b), but the “classical” 611(z) used in [Web] is equal to our
7011(2’).

(6.3.10) Degenerate values. If we let Im(7) tend to +o00 (“7 — i00”), then ¢ = exp(2mir) tends to 0.
The expansions of 6,;,(z; 7) then yield the following asymptotics as 7 — io0:

Ooo(2;7) ~ Oo1(2;7) ~ 1, bro(z;7) ~ (E2 +171/%) /8, O11(z;7) ~ (Y2 —t71/%) g8

(6.3.11) Relation to A(z). The function A(z) from (5.3.4.1) is also a theta function. A short calculation
shows that
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satisfies (6.3.5.1), hence

) (6.3.11.1)

for some ¢(7) € C*, by 6.3.6.

(6.3.12) Proposition. (i) The function 6(z) has simple zeros at z € ZtL + Z7 + Z (and no other zeros).

.. . . (a+1)7+(b+1)
) ) ) [ .
(ii) For a,b € {0,1}, the function 04,(z) has simple zeros at z € 5 +Z7+ Z (and no other zeros)

Proof. For (i), combine 5.3.4 and (6.3.11.1); (ii) then follows from the formulas relating ,,(z) and 6(z).

(6.3.13) Exercise. Using only the functional equation (6.3.5.1) of 6(z), show that

!/ /
i' H(z)dzl, 1 G(Z)dzeT—i—l
27t Jop 0(2)

— Z Z
2mi aDZ 9(2’) 2 tAT+ ’

where the integral is taken over the boundary of a fundamental parallelogram D = {z = a + t17 + t21]0 <
t1,ta < 1} for the action of Zt + Z on C. [This calculation gives another proof of 6.3.12(i).]

(6.3.14) General line bundles on C/L. Is it possible to classify all line bundles (up to isomorphism) on
C/Z7+Z? The discussion in 6.3.5 implies that each line bundle .#” is defined, after a suitable reparametriza-
tion, by the functions

a(z) =1,  ar(z) =e 2mimlti+e) (m € Z,ceC), (6.3.14.1)

with oy, (z) for general u € Z7 + Z defined by the associativity relation (6.3.1.1). In other words, £’ is
isomorphic to (TF.2)®™, where T.(z) = z+c is the translation by ¢ € C (for example, I'(C/Z7+Z, T*.¥) =
C-0(z+c)).

(6.3.15) Line bundles and divisors. If ¢,d € C satisfy m(c —d) € Z7 + Z, then the functions (6.3.14.1)
differ by a reparametrization (6.3.1.3) (exercise!). This means that the isomorphism class of (77.£)®™
depends on two invariants: an integer and an element of C/Z7 + Z, which is strongly reminiscent of the
description of the divisor class group given in 5.3.6:

0— C/Zr +Z — CI(C/Zr + Z)- 5.7 — 0.

This is no accident; in fact, there is a direct correspondence between (isomorphism classes of) line bundles
on an arbitrary Riemann surface X and divisor classes on X, given as follows. First of all, one can define
meromorphic sections of a line bundle .Z over X. For example, in the situation of 6.3.3(2), such a section
corresponds to a meromorphic function F(y) satisfying 6.2.9.2. The zeros and poles (including multiplicities)
of such a (non-zero) meromorphic section s are invariant under the action of G, hence come from a divisor
div(s) € Div(X). Non-zero meromorphic sections of . always exist, and form a one-dimensional vector
space over M(X) (by the same argument as in 3.3.16). If ' = fs is another meromorphic section of ¥
(with f € M(X) —{0}), then div(s") = div(s) + div(f); thus the class of the divisor div(s) does not depend
on the choice of s. Associating to .Z the class of div(s) then defines a homomorphism of abelian groups

{isomorphism classes of line bundles on X} — CI(X), (6.3.15.1)

with tensor product as the group operation on the left hand side. In fact, (6.3.15.1) is always an isomorphism
(both sides being trivial if X is not compact). With an appropriate notion of a divisor, all of the above holds
for (smooth) complex varieties of any dimension embeddable into P (C); see [Gr-Ha], 1.2.
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6.4 Relations between theta functions

Theta functions satisfy a large number of interesting identities (see [Web], [Mu TH], [McK-Mo)); a few of
them will be proved in this section (following closely [Web]).

(6.4.1) The basic principle is very simple: in general, the tensor products

I(C/ZT + Z, L®™ @ Xap) ®c T'(C/ZT + Z, L%" @ Xc,a) — T(C/ZT + Zy LE™ ™ @ Xatebrd)
have non-trivial kernels, which yield non-trivial linear relations between products of theta functions. The
existence of such relations can be often established by a simple count of dimensions.

(6.4.2) Exercise. The four functions 0,,(z) are linearly independent over C. [Hint: The characters of
L/2L are linearly independent.]

(6.4.3) Proposition. For m € Z and a,b € {0,1},

m, ifm >0
dimc ['(C/Z7 + Z, L®™ @ Xap) =
0, ifm < 0.
Proof. (Sketch) If m > 0, expand a holomorphic solution of (6.3.7.1) into a Laurent series ) ., ant™te/?

the functional equation yields recursive relations between a, and a4, (n € Z), which leaves the values

of ag,...,a,—1 undetermined. Conversely, any choice of these first m coefficients defines a holomorphic
solution. If m < 0, we obtain again recursive relations between a, and a,..,, but every non-zero choice of
(agy.-.,am—1) leads to a divergent series (alternatively, one can also appeal to 6.2.16)).

(6.4.4) Examples: (1) The four functions 62, (z) all lie in the two-dimensional space I'(C/Z7 + Z, £%?).
In fact, it follows from 6.4.2 that they generate this space. As a result, there exist two linearly independent
linear relations between 03,(2), 03, (2), 0%,(2), 0%, (2).

(2) The four functions 6,,(2z) all lie in the four-dimensional space I'(C/Z7 + Z, £®*); by 6.4.2 they form
its basis. By 6.3.12, these functions have no common zeros, hence the map

f:C/Zr +Z — P?*(C), 2+ (000(22) : 001(22) : 019(22) : 011(22))

is well-defined. By (1), the image of f is contained in the intersection of two quadrics @1 (C)NQ2(C) C P3(C),
where

Q1:aoXE+ a1 X? 4+ ay X2 +a3X32 =0, Qo : boXZ + b1 X2 + b X3 + b3 X2 = 0.

(6.4.5) Exercise. (i) Write down explicitly two relations from 6.4.4(1).
(ii) For a,b,c,d € {0,1}, express the values Hab(“;d) in terms of 6 qc)(b+d)-
(iii) Deduce that 05, = 03, + 0%,.

(iv) Show that f: C/Zt +7Z — Q1(C) N Q=2(C) is a bijection ([McK-Mo], 3.4).

(6.4.6) Notation. For n > 0 and a,b € {0, 1}, we shall denote

n a\" n o\"
egb><z>:(£) 0ab(2),  Oup = 0(0;7), ag;:(&) O (2;7)

(6.4.7) Exercise. Show that

2=0

1, if ab = 00,01, 10

Gab(—z) = Gab(z) .
—1, if ab=11.
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(6.4.8) Exercise. Show that, for a,b,c,d € {0,1},

Oup(2)  0L4(2)

F(C/ZT + Z7 °g®2 & Xa+c7b+d>'
Gab(z) ch(z)

(6.4.9) Corollary. We have
011(2)  601(2)

911(2) 901(2)

Proof. The function f(z) (resp. g(z)) on the left (resp. right) hand side is even (by 6.4.7) and lies in

!
0
11901
= ——"0po(2) O19(2).
Bo0010 00(2) 610(2)

P(C/ZT =+ Z, $®2 X leo) = C . 900(2) 910(2) P C . 011(2’) 901(2’).

As the function 611(z) 6p1(2) is odd, we must have f(z) = Ag(z) for some A\ = A(7) € C*; the exact value of
A is obtained by putting z = 0 (and using 61; = 0).

(6.4.10) Proposition. There exists ¢ € C* such that

011 = cboo 001 b10-

Proof. Applying (9/0z)? to the identity in 6.4.9 and putting z = 0, we obtain

/
011 00 — 00 0y = 1000 (g g 0 010,
000610

hence

" " " /1
011 _ 001 910 900

0, 6o 60 boo

Using Lemma 6.4.11 below, this can be rewritten as

0 0
. los( 1) = 5. 108(001 010 00o),
proving the claim.

(6.4.11) Lemma (Heat equation). For a,b € {0,1},
(D§ —47miD;) Oap(2;7) =0

(where D, = 0/0z, D, = 0/0T).

1 ™ — mqg™ 1 M0
7-DT : 1 -~ 1 ) 7.Dz : ¢ )
27 t"™ 0 2mi t" = mt™

the operator 1/2mi D, — 1(1/2mi D,)? annihilates each term of the series

Bap(z;7) = Y TV Dt 9 /2t
neZ

Proof. As

(6.4.12) We are now ready to evaluate the factor ¢(7) in (6.3.11.1):
oo
900 Z T _ C H 1 +qn 1/2t +qn71/2t71) (t — e?frzz7 qa _ 62772047).
n=1
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It follows from 6.3.8 that

Oo1(2;7) = (T H Y2 (1 — Y2

Oro(z7) = (112 +712) ¢ e(r) [T+ "1 + ") (6.4.12.1)
n=1

Ora(z7) = (82 = t71%) ¢ oe(r) [T (L = g") (1 = g7,
n=1

Letting z — 0 (when ¢t ~ 1 + 27iz), we obtain

Ooo = c(7) [[(1+q"7/%)?
n=1
01 = C(T) H(l _ qn—1/2)2
=t (6.4.12.2)
b0 = 2c(1) ¢"/® H 144"
0, = —2me(r q/8 H
The identity 67, = c6pp o1 010 from 6.4.10 implies that
1 _ 2n—1\2 1— 2n\2 .
=27 (T 1/8H 1—q¢")=c-2¢(7)3 1/81_[ 4 1_)q51)2 ) :0'20(7)3q1/8,
hence
e(t)? = (—7/e) H 1—-¢")
Letting Im(7) — oo (when ¢ — 0) and using 6.3.10, we see that ¢(7) — 1. This implies that
c=—m, =[[a-q (6.4.12.3)
n=1

We have thus proved
(6.4.13) Proposition. 0, = —7m 0o o1 010 (cf. 6.3.9).
(6.4.14) Theorem (Jacobi’s Triple Product Formula).

)

2
§ qn /Qtn — H(l _ qn)(l +q71—1/2t)(1 + qn—1/2t—1).
nez n=1

(6.4.15) Exercise (Another proof of Jacobi’s Triple Product Formula). Substituting to the product

formula (6.3.11.1) the values 7 = 1, % and using the fact that 6(4z, 3) = 6(z, 1), deduce that the holomorphic

function ¢(7)/ ][, (1 = ¢") (Im(7) > 0) is invariant under 7 — 47 and 7+ 7 + 2, hence constant.

(6.4.16) Proposition.

o0 oo

H(l —q")? = Z(fl)"(Qn +1) "2 =1 — 3¢+ 5¢% - 7¢° +9¢*° —11¢° + - -

n=1 n=0
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Proof. This follows from the expansion

01, = =27 q1/8 Z(n + 1/2)(_1)nqn(n+1)/2 — _9r q1/8 Z(_l)n(2n +1) qn(n+1)/2
nez n—0

and the product formula

0, =—2mg"/* (1 —q"),

n=1

which is obtained by combining (6.4.12.2-3).

7. Construction of elliptic functions (Weierstrass’ method)
7.1 The Weierstrass o, ( and p-functions

Let L C C be a lattice.

(7.1.1) Recall that Jacobi’s method of construction of elliptic functions with respect to L consisted in
taking a quotient

01(2)
92(2)

of two theta functions, i.e. of two solutions of (6.1.1.1). By contrast, Weierstrass showed that the function
U(z) from 4.4.3 (i.e. the inverse of the Abel-Jacobi map) can be written directly as

(2 et

where o(z) is a particular theta function with simple zeros at z € L. Morally,

“o(z) = H (z —w)”, (7.1.1.1)

u€eL

but this infinite product does not converge for any z € C.
An elementary version of o(z) is the function sin(z), which is holomorphic in C and has simple zeros at
z € wZ. The infinite product

9(z) = zﬁ (1 — %) (1 + W—i) = zﬁ (1 — Wj—;) (7.1.1.2)

has the same properties, as the series

;-

29,2
n:ﬂ,ﬂ n
is uniformly convergent on compact subsets of C ([Ru 2], Thm. 15.6). In fact,

g(z) = sin(z).
(7.1.2) Exercise—Definition. For s € R,

11
> TS <00 = 5> (7.1.2.1)



where we have used the notation ,
wel  weL—{0}

In particular, the series

Gar(L) = Z/# (7.1.2.2)

ucL
is absolutely convergent for every integer k > 2.
(7.1.3) Definition of the o-function. The divergence of the sum (7.1.2.1) for s = 1,2 implies that one
cannot work directly with the products
/ z 22
1— —) 1- =
I0-3). IM(-5)
u€L u€ey

where L — {0} =X U -3, ¥ N —X = (). However, the power series expansion

z z  1y/z\2 1 /2\3
71 (177):7 7(7) 7(7) o
ow(1-2) =2 () 1 () + (1l < Jul)
implies (together with 7.1.2) that the infinite product
o(z)=0(z;L) =2 IGIL/ (1 — %) e%"'%(%)z (7.1.3.1)

is uniformly convergent on compact subsets of C and defines a holomorphic function with simple zeros at
z € L and no other zeros ([Ru 2], Thm. 15.6).
As we shall see in 7.4.9 below,

o(z;ZT7+7Z) = 0166222911(2’; T), (7.1.3.2)

for suitable constants ¢; = ¢;(7) € C.

(7.1.4) Definition of the (- and p-functions. The convergence properties of the infinite product (7.1.3.1)
imply that its logarithmic derivative {(z; L) can be computed term by term:

C(zL) = o'(z) - 1 + Z/ ( 1 + l + z ) ) (7.1.4.1)

z—u u u?
ueL

where the infinite series is uniformly convergent on compact subsets of C — L to a holomorphic function; it
is meromorphic on C, with simple poles at all z € L.
The power series expansion

n

1 1 z >z
z—u+ﬂ+$:_zm (2] < lul)

n=2

and the absolute convergence of the double sum

PR Zn
> o

uel n=2
imply that
(D)= - i Gapp2™ ! (7.1.4.2)
5 2 k:il + . B B

Differentiating (7.1.4.1) and using (7.1.4.2), we obtain the function
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(5 L) = —C'( L) = Ziz Ly (ﬁ - ) _ iz + 572k + 1) Gop 22 (7.1.4.3)
k=1

u€L
and its derivative

2 o0
-2y ( ) =5 + ) (2k + 1)2k Gap 22?1 (7.1.4.4)

u€eL k=1

The function p(z) (resp. ©'(z)) is an even (resp. odd) meromorphic function on C, holomorphic on C — L
and having poles of order 2 (resp. 3) at z € L.

(7.1.5) Proposition. Both p(z) and ¢'(z) are elliptic functions with respect to L, ie. p(z),9'(z) €
M(C/L).

Proof. By 7.1.2 (for s = 3), the infinite series (7.1.4.4) for ¢'(z) is absolutely convergent for all z € C — L.
It follows that, for every v € L and z € C — L,

et =Y (i) =2 ¥ () =96

ueL w=u—v

hence

p(z +v) — p(z) = c(v) € C.
Choosing a basis L = Zwy + Zw, of L and putting v = w;, 2 = —w; /2, we obtain

o -0(3) -0 (-4) 0

as g is an even function. Thus both p and ¢’ are L-periodic.
(7.1.6) Rescaling L. It follows from the definitions that, for every A\ € C*,

o(A\z;AL) = \o(z; L), C(A\z; AL) = \71¢(2; L),
d\" d\"
() o0wan =2 () oD Gun) = A 6u(D)
1. aurent expansions at z = 0. e expansions (7.1.4.3-4) imply that
7.1.7) L i 0. Th i 7.1.4.3-4) imply th

1
p(z) = Z—2+3G4z2—|—5G6z4+---

2 (
—¢'(2) = o —6Gyz —20Ge2% 4 -

1
p(2)? = ;+6G4+10G622+~~

4 UG
p/(2)2: ;—2—24—80G6+
1 9G
p(2)° = 5+ 5 +15Gs+ -

(where we write Gay, for Gai(L)). It follows that the elliptic function

f(z) = ¢'(2)* = (4p(2)° — 60 Gap(2) — 140 Gs) € M(C/L)

is holomorphic on C/L — {0} and has Laurent expansion of the form

f(2) =ca2® +cqzt + -

at z = 0; thus f € O(C/L) = C is constant, equal to f(z) = f(0) = 0. We have proved, therefore, the
following result.
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(7.1.8) Theorem. The function p(z) satisfies the differential equation
0'(2)* = 4p(2)" — g20(2) — g3,

where

1 11
u€eL u€L

(7.1.9) Proposition. Fix a basis L = Zw; + Zws of L and put w3 = wy + wo. Then

(i) divip(z) — plw;/2)) = 2(w;/2) — 2(0),

(i) div('(2) = (@1/2) + (w2/2) + (w5/2) — 3(0).

(iii) The cubic polynomial 4X3 — g2 X — g3 = 4(X —e1)(X — e2)(X — e3) has three distinct roots satisfying

{e1,e2,e3} = {p(w1/2), p(w2/2), p(ws/2)}.

Proof. For each j =1,2,3,

—'(w;/2) = o' (~w;/2) = ¢ (—w;/2 + w)) = ¢'(w; /2) = ¢ (w;/2) = 0.

It follows that the function ¢’(z) (resp. p(z) — p(w;/2)) has a zero of order > 1 (resp. > 2) at w;/2 € C/L;
as its only pole is at z = 0 and has order 3 (resp. 2), the statements (i), (ii) follow from the fact that
the degree of a principal divisor is equal to zero. The differential equation 7.1.8 implies that each number
aj = p(w;/2) is a root of 4X3 — go X — g3; these numbers are distinct, since the divisors div(p(z) — a;) are
distinct, proving (iii).

(7.1.10) The discriminant and the j-invariant. Writing
4X% — o X — g3 = 4(X> +aX +b) = 4(X —e1)(X —e2)(X —e3)
with a = —go/4, b = —g3/4, it follows from 7.1.9(iii) that the discriminant
disc(X? 4+ aX +b) = H(ei —e;)? = —4a® — 276> £ 0
i<j
is non-zero. It is customary to get rid of the denominators and define the discriminant of L as
A(L) =16 J(ei — €;)* = 16 (—4(—g2/4)® — 27(—g3/4)*) = g5 — 273 # 0 (7.1.10.1)
i<j
and the j-invariant of L as

Lo (12g2)*  1728¢3
i) ="X0) =A@

(7.1.10.2)
Under rescaling,
AL =A"2A(L), jOL)=3(L) (A e CH).
(7.1.11) Exercise. What are the analogues of 7.1.4-10 if we replace o(z) by sin(z)?
7.2 The elliptic curve FE associated to C/L
(7.2.1) It follows from 7.1.9(iii) that the projective curve

E:Y?Z =4X?% — o2 X 7% — g32° = 4(X — 1 Z)(X — e2Z)(X — e32)

is of the type considered in 4.1.1 (apart from the harmless factor of 4). Using the affine coordinates x =
X/Z,y=Y/Z on
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E—{0}:y* =42® — gyz — g5
(where O = (0:1:0) is the unique point at infinity of E), we define a map

¢:C/L — E(C), (z;«éO)n—>(x,y):(p(z)p’(z)), 0~ 0.

(7.2.2) Theorem. The lattice of periods of the holomorphic differential w = dx/y on E(C) is equal to L
and the map ¢ is a holomorphic isomorphism, inverse to the Abel-Jacobi map

a: E(C)— C/L, a(P) = /o w (mod L).

Proof. The map ¢ is holomorphic on C — {0}; as z (resp. z/y) is a local coordinate at z = 0 (resp. at O)

on C/L (resp. on E(C)) and
Top) =Bz
(y @)() oG 2"

is holomorphic at z = 0, it follows that ¢ is holomorphic everywhere. The composition of ¢ with the
projection p from 4.1.2 is given by

Cc/L—<-E(C)—-P!(C), z 1 p(2).

The only singularity of p(z) is a double pole at z = 0 € C/L; thus deg(po ¢) = 2, by 3.2.3.7. It follows that
deg(p) = deg(p o )/ deg(p) = 2/2 = 1, hence ¢ is a holomorphic isomorphism (by 3.2.3). As z o ¢ = p(2)
and y o ¢ = p/(z), we have

dj) _dolz) _

o) = 9" () = T

/dz:/ w, (7.2.2.1)
gl pory

for any path v in C/L. Letting v in (7.2.2.1) run through a set of representatives of H;(C/L,Z) proves the
equality of the period lattices; taking for v the projection of any path from 0 to z in C shows that

and

- /Ozdz: /:(Z) w (mod L) = a(p(2)).

(0)=0

(7.2.3) Theorem. The field of meromorphic functions on C/L is equal to M(C/L) = C(p(z), ¢'(2)) (i.e. ¢
induces an isomorphism between the field of rational functions C(x,y) = Frac(Clz, y]/(y? — (423 — gox — g3)))

on E and M(C/L)).

Proof. Any elliptic function f € M(C/L) is of the form f = f + f_, where f1(2) = (f(2) £ f(—2))/2. As
both fi(z) and f_(z)/p'(z) are even functions, we can assume that f = f, is even (and non-zero). We are
going to show that, in this case, f € C(p(z)). As the divisor of f is invariant under the map z — —z on
C/L, it follows that

() = 3 () + ()~ 200)) + Y, (%) -m),
k j=1

where ng, m; € Z and ay, # —ay, € C/L. By 5.2.1, we have
3 s
ijgjeLﬁmj:eran (m, n; € Z).
j=1
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This implies that the elliptic function

9(2) = ' (" [T (0(2) = (@)™ [T (02) - 0 (2))" € Clol2), /(=)
k j=1

has the same divisor as f, hence f(z) = cg(z) (¢ € C*) also lies in C(p(z), ©'(z)). More precisely, m € 2Z

has to be even, as f = f., hence f € C(p(2), ¢'(2)?) = C(p(2)).

One could have also argued directly that m; = ordwj/gf(z) is even, by substituting n = 2k —1 and z = w; /2

to the formula f(")(—z) = (=1)"f(™(2).

(7.2.4) The algebraicity statement 7.2.3 is a special case of the following general results proved by Riemann:

(A) Every compact Riemann surface X is isomorphic to C'(C), for some smooth projective irreducible curve
C over C (in general, C is not a smooth plane curve).

(B) Every holomorphic map X; = C1(C) — X3 = C2(C) between compact Riemann surfaces is induced
by a (unique) morphism of algebraic curves C; — C5 (thus the curve C in (A) is unique up to
isomorphism).

(C) The field of meromorphic functions on X = C(C) coincides with the field of rational functions on C
(this follows from (B), if we consider a meromorphic function on X as a holomorphic map X — P(C)).

The nontrivial point is the existence of a non-constant meromorphic function on X; once this is estab-
lished, the statements (A), (B), (C) follow in a relatively straightforward way.
(7.2.5) The analogous statements are false in higher dimensions. For example, if L —— Z2" is a “generic”
lattice in C™ (n > 2), then the n-dimensional complex torus C"/L is not algebraic ([Mu AV], Ch. 1).

(7.2.6) Exercise. Assume that the coefficients g2, g3 € R in the equation of E are real. Show that:
(i) If A(L) > 0, then the roots e;j are all real. Ordering them by ey < e3 < ea, then L = Zw; + Zws, where
dx w1

d
€ R>07 :

2 _/62 2¢/(z —e1)(z — ea)(z — e3) 2_2/33 2y/(z —e1)(ea — z)(z — e3)

(above, the square roots are taken to be non-negative). In particular, Re(w; /w2) = 0.
(ii) IfA(L) <0, then L = Zw; + Zws, where we € Rx and wq — w2/2 € iR~¢ (hence Re(wi/w2) =1/2).

o)

€ iRsg

7.3 Relations between p(z) and 0,,(2)

In this section L = Z7 + Z, where Im(7) > 0. Weput w1 =7, ws =1 (= w3 =7+ 1) and e; = p(w,/2).
(7.3.1) Proposition. In the notation of 6.3.8 and 6.4.6,

o(2) e = 606) —ptr/2) = (A i
)

0(2) —ex = p(2) — p(1/2) = <

foo(2) 9’11>2
z)—e3 =p(z) —p((T+1)/2) = —=
)~ 2 = o0 7+ 1)/2) = (2
Proof. Both functions p(z) —e; and g(z) = 62,(2) /6%, () lie in M(C/L) and have the same divisor div(f) =
div(g) = 2(7/2) — 2(0); thus f(z) = cg(z) for some ¢ € C*. If z — 0 tends to zero, then f(z) ~ 1/22,
0o1(2) ~ 61 and 011(z) ~ 0,2, hence ¢ = (87, /601)?. The other two formulas are proved in the same way.

(7.3.2) Corollary. The function ¢ (z) is equal to

_ o 900(2)001(2)010(2) (61,)°

9 (2)9 (2)91()(2)
/ 2000(2)001
©'(2) 611(2)3 000001010 (

911(2)3 )

= 27(911)

Proof. Multiplying the three identities in 7.3.1 yields a formula for ©’(2)?/4; the correct sign of its square
root ¢’(z)/2 is determined by the asymtotics ¢/(2) ~ —2/2% as z — 0.
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(7.3.3) Proposition. We have

;N2
o= e = (7 + 1)/~ olr/2) = (o) (= w201y)
o= p(r/2) - p(1j2) = (%) (= —n26%y)
e —es = p(1/2) — pl(r +1)/2) = (ZZ) (= 264

Proof. Substitute z = 7/2,1/2, (7 4+ 1)/2 to 7.3.1 and use 6.4.5(ii) (resp. 6.4.13 for the values involving 72).
(7.3.4) Corollary. The functions

B0 = Z an/Q, o1 = Z(_l)nqn2/27 010 = _q1/8 Z qn(7z+1)/2

nez nez nez

satisfy
00 = 01 + 0. (7.3.4.1)

(7.3.5) Note that the proof of (7.3.4.1) sketched in 6.4.5 is much simpler; it does not use the identity 6.4.10.

(7.3.6) Proposition (Jacobi’s formula). The discriminant function A from (7.1.10.1) is given by

/7 \3 4 e’}
AZr+2)=2 <%) = (2m)'% [T (1 — g™ (= (@) (0h,)").

Proof. Combine (7.1.10.1) with 7.3.3 and the product formulas (6.4.12.2) (note that the exact value of the
factor ¢(7) in (6.4.12.2) is irrelevant).

(7.3.7) The formulas in 7.3.1 are also useful for numerical calculations, as the infinite series defining the
theta fonctions converge very rapidly.

7.4 Properties of o(z)

Let L C C be an arbitrary lattice.

(7.4.1) Recall that o'(2)/o(z) = {(z) and —('(z) = p(z) € M(C/L). This implies that, for each v € L,
the function

C(z4+u; L) —((z; L) =n(u; L) € C (74.1.1)
is constant. In fact,

ww) =nwiL) = [ () dz = - L ol2) dz,

Y

where v is any path in C — L whose projection to C/L is closed and has class equal to u € L = H,(C/L, Z).
The value of the integral does not depend on 7, as ¢'(z)dz = d({(z) is the differential of a holomorphic function
on C — L and the residues res, (('(2)dz) = 0 vanish at all a € L. Using the isomorphism ¢ : C/L — E(C)
from 7.2.1, we can also write

n(u) = - / E % (e = olpr(7)),
s oz da/fy) = p(z) dp(2)//(2) = p(z) dz.
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(7.4.2) Proposition (Legendre’s relation). Fix a basis L = Zw; + Zwy of L satisfying Im(w; /wa) > 0
and put n; = n(w;; L) (j =1,2). Then

w1 w2
= 27i.

mo N2

Proof. Fix a fundamental parallelogram D = {z = a 4 tjw; + taws |0 < t1,t9 < 1} for the action of L on
C containing 0 in its interior. As the only singularity of ((z) inside D is a simple pole at z = 0, the residue
theorem yields

a+twa
2mi = 2miresy(((2) dz) = . ((2)dz = / (¢(2) = C(z +w1)) dz+

-—m

atwi
+ / (C(z + wa) — C(2)) dz = wims — wymn.

n2

(7.4.3) Lemma. Foru € L, put )(u) =1 (resp. = —1) ifu/2 € L (resp. if u/2 ¢ L). Then
o(z 4 u) = Y(u)o(z)e"WEFE), (7.4.3.1)

Proof. Integrating (7.4.1.1) we obtain (7.4.3.1) with some ¢ (u) € C*. If u/2 ¢ L, evaluation at z = —u/2
yields ¢¥(u) = o(—u/2)/o(u/2) = —1. If u/2 € L, we can assume u # 0 (the case v = 0 is trivial). As
¥ (2u) = 9 (u)?, writing u = 2"v with v € L, v/2 ¢ L and n > 1 gives ¥ (u) =

(7.4.4) Construction of elliptic functions using o(z). The formula (7.4.3.1) implies that the con-
struction from the proof of 5.3.5 can be performed using the o-function: if aq,...,a,;b1,...,b, € C (not
necessarily distinct) satisfy >, a; =37, b; € C, then the function

lies in M(C/L) and its divisor is equal to div(f) = 3_;((P;) — (Q;)), where P; (resp. Q;) is the image of a;
(resp. of b;) in C/L. Here is a simple example:

(7.4.5) Lemma. Fora e C— L,

p(z) — pla) = — o(2)20(a)?

Proof. The functions p(z) — p(a) and f(z) = o(z — a)o(z + a)/o(z)? both lie in M(C/L) — {0} and have
the same divisor div(p(z) — p(a)) = (a) + (—a) — 2(0) = div(f); thus p(z) — p(a) = ¢ f(z) for some ¢ € C*.
If z — 0, then p(z) — p(a) ~ 1/2% and f(z) ~ —c(a)?/z2, hence ¢ = —1/0(a)?.
(7.4.6) In the special case when wy; = 7 (Im(7) > 0) and wy = 1, The Legendre relation 7.4.2 becomes

m = TN — 2mi. (7.4.6.1)

(7.4.7) Lemma. The function
g(2) = e 3F TG (4 T 4 7)

satisfies
g(z+1) =yg(z)

glz+7) = —e 2 g(2).
Proof. Direct calculation — combine 7.4.3 with (7.4.6.1).
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(7.4.8) Corollary. We have

o0

l_qnt 1_qnt_1) 27z 24T
g(z) = — (271'1) 1—1) 1:[ (t=e"T"% qg=1¢e"""T).

(1—qn)?

Proof. The function ¢(z) is holomorphic in C, has simple zeros at z € Z7 + Z (and no other zeros) and
satisfies 7.4.7. Thus g(z)/A(z) (where A(z) is the function defined in 5.3.4) is a meromorphic function on
C/L without zeros, hence constant. The value of this constant is determined by the asymptotic behaviour
for z — 0:

(oo}

g(z)~ 2z, (I—t)~=2miz,  A(z)/(1—t)~ [J(1—q)>

n=1

(7.4.9) Corollary. IfIm(7) > 0 and ne = n(1;Z7 + Z), then

©© 1_ nt — g1
o(zZr +Z) = (2mi) " e 2/ t1/2 —1/2 H ql )q ) =
—q"
n=1

(ta —_ eQ-rriaz’ qa — e27rion—).

=011 (2 7)(—2mi) ! g V/8em=/2 H =

Proof. This follows from 7.4.8, the definition of g(z) and the product formula (6.4.12.1) (together with the
exact value of ¢(7) given by (6.4.12.3)).

(7.4.10) One can give another (?) proof of 7.3.6 using the properties of the o-function, beginning with

o((wj —wi)/2)o((w; + wk)/2)
o(w;j/2)%0(wk/2)?

(by 7.4.5) and using the product formula 7.4.9 to evaluate o(w;/2) (for w; = 7,1,7 + 1).

5 — ex = plw;/2) — plwn/2) = —

7.5 Addition formulas for p(z) and the group law on E(C)

(7.5.1) The torus (C/L,+) is an abelian group with respect to addition, with neutral element 0. The
mutually inverse bijections

p:C/L — E(C) a: E(C)— C/L “(dafy) =
2 ((2), /(%)) S
00 O P»—>/ — (mod L) a*(dz) =dz/y

from 4.4.2 (resp. 7.2.2) transport this abelian group structure to E(C). The corresponding addition H on
E(C) has neutral element O and satisfies

(p(21), 9'(21)) B (p(22), 9'(22)) = (p(21 + 22), 9’ (21 + 22)).

(7.5.2) Characterization of “+” on C/L. The addition on C/L admits an abstract characterization in
terms of the isomorphism

m:ci°(c/L) = C/L

from 5.3.6. In concrete terms, if a;,b; € C (j = 1,...,N) are complex numbers (not necessarily distinct)
and P; = pr(a;), @Q; = pr(b;) their projections (under pr : C — C/L) to the torus, then the following
statements are equivalent:
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Pit+-+Py=Qi+-+QneC/L

N
@f eM(C/L)) D ((F) - (@) =div(f)

! (7.5.2.1)
a1+--+an=b+---+by (modL)
N a; N b;
Z/ dz = Z/ dz (mod L).
j=1"0 j=1"9

(7.5.3) Characterization of “BH” on F(C). Application of the bijections ¢, « from 7.5.1 to 5.3.6 yields
an isomorphism of abelian groups

B: CI°(E(C)) = E(C)
> ni(P;) = Bln,] Py,

where [n|P (for n € Z) is defined as in 0.5.0. Furthermore, if P;,Q; € E(C) (j = 1,...,N) are points (not
necessarily distinct) on F, then (7.5.2.1) translates into the following equivalent statements:

P1EE|ESPN:Q1EE|EE|QNEE(C)

N
(3f € M(E(C))) ((P5) = (@) = div(f)
= (7.5.3.1)
N B dy . Ny

(7.5.4) Example: Abel’s Theorem revisited. Let F(X,Y,Z) € C[X,Y, Z] be a homogeneous polyno-
mial of degree d = deg(F) > 1 and C : F = 0 the corresponding projective plane curve C' C P2.

Assume that the intersection E(C) N C(C) is finite; then the intersection divisor E(C) N C(C) =
(P1) + - -+ + (P3q) has degree 3d, by Bézout’s Theorem (the points P; are not necessarily distinct).

As
3d
f= W € M(E(C))*, div(f) = Z(Pj) —3d(0),

it follows from (7.5.3.1) that
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PiB- B Py =[3d0=0 (7.5.4.1)
on E(C). Equivalently,

3d

P;
/ dx =0 (mod L),
=Jo Y

which is a special case of Abel’s theorem.

(7.5.5) Example (continued). If d =1, ie if F = apX + a1Y 4 a2Z is linear (and non-zero), then
C : F =0is aline in P? and the intersection divisor E(C) N C(C) = (P;) + (P) + (P3) consists of three
points (not necessarily distinct).

The divisor of f = F/Z = apx + a1y + az € M(E(C))* is equal to div(f) = (P1) + (P2) + (P3) — 3(0), hence

PBPBEP;=[30=0 (7.5.5.1)

and

/ —"TJF/ —m+/ —sz(modL),
o Y o Y o Y

which was already proved in 2.3.3.

Each “vertical” line C' : X +¢Z = 0 (¢ € C) contains the point O; thus the intersection divisor
E(C) N C'(C) is equal to (O) + (P) + (P). If P = (z,y) # O, then necessarily P’ = (z,—y). As
OBl PHP =0, it follows that

(x,—y) = P' = [-1]P = [-1](z,y) (7.5.5.2)
is the inverse of P with respect to the group law.
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-1 P

Equivalently, one can argue that

P = (p(2),9'(2))
for some z € C — L, hence

[—1]P = (p(—2),¢'(—2)) = (p(2), —¢/(2))-

(7.5.6) Geometric description of the group law H. Given two distinct (resp. equal) points P, Q € E(C)
on E, let C = PQ C P? be the unique line passing through them (resp. the tangent line to E containing
P = Q). The intersection divisor E(C) N C(C) is then equal to (P) + (Q) + (R), for a uniquely determined
point R € E(C). We denote this third intersection point by

PxQ:=R. (7.5.6.1)

The discussion in 7.5.5 implies that

PxQ=[-1](PBQ), O R=[-1]R,

hence

PBQR=0x(PxQ), (7.5.6.2)

which gives a very simple geometric characterization of the group law H.

O

P*Q

P+Q

74



It is tempting to take (7.5.6.2) as a definition of H. However, this presents several problems: firstly, the
verification of the associative law

(PBQ)BRLPB(QBR)

becomes rather non-trivial (see 10.2.6 below for more details). Secondly, the “linear” nature of (7.5.6.2)
conceals the more general “non-linear” identity (7.5.4.1). We have avoided both problems by taking the
isomorphism

~

CI°(E(C)) = E(C)

as a starting point.

(7.5.7) Formulas for H. On the other hand, (7.5.6.2) gives an explicit formula for P, B P». For example,
if we assume that none of the three intersection points P; = (z;,y,) from 7.5.5 is equal to O, then we can
work with the affine line C' N {Z # 0}, given by the equation y = ax + b. Solving the system of equations

y = ar + b, y? = 42° — gow — g3,

we obtain the polynomial identity

42° — gow — g3 — (ax + b)? = 4(z — 1) (7 — 22) (T — 23).

Comparing the coefficients at 2 yields

a? 1 /ya—y 2
1'1+1'2+1'3:Z:Z<Z‘27;>
2— T

(assuming that P; # P»), hence

1y =\’
== — X1 — Ta. 7.5.7.1
3 4 <x2 — T e 2 ( )
The y-coordinate of Pj is equal to
ys = arz + b, b=y —axy =y — 11 (u) . (7.5.7.2)
X9 — I

To sum up, if P; # Ps, then (7.5.7.1-2) give explicit formulas for the coordinates of

(z1,91) B (22, 92) = [-1](z3,y3) = (73, —Y3)

as rational functions in x1,xe,y1,ys (With coefficients in Q).
If P, = P,, then the line y = azx + b is tangent to E at P;. Differentiating the equation

y? = 42® — gox — g3

yields
dy 1 g2
2y dy = (1222 — d:>—:—(62—_)
ydy = (1227 — go) dz =y %)
hence
1 g2
a=-- (6~ )
and
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2
(6af — 92/2)* ) _ (i — 92/4)" — 221(42} — g1 — 9) _ i+ Sod+ 20 + 7

7.5.7.3
49% y% 41’? — 921 — g3 ( )

T3 =

(7.5.8) Addition formulas for p(z). The formulas (7.5.7.1-3) can be rewritten in terms of the bijection
¢ : C/L — E(C). Writing

Py = (z5,9;) = (p(2), ' (%)),  21+22+2=0€C/L,
we obtain
1
4

@(Zl +22) = (M

2
o(72) — o(=1) ) —p(z1) — p(22) (7.5.8.1)

in the case z; # 29 € C/L and

2
p(2)! + $p(2)* +2030(2) + 13
4p(2)° — g20(2) — g3
Differentiating (7.5.8.1-2) with respect to z; (resp. z) yields explicit formulas for p’(z1 + 22) resp. ¢'(22).
(7.5.9) Exercise. Show that, for each j = 1,2,3, there exists f;(z) € M(C/L) such that

(7.5.8.2)

p(22) =

0(22) — e = p(22) — p(w;/2) = [} (2).

(7.5.10) Proposition. For each n € Z — {0}, the multiplication by n map [n] : E(C) — E(C) is given
by rational functions of the coordinates, with coefficients in Q(g2,¢g3). In other words,

p(nz), o' (nz) € Q(g2, 93, p(2), ¥’ (2)).

Proof. Induction on |n|, using (7.5.5.1) and (7.5.8.1-2).
(7.5.11) Torsion points. For each n > 1, denote by

E(C)n ={P € E(C)[[n]P = O}

the n-torsion subgroup of E(C) (which is an elliptic analogue of the group of n-th roots of unity from 0.6.0).
As

(C/L), = %L/L = (%Z/Z) w1 ® (%Z/Z) wa,
it follows that
E(C)y = {0} U {(p((aws + bwa)/n), o' ((awy + bws)/n)) | (a,b) € (Z/nZ)* — {(0,0)}}.
For n = 2, a point P = (z,y) € E(C) — {O} satisfies
2P =0 < P=[-1]P < (2,y) = (z,~y) < y=0;

Thus

E(C)2 = {0} U{(e1,0), (e2,0), (e3,0)}.

For n = 3, a point P € E(C) satisfies [3]P = O iff [2]PB P = O, i.e. iff the tangent line to E at P has
intersection multiplicity with E at P equal to 3. Geometrically, this amounts to P being an inflection point
of E(C).
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7.6 Morphisms C/L; — C/Ls
Let Ly, Ly C C be lattices and Ey, F5 the corresponding cubic curves (as in 7.2.1).
(7.6.1) Proposition. (i) The set of holomorphic maps f : C/L; — C/ Ly satistying f(0) = 0 is equal to
{f(2) = Az|A € C,AL; C Ly}

In particular, each such map is a homomorphism of abelian groups (f(z1 + z2) = f(z1) + f(22)).
(ii) The map E1(C) — E5(C) corresponding to f is given by

(9(2; L), 9' (25 L1)) = (p(Az; La), 9 (Az; L))

(and is also a homomorphism of abelian groups).
(iii) f is an isomorphism of Riemann surfaces <= AL; = Lo.

Proof. As C is simply connected and the projection pro : C — C/Ls is an unramified covering, there exists
a unique holomorphic map F' : C — C satisfying F'(0) = 0 and making the following diagram commutative:

c . c

c/L, —1 ¢/L,.

For each u € Ly, the function

9(z) = F(z +u) — F(2)
is holomorphic in C and has discrete image g(C) C Lo; thus g(z) is constant and
0=4g'(2) = F'(z + u) - F'(2),

which implies that F'(z) € O(C/L) = C is constant as well, hence F(z) = Az + F(0) = Az for some A € C.
As proo F' = fopry, we have ALy = F(L1) C Lo, proving the non-trivial implication in (i). The statements
(ii) and (iii) are immediate consequences of (i).

(7.6.2) Corollary. The j-function (7.1.10.2) defines a map

j : {Isomorphism classes of tori C/L} — C.
Proof. This follows from 7.6.1(iii) and j(AL) = j(L).
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(7.6.3) Definition. An isogeny f : C/L; — C/Ly is a non-constant holomorphic map f satisfying
7(0) = 0.

(7.6.4) In other words, 7.6.1 implies that an isogeny is given by
f : C/L1 — C/L2
Z Az, AL; C Ly, A #0.

It is a proper unramified covering of degree

(7.6.4.1)

deg(f) = [Ker(f)| = [\"'La/L1| = |L2/ALy|.

A typical example of an isogeny is the multiplication map
[n]: C/L — C/L, Z = nz (neZ—{0}),
which has degree
1 2
deg[n] = |=L/L| = n*.
n
(7.6.5) Dual isogeny. In the situation of (7.6.4.1), we have

deg(f) - Ker(f) = 0 —> deg(f) - A" L C Ly.
This implies that the map
7o/ et e,

is well defined, and in fact is an isogeny — the dual isogeny to f. It is characterized by the properties

Fof=ldeg(f)]: C/Li — C/L,

fof=ldeg(f)]: C/Ly — C/Lo.
For example,

[n] = [n] (n € Z—{0}).

(7.6.6) Proposition. Let f: C/L; — C/Ly be an isogeny. Then:

(1) Ker(f) acts on M(C/Lq) by (u=g)(z) = g(z — u) and the fixed field of this action is equal to
M(C/Ly)* ) = f*(M(C/L2)) = {f*(h) = ho f | h € M(C/La)}.

(i) M(C/Ly) is a finite Galois extension of f*(M(C/Lz)), with Galois group isomorphic to Ker(f).

Proof. (i) We use the notation (7.6.4.1). A function g € M(C/L;) satisfies uxg = g for all u € Ker(f) <=

g(2) is A1 Ly-periodic <= h(z) = g(A\712) is Lo-periodic < g(z) = h(A\z) = f*(h), h € M(C/Ly).
(ii) This follows from (i), by E. Artin’s Theorem.

(7.6.7) Definition. Let L C C be a lattice. The endomorphism ring of C/L is
End(C/L) ={f:C/L — C/L| f holomorphic, f(0) =0} ={Ae€ C|A\LC L} C C.
Above, we have identified A with the corresponding map [\ : C/L — C/L.

(7.6.8) Proposition. Let L C C be a lattice. Then

(i) End(C/L) = End(C/)\L) (A e C*).

(ii) Let L =Zt + Z, where Im(7) > 0. Then

ZAT +Z, if AT+ Br+C=0,A,B,C€Z, (A BC)=1

End(C/Zr + Z) = {
Z, otherwise.
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Proof. The statement (i) is clear. In (ii), assume that A € C — Z satisfies AL C L. Then there exist
a,b,c,d € Z, a # 0 such that

Arl=ar+b

= ar*+ (b—c)T —d=0.
/\'TZCT+d} at + (b—o)r

Divide this quadratic equation by the ged of the coefficients, in order to obtain A72 4+ BT+ C = 0 as in the
statement of the Proposition. Then

A=ar+b€Zar+Z CZAT+Z (as Ala).
Conversely, the identities
AT 1= At € L, Ar-1=A7*=-Br-CelL
imply that ZAT + Z is contained in End(C/Z7 + Z).

(7.6.9) Definition-Exercise. If End(C/L) # Z, we say that C/L has complex multiplication. Show
that K = End(C/L) ® Q is then an imaginary quadratic field and deg([\]) = Ng/q()) (A € End(C/L)).

(7.6.10) Examples: (1) L = Ziw + Zw, in which case End(C/L) = Z[i], g3 = 0 and g # 0, i.e.

E — {0} : y* = 42° — gy
(2) L = Zpw + Zw, where p = ¢*™/3; then End(C/L) = Z[p], g2 = 0 and g3 # 0, hence

E — {0} : y* = 423 — gs.

(7.6.11) Definition-Exercise. Let L C C be a lattice. The group of automorphisms of C/L is defined
as the group of invertible elements of End(C/L):

Aut(C/L) = End(C/L)".

Show that Aut(C/L) = {f € End(C/L)| deg(f) =1} and

{+1, i}, if L = Ziw + Zw
Aut(C/L) = { {£1,4p, £p*}, it L =Zpw+ Zw
{%1}, otherwise.

8. Lemniscatology or Complex Multiplication by Z[i]
Throughout this section, y/z will denote the non-negative square root of a non-negative real number x.
8.1 The curve y2 =1 —z*

(8.1.1) According to 3.7.7-8, the affine plane curve

Vag 1 y? =1—z*

(over C) is smooth and its projectivization admits a smooth desingularization V' = V,g U {O4,0_} with
two points at infinity, which correspond to the ‘asymptotics’

(z,y) — O1 <= x — 00, y/a? — +i.

In coordinates, let V/; be the smooth affine plane curve
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Vlﬂ' y l4 — 1.

The change of variables

¥ =1/, y =y/z?, x=1/2, y =1 /" (8.1.1.1)

defines an isomorphism of curves

Varr — {(2,9) = (0, 1)} — Vg — {(@",¢/) = (0, £i) = O} (8.1.1.2)

and V is obtained by gluing Vag and V/g along the common open subset Vg — {(0,£1)} — Ve — {04}
via (8.1.1.2).

We shall need this construction only in the analytic context: as Vag(C) and V/;(C) are Riemann

surfaces and (8.1.1.2) is a holomorphic isomorphism, we obtain a structure of a Riemann surface on V(C)
(cf. 8.1.2(1)).

(8.1.2) Exercise-Reminder (cf. 4.2.4-7). Let p: V(C) — P1(C) be the map defined by
pla,y)=(z:1),  (z.9) €Var(C)  pla’y)=(1:2), (@'y)€ Vg(C)

Show that

(i) The natural topology on V(C) is Hausdorff.

(ii) p is a proper holomorphic map of degree deg(p) = 2.

(iii) V(C) is compact.

(iv) The ramification points of p are (z,y) = (£1,0), (£¢,0).

(v) The genus of V(C) is equal to g(V) = 1.

(vi) The differential wy = dx/y = —dz’/y’ is holomorphic on V(C) and has no zeros (ie. (VP €
V(C)), ordp(wy) =0).

(8.1.3) As observed in 4.4.4, the same arguments as in 4.3-4 show that the group of periods

Ly :{/WVWGHl(V(C),Z)} cc

is a lattice and the Abel-Jacobi map

Q
ay V(C) — C/Lv, av(Q) = /(0 . wy (mOdLv) (8131)

is an isomorphism of Riemann surfaces.
(8.1.4) Let us compute a few values of ay . By definition,
ay((0,1)) =0,

1

Q
o VIt 2 (mediv)
ay((0,-1)) = Q (mod Ly)

Ozv((LO) =

ay((—1,0)) = ;Q (mod Ly ) = —% (mod Ly ).

Indeed, the set of real points V(R) = V,g(R) of V' (say, with the negative orientation) is a closed path on
V(C), hence

1
dx
w :4/ . —20¢€Ly.
/V(R) v 0o V1I—at v

Similarly, the substitution z = t=1 gives

80



Oz 1 [ dx 1 /Y at 0
ay(01) —ayv((1,0)) = wy = — = — = Fi—,
v (01) — av((1,0)) /() v iz/l — iz/0 L=

hence

ay(0y) = %Q (mod Lv). (8.1.4.1)

8.2 The lemniscate sine revisited
(8.2.1) The inverse of the Abel-Jacobi map (8.1.3.1) is an isomorphism of Riemann surfaces

oy : C/Ly — V(C).
By (8.1.4.1), ¢y restricts to a holomorphic isomorphism

144
C/Ly —{

Q (mod Ly)} =5 Vag(C), 2z (x(2),y(2)),

where x(z),y(z) are holomorphic functions on C/Ly — {%Q (mod Ly )} satisfying

y(2)? =1 —x(2)4, dﬁ:) =y(2) (as ol (dz) = da/y) = 2'(2)? =1 — x(2)~.

(8.2.2) Definition of si(z). In fact, z(z) is the restriction of the meromorphic function

sl: C/Ly25v(C)—2-PL(C),

where p is the map from 8.1.2. The function sl(z) is meromorphic on C/Ly, holomorphic outside the two
points Q) (mod L) and satisfies

sl'(2)? =1 —sl(2)*
The isomorphism ¢y is given by the formulas

z > (sl(2), sl'(2)), z # QO (mod Ly)
PV 1

The calculations from 8.1.4 imply that

(8.2.3) Properties of si(z). The maps [+i] : V(C) — V(C) defined by

[Fil(z,y) = (Fiz,y),  (z,y) € Var(C);  [Fi(a,y) = (Fia',—y),  (2",y') € Vig(C)
are mutually inverse holomorphic isomorphisms satisfying [4:]*(wy ) = £iwy. This implies that

for any path v on V(C). In particular, letting « run through the representatives of Hy(V(C),Z) we obtain

81



iLy = Ly.
Taking for v a path from (0, 1) to @ yields
ay ([£]Q) = iay(Q) < (sl(xiz), sl'(iz)) = (+isl(z), sl'(z)) (8.2.3.1)
Ifo<z<1,lety=+1—x% Then

av (2, —y)) = ay (0, 1)) + / w ﬂdf_t — 0+ av((z.y)),
hence
sl(z+ Q) = —sl(z) (8.2.3.2)

for z € [0,9/2]. It follows from 3.2.2.9 that (8.2.3.2) holds everywhere on C/Ly . The relations (8.2.3.1-2)
imply that

sl(z+1Q) =isl(z/i + Q) = —isl(z/i) = —sl(z)
slz+ (1+149)Q) = —sl(z +1Q) = sl(z),
hence

Z-(1+0)Q+Z-20=(1492[i] - QC Ly. (8.2.3.3)

As we shall see in 8.3.5 below, the inclusion (8.2.3.3) is in fact an equality.
As in 7.5.1, the bijection ¢y induces an abelian group law B on V(C) with neutral element (0,1),
characterized by

(sl(z1), sl'(21)) B (sl(22), 8" (22)) = (sl(z1 + 22), s’ (21 + 22)).

8.3 Relations between si(z) and p(z)
(8.3.1) The cubic curve E. The smooth plane curves (over C)
Fag : v? = 4u® — 4u = 4(u+ Du(u — 1)
E = E.s U{0O}, O=(0:1:0)

are of the type considered in 7.2. In particular, wg = du/v is a holomorphic differential without zeros on
E(C) and the Abel-Jacobi map

P
a:E(C)— C/L, a(P) = / wg (mod L)
o
is an isomorphism of Riemann surfaces, where

L=1{ welve m(EC).2)
v
is the period lattice of wg. According to 7.2.6(i), we have L = Zw; + Zws, where
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dxr w1

[o%s) 1
. dzx
ut’} I — R %
2 /1 Vaz3 — 4z 2 /0 Viz — 423

(z=t~1

y . [ dt
1 —_—

/1 VA3 — 4t 2

hence
W1:iWQ, L:Z[i]~w2.
(8.3.2) A map between V and E. In terms of the variable z € C, the inverse maps to «, ay are given
by
¢:C/L = E(C), 2z (p(zL),¢(21L)),
oy : C/Ly — V(C), 2+ (sl(2), sl'(2)),

where

p(2) ~ 272, sl(z) ~ z as z — 0. (8.3.2.1)

The asymptotic relations (8.3.2.1) seem to suggest the following educated guess: perhaps

1
sl(2)?

o(z L) 2 ?? (8.3.2.2)

Does (8.3.2.2) hold? If true, then the identity

I ~2sl'(2)
sl(z)2)  sl(z)3
tells us that we should consider the map

(z,y) = (1/2%,=2y/2®),  (2,y) € Varr(C) = {(0,£1)}
4

(0,£1) — O,

(@) = (22, —22"y), («",y') € V{g(C).
(8.3.3) Exercise. f defines a proper holomorphic map f : V(C) — E(C) of degree deg(f) = 2, which is
everywhere unramified.

(8.3.4) The formula

Frtwn) = 2D~ S - Ty — iy (a)

implies that ¢}, o f*(wg) = dz and
q [0 (1,0) SRON
2 Jo 0.1) o 2

L=Z[i-Q=Z-iQ+Z-Q.
(8.3.5) Proposition. The lattice Ly is equal to

hence

Ly=Z - 14+)Q+Z-20=(14+4)LCL=Z-iQ4+Z-9Q,
and the following diagram is commutative:

c X c/Ly 2 v(O)

H ! l

c X c/L < EQ.
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In particular,

and f is a homomorphism of abelian groups.

Proof. For each closed path v on V(C),

this implies that Ly C L. Similarly, for each point ) € V(C) we have

Q Q

av(@ = [ wy(modLy)= [ f*(wp) (modLy) = / wp (mod Ly),
(0,1) (O,l) O

hence

ay(Q) (mod L) = a(f(Q)) (mod L).

This proves the commutativity of the diagram, as ¢ = o~ ! and ¢y = a‘_,l. We know from (8.2.3.3)
that L' = Z- (1 +9)Q+ Z-2Q C Ly. On the other hand, our diagram together with 7.6.4 imply that
|L/Ly|=deg(f) =2=|L/L'|, hence L' = Ly.

(8.3.6) The dual isogeny. The duplication formula (7.5.8.2) and its derivative imply that the multiplication

by 2 on E(C) is given by
u2 2 u2 ut — Gu2
[Q]E(u’v)<< +1) 2+ 6 +1)>_

v v3
Define a map f : E(C) — V(C) by ]?(O) = (0,1) and

4 2 . .
- (2,) = (— g, 8t ) if u # i

MDY - (o =) o

v

The map [ is holomorphic (exercise!) and satisfies

fof=12m  fof=[lv.

(8.3.7) Exercise. (i) Show that the map [1 + i]y : V(C) — V(C) has the same kernel as f.

(i) Show that there exists an isomorphism of Riemann surfaces g : V(C) — E(C) such that go[l1+i]y = f.

(iii) Find explicit formulas for g and g~*.

(8.3.8) Proposition. For each k > 1,

/ 1

— 4k
(m-{-nl)‘lkickg s

Gary2(Z[i]) = 0, Gar(Z[i]) = Z

m,neZ
where ¢ € Q is a (positive) rational number. For example, ¢; = 1/15.

Proof. As iZ[i] = Z[i], the last formula in 7.1.6 implies that
Gapr2(Z[i)) = Gar2(iZi]) = i~ 2 Gaps2(Zli]) = Guars2(Zli]) = 0.
The Weierstrass function p(z) = p(z; L) satisfies the differential equation
¢'(2)* = 4p(2)* — 4p(2);
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differentiating, we obtain

o (2) = 6p(2)* — 2. (8.3.8.1)
As

4 = go(L) = 60 G4(L) = 60 G4(Z][i] - Q),
it follows that

. . o
G4(Z[l]) = Q4 G4(Z[l] . Q) = E
Substituting to (8.3.8.1) the Laurent series expansions
1 oo
pz) = 5 + > (4k — 1) Gup(L) 22
k=1
6 oo
0'(2)? = ot > (4k — 1)(4k — 2)(4k — 3) G (L) 2"
k=1

and comparing the coefficients, we obtain, for each k > 1,

(4k — 1)((4k — 2)(4k — 3) — 12) G4 (L) = 6 Z (45 —1)(4l — 1) G4;(L) Gai(L),

hence

Gar(Z[i]) - Q™% = Gui(Z[i] - Q) = G (L) € Q
is rational (and positive), by induction.

(8.3.9) Exercise. (i) What is the analogue of 8.3.8 (and of its proof) if we replace o(z) by sin(z)?
(ii) Compute the first few values of ¢,,. What can one say about the denominators of the numbers (4k—1)!-¢x?
(iii) What is the analogue of (ii) in the context of (i)?

8.4 The action of Z[i]

(8.4.1) AsiL =L and iLy = Ly, both C/L and C/Ly are Z[i]-modules. Transporting this structure to
E(C) (resp. V(C)) by ¢ (resp. ¢v), we obtain an action of Z[i] on E(C) (resp. V(C)) given by

[l (p(2), ¢'(2)) = (p(az), ¢'(az))

€ Z[i]).
[a]y (sl(2),sl'(2)) = (sl(az), sl (az)) (a D
The maps f, ffrom 8.3.2,6 are then homomorphisms of Z[i]-modules.
For example, the relations (7.1.6) and (8.2.3.1) imply that
[:I:Z]E(ua U) = (77%7 iiv)v [71]E(uv U) = (u7 *v) (8411)
[£i]v (z,y) = (£iz,y), [1v(z,y) = (-=,y).

Denoting the a-torsion submodules by

E(C)a = E(C)[a] ={P € E(C)|[a]pP = O}
V(Cla =V(C)la] ={Q € V(C)|[a]vQ = (0,1)},
then it follows from (8.4.1.1) that

E(C)[1+1i] ={0,(0,0)}, V(C)[1 +14] = {(0,£1)}.
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(8.4.2) Group law on V(C). The addition formula (1.4.5.1) (whose more general form was proved in
2.3.1) can be written as

sl(z1)sl' (z2) + sl'(z1)sl(z2)
1+ sl2(z1)sl?(22) '

Differentiating (8.4.2.1) with respect to z1, we obtain an explicit formula for the group law B on V(C):

sl(z1 + z2) = (8.4.2.1)

21y + 22y y1y2(1 — 2ixd) — 2x129(af 4 23)
sy1) B (22, 2) = : . 8.4.2.2
(@1, 91) B (22, 92) ( 1+ 2222 (1 + 2323)2 ( )
Above, (zj,y;) = (sl(z}),sl'(z;)) € Vag(C).
Multiplying together the formulas (8.4.2.1) for £z5, we obtain
2,2 _ 2.2 201 — %) — 22(] — 24 2 _ .2 12 g2

sl(z1 + 22)sl(z1 — 22) = th 2$§y21 _ il =) 2x§(2 ) _ o 2%2 =2 (212) ° 2(22) . (84.2.3)

(14 x%23) (14 z323) 14+ a5zs 1+ sl2(2z1)s%(22)

(8.4.3) Exercise. Show that, for (z,y) € Vog(C),
(2,9) BOL = (iz,q:z'yﬁ) |
T

[Hint: Rewrite (8.4.2.2) in the variables z',y’.]

(8.4.4) Examples. Combining (8.4.1.1) with (8.4.2.2), we recover Fagnano’s formulas from 1.4.3-4:

[1+i)(z,y) = (z,y) B (+iz,y) = ((1ﬂ;z’)as’ 14;2334) _ ((lj;i)x, ifﬁ)

2¢y 1 —6z*+28
14+z4" (1 +24)2 ’

(8.4.4.1)

2)(z,y) = (v,y) B (z,y) = (

where (z,y) € Vag(C) (i.e. y?> =1 —2%).
Note that sl’(az) can be obtained from sl(az) by differentiation. If (z,y) = (si(z), sl’'(z)), then
[0](z,y) = (¥a, ya) = (sl(az), sl'(az)),

where x4, y, are rational functions of x,y with coefficients in Q(), satisfying

dr, = asl'(az)dz = aya dz, dr = sl'(2)dz = ydz,
hence

1
Ya d?x = dz,. (8.4.4.2)

This means that one can obtain y, from z, by a very simple calculation.
For example, for & = 1 + ¢, we have x1,; = (1 +4)z/y. Combining (8.4.4.2) with

d(at + 12 — 1) = 0 = 42® da + 2y dy = 0 = dy = —20° /y da,

we obtain

1+1 Y Y

driy; dr  xzdy dx <y2 +2m4>
> — \ T o5 |»

Y y?
hence
y2 + 2zt _ 1+ at
y? y?

Yi+i =

)
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in line with (8.4.4.1).
(8.4.5) Examples (continued). Let us compute

(1+d)z 1424

L+ 2i](2,y) = [il(@,y) B 1L+ i)(z,y) = (iz,y) B ( ) — (@raan yres).

y 1—uxt
As
1T zt .
) L (1 4+i)e (1420 —a5  (1+2i) — ot
Tiy2i = 572 = ~— = — T, (8.4.5.1)
I 1—(1+2i)x 1—(1+2i)x

it follows from (8.4.4.2) that

dr _dwiye _ 1-(1 — 2i)x? d + (1+ 2i)z — 2° 4B d — 1+ (2 +8i)xt + 28 i
V2T T T 9 T 11— (1+ 2028 (1—(1+2i)z%)? T T1- (1 t20)2h2 T
hence
1+ (2+ 8)at + 28
i = - 8.4.5.2
Y142 (1= (14 20)z*)? ( )
In the similar vein,
2¢y 1 —6z* 428
3 - EEl =
[ ](xay) ($>y) <1+1347 (1+I4)2 ) ($3,y3)7
where
xr e x4 CL‘S xT 7x4
B ey .
8 1+% 14 624 — 328
and
dv _des _1-— 10z — 328 . (3 — 62t — 2%)(8z* — 828) dr — 1 — 2824 + 6% — 28212 + 216 i
Y T T3 T 1+ 62t — 348 (1+ 62* — 32°)2 - (1+ 62* — 32°)2 ’
hence
1 — 282% + 628 — 28212 + 16
ys = y. (8.4.5.4)

(1+ 6a* — 328)2

(8.4.6) A change of sign. The formulas (8.4.5.1-4) become more symmetric if we apply [—1](z,y) =
(_x,y):

st (142) 1+ (2+8i)at 428

o _ 4.6.1
o +62% —3  1— 28z + 625 — 28272 + 210

[=3](z,y) = (1 + 62t — 328 (1 + 6a® — 325)2 ) ' -

(8.4.7) Congruences. Note that

1+ 248z + 2% = (1 — 2% = ¢* (mod (—1 — 2i)),
1 —28z% + 628 — 28212 + 216 = (1 — 2%)* = ¢/® (mod (-3));
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the formulas (8.4.6.1-2) then imply that

[~1 = 2] (2,y) = (2°,9°) (mod (-1 - 27)),
[=3] (z,y) = (2", y°) (mod (-3)).

These congruences should be interpreted as follows: o« = —1 — 24 (resp. @ = —3) is an irreducible element
of Z[i] of norm Na = a@ = 5 (resp. Na = 9) and both components z,, y, of [a](z,y) are elements of the
localization R, of the polynomial ring R = Zli][z,y] at the prime ideal generated by «; it makes sense,
therefore, to consider the residue classes of 4,y modulo alR(,) as elements of the residue field of R,
which is equal to

(8.4.7.1)

Ra)/aR(a) = Frac(k(a)[z, y]) = k(a)(z,y),
i.e. to the field of rational functions in z,y over the finite field k(a) = Z[i]/aZ[i] with Na elements.

(8.4.8) Making a Conjecture. What is the general form of (8.4.7.1)?7 What distinguishes the values
a=—1—2¢,-3 from 1+ 2¢,3, for which we have

0 o (8.4.7.1)
8] (z,y) = (—=2”,y”) (mod (3))?
Recall that the cogruences 0.5.1
[P*le(x,y) = (2", y7) (modp) (8.4.7.2)
for the group law on the circle involved multiplication by
p* = (=)@, (8.4.7.3)
for odd prime numbers p. As
p* =1 (mod4),
it is natural to ask whether there is a similar congruence condition characterizing a« = —1 — 2i, —3 € Z[i].

In these two cases

(—1—2i)—1=-2—2 = (—1)(2 + 2i),
“i= {(—3)—1:_4: (=1 +4)(2 + 2i),
which would suggest the following
(8.4.9) Conjecture. If a € Z[i] is an irreducible element satisfying o = 1 (mod (2 + 2i)), then

Noz, yNa) (

[a](z,y) = (z mod ),

where Na = aa.

(8.4.10) What are these congruences good for? In the case of the circle, the quantity (8.4.7.3) appears
in the statement (and various proofs) of the Quadratic Reciprocity Law. In fact, as we shall see in 9.2 below,
the congruence (8.4.7.2) can be used to prove the Quadratic Reciprocity Law.

Assuming that 8.4.9 holds, can one deduce from it a more general Reciprocity Law — perhaps for higher
powers — involving elements of Z[i]? We shall investigate this question in section 9.

8.5 Division of the lemniscate
(8.5.1) Algebraic properties of the numbers sin(ma/n) are intimately linked to geometry of regular polygons.
Their lemniscatic counterparts sl(af2/n) are the polar coordinates of the points that divide the right half-

lemniscate into n arcs of equal length Q/n.
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Note that, if 0 < a < n, then
0 < sl(aQ2/n) < 1, sgn(sl’(af)/n)) = sgn(a — n/2). (8.5.1.1)
(8.5.2) Examples. (n=3): let (z,y) = (sl(©2/3),sl'(22/3)) € V(R). As
Bl(z,y) = (sl(€), sI'(2)) = (0, 1),
the triplication formula (8.4.5.3) implies that x is a root of
2® 462t —3 = 0;
the only root of this equation contained in the interval (0,1) is z = V/2v/3 — 3; applying (8.5.1.1) once again
we see that y = v/1 — x* is the positive square root; thus
(s1(/3),sI'(©2/3)) = (V/2V3 — 3,3 —1). (8.5.2.1)
The values (8.5.2.1) can also be deduced from Fagnano’s duplication formula, as
2](a,b) = (s1( — ©/3), sI'(2 — 9/3)) = (a, ~b).
(n =4): The point (x,y) = (sl(Q2/4),sl'(Q/4)) satisfies
[2](z, y) = (s1(2/2), s1'(2/2)) = (1,0),
hence the duplication formula for si’ (8.4.4.1) implies that z is a root of
a® — 62 +1=0.

As in the case n = 3, there is precisely one root contained in the interval (0, 1), which is easily calculated.
The final result is

(sl(2/4), sI'(Q/4)) = (\/\/5 —1, \/Ni —2). (8.5.2.2)

(8.5.3) Constructibility. The attentive reader will have noticed that all values occurring in (8.5.2.1-
2) involve only iterated square roots of rational numbers. Such expressions are precisely the ‘constructible’
numbers in the sense of Euclidean geometry, i.e. those equal to distances between points obtained by iterated
intersections of lines and circles, starting from a segment of unit length.

The corresponding elementary counterparts of 8.5.2.1-2, namely the numbers

sin(m/3) = v3/2,  sin(r/4) = v/2/2,
are constructible for the simple reason that for the small values n = 3,4 the regular n-gon is constructible.

(8.5.4) Exercise. (i) Let P = (a,b) (a > 0) be a point on the lemniscate. Show that:

the two numbers a, b are constructible <= r = \/a2 + b2 is constructible.

Of course, r = sl(s), where s is the length of the arc of the lemniscate from (0,0) to P; cf. 1.3.1.

(ii) sl(s) is constructible <= sl(2s) is constructible.

(iii) For each m > 0, the points dividing the half-lemniscate into n = 2™ (resp. n = 3 -2™) arcs of equal
length Q/n are all constructible.

(iv) What about the case n = 57 (Note that the regular pentagon is constructible, as cos(2mw/5) =
(vV5-1)/2.) [Hint: Q/(1 4 2i) +Q/(1 — 2i) = 2Q/5; use (8.4.5.1-2).]
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9. Lemniscatology continued: Reciprocity Laws ()

9.1 Quadratic Reciprocity Law

(9.1.1) TIrreducible quadratic polynomials

f(x) =az® +bx+c (a,b,c € Z,a #0)

with integral coefficients have the following remarkable property: only 50 % of prime numbers appear in
the factorization of the values f(z) (x € Z); such prime numbers are characterized by suitable congruence
conditions modulo [b? — 4ac|.

For example, the prime numbers p # 2 (resp. p # 2, 3) occurring as factors of the numbers of the form
22 + 1 (resp. 2% + 3) are precisely the prime numbers p = 1 (mod4) (resp. p = 1 (mod 3)).

By completing the square

4af(x) = (2ax + b)? — (b* — 4ac),

2

it is enough to consider the polynomials f(x) = x* — a; the answer can then be formulated in terms of the

Legendre symbol.
(9.1.2) The Legendre symbol. If a € Z and p is a prime number not dividing 2a, one defines

(a) +1, (3xr € Z) 22 =a (modp)
N -1, (Vx € Z) 22 # a (mod p).
The multiplicative group (Z/pZ)* is cyclic of order p — 1; this implies that

a

(}—9) =a"T (modp) (9.1.2.1)

(“Euler’s criterion”). In other words, the Legendre symbol induces an isomorphism of abelian groups

* * ~ a
Fi/F:? = {1}, ar— (;)

2)-()6)

-1 po1 +1, p=1 (mod4),
(7> =)= = { o p= 3 (modd). (9.1.2.3)

(9.1.3) Lemma (Gauss). Let q # 2 be a prime number; fix a subset ¥ C Z/qZ—{0} such that Z/qZ—{0} =

»U(—X) (disjoint union). For example, we can take ¥ = {1,2,...,(q — 1)/2}. Fix an integer a € Z, q } a.
For each o € ¥ there is a unique pair €, = +1 and ¢’ € ¥ satisfying ac = e,0’ € (Z/qZ)*; then

- ()

In particular,

and

Proof. Dividing both sides of the equality

a'T H o= H(aa) = (H ec,> H o' €(2/qZ)*

gED gED ceY o'ex

(1) Section 9 is not for examination.
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by

[1 < z/azy

oED
yields the result.

(9.1.4) Exercise. Applying 9.1.3 to a = 2, show that

(2> _ (71)%_1 B {+1, p= =1 (mod8),

p -1, p = £3 (mod 8).

(9.1.5) Quadratic Reciprocity Law. Let p # g be prime numbers, p,q # 2. Then

0)- (e

(9.1.6) Using (9.1.2.1-2), the Quadratic Reciprocity Law can also be written as

£)-() e

(9.1.7) Let a € Z —{0,1} be a square-free integer. Writing a in the form

pi—1
% J

a=(=1)"2"p1 - P, p;=(=1)"7 pj,

where u,v € {0,1} and p; are distinct odd primes, the Quadratic Reciprocity Law implies that we have, for

each prime g 1 2|al,
(- EE-@)

As the value of (pij) (resp. (‘Tl), resp. (%)) depends only on the residue class of ¢ modulo p; (resp.

modulo 4, resp. modulo 8), it follows from (9.1.7.1) that (%) depends only on the residue class of ¢ modulo

A, where

lal, a=1 (mod4)
A= { (9.1.7.2)

4|al, a # 1 (mod4).

Moreover, if ¢; (j = 1,2,3) are primes not dividing 2|a| satisfying

q192 = q3 (mOd A)7

then (9.1.7.1) together with (9.1.2.2-3) and 9.1.4 imply that

@) G)=6)

As each congruence class in (Z/AZ)* contains a prime number, the previous discussion implies the following
result.
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(9.1.8) Proposition. If a € Z — {0,1} is a square-free integer and A is defined by (9.1.7.2), then there
exists a unique surjective homomorphism of abelian groups

Xa : (ZJAZ)* — {£1}

satisfying
a

(o (mod 4)) = (%)

for all prime numbers q 1 2|al.
(9.1.9) Example: Fora=3=(—1)-(=3) = (—1) - 3*,
3 —1\ /-3 ~-1\ /q +1, g = =1 (mod 12)
(- 0-{0

for every prime q # 2, 3.

(9.1.10) If a = p*, where p # 2 is a prime number, then A = p. There is only one surjective homomorphism
(Z2/pZ)" — {+1},
namely the Legendre symbol; thus 9.1.8 implies that
(7))
q p
for all primes ¢ # 2, p. In other words, 9.1.8 is a strengthening of the Quadratic Reciprocity Law.

9.2 Quadratic Reciprocity Law and sin(z)

In this section we deduce the Quadratic Reciprocity Law from the congruence 0.5.1 (cf. 9.2.3 below) and
the following simple product formula.

(9.2.1) Proposition (Product Formula (P)). Let n € N, 2{n. Fix a subset ¥ C Z/nZ — {0} such that
Z/nZ — {0} = EL.J(—E) (disjoint union). Then

2
<H 2sin 27:) =n. (P)

oED

Proof. The addition formulas for sin(z) imply that

sin(z1 + 22) + sin(z1 — 22) = 2sin(z1) cos(z2)

sin(z; + 29) - sin(z; — 22) = sin?(2;) — sin?(22).

Putting z; = (n — 2)z and 2z, = 2z (thus cos(z2) = 1 — 2sin?(z)), it follows by induction that, for every
n € N, 21 n, there is a polynomial Q,,(t) € Z[t] satisfying

sin(nz) = @y (sin(z)), Qn(t) = (—1)%2"_115” + -+ nt. (9.2.1.1)
As the values of sin(z) at z € 27Z are all roots of Q,,, we obtain from (9.2.1.1) that
Qu(t) =t [] 22 <sin o _ t) (sin o, t> . (9.2.1.2)
n n
Putting ¢ = 0 (and again using (9.2.1.1)) yields the product formula (P).
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(9.2.2) Lemma. Ifn € N, 2 {n and a € Z, then 2"~ !sin 2”7‘1 is an algebraic integer. [In fact, one can
replace in this statement 2"~1 by 2, but this is not important for what follows.]

Proof. This follows from (9.2.1.1-2).
(9.2.3) Proposition (Congruence Formula (C)). Let p # 2 be a prime. Then

Qp(t) = (—1)" 717 (mod pZ[t)). (©)

Proof. As sin(—z) = —sin(z), the polynomial @, (t) is an odd function, hence of the form Q,(t) = tM(t?),
with M (t) € Z[t]. As

T _

cos(pz) = sin(% — pz) = (-1)"% sin(p(§ — 2)) = (-1)"F Qp(sin(§ — 2)) = (—1)"F Qp(cos(2)), (9.2.3.1)

differentiating the relation sin(pz) = Q,(sin(z)) we obtain

p(—1)"T Qy(cos(2)) = peos(pz) = @, (sin(z)) cos(2),
hence

p—1

Q) (sin(z)) = p(~1)"T M(cos(2)?),
QL (1) = p(—1)" T M(1 - ) € pZt]

As Q,(t) = Y a;t' is a polynomial of degree p with integral coefficients, the congruence (9.2.3.2) implies that

(9.2.3.2)

Qp(t) = apt? (mod pZt]).
However,
a, = (—1)"7 271 = (—1)"> (modp),
by (9.2.1.1).

(9.2.4) Corollary. Assume thatsin(«) € Q is an algebraic number (o € C) and O a subring of Q containing
sin(o). If p # 2 is a prime number, then sin(p*«) € O and

sin(p*a) = sin(a)? (mod pO) (p*=(-1)"7 p).

(9.2.5) Corollary. Let p # 2 be a prime number and n € N, (n,2p) = 1. Let Ok, be the ring of algebraic
integers in the field K, = Q(sin 22% | a € Z/nZ). Then, for each a € Z,

sin <2”p*“> _ (m%)p (m0d pOxc, [1/2]).

n
(9.2.6) The congruence 0.5.1

[p*)(x,y) = (2¥,y?) (mod pZ[z,y])

is a simple combination of 9.2.3 with (9.2.3.1). This method of proof is much more complicated then the
one suggested in 0.5.1, but it can be generalized (at least partially) to the lemniscatic case, as we shall see
in 9.4 below.

(9.2.7) In fact, one can deduce the Congruence Formula (C) directly from the Product Formula (P), with
a little help from algebraic number theory:
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(9.2.8) Proposition. Let p # 2 be a prime. Then the polynomial R,(t) = (—1)%1Qp(t)/t € Zt] satisfies
R,(t) ="~ (mod pZ][t]).

Proof. By (9.2.1.2) and 9.2.2, we have

p—1
2
Ry(t) =2r71 H(t —ap), a = sin% € Ok, [1/2].
r=1

The Product Formula (P) from 9.2.1

p—1
R, (0) = 2r-! H Qr =P
r=1

implies that there exists a prime ideal p|p in O, and an index 1 < ro < p — 1 such that p|a,,. For each
r € (Z/pZ)* there exists s € N satisfying 2t s and ¢ = r9s (mod p). Then

Qp = Qs(aro)a Qs(t) € Z[t]7 Qs(o) =0 = p‘ar-
This means that p divides all ., hence
R,(t) = 2P~ 17 (mod pOk, [1/2][t]).
As R,(t) € Z[t], we conclude that
Ry(t) = 2P~ 1P~ =771 (mod pZ][t]).

(9.2.9) Deducing Quadratic Reciprocity Law from (P), (C) and 9.1.3. We are now ready to prove
9.1.6. Fix ¥ as in 9.1.3 and put

2 2mp*
S = H (25in%), S = H (QSin Wf; q) € Ok, [1/2].

oeEX ogEYD

Applying 9.1.3 with a = p* and using the identity sin(—z) = —sin(z), we obtain

s'=T] <2sm 2”;0/> =11 <260 sin 27;0') = <H 6,7)

oED ceX ceY

I1 (2 sin 27?) = (pq*>s. (9.2.9.1)

o'ex
Combined with (C) in the form 9.2.5, this yields
(Z)s — & = (277" 1SP = SP (mod pOr, [1/2]). (9.2.9.2)

According to (P), we have S% = ¢; as ¢ is invertible in Z/pZ C Ok, /pOk, = Ok,[1/2]/pOk,[1/2], it follows
that we can divide (9.2.9.2) by S, obtaining (again using (P))

(%) =971 = (8%)"F = ¢"F (modpOy, [1/2]). (9.2.9.3)
Applying Euler’s criterion (9.1.2.1), we obtain from (9.2.9.3)
P q P q
— ) =(-) (modpOk,[1/2]) = (—) = <—) mod pZ 9.2.9.4
(%) = (1) tmoanor, /2 — (%) = (1) odsa (9:2.9.4

(as both sides are equal to +1 and Ox, N Q = Z). Finally, the congruence (9.2.9.4) between elements of
{£1} must be an equality, since —1 Z 1 (mod pZ).
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(9.2.10) Exercise. Using the values S = 2sin 2F and S’ = 2sin %, show that

(2) s o* 1 1, p = %1 (mod 8)
— = — = (—1) 4 =
p S ~1, p==+3 (mod8).

Conjecture 8.4.9 was stated and proved by Eisenstein in 1850

(9.2.11) What next? Is there a lemniscatic version of all that has been done in 9.1-2? Yes, there is.
In fact, the congruence 8.4.9 was proved by Eisenstein in 1850 in order to deduce from it the Biquadratic
Reciprocity Law ([Sc]).

If Eisenstein could do it, why not you?
The impatient readers may go straight away to sections 9.3-5. Others may want to pause and think

about generalizing everything from 9.1-2 to the lemniscatic case, replacing Z, 27 and sin(z) by Z[i], Q and
sl(z), respectively. They would not regret this adventure!
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9.3 The Product Formula for si(z)

We follow the notation of Section 8 (in particular, L = Z[i] - 2).

(9.3.1) Definition. Let o € Z[i], 2 Na. Fix a subset £, C (LL/L) — {0} satisfying (1L/L) — {0} =
2aU(i80)U(=30)J(—iSy) (thus |Sa| = (Na — 1)/4) and put

Po(ty= [ t—slw)=t ] (" —st*(w) € C[t]

wEXL/L uED,
Q)= [ a-tsiw)= [ a-t'si*(w) eCl]
ue(LL/L)—{0} u€a

(the values of sl(z) at z =u € LL/L are finite, by 9.3.5 below). Note that
Qu(t) =tNP,(1/1). (9.3.1.1)

(9.3.2) Lemma. For each o € Z[i], 2 Na, we have

, P,(sl(z))
144 _
Qalsllz + 510) = <4 v
Proof. This follows from 8.4.3, which reads as follows:
sl(z+ Q) = (9.3.2.1)

(9.3.3) Exercise. For z1, 25 € C,

sl(z1) =sl(z2) < 2z —23€ Ly or z1+22€ Ly +9Q

(note that L = LyU(Ly + Q).

(9.3.4) Lemma. Ifa,( € Z[i] and 21 (Na)(NG), then (Py(t),Qp(t)) =1 (ie. Py(t) and Qg(t) have no
common roots).

Proof. If there were a common root, we would have P,(sl(z)) = Qg(sl(z)) = 0 for some z € C. This would
imply, by 9.3.2-3, that

B(1 ii)Q

Q):ﬁLm(aL+a . ap(l£i)

2

1 1 1+£2

hence a3 € (1 + 4)Z[i], which contradicts the assumption 24 (Na)(Nf3).
(9.3.5) Lemma. div(sl(z)) = (0) 4+ (Q) — () — (15%) € Div(C/Ly).

>7é(2):> QeL=12[ Q,

Proof. This follows from the fact that

div(z) = ((0,1)) + ((0, =1)) = (O4) = (O-) € Div(V(C)).

(9.3.6) Corollary. The function sl : C — P!(C) has simple zeros (resp. simple poles) at z € L =
LVL'J(LV + Q) (resp. at z € L+ %) and no other zeros (resp. poles).

(9.3.7) Proposition. Let a € Z[i], 21 Na. Then there exists a (unique) constant ¢, € C* such that

_ Pa(sl(z))
sl(az) = GREIE)
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Proof. The functions sl(az), P,(sl(z)), and Qn(sl(z)) are Ly-periodic and meromorphic on C/Ly . By 9.3.6,
sl(az) has simple zeros at éL and simple poles at

l<L+ H”Q) Ll
a 2 o 2

(the equality follows from the fact that o — 1 € (1 +i)Z[i]). Similarly, P,(sl(z)) has simple zeros at + L and
poles order Na at L + 1£Q, while Q,(sl(z)) has poles of order (Na — 1) at L + 132Q and simple zeros at
(LL\ L) + 1£Q, hence

div(sl(az)) = div <%> € Div(C/Ly).

Proposition follows.

(9.3.8) Corollary. If o € Z[i], 21 N, then

H sl*(u) = (=1)" T cq -

UEX o

Proof. Differentiating (9.3.7.1) yields
PaQa — Pa@Qy
ca@?
Putting z = 0 (and using the fact that sl’(0) = 1 # 0), we obtain
P (0 a—
Cor = Qa((o)) = [I -stw)t= 0" ] st'(u).

UED uEX o

asl'(az) = (sl(2)) sl'(2). (9.3.8.1)

(9.3.9) Normalization of a. There are 8 residue classes in Z[i] modulo 2 + 2i = —i(1 + )3, of which 4
are invertible. More precisely, the reduction map Z[i] — Z[i]/(2 + 2i¢) induces an isomorphism

{£1, +i} = Z[i)* = (Z[i)/(2 + 20))*.
This implies that, for each o € Z[i] with 2t N, there is a unique element d, € {£1, £i} satisfying
a-dy =1 (mod (2 + 2i)).

This should be compared to the isomorphism

~

(+1) = Z* 5 (Z/4Z)*

and the congruence

(forn € Z,21n).
(9.3.10) Proposition. Let « € Z[i], 21 Na. Then P, (t), Q. (t) € Z[i][t] and ¢, = dq.

Proof. We use induction on Na. Assume first that Na = 1. In this case o € {+1,+:i}, X, =0, P,(t) = t,
Qu(t) =1, sl(az) = asl(z), hence a - ¢, =1 as required.
In general, applying (8.4.2.3) with z; = az and 23 = (1 +4)z and using 9.3.7, we obtain

Pa—l—s(l:l:i) (t) _ (t4 - 1)Poc2<t) + QZCitQQi(t)
e—+1 Ca+e(1ii)Qa+e(1ii) (t) :F2Zt2po¢2 (t) + (t4 - 1)6(21623 (t) .
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By 9.3.4, there is no cancellation of terms between the numerator and the denominator on the L.H.S. As the
degree of the numerator (resp. the denominator) of the R.H.S. is equal to 2Na + 4 (resp. is < 2Na + 2)
and the leading term of each Ps(t) is t™V7, it follows that we have exact equalities between the numerators
and denominators on both sides:

P (1) () Par (140 (8) = (t* = 1) P2(t) + 2ic2t* Q4 (1)
(¢ Q)at1ei)(t) (¢ Q)aasn(t) = F2t*P2(t) + (t* — 1)c2Q%(¢).

Assume that Proposition is already proved for o and a — e(1 + 64) (for fixed ¢,6 = £1). The first line of
(9.3.10.1) implies that P(t) = Paqc(1+64)(t) is a polynomial with coefficients in Q(7). Recall that the contents
of such a polynomial is the principal fractional ideal of Q(4) generated by the coefficients. Multiplicativity of
the contents (“Gauss’ Lemma”) then implies that the contents of P(t) is equal to (1), hence P(t) € Z[i][t].
As the coefficients of Q(t) = Qqe(145i)(t) are the same as those of P(t), only written backwards, we also
have Q(t) € Z[i][t].

Substituting ¢ = 0 to the second line of (9.3.10.1) yields

(9.3.10.1)

Cate(1+6i) " Ca—e(1+6i) = 2. (9.3.10.2)
As
(a4 e(1460)) (o — e(1 +64)) = a® — 26i = —a? (mod (2 + 2i)),

we have

ot e(1460) - da—e(145i) = —da- (9.3.10.3)

As cg = dg for 8 = a, a —€(1+6%) by induction hypothesis, the formulas (9.3.10.2-3) imply that c¢g = d also
for B = a+¢€(1+46%). This concludes the induction step (the exact values of €, § depend on the circumstances).

(9.3.11) Corollary (Product Formula (P)). If o € Z[i], 21 Na, then

IT st = ()" a-d.. (P)

UEX o

In particular, if « =1 (mod (2 + 2i)), then

IT st'w= (1" a.

UEX o

(9.3.12) Corollary. If o € Z[i], 2t Nov and u € L L, then sl(u) is an algebraic integer.

9.4 The Congruence Formula for si(z)

(9.4.1) If o € Z[i] is an irreducible element with 2 t Na, then 0.4.3.0 implies that the residue field
k(o) = Z[i]/oZ[i] is a finite field with Na = p® elements, where p € N is the unique prime number divisible
by a and a =1 (resp. a = 2) if p=1 (mod4) (resp. if p =3 (mod4)).

(9.4.2) Proposition. If a € Z[i], 2t Na, put

Ra(t) = 11 (t—sl(u+$))(t—sl(ut+ )= ] (" —s* (ut+9)) (t* —sl* (u+ ).

ue(1L/L)—{0} UED,

; sl'(2) (9.4.2.1)



and R,(t) € Z[i][t].

Proof. It follows from

that

div(sl'(2) = Y () =2 (429) - 2(1520) € Div(C/Ly).

¢i=1

In other words, sl’(z) has simple zeros at (£ + L)O(% + L) and double poles at Q) + L. As in the proof

of 9.3.7, this implies that
div sl'(az)> _ div (Ra(sl(z))) 7
1 ( SU'(2) Q2(s1(2))

showing that the ratio of the left and right hand sides of (9.4.2.1) is a constant. As the value of the L.H.S.
(resp. the R.H.S.) at z = 0 is equal to 1 (resp. to R4(0)), it remains to prove that R,(0) = 1; this is a
consequence of (9.3.2.1) for z = u + 5}

The formula 9.3.8.1 implies that R, (t) € Q(¢)[t]; it remains to show that each root of R,(t) is an
algebraic integer. Indeed, such a root is of the form si(u + %), where u € éL and ¢ € {1, i}, hence it is
also a root of the polynomial

Pa(t) — dasl(au+ 2)Qu(t) = Pa(t) — dasl(S2)Qa(t) = Pa(t) — daC'Qal(t) = 0

(for some ¢’ € {£1,+:}), which is a monic polynomial with coefficients in Z[i][¢] (by 9.3.10). Proposition
follows.

(9.4.3) Proposition (Congruence Formula (C)). If a € Z[i] is irreducible and 2 N, then

P, (t) =tV (mod o Z[i][t]), Qq(t) =1 (mod oZ[i][t]). (@)
Proof. Let us try to generalize the “elementary” proof of 9.2.3. Combining (9.3.8.1) with (9.4.2.1), we obtain

P.Qo — PaQ, = adoQ*: R, = 0 (mod oZ[i][t]). (9.4.3.1)
As

Poz(t) :tNa"_altNa_l +"'+aNa71ta Qa(t) :afNozfltNa_1 —|—-~-—|—a1t+1, ONa—1 :adom
considering the coefficients of the L.H.S. of (9.4.2.1) modulo «Z[i] yields consecutively

—(Na—1)anyo—1 =0 = ane—1 =0 (mod oZ]i])
—(Na —2)anyo—2 =0 = anq—2 =0 (mod aZ]i])

—(Na—p+1)ana—pt+1 =0 = ana—p+1 =0 (mod oZ]i]),

which proves the claim if Na=p (i.e. if p=1 (mod4)).

It is not clear (at least to the author of these notes) whether one can prove the Proposition by this
method also in the case Na = p?. Instead, we shall generalize the method of proof of 9.2.8. By 9.3.12, the
values sl(u) (u € £L) are contained in the ring of integers Ok of the number field K = Q(i)(sl(u) |u € 1 L).
According to 9.3.7 and 9.3.10, we have
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H sl(u) = acy = ady, do € {£1,+i},
ue(LrL/L)-{0}

which implies that there exists a prime ideal p|a in O and ug € (LL/L) — {0} such that p|si(ug). For each
ue (LL/L) — {0} there exists 3 € Z[i] satisfying 21 N3 and u = Bug (mod L).
As p|si(ug) and Pg(t), Qa(t) € Z[i][t], it follows that
Ps(sl(ug)) = P3(0) =0 (modp),  @s(sl(uo)) = Qp(0) =1 (modp),

hence each non-zero root of P, (t) satisfies

sl(u) = sl(Bug) = Ps(sl(uo))

= 1305(51(u0)) =0 (modp); (9.4.3.2)

thus

Po(t) = t"* (mod pOx[t]),

which implies the same congruence modulo (pOx N Z[i])[t] = aZ[i][t], as required. The desired congruence
for Qq(t) follows from (9.3.1.1).

(9.4.4) Corollary. Assume that o € Z[i] is irreducible, 21 Na, K is a number field containing Q(i) and p
a prime ideal of Ok dividing «. If z € C and sl(z) € Ok, then sl(az) € Ok and

dasl(az) = sl(z)N (mod p)

(with d,, € {£1,+i} defined in 9.3.9).

(9.4.5) Proposition. Assume that o € Z[i] is irreducible, 2t Na. Then

Na—1

Ro(t)= (1=t "2 (mod aZ[i][t]).

Proof. Using the notation from the proof of 9.4.3, the formulas

sl'(z ‘ 1sl'(z
sl(z+3) = l—i—s(lg)(z)7 sl(z49) = 1—51(2()2')

together with (9.4.3.2) imply that, for all u € ¥,
st (u+2) =sl* (u+ L) =sl'(u)' = (1-s1*(v)? =1 (modp),

hence

Na—1 Naoa—1

=(1—t"% (modpOklt]) = Ra(t)=(1—tH >

Ro(t) = (t* = 1) (mod aZ[d][t]).

(9.4.6) Proposition. Assume that o € Z[i] is irreducible, 2 t No; put ¢¥(a) = do - o = 1 (mod (2 + 247)),
where d, (€ {£1,+i}) is as in 9.3.9. Then the group law on the curve V satisfies

[W(a)](z,y) = (=, y™*) (moda)
(this congruence should be interpreted as in 8.4.7). In particular, if « = 1 (mod (2 4 27)), then 8.4.9 holds.

Proof. By 9.3.7, 9.3.10 and (9.4.2.1), we have
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o P.(z) Ru(x)
ale.y) = (daQa@)’ Q2 (@) y) ‘

The congruences 9.4.3,5 then yield

Po(r) Ra(z)
Qa(z) Q%(2)

(@), 9) = ( y) _ @V (1— e y) = (2 5N (mod a),

9.5 Biquadratic Reciprocity Law

Let us try to imitate the theory from 9.1-2 in the context of Gaussian integers Z[i]. Our analytic approach
will disregard many arithmetic aspects of the theory; these can be found, for example, in [Co] or [Ir-Ro].

(9.5.1) Let o € Z[i] be asin 9.4.1. As ( # 1 (mod «) for any ¢ € {—1, £i}, the reduction modulo « induces
an injective homomorphism of abelian groups

{£1,+i} — k(e)* = (Z[i]/aZ]i])*. (9.5.1.1)

As k(a)* is a cyclic group order Na — 1, it follows that Noo = 1 (mod4) and that the following definition
makes sense:

(9.5.2) Definition (Biquadratic residue symbol). If a € Z[i] is irreducible, 241 Na, a € Z[i] and « 1 a,
denote by (g) , the unique element of {%1, £i} satistying the congruence

(g)4 =q" (mod «)

(“generalized Euler’s criterion”).
(9.5.3) Lemma. (i) The biquadratic residue symbol modulo « defines an isomorphism of abelian groups

(_>4 s k() k(o)™ =5 {£1, i}

«

(ii) Ifatab (a,b € Z[i]), then

(2),-0.0), G-0-@0 ()

(iii) f No=p=1 (mod4) and a € Z, pta, then

(g) =1 <= a (modp) € F;‘f < (Fr €Z) 2" =a (modp).
4

(iv) If Na = p? p=3 (mod4) (i.e. o € {&p, +ip}) and a € Z, pt a, then
a
(). ="

Proof. (i),(ii) This follows from the definitions (and the fact that k(a)* is cyclic of order Nao — 1). (iii) is a
special case of (i). Finally, (iv) is a consequence of

p2—1

a * = (a%)p’1 =1 (mod pZ).

(9.5.4) Lemma. Let o € Z[i] be irreducible, 21 Na; let ¥, be as in 9.3.1. Fix a € Z][i] not divisible by «.
For each u € X, there is a unique pair ¢, € {£1,+i} and v’ € X, satisfying au = (,u’; then

H Gu = <g)4'

UuEX o

Proof. The proof of 9.1.3 applies with straightforward modifications.
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(9.5.5) Biquadratic Reciprocity Law. Let o, 3 € Z[i] be irreducible, a1 8 and o = f = 1 (mod (2 + 21)).

Then 5
(0% Na—-1 NB—-1
(5),= (), |

Proof. We shall follow the argument from 9.2.9. Fix ¥, as in 9.3.1 and put

S = H sl(u), S = H sl(Bu) € Ok,

uEX ueX,y

where K = Q(i, sl(u) |u € 2L/L). As in (9.2.9.1), the identity sl((z) = (sl(z) (¢ € {£1, +i}) together with

9.5.4 imply that
<§> 5=
O/ y

Fix a prime ideal p of Ok dividing 5. The congruence formula (C) in the form 9.4.4 then yields

<é> S =5 =5 (modp).
@)y
According to the product formula (P) from 9.3.11,

St=(-1)"Ta

is not divisible by p, hence

(2) =870 = (590 = ()"0 (modp)
4

<§)4 = (—1) <%)4 (mod p).

Both sides of this congruence are elements of {£1, £i}; as p N Z[i] = BZ][i], it follows that

(5)4 R (%)4 (mod BZ[i]).

However, both sides of the latter congruence must be equal, by the injectivity of (9.5.1.1) for 3.

which is in turn congruent to

(9.5.6) Exercise. Irreducible elements « € Z[i] satisfying « =1 (mod (2 + 27)) are the following:

(i) a=wu=+iv, where u,v € Z, Na = u? +v?> = p=1 (mod4) is a prime, v =0 (mod2), u = v+ 1 (mod4)
(the pair u + iv is determined by p uniquely).

(ii) o = —p, where p = 3 (mod4) is a prime.

(9.5.7) Example: Let us compute (%3)4 for « = u £ iv as in 9.5.6(i). Applying 9.5.5, we obtain

(%)~ (%),

There are 8 residue classes in (Z[i]/3Z[i])*, represented by a = £1,4i, £(1 +4), (1 — 7). As

(_13)4 = a2 (mod 3Zli]),

it follows that

(B (G () (5
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hence

(3z € Z) #* = -3 (modp) — <a>4 =1 <= a==1(mod3Z[i]) <
< u==1(mod3),v=0 (mod3) <= v=0(mod6) <= (3a,b€Z) p=a*+ (6b)*
(9.5.8) Exercise. Show that, for a prime number p =1 (mod4), p # 5,
(Fz € Z) 2* =5 (modp) <= (a,b€Z) p=a®+ (10b)°.
(9.5.9) If p is a prime number satisfying p = 3 (mod 4), then the multiplicative group (Z/pZ)* is cyclic of
order p — 1, where (p — 1,4) = 2. This implies that F;4 = F;Q, hence

(EIxGZ)x4Ea(modp) <— (EIyGZ)yQEa(modp) — <%):1 (a€Z,pta).

.. . . . . . _ _ *3 _
(9.5.10) Similarly, if p is a prime number satisfying p = 2 (mod 3), then (p —1,3) = 1, hence F;° = F;. In
other words, the congruence

23 = a (mod p) (9.5.10.1)

has a (unique) solution modulo p for every a € Z.

(9.5.11) On the other hand, if p = 1 (mod 3), then the solvability of (9.5.10.1) depends on a in a non-trivial
way. One can define the Cubic residue symbol and prove the Cubic Reciprocity Law by working with Z[p]
(where p = €2™/3) instead of Z[i] (see [Co], [Ir-Ro]).

(9.5.12) Exercise. Prove the Cubic Reciprocity Law using the function p(z) associated to a lattice L' =
Zp] - Q' for suitable ' (e.g. such that ¢'(2)? = 4p(2)3 — 4).

10. Group law on smooth cubic curves
10.1 The geometric definition of the group law

(10.1.1) Let K beafieldand F = F(X,Y, Z) € K[X,Y, Z] a homogeneous polynomial of degree deg(F') = 3.
We assume that the corresponding cubic (projective) plane curve C' : F' = 0 is smooth (this implies that F'
is irreducible over any extension of K).

Fix a point O € C(K). For P,Q € C(K), we define PxQ,PBHQ € C(K) as in 7.5.6: P *( is the third
intersection point of C' with the line PQ (resp. with the tangent to C at P) if P # Q (resp. P = Q), and

PEHQ=0x(PxQ). (10.1.1.1)
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(10.1.2) Theorem. (C(K),H) is an abelian group with neutral element O.

(10.1.3) Tt is easy to check that P @ lies indeed in C(K), so the only non-trivial point is the associativity
law for P,Q, R € C(K):

(PEQ)BRZPE(QER) (10.1.3.1)

We shall explain in 10.2.6 below how to deduce (10.1.3.1) from a suitable configuration theorem for points
on cubic curves.

(10.1.4) Exercise. Show that the following statements are equivalent:

O is an inflection point of € <= O0+*0 =0 <= (VP C(K)) P+x0O=—-P.

10.2 Configuration theorems

We begin by recalling two classical geometric results.

(10.2.1) Theorem of Pappus. Let Py, Py, P; (resp. Q1,Q2,Qs) be two triples of collinear points in the
plane. Let
Ry = PQ; N P;Q; ({7, 4.k} ={1,2,3})

be the intersection points of the pairs of lines P;Q); and P;(Q);. Then the points Ri, Ro, R are collinear.

P

Q

(10.2.2) Pascal’s Theorem. Let Py, Py, P3,Q1,Q2,Q3 be six distinct points on a conic C. Then the
points Ry, Ro, R (defined as in 10.2.1) are collinear.
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(10.2.3) Theorem of Pappus is a special case of Pascal’s Theorem, when the conic C' is reducible. Pascal’s
Theorem, in turn, is a special case of the following result on cubic curves.

(10.2.4) Theorem of Cayley-Bacharach for cubic curves (weak wersion). Let C;,Cy C P? be
projective cubic curves over an algebraically closed field K = K such that Cy(K) N Cy(K) consists of 9
distinct points Sy, ...,Se € C(K). If D C P? is another projective cubic curve such that Py, ..., Py € D(K),
then Py € D(K).

(10.2.5) Cayley-Bacharach —> Pascal. In the situation of 10.2.2, let

Ci: PiQs U PQ1 U P3Q2, Cy: P3Q1 U P1Q2U PQs, D:CURR,.

Cl ﬁCQ = {P17P27P33Q17Q27Q37R17R27R3}7 CVl N CZ - {RS} S Da
it follows from 10.2.4 that

R3ED:>R3GH-

(10.2.6) Cayley-Bacharach —> associativity of H. In the situation of 10.1.3 (after replacing K by its
algebraic closure), consider the cubic curves

¢, =0(PBQ)UQRUPQBR), C,=0QBR)UPQUR(PEQ), D=C.

DIAGRAM UNDER CONSTRUCTION

C1NCy={0,P,Q,R,P+xQ,PBQ,Q*xR,QBR,S}, S=PQ@BR)NR(PHQ), (10.2.6.1)
it follows from 10.2.4 — assuming that the 9 points in (10.2.6.1) are distinct — that

SeC= P+(QBR)=(PHQ)«xR= PHA(QBR)=(PEQ)BR.

If the points in (10.2.6.1) are not distinct, note that both sides of (10.1.3.1) are given by a morphism
CxCxC — C (cf. 11.1.2.6 below). We have shown that the two morphisms agree on a dense open subset;
as C' is projective (hence separated), they must agree everywhere.

Alternatively, one can appeal to the “strong version” of the Cayley-Bacharach Theorem:

(10.2.7) Theorem of Cayley-Bacharach. Let C, D, E C P? be curves of degrees deg(C) = m, deg(D) =
n, deg(E) < m+n — 3 over an algebraically closed field K. Then:

(i) (weak wersion) If C'(K)N D(K) consists of mn distinct points Py, ..., Pyy, and Py, ..., Ppno1 € E(K),
then Py, € E(K).

(ii) (strong wersion) Assume that the intersection divisor C(K) N D(K) = >_,. ;n;(P;), where each P; €
C(K) is a smooth point of C. If the local intersection multiplicities of C and E satisfy

(C’ E) >{nj7 jEJ_{jO}
TR =

“j—l, J=Jo

for some jo € J, then
(C-E)p;, = njy-
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(10.2.8) Exercise. Deduce Pascal’s Theorem 10.2.2 from Bézout’s Theorem (see [Ki], 3.15).

10.3 Residues

Rather surprisingly, 10.2.7 can be proved using a two-dimensional residue theorem. In this section we shall
indicate the argument for 10.2.7(i). The general theory of multidimensional residues in the analytic context
(i.e. over K = C), as well as a proof of 10.2.7(ii) in this case, can be found in ([Gr-Ha], Ch. 5). The algebraic
theory of residues forms a part of the Grothendieck Duality Theory, which is discussed in [Al-K]] (and also
in [Gr-Ha], Ch. 5).

(10.3.1) Recall the statement of Exercise 1.2.2.2: if F' € C[z] is a polynomial of degree deg(F') > 2 with d
distinct roots z1,...,z4 € C and g € C[z] a polynomial of degree deg(g) < d — 2, then

. g(xy)
I =0. (10.3.1.1)
j; Fr(aj)
One can deduce (10.3.1.1) from the residue formula for the meromorphic differential

9(2)dz 1

on P(C). Ast = 1/z is a local coordinate at the point oo, it follows from

dz = —t~2dt, ords(g) = —deg(g) > 2 —d, orde (1/F) = deg(F) =d
that

orde(w) > (-2)+(2—d)+d >0,

i.e. w is holomorphic at co. The Residue Theorem 1.3.3.10 then gives

d d
0= Z res, (w) = Z res, (w) = Zreszj (w) = Z }g,(zﬂx]j))

zeP1(C) z€C j=1 j=1

A higher-dimensional version of (10.3.1.1) is the following formula:

(10.3.2) Theorem (Jacobi). Let Fy,...,F, € C[zy,...,x,] be polynomials of degrees deg(F;) =d; > 1.
Assume that the hypersurfaces Z; = {F; = 0} C C™ intersect at exactly d = dy ---d,, distinct points
P,eC" (1< a<d). Let g € Clzy,...,x,] be a polynomial of degree deg(g) < (dy +---+d,) — (n + 1).

Then .,
Z g(Pa) -0
a=1 JF(PO‘) ,

where Jp = det(0F;/0x;) is the Jacobian of F' = (Fy,...,F,): C" — C".

Proof (sketch). Firstly, the n-dimensional variant of Bézout’s Theorem implies that the local intersection
multiplicity of the hypersurfaces Z; (j = 1,...,n) at each point P, is equal to one, which is equivalent to the
non-vanishing of Jp(P,). Secondly, the assumption on deg(g) is equivalent to the fact that the meromorphic
differential n-form
g(x)dxy A -+ Ndxy, glx) dFy A--- NdF,
w= =
Fi(z)---F,(x)  Jp(x) F---F,

TL

on P"™(C) has no pole along the hyperplane at infinity P*(C) — C™. The n-dimentional residue theorem

then implies

d dFy A+ NdF,
-3 e z s (F ) z 2

where the last equality follows from the fact that Fl, ..., F, form a system of local coordinates at each P,.
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(10.8.3) Corollary. If g(P,) =0 fora=1,...,d — 1, then g(P;) = 0.

(10.3.4) In particular, for n = 2 we obtain the variant 10.2.7(i) of the Cayley-Bacharach Theorem with
CliF1:O7CQZF2:0,E2g:O.

(10.3.5) As explained in ([Gr-Ha], 5.2), a variant of the above calculation can be used to prove 10.2.7(ii).

(THIS IS VERSION 20,/9/2004)
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II. Algebraic Theory of Elliptic Curves

In this chapter we sketch the general theory of elliptic curves from an algebraic viewpoint. This material is
fairly standard, although some of our proofs may differ from the ones appearing in standard textbooks (cf.
[Si 1], [Mi], [Ca 1], [Hu]). The reader may prefer to stick to the usual old-fashioned algebraic geometry (see
[Si 1], Ch. 1,2) and ignore any discussion of non-perfect fields.

1. Elliptic Curves - Generalities
1.1 What is an elliptic curve?

(1.1.1) Elliptic curves over C. Informally, an elliptic curve over C is a smooth projective curve E (over
C) such that the corresponding Riemann surface E(C) is isomorphic to C/L, for some lattice L € C. In
other words, E(C) can be parametrized by elliptic functions with respect to L.

(1.1.2) Examples: (1) The projectivization of the affine cubic curve y?> = f(z), where f € Cl[z] is a
polynomial of degree deg(f) = 3 with three distinct roots (by 1.4.4.2).

(2) The desingularized projectivization V U {O,,0_} of the affine curve V : y? = f(x), where f € Cl[z] is
a polynomial of degree deg(f) = 4 with four distinct roots (1.3.7.8, 1.4.2.5-7).

(3) A smooth intersection of two quadrics in P3(C) (as in 1.6.4.4-5).

(1.1.3) Definition. An elliptic curve over a field K is a pair (E, 0), where E is a smooth projective curve
over K, geometrically irreducible (i.e. irreducible over K), of genus g = 1, and O € E(K) is a K-rational
point of E (“the origin”).

(1.1.4) (1) Recall that, if X is a smooth projective curve over K, irreducible over K, then the genus of X
is defined as the dimension of the space of regular differentials on F:

9(X) = dimg I'(X, Qx/k).

(2) For any field extension L/K, the curve X1, = X ®p L (defined by the same polynomial equations as X,
but considered as a curve over L) is again a smooth projective curve over L, irreducible over L, and

DXL, Qx, /L) =T(X,Qx/k) ®x L = g(XL) = g(X).
(3) In particular, if (F,O) is an elliptic curve over K, then (Er,O) is an elliptic curve over L, for any field
extension L/K.

(4) If K = C, then the set of complex points X (C) has a natural structure of a compact Riemann surface
and I'(X, Qx/c) = Q*(X(C)), which implies that

9(X) = gan(X(C)) = g(X(C)).
(1.1.5) Notation. Let X be as in 1.1.4.

(1) The field of rational functions on X will be denoted by R(X).
(2) If K = K is algebraically closed, then the abelian group of divisors on X is defined as

Div(X) = {> np(P)|np € Z, P € X(K), the sum is finite}.

The degree of a divisor D = > np(P) is defined to be deg(D) = > np € Z. The divisor D is effective
(notation: D > 0) if np > 0 for all P.

(3) If K is a perfect field, then the absolute Galois group Gk = Gal(K/K) of K acts on Div(X%) (through
its action on X (K)). The abelian group of divisors on X is defined as the subgroup of G g-invariant
divisors on X

Div(X) = Div(X)“x.
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We denote by degy, the restriction of the degree map deg : Div(X3%) — Z to Div(X); its kernel will
be denoted by Div®(X) = Ker(deg ).
(4) If K is not perfect, then one must use a scheme-theoretical language:

Div(X) = {Z ng(x) |ng € Z,x € |X|, the sum is finite},

where | X| denotes the set of closed points of X (if K is perfect, then closed points of X correspond to

G g-orbits in X (K)). The degree of a divisor is defined as

dege (3 na(@)) = 3 g - k(e) : K,

where k(x) is the residue field of x.

(5) Each (non-zero) rational function f € R(X)* has a divisor div(f) € Div(X), which has degree zero.
One defines the abelian group CI(X) of divisor classes on X (resp. its subgroup CI°(X) of divisor
classes of degree zero) as in the analytic case (see 1.3.9).

(6) For any field extension L/K, a divisor D € Div(X) defines a divisor Dy, € Div(Xy). If D = div(g) is
principal, so is Dy, = div(gr) (where g;, = g, but considered as an element of the field R(Xy) D R(X)).

(1.1.6) If K is perfect and X has a K-rational point, then the canonical maps
Cl(X) — Cl(Xi)%%,  ClI(X) — CI°(X7)“"

are isomorphisms (but we are not going to use this fact).

(1.1.7) The Riemann-Roch Theorem. Let X be as in 1.1.4. For each divisor D € Div(X), put
L(D) ={0} U{f € R(X)"| D +div(f) 20},  £(D)=dimg L(D) (< o).

(1) If degg (D) < 0, then L(D) = {0} and ¢(D) =0 (as degg (div(f)) = 0).

(2) If g € R(X)* and D' = D + div(g), then the map f — fg defines an isomorphism of vector spaces
L(D') = L(D); in particular, £(D) depends only on the class of the divisor D in CI(X).

(3) The rational differentials on X form a vector space Qg x)/x over R(X) of dimension one. If w,w’ €
Qr(x)/x — 10}, then W’ = gw for some g € R(X)*; it follows that the class of the divisor div(w’) =
div(w) + div(g) is independent of any choices; it is the canonical class K € Cl(X) of X.

(4) The map

L(div(w)) — T'(X,Qx/k), = fw

is an isomorphism; thus ¢(K) = g(X) = g.
(5) The Riemann-Roch Theorem states that, for each D € Div(X),

D) —4¢(K—-D)=1—-g+degg(D).
(6) Letting D =K (i.e. D =div(w) as in (3)), then we obtain
degp (K) = degg (div(w)) = 29 — 2.
(7) If degg (D) > 2g — 2, then degy (K — D) < 0, which implies that £( — D) = 0 (by (1)), hence

(D) =1-g+degg(D).



1.2 The group law
(1.2.1) Proposition. Let (E,O) be an elliptic curve over K. Then the map

E(K) — CI°(E)
P — the class of (P) — (O)

is bijective (hence the same formula defines a bijection E(L) — CI°(Ey), for any field over L D K ).

Proof. (cf. [Si 1], Prop. II1.3.4, if K is perfect). Injectivity: assume that P,Q € E(K) and (P) — (0) =
(Q) — (0)+div(f) for some f € R(E)*. If P # @, then div(f) = (P) — (Q) # 0. This implies that f defines
a non-constant rational map (hence a morphism) f : E — P} of degree deg(f) = 1. It follows that f is an
isomorphism f : E — PL. which contradicts the fact that g(E) =1 # 0 = g(Pk); thus P = Q.
Surjectivity: if D € Div’(E), then the Riemann-Roch Theorem implies that (D + (O)) = 1; fixing
f € L(D+(0))—{0}, then D' := D+ (O) +div(f) > 0 is an effective divisor of degree deg (D’) = 1, hence
D’ = (P) for a K-rational point P € E(K). As D = (P) — (O) — div(f), the class of D coincides with that
of (P) —(0).

(1.2.2) Corollary. (i) The addition “+” on CI°(E) induces the structure of an abelian group (E(K), )
on E(K), with neutral element O, characterized by

PBQ=R < (3f e R(E)") (P)+(Q)=(R)+ (0)+div(f).

(ii) For any field extension L/K, the group law induced on E(L) by the bijection E(L) — CI°(EL) restricts
to the group law B on E(K).

(1.2.3) Smooth plane cubics. Let E C P%,

E:F(X,Y,Z)=0 (F € K[X,Y,Z] homogeneous of degree 3)

be a smooth projective plane cubic curve and O € E (Ii) The pair (E,O) is an elliptic curve over K, since
g(E) = (3—-1)(3 —=2)/2 =1 (irreducibity of E over K follows from Bézout’s Theorem; cf. 3.7.5()). We
claim that the abstract group law B on (F, O) is given by the formula (I.10.1.1.1): if L is a field containing
K and P,Q € E(L), let

£:aX +bY +cZ =0, 0:dX+bVY +dZ=0 (a,...,c € L)

be the equations of the lines PQ and (P * Q)O, respectively. The rational function f = ¢/¢' € R(Er)* has
divisor

div(f) = (P)+(Q)+ (P*Q) — (P*Q) —(0) = ((P* Q) x0) = (P) +(Q) — (0) — (P * Q) = O),
hence

(PxQ)+0O=PHBQ

as claimed (note that, in general, the inverse —P with respect to the group law is not equal to P * O; cf.
1.10.1.4).
This discussion applies, in particular, to the pair (C, O) from the next Proposition.

(1.2.4) Proposition (The generalized Weierstrass equation). Let (F,O) be an elliptic curve over
K. There exist rational functions x,y € R(E)* such that the map
a:E— P%
P (z(P):y(P):1) (P #0)
O—0=(0:1:0)
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induces an isomorphism between (E,O) and (C,O), where C' is the (smooth) cubic projective curve
C:YZ 4+ XYZ+a3YZ? = X34 aoX?Z + as X Z? + ag 23, (1.2.4.1)

for some a; € K (we say that C' is an elliptic curve in a generalized Weierstrass form. (Conversely, if C
in (1.2.4.1) is smooth, then (C,O) is an elliptic curve over K, by 1.2.3.)

Proof. (cf. [Si 1], Prop. II1.3.1). It follows from the Riemann-Roch Theorem that ¢(n(O)) = n for each
n > 1 (= L((0)) = K). In particular, there exist rational functions z € L(2(0)) — K (an analogue of p(z))
and y € L(3(0)) — L(2(0)) (an analogue of p'(z)). The triple z,y, 1 forms a basis of L(3(0)) and defines a
non-constant rational map

(x:y:1):E— - - —->P% |
which extends to a (unique) morphism « : E — P%., since F is a regular curve and P% is projective. As

o? € L(4(0)) = L(3(0)),  wy € L(5(0)) — L(4(0)),

it follows that the rational functions 1, x,y, 22, zy form a basis of L(5(0)). Going one step further, we have

o’ y? € L(6(0)) — L(5(0)),  dimg(L(6(0))/L(5(0))) = 1,

which implies that there exists a linear relation

23— ay? € L(5(0)) (a € K7).

Replacing x (resp. y) by ax (resp. a®y), we can assume that a = 1; thus there exists a linear relation

f(z,y) = y* + arzy + azy — 2° — asx® — ayx — ag = 0 (a; € K), (1.2.4.2)

which is an algebraic version of the differential equation 1.7.1.8 satisfied by the Weierstrass function p(z).
In particular, the morphism « factors as

B0 < P2,

where C is the projectivization of (1.2.4.2), i.e. the projective curve (1.2.4.1) (where x = X/Z and y = Y/Z,
as usual). It is easy to see that the polynomial f(z,y) is irreducible in K[xz,y]; thus C is a reduced and
geometrically irreducible curve.

The affine coordinates z,y € R(C') define rational functions on C, hence rational maps z,y: C — — — > PL .
As before, the composite rational maps = o 3,y o 8 (again defined by z,y € R(F)) extend to morphisms
xofB,yofB:E — Pl of degrees 2 and 3, respectively; thus deg(8) = [R(E) : 8*R(C)] = 1, as it divides
both 2 and 3. This means that 3 is birational, i.e. induces an isomorphism E -~ C~', where C is the
normalization (canonical desingularization) of C. We claim that C is smooth over K (which implies that
C = C, concluding the proof): if not, then the discussion in 1.3.4-5 below shows that éL — P} over a
suitable finite extension L O K, which contradicts the fact that g(CL) = g(F) =10 = g(P}l).

(1.2.5) The affine curve C N {Z # 0} = C — {O} is given by the equation

Y2 + arxy + asy = 2% + agx? + aux + ag (1.2.5.1)

(where x = X/Z,y =Y/Z). If char(K) # 2 (resp. char(K) # 3), one can simplify (1.2.5.1) by completing
the square (resp. the cube), i.e. by the substitution y + (@12 + a3)/2 — y (resp. = +az/3 — ). As a result,
we obtain the following simplified forms of (1.2.5.1).
(i) If char(K) # 2,3, then
y? = 2% + ayr + ae. (1.2.5.2)
(ii) If char(K) = 3, then
y? = 23 + agx® + agx + ag. (1.2.5.3)
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(iii) If char(K) = 2, then
y? + arzy + asy = 2° + asx + ag. (1.2.5.4)

(1.2.6) The variable (= general = tautological) points. Examples: (i) Let (F,0) = (C,O) be an
elliptic curve given by the generalized Weierstrass equation (1.2.4.1). We would like to consider a “general
point” (z,y) on E — {0}, whose coordinates would satisfy the equation (1.2.5.1) (and its consequences), but
no other polynomial equations with coefficients in K. Such a point can be constructed as follows: put

3

f(z,y) =y + arzy + azy — 2° — a22® — ayw — ag

and let

A=Kz, y/(y* + a1y + asy — 2° — az2® — agx — ag) = K[z, 9]/ (f(,y))

be the ring of functions on the affine curve E — {O} = Spec(A); its field of fractions is equal to the field of
rational functions on F: R(F) = Frac(A). Let T,y be, respectively, the images of x,y in A; the “tautological
point” (or “general point”) of F is the point with affine coordinates

(7,9) € (B —{0})(4) C (E - {0})(Frac(4)) C E(Frac(4)) = E(R(E)).

(ii) Sometimes we shall use several “independent” general points of E: for j =1,...,n, put

Aj = Klzj,y;]/(f(x5,95)) B=A®K @k An = K[z1,91, - s Tos yYul / (F (21, 91)5 5 [(T0,Yn)

and denote by T; (resp. ;) the image of z; (resp. of y;) in B; then

Spec(B) = (E —{O})" = (E—{0}) xx - xx (E—{O}) C Exg - xx E=E",  Frac(B) = R(E")

n factors

and the “tautological point” of E™

(F1,71), -+ (@n, Tn)) € (E = {0})"(B) C (B —{0})"(Frac(B)) C E"(Frac(B)) = E"(R(E"))

can be viewed as an n-tuple of independent general points of E.
(iii) This construction makes sense for an arbitrary reduced irreducible scheme X: if Spec(A) C X is any
(non-empty) open affine subset, then A is an integral domain and the ring of rational functions on X is a
field, equal to R(X) = Frac(A). The canonical maps

Spec(R(X)) = Spec(Frac(A4)) — Spec(4) — X
then define the tautological point P € X (R(X)).

(1.2.7) Theorem (F is a “commutative group scheme” over K). (i) There exist (unique) morphisms
m:FE xg E— E and v : E — F such that, for each field L D K and all P,@Q € E(L),

PHQ=m(P,Q), —P =[-1]P =(P).

(ii) “Associativity”. The following diagram is commutative:

idxm

ExgExgE =5 ExgFE

[ mxia B

m

ExgE e E.



(iii) “Commutativity”. Let s: E xxg E — FE X E be the morphism s(P,Q) = (Q, P); then mo s =m.
(iv) “Inverse”. The composite morphism

E—2F x g BAYSE « o E-"F

(where A(P) = (P, P) is the diagonal map) is the constant map with value O.

Proof. (i) (cf. [Si1], Thm. IIL.3.6, if K is perfect). The inverse: thanks to 1.2.4, we can assume that
(E,0) = (C,0), in which case O is an inflection point of E, hence —P = O * P (cf. 1.10.1.4). It follows
that, if P = (zp,yp) € (E —{O})(L), then —P lies on the vertical line z — zp = 0, hence

—(zp,yp) = (xp, —yp — a12p — a3). (1.2.7.1)

The formula

[’('/Ea y) = (l‘, —Y—-—a1r — 0,3)

defines a morphism F — {O} — E — {O}, hence a rational map

E-->E,

which automatically extends to a (unique) morphism ¢ : E — FE. As . is non-constant, it is surjective,
hence ¢(O) = O, proving that —P = «(P) for all P € E(L) (and all fields L D K).

One can see directly (without using the formula (1.2.7.1)) that the inverse map is induced, on the
points of a suitable (non-empty) open subset U C E — {O}, by a morphism ty : U — E — {O}: let
P = (z,y) € (E— {O})(R(E)) be the tautological point of E constructed in 1.2.6(i); then the point
—P € (E—{O})(R(E)) (defined using the group law on Eg)) is a morphism —P : Spec(R(E)) — E—{O}.
The coordinates of —P are rational functions on E — {O}; removing from E — {O} the union of their poles
(which turns out to be empty in this case, as —P = (T,—7 — a1T — a3)) we obtain the sought for morphism
wy : U — E —{0}. Note that, in this argument, it was not necessary to assume that (E,O) = (C, O); one
could have used the abstract definition of the tautological point from 1.2.6(iii).

The sum H: A similar argument applied to two independent points

(@1, 71), (@2,72)) € (E ~ {O})*(R(E xx E))

shows that there exists a (non-empty) open subset U C E X F and a morphism my : U — E such that,
for all fields L D K and all P,Q € U(L), we have PEHQ = my (P, Q). They are several ways to conclude the
argument; for example, one can assume that (E,O) = (C, O), in which case the sum (z1,y1) B (22, y2) can
be computed explicitly, as in 1.7.5.7. The resulting formulas show that the map (P, Q) — P B Q is, indeed,
defined by a morphism my : U — E, where E xg E—U = {(P,P)} U{(P,—P)} U {(P,0)} U{(O, P)}.
One then shows, again by an explicit calculation, that B is defined by a morphism on a suitable open set
containing E X F — U (see [Si 1], 3.6.1). There is an alternative argument which uses translation maps
(see [Si 1], 3.6); in our case one has to be careful, as the field K is not necessarily perfect; hovewer, the set
of points E(K*°?) defined over the separable closure of K is dense in E (as F is smooth over K), which is
sufficient for the argument.

(ii) Let L = R(E xg E xi E) = R(E?) be the field of rational functions on E3. As in 1.2.6(ii), we have
three independent general points P; = (7;,7;) € E(L) (j = 1,2,3) of E, defining the tautological point
(Py, Py, P3) : Spec(L) — E3. As the group operation B is associative on F(L), we have equalities

mO(mXid)O(PhPQ,Pg):mO(P1EE|P27pg):(PlEPQ)EP:;:PlEE(Pngg):
:mo(Pl,PQHHPg):mo(idxm)o(Pl,Pg,Pg)GE(L).

Interpreting both sides as rational maps F xgx FE xXg F— — — — — > F , it follows that the morphisms m o
(m x id) and m o (id x m) define the same rational map. As the target F is projective (hence separated),
the two morphisms must be equal. A similar argument proves (iii) and (iv).
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(1.2.8) Corollary. (i) For eachn € Z, multiplication by n (defined as in 0.5.0) on E is given by a morphism
[n]=[nlg: E— E.

(ii) For each P € E(K), there is a morphism 7p : E — E (the “translation map”) such that, for each field
L D K and each point Q € E(L), PHQ =71p(Q).

Proof. (i) [0] is the constant map equal to O and [1] = id. For n > 1, one defines inductively [n] =
mo ([n — 1] x id) o A, where A is the diagonal map A : E — E xg E, A(P) = (P,P). For n < 0,
[n] = to[—n].

(ii) 7p is defined as the composite morphism

E = Spec(K) xx E—29SF x e E-"F.

(1.2.9) Exercise. Let (E,O) be as in 1.2.3.

(i) If O is an inflection point of E, show that there exists a linear change of homogeneous coordinates defined
over K transforming (E,O) into (C,O) of the form (1.2.4.1).

(ii) If O is not an inflection point of E, choose new homogeneous coordinates (X :Y : Z) in such a way
that O = (1:0:0), {Z = 0} is the tangent line to E at O, {Z =0} N E = 2(0) + (P), where P =(0:1:0)
and {X = 0} is the tangent line to E at P. Show that the (rational) change of variables ' = x, y = xy
(x =X/Z,y=Y/Z, as usual) transforms E into a smooth projective cubic curve E' and P into an inflection
point P’ of E' (see [Cl], 2.4).

1.3 Non-smooth Generalized Weierstrass Equations
(1.3.1) Assume that the projective plane curve
C:Y?’Z+aXYZ+a3sYZ? = X3+ axX?Z + ay X 7% + ag 23

(where a; € K) is not smooth, i.e. that there exists at least one singular (= non-smooth) point S € C(K).
If there were another singular point 7 € C(K), then the intersection of the line ST with C' would
contradict Bézout’s Theorem; thus S is unique.
In particular, S is fixed by any element of the automorphism group Aut(K/K), which implies that
K(S) (the field of definition of S) is a purely inseparable extension of K.

(1.3.2) The point S = (zg,ys) necessarily lies on the affine curve Cog = C' — {O}, given by the equation

2

f(x,y) = v* + a1zy + azy — 2° — az2® — ayx — ag =0,

hence
df/0x(S) = a1ys — 3% — 2asx5 — ay = 0,
af /0y(S) = 2ys + a1xg + a3 =0,

which implies that

—ye = ¥ + a2 + auws + ag,
2(32% + 2asx5 + a4) + ai(a1zs + az) = 0.

If char(K) # 2,3, these equations show that

K(S) : K] < [K(S) : K(ws)] - [K(vs) s K] <22 =14,

hence S € C(K) is defined over K.
On the other hand, if K is a non-perfect field of characteristic p = 2 (resp. p=3) and a € K*, a &€ K*P,
then the curve



v =% +a

has a non-smooth point § = (07a1/2) (resp. S = (fa1/3,0)) defined over a purely inseparable extension
K(al/p)/K of degree p.

(1.3.3) Assume, from now on, that S € C(K) is defined over K. Applying the change of variables
T x—Tg,Yy— Yy —ys, we can assume that S = (0,0), which implies that ag = ag = a4 = 0, hence C,g is
given by

y? + arxy — aga® = 3. (1.3.3.1)

The tangent cone to C' at S is given by the vanishing of the quadratic form on the L.H.S. of (1.3.3.1). In
other words, writing y = Az, then the roots of

Q) =N +aA—ay=0 (1.3.3.2)

are the slopes of the tangents to the various branches of C' passing through S.

The geometry of C strongly depends on the nature of the solutions of (1.3.3.2).
(1.3.4) The multiplicative case. Assume that the polynomial Q()\) has two distinct roots Aj, Ay € K.
Then K (A1, A2) is either equal to K, or is a separable quadratic extension of K.

Let L D K(A1,A2) be any extension of K over which @ splits. Then the base change of C.g to L is
given by

(CL)at : (y — M) (y — Aoz) = 2°
and the rational function

_ YN U by (1.3.4.1)

t —
Yy—Xoxr v

on Cf, — viewed as a rational map to P} — admits an inverse, which is a birational morphism

U—V AU — AU u—v \> 1
P} C : : : — 1:0),(0:1)— S, (1.3.4.2

L M (U ’U)'_)<)\2)\1 )\27)\1 ()\2)\1) uv ’ ( ),( )H ’ ( )
which identifies P} with the normalization of Cy. This morphism has a very simple geometric description:
P! parametrizes the set of lines in P2 containing S (with the point 0 = (0 : 1) € P*(L) (resp. oo = (1 :
0) € P1(L)) corresponding to the tangent line y = \jx (resp. y = A22) at S). Each such line ¢ intersects C
at S with intersection multiplicity > 2; the map (1.3.4.2) associates to ¢ its third intersection point with C'.

(1.3.5) The additive case. Assume that Q(\) has a double root A € K. Then K () is either equal to K,
or is a purely inseparable quadratic extension of K (the latter case can occur only if K is a non-perfect field
of characteristic char(K) = 2). It follows that a; = 2b; for some by € K; the change of variables y — y — bz
reduces to the case

Coi =y — boz® = 23, by =X\ €K, 2by = 0.

Over any field L D K(\), we have

(CL)ag : (y — Mx)? =23

and the rational function

(1.3.5.1)

on (', has an inverse, which is a morphism



2 u3 2

Pl — (u:v)n—>(%:ﬁ+)\:ﬁ—2:1), (1:0)— S (1.3.5.2)

identifying PlL with the normalization of C';,. This morphism has the same geometric description as the map
(1.3.4.2).

(1.3.6) The group law on the smooth part of C. If L D K is an extension of K, it is tempting to use
the same geometric construction as in 1.2.3 to define an abelian group law on C(L) (with O = (0:1:0) as
a neutral element). This does not quite work if the line ¢ contains the singular point S, which means that
we have to consider only the smooth part of C(L)

C™™ (L) = C(L) - {8}

and lines £ C P2 that do not contain S. If Q1,Q2 € C*™(L), then the line £ = Q1Q2 (defined to be the
tangent to C' at Q1 if @1 = @Q2) does not contain S — by Bézout’s Theorem — and the third intersection Q3
of ¢ with C also lies in C*™(L). We put

Qs =Q1xQ2,  Q1EHQ2:=0x(Q1Q2). (1.3.6.1)

Does (1.3.6.1) define an abelian group structure on C*™(L) (with neutral element O = (0 : 1:0))? Let us
analyze the situation in more detail.

(1.3.7) The split multiplicative case. Assume that we are in the multiplicative case 1.3.4 and that
L D K(A1,A2). In the homogeneous coordinates (U; : Uy : Z), where U; =Y — A\; X, the curve Cp, is given
by

Cr: (M —N)3UWUZ = (U — U)3, S=(0:0:1)
and the rational function (1.3.4.1) defines a bijection

p= U C™(L) = PY(L) — {0,00} = L*.
U,

Assume that the line ¢ : Z = aU; 4 bUs intersects C*™ at three points Q1, Q2, Q3. Then

(t=1)° = (A2 = A1) t(at +b) = (t — £(Qu))(t — t(Q2))(t — (Q3)),
which implies that

tH(Q1)H(Q2)H(Qs) = 1,
hence t defines an isomorphism of abelian groups
(C™(L),8) — (L%, %).
(1.3.8) The split additive case. Assume that we are in the additive case 1.3.5 and that L D K(X). In
the homogeneous coordinates (X : Y : Z), the curve Cy, is given by
Cr: (Y —)X)*Z = X3, S=(0:0:1)
and the rational function (1.3.5.1) defines a bijection

X
Y - AX
Assume that the line £ : Z = aX + bY intersects C*™ at three points Q1, @2, @3. Then

t :C"(L) =5 PYL) — {0} = L.

% — (at +b) = (t = 1(Q1))(t — (Q2))(t — t(Q3)),

which implies that



t(Q1) +(Q2) +1(Qs) =0,
hence t defines an isomorphism of abelian groups
(C™(L),B) — (L, +).

(1.3.9) The non-split multiplicative case. Assume that we are in the multiplicative case 1.3.4 and that
K’ := K(\1,A2) is not equal to K. Then K'/K is a Galois extension of degree 2; let o be the non-trivial
element of Gal(K’'/K). Then Ay = o(A1) and the discussion in 1.3.7 implies that the rational function

. Y — M
y—o(A)z
induces an isomorphism of abelian groups
t:C™(K) — {w/o(w)|w e (K')'} =Ker (Ng /i : (K')* — K*) (1.3.9.1)

(the last equality by Hilbert’s Theorem 90, as in 0.4.2.0). The group on the R.H.S. of (1.3.9.1) is usually
referred to as the “twisted multiplicative group”. We have already encountered it in our discussion of the
group of points on the circle 2 + y? = 1 in 0.4.2.

(1.3.10) The non-split additive case. Assume that we are in the additive case 1.3.5 and that K’ := K(\)
is not equal to K. Then char(K) = 2 and K'/K is a purely inseparable extension of degree 2, with
A =b K.
For @ = (x,y) € C5f (K), write the value ¢(Q) in the basis 1, —\ of K'/K:
x Yy — A

t(Q):y—)\ZL': 1'2 :a_)‘ﬁa Oé,ﬁeK.

Then

2
0 b = (- agp = U 1y

and the discussion in 1.3.8 implies that ¢ induces an isomorphism of abelian groups

t:C"™(K) = ({fa—A8la, B € K, o® —by8° = 8}, +)
(the “twisted additive group”).
(1.3.11) Exercise ([Be]). Let Q C P% be a smooth conic and L C P% a line (both defined over K ). Fix
a point O € Q(K) — L(K).
(i) Show that the recipe (1.10.1.1.1) applied to the reducible cubic curve Q U L C P% defines an abelian
group law on Q(K) — L(K).
(ii) Describe the structure of this group (it depends on the nature of the intersection @ N L).
(ili) What is the relation to the group law on the circle (0.1.1)?

(1.3.12) Exercise. Relate the discussion in 1.3.7-8 to (an algebraic version of) 1.3.9.13(ii), using 1.3.4-5.
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2. Isogenies (definitions and examples)

2.1 Definitions and basic properties

(2.1.1) Definition. Let (E,0) and (E’',O') be elliptic curves over K. An isogeny \ : E — E' is a
non-constant morphism of curves over K satisfying A(O) = O’ (hence X induces an isogeny A;, = X\ x id :
E, =E®x L — E; = E' ®k L, for any field L D K ). The degree of the isogeny X is the degree of the
field extension R(E)/A\*(R(E")).

(2.1.2) Proposition. If A : E — FE’ is an isogeny, then the induced map on K-rational points X :
E(K) — E'(K) is a homomorphism of abelian groups.

Proof. (cf. [Si 1], Thm. II1.4.8, if K is perfect). This follows from the commutative diagram

E(K) —— FE(K)
| |
CIOE) 2= CIo(E),
where the map A, is defined on the level of divisors by A.(>_np(P)) = np(A(P)) if K is perfect, and by
MO g (x)) = ng[k(x) : E(M(«))](z) in general.
(2.1.3) Proposition (Isogenies are “homomorphisms of groups schemes”). If A\ : E — E’ is an

isogeny, then:
(i) A commutes with the group laws on E and E’, i.e. the following diagram is commutative:

ExxgE 2 B xyFE

bl
E — E'.
(i) (Vn€Z) Xo[n]g =[n]g oA

Proof. The statement (i) is proved by the same argument as in 1.2.8(ii): let L = R(E xg E) be the field
of rational functions on E xx E and ((T1,7,), (T2,7s)) € (E Xk E)(L) the tautological point of E X E,
defined in 1.2.6(ii). Applying 2.1.2 to Ar, : E;, — E7, we obtain

AL((@1,71) B (B2, 7)) = AL(@1,71) B AL(Z2,§s) € E'(L).

Interpreting both sides as rational maps 3: E X E — — — — = E' , it follows that the morphisms Aom, m’o

(AXxA): Exg E — FE’ define the same rational map. As the target E’ is projective (hence separated), the
morphisms A om and m’ o (A x A) must be equal. The statement (ii) follows from (i) by induction on |n|.

(2.1.4) Notation. For elliptic curves E, E’ over K and a field L D K, we denote

Homp(E,E") = {0} U{\: E, — E7 |\ is an isogeny }
Isomy (E, E") = {\ € Hom(F, E') | X is an isomorphism} = {\ € Hom(E, E’) | deg(\) = 1}
Endy(F) = Homp(E, E), Auty(F) =Isomy(E, E),

where 0 is the constant morphism with value O’. If A : E — FE’ is an isogeny, we put

Ker(\)(L) = {P € E(L) | \(P) =O'}.
(2.1.5) Exercise. Show that Endy,(F) is a ring with respect to the operations AB pu and Ay = X o u, where

ABp: E-2E x EXME x E-"SE

11



(A(P) = (P, P) is the diagonal map). [Hint: The proof of one of the distributive laws requires 2.1.3.]

(2.1.6) Exercise. If\ € Homp(E, E'), p € Homp(E', E”) and proX = 0, then A = 0 or = 0. In particular,
the ring Endy,(E) does not have zero divisors.

(2.1.7) Proposition. Let k = Q (resp. k = F,,) if char(K) = 0 (resp. if char(K) =p > 0). If E,E’
are elliptic curves over K and A € Homg (F, E'), then there exists a subfield Ky C K of finite type over k,
elliptic curves Ey, E| over Ky and an element \g € Hompg, (Eo, E{) such that A\ = (A\o)k is the base change
of )\0.

Proof. We take K to be the field generated over k by the coefficients of the (finitely many) polynomials
defining E, E’ and .

(2.1.8) Assume that (E,O) and (E’,O’) are elliptic curves over C and A € Home(FE, E') — {0} an isogeny.
Fix isomorphisms (E,O0) — (C,0), (E',0') = (C’",0") (defined over C) with elliptic curves in the form
(1.2.4.1). The Abel-Jacobi maps from 1.4.4.1 then define isomorphisms of Riemann surfaces C(C) — C/L,
C'(C) — C/L' (under which O,0’ correspond to 0), for suitable lattices L, L’ C C. The holomorphic
map A" : E(C) — E’(C) (given by A) then gives rise, via the above isomorphisms, to a non-constant
holomorphic map p : C/L — C/L’ satisfying p(0) = 0, i.e. an isogeny in the analytic sense (cf. 1.7.6.3).
Conversely, any such p is algebraic, i.e. comes from a (unique) isogeny A : E — E’ (this follows from
1.7.6.6(ii)). In particular, we have, in the notation of 1.7.6.7,

Ende(F) = End(C/L).

(2.1.9) Exercise. Let E be an elliptic curve over a field K of characteristic char(K) = 0. Then there exists
a subfield Ko C K of finite type over Q, an elliptic curve Ey over Kq satisfying (Eo)x — E and

Z
EndK(E) = EndKO (Eo) = Endc(Eo) =
Z+Zo, a’?+aa+b=0,abeZ,a®>—4b<0.

(for some embedding Ky — C).

2.2 Isomorphisms (= isogenies of degree one)

(2.2.1) Let E, E' be elliptic curves over K. We would like to determine the set Isomy, (F, E’) of isomorphisms
between E, and E over various extensions L of K. Thanks to 1.2.4 we can assume that both E and E’ are
given by a generalized Weierstrass equation, with the corresponding affine curves of the form

E— {0} :y* + ayzy + asy = 2 + asx® + asx + ag

(2.2.1.1)
E' — {0} :y? +adla'y + ayy = 2" + dya’ + ajx’ + af
(where a;,a) € K).
(2.2.2) Proposition. Any element of Isomg (E, E') is given by the formulas
r=u’2 +r
(rys,t € K, ue K"). (2.2.2.1)

Y= ugy’ +ulsx’ +t

Conversely, any change of variables (2.2.2.1) transforms E into an elliptic curve E' over K in a generalized
Weierstrass form.

Proof. (cf. [Si 1], IIL.3.1(b)). Any A € Isomg (E, E') induces isomorphisms of vector spaces
A" L(n(0) — L(n(0)),  f'— foA
(for all n € Z). This implies, by the definition of x,y,2’,y’ (see the proof of 1.2.4), that
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xr = N(ax’ +b), y=\(cy + da’ + e),
for some constants a,b,c,d,e € K with a,c # 0. As
y* —2® € L(5(0)), ¢ 2" e L(5(0),
3

it follows that ¢? = a?; putting u = ¢/a € K*, we obtain a = u? and ¢ = u
statement is trivial (as the map (2.2.2.1) has an inverse of the same form).

, as claimed. The converse

(2.2.3) Special case: char(K) # 2,3. If the characteristic of K is not equal to 2 or 3, then we can assume
(by 1.2.5) that the curves E, E are in the form

E — {0} : y* = 2* + asx + ag, E' — {0} :y? = 2" + )2’ + ag. (2.2.3.1)

The only transformations (2.2.2.1) preserving the equations (2.2.3.1) are given by

r=u’, y = u’y (ue K*). (2.2.3.2)
The substitution (2.2.3.2) transforms E — {O} into
E' — {0} : (v®yY)? = (v®2')® + ay(v®2)) + ag = y"* = 2" + utas2’ + u Caq,
hence
ay = u tay, ag = u %ag. (2.2.3.3)

We have thus proved the following

(2.2.4) Proposition. Let E,E’ be elliptic curves of the form (2.2.3.1) over a field K of characteristic
char(K) # 2,3. Then, for any field L D K, the formulas (2.2.3.2) define a bijection

Isomy (B, E') = {u € L* |u*ay = a}, u%ag = ag}.
(2.2.5) Corollary. Under the assumptions of 2.2.4,
pa(L) = {£1}, aq,06 # 0
Autp(E) = ¢ pa(L), ag =0 (= a4 #0)
p (L), as =0 (= as #0),

where i, (L) ={u € L*|u"™ = 1}.

(2.2.6) The discriminant and the j-invariant (char(K) # 2,3). Let us write the equation of E in the
form

E—-{0}:y* =2+ Az + B (A,B € K).
By 1.3.7.7,
E is smooth <= 0 # disc(z® + Az + B) = —4A% — 27B%.
Mimicking the formulas from the analytic theory over C (1.7.1.10), we write
(2y)” = 42° — gow — g3 (92 = =44, g3 = —4B)
and put

(122)°  4(124)°

_ 3 _ow 2 _ _ 3 2 Y _
A =g;—27g3 16(4A° +27B7), J(E) A Y EE T
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Similarly, write £’ in the form
E —{0%}:y?* =2+ Ad'+ B (A, B' € K).
If there is an isomorphism A : E, — E/ (over some field L D K), then there exists u € L* satisfying
uwitA=4", uw°®B=5 (2.2.6.1)
(by 2.2.4), hence

4124012
 4A3y~12 4 27 B2y 12

Conversely, if j(E) = j(E') # 0, then B2/A3 = B2/A” hence (2.2.6.1) holds for suitable v € K (this is
also true if j(F) = j(E') = 0, for trivial reasons). We have thus proved the following

J(E") = J(E).

(2.2.7) Proposition. Let E, E’ be elliptic curves over a field K of characteristic char(K) # 2,3. Then the
following conditions are equivalent:

(i) j(B) =i(E").

(ii) There exists a field L D K and an isomorphism E;, — E .

(iii) There exists a field L D K of finite degree over K and an isomorphism E, — E, .

(2.2.8) Examples: Let A,Be K, D € K*.
(1) If 2(4A3 +27B?) # 0 € K, then the elliptic curves
E:y* =2+ Az + B, E :Dy? =24+ A2’ + B
(written in the affine form) become isomorphic over L = K (/D). The curve E’ is usually referred to as the
quadratic twist of E over K(v/D)/K, as its isomorphism class over K depends only on the field K (v/D).
(2) If 24 # 0 € K, then the elliptic curves
E:y? =23+ Az, E':y? =23+ DA’
become isomorphic over L = K (v/D).
(3) If 6B #£ 0 € K, then the elliptic curves
E:y* =2+ B, E' :y?=2"4+DB
become isomorphic over L = K (v/D).

(2.2.9) Exercise. Let E,E’ be as in 2.2.8(n); show that E is isomorphic to E' (over K) <= D € K**"
(n=1,2,3).

(2.2.10) Exercise. Let E, E’ be elliptic curves over a field K of characteristic char(K) # 2,3. Assume that
there exists an extension L D K and an isomorphism E;, — E). Show that the pair (E, E') is isomorphic
(over K) to one of the pairs in 2.2.8, for suitable D € K*.

(2.2.11) Exercise. Let K be a field of characteristic char(K) # 2,3 and j € K. Show that there exists an
elliptic curve E over K with j(E) = j.

(2.2.12) Exercise. Let L, L' C C be lattices satisfying j(L) = j(L'). Show that there exists A\ € C* such
that L' = AL.

(2.2.13) Exercise. Give an explicit list of isomorphism classes of elliptic curves over Fo. Which among
them become isomorphic over F,?
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2.3 Multiplication maps

(2.3.1) Proposition. Let E be an elliptic curve over a field K. Then, for each n € Z — {0}, the multipli-
cation by n is an isogeny [n] : E — E (i.e. [n] is not constant).

Proof. We only sketch the argument; see ([Si 1], 1I11.4.2(a)) for more details. We can assume that n > 1;
as [n](0) = O, we have to show that [n] is not the constant map with value O. If char(K) # 2, then an

explicit calculation of [2](x,y) shows that the set E(K)[2] = Ker([2])(K) is finite (= [2] in not constant
= [2*] is not constant for all k£ > 1) and contains a point P # Oj; thus, if 2 { m, then [m](P) = P # O,
hence [m] is not constant. It follows that [2* - m] is not constant, either. For char(K) = 2 one applies the
same argument, with [2] replaced by [3].

(2.8.2) Corollary. The map n +— [n] is an injective homomorphism Z — Endk (E).

(2.3.3) We shall see later on that deg([n]) = n?, and that [n] is ‘unramified’ <= char(K) { n.
2.4 Isogenies of degree two (char(K) # 2)

(2.4.1) The analytic version. If L C L' C C are lattices in C such that L'/L — Z/2Z, then the
identity on C induces a holomorphic map

A:C/L — C/L (2.4.1.1)

of degree deg(\) = 2. Conversely, it follows from 1.7.6.1 that every holomorphic map A : C/L — C/L’ of
degree deg(A) = 2 between two tori is given by the above construction, possibly after replacing L by aL (for
suitable a € C*).

The Theorem on Elementary Divisors implies that there is a basis w1, ws of L such that L = Zwq + Zws,
L' = Z% + Zw,. The kernel of A is then equal to Ker(\) = {0,w1/2 (mod L)}, where wi/2 (mod L) is a
point of exact order 2 on C/L.
(2.4.2) The algebraic version. Let F be an elliptic curve over a field K of characteristic char(K) # 2
and Py € E(K) — {O} a K-rational point satisfying [2]Py = O.

We can assume that E is given in the generalized Weierstrass form

E—{0}:y*=f(z) =2 + ax® + bx + ¢ (a,b,c € K),
where the polynomial f € K|[z] has distinct roots e1, ez, e3 € K. As Py = (e1,0) (say) is K-rational, we can
replace x by x — ey, hence assume that E is in the form
E—-{O}:y*=z(@®+ax+b), Py=(0,0), abecK,  bla®—4b)#0

(the last condition is equivalent to F being smooth).

We would like to construct an isogeny A : E — E’ of degree two with “Ker(\)” equal to {O, Py}.
Morally, this means that (the pull-backs under A) of rational functions on E’ will correspond to those
rational functions on E which are invariant under the translation 7p, : P — PH Py (as in 1.7.6.6).

(2.4.3) In the analytic case 2.4.1, the functions

FE) =m0 +p(+550), () =¢/(=L)+ ¢/ (2 + 55 L)

are both L’-periodic, have poles of order 2 (resp. 3) at z € L’ (and no other poles) and have Laurent
expansions

fe)=2"24co+ -, fl(z)=—2:"4crz 4
at z = 0. This implies that

f(z)=p(z L) +co,  fl(z)=¢(zL"), (2.4.3.1)
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hence the isogeny A is given by the formula

Mp(z; L), 9' (2 L)) = (f(2) = co, ['(2))-
It remains to express the functions f(z), f/(2) in terms of (z,y) = (p(z; L), ¢'(z; L)).

(2.4.4) We shall do this calculation in the algebraic setup: denote the coordinates of a point P € E — {O}
by (z(P),y(P)) and put

X:=a(P)+x(PBP)+c, Y :=y(P)+yPBP),

where ¢ € K is a constant, to be determined later. As the line

_yp)
T a(p)
intersects F at the points
Py=(0,0),  P=(z(P),yP)), [FU(PER)=(@PBFR)-yPHkR)),

it follows that

2
z(z? + ax +b) — (z(P) x) =z(z — z(P))(x —z(PB F)),

(P)

hence
(P)\*
atz(P)+z(PBR)= (L), a(P)a(PBPR) =b.
z(P)

Taking ¢ = a and dropping P from the notation, we obtain

b 2 b

X:x+a+—:(y) , Yy(x> (2.4.4.1)

x x x x

and

Y2:X(x2—2b+i—z> =X <<x+g>2—4b> = X((X —a)? —4b).

To sum up, E’ is given by the equation

E' —{0'}:Y? = X(X? -~ 2aX + (a® —4b)) = X(X? +d' X + V) (2.4.4.2)
and A : E — E’ by (2.4.4.1). Note that E’ is smooth, as

b (a? — 4b') = (a* — 4b) - 16b # 0.

(2.4.5) Exercise. Express j = j(E) and j' = j(E’) in terms of the parameter u = 4b/a* € P'(K). For
which values of u is j = j'7

(2.4.6) Relation to Complex Multiplication. Assume that, in the analytic situation, there is an element
A € O = End(C/L) satisfying A\ = 2. Multiplication by A then induces an isogeny [\] : C/L — C/L of
degree deg([A]) = 2, so in this case E’ is isomorphic to F, hence j = j'.

The possible values of A (up to the action of Aut(C/L)) are the following:

O = Z][i], A=1+i
O = Z[iv2], A =iV2 (2.4.6.1)
O:Z[1+2i\ﬁ], Azli;\ﬁ_
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(2.4.7) Exercise. Compute j(O) for O from (2.4.6.1).

(2.4.8) Iterating this construction. If we apply the procedure from 2.4.4 to the curve E’, we obtain an
isogeny X' : B/ — E”, where E” is given by

E" —{0"} : v* = u(u® + 4au + 16b)

N(X,Y) = (u,0) = ((;)2§ (X— “2)‘(‘“’)) .

x =u/4, y=10v/8

and

Note that the formulas

define an isomorphism E” — E; denote by N:E' — Eits composition with .
(2.4.9) Exercise. Show that o A = [2], ie. X is the “dual isogeny” to A.

(2.4.10) This implies that, in the analytic setup 2.4.1, E” = C/L", where L" = Z%* + Z%¢ = %L and N
is again induced by the identity on C.

2.5 Complex Multiplication by Z[i]

(2.5.1) The projective curves V and E from 1.8.1-3, which were constructed from the affine curves

Vag 1 y? =1 —at, Eag s v = 4u® — 4u,

can be considered over an arbitrary field K. If char(K) # 2, which we shall assume throughout Sect. 2.5,
both V and E are smooth over K. In fact, V and E are elliptic curves with distinguished points Oy = (0, 1),
Op=(0:1:0)and themap f:V — E, f(x,y) = (1/2% —2y/x3) from 1.8.3.2 is an isogeny of degree 2.
The group law on both V and F is given by the same formulas as over C (see (1.8.4.2.2)).

(2.5.2) Action of Z[i]. Assume that the polynomial 72 + 1 is reducible over K; fix one of its roots I € K,
I?=-1.

(2.5.2.1) Definition. Define morphisms [i|x : X — X (X =V, E) by the same formulas as in the analytic
case (1.8.4.1.1)):

iy :V—V,  (@y)—Uzy); [lg:E—FE,  (uv)—(-ulv).
(2.5.2.2) Exercise. For X =V, E, the morphism [i|x is an automorphism [i]x € Autg (X) satisfying
ilxolilx =[-1x,  (WneZ) [ijxonlx =[nlxolilx, [ileof=/foliv.

(2.5.2.3) Definition. For X =V, E and m+ni € Z[i] (m,n € Z), define a morphism [m+ni]x € Endg (X)

by
[m+nilx =[mlx B(n]xoilx): X — X.

(2.5.2.4) Exercise. For X =V, E and «, 8 € Z[i],
lax B[Olx =[a+06lx, [odxeolflx =[aflx, lalgof=folav.

(2.5.2.5) Exercise. The formulas from 1.8.3.7(ii) define an isomorphism of curves g : V.— E (over K)
satisfying f(Ovy) = Og. [This shows that V is, indeed, an elliptic curve.]

(2.5.3) Lemma. Let X = V,E. For each o € Z[i] — {0}, the morphism [a]x : X — X is an isogeny
(hence the map a — [a]x induces an injective ring homomorphism Z[i] — Endg (X)).

Proof. As a # 0, the composite morphism [o]x o [@]x = [a@]x is non-zero (by 2.3.1), hence [a]x is non-zero
as well.
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(2.5.4) Exercise. Show that, for each a € Z[i] — {0}, deg([e]x) = Na = a@. [Hint: if char(K)=p >0,
factorize o in Zi] and use 1.9.5.7,10.]

(2.5.5) A supersingular example. If p = 3 (mod4) is a prime number, then K = Z[i]/pZ[i] is a field
isomorphic to F,2; let I € K be the image of 7 in K.

The endomorphism ring Endg (V) contains the following elements: [i]y satisfying [i]?, = —1 (where we
simplify the notation and write n instead of [n]y, for n € Z) and also the Frobenius morphism

¢p V—>‘/ﬂ (x7y>'_)(‘rp7yp)u
which will be investigated in more detail in 3.1 below. The congruence 1.8.4.9 for « = —p and the formulas

¢p o [ilv(z,y) = dp(Ix,y) = (P2, y") = (=1a”,y") = [=ilv (2", y") = [=i]v o ¢p(2,y)

imply that

¢y =[-plv=—p,  ¢polilv=[ilv o,

To sum up, we have constructed a (non-zero) homomorphism of rings

Z[1,J)) <I*=—-1,J> = —p,1J = —JI >— Endg(V)

2.5.5.1
I~ [y, J = ¢p. ( )

Tensoring (2.5.5.1) with Q we obtain a (non-zero) homomorphism of Q-algebras
B:=Q[I,J]/<I?=-1,J*=—p,IJ = —JI >— Endg(V) ®z Q. (2.5.5.2)

Knowledgeable readers will recognize in the L.H.S. of (2.5.5.2) the quaternion algebra

—1.—
B:( ép> =Q-1+Q-1+Q-J+Q-1J, I*=-1, J>=—p, IJ=—-JI,
2

which is a central simple algebra over Q (i.e. B has no non-trivial bilateral ideals and its centre is equal
to Q). This implies that the homomorphism (2.5.5.2), being non-zero, must be injective. In fact, it is an
isomorphism, but we are not going to prove this.

(2.5.6) In general, elliptic curves with non-commutative endomorphism rings are quite rare; they occur only
over fields of characteristic p > 0, and for each p there are only finitely many of them (up to isomorphism
over some extension of the base field). For such curves, Endg (—) ® Q is isomorphic to the unique quaternion
algebra over Q ramified exactly at p and oo (see [Hu], Ch. 13.6; [Si 1], V.3).

2.6 Complex Multiplication by Z|p]

(2.6.1) Let p=e>™/3; then p> + p+1=0, p— p*> =iV/3.

(2.6.2) Exercise. Let K be a field of characteristic char(K) # 3 and D € K*.

(i) Show that E : X3+ Y3 = DZ3 is an elliptic curve over K (with origin O = (1: —1:0)).

(ii) Find a change of variables transforming (E,O) into a curve in a generalized Weierstrass form.
(iii) If char(K) # 2, show that, for suitable A € K*, E is isomorphic over K to the elliptic curve

Ea:yP=2°+ A

(iv) Assume that ( € K is a primitive cubic root of unity, i.e. (> =1 # (. Define [p] : Ery — Eg) by
P(X :Y :Z) — (X :Y :(Z) and show that the map m + np — [m]| + ([n] o [p]) defines an injective ring
homomorphism

(v) Compute explicitly the action of [~1] and [p — p?] on E and find all points P € E(K) satisfying
[p— p?|P = O (resp. [3]P = O).
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(vi) If char(K) # 2, show that the isomorphism from (iii) transforms [p — p?] € Endg ) (E) into an isogeny
A : Eq — E_g74 of degree 3 defined over K. Determine Ker(\)(K).

(2.6.3) Exercise. Consider the elliptic curve E : X3 +Y3 = Z3 (with O = (1: —1:0)) over a field K of
characteristic char(K) = 2.

(i) Show that ¢3 = ¢4 = [-2] € Endk(E).

(ii) If K D F4, show that there is an injective homomorphism

R:=Z[p|[¢]) < ¢* = =2, ¢p=p ‘¢ >— Endg(E).

(iii) Show that the map
—1+i+j+k
)
2
induces an injective homomorphism R — H into the algebra of Hamilton quaternions; determine its image.
(iv) Determine Autg (E) (for K D Fy).

p—i—]j

3. Isogenies (main properties)
3.1 The dual isogeny

(3.1.1) Example: Let L C L’ C C be lattices satisfying L'/L — Z/2Z and let

A:C/L — C/L, z (mod L) — z (mod L")
be the (analytic) isogeny of degree 2 studied in 2.4. According to the general recipe from 1.7.6.5, the formula

X:C/L' — C/L, z (mod L) — 2z (mod L)
defines an (analytic) isogeny of degree 2 satisfying

XoA=1[2, AoAr=[2].

Choosing a basis wi,ws € L such that L = Zw; + Zwsy, L' = Z% + Zws, we have

A1 (z (mod L)) = {z (mod L), (z 4 w1/2) (mod L)},
2z (mod L) = z+ (2 + w1/2) (mod L) — wy /2 (mod L).

The latter formula can be rewritten as

NQ) = Bper-1() P BBper-1(0)P; (3.1.1.1)

in other words, :\\(Q) corresponds to the class of the divisor A*((Q) — (O)) under the isomorphism B :
Cl°(C/L) = C/L from 1.5.3.6.

(3.1.2) Proposition. Let A : E' — E be an isogeny between elliptic curves over K of degree deg(\) = n.
Then there is a unique isogeny A : B — E' (the dual isogeny to \) satisfying Ao A= [n]E.

Proof. Uniqueness: If p,v: E — E’ are isogenies satisfying Aoy = Aowv, then Ao (uBv) = 0, hence
pwBrv =0 (by 2.1.6), i.e. p=v.

Existence: We shall try to construct Py by generalizing the formula (3.1.1.1). It is natural to expect that,
for each field L D K, X should act on the L-rational points by the following composite map:

~

E(L) = CIY(E) s Cl)(B) & E'(L), (3.1.2.1)
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where the isomorphisms are those from 1.2.1; we apply this observation to the field L = R(F) and the “general
point” @ € E(L) defined in 1.2.6. Denote by Q'()\) € E’(L) the image of @ under the map (3.1.2.1); then
Q' (\) defines a rational map EF — — > E’ , which extends to a (unique) morphism X : E — F'.

In the scheme theoretical language, the points @ and @’(A) correspond to morphisms
Q : Spec(L) — F, QN =XoQ: Spec(L)LE;

As the composite map

E'.

(AL)s o (A\p)* : Div(Er) — Div(E}) — Div(EL)

is given by multiplication by n, it follows that Ap(Q'(A)) = [n]g(Q), hence

A A

Ao Q'(N) : Spec(L)—2~E-2E -2 .F
is equal to
[npo@: SpeC(L)LE&E.
In other words, the morphisms /\OX, [n]g : E — E define the same rational map E — — > E , which implies

that they are equal:

Ao A= [n]g.
In partlcular \: E — E'is a non-constant morphism. Instead of proving directly that )\(O) =0 (ie.
that A is an isogeny), we use the following trick: the point P := A(O) € E'(K) satisfies A(P) = [n](O) = O;
putting

~

AN=T_p oN: ELE/L—&E/

(where 7_p denotes the translation map by —P = BP), then A : E —> E’ will be an isogeny (as A(O) = 0’)
satisfying

)\O/)::)\OT,pOX:)\oX: [n]E
(as A(P) = 0), as required.
(3.1.3) (i) It is convenient to define 0 = 0 and deg(0) = 0; then A makes sense for all elements of
Homy (E/, E).
(ii) If L D K is any field, then A, = (A\), (as ([n]g)r = [n]&,)-
(iii) In the situation of 2.5.2, [o]y = [@]x (X =V, E), thanks to 2.5.4.
(iv) In the situation of 2.5.5, ¢, = —¢,; combined with (iii), this implies that the map A — A on Endk (F)
induces the standard involution I — —I, J +— —J, IJ — —IJ on the quaternion algebra B.

(3.1.4) Theorem. Let A : E' — E be an isogeny of degree deg(\) = n. Then

(ii) If,u E” — E’ is an isogeny, then )\/\ /70/)\\.
(ili) If u: B’ — FE is an isogeny, then @ p) m
(iv) For all m € Z, [;n\] = [m], deg[m]=m?.

(v) deg( ) deg(A).

(vi) A

Proof. (cf. [Si 1], IIL6.2). (i) We know that Ao A = [n]g, hence
AoXN)oA=Ao(AoA)=Aonlg=[ng oA = AoA=[n]p.
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(using 2.1.3 and 2.1.6).
(ii) If r = deg(u), then

NopofioX=Ao[rlp oA =[rlporoX=[rlgonlp = [rnlp = [deg(Ao )] = Ao o Xop,

which implies the result (again using 2.1.3 and 2.1.6).
(iii) This is a non-trivial statement, which will be proved in 3.1.6-9 below.

(iv) The equality [m] = [m] follows from (iii) (and the case m = —1) by induction on |m|. It implies that

—

[deg([m])] = [m] o [m] = [m?] = deg([m]) = m

(using 2.3.2).
(v) This follows from the fact that

deg()\) deg(N) = deg(X o A) = deg([n]) = n? = deg(\)>.
(vi) Combining (i) and (v), we obtain
[n]E OX:AOXOX:)\O[TL]E/ —AoXo\= [npod = A=A
(3.1.5) Corollary. The function
deg : Homy(E',E) — Z

is quadratic, i.e. the function
(A, 1) = deg(A B ) — deg(A) — deg(u)

is a bilinear form on Homp (E', E).

(3.1.6) Proof of 3.1.4(iii) (beginning). A truly “functorial” proof would deduce the statement from
the “Theorem of the square”. Instead, we shall try to explain the “usual” proof (cf. [Si 1], 111.6.2; [Ca 3],
App. C; note that, if char(K) > 0, then the proof involves elliptic curves over non-perfect fields; this fact
was glossed over in [Si 1]).

The idea of the proof is to consider the graphs I', of the isogenies v = A, u, A B p as divisors on the
surface B’ xk E, and to study their restrictions to the elliptic curves L' xx F = Ep and E' xg L = Ef,
over the fields L = R(F) and L' = R(FE’), respectively. More precisely, consider the divisor

D = (Tag,) — () — (T,) + (T) € Div(E' xx E). (3.1.6.1)

Restricting D to Ep, i.e. viewing the “horizontal” coordinate in the direction of E’ as constant, we deduce
that D is “almost” principal. Using this information and restricting D to E}, i.e. viewing the “vertical”
coordinate as constant, we obtain

QMABu)=QNBQ (n) B P, (3.1.6.2)
for some P; € E'(K), which implies that

ABu=7p0(ABR) = ABp=ABF,
as required. Let us first explain the terminology in a simplified setting.
(3.1.7) A toy model. Let C; = AL = Spec(K|[z1]) and Co = A}, = Spec(K[z3]) be two affine
lines over K; denote by L; = R(C;) = K(x;) (j = 1,2) their fields of rational functions. The product
X = C) xg Cy = A% = Spec(K|x1,22]) is an affine plane; we view z1 (resp. z2) as the horizontal (resp.
the vertical) coordinate on X.
(3.1.7.1) Divisors on the surface X = C; xx Cy3. A divisor on X is a formal finite linear combination

> cnc(C) of reduced irreducible curves C' C X, with integral coefficients nc € Z; they form an abelian
group Div(X) with respect to addition. Each curve C is given by an equation
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C: fo(wy,22) =0,

where fo € K[zi,z2] is a non-constant irreducible polynomial. This polynomial is unique only up to
multiplication by a constant in K*; however, we fix fo, for each curve C' as above.

If the polynomial fe(z1,22) depends only on 1 (resp. only on x5), then the curve C : fo(x1) = 0 (resp.
C': fo(z2) = 0) is vertical (resp. horizontal). Such curves generate the groups of vertical (resp. horizontal)
divisors on X:

Div(X)vert = »_ nc(C),  Div(X)hor= Y nc(C)
vertical C horizontal C
The (two-dimensional) ring K[z1, 23] is factorial, which means that each non-zero rational function
g € R(X)* = K(x1,x2)* factorizes uniquelly as
g= aHfgrdC(g), (a € K*, orde(g) € Z); (3.1.7.1.1)
c

the divisor of ¢ is defined as
div(g) = Y _orde(g)(C) € Div(X).
c
As div(fc) = (C), the divisor class group of X

Cl(X) = Div(X)/{div(g) | g € R(X)*} (3.1.7.1.2)

vanishes: C1(X) = 0.
(3.1.7.2) Variables versus constants. It is often useful to view one of the coordinates, say x2, as being
“constant”, and consider only z; as a “true” variable. What does this mean?

For example, in the factorization (3.1.7.1.1), we disregard all horizontal curves C : fo(z2) = 0. Alge-
braically, this amounts to considering the factorization of ¢ in the localized (one-dimensional) ring

(K[wo] = {0}) 7 Koy, w2] = K (w2)[a1] = Lofaa],
which is the ring of functions on a curve (= the affine line) over the field Ly = K(z2). Geometrically, the
localization
Ji : Klzy, m2] — K(z2)[r1] = Lafz1]

defines an injective morphism

j1: AL, = (C1)r, = C1 Xk Spec(La) = Spec(La[z1]) — Spec(K[z1,25]) = C1 x i Co,

whose image is obtained from C; x g Cy by removing all horizontal curves C : fo(z2) = 0 (and the generic
point).

The slogan “view x5 as a constant” means that one restricts a given geometric object from C7 x g Cy
to (C4)L,, via the morphism j;. For example, for the divisor group we obtain the map “forget all horizontal
curves”

ji : Div(Cy x g Cy) — Div((C1)1,)
ZnC(C) - Z nc(Cr,),
C

C' not horizontal

where Cp, = C X Lo : (j¢(fc))(z1,22) = 0 is considered as a closed point on A1L2 (of course, j§(fc) is the
same polynomial as fe, but this time considered as an element of K (x2)[z1] = L2[x1]: x; is variable, but xo
is not). Note that
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Ker(j7) = Div(X)nor-

Similarly, viewing x; as being “constant” amounts to localizing

j5 + Klz1,22] — K(z1)[z2] = L1 [22]

and restricting via the morphism

jg : Ail = (CQ)LI = Spec(Ll) XK 02 = SpeC(Ll[xg]) — Spec(K[xl, JTQD = Cl XK CQ,

giving rise to the map “forget all vertical curves”
Jjs : Div(Cy x i Cy) — Div((C2)1,)
Z?’LC(C) = Z nC(CL1)7
C

C not vertical
where Cp, = L1 xg C, satistying Ker(53) = Div(X)vert-
It is important to note that
div(ji(9)) = ji(div(g)),  div(j3(g)) = j3(div(g)), (Vg € R(X)"),
where we have also denoted by j¢, j$ the canonical maps (in fact, the identity maps)
Jt : R(Cy x i Co) = Frac(K|[z1, x2]) — Frac(K (z2)[z1]) = R((C1)L,)
78 R(Cy x i Co) = Frac(K[z1, 22]) — Frac(K (z1)[z2]) = R((C2)L,)-

(3.1.7.3) Example: Let T, C O x (5 be the graph of the morphism « : C; — Cy given by “a(x;) = 227,

i.e. corresponding to the morphism of K-algebras
o’ Klxo] — Klx4], () = 22.
In other words, I', is the reduced irreducible curve
Ty : m% —25=0
on Cl XK 02 = A%O i.e.
(Ty) = div(z? — 7).

If we consider z; as being constant, then

-k

73((Ta)) = (Ta)r, = (the point with the coordinate z5 equal to z7 on (Ca)r, = A} ) =

= (auz,, )« (the tautological point with the coordinate z; equal to zy on (C1)r, = Ap))

(in the last line, x1 appears twice: first as a variable, then as a constant).

If we consider x5 as being constant, then

§1((Ta)) = (Ta)r, = (the prime ideal (2] — ) in Lo[z]) =
= “(the point with the coordinate x1 equal to \/z3)+
+(the point with the coordinate z1 equal to — /z3) on (C1)r, = A},” =

= (aur,)*(the tautological point with the coordinate x5 equal to x5 on (C2)r, = Ay )
again, in the last line, xo appears first as a variable, then as a constant).
g
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(3.1.8) Divisors. Intuitively, one would like to define a divisor on an arbitrary variety (or a scheme) as
a linear combination of “subvarieties” of codimension one. There are two versions of this notion: “Weil
divisors” and “Cartier divisors”; however, the two coincide on “nice” varieties, such as the surface E’ x i E.

More precisely, let X be a (separated, noetherian, irreducible) regular scheme (X is regular, for example,
if it is smooth over a field). If X = Spec(A) is affine, then a divisor on X is a finite linear combination

> np(p) (ny € Z),
p

where each p C A is a prime ideal of codimension one (i.e. such that dim(A,) = 1); in the example 3.1.7,
A = K[z, 23] and p = (f¢). In general, a divisor is a finite sum

Z?%(gc) (ng, € Z),

where each = € X is a point of codimension one (i.e. such that dim(Ox ,) = 1). The closure of {z} in X is
a reduced and irreducible subscheme of X of codimension one.

As X is assumed to be regular, each local ring dim(A,) (resp. Ox ) in codimension one is a discrete
valuation ring, defining a discrete valuation ord, (resp. ord,) on the field R(X). The divisor of a rational
function g € R(X)* is then defined as

div(g) = Y ordy(g)(p),  resp. > ord.(g)(x).
p T

(3.1.9) Proof of 3.1.4(iii) (end). We can play the same game as in 3.1.7 with the surface X = F’ x g E;
the divisors on X are linear combinations of reduced irreducible curves on X. Let

Q : Spec(L) = Spec(R(FE)) — E, Q' : Spec(L') = Spec(R(E")) — E’

be the tautological points of the two elliptic curves and

j:Q/XidZLIXKEZELI —>EIXKE, j/:idXQZEIXKL:E}J—>E/XKE

the corresponding inclusions. For any element A € Homg (F’, E) and any field F' D K, let A\r € Homp(E', E)
be the same morphism, but considered as being defined over F. The graph of A, defined as the fibre product

F)\ —_— EIXKE

|

E 2. ExxE,

is a reduced irreducible curve on E’ X E. As in 3.1.7.3, the restrictions of the divisor (I'y) via the maps

j* : DIV(E/ XK E) — DiV(EL/), j/* . DIV(E/ XK E) — DIV(E}J)

are equal to

77 ((T) = (A (Q)) (3.1.9.1)
3" () = AL (@) - (3.1.9.2)

For A = 0, the curve I’y = E’ x {O} is horizontal, thus
7" ((To)) = (O)r,  j™ ((To)) =0. (3.1.9.3)
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Considering the horizontal coordinate in the direction of E’ as constant, i.e. applying (3.1.9.1) to the divisor
(3.1.6.1), we see that

77 (D) = (A8 p)(Q") = A (Q)) = (n(Q)) + (O)1r € Div(EL)

is a principal divisor on the elliptic curve Fy/, thanks to 1.2.1. This implies that D itself differs from a
principal divisor by a vertical divisor, i.e.

D =div(f) +d x E € Div(E' xx E), (3.1.9.4)

for some rational function f € R(E’ xx E)* and a divisor d € Div(E’). Considering now the vertical
coordinate in the direction of E as constant, i.e. applying (3.1.9.2), we obtain the equality

(AB ) (@) = AL (@) — p1, (@) = div(j"f) + dp € Div(EyL),

where j*f = f, but considered as an element of R(E}) = R(E’ xi E). It follows that the class of the
divisor

ABuL(Q) = (0)r) = AL (Q) = (0)r) — pz (@) = (O)r)
in CI°(EY}) is equal to the class of d’, where
& =d— (B )" ((0)) + M ((0)) + 4" ((0)) € Div(E).

The last statement is nothing but the equality (3.1.6.2), with the point P, € E’(K) corresponding to the
class of d’ under the isomorphism 1.2.1. As observed in 3.1.6, this concludes the proof of 3.1.4(iii).

3.2 The Frobenius morphism

Let K be a field of characteristic char(K) = p > 0; the map o(a) = a? is then a field homomorphism
o: K — K. Fix a power ¢ = p" (r > 1) of p; then ¢"(a) = af.

(3.2.1) For a polynomial f(z) =3, caz® € K[z], put f@(z) =3 cla® € K[z]. As f(2)7 = fD(29), it
follows that

if @ € K is a root of f(z) = a? is a root of f@(x). (3.2.1.1)

Similar properties hold for polynomials in several variables.

(3.2.2) A naive “definition”. If X is an affine “variety” (more precisely, an affine scheme of finite type)
over K given by the polynomial equations

fl(.’li):'”:fN(l‘):O (ijK[a:]:K[ajl,...,xM]),
we denote by X (@ the affine “variety” over K given by the equations

(@) == [P @) =0.

In other words, if the ring of regular functions on X is equal to

A:K[l‘h...,$M]/(f1,...7fN), (3221)

the corresponding ring of functions on X (9 will be given by

AW = K[y, e/ (£, F9), (3.2.2.2)
In the scheme theoretical language, X = Spec(A), X9 = Spec(A@). The morphism of K-algebras

et AD — A D caa® Y cqrt® (3.2.2.3)
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then defines a morphism ¢, : X — X (@ (over K). On coordinates, if a = (ay,...,a,,) € X(K), then
pq(a) = (ai,...,al) € XD(K), as in (3.2.1.1).

By working with homogeneous polynomials one can use the same formulas to define X(?) and ¢q for
projective “varieties” over K.

(3.2.3) An invariant definition. Unfortunately, it is not immediately clear that the K-algebra (3.2.2.2)
and the morphism (3.2.2.3) depend only on A, not on its particular presentation (3.2.2.1).

(3.2.3.1) Definition. For any K-algebra A (commutative), put A9 = A @ o+ K. This is a K-algebra
via the map c— 1 ®c (c € K).

(3.2.3.2) This means that each element of A% is a finite sum of expressions a®@c (a € A, ¢ € K) satisfying
ac®cd =a®cid (a€ A, c,d € K).

(3.2.3.3) Exercise. Let A be as in (3.2.2.1). The formula

Year e Y clent (f(@) @ ¢ of @ ()

defines an isomorphism of K-algebras
Klzq,...,2Mm] Qkor K == Klzy,...,70],
which induces an isomorphism of K-algebras

ARk or K =5 Klay, ..., xum)/(F9, .. D).

Under this isomorphism, the map (3.2.2.3) corresponds to

. o q o 9%
Vg : E o ®c— E ctext®.
(03 (0%

(3.2.3.4) 1In other words, 3.2.3.1 is the correct functorial definition of A(@. In the scheme-theoretical
language, this means that X (4 can be defined for an arbitrary K-scheme X as the fibre product

X (@ SN X

! !

(eh)"

Spec(K) —— Spec(K)

(3.2.3.5) Example. If A= KJz| (i.e. X is the affine line over K), then AlD) = K|[x] and the morphism of
K-algebras ¢, : AW = K[z] — A = K|[z] corresponding to ¢, is given by 1,(z) = 29 (and 9,(c) = c).

In this example, the corresponding extension of the fields of rational functions K(z) = Frac(A) D
Yy (Frac(A@)) = K(x7) is purely inseparable, of degree g.

If the field K is perfect, then K(z?) = K9(z?) = K(z)9. Moreover, if p = (f(z)) € A = K[z]
is a maximal ideal (where f € K[z] is a non-constant irreducible polynomial), then f(z) = ¢(@(z) for
some irreducible polynomial g € K[z], and the maximal ideal q = (g) C A@ = K[z] satisfies 1,(q)A =
(99 (2%)) = (f(x))? = p%; in other words, the morphism ¢, is totally ramified at the point p.

(3.2.3.6) ¢, is usually called the relative Frobenius morphism, where “relative” refers to the fact that 1,
is the identity on constants ¢ € K, but raises each variable x; to its g-th power.

(3.2.3.7) If K C F, then ¢” =id on K, hence X (@ = X for every K-scheme X.
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(3.2.4) Proposition. Let K be a perfect field of characteristic p > 0, ¢ = p" (r > 1) and X a smooth
projective curve over K (ireducible over K ). Then:

(i) X@ is also a smooth projective curve over K (ireducible over K ).

(ii) The extension of the fields of rational functions R(X)/¢;R(X (@) corresponding to the morphism
g X — X () is purely inseparable, of degree ¢ (thus deg(dq) = q).

(i) ¢;R(XV) = R(X).

(iv) The morphism of curves ¢, : X — X9 is totally ramified at each (closed) point.

Proof. (cf. [Si1], I1.2.11). The statement (i) follows from the fact that the horizontal arrows in the diagram
3.2.3.4 are isomorphisms, since the field K is perfect. For the affine line over K, we have verified the
statements (ii)-(iv) by hand in 3.2.3.5. The general case easily follows, but we include the details for the
reader’s convenience.

(i), (ili) As m : X — Spec(K) is smooth of relative dimension one, there exists an open affine subset
Spec(A) C X which is étale (i.e. smooth of relative dimension zero) over the affine line Al = Spec(K][t]).
This implies that the corresponding extension of the fields of rational functions R(X)/K(t) = Frac(A)/K(t)
is separable (and finite). In the diagram of fields

K(t)?=K({7) C R(X)

the horizontal extensions are separable, while the vertical extensions are purely inseparable; thus

[R(X) : R(X)7) = [K(t) : K(t7)] = g-

For each open affine subset Spec(A) C X, where A = Klx1,...,xn]/I = Klz1,...,2n]/(f1,. .., fn), the
image of the map %, : AlD — A is equal to

Klad, a7 @, f30@0) = Ko, af)/(a(@), o fale)) = AT
(using the fact that K = K9, as K is perfect by assumption). This implies that QSZR(X(‘])) = R(X)1.
(iv) For each A as in the proof of (iii), A is a Dedekind ring; let p = (g1 + I,...,9, + I) € Max(A)
(9; € K[21,...,7,]) be any maximal ideal of A. Then p(® = (g%q) +I1@, ... ,gf(,q) + I9) is an ideal of A,
satisfying

AD [pD = (A/p) @K, K = Alp = k(p)

(as o : K — K is an isomorphism, the field K being perfect). It follows that p(?) is a maximal ideal of A(®)
and

Ga(p@) = (60 (@) + T, .. glD (29) + 1) = p3,

which means that p(?) = ¥ (p) is totally ramified in Yy(AD) C A, with ramification index equal to g.

(3.2.5) Corollary. If K is as in 3.2.4 and E is an elliptic curve over K, then, for each r > 1, E@ is
an elliptic curve over K and ¢4 : E — E(9) js an isogeny (where we take ¢4(0) to be the distinguished
K -rational point of E(%)),

(3.2.6) Proposition. Let K be a perfect field of characteristic p > 0, A : E — FE’ an isogeny of elliptic
curves over K. Then \ factors uniquelly as

E&E(Q) LE',
where q = p” for some r > 0, j1 is an isogeny and the extension R(E®)/u*R(E') is separable.

Proof. (cf. [Si 1], 11.2.12). Let F/A*(R(E’)) be the maximal separable subextension of R(E)/A*(R(E")).
Then R(FE)/F is a purely inseparable extension of degree ¢ = p” (r > 0), hence R(E)? C F. As
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[R(E) : F] = q = [R(E) : $,R(EW)] = [R(E) : R(E)"]
by 3.2.4(ii)-(iii), we have F' = R(E)? = ¢;R(E@). The tower of fields

R(E) > ¢, R(EW) > \*(R(E))

then corresponds to a tower of (non-constant) morphisms
% pla) g

Define O = ¢4(Og); then ¢,, uu are isogenies and the extension R(E@)/u*(R(E')) is separable, being
isomorphic to F/A*(R(E")).

(3.2.7) Corollary (of the proof). If, in the situation of 3.2.6, the extension of fields R(E)/\*(R(E")) is
purely inseparable, then the isogeny A : E — E' is isomorphic to the isogeny ¢4 : E — E@),

3.3 The invariant differential
We refer to ([Al-KI]; [Ei], Ch. 16; [Mat], Ch. 9) for basic properties of Kéhler differentials.
(3.3.1) If E is an elliptic curve over K, then the space of regular differentials I'(E,Qg/x) on E is one-

dimensional (as F has genus g(F) = 1).

(8.8.2) Proposition. (i) Ifw € I'(E,Qg/x) — {0} is a non-zero regular differential, then div(w) = 0, i.e.
w has no zeros (nor poles).
(ii) If E is given by a generalized Welerstrass equation

E—{O}: y* + a1zy + azy = 2° + asx® + ayx + ag (a; € K),
then

dx dy
w = =
2y +air+as  3x%+ 2a7 + ag — ary

(3.3.2.1)

is a regular differential on E, hence I'(E,Qp, k) = K - w and w has no zeros (nor poles).

Proof. (i) D = div(w) > 0 is an effective divisor of degree degy (D) =2g —2 =0, hence D = 0.
(ii) (cf. [Si 1], II1.1.5). We know that

DBz Qp_z) =T(E,Qp/x) ©x K.

Consequently, to show that w is regular (i.e. w € I'(E,Qg/k)), we can replace E by Ez and w by 0 = w®1 €
QrE)/K OK K cC QR(E—)/?' The same calculation as in the proof of 1.4.2.2 then shows that ordp (@) = 0
K

for all P € (E — {O})(K). As deg(div(w)) = 29 — 2 = 0, it follows that ordp (@) = 0; thus div(w) = 0. In
particular, @ is regular, hence so is w.

(3.3.3) Exercise. How does the direct calculation of ordp(w) from 1.4.2.2 have to be modified in the
algebraic context?  [Hint: what is the analogue of 1.3.3.87]

(3.3.4) The existence of a regular differential without zeros on E should come as a no surprise. F is an
algebraic group, which implies that its cotangent bundle is trivial: choose a basis of the cotangent space
at the origin and use translation maps to transport this basis all over E. For a fixed trivialization of the
cotangent bundle, a constant section of the trivial bundle then corresponds to a regular differential w without
ZEros.

As FE is a curve, its cotangent bundle has rank one (it is a line bundle). Moreover, the only global
sections of the trivial line bundle are the constants, since F is projective; thus w is unique up to a constant
multiple.
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Last but not least, the construction of the trivialization of the cotangent bundle using the (commutative)
group law implies that the differential w is invariant in the following sense.

(3.3.5) Invariant differentials. We are going to show that w from (3.3.2.1) is an invariant differential,
i.e. that

w(Q1 B Q2) = w(Q1) +w(Q2), (3.3.5.1)

if we consider the coordinates of Q; = (z;,y;) (j = 1,2) as variables. This property makes w into an
important tool for “linearizing” the group law on E (replacing the analytic uniformization C/L — E(C)
available in the complex case).

What are the basic examples of invariant differentials?

The additive group : dz satisfies d(z1 + 22) = dz1 + dzs.
The multiplicative group : dz/z satisfies d(z122)/2122 = dz1/21 + dza/2s.

In general, if G — S is a “commutative group scheme” over a base scheme S (such as F over K), then a
regular differential w € I'(G,Qq/g) is (translation) invariant if

m*(w) = pi (w) + p5(w), (3.3.5.2)
where the morphisms
m:GxgG— G, PG xsg G— G, po:GxsG— G (3.3.5.3)

denote the group law on G and the projections on the first (resp. the second) factor, respectively. Note that
(3.3.5.2) is merely a fancy reformulation of (3.3.5.1).

(8.3.6) Proposition. If E is an elliptic curve over K, then every regular differential w € I'(E,Qg/k) on
F is translation invariant, i.e. satisfies

m*(w) = pi(w) + p3(w)
in the notation of 3.3.5.3.

Proof. See ([Si 1], p. 82), for an ‘elementary’ proof. The following argument formalizes the last remark made
in 3.3.4.

We can assume that w # 0. By 3.3.2(i), w has no zeros on F, which means that multiplication by w induces
an isomorphism of invertible sheaves on F

(i.e. a trivialization of the cotangent bundle of E). For the same reason, the map

OF 5 — UpxE/K (f1, fa) = f1- (Piw) + f2 - (P5w)

is an isomorphism of sheaves on E X E. Explicitly, if (Q1,Q2) is a variable point in some open subset U
of £ X E, then the above map is given by

(f1(Q1,Q2), f2(Q1,Q2)) — [1(Q1,Q2) - w(Q1) + f2(Q1,Q2) - w(Q2),

where f1, fo are regular functions on U. Taking global sections, we obtain an isomorphism of K-vector spaces

K% = I'(E xk EvQEXKE/K)7 (c1,¢2) P c1 - (piw) + c2 - (Pow).
As m*(w) € T(E xk E,Qpx, p/K), it is of the form

m*(w) = e1 - (piw) + c2 - (pow)
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for some constants ¢, ca € K. These constants can be determined by restricting to the curves E x g {O} =
Im(i1) and {O} x g E =1Im(iz), where i : E — E xg E (j = 1,2) are the morphisms

11(P) = (P, 0), i2(P) = (O, P).
Then

moij=pjoij=id, pjoir=0 (j#k) = w=iim' (W =c¢-w = ca=c=1
(3.3.7) Corollary. If \,u: E' — E are two isogenies between elliptic curves over K, then
(VB )" () = A (@) + " ()
holds for every regular differential w € T'(E, Qg k).

Proof. By definition,

ABHpu=mog, A=piog, p=p20,

where

g B2 g B YME Xk B
(and A(P) = (P, P)). Applying g* to 3.3.6 yields the result:

AB P (W) =g'm*(w) = g"pi(w) + g"pa(w) = A" (w) + p* (w).

(8.3.8) Corollary. If E is an elliptic curve over K and w € I'(E,{g /) a regular differential on E, then

[n]*(w) = nw (neZ).
Proof. Induction on |n|.

3.4 Separable (= unramified = étale) isogenies

(3.4.1) Let A: B/ — E be an isogeny between elliptic curves over K. Choose non-zero regular differentials
wg (resp. wp) on E (resp. E’'). The exact sequence of Kahler differentials associated to the triple

K — R(E)->-R(E)
reads as follows (note that Qp(g)/k is denoted by Qg in [Si 1]):

-
Qrey/k Qr(E)A- R(E') ——  Qreyx  —— QpE)p-re — 0
[ [ | (3.4.1.1)
R(E') - wp 2 R(E)-wp — Qreypaerm —— 0

(3.4.2) Definition. An isogeny A : E' — F is separable if the extension R(E')/ \*R(FE) of the fields of
rational functions is separable.

(3.4.3) Lemma. Anisogeny \: E' — F is separable <= \*(wg) # 0 (where wg is any non-zero regular
differential on E).

Proof. This follows from the exactness of the bottom row of (3.4.1.1) and the fact that a finite field extension
L'/L is separable if and only if Q7 = 0.

(3.4.4) Example: If char(K) =p > 0 and ¢, : E — E@ (¢ = p", r > 1) is the relative Frobenius

morphism, then ¢} (wpw) =0, as d(z?) = qz?~! dz = 0.
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(3.4.5) Proposition. Let A\ : ' — E be a separable isogeny.

(i) For each field L D K, the isogeny A\, : E; — E, is also separable.

(ii) A is unramified at each (closed) point ' € E' (= the extension of the residue fields k(z')/k(z), where
x = A(z'), is separable).

(iii) For each P € E(K), the set
ATHP)(K) = {Q € E'(K) |\Q) = P}

has deg(\) elements.

(iv) If P is defined over a separable extension of K, so are all elements of A= (P)(K).

(v) Ker(A\)(K) = A"YO)(K) is a finite subgroup of E'(K*°) of order deg()), stable by the action of the
Galois group G = Gal(K*°? /K') (where K*°P denotes the maximal separable extension of K contained in

Proof. (cf. [Si 1], II1.4.10(c), if K is perfect). (i) For any non-zero regular differential wg on E, we have
)\z(wE (9 1) = )\*(wE) ®1#0.
(ii) This is a local question, so we can consider A over a (non-empty) open subset Spec(A) = U C E,
where A is a Dedekind ring, of finite type as a K-algebra, with fraction field Frac(A) = R(E). Then
A1 (U) = U" = Spec(A’), where A’ is the integral closure of A in Frac(R(E’)) (with respect to the embedding
of fields A* : R(E) — R(E")); the point 2’ corresponds to a maximal ideal p’ C A" and = = A(z’) to the
maximal ideal p = (A\*)~!(p’) C A. The corresponding residue fields (= the fields of definitions of the points
x,2') are equal to k(z) = k(p) = A/p, k(z') = k(p") = A" /y’.

Recall that A is unramified at ' if the extension of the discrete valuation rings A, C A;, is unramified,
ie. if k(p')/k(p) is a separable extension and the ramification index e(p’|p) = 1 is trivial. This is, in turn,
equivalent to the vanishing of the module of differentials

Qar, 4, = (Qar/a), =0. (3.4.5.1)

The A’-module M = Qg4 is finitely generated and torsion, since

M ®a Frac(A) = QFrauc(A’)/Frac(A) =0

vanishes (as the field extension Frac(A’)/Frac(A) is separable, by assumption). This implies that (3.4.5.1)
holds for all p’ ¢ X, for some finite bad set ¥ of maximal ideals of A’.

In the special case when the field K = K is algebraically closed, maximal ideals of A (resp. A’)
correspond to points in U (resp. U’) with coordinates in K. If P’ € ¥ C U’(K) is a bad point at which A
is not unramified, then there is another point Q' € U’(K) such that P’ B Q' € U'(K) — X. Applying the
traslation by @Q’, we see that the morphism

AoTgr =Tg oA

(where @ = A(Q’)) is unramified at P’, hence so must be A (as 7¢ is an isomorphism). It follows that ¥ = 0,
hence A is unramified everywhere.

If the field K is arbitrary, the previous argument applies, thanks to (i), to the isogeny Az : E’? — Ex;
thus Az is unramified everywhere, hence

QA’/A ®K K = QA'@K?/A(@K? - O,
which proves that 4,,4 = 0, i.e. A is unramified everywhere.
(iii) We can replace A by A : B2 — Eg and assume that K = K. In the notation of the proof of (ii),

P becomes a maximal ideal of A and the set S := A~}(P)(K) is the set of maximal ideals Q C A’ above P,
i.e. such that @ N A = P. An algebraic version of 1.3.2.3.5 states that

Z e(QIP) - [k(Q) : k(P)] = [Frac(A’) : Frac(A)] = deg()\).
Qes
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However, the residue fields are equal to k(Q) = A'/Q = K = A/P = k(P) and each ramification index is
equal to one, thanks to (ii); the formula then simply states that the number of elements of the set S is equal
to deg(A).

The statement (iv) and much of (v) follow from (ii) and (iii). It remains to be proved that, if @ € E'(K*¢P)
satisfies A(Q) = O, then A\(c(Q)) = O for all ¢ € Gk. This follows from the fact that

as \ is defined over K.

(3.4.6) A toy model: Let G, = A} — {0} = Spec(K|[z,1/x]) be the multiplicative group over a field K.
This is an commutative algebraic group (or a group scheme, if you wish) over K, with the group law given
by multiplication, i.e. by the morphism

Gm XK Gm - Spec(K[J:, I/I] QK K[% 1/2/]) ;} SpeC(K[xa 1/1‘7 Y, l/y])LSpec(K[t, 1/t])
corresponding to the K-algebra map

K[t 1/t]| — Klz,1/z,y,1/y],  t— xy.

For each integer n > 1, the morphism [n] : G,, — G, corresponds to the map x +— z™. The invariant
differential

d
w= % €T(Gpm, 0%, /x)

then satisfies

thus

[n]*(w) #0 <= char(K){n, (3.4.6.1)

which is equivalent to the separability of the extension of the fields of rational functions

R(Gm)/[n]" R(Gp) = K(2)/K(z").

If (3.4.6.1) holds, then, for each point P € G,,(K) = K, the set of the n-th roots of P

[n] 7 (P)(K) ={Q € Gu(K) =K |Q" = [n)(Q) = P}

consists of n elements, each of them generating a separable extension of K. In particular, if P =1 is the

neutral element of G, then [n]~1(P)(K) = p,(K) is the set of the n-th roots of unity in K.
3.5 Points of finite order

Points of finite order on a given elliptic curve are analogues of the roots of unity in the elementary context.
Their coordinates are interesting numbers in their own right (as we have seen in 1.8.5); here we simply count
the number of points of a given order.

(3.5.1) Throughout Sect. 3.5, F will denote an elliptic curve over a field K and w a non-zero regular
differential on E.
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(3.5.2) Proposition. Ifn > 1 and (char(K),n) =1, then [n] : E — E is a separable isogeny,
#E(K), = degln] = n?
and the group of n-torsion points on E is isomorphic to
E(K), — (Z/nZ)*.

Proof. According to 3.3.8, [n]*(w) = nw, which is non-zero, as (char(K),n) = 1; thus [n] is a separable
isogeny, by 3.4.3. Applying 3.4.5(iii) and 3.1.4(iv), we deduce that #E(K),, = n?. In order to show that
E(K), — (Z/nZ)?, it is sufficient to consider the case n = p”, where p is a prime number, p # char(K).
For r = 1, E(K), is killed by p and has order deg[p] = p?, hence E(K), — (Z/pZ)?. For r > 1 one
proceeds by induction, using the result for 7 — 1 and the structure theory of finite abelian groups.

(8.5.3) Corollary. If char(K) =p > 0, then there is an integer a = a(E) € {0,1} (depending only on Fx;)
such that

(Vvr>1) E(K)y — (Z/p"Z)".

Proof. As [p]*w = pw = 0, 3.4.3 together with 3.2.6 imply that [p] factors as

B : B2 E@ t g,
where ¢ = p® (b > 1) and p is a separable isogeny. As deg[p] = p? and deg ¢, = g, it follows that b € {1,2}
and deg(pn) = p?~b. Applying 3.4.5 to u gives E(K), — (Z/pZ)® with a = 2 — b. For r > 1 use the same
inductive argument as in the proof of 3.5.2.
(3.5.4) (1) If a(E) =1 (resp. a(F) = 0), we say that E is ordinary (resp. supersingular). The proof
of 3.5.3 shows that

E is ordinary <= [p]g is not purely inseparable <= ap is a separable isogeny.

(2) Assume that K = K is an algebraically closed field of characteristic char(K) =p > 2 and X =V or
X = E one of the two elliptic curves with complex multiplication by Z[i] (as in 2.5.2, we fix a square root [
of —1 contained in K).

(2a) If p =3 (mod4), then ¢?p = —¢, is not separable, hence the elliptic curve X is supersingular.

(2b) If p =1 (mod4), then p factors in Z[i] as p = a@, where a = u +iv = 1 (mod (2 + 2i)), u? +v% = p
(u,v € Z). We identify Z[i|/aZ[i] with the prime subfield F, C K via the map ¢ — I. The corresponding
factorization [p]x = [a]x o [@]x in Endg (X) then shows that

[a)% (wx) = (u+v])wx =0, [a]% (wx) = (u — v])wx = 2uwx # 0.

It follows that the isogeny [p]x is not purely inseparable, hence the elliptic curve X is ordinary. Incidentally,
this argument also shows that ¢, = uo[a]x, for some automorphism v € Autg (X), which proves Eisenstein’s
congruence 1.9.4.6 for a up to the unknown factor u.

(3) It is true in general that supersingular elliptic curves in characteristic p > 0 are precisely those for which
End(E) ® Q is a quaternion algebra (cf. the references in 2.5.6).

(3.5.5) Proposition. If E is an elliptic curve over a field K C F, (¢ =p"), then
l1-¢,=[18B¢,: E— FE
is a separable isogeny.

Proof. We know from 3.2.4(ii) that the isogeny ¢, : £ — E is not separable; thus ¢} (w) = 0 (cf. 3.4.4).
Applying 3.3.7, we obtain

(1= ¢g)"(w) = [1]"(w) — ¢g(w) =w #0,
which proves the result.

(3.5.6) Exercise. Let E be an elliptic curve over K, L D K any field and A C E(L) a finite subgroup.
Then A is isomorphic to the direct sum of at most two (finite) cyclic groups.
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III. Arithmetic of Elliptic Curves

In this chapter we shall study elliptic curves over fields K that are of interest to number theorists: finite
fields, p-adic fields and number fields. In each case, the main question is to describe the set of K-rational
points on a given elliptic curve. Our treatment will be rather minimalistic; the reader should consult [Hu],
[Si 1] or [Ca 1] for more details.

1. Elliptic curves over finite fields
1.1 Elementary remarks

(1.1.1) Let p be a prime, ¢ = p” and E an elliptic curve over F,. We are interested in counting the number
of points #E(Fyn) on E that are rational over the various finite extensions of F,.

In the special case when ¢ = p and F is given by the generalized Weierstrass equation (11.1.2.4.1), then
#E(F,) — 1 is equal to the number of solutions (z,y) € F,, x F,, of the congruence

y? 4+ arxy + asy = 23 + agx® + asx + ag (mod p). (1.1.1.1)

(1.1.2) Exercise. For fixed a,b,c € Z, denote by N,(D) the number of solutions (x,y) € F, x F, of the
congruence
Dy? = 2® + az? + bx + ¢ (mod p),

where p is a prime and D € Z. Show that, if pt2DD’,
, [N () = (%)
Np(D') = (D D
[Hint: Fiz x.]

(1.1.3) If E has complex multiplication by Z[i] or Z[p], then (1.1.1.1) can be transformed into a diagonal
congruence

Y™ =aX" +b (modp) (1.1.3.1)

with (m,n) = (2,4),(2,3). In general, the number of solutions of (1.1.3.1) can be expressed in terms of
Jacobi sums, or is given by an elementary expression (see [Ir-Ro] for more details).

(1.1.4) Exercise. Reprove 0.5.3(iv), using the method from 1.1.2 (with a quadratic polynomial on the
R.H.S.).

1.2 Examples

(1.2.1) Let E an elliptic curve over F,;. Denote by ¢4 : E — E@ = E the corresponding Frobenius
morphism. If E is in the generalized Weierstrass form, then ¢, (z,y) = (7, y?). We shall identify Z with its
image in Endg (E) (for any field K D F,); this means that we shall write n instead of [n] (for n € Z). We
denote by Z[¢,] (resp. Q[g,]) the subring (resp. the Q-subalgebra) of Endg, (E) (resp. of Endr, (F) ® Q)
generated by ¢,.

(1.2.2) Lemma. (i) (Vn>1) #E(F;)=deg(l— ¢p).
(ii) If \: E' — E is an isogeny (over F,), then (Vn>1) #E'(Fpn)=#E(Fg).

Proof. (i) By I1.3.5.5, 1 — ¢y =1 — ¢4n : E — E is a separable isogeny, hence it follows from II.3.4.5(iii)
that

deg(1 — ¢7) = #Ker(1 — ¢7)(Fy) = #{P € E(F,) | ¢y (P) = P} = #E(Fgn).
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As regards (ii), the Snake Lemma applied to the diagram

(where A = Ker(\)(F,) and f is induced by 1 — ¢7) yields an exact sequence

0 — Ker(f) — E'(Fgn)>E(Fgn) — Coker(f) — 0,

which implies the statement of (ii), as #Ker(f) = #Coker(f) by the finiteness of A.

(1.2.3) Examples: (0) The discussion in 0.5.0-3 can be regarded as an elementary variant of 1.2.2, with
0.5.1 saying that ¢, = [p*] on C.

(1) Counsider the curves V, E from I1.2.5 over F,,, where p # 2 is a prime. By 1.2.2(ii), #V(Fpn) = #E(F,n)
(n > 1). Note that the affine curve V,g is of the diagonal form 1.1.3.

(la) If p =3 (mod4), denote by C : y?> = 1 — 22 the affine circle and by C C P?its projectivization. Then
V(Fp) = Vaf'f(Fp) = C(Fp) = C(Fp) - PI(FP)-
Indeed, the second (resp. the first and the third) equality follow from the fact that F;4 = F;‘,z (resp.
—-1¢ F;‘,?), and the last one is the isomorphism “circle = line” from 0.3.1.1. As a result,
#V(Fp) = #E(Fp) = #Pl(Fp) =p+1
This elementary method breaks down over F,.. However, the congruence 1.8.4.9 for « = —p yields the
equality ¢,2 = [~p| € Endr,(V), hence
LV (F2) = #E(Fy) = deglp+ 1] = (p+ 1)2.

(Ib) If p = 1 (mod4), then p = aa, where a = a+1ib € Z[i], o = 1 (mod (2+ 2i)). Let I € F, be the
image of ¢ € Z[i] under the projection Z[i| — Z[i]/aZ[i] = F,. The congruence 1.8.4.9 for « then yields
¢p = [a] € Endg, (V), hence

#V(Fp,) =#E(F,) =deg[l—o]=1-a)1-@)=p+1l-a—-a=p+1-—_2a.

This result is usually deduced from a calculation of Jacobi sums ([Ir-Ro], Ch. 8,10,11).
(2) The same method also applies to “biquadratic twists” of the curves V, E (in the sense of 11.2.2.8(2)).
More precisely, fix an integer D € Z — {0}, a prime number p{ 2D and consider the affine curves

(VD)ast : y% =1- Dx%, (ED)af UIQD = 4u3D —4Dup

and the corresponding smooth projective curves Vp, Ep (all defined over F,). As before, Vp and Ep are
elliptic curves over F, and the map fp(z,y) = (1/2%, —2yp/z%) defines an isogeny fp : Vp — Ep of
degree 2.

Fix a fourth root D4 ¢ Fp of D modulo p. Then the formulas

z=xpD'/*, Y =YD, u=up(D"*)72, v =vp(D*)™?

define isomorphisms X — X p (where X =V, F and X = Xfp denotes the base change of X to Fp) which
make the following diagram commutative:
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vV S Vo

e

E = Ep
(2a) If p =3 (mod4), then the same argument as in (1a) shows that

#Vp(F,) = #Ep(F,) = #P'(F,) =p+ L.

(2b) If p=1 (mod4), we again write p = aa and F), = Z[i]/aZ[i], as in (1b).
Let (z,y) € Vag(F,); when is the correspondmg point (zp,yp) = (x(DY*)71,9) € (Vp)ag(F
over F,? We have

(xDayD) € VD(Fp) — (xD7yD) = (w%7y%) <~ (D%;lx/y) = ($p7yp);

recalling that the biquadratic residue symbol

(§>4 € {1, +i}

is defined by the generalized Euler’s criterion

it follows that

(w0.0) € Vo(Ey) = (4= |(2) |) e =0

(the same argument also applies to the points of V' — V,g). The formulas

v (2),-(0),

together with 1.2.2 then imply

») defined

ey~ rmy o[ (2)Jor-2) v ((2) o) o2 (2) - (2)

1.3 Theorem of Hasse

(1.3.1) Proposition Let E be an elliptic curve over Fy (¢ = p"); put ¢ = ¢, € Endg, (E). Then

(i) ¢+ ¢ = a, where a € Z, la] <2,/3.

(i) ¢*>—ap+q= ¢2 — a¢+ q = 0 holds in Endp_(E).

(iii) If |a| = 2,/g, then r € 2Z, ¢ = ¢ = a/2 = :I:pr/2 +q, Z¢] =

(iv) If|a| < 2,/q, then Q[¢] — 5 Q(y/a? — 4q) is an imaginary quadratic field.
(

v) The two roots a, 3 € C of the polynomial T? — aT + q = (T — «)(T — 3) are complex conjugate (i.e.

= @) and satisty |a| = |3] = \/q.

Proof. For every pair of integers u,v € Z, we obtain from I1.3.1.4(iii) and I11.3.2.4(ii) that

deg(u + vo) = (u + vo)(u + vgg) =u? + uv(p + &) +v¥degp = u? + uv(¢p + gg) +q?e Endr, (E).
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As deg(u + v¢) is an integer, it follows that ¢ +¢ =a € Z (= ¢ = a — ¢ € Z[¢]), proving (i) and (i), as

P —ap+q=¢>—(p+d)dp+dd=0

(and similarly for ¢). Moreover, the integer deg(u + v¢) is always non-negative, which implies that
Q(u,v) = u? + auv + qv* = deg(u + v¢) > 0

is a positive semi-definite quadratic form on Z x Z. It follows that the discriminant disc(Q) = a? — 4¢ < 0,
hence |a| < 2,/g. If |a| = 2,/g, then r is even, a/2 = £p™/? = £,/g € Z and

-~

(a/2 = ¢)(a/2 - ¢) = Q(a/2,-1) =0,
proving (iii). If |a| < 2,/g, then the polynomial T? — aT + q has two complex conjugate (non-real) roots

at+/a?—4q
Vel g,

a, o=
This implies that the Q-algebra R = Q[T]/(T? — aT + q) is a field, isomorphic to Q(y/a? — 4q); the two
isomorphisms are given by
R = Q(v/a2? — 4q), T—a«a (resp. T — @).

By (ii), ¢ ¢ Q C Endr,(F) ® Q, hence the map T+ ¢ yields an isomorphism R — QJ¢]. The statement
(v) follows from the previous discussion.

(1.3.2) Theorem (Hasse). In the notation of 1.3.1, let o, 3 € C be the roots of T? —aT+q = (T—a)(T—J3).
Then
g=a, ad = q, a+a=a, la| = |a] = g
>1)  #E(Fp)=(1-a")(1-a") =¢"+1—a" —g"
[#E(F ) —q" — 1] < 2¢"2.

Proof. In the notation of the proof of 1.3.1, in the case |a| < 2,/g we have the isomorphisms

Q[¢] «— Q[T]/(T? — aT + q) — Q(v/a? — 4q),

under which T corresponds to ¢ on the L.H.S. (resp. to « on the R.H.S.). This implies that (E =a— ¢ on
the L.H.S. corresponds to a — a = @ on the R.H.S, hence

#E(Fyp) =deg(1—¢") = (1—¢")(1—¢") = (1—a")(1 —@") € Z C Endp, (E), (1.3.2.1)

by 1.2.2 and 3.1.4(iii). If a| = 2,/g, then ¢ = ¢ = a = @ = a/2 = +,/g € Z C Endg,(E), hence (1.3.2.1)
holds in this case, too. Everything else follows from 1.3.1.

(1.8.3) Zeta function of E. Let E be an elliptic curve over F,. Consider the generating function

o0 tn
Z(E,t) = exp (Zl #E(Fqn)n> € Q[[t]]. (1.3.3.1)
The equality of formal power series
=
Z = —log(l —ct) (ceC)
n
n=1

together with Hasse’s Theorem 1.3.2 imply that
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(1—at)(l—at)

Z(E )= -7 1.3.3.2
0= =g (1332

is a rational function. The zeta function of F, defined by

C(E,S) = Z(qu_s)v
is then equal to
1— =s\(1 —@g—*

c(B,s) = Lo )1 —ag) (1.3.3.3)

(I=g*)(1—q'=5) "’

which is a meromorphic function in C satisfying

C(E,S) = C(Ev 1- S)'
The fact that

lal = [a] = vq
is equivalent to the Riemann hypothesis for ((F, s):
1
C(E,s) =0= Re(s) = 3

(1.3.4) Example: In the situation of 1.2.3(2a), the formula #Vp(F,) = p + 1 together with 1.3.2 imply
that ¢, = —¢,, hence (;512) = —¢ppp = —p in Endp,(Vp). For D = 1, we obtain Eisenstein’s congruence
1.8.4.9 (1.9.4.6) for o = —p.

1.4 Vista: Zeta functions in geometry

(1.4.1) The Riemann zeta function can be written either as an infinite series, or as an infinite product:

)= n=]Ja-p>) ", (1.4.1.1)

n=1 p

where the product is taken over all prime numbers. Noting that the set of primes corresponds to the set of
maximal ideals Max(Z) = {(p)} of the ring Z, the following generalization of (1.4.1.1) is fairly natural.

(1.4.2) Let

A=Z[Ty,....Tm]/(f1,-- -, fN) (1.4.2.1)
be a finitely generated ring (over Z). By Hilbert’s Nullstellensatz, an ideal I C A is maximal <= A/l is
a finite field. We denote, for each maximal ideal m € Max(A), by

N(m) = #A/m = #k(m)

the number of elements of the residue field of m (roughly speaking, N(m) measures the “size” of m). The
zeta function of A is then defined as

A= J[ (-Nm=)". (1.4.2.2)

meMax(A)

One can show that the product (1.4.2.2) is absolutely convergent in the half-plane Re(s) > dim(A).
(1.4.3) Examples: (1) ((Z,s) = ((s). More generally, for each integer N > 1,
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cziNs)=[a-p2) "= 3w
PIN (nN)=1

(2) As ZJi] is a principal ideal domain, the description of its irreducible elements in 0.4.3.0 implies that

calil )= (-2 I 0-p) 7 I] -p2) ' = [ (1- 1) =

p=1(4) p=3(4) pF#2

n=1
2fn

(3) More generally, if Ok is the ring of integers in a number field K, then ((Ok,s) coincides with the
“Dedekind zeta-function of K”.

(1.4.4) Putting together all maximal ideals with the same residue characteristic char(A/m) = p, we obtain
(A s) =] ¢A/pA,s), (1.4.4.1)
P
where

A/pA=F,[T1,....Tasl/Frr - ), (F; = f; (modp)). (1.4.4.2)

Let us compute the factor ((A/pA,s) in the simplest non-trivial case A = Z[T]. Maximal ideals of A/pA =
F,[T] are of the form m = (f), where f € Fp[T] is a monic irreducible polynomial of degree d = deg(f) > 1;
then N(m) = p?. Denote by ag the number of such polynomials with deg(f) = d fixed; factorizing the

polynomial TP" — T into irreducible factors yields

(VN >1) Zdad:pN.

d|N
Writing
C(F,[T],s) = [J(1—p*)~* = Z(p~),
d=1
where
Z(t) = Z(FP[TLt) = H(l - td)iada
d=1
we obtain
lOgZ():ZadZ?:ZN dad:ZT:—log(l—pt),
d=1 n=1 N=1 d|N N=1
hence
20 = ——.  ((F[T)s) = —
PR —pt? P ’S_l—pks

(1.4.5) This calculation can be generalized to arbitrary A as follows. The ring A from (1.4.2.1) is the ring
of functions on the affine “variety over Z”

X:fi=-=fn=0, XCAy (1.4.5.1)
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and A/pA is the ring of functions on the affine “variety” over F,

X,=X®@zF,: fi=-=fny=0, X, C AR, (1.4.5.2)

The points on X, with coordinates in Fp correspond bijectively to homomorphisms of F-algebras A/pA —
F,, by the correspondence

— . — =M
Homg, —a19(A/pA, Fp) — Xp(Fp), a—a=(ay,...,ay) = (a(T1),...,a(Ty)) € F,

The kernel of a : A/pA — F, is a maximal ideal m € A/pA, whose degree d = deg(m) (defined by
N(m) = p?) is equal to the degree of the smallest extension F,(a)/F, over which the coordinates of a are
defined. Two points a,b € X,(F,) define the same m if and only if they are conjugate by an element of
Gal(F,/F,). Conversely, if m € A/pA, then there are exactly d = deg(m) embeddings k(m) = (4/pA)/m —
F,; composing them with the canonical projection (A/pA) — k(m) we obtain d conjugate points in X, (F,).
It follows that

(YN>1)  Dd Y 1=#X,(Fn). (1.4.5.3)
d|N deg(m)=d

In the case A/pA = F,[T] this boils down to the correspondence between irreducible monic polynomials of
degree d in Fp[T] and the sets of their roots, which form d-tuples of conjugate points. The identity (1.4.5.3)
then becomes (1.4.4.2).

Asin 1.4.4, put

C(A/pA,s) = Z(A/pA,p~).
The same calculation as in 1.4.4 then yields

log Z(A/pd. ) = ZZ%—Zl_Z Zle:iMﬁMt

=1 deg(m)= N=1 d|N deg(m)=

hence

tN s p—sN
Z(A/pA,t) = exp (Z #X,(F )N> . C(A/pA,s) =exp (Z #X,(Fyv )= ) . (14.5.4)

N=1

This explains the origin of the definition (1.3.3.1).

(1.4.6) One can translate the previous definitions into a purely geometric language, which will make sense
also for non-affine “varieties”, in fact for arbitrary schemes of finite type over Spec(Z). What does this
mean? If X is such a scheme, then it is a finite union of affine “varieties” of the type considered in 1.4.4
(i.e. X = Spec(A41)U---USpec(A,), where each ring A; is as in (1.4.2.1)). A “closed point” x € | X| then
corresponds to a maximal ideal m € A4; in one of the A;’s; one defines N(z) = N(m) and

(Xs)= [ 0= N@)™)"
z€|X|

If X = Spec(A) is affine, then ((Spec(A), s) = (4, s). The discussion from 1.4.4-5 makes sense in this more
general context: (1.4.4.1) is replaced by

C(X,s) = [[¢(Xp,9), (1.4.6.1)

p

where X, = X ®z F,, is the fibre of X over (p) € Spec(Z), and (1.4.5.4) reads as
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e —sN

p

C(Xp,5) = exp <Z #Xp(Fpn ) ) : (1.4.6.2)
N=1

(1.4.7) Examples: (1) Affine space. Let A = Z[Ty,...,Ty], X = Spec(A) = A%. Then X, = Ade,

hence #X,(F,~) = pV,

= tN 1 1
d _ AN _ d _ d _
Z(AFp7t)—eXP <NZ_:1P W) = 1= pit’ C(AFI,?S)_Tpd_S7 ((AZ,s) =((s—d).

(2) Projective space. Let X = sz be the d-dimensional projective space over Z; then X, = Pde. For
every field I there is a decomposition of P(F) into a disjoint union

PYF) = AYF)UPYF) = AYF)UAT Y F)U---UA°F). (1.4.7.2.1)
Taking F' = F,~, we obtain #P%p (Fpn) = pIN 4 pld=DN 4 ... 4 1 hence

1 1
G- 5 i g
((Pg,5) = (s = d)(s = d+1) - ((s).

(3) Elliptic curve with CM by Z[i]. Let V C PZ be the projective curve from I1.2.5, considered as a
projective scheme over Z. Combining the results of 1.2.3 with (1.3.3.2-3), we obtain

Z(P%‘pv t) =

C(V ®z Z[3],5) = C(Z[il[5]), 5)C(Z[d (5], s — DLV, )7,

where

Lvs)=[[a-al=)"t= Y ﬁ

™ a=1 (mod 2+21)

and the product is taken over all irreducible elements 7 € Z[i] satisfying 7 = 1 (mod 2 + 27).

(1.4.8) Remarkable properties of zeta functions. In the examples 1.4.7(2-3), the zeta function of the
projective space (resp. of an elliptic curve with complex multiplication) naturally decomposes as a product.
Is this a general phenomenon? If yes, does this decomposition have a geometric explanation?

For the projective space, the answer is fairly straightforward: the decomposition (1.4.7.2.1) makes sense
for any field, in particular for F = C. In this case the closure of AJ(C) = C7 (j = 0,...,d) in P4(C)
represents a generator of the homology group Hay;(PY(C),Z) — Z, and all other homology groups of
P?(C) vanish.

One can interpret in the similar vein the decomposition of {(V, s): the factor ((Z[é], s) (resp. ((Z]i], s—1))
corresponds to the homology group Hy(V(C),Z) (resp. H2(V(C),Z)), while the “interesting” factor L(V, s)
is related to Hy(V(C),Z).

What happens in general? Assume that X — Spec(Z) is projective, flat, X ®z Q is smooth over Q,
and p is a prime number such that X, = X ®z F,, is smooth over F,, and irreducible; let F; be the algebraic
closure of F,, in the function field of X, and d = dim(X,) the dimension of X,. Then:

S

(1) The zeta function ((X,, s) is a rational function of ¢~°; more precisely,

Pi(q=®) - Paa—1(q"%)

Po(q==) - Poa(q—) ' Pi(t) € Zt], P;(0) = 1.

C(va S) =

(2) There exists a functional equation relating P;(¢~*) and Pyy_;(q°~%).

(3) deg(F;) = dimg H;(X(C), Q).
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(4) Foreachi=0,...,2d,
deg(P;)

Pi(t) = H (1= i t), i g = ¢'/2.
j=1

These are the famous “Weil Conjectures” formulated by A. Weil in 1949 (and proved in this generality
by: (1) Dwork; (2) and (3) Grothendieck; (4) Deligne).

The most remarkable aspect of this story is the fact that there should be some natural geometric
objects h;(X) (“motives”, in Grothendieck’s terminology) associated to X, which should be responsible for
the topological homology groups H;(X(C),Z) (which depend only on the set of complex points of X), and
at the same time also for the individual factors P;(¢—*) appearing in the decomposition of the zeta function
¢(X,,s) (which is defined solely in terms of the geometry of X,, over F,,).

So what is a motive? Well, it is any %&!?*+ which has a zeta function ...

2. Elliptic curves over local fields

Throughout this section, R will denote a discrete valuation ring, K = Frac(R) is fraction field, 7 € R a
uniformizing element and k = R/m R the residue field of R. Typical examples include R = k[[n]] and R = Z,,

T =p.
2.1 Minimal Weierstrass models

Given an elliptic curve E over K, we would like to find a “nice” model £ of E over R (and study its reduction
E =& (mod ) over k). Geometrically, & — Spec(R) is a fibration over a one-dimensional base; its generic
fibre E is an elliptic curve over K, while its special fibre £ = £ ® g k can have singularities.

(2.1.1) Definition. Let F be an elliptic curve over K. A generalized Weierstrass model of F over R
is a generalized Weierstrass equation

E:Y Z4+aXYZ +a3YZ? = X3+ auX?Z +ays X 7% + a2 (2.1.1.1)

of an elliptic curve isomorphic to E, in which all coefficients a; € R lie in R. (In a fancy language, (2.1.1.1)
is a projective R-scheme & C P% such that £ ®g K is isomorphic to E.)

(2.1.2) Discriminant. Considering the coefficients a; of (the affine form of) the generalized Weierstrass
equation

f(x,y) =y + a1y + azy — 2° — apax? — ayr — ag = 0 (2.1.2.1)

as variables, the intersection of the ideal (f,0f/0x,0f/0y) in Z[x,y,a1,...,a¢] with Z[a,...,as] is a prin-
cipal ideal, generated by a polynomial A(aq,...,as) € Zlay,...,as) (unique up to a sign). We refer to ([Si
1], II1.1) for the general formulas; if a1 = as = a3 = 0, then we have the usual formula

A = —16(4aj + 27a3),
which is also equal to
A = 8(9(3ag — 2a47)(2f —y Of JOy) + 2(4a3 — Yagx + 6asx?) Of /0x).
In general, replacing z,y by new variables 2/, 3/ as in (1.2.2.2.1)

=’z +r .
3.0 2, (r,s,t € K, u € K") (2.1.2.2)
y=u"y +u'sr +t
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has the effect of multiplying A by =12, One can also define the j-invariant j(ai,...,aq) for an arbitrary
generalized Weierstrass equation; it coincides with the function

N 4(12&4)3
I 4a3 + 27af

defined in 11.2.2.6 if a; = a2 = a3 = 0 and is invariant under the transformations (2.1.2.2).
If a; € K, then the curve (2.1.2.1) is smooth over K if and only if A 40 € K.

(2.1.3) Definition. We say that £ in (2.1.1.1) is a minimal Weierstrass model of E over R if the
valuation ord,(A(£)) > 0 is minimal (among all generalized Weierstrass models of E over R).

(2.1.4) Example. Assume that char(k) # 2,3. Then (the affine form of) the Weierstrass model £

y? = a3 + 70

is not minimal, as the change of variables

transforms £ into a model & given by

y/2 — xl3 + 1
In this example, ord,(A(E)) =12, ord,(A(E")) = 0.

(2.1.5) Proposition. (i) F has a minimal Weierstrass model over R, which is unique up to transformations
(2.1.2.2) with u € R*, r,s,t € R.

(ii) Iford;(A(E)) < 12, then £ is a minimal Weierstrass model.

(iii) If & is a minimal Weierstrass model of E, then the R-submodule R -we C T'(E,Qpg k) (Where we =
dx/(2y + a1z + a3)) does not depend on &.

(iv) If € is any Weierstrass model of E over R, then any change of variables (2.1.2.2) that transforms £ to
a minimal Weierstrass model has u,r,s,t € R.

Proof. See [Si 1], VIL.1.3.

2.2 Reduction of Minimal Weierstrass models

(2.2.1) Lemma-Definition. Let E be an elliptic curve over K; fix a minimal Weierstrass model £ of E
over R. The reduction F := & Qg k of &, i.e. (the projectivization of) the curve

2+ a1zy + asy = 2° + Gox? + auz + ag (@; = a; (mod ) € k)

is a cubic projective curve over k, whose isomorphism class depends only on E. Its discriminant is equal to

A(E) = A(E) (mod ).

(2.2.2) Definition. E has good reduction if ord,(A(£)) =0 (< A(E)#0€k < E is an elliptic
curve over k). E has bad reduction if 7|A(€) (<= F is not smooth over k).

(2.2.3) Example. Assume that char(k) # 2,3. Then

=2t

is (the affine form of) a minimal Weierstrass model £ of E, by 2.1.5(ii); thus E has bad reduction. Passing
to the ramified extension K’ = K (7'), where 7’6 = 7, the base change E' = E ®x K’ of E has a Weierstrass
model & over R’ (= the ring of integers in K”) of the form

y/2:x/3+1 (as’:x/ﬂ’Q,y’:y/W’S),
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hence E’ has good reduction.

(2.2.4) The reduction map. Every point P € E(K) can be represented by a point (a : b : ¢) € E(R) with
homogeneous coordinates a, b, c € R; these coordinates are determined up to a common factor in R* and at
least one of them lies in R*. Taking their reductions modulo 7, we obtain a point (@ : b : ¢) € E(k), which
depends only on P; it will be denoted by red(P). This defines a map

(mod7) =~

red : B(K) <~ £(R) -\ E(k) (2.2.4.1)
which does not depend on the choice of £ (by 2.1.5(i)).

(2.2.5) Let us assume, from now on, that if E is not smooth over k, then its (unique) non-smooth point S is
defined over k. This assumption is automatically satisfied if char(k) # 2,3 or if k is perfect (by 11.1.3.1-2).

(2.2.6) Proposition-Definition. Put

Fom { E, if E has good reduction

E —{S}, if E has bad reduction,
Eo(K) = red” Y (E*™ (k).

Then the reduction map B
red : Ey(K) — E*™(k)

is a homomorphism of abelian groups (with the group operation on the target defined as in I1.1.3.6).

Proof. This follows from the fact that the usual geometric definition of the group law (in terms of intersections
with lines in P?) defines an abelian group structure on £5(R) (where £5™ = £ — {S}). [In fact, this defines
on &% a structure of a commutative group scheme over R, for which the natural maps £ @r K -~ F
and £ @ k —— E™ are isomorphisms of group schemes.]

(2.2.7) Lifting of points - Example: The reduction map (2.2.4.1) need not be surjective, even if R is
complete. For example, if R =Z,, 7 =p, k =F,, let

E: P =13 +p, E:y? =13 P =(0,0) € E(F)).

Then there is no Q € £(Z,) with red(Q) = P. Note that the point P in this example is the non-smooth
point P =S of E.

(2.2.8) Proposition. If R is complete, then the homomorphism
red : Eg(K) — E*™ (k)

is surjective.

Proof. This follows from Hensel’s Lemma (cf. [Si 1], VIL.2.1).

(2.2.9) The group structure on E®™ (k') (for any field extension k’/k) was analyzed in 11.1.3.7-10. We say
that E has split multiplicative reduction, resp. non-split multiplicative reduction, resp. additive
reduction, if F is as in 1.1.3.7, resp. 1.1.3.9, resp. 1.1.3.5.

(2.2.10) Theorem (Kodaira, Néron). The group E(K)/Ey(K) is finite. More precisely, if E has split
multiplicative reduction, then E(K)/Eq(K) is cyclic of order ord,(A(E)) = —ord,(j(E)); in all other cases
it is an abelian group of order < 4.

“Proof”. The finiteness is easy to establish if the residue field k is finite. In general one has to use the theory
of Néron models. See [Si 1], VIL.6.2; [Si 2], IV.9.2.

(2.2.11) Denote the kernel of the reduction map from 2.2.8 by E;(K). Then
Ey(K) ={0} U{(z,y) € E(K)|ordx(z),ordx(y) <0}
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and there is exact sequence (assuming that R is complete)

0 — By(K) — Eo(K)—=LE™ (k) —s 0.

In Sect. 2.4 we shall investigate the torsion subgroup of Ey(K) using a sequence of subgroups
Ey(K) D E1(K) D Es(K) D E3(K)---
analogous to the subgroups

R*D>147R>1+mR>O>1+7°R---

of the multiplicative group of R.
2.3 A digression on formal groups
(2.3.1) Given an elliptic curve E in its generalized Weierstrass form

y: + a1zy + asy = 23 + agx? + asx + ag, (2.3.1.1)

we would like to study its local geometry around the point at infinity O. As in 1.4.2.2, we have ordp(z) = —2,
ordp(y) = —3; thus z = —x/y is a local parameter at O. One can develop = and y into formal power series
in z as follows: rewriting (2.3.1.1) in the new variables

we obtain

w=w(z) = 2>+ (a12 + a22®)w + (a3 + ag2)w? + agw®.

Writing w = 2% + - - - and substituting into (2.3.1.2), we obtain recursively

w=24at+ =2 a2t (@4 an)d =21+ Az A+ --0) € Zay, .-, a)[[2]]

where A; € Z[ay, ..., ag] are some universal polynomials (i.e. we view the coefficients a; as variables). This
yields formal expansions

pr)= 2= LY et
Cw(z) 22z S
N —1 - 1 aq as
y(z) = W)~ AtE T tet (2.3.1.2)
w(z) = _dr (1+a1z+ (a? + a)2® +---)dz
- 2y +ajx +as B ! ! 2
with coefficients in Z[ay, ..., ag] (see [Si 1], IV.1 for more details).

(2.3.2) Similarly, the group law on E can also be written in the variables (z,w). For example, the inverse
P — —P = [-1]P is given in the (z,y)-coordinates by [—1](x,y) = (z,—y — a1x — a3z). Passing to the
(z, w)-coordinates, we obtain

(2)

y(2) + arz(2) + a3

[—1](2) =

As regards the group law itself, note that a linear relation between 1,x,y is equivalent to a linear relation
between 1, z, w; thus we can use the standard geometric description of B (I1.10.1.1.1) also in the (z, w)-plane.

If 21, 25 are independent variables, put P; = (z;,w(z;)) (i = 1,2) and consider the line £/ = P, Py : w =
az + b through the points P;, P,. Expanding both coefficients

=—z4a+--- € Zlay,...,ad[[2]] (2.3.2.1)
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w(zg) —w(z
a=a(z,2) = M, b=0b(z1,22) =w(z1) —a(z1,22)21,
zZ9 — 21
we obtain power series in z1, 2o with coefficients in Z[aq, ..., as]. Substituting w = az + b to (2.3.1.2), we
obtain a cubic equation for z with roots z1, 22, 23. Comparing the coefficients at 22 (as in 1.7.5.7) yields a
power series expansion for the third root zs, hence also for

F(z1,22) = [-1](23) = 21 + 22 — a12122 + - - - € Z[aq, ..., a6][[z1, 22]], (2.3.2.2)

which is the formal group law H in terms of the z-coordinate.
The series F' has the following properties:

F(Zlaz2> = F(227Z1), F(ZI7F(ZQ723)> = F(F(21,22>,Z3), F(z’ [_1]Z) =0,

which correspond to the commutativity, associativity and the inverse for B on E (again, see [Si 1], IV.1 for
more details).

(2.8.3) Definition. A formal group .% (commutative, of dimension one) over a commutative ring A is a
power series F(T1,Ty) € A[[T1,T»]] (“the formal group law of % ”) with the following properties:

() F(T1,To) =T, +To+---.

(i) F(Ty, F(T3,T3)) = F(F(T1,T2), T3).

(iil) F(Th,T2) = F(T,T1) (this follows from (i)—(ii) for “good” rings A).

(2.3.4) Exercise. Given F(T1,Ts) satistfying (i)—(iii), show that F(0,T) = F(T,0) = T and that there is a
unique power series [—1|(T) € A|[[T]] satistying F(T,[—1](T)) = 0.

(2.3.5) Examples: (1) Formal additive group % = Ga: F(T,Ty) =T + Ts.
(2) Formal multiplicative group .% = G,,,: F(T1,T2) = (1+T)(1+Te) —1=T1 + To + T T>.
(3) The construction from 2.3.2 gives a formal group & over Z[ay, ..., ag).

(2.3.6) Definition. Let & be a formal group, with the formal group law F(T1,T5). For an integer n > 1,
put

Mz (T)=F(F(-- (F(T,1),T)--,T) € A[T)], [-n]z(T)=Mn=(-1T), [A=(T)=T.
—times
(2.3.7) Examples: (1) For F = G, [n]#(T) = nT. (2) For F = Gy, [n]z(T)=(1+T)" 1.

(2.3.8) Definition. Let A be a complete local ring with maximal ideal m and % a formal group over A.
For each ¢ > 1, denote by ?(m’) the set m' with the abelian group law x Br y = F(x,y) (note that F(x,y)
is convergent to an element of m', if x,y € m?).

(2.3.9) Examples: (1) G,(m’) = (mf,+). (2) Gp(m') =5 (14mi, x).
2.4 The torsion subgroup of E;(K) via formal groups

In this section we assume that the discrete valuation ring R is complete. Let E, £ and E be as in 2.2, i.e.
E is an elliptic curve over K = Frac(R), £ is a minimal Weierstrass model of E over R and E its reduction
modulo 7.

(2.4.1) Substituting to the universal power series (2.3.1.2) and (2.3.2.1-2) the values of the coefficients
a; € R of £, we obtain power series z(z),y(z) € R[[z]] and a formal group over R, which will still be denoted
by &.
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(2.4.2) Proposition-Definition. For i > 1, put
E;(K)={0}U{(z,y) € E(K)|ord,(z) < —2i, ord,(y) < —3i}

(for i = 1 this definition agrees with that from 2.2.11). The map z — (x(z),y(z)) defines a bijection
7R = E;(K), hence an isomorphism of abelian groups £(n'R) — E;(K) (in particular, E;(K) is a
subgroup of Ey(K)).

Proof. See [Si 1], VIL.2.2 in the case i = 1; the same argument applies for all 7 > 1.

(2.4.3) Lemma. Let.Z be a formal group over R in the sense of 2.3.3 (e.g. Gy, or ). Then:

(i) For eachi > 1, there are canonical isomorphisms of abelian groups Z(r'R)/ (r**1R) = n'R/m**1R
= (k,+).

(ii) Ifn € Z and char(k) t n, then the power series [n|#(T) € R][T]] is invertible, in the sense that there
exists (a unique) power series g(T') € R|[T]] such that [n]#(g(T)) = T. The power series g(T) also satisfies
g([n)#(T) =T.

Proof. (i) For z,y € 7R (j > 1), F(z,y) =z +y (mod 7T R) (where F is the formal group law of .7).
(ii) The assumption on n implies that n € R* is invertible in R. As the power series [n]g (1) begins with
nT + - -, one constructs the coefficients of g(T) = n~1T + - - - by induction (see [Si 1], IV.2.4).

(2.4.4) Corollary. Ifn € Z and char(k) { n, then .Z (7 R), = 0. In particular, Ey(K), = £(xR), =0, ic.
there is no n-torsion in the kernel of the reduction map.

(2.4.5) Lemma. If char(k) =p > 0, then there exist power series f(T),g(T) € R|[[T]] such that
[p]o(T) = pf(T) +g(T?) =pT +---. (2.4.5.1)

Proof. Denote the power series [p|o(T) € R[[T]] by P(T). The translation invariance of the differential
w = w(z) = h(z)dz implies that
Ph(T)AT = po = [plw = h(P(T))P'(T)dT,

hence

h(P(T))P'(T) € pR([T]].
Ash(T) =1+ T +--- (cf. (2.3.1.2)) and P(T) = pT + - - -, we obtain P'(T) € pR][[T]]; lemma follows.

(2.4.6) A toy model: For .7 = CA},,“ the torsion subgroup % (mR)iors is just the group of roots of unity
contained in 1 + wR. If char(k) = p > 0 = char(K), then each element z € .Z#(wR)tors — {0} has order
m=p" (n>1),1e ¢:=1+x is a primitive p"-th root of unity. It follows from

(Vj #0 (modp)) (1-¢7)/(1—¢)€ R, II(lfG>:p

ptj

that the absolute ramification index of R is equal to

e:=ord,(p) = p"fl(p —Dord;(z) = p"il(p -1 <e

(2.4.7) Definition. For Q € £(7R), put ord,(Q) = max{i > 1|Q € E(x'R)} (i.e. ordy(z,y) =i <
it = —ord,(z)/2 = —ord,(y)/3, by 2.4.2).
(2.4.8) Theorem. Assume that char(k) = p > 0, char(K) = 0; denote by e = ord.(p) the absolute

ramification index of R. Let QQ € EA(WR)MTS be a torsion element of exact order m > 1. Then m = p™ with

e

P —1) <e,  ordg(Q) < 1)

47



Proof. Let Q € E(rR). The formula (2.4.5.1) implies that

> min(e + OI‘dﬂ-(Q),p ) Ordﬂ'(Q))

o1 ([p12(Q)) { (2.481)
Ve = e+ ord,(Q), if (p — Dord,(Q) > e.

Assume that @ is torsion, of exact order m > 1. As there is no prime-to-p torsion in (7 R) (by 2.4.4),
we have m = p™, n > 1. Assume first that n = 1. If (p — 1)ord,(Q) > e, then (2.4.8.1) implies that
ord([p|2(Q)) = etord;(Q) < oo, hence [p|(Q) # 0, which is a contradiction. Thus 1 < ord.(Q) < e/(p—1),
as claimed. If n > 1, then the same argument applied to [p"_l]gQ shows that ordﬂ([p”_l]gQ) <e/(p—-1),
hence ord,r([p"]gQ) <ef/(p—1)foralli=0,...,n—1. Applying (2.4.8.1) to all [pl]gQ (i=0,....,n—1)

yields ordﬁ([pi‘*‘l}gQ) > p - ord,([p’] 7Q). The statement of the Theorem then follows by induction.

(2.4.9) Corollary. If e < p — 1, then EA(WR)tOTS = 0, hence the restriction of the reduction map to the

torsion subgroup _
Eo(K)tors — Bo(K)=“%E" (k)

is injective.

3. Elliptic curves over number fields

Throughout this section, K will denote a number field, Ok its ring of integers, My (resp. M If() the set of
all primes (resp. of all finite primes) of K. For each v € M ]f( we denote by O, the localization of Ok at v

and by O, (resp. K, = Frac(O,)) the v-adic completion of O (resp. of K). The (finite) residue field of
O, will be denoted by k(v) and the valuation associated to v by ord,. The basic example is that of K = Q,
when O = Z, v = p is a usual prime, O, consists of all rational numbers with denominators prime to p,

~

k(v) =F,, Oy =Z, and K, = Q,.
3.1 Minimal Weierstrass models

(3.1.1) Let E be an elliptic curve over K. For each v € M If< there is a minimal Weierstrass model of E
over O,, with minimal discriminant A, min € O, — {0}. Is it possible to find a global Weierstrass model £
of F in the (affine) form

v + arzy + asy = 2° + asx? + aux + ag (a; € Ok) (3.1.1.1)

that would satisfy the minimality condition

ord, (A(E)) = ordy(Ay min) (3.1.1.2)

for all v € M If{? Let us investigate this question. Choosing any Weierstrass model £ of E of the form
(3.1.1.1), we have

(Voe ML) ord,(A(E)) = ordy (Ay min) (mod 12), (3.1.1.3)

12

as any change of variables (2.1.2.2) multiplies A by v~ 2. Defining the global minimal discriminant

ideal of E by
Amin = H pzrdv(Avﬂnin)
veM{(
(where p, C Ok is the prime ideal corresponding to v), we can rewrite (3.1.1.3) as

A(E)

Amm = ﬁv

48



where I C Ok is a non-zero ideal.
(3.1.2) If I is not principal, then we cannot achieve (3.1.1.2) by any change of variables (2.1.2.2), hence
there is no minimal Weierstrass model of the form (3.1.1.1). However, one can construct a slightly more
general minimal Weierstrass model as follows. Let S be the (finite) set of primes v € M If( such that our
chosen £ is not minimal at v, i.e.

S = {ve M |ord,(A(E)) > ordy(Aymin)} C {v € ML |ord,(A(E)) > 12}.

Denote by Ok s = Ok[1/S] the ring of S-integers in K. One can then glue together £ @ Ok g with local
minimal Weierstrass models of FE over each O, (v € S) along the common “general fibre” E. What one
obtains is a minimal Weierstrass model £ of E which is not contained in P?QK, but in a slightly more general
version of P2. The point is that the usual construction of P? = P(V) parametrizing lines (or hyperplanes)
in a three-dimensional “vector space” V works well over a field or a local ring, but not over a more general
base, when one has to consider “families of vector spaces”, i.e. vector bundles. In concrete terms, £ C P(V)
will be contained in the “projective space” over O associated to a suitable projective Og-module V', which
will not be free.

(3.1.3) If I = (u) is principal, then for each v € S there is a change of variables

2 3 2
T = UyTy + Ty, Y = UpYy + U, SyTy + Ty

producing a minimal Weierstrass model over O,,, where 7, s,,t,, 4, € O, are v-integral (by 2.1.5(iv)) and
ord,(u,) = ord,(u). Choosing a triple (r,s,t) € O3 that is v-adically close to (ry, sy, t,) € O3 for each
v € S, the transformation

r=u’z' +r y=uy +ulsa’ +t
will produce the desired global minimal Weierstrass model of E over Ok in the form (3.1.1.1) (see [Si 1],
VIII.8.2 for more details).
(3.1.4) In particular, if Ok is a principal ideal domain (e.g. if K = Q), every elliptic curve over K admits
a global minimal Weierstrass model in the form (3.1.1.1).

(3.1.5) Definition. Let E be an elliptic curve over K and v € M}; We define the reduction E, of E
modulo v to be the reduction modulo v of any minimal Weierstrass model &, of E over O,,. We say that I/
has good reduction at v if F, is an elliptic curve over k(v) (<= ord,(A(&,)) =0 <= ord,(Anin) =0).

3.2 The torsion subgroup of F(K)

(3.2.1). Let E be an elliptic curve over K and v € le( a prime such that E has good reduction at v and

ord, (p) < p—1 (wherep = char(k(v))). Then the restriction of the reduction map red, : E(K,) — E, (k(v))
to the torsion subgroup of E(K)

red, 7=

E(K)tors = E(Ky)tors — E(K,)—>E,(k(v))
is injective.
Proof. By 2.4.9, already the restriction of red, to E(K,)irs is injective (note that Fo(K,) = E(K,), as we
are assuming that E has good reduction at v).
(3.2.2) Corollary. The torsion subgroup E(K)iers is finite and effectively computable.

(3.2.3) Proposition. Let D € Z be a cube-free integer D > 1, and E the elliptic curve over K = Q given
by E: X3+ Y3 = DZ3. Then

7/3Z, D=1
E(Q)iors = { Z/2Z, D=2
0, D> 2.

49



Proof. E has good reduction at each prime p 1 3D. Put

Pp = {p prime |p =5 (mod6),p{ D}.

For each p € Pp, the map z +— 2 is a bijection F, — F,, hence the number of points in Ep(Fp) is the same

as in Cp(F,), where Cp : X +Y = DZ. As Cp = P! (over F,), we have #E,(F,) = #P'(F,) = p+ 1.
It follows from 3.2.1 that
#E(Q)tors | ng{p +1 |p € PD} =6

(where the last equality is a consequence of Dirichlet’s theorem on primes in arithmetic progressions). It
remains to investigate the torsion points of order 2 and 3. As

E(C)y — {0} ={(1:1:p'(2/D)*3)} (p=e¥/3 0=(1:-1:0)),

it follows that

Z/27Z, D=2
s
0, D #2.
Similarly,
EC);={(X:Y:Z)e E(C)|XYZ =0},
hence

7/3Z, D=1
E(Q)s =

0, D#1.
Proposition follows.

(3.2.4) Exercise. Let E : y*> = 23 — Dz, where D € Z — {0} is an integer not divisible by the fourth power
of any prime. Show that

7/2Z & 727, D=n%neZ
E(Q)tars == Z/4Z, D=—-4
Z/2Z, otherwise.

(3.2.5) Proposition. Let E be an elliptic curve over a number field K and £ any Welerstrass model of E
over Ok (asin (3.1.1.1)). If P = (z,y) € E(K)iors Is a torsion point of exact order m > 1, then

(i) If m # p™ is not a prime power, then x,y € Ok.

(ii) If m = p™ is a prime power, then

(Vv € ML) ord,(x) > —2r,, ord,(y) > —3ry,
where 1, > 0 is the largest integer satisfying p"~1(p — 1)r, < ord,(p) (p = char(k(v))).
Proof. Fix v and work with &, := € Qo @v over @U. If z,y € Ok, then there is nothing to prove. If not,
then we can assume that &, is minimal (if we pass to a minimal Weierstrass model via the transformation
(2.1.2.2), the values of ord,(z), ord,(y) decrease, by 2.1.5(iv)). If ord,(z) < 0 or ord,(y) < 0, then (z,y) €
Ey(K,) = &y(m,0,), and we can apply the local result 2.4.8.
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(3.2.6) Theorem (Lutz, Nagell). Let E be an elliptic curve over Q in the Weierstrass form
y* =2 + Az + B, (A,BeZ).

Assume that P = (z,y) € E(Q)tors — {O}. Then
(i) z,y €Z.
(ii) Either y =0 (i.e. [2]P = O), or y?|4A3 + 27B2.

Proof. (i) Let m > 1 be the exact order of P. If m = 2, then y = 0, which implies that x € Z (as A, B € Z).
If m > 2, then the integers r, in 3.2.5 are equal to r, = 0 for all primes p, hence z,y € Z.

(ii) We can assume y # 0. Then [2]P = (z2,y2) € E(Q)tors — {O}, hence x5 € Z. Explicit formulas for xo
then give

4A3 +27B% = y*(4(322 + 4A)xy — (32° — 5Ax — 27B)).
(3.2.7) Exercise. Describe explicitly E(Q)iors (1.e. give the coordinates of all Q-rational torsion points)
for the following elliptic curves E = E;:

By:y? =23 +1, By :y? =23 + 4x, Es3:9y? =13 — 4a, Ey:y? —y=2a%— 2%

(3.2.8) The following general results on E(K)tors are much more difficult.
(3.2.9) Theorem (Mazur, 1977). Let E be an elliptic curve over Q. Then

Z/mZ, 1<m<10 or m=12

E(Q)tors ;)
Z/2Z ®Z/2mZ, 1<m<A4.

(3.2.10) Theorem. For each d > 1 there is a constant C(d) such that, for every number field K of degree
[K : Q] =d and every elliptic curve E over K, #E(K)iors < C(d).

(3.2.11) This result was proved in the early 1990’s for d = 2,...,8 by Kamieny-Mazur; their method was
extended by Abramovich to d = 9,...,14. The general result is due to Merel (1994); subsequent work by
Oesterlé and Parent yielded explicit upper bounds for C(d).

3.3 The descent method

(3.3.1) The Congruent Number Problem. A congruent number is an integer D > 1 which occurs as
the area of a right triangle with rational sides, i.e. such that there exist a,b, c € QY satisfying a? +b? =2
and D = ab/2. The parametrization (0.4.1.0.0) of the Pythagorean triples gives

2 -1 b 2t

a
3t t>1 - = —
(Fteq, ) cT P

c 2+1

24+1\°
= (FteqQ,t>1) D( i > =13t

c

(3.3.1.1)

This implies (possibly after replacing ¢t by —1/t - exercise!) that D is a congruent number if and only if the

elliptic curve Ep : Ds? = t3 —t has a rational point (¢,s) € Ep(Q) with s # 0. Note that the change of

variables D?s = s, Dt = t' transforms Ep into the curve 5’2 = ¢’ — D?t'. The same argument as in the
proof of 3.2.3 then shows (with a little help from 1.2.3(2a)) that

{O} U {(O’ O)a (ila 0)} = ED(Q)Q = ED(Q)torsa

hence
D is a congruent number <= Ep(Q) # Ep(Q)iors-

o1



(3.3.2) Theorem (Fermat). D =1 is not a congruent number.

Proof. Assume that 0 < a,b,c € Q satisfy a® + b? = 2, ab/2 = 1. As in (3.3.1.1), these values give rise to
a rational point (¢,s) € E1(Q) — {O}, with ¢,s > 0. Writing ¢ = u/v, where u > v > 1 € Z are relatively
prime integers, we have w := sv? € Z, hence

w? = wv(u+v)(u —v). (3.3.2.1)

Replacing (u, v, w) by ((u +v)/2, (u —v)/2,w/2) if both u,v are odd, we can assume that u # v (mod 2),
which implies that the four numbers u,v,u + v,u — v are pairwise relatively prime. The equation (3.3.2.1)
then implies that

uw= L2 v=M?, utv= X2 u—v=Y?

for positive integers L, M, X, Y. It follows from

X+Y 2+ X-YV_X24y? o, L(X4Y\(X-V\_X-¥? o (MY
2 2 o2 2 2 2 8 4\ 2

that

X+Y b X-Y 2L
= = — Cl = —
M y 1 M ) 1 M
is another triple of rational numbers satisfying a? + b? = ¢?, a1b;/2 = 1. Applying the parametrization
(3.3.1.1) once again, we obtain another rational point (t1,s1) = (ui/v1,w;/v?) € E1(Q), hence another
solution of (3.3.2.1) in positive integers uq, v, w;. More precisely, we have

ay

X—l—Y_al_t%—l X—Y_b1 2t1

2L o 241 2L o 241

for t1 = uy /v € Q, where u; > v; > 1 € Z are relatively prime integers. It follows that

t:

2
v (L) _ X2L2 _ B4R (i ed)? (33.2.2)

M 2Y2 43— 4t dugv (v —0?)

As ged(ugvy,u? +v?) = 1, we have v > ujv; > v > v;. Continuing this process we obtain an infinite
decreasing sequence of positive integers v > v; > vg > - -+ (“the infinite descent”), which is impossible.

(3.3.3) Why does this argument work? The point is that the formula (3.3.2.2), namely

_ (H+1)?
At — 4ty

is exactly the expression in the duplication formula on F; (cf. (1.7.5.8.2) in the analytic context); thus we
have, for a suitable choice of the sign,

[2](t1, £s1) = (¢, 5).

In other words, the original point P = (¢, s) is equal to [2]P; for some P, € E(Q); repeating this procedure,
we obtain P = [2|P, = [4]P> = [8]P; = - - -, which will contradict the fact that multiplication by 2 “increases
the size” of (non-torsion) points in E(Q).

The fact that we were able to “divide” P = (t, s) by 2 had something to do with the fact the factors in
(3.3.2.1) were relatively prime to each other, hence each of them — not just their product — was a square.

These two observations, i.e. (I) the possibility of dividing rational points by 2, and (II) the fact that
multiplication by 2 increases the “size” of rational points [in fact, 2 can be replaced by any integer n > 1]
are at the basis of the proof of the following fundamental result.
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(3.3.4) Theorem (“Mordell-Weil Theorem”). Let E be an elliptic curve over a number field K. Then
E(K) is finitely generated, i.e. E(K) — E(K)iors x Z", with E(K )tops finite and 0 < r < co. [As we have
seen in 3.2, the torsion subgroup E(K)i.s can be determined quite easily. Effective determination of the
“rank” r = r(E/K) is a major open problem.]

(3.3.5) Proposition. D = 2 is not a congruent number.
Proof. As in the proof of 3.3.2, we have to show that the diophantine equation

2 = uv(u + U)(u — U) (3.3.5.1)

2w

has no integral solution w,v,w € Z with u,v,w > 0 and ged(u,v) = 1. There are three possible cases:

(a) 21 uv; (d) 2|u, 2t v; (¢) 21 u, 2|v.

As in 3.3.2, the case (a) gives rise to another solution ((u + v)/2, (u — v)/2,w/2), which satisfies (b) or (c).
In the case (b), the four numbers u, v, u + v,u — v are pairwise relatively prime and u is even, hence

u=2L2 v=M? u4v= X2, u—v=Y?
for positive integers L, M, X, Y. As 2t XY, we have

utv=u—v=1 (mod4),

which contradicts the fact that 2 { v.
In the case (c), we obtain

u=L2? v=2M?, u4v= X2, u—v=Y?

(5 (559 -5-2(3)

a=(X+Y)/M, b =(X-Y)M ¢ =2L/M

for positive integers L, M, X,Y. The formulas

X+Y\? /X-Y\?
(57) +(F5) =emr

then yields another right triangle with rational sides

N =

and area aib;/2 = 2, which gives rise to a new integral solution (u1,v;,w;) of (3.3.5.1) satisfying w; < w,
leading to a contradiction.

(3.3.6) Analysis of the 2-descent. Let us investigate the division of points by 2 in more detail. Assume
that L is a field of characteristic char(L) # 2 and E an elliptic curve over L such that E(L); = E(L)2 (i.e.
all 2-torsion points are defined over L). This means that E can be given by a Weierstrass equation

By’ =g(z) = (z —e1)(z —e2)(a — e3),

where g(x) has three distinct roots ey, e2,e3 € L contained in L. Assume that (z,y) € E(L) — E(L)a.
Following the same method as in the proof of 3.3.2, we shall write each of the factors z —e; = deJQ- e L*
as a product of its “square-free part” d; and a square of z; € L*. If the square-free parts d; are fixed (of
course, dydads = (y/z12023)? € L*? has to be a square in L), elimination of the variable z gives equations

d12’% — dgzg = €2 — €1

dgz’% - d3232) — €3 — €9 (3361)

dgzg - dlzf — €1 — €3

for the values z; € L*. In other words, a point (z,y) € E(L) — {O} satisfying y # 0 defines L-rational
points (£z1, £29,+23) on the curve (3.3.6.1), for suitable d; € L* satisfying didads € L*?. Conversely,
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any L-rational point (21,22, 23) on (3.3.6.1) gives rise to L-rational points (ey + d127, +(d1dad3)/? 2, 2023) €
E(L)-{0}.

More precisely, one needs to work also with points at infinity; passing to the homogeneous coordinates
(Zo : Zy : Zy : Z3) in P3| consider for each triple d = (di, da, d3) € (L*)®3 the projectivization Cy of (3.3.6.1),
given by

d1212 — dQZQQ = (62 — el)Zg
dyZ3 — d3 Z3 = (e3 — €2) Z (3.3.6.2)
ng?? - d1212 = (61 — 63)202

(where z; = Z;/Zo, j = 1,2,3). Note that if we replace each d; by d; = djc? (for ¢; € L*), then the curve

Ca will be isomorphic to Cy (over L); one has to replace Z; by ¢;Z; (j = 1,2,3).
Put

G(L) = Ker (product : (L*/L**)®% — L*/L*?);

this is a natural space of parameters for the triples d = (di,d2,ds). We have just seen that the curve Cy
depends (up to isomorphism defined over L) only on the image of d in G(L).

If L is a number field, then, as we shall see in 3.3.10 below, congruence considerations severely restrict
the possible values of d for which the curve C; admits an L-rational point.

(8.3.7) Proposition. Let E :y?> = (v —e1)(z — e2)(x — e3) = g(x) be an elliptic curve over a field L, with
e1,es,e3 € L. For each i = 1,2,3, define a map f; : E(L) — L* by

fz(O) = 17 fz ((‘Tay)) =T =€ (lf z 7£ ei)v fz ((6170)) = (ejiei)(ekfei) (lf {27]7]{} = {17273})

Then: (i) The map f = (f1, f2, f3) (mod (L*?)®3) : E(L) — G(L) is a homomorphism of abelian groups.
(ii) The kernel of f is equal to Ker(f) = 2E(L) = [2]E(L).

(iii) The image of f consists of those d = (d1,da,ds) € G(L) for which Cyq(L) # 0, i.e. for which the curve
Cq4 has an L-rational point.

Proof. (i) The equation of the curve implies that the image of the map f is indeed contained in G(L). By
definition, f;(BP) = fi(P) = fi;(P)~! (mod L*?); thus it is enough to check that
PEQER=0 = [i(P)fi(Q/(R)¢cL?

in the case when {P,@Q, R} C E(L) (possibly with multiplicities) is the intersection of E with a non-vertical
line y = {(z) = ax +b.
Assume first that (e;,0) # P, Q, R. Then

g(z) = L(2)* = (z — e1)(z — e2)(w — e3) — L(2)* = (z — 2(P))(z — 2(Q))(z — z(R));

substituting = = e;, we obtain f;(P)fi(Q)fi(R) = £(e;)* € L*2.
If R = (e;,0), then (x) = c¢(x — e;) with ¢ € L, hence

L) (@) (z—x(P))(z - x(Q)) _ g(z) — ()
fi((e5,0)) fil(ex, 0)) (z—e)(z—er) |-, 9(x) o, (z —ej) (@ —en) |,

proving (i). As regards (ii), we know from 1.7.5.9 (or from I1.1.2.1) that

fi(2[P]) = hi(P)? (3.3.7.1)

for some rational function on E (possibly defined over an extension of L). However, an explicit calculation
shows that (3.3.7.1) holds for
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22 —2e,x — (2 +ejer) (v —ei)(w—ej)+(ej—e)(v—er) 1 y T — ey
hi z i J 2 7 7 7 - ) ;
() 2y 2y 2 (a:—ek (e =€) >

(where {i,7,k} = {1,2,3}). As h; is defined over L, it follows automatically from (i) and (3.3.7.1) that

2]E(L) C Ker(f).

In order to prove the converse, assume that @ = (A4, B) € Ker(f) C E(L). If B # 0, then A —e; = h? and
B = hihohs for some hj € L* (j = 1,2,3). We would like to find P = (z,y) € E(L) satisfying h;(P) = h;
(j=1,2,3). Put

C = hiha + hihs + hohs

Yy = (hl + hg)(hl + h3)(h2 + hg) € L.

Then y? = (x —e1)(z — e2)(x — e3), hence P := (z,y) € E(L), and

hi+hy = —2 oy = S

i+ j_I76k7 i j_hi+hj_(ej_el) y )
showing that h; = h;(P) for all j = 1,2,3, hence (A, B) = (A, hihahs) = [2](x, £y) for a suitable choice of
the sign. This proves (ii) (at least if B # 0; we leave the case @ = (e;,0) to the reader). Finally, (iii) follows
from the definitions (observing that Cy has an L-rational point with Zy = 0 (i.e. “at infinity”) if and only
if d=(1,1,1) € G(L) is the neutral element of G(L)).

(3.3.8) Why f;? The rational functions f; € R(E)* are characterized (up to a scalar) by their divisors

div(fi) = 2((e:, 0)) — 2(0), [2](ei, 0) = O.

This gives a hint how to generalize 3.3.7: if n > 1 is prime to the characteristic of L and E(L),, = E(L)y,
choose a basis T1,T5 of E(L), = (Z/nZ) - T, + (Z/nZ) - T». For each i = 1,2 there exist rational functions
fi,hi € R(E)* (unique up to scalar multiples) satisfying

div(f;) = n(T;) =n(0),  fi([n]P) = hi(P)".
Defining suitably the values of f; at T; and O, one obtains a map

f=(f1,f2) 1 E(L) — (L*/L*™)%2,

which turns out to be a homomorphism with kernel Ker(f) = [n]E(L). We leave the details as an exercise
to the reader (who will have to rediscover the Weil pairing in the process)!

(3.3.9) Theorem (“Weak Mordell-Weil theorem”). Let E : y?> = (z—e1)(z —e2)(z —e3) be an elliptic
curve over a number field K, with eq,es,e3 € K. Then E(K)/2E(K) is finite.

Proof. We are going to apply 3.3.6 for L = K and all the completions L = K, of K (v € Mk). For each v
the inclusion K C K, induces a commutative diagram

~

f:E(K)/2E(K) — {d e G(K)|Cq(K) # 0}

| [1ee.

~

fo: E(Kv)/zE(Kv) I {dv € G(Kv) ‘ Ca, (Kv) # @}
We define the Selmer group for the 2-descent on E (over K) by

S(E/K,2) ={d e G(K)|(Vv e Mg) loc,(d) € Im(f,)} ={d e G(K)|(Vwve Mg) Cq(K,) # 0}.
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What does this mean? The isomorphism f is not particularly useful, as we do not know how to decide,
in general, whether or not a given curve Cy admits a K-rational point. Replacing F(K)/2E(K) by the
Selmer group simply means that, instead of testing solvability of the equations (3.3.6.2) in Z; € Ok, we test
solvability of the corresponding congruences modulo all ideals of O.

By definition, E(K)/2E(K) C S(E/K,?2), so it is enough to prove the finiteness of S(E/K,2). Put

S={veML|(Vi<j) ord,(e;—e;)#0},
K(S,Z):{CEK*/K*2|(V06M{<—5) ord,(c) =0 (mod 2)}.

(3.3.10) Lemma. Ifd = (di,ds,ds) € S(E/K,2), then d; € K(S,2) (j =1,2,3).

Proof. Let v € M}; — S; assume that there exists P € Cy(K,). If P € {Zy = 0} lies at infinity, then
dj € K:? for all j = 1,2,3, hence ord,(d;) = 0 (mod2). So we can assume that P = (21, 22,23) € Cq(K,)
is not at infinity, with its affine coordinates z; satisfying 3.3.6.1. By assumption, ord,(e; — e;) = 0 for all
i < j. Put nj = ord,(d;27) = ord,(d;) (mod2); then n; +ny +n3 = 0 (mod 2), and we must show that all
n; are even. If n; < 0 for some 4, then n; = ng = ng, hence n; = 0 (mod 2) for all i. If n; > 0 for some i,
then n; = ng = 0 for the remaining two, hence n; = 0 (mod 2). Lemma is proved.

(3.3.11) Corollary. The map (di,ds,ds) — (dy,ds) induces an injective homomorphism S(E/K,2) —
K(S,2)® K(S,2).

End of Proof of Theorem 38.3.9. In view of 3.3.11, it is enough to show:

(3.3.12) Lemma. For every finite subset S C le(, K(S,2) is finite.

Proof. Denote by Ok g = O[1/5] the ring of S-integers in K and by Cl(Of g) its group of classes of ideals.
Then the homomorphism

K(S,2) — Cl(Ok,s), ¢ (mod K*?) Z (3ordy(c)) - v
vgS

sits in an exact sequence

0— Ok.s/0ks — K(S,2) — Cl(Oks).

Dirichlet’s unit theorem implies that Oj ¢ is a finitely generated abelian group, hence Oj ¢ JO%2 % s is finite.
The group Cl(Ok,s) is finite, being a quotient of Cl(Ok). Lemma follows.

(3.3.13) Note that the proof of 3.3.9 gives an explicit upper bound for the number of generators of
E(K)/2E(K) (see [Si 1], X.1 for an example of explicit calculations). In fact, one can effectively com-
pute the Selmer group S(F/K,2) (not only in theory, but also in practice).

(3.3.14) Exercise. Let E be an elliptic curve over a field L, L' /L a finite Galois extension and n > 1.
Then the group Ker(E(L)/nE(L) — E(L')/nE(L")) is finite.

(3.3.15) Corollary. Let E be an elliptic curve over a number field K. Then E(K)/2E(K) is finite.
(3.3.16) Exercise ([Ca 1], [Se]). Let L be a field of characteristic char(L) # 3 containing a primitive
cubic root of unity p (i.e. p® =1 # p). For A € L*, consider the elliptic curve E5 : X3 + Y3 = AZ3 (with
O=(1:-1:0)).

(i) Show that the map

(1) (w+y pr + p°y p2w+py>

’ p—p* p—p* p—p?
(where x = X/Z,y =Y /Z) induces an injective homomorphism of groups
f:EBa(L)/(p—p*)Ba(L) — (L* /L)
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(ii) The image of f consists of those triples (a,b,c) with abc = A € L*/L*® for which the projective curve
aX3 +bY3 + ¢Z% =0 has a L-rational point.

(iii) If L = K is a number field, give an upper bound for Im(f) in the spirit of 3.3.11.

(iv) Show that E1(Q(v=3))=Z/3Z & Z/3Z.

(3.3.17) Exercise. Let L be a field of characteristic char(L) # 2 and
E:y? =234 az? +bx +c, Ep:Dy* =2 +az” +br +c

elliptic curves (with a,b,c,D € L). If D ¢ L*? is not a square in L, show that there is a natural exact

B 0 — B(L) — BE(L(VD)) — Ep(L) — S — 0,

where 2-S = 0.

(3.3.18) Exercise. Let L be a field of characteristic char(L) # 3 containing a primitive cubic root of unity.
For A, D € L*, consider the elliptic curves

E:X34Y3=AZ3, Ep:X34+Y3=ADZ3, Ep:: X3 +Y3 = AD?Z3.

If D ¢ L*® is not a cube in L, relate the groups E(L), Ep(L), Ep>(L) and E(L(V/D)).

(3.3.19) Exercise. If D =3 (mod 8) is a prime number, show that D is not a conguent number and that,
in the notation of 3.3.1, S(Ep/Q,2) = Ep(Q)tors/2Ep(Q)tors — (Z/27Z)%.

(3.3.20) Higher descent. Let E be an elliptic curve over a number field K and n > 1 an integer. It is
possible to define an auxilliary family of smooth projective curves C, over K that generalizes the family Cy
from (3.3.6.2). The parameter « is contained in a certain abelian group generalizing G(K) from 3.3.6 and
there is a natural isomorphism

E(K)/nE(K) = {a|Ca(K) # 0}.

The Selmer group for the n-descent is defined in the same way as for n = 2:

S(E/K,n) — {a| (Vv € Mg) Cu(K,) # 0}.

S(E/K,n) is finite abelian group of exponent n; its number of generators can be bounded above in terms of
the unit group and the ideal class group of the field generated over K by the coordinates of all points from
E(K),, (in analogy to 3.3.10-12). The Selmer group S(E/K,n) is effectively computable, at least in theory,
and for small values of n even in practice.

In order to determine the rank r of E(K), one would need to know more about the difference between
the Selmer group and E(K)/nE(K). The quotient group S(E/K,n)/(E(K)/nE(K)) is equal to HI(E/K),,
the group of elements of order n in the so-called Tate-Safarevi¢ group of E. Unfortunately, this group is
very difficult to control, although III(E/K) is conjectured to be always finite.

3.4 Heights

Roughly speaking, the height measures the size of a rational point on an elliptic curve by counting the
number of digits necessary to write down the coordinates of the point (or perhaps just its z-coordinate).

If one makes a numerical experiments and calculates the coordinates of the multiples [n]P of a (non-
torsion) rational point P, a parabolic shape appears: the number of digits necessary to write [n]P grows
quadratically with n. This quadratic behaviour is the second ingredient used in the proof of the Mordell-Weil
Theorem.

(3.4.1) Heights on a projective space (over Q). Consider the n-dimensional projective space Pg
over Q with a fixed homogeneous coordinate system. Given a rational point x € P™(Q), we can write

x = (xo:-:xp), with z; € Z and ged(xo,...,z,) = 1. This determines the values of the homogeneous
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coordinates x; up to a common factor in {£1}. One defines the height of = (in fact, two heights: the
“logarithmic height” h will be more useful) by

H(z) = max(feol, ..., [z]) > 1
() = log(H()) > 0.

In particular, a rational number x = a/b (for a,b € Z, gcd(a, b) = 1) is naturally a point of P1(Q); its height
will then be equal to

h (%) = log(max(lal, [b]))-

(3.4.2) Heights on a projective space (over Q). If one works over a number field, one needs to use
the normalized valuations on K, which are defined as follows (for v € M):
& { (o7, ve M
x|y =
] R, vfoo,

where Nv = #Ek(v). The normalized valuations satisfy the product formula

(Vz € K*) IT lzle=1.

vEMEK
For x € P"(K), we choose any homogeneous coordinates = (x¢ : --- : &) of z (x; € K) and put
[T max(lzollo, .-, llzall) > 1,

vEMEK

which is a finite product, independent of the choice of the homogeneous coordinates (thanks to the product
formula). The quantities

H(z) = Hy ()", h(z) =log(H(x)) > 0
are then independent on the number field K; they define a function
h:P"(Q) — Rsxo,

which depends only on the fixed coordinate system in P™ (and which coincides on P"(Q) with the height
defined in 3.4.1).

(3.4.3) Proposition-Definition. (i) Two real valued functions f, f' : S — R on a set S are equivalent
(notation: f ~ f') if the function |f(z) — f'(x)| is bounded on S.
(ii) Ifh' : P™(Q) — Ry is the height defined by another system of homogeneous coordinates, then h' ~ h.

Proof (Sketch). The change of coordinates is given by a matrix g € GL,,+1(K); for every v € Mff(,
max(|| Y gijujlls) < (maxlgi; o) max [l = Cu(g) max||z; .,

where Cy(g) = 1 for all but finitely many v; similar bounds exist for v|oo (see [Si 1], VIIL.5.8 for more
details).

(3.4.4) Proposition. For every C, D > 0, the set
{z e P"(Q)|h(z) < C, [k(z) : Q] < D}
is finite (where k(x) denotes the field of definition of x).

Proof. Tt is enough to consider the points x of a fixed degree [k(z) : Q] = d. If d = 1, then the statement
follows from the definition of the height given in 3.4.1. The general case can be reduced to the case d =1 as
follows: consider the map
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f{z e P"(Q)|[k(x): Q] = d} — {y € PY(Q)}

defined by sending x = (g : -+ : @) to the coefficients y = (yo : - - - : yn) of the norm form
Ni@yq(@oTo + -+ +2,T) = ZyaTa
(where « is a multi-index). The map f has finite fibres (more precisely, #f~!(y) < d for each y) and

h(f(x)) < dh(z) + ¢(n, d),
where ¢(n, d) is a constant depending only on n,d (see [Si 1], VIIL.5.11).
(3.4.5) Heights on elliptic curves. Let E : y? = 2° + Az + B be an elliptic curve over a number field
K. Then the z-coordinate defines a morphism x : E — PL of degree 2. We fix a coordinate system on P!
and define
hy: E(K) — Rxo
P — h(z(P)).
This function is even, i.e. satisfies h,(BP) = h,(P).

(3.4.6) Theorem (Quadraticity of the height). The function h, is almost quadratic in the sense
that the function

Cube(hy) : (E x E x E)(K) — R
(PanR) = hx(PEHQER) - hac(PHa Q) - hx(PER) - hT(QEER) + hx(P) + hﬂc(Q) + hﬂc(R)

is bounded, i.e. Cube(h,) ~ 0.

(3.4.7) In the lectures, Theorem 3.4.6 was related to the “Theorem of the cube”. An elementary proof can
be found in [Si 1], VIIL6.2 (+ 9.3).

(3.4.8) Corollary. (i) (Tate) For each point P € E(K), the limit

lim
N —o0

DN | =

exists and does not depend on the choice of m > 2 (E is the canonical height = the Néron-Tate height).
(ii) h~ Lh,, h(BP)=h(P).

(ili) Cube(h) =0, ie. h is quadratic.

(iv) (P,Q) := 3(h(PBQ) —h(P) — h(Q)) is a bilinear symmetric form

(,):E(K)x BE(K) — R

satisfying (P, P) > 0 for all P € E(K).

(v) A point P € E(K) satisfies (P, P) = 0 if and only if P € E(K)tors-
Proof . This is an easy consequence of 3.4.6; see [Si 1], VIIL.9.1-3 for more details.

(3.4.9) Corollary (Weak properties of the height). (i) For every Py € E(K) there is a constant
Cy = C1(E, K, Py) such that

(VP € E(K)) h(PHBPy) < 2h,(P)+Ch.
(ii) There is a constant Cy = C2(E, K) such that
(VP € B(K)) hu([2P) > 4h,(P) - Cs.
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(iii) For every C' > 0, the set {P € E(K)|h,(P) < C} is finite.

(3.4.10) What really matters in 3.4.9 is the fact that 4 > 2 (and the finiteness result 3.4.4, which implies
(iii)). For K = Q, the properties (i), (ii) can be established by an explicit calculation, without any elaborate
machinery ([Si 1], VIIL.4.2).

(3.4.11) Proof of the Mordell-Weil Theorem. Let K be a number field and E : y? = 2% + Az + B
an elliptic curve over K. We want to prove that E(K) is finitely generated. Extending K, we can assume
that the roots of the cubic polynomial 23 + Az + B are all contained in K; Theorem 3.3.9 then implies
that E(K)/2E(K) is finite (in fact, it was not necessary to extend K; cf. 3.3.14-15). This finiteness result,
combined with 3.4.9(i)—(iii), is all one needs to prove that F(K) is finitely generated:

Fix representatives Q1, ..., Q. € E(K) of all classes in F(K)/2E(K). For every P € E(K) there exists
a sequence P; € E(K) of K-rational points obtained by “division by 2 with remainder”:

P = Po = [2]P1 EE Qiu Pl = [2]P2 E Qizv P2 = [Q]Pg Eﬂ Qis ete.
It follows that, for each j > 1,
ho([2]P;) +Co  (Pjm1BQi;) +Co _ 2hy(Pj_1)+Ci+Co 1 Ci1+ Cy

ha(P;) < - < = (P ,
(J)— 4 4 — 4 9 (]1)+ 4

where C; = max C1(Q;). By induction, we obtain

1 1 1 C1 + Oy 1 Ci + Oy
-(P;) < —h,(P 1+—-—+--- - _ — h, (P —_—
he(P) < g halP)+ (14 4 mr ) SE2 < )+ g
This implies that, for each P € E(K), there exists j such that
Ci + Oy

which proves that E(K) is generated by the finite set

{Q1,...,Qm}U{R € E(K)|hy(R) <1+ (C1 + Cq)/2}.

Theorem 3.3.4 is proved.
3.5 The Conjecture of the Birch and Swinnerton-Dyer

None of the existing proofs of the Mordell-Weil theorem are effective; they yield an upper bound on the rank
r =r(E/K) of the group E(K) = E(K)irs X Z", but not the true value of r nor a bound on the heights
of a set of generators of F(K).

(3.5.1) Numerical experiments involving a large number of elliptic curves over Q lead Birch and Swinnerton-
Dyer [B-SD] to conjecture that the rank r = r(E/K) can be read off from the asymptotic of the product

H #E,(k(v)) ~ c(logz)". (3.5.1.1)

Nuv
Nv<z

At least formally, the asymptotic behaviour of the L..H.S. can be reformulated in terms of the L-function of
E (over K), which is defined as the infinite product over all finite primes of K
s -1
L(E/K,s) = [[ Lo(B/K,s) = [ [(1 = aw(Nv)=*)(1 = B, (Nv)™)] ", (3.5.1.2)

v

where
Bo = Q, #Ev(k(v)) =(1—a)(1=5)
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if £ has good reduction at v, resp.

0, if £ has additive reduction at v
By =0, a, =< 1, if E has split multiplicative reduction at v
-1, if ' has non-split multiplicative reduction at v.
Hasse’s Theorem 1.3.2 tells us that |o,| = |8,] = (Nv)'/2 for all primes of good reduction, which implies

that the infinite product (3.5.1.2) is uniformly convergent and defines a holomorphic function in the region
Re(s) > 3/2. The L-function L(E/K, s) conjecturally admits holomorphic continuation to C and a functional
equation with respect to the change of variables s «—— 2 — s. As

L #E (k)
Nv

for all v, the asymptotics (3.5.1.1) can be formally replaced by

L,(E/K,1)

L(B/K,s) ~ C(s - 1)" (s — 1),

i.e. by a conjectural equality between the analytic rank of E over K and the rank r(F/K):

(BSD) ran(E/K) = ordy-1 L(E/K, s) = r(E/K).

This is a weak version of the Conjecture of Birch and Swinnerton-Dyer. The strong version also predicts the
value of the constant C', which involves, among others, the order of the Tate-Safarevi¢ group of E. In the
words of Birch and Swinnerton-Dyer, the conjecture relates the behaviour of the L-function L(E/K, s) at a
point at which it is not known to be defined to the order of a group not known to be finite.

(3.5.2) What is known in the direction of this conjecture? For simplicity, we confine ourselves to elliptic
curves defined over K = Q.

(1) If E has complex multiplication, then there is an explicit formula for L(E/Q,s) (proved by Deuring),
which implies the analytic continuation and functional equation. For example, it follows from Eisen-
stein’s result 1.9.4.6 that the L-function of the curve E — {O} : v? = u® — u (which is related to the
congruent number problem for D = 1 treated in 3.3.2) is given by the formula from 1.4.7(3):

LEp/Qs) =[Ja-mlal ™) = 3

™ a=1 (mod 2+42%)

A similar explicit formula holds for all curves Ep : v = u® — Du (cf. 1.2.3(2b)). In fact, it was these curves
that served as guinea pigs for testing the conjecture (see [B-SD]). For curves Ep2, which are related to the
general congruent number problem, an explicit formula for L(Epz/Q, 1) is given in [Tu].

(2) If E has complex multiplication and L(E/Q,1) # 0, then E(Q) is finite (Coates-Wiles [Co-WiJ).

(3) In general, any elliptic curve over Q is modular, thanks to the pioneering work of Wiles, Taylor-Wiles
(and their followers [BCDT]); this again implies the analytic continuation and functional equation for
L(E/Q,s).

(4) Ifre(E/Q) <1, then the conjecture (BSD) holds and the group III(E/Q) is finite; in fact, the strong
version of the conjecture (BSD) holds, up to a controlled rational factor (Kolyvagin [Ko], combined with
results of Gross-Zagier [Gr-Za] and others).

(5) If E does not have additive reduction at p, then one can define a p-adic L-function L,(E,s). Kato [Ka]
(see also [Col]) showed that

r(E/Q) < ords=1L,(E, s).

(6) If E has good ordinary reduction at a prime p and if the p-primary component of HI(E/Q) is finite,
then (see [Ne])
r(E/Q) = 1an(E/Q) (mod2).
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