
What is the maximum number of points 
on a curve over P2 •

By Yu. I. Manin

To the memory of Takuro Shintani

1. Introduction. Let X be a smooth irreducible projective curve of genus 
á' over Fz. Pm upper bound for the number of F2-points on it is furnished by 
the classical Weil inequality yV(X)=card A'(F2)<3+2VTg. It turned out that 
for large g this bound is far from being perfect. In fact

M^)<(2+o(l))g

and even this inequality which follows from the simpler results on the linear 
error-correcting codes can be slightly improved (cf. below).

On the other hand if one could find curves with M-X^)>I-7096g this would 
result in the existence of binary linear codes with quite good parameters {trans­
mission rate, number of corrected errors}.

For q=p^, p'^1 modular curves have sufficiently many F,-points and furnish 
asymptotically very good linear error-correcting codes over F,.

In this contribution I wish to describe for algebraic geometers a remarkable 
connection between algebraic curves and codes, discovered recently by V. D. 
Goppa, and to draw their attention to the interesting unsolved problems. The 
new results expounded here are due to V. D. Goppa and M. Tsfasman.

I am grateful to S. I. Gelfand for the very helpful discussion.

2. Codes. Let Fq be a finite field with q elements. A linear {k, n)-code 
over Fq is a «-dimensional linear subspace Cc.Fq. The weight d=d(C) of this 
code is the minimum weight of a vector ceC'-jO} i. e. the number of its non­
zero coordinates. The main problems of the coding theory are optimization 
problems. In particular one wants to maximize the parameters («, d} and to 
find good («, d, n)-codes with simple decoding algorithms. Here we will only 
consider the problem of asymptotic (large n) optimization of («, d). To be pre­
cise, fix q and set

.v(C)= —, 7?(C)=¿-;
n n

V,=the family of points /?(C))cC0, 1]*;
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i7,=the set of limit points of V,.

The simplest constructions of the coding theory lead to the following result.

3. Theorem. There exists a continuous function afx}, xe[0, 1], such that

U,= {(x,
Moreover,

a,(0)=l; aj(x)^max -^1—o} •

Proof. Let C be a (x, d, n)-code. For every there exists a subspace 
CiCC consisting of vectors with vanishing last I coordinates and such that 
dim Ci=x—Z. Then is a (x—Z, d, n—lfcotie. On the {x, 7?)-plane the

points corresponding to Ci’s lie to the south-east of the point on the

— , —J with (0, 1) and fill the whole segment down to the 

x-axis arbitrarily densely when n—>00. It follows that if (x, R)^Uq, x>^, R<1, 
then the segment of the line from (x, 7?) to ( , > O) entirely lies in Uq. To

see this consider the sequence of codes with lim(x(C^‘’), 7?(C'‘’))=(x, 7?), 
„(C<O)-.c», and look at the (x(CiO), 7?(C|O)).

In the same vein one can derive from a (x, d, n}-ZQ^& a family of (x—Z, 
d—I, n) codes using quotients instead of subspaces (choose Z places where a mini­
mum weight vector of C has nonzero coordinates and divide them out). It fol­
lows as earlier that if (xo, Rfj^Uq then the whole segment of the line x—R= 
Xc—Ro to the south-west of this point lies in ¿7,.

Now set a5(x)=sup{7?|(x, R^^Uq}. From the remarks above it follows that 
for 0^x<y^l the point (x, a,(x)) lies in the “west light cone” of the point 
(>’. ««(j*)). whereas (y, a,(y)) lies in the “east light cone” of (x, af^xf), the light 
cones being generated by two pencils of lines, x —7?=const and lines going 
through (0, 1) respectively. Hence a, is continuous.

The Plotkin bound (E13, 1.4.2) asserts that for any (x, d, 72)-code we have

— —-—T—r- it follows that if {x, R^^Ug, 7?>0, then x<——Hencen q q

(x, afx}) cannot lie above the line connecting (0, 1) with o)-

other hand, clearly points O^x^l, 7?=0 and x=0, 0^7?^l, lie in Ug. Finally, 
every point (x, R), x>Q below the graph of a, belongs to Ug since it lies on 
the line connecting it with (0, 1) lower than the intersection point with this 
graph, whose existence follows from the Varshamov-Gilbert and Elias bounds 
(cf. below).
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It seems unknown whether a, is differentiable. From the bounds given 
below it follows that the graph of a, has the vertical tangent at (0, 1) and the 
horizontal one at —> o)« The calculation of a, or at least of good upper 

and lower bounds is one of the most important problems of the coding theory. 
We give below a list of some of the best known bounds.

4. Bounds for the codes, a) The Varshamov-Gilbert lower bound (Cl], 
3.3):

def
X log,(g—l)+x log, x+(l-x)Iog,(l-x)=^,(x).

We have ^,(0)=l, function is convex, its graph lies below the

line R=1------ and is tangent to coordinate axes at the ends. To compare
Q 1

this bound with the estimates for the number of points on curves it is helpful 
to know the tangent line to /3, with the equation 7?+x=const. This is

7?+x=l-log,-^2zl. (7?+x=l-0.584- for g=2)

9
the inverse function

, , • r • <7 1 Q t 2O —1and the point of contact is Xo=w—r> —log?'-------¿q—i. ¿q—l
b) The Elias upper bound (Cl], 1.4.3). Let Pq{R') be

for similarly define aj. Then

Near the point (1, 0) this bound comes to the f?-axis at approximately double 
distance in comparison with the curve Hence a, is smooth at this point. 
But at the point fo, ———the Elias curve does not touch the x-axis and near 

Q '
this point lies even higher than the Plotkin line. The following bound is better 
in this respect.

c) The McEliece-Rodemich-Rumsey-Welch upper bound for q=2 (C2], 17.7):

■?(x)=-7 —Vx(l—x);

def
a2(x)^—CXx) logs 2(x)+(l—2(x)) log5(l—2(x))] = qM.

The graph of i72(x) quantitatively behaves in the same way as that of ^.(x).
The line

touches 572
7?+x=l—0.525
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We will see that for applications to curves we need also the corresponding 
line for the best existing bound for <7=3: cf. CT].

5. Curves. We now introduce the number ©, which gives the best as­
ymptotically attainable upper estimate for the number of points on smooth pro­
jective irreducible curves over F,:

<Sg(,X)—(,g—l)/(card W(F,)—1), g=genus of X;

©,=lim inf ^^4= (A. Weil).
Zv q

The exact value of ©, is unknown, some estimates are given below. The follow­
ing theorem due to M. Tsfasman connects a^fx) and

6. Theorem. The segment of the line 7?+x = l—0^7?, x^l Zzes en­
tirely in the code domain Uq.

Proof. The points of this segment are the limit points for the Goppa codes, 
constructed by means of triples (X D, G), where X is a smooth projective curve 

of genus g, 0=^^ Pi, PiEiX^Fq) are pairwise distinct points, C is an Fq-rational 

divisor of degree a whose support is disjoint with the support of D. We will 
now define Goppa’s codes.

Let 2g—2<a^n+g— 1. Set C=i/'’(X Q}:{D—Gy). The map

resp; C —> F^ , resc(<y)=(resp^(W, ■■■, resp„<y)

is injective since H°{X, Qi{—G')')=0. Hence the space C is endowed with the 
code structure. The beauty of this Goppa’s structure consists in the invariant 
description of the weight function. The weight of the differential <u is now 
simply the order of its divisor of poles, which is at least — (2^—2)+deg C= 
—(2g—2)-)-a. The dimension of C is n+g—1—a by Riemann-Roch.

n
Now take all card X(Ff)=n-\-l points Pq, ■■■, Pn on X and set D=2P<. 

G=aPo. Setting we get points in Vq, corresponding to the Goppa codes 

with
x^-2©5(X)-1-q:, R=l+©,(X)-a,

a running through the rational numbers between 2S/A') and l+SgCW) with the 
denominator n. Letting X run through the sequence of curves with limS/X) 
=©, we get the result.

7. Codes applied to curves. Every upper bound a,(x)^a,(x) furnishes a 
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lower estimate for ©, in view of the theorem 6. Namely, where R+x— 
1—©5 is the supporting line for the graph of a,.

The bound of the theorem 4, a,(x)=max^l—an^el- 

iorates Weil’s estimates:

2 > 2V2 ’
1

2V 3“ ’

but for q>2 it does not give anything new. The McEliece et al. bound (n° 4c)) 
shows that

©2^0.525 - i.e. cardZ(F,)^1.901-g

It would be nice to know all ©, which are better than Weil’s bounds.

8. Curves applied to codes. Every upper estimate ©,^©5 furnishes a lower 
bound for a,(x) in view of the theorem 6. Namely, a,(x)^l—©,—x. If ©,< 

log, ——, then this lower bound in a certain interval is better than the best 

known Varshamov-Gilbert bound (see 4a)).
In the articles E3], C4L], Y. Ihara has proved deep results on the towers of

modular curves over Fq. These curves in particular furnish the infinite families

with lim ©,(?()=©,= ___1___
V q — 1

for q=p^, p prime. Hence they ameliorate the

Varshamov-Gilbert bound for
After the theorem 6 was proved Th. Zink and S. Vladut, independently of

the earlier Ihara’s work, have indicated that ©,= —7---- 7- for the classical raod-’ ’ V?— 1
ular curves and the Shimura modular curves.

9. Questions and remarks, a) Is it possible to find curves over F» and 
Fi with

card A'(F2)>1.71 - gf.X'), card A(F3)>2.16 - gW ?

This would garantee the existence of good codes over F and F3, those fields 
being widely used in applications. Of course the problem of good decoding 
algorithms for Goppa’s codes based on curves of high genus should be investigated 
separately.

b) How can one construct curves with many points? Consider an n-dimen- 
sional abelian variety A over F,2 whose all Frobenius roots are — q. Let Ac/l 
be an irreducible curve of genus g'^n generating A. Then among its 
Frobenius roots there are 2n equal to —q, hence

card X(,Fq2)^q^+2nq+l—2{g—n)q.
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If A is (isogenous to) the jacobian, i. e. 
with the maximum possible number of

one can take g=n, we get the curve 
points. The curve might be still useful

if g is not much larger than n. On the other hand, if ©,2>-—, this shows 2^
that such “very supersingular” abelian varieties are not jacobians.

c) One could try to seek curves with many points among the Drinfeld 
modular curves [5].

d) As an afterthought, one realizes that Bombieri’s proof C6J of the Weil 
upper bound, using only Riemann-Roch, is quite code-theoretic in spirit. It might 
be interesting to systematically investigate linear systems on curves as codes, 
in particular to fumble with their weight structure. Last but not least, the 
problems of the efficient computability of complex Goppa codes are wide open.

Note added October 30, 1981.
Professor Ihara kindly let me know the results of his paper [8] before the 

publication. Refining his method of proof, V. G. Drinfeld and S. VladuJ recently 
succeeded to establish the fundamental inequality 1), or, in Ihara’s
notation, A{q)-^y/q—1, for all q. In view of the Ihara’s examples this bound is in 
fact exact for q=p-’^'. The odd power case remains unsettled as yet
and thus the question posed at the title of my article unresolved. One can con­
jecture that 1.
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