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 Introduction. As is well known, one of the great accomplishments of Gauss's youth was the
 proof that a regular polygon of 17 sides could be constructed with ruler and compass. In the
 seventh chapter of Disquisitiones Arithmeticae [2] he shows how this result follows from his
 arithmetic theory of cyclotomic numbers. In general he shows that a regular n-gon can be

 constructed with ruler and compass if n = 2ap P2 * P, where the p, are distinct Fermat primes.
 He also asserts that he has a proof of the converse and warns the reader not to attempt to
 construct other polygons "and so spend his time uselessly."

 In the introduction to Chapter 7 Gauss states that the principles underlying his theory apply
 not only to circular functions (sine, cosine, etc.) but also to a much larger class of transcendental

 functions "for example those that depend on the integral Jdt/ 1- ....." He says that he is
 preparing a comprehensive work on this subject. Unfortunately this treatise never materialized.
 The functions in question are nowadays called elliptic functions. Gauss's unpublished papers
 reveal that by 1801, when Disquisitiones Arithmeticae appeared, he was already in possession of
 large parts of elliptic function theory (see [3]). The epoch-making works of Abel and Jacobi were
 to appear some twenty-five years later.

 Gauss kept a mathematical diary [3] from 1796 to 1814. It was not found until 1898, forty-three
 years after his death. There are 146 entries, all of them short notices of new results. The entry of
 March 21, 1797, reads as follows, "Lemniscata geometrice in quinque partes dividitur." In other
 words, he had discovered how to divide the lemniscate into five equal parts with ruler and
 compass. Among other things this result is remarkable because it shows that at this early date
 Gauss already knew something about complex multiplication of elliptic functions.

 Abel, of course, knew nothing of Gauss's diary. He was, however, very familiar with Disquisi-
 tiones Arithmeticae and was especially intrigued (as was Jacobi) with the remarks, mentioned
 above, about "a much larger class of transcendental functions." In 1826, while working on the
 division equation for elliptic functions, he gained insight into Gauss's theory. He wrote to
 Holmboe: "On that same occasion I have lifted the mystery which had rested over Gauss' theory
 of the division of the circle; I now see as clear as daylight how he has been led to it."* His work
 on elliptic functions was coming along at a rapid pace and he wrote to Crelle and Holmboe with
 obvious excitement about his forthcoming treatise: "...in which there are many queer things
 which I flatter myself will startle someone; among others it is about the division of arcs of the
 lemniscate. You will see how pretty it is!" (For this and the previous quote see Chapter 13 of [6].)

 The finished work, "Recherches sur les fonctions elliptiques," appeared in two parts in volumes
 2 and 3 of Crelle's Journal der Mathematik. The two articles take up 197 pages. They lay the
 foundations of the theory of elliptic functions and contain a cornucopia of beautiful results.
 Among these is the following gem, which seems to have been virtually forgotten.

 THEOREM. The lemniscate can be divided into n equal parts with ruler and compass if n

 2Up IP2 * *p where the pi are distinct Fermat primes.

 *I would like to thank Professor H. Edwards of the Courant Institute for bringing this quote to my attention.
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 This result is the exact analogue of Gauss's result for the circle. Clearly, it goes far beyond what

 Gauss recorded in the diary entry of March 21, 1797.

 The main object of this paper is to give a reasonably elementary proof of Abel's theorem and
 its converse. For the most part we use only the beginnings of elliptic function theory (see, for

 example, the first chapter of [5], [71, or [8]). Our proof differs from that of Abel in that we use
 Galois theory (which was unavailable to him) and relies on the properties of the Weierstrass VP

 function rather than the lemniscate function 4(z) (to be defined below). Nevertheless the main

 point of both proofs is the same; the functions involved admit complex multiplication by the ring

 of Gaussian integers Z[i].

 In Section 1 we review the Galois-theoretic proof of Gauss's theorem and recast it in such a
 way that the later work on lemniscate appears as a natural generalization. In Section 2 we define

 the lemniscate, discuss its arc-length, define the lemniscate function 4(z), and discuss the
 remarkable properties of this function discovered by Abel (and independently by Gauss and
 Jacobi). In Section 3 we briefly review the elements of the theory of elliptic functions. In Section 4
 we relate the function 4(z) to the Weierstrass VP-function. Finally, in Section 4 we give our proof
 of Abel's theorem and its converse. To the best of our knowledge, a proof of the converse of
 Abel's theorem has not previously appeared in print.

 In addition to presenting some material of great historical interest we hope this paper will serve

 as an introduction to the arithmetic theory of elliptic curves, an area of mathematics which is alive
 and well and being pursued with great intensity by number-theorists of the present day.

 1. As is well known, a complex number a is constructible with ruler and compass if and only if

 Q(a) is contained in a field K obtained from the rational numbers Q by a succession of quadratic
 extensions. It is equivalent to require that a be in a field K which is Galois over Q and such that
 G(K/Q), the Galois group of K over Q, has order a power of two.

 Let tn = exp(2Thi/n). One knows that Q(nV)/Q is a Galois extension with Galois group
 isomorphic to (Z/nZ)*. Elementary number theory shows that the order of (Z/nZ)* is a power

 of two if and only if n = 2apI P2 * *P where the pi are distinct Fermat primes. This proves
 Gauss's theorem.

 A slightly different approach goes as follows. Map the real numbers R to the unit circle C by

 ~(t) = (cost,sint). The map ( is onto and periodic. The periods consist of all multiples of
 2 v, (2 7 ) . Thus ( gives rise to a bijection between R / (2s ) and C. Since R / (2s ) is a group, C
 can be made into a group by "transport of structure." Using the addition formulae for sine and
 cosine we see that the group law on C is given by (a,b) + (c,d) = (ac - bd,ad + bc). The unit
 element of C is (1,0). For n a positive integer we deduce that there are polynomials

 fn(X,y),gn(x,y) C Z[x,y] such that n(x,y) = (x,y) + (x,y) + *.. +(x,y) = (fn(X,Y),gn(X,Y)).
 For example, 2(x,y) = (x2 -y2,2xy) and 3(x,y) = (x3 - 3xy2,3x2y -y3). Let Cn be the
 points of order dividing n on C. Since C R IR/(2T7 ) we see Cn , Z/nZ. Moreover,

 Cn = {(a,b) C CI fn(a,b) = I and gn(a,b) = 0} .

 Let a be an automorphism of C, the complex numbers, over Q. Since fn(a,b)0 = fn(a',b0) and
 gn(a,b)' = gn(a',bV), we see a maps Cn into itself. Since Cn is finite, it follows that the
 coordinates of the points in Cn are algebraic numbers. Adjoin these coordinates to Q and call the
 resulting field Kn. From what has been said it follows that Kn /Q is a Galois extension. Denote
 the Galois group by Gn. Gn acts on Cn and, since the group law is defined by polynomials with
 coefficients in Q, we see that Gn preserves the group structure of Cn. Thus we have a map from Gn
 to Aut(Cn) which is easily seen to be a homomorphism. The map is actually a monomorphism
 since the coordinates of the points in Cn generate Kn. Thus Gn is isomorphic to a subgroup of
 Aut(Cn) Aut(Z/nZ) (Z/nZ)*. The proof of Gauss's theorem now follows as before.

 This second proof may seem overly elaborate, but, as we shall see, many of the ideas involved
 will be useful later.
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 2. A lemniscate may be defined geometrically as the locus of all points such that the product of
 the distances to two fixed points is a constant. This definition gives rise to a family of curves. We

 normalize matters by requiring the fixed points to be (- V2/2,0) and (V2/2,0) and the constant
 to be 2. The equation of the resulting curve is r2 = cos 20 in polar coordinates and (X2 + y2)2 =
 X2 - y2 in Cartesian coordinates. Its shape is the familiar figure eight. (See Fig. l.) A convenient
 reference for this material is the first chapter of Siegel's book [8].

 y

 (-1,0) (1,0)
 x

 FIG. I

 If we use the formula for arc-length in polar coordinates di2 = dr2 + r2do2, we find for the

 lemniscate ds = dr/ I -r4. If we measure arc-length starting from the origin and passing into
 the first quadrant we see r increases from 0 to 1 and s is a monotonically increasing function of r.

 Explicitly, s = Jodt/ I - t4. Let w/2 = Jodt/ 1 - t4. The total arc-length of the lemniscate is
 then 2 X. The constant X is to the lemniscate what 'T is to the circle. To five places its value is
 2.62057....

 As s is a monotonically increasing function of r on [0, 1], r can be expressed as a function of s
 on [0, w/2]: set r = p(s). This is Abel's notation. Gauss wrote sinlemn(s).

 Abel shows that p can be extended to a meromorphic function for a complex variable z. He
 shows that +(z) is doubly periodic with

 L = <2w,2wi) = {2mw + 2niwIm,n E Z}

 as a period lattice. The exact period lattice is <(I + i)w,(l - i)w ). This fact will be useful later.
 He finds all the zeros and poles of +(z). The zeros are the points of the lattice <w, wi) and the
 poles are obtained from the zeros by adding (w + oi)/2. Fig. 2 shows the location of the zeros

 and poles in a fundamental parallelogram {z 10 Rez, Imz <c 2X}. He gives the following

 2wi

 x X Xpole
 o zero

 x ~~x

 w 2w

 FIG. 2



 390 MICHAEL ROSEN [June-July

 product formula for 4(z):

 +)(Z) =ZIa( Z -4 H)o( 1 - _4

 where a runs through the zeros and 13 through the poles in the region 0 < argz < v/2. He also
 proves the addition formula (discovered much earlier by Euler; see [8])

 k>(s + t) = k(s)I - +P(t)4 + cP(t) I - 0(5)
 1 + (S)2( t)2

 All this and much else was discovered years earlier by Gauss, but had remained unpublished.
 We will not prove these results. With the use of the modem theory of complex variables they

 may be considered exercises, albeit hard ones. It is quite amazing that Gauss, Abel, and Jacobi
 were able to prove all this when the theory of functions of a complex variable was still in its
 infancy.

 To investigate the question of dividing the lemniscate into n equal parts with ruler and
 compass, we are reduced to asking the following question.

 Question: For which integers n are the numbers 4 (k 2w/n), k = 0, I,.. ., n - I constructible?

 Note that the corresponding problem for the circle concerns the numbers sin(k2r/n).

 3. Both for technical reasons and because the modem reader is much more likely to be familiar
 with the Weierstrass VP function than with Abel's function 4(z), we will reformulate the question
 of the previous section. Before doing so we briefly review the properties of the VP function which
 we will need. For proofs the reader can consult [5], [71, or [8].

 Let W1, W2 C C be complex numbers such that W2/W1 is not real, and A = (w,I 2) =
 { m w 1 + n W2 2 m, n E Z}, the corresponding lattice. A meromorphic function f(z) on C is called
 elliptic with respect to A if f(z + X) = f(z) for all z E C and X E A. The elements of A are called
 periods of f(z). The set of functions which are elliptic with respect to A form a field which we
 denote by 6<(A). From another point of view, 6%(A) is the field of meromorphic functions on
 the Riemann surface C/A.

 Let D(A) = {rw, + sW210 0 r, s < 1). D(A) is called a fundamental parallelogram for A
 since the translates of D(A) by elements of A simply cover the plane. If f(z) E '%h(A) and f(z)
 has no pole on D(A), then f(z) is a constant. This fundamental fact is proved as follows. If f(z)
 has no pole on D( A), it has no pole on C by periodicity. Thus f(z) is continuous on the closure of
 D(A), which is compact. It follows that f(z) is bounded on D(A) and by periodicity on all of C.
 By Liouville's theorem a bounded entire function is a constant.

 Does '1(A) have any nonconstant functions? The answer is yes. Define

 '9P(z;A) = Z-2 + 2,((Z _ )-2 - X-2)

 where the sum is over all X C A, X =Z 0. Since the lattice A is fixed in this discussion, we suppress
 it in the notation and write simply VP(z). Note that iP(-z) = VP(z) and iP'(-z) = -P'(z); i.e.,
 VP(z) is an even and V9'(z) is an odd function.

 Both VP(z) and VP'(z) are in 9)k(A), and in fact 9)k(A) = C('i(z),'P'(z)); i.e., every elliptic
 function with respect to A is a rational function of VP(z) and VP'(z). Moreover, VP(z) and VP'(z) are
 connected by the equation

 9 z 2 = 4'(z)3 - g2(A)>(z) - g3(A)

 where g2(A) = 60'J-4 and g3(A) = 1402'-6.
 For z C C let (z) be the unique element of D(A) such that z - (z) C A. The poles of VP(z)

 and VP'(z) are precisely at the points of A, i.e., those z such that (z) = 0. Those of VP(z) have
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 multiplicity 2 and those of VP'(z) have multiplicity 3. It is not known where the zeros of VP(z) lie
 but, if a X A, then the zeros of VP(z) - P(a) are precisely {z E Cj(z) = (a) or (z) = (-a)}.
 These are simple zeros unless (a) = (-a), in which case they are double zeros. The zeros of VP'(z)
 are {z E Cj(z) = w1/2, w2/2, or (wX + w2)/2}. These are all simple zeros. These facts are often
 sufficient to enable us to write a function in 6(A) explicitly as a rational function of VP and VP'.

 A very important property of 'P and P' is the existence of an addition formula; i.e., for
 Z1, Z2 E C with z1, Z2, Z1 + Z2 M A, both P(z1 + Z2) and g'(z1 + Z2) can be expressed rationally
 in terms of P(z,), 6(Z2), i'(zl), and 6P'(Z2)- This can be seen from the following considerations.
 Let E be the complex points on the curvey2 = 4x3 - g2(A)x- g3(A) together with a symbol 00.
 This symbol represents the point at infinity on this curve. We call E the elliptic curve correspond-
 ing to A. Let 4 map C to E by 4(z) = (6P(z), 6Y'(z)) for z X A and 4(z) = oo for z E A. It can be
 shown that 4(z1), W(z2), and 4(-z1 - z2) lie on a straight line. From this one deduces for
 Z1, Z2 X A and P(zl) , 6(Z2), i.e., (z,) 7 (?Z2), that

 6A(z + Z2) =- 6(ZI) - 6'(Z2) + 4 ( (Z) - g(Z2) 2

 and, if (z1) = (Z2)= z, then

 6P(2z) = -26Y(z) + l ( 6Jp() )2Z

 If z1 + Z2 E A, i.e., (z1) = (-Z2), then the first formula continues to hold in the sense that
 both sides are infinite. The rational addition formula for V9'(z) follows easily. We note that the
 coefficients of the rational functions giving the addition formula lie in the field generated over Q
 by g2(A) and g3(A).

 It will be useful to give an algebraic interpretation of these results. By periodicity the map 4
 gives rise to a map from C /A to E which we continue to call 4. This map can be shown to be a
 bijection between C/A and E, and so by "transport of structure" E becomes a group. The group
 law on E is algebraic in the sense that there are rational functions f and g such that

 (a,b) + (c,d) = (f(a,b,c,d),g(a,b,c,d)).

 To see this let 4(z1) = (a,b) and 4(z2) = (c,d). By definition, 4(z1) + 4(Z2) = 4(Z1 + Z2), or

 (6(Z1)9g'(Z1)) + (P(Z2)jP'(Z2)) = (M(zI + Z2),0'(Zl + Z2)).

 It is now clear how the addition formulae give rise to the functions f and g.
 Note that the identity element of the group E is 4(0) = o0. Let E,, be the points of order

 dividing n on E. Since E t C/A, E,, n A/A - A/n A. Thus En has n2 elements. Explicitly,

 F={ (aw + bW o2)6 a (aW2+ w ) En = ?P n )'Y'( n- 0 ) alb <n)
 For example, the points in E2 are { oo, (e , 0), (e2,O),( e3,0)} where

 e ( 2 I e2 0'( 2 and e3 =(1 + 2)

 Note that eI, e2, and e3 are the roots of 4x3 -g2(A)x- g3(A) 0 O. A consequence which is not
 obvious a priori is that this polynomial must have distinct roots.

 4. We now return to a consideration of the lattice L= K2 o, 2oi). Let 6Y(z) be the corre-
 sponding 6 function.

 In the appendix we show that g2(L)-4 and g3(L) 0 O. Thus, the elliptic curve corresponding
 to Lisy2 = 4x3 -X.
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 Notice that iL = L. From the definition of VP(z) we see that lP(iz) -'?(z) and by
 differentiation that '9'(iz) = iS(z). Using the addition formula we find after some calculation

 92((I + i)z) = _ @Z

 7(1i)z) = 48 (z') 2 - i2 4 ~~~~~~~~(2)
 8 9I(z)

 LEMMA 1. If '(a) is constructible, so is '9(a/2).

 Proof. In equation (1) substitute z = a/(l + i). We then see that 6P(a/(l + i)) satisfies a
 quadratic equation with constructible coefficients. Thus P( a/(l + i)) is constructible. In equation
 (2) substitute z = a/2. Then, since S((l - i)(a/2)) = 9(a/(I + i)) is constructible, 6(a/2)
 satisfies a quadratic equation with constructible coefficients, and so 6(a/2) is constructible.

 COROLLARY. Suppose a,b,n E Z with n 2 1 and ab =# 0. Then the numbers

 'Y((2ao + 2biw)/2 n)

 are constructible.

 Proof. The numbers {+P(o),iP(ico),'i((l ? i)wo)} are the roots of 4x3 -4x = 0, i.e.,
 {4 ,-,0}. This proves the result for n = 1. For general n the result follows by induction using
 Lemma 1.

 We are now in a position to relate @(z) and p(z). Before doing so we make the simple remark
 that if 6(a) is constructible so is 6P'(a) since t)P(a)2 = 46'i()3 -4 V9(a).

 PROPOSITION 1. ?(a) is constructible if and only if P(a) is constructible.

 Proof. For the proof of Abel's theorem we only need the "if' part of the Proposition. We do
 this implication first.

 The zeros and poles of k(z) on D(L) are {0,o,i o,(l + i) o) and

 {(I + i)w/2,(3o + iw)/2,(w + 3iw)/2,(3w + 3iw)/2},

 respectively. The function

 6p (Z)
 g(z) = (6@(Z) - 6y(Z0))(6P(Z) - (Z ))

 has the samezeros andpolesif we setzo = (1 + i)o/2 andzl = (3w + iw)/2. Thus+(z) = Ag(z)
 for some constant A. Since 0(1/2) =1 and g(w/2) is constructible by the corollary to Lemma 1,
 we see that X is constructible. If 'P(a) is constructible so is g(a) and thus so is 4(a).

 The proof of the converse is a bit more difficult. As we mentioned earlier +(z) is periodic with
 respect to the lattice M = ((1 + i) o, (1 - i) .o). Let 9P1(z) be the P function corresponding to M.
 Since (I + i)M = L, we see (from definitions) that 2ig((l + i)z) - gI(Z)-

 The zeros and poles of o(z) on D(M) are {O,} and {(I + i)o/2,(I - i)w/2}, respectively.
 Comparing zeros and poles we see there is a constant B such that

 +(Z) = B 6P(z) - 6(W)

 Evaluating at z = w/2 and using the corollary to Lemma 1 once again we see that B is
 constructible.



 1981] ABEL S THEOREM ON THE LEMNISCATE 393

 Let uo = (1 + i)w/2 and ul = (1 - i)o/2. Since the zeros of 61'(z) are uo, ul, and co we find

 O _ _ B2 - (Z) )- 6(W)
 4 (61Pz(6T - (z)-6P1(ul))

 It follows that if P(a) is constructible so is 6P-1(a).
 From previous results we have

 I 46____Z_2 6y(z) =2i6P((l + i)z) = - i( )

 Thus, if '9P1(a) is constructible so is 'S'(a). This completes the proof.

 In Section 2 we showed that the lemniscate can be divided into n equal parts with ruler and

 compass if and only if the numbers {4(k2w/n)l k = 1,2,... ,n -1 } are constructible. In the light
 of Proposition I we are reduced to the question of finding those integers n such that the numbers

 {'Y(k2w/n)J k = 1,2,... ,n - }) are constructible.

 5. Recall that E represents the complex points on the elliptic curve y2 = 4x3 - x together

 with the point at infinity. By means of t(z) = (6i(z),iP'(z)) we have an isomorphism between
 C/L and E. We now argue with E the way we did with C in our "elaborate" proof of Gauss's

 theorem. Since En is finite, we see by the same reasoning that we applied to Cn in Section 1 that
 the coordinates of the points in En are algebraic over G. Adjoin these coordinates to c and call

 the resulting field Kn. Then Kn /Q is Galois. Let Gn denote its Galois group. Gn acts on En and
 gives rise to a monomorphism from Gn into

 Aut(En) z Aut(L/nL) Aut(Z/nZ E Z/nZ) G12(Z/nZ).

 At this point we do not know much about the image of Gn. Moreover, the order of G12(Z/nZ)
 is never a power of two. We seem to have reached a dead end.

 The situation is saved by the realization that there is some additional structure which has not
 been used, namely, L = (2o,2oi) = Z[i](2co); i.e., L is a Z[i] module of rank one, not just an
 abelian group. In general, a lattice A is said to admit complex multiplication if the ring

 (a C I aL C L} is properly bigger than Z.
 Since L is a Z[i] module, so is C/L and via ( we can mrake E into a Z[i] module. Since, as we

 have seen, 6P(iz) =-6Y(z) and ''(iz) = i 0'(z), the action of i on E is given by i(x,y) (-x, iy).

 LEMMA 2. En t Z[i]/nZ[i] as Z[i] modules.

 Proof. En -zL/ L/nL Z[i]/nZ[i].

 Let F = Q(i) and adjoin the coordinates of En to F. Call the resulting field F,, and let gn be its
 Galois Group over F. Since /n leaves i fixed, the action of gn on En preserves the Z[i] module
 structure. Thus we get a monomorphism from /n into the Z[i] automorphisms of En. Now, by
 Lemma 2

 Autz[i](En) Autz[,](Z[i]InZ[i]) -, (Z[i]/nZ[i])*.
 We have shown

 PROPOSITION 2. The group !n is abelian. If (Z[i]/nZ[i])* is a two-group, then the numbers
 '9P((2aw + 2biw)/n) and 6Y'(2aw + 2biw)/n) are constructible.

 Abel's Theorem now follows from the following easily proved Lemma.

 LEMMA 3. (Z[i]/nZ[i])* is a two-group if and only if n is a power of 2 times a product of distinct
 Fermat primes.

 We now turn to the proof of the converse to Abel's theorem.
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 LEMMA 4. Let M be the field generated over F = Q(i) by adjoining 'iP(2w/n)2. Then M/F is

 Galois and the Galois group is isomorphic to (Z[i]/nZ[i])* modulo the image of the group

 {? 1, ?i}.

 Proof. Let Lo = Z[i] be considered as a lattice in C, and gPo(z) the corresponding VP function.
 Let h(z) =g2( Lo) -Yo(Z)2. It follows from the arithmetic copy of complex multiplication that
 F(h(1/n)) is the ray class field of F corresponding to the modulus n (see page 135 of [5]). The ray
 class group of modulus n is precisely the group described in the statement of the lemma. We will
 show h(l/n) = 4P(2w/n)2 and that will complete the proof.

 From the definition of VP and goP we see easily that ' (2 z) = (2o)-2 i%(z). In the appendix we
 will show I'y-4 - w/15 where the sum is over all nonzero elements of Z[i]. Thus g2(LO)
 60O'y-4 = 4X4. It follows that h(z) = (4 4)-'(2 )4'iP(2 z)2 = 4P(2 Wz)2.

 THEOREM 2. If the lemniscate can be divided into n equal parts with ruler and compass, then n is a
 power of two times a product of distinct Fermat primes.

 Proof. If the hypothesis holds then 4(2w<n) is a constructible number. By Proposition 1,
 '9(2w/n) is constructible. It then follows from Lemma 4 that (Z[i]/nZ[i])* is a two-group. The
 result is now a consequence of the "only if" part of Lemma 3.

 Appendix. In Section 3 we asserted that the pair of functions VP and VP' corresponding to the
 lattice L =(2 ,2 i ) parametrize the elliptic curvey2 4x3- x. To prove this we proceed as
 follows.

 As we have seen, VP and VP' parametrizey2 4x3 - g2(L)x -g3(L) where

 g2(L)-60Ey4 and g3(L)140E'y 6.

 Since iL = L and i6 =-1 we see g3(L) = 0. To show g2(L) - 4 it is equivalent to show

 PROPOSITION 3. l(r + si)-4 - W2/l5 where the sum is over all nonzero Gaussian integers.

 This result was obtained by Hurwitz in [4]. In fact, he shows that, more generally, E(r + Si) -4
 = ((2 O)4'/(4n)!)En where the En are positive rational numbers. Hurwitz shows that these
 rational numbers have many properties -analogous to the Bernoulli numbers, including an
 analogue of the von Staudt-Clausen theorem. Nowadays these numbers En are called Hurwitz
 numbers in his honor. It is worth noting that Gauss, in the 61st entry in his mathematical diary

 (see pages 515 and 516 of [3]), states a result which is equivalent to the assertion that the E, are
 rational.

 Hurwitz's proof of the rationality of the En is quite easy. However, we prefer to give another
 proof which has the flavor of Euler's proof that In-2 - sT2/6 and which depends only on the
 product formula for +(z).

 For a lattice L in C let I L J 'y -4, the sum being over L - {O}. Consider the three lattices
 Lo = (W,wi), LI {(m + ni/2) Im and n odd} and L2 -{(m + ni/2) Im and n of opposite
 parity}. Then 2 Lo = LI U L2 U Lo where the union is disjoint. Clearly I 2 Lo I = 161 Lo 1. It is
 easily checked that (1 + i/2)LI = L2 and it follows that IL21 = (2/(1 + i))4I L1I =-41LI.
 Putting all this together we have I L I I -51 Lo 1-

 As shown by Gauss and Abel

 P(z)a( 4 __ 4)

 where a E Lo, B E L1, and 0 < arga, arg,B < 7/2. Taking the logarithmic derivative of both



 1981] ABEL S THEOREM ON THE LEMNISCATE 395

 sides yields

 z0Ze) = I + (I LI I- ILO I)Z4 + *-

 We have to evaluate the left-hand side in a different way. From z = f0(z)dt/ /l -t4 we find
 0,(Z)2 -=I - 4(Z)4. Let p(z) = z + cz5 + be the power series expansion of p(z) about
 z 0 O. Substituting in 4'(Z)2 - I 4O(Z)4 and comparing coefficients of Z4 we find c - I0.
 From this we derive z(4'(z)/4(z) 1 -5 Z4 +

 Thus L I-I Lo I 2. Since also I L 1 =-51 Lo 1, it follows that Lo I i.e.,

 E(r + _4 - 4

 From Proposition 3 we see that the first Hurwitz number El is equal to lO. It is now relatively
 simple to show that En is rational for all n > 1. For this purpose we sketch the proof of a more
 general proposition.

 For a lattice A define sm(A) = Y'X-, where m > 2 is an integer and the sum is over all

 X c A, X =# 0. These sums are convergent. Since A =-A, it follows that sm(A) 0 O for m odd.
 Let V9(z) be the VP function corresponding to the lattice A and V9(z) = 1/z2 + Eoo1bnz2n the

 Laurent series of VP(z) about z = 0. From the definition one can calculate that b,=
 (2n + l)s2n+2(A). See page 10 of [5] for details.

 PROPOSITION 4. Let 0 = {y E CIyA c A} and suppose A = co for some o C C. Suppose
 further that s4(A) and s6(A) are in Q. Then sm(A) E Q for all m > 4 and

 :E -Y - 2n = S2n( A ) ,2n -
 yCe

 Proof. Differentiating the fundamental relation 6p'(Z)2 = 4(Z)3 -g2(A)9(z) - g3(A) we
 find V9"(z) = 6 ?(Z))2 9 ' g2(A). Equating coefficients leads to the following recursion formula
 for bn

 n-2

 (2n + 3)(n - 2)bn -3 E bkbn-k-l
 k=1I

 This in turn shows that

 n-2

 S2n+2( A ) : YflkS2k+2(A)52n-2k(A)

 where Yn, k C G. Thus, if s4(A) and s6(A) are in c it follows by induction that s,,(A) E c for all
 m > 4. Since every element of A is uniquely of the form yo with y E C, the proposition follows
 immediately.

 For our lattice L = (2c,2ci ) we have e = Z[i], s4(L) = 1'5 (by Proposition 3), and s6(L) - 0.
 The rationality of E, for all n > 1 follows from Proposition 4.
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