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0. Preliminaries. 
0.1. Introduction. This is a survey of some aspects of the structure theory of reduc­

tive groups over local fields. Since it is mainly intended for "utilizers", the main 
emphasis will be on statements and examples. The proofs will mostly be omitted, 
except for short local arguments which may give a better insight in the way the 
theory operates. When proofs are avai lable in the literature (which is not always the 
case!), references will be given; references to [8] are often conditional, as explained 
in §1.5. 

We shall not try to give the historical background of the results exposed here. Let 
us merely recall that the theory was initiated by N . lwahori and H. Matsumoto 
[15], who were considering split semisimple groups, that quasi-split and classical 
groups were later on studied by H. Hijikata [13], and that, in the generality given 
here, most results are due to F. Bruhat and the author [6], [7], [8], [9]. For further 
information, one may consult the introduction of [8]. 

0.2. Notations. The following notations will be used throughout the paper: K. 
denotes a field endowed with a nontrivial discrete valuation cv, the value group 
cv(Kx) ( c R) is also called I', o represents the ring of integers, p = no with n e 0 

its prime ideal and K = ofµ the residue field. We always assume K complete and K. 
perfect. We consider an algebraic group G defined over K whose neutral com­
ponent G

0 
is reductive, and call S a maximal K-split torus of G, N (resp. Z) the 

normalizer (resp. the centralizer) of S in G, v W the finite group N(K)/Z(K) (as 
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usual, ?(K) stands for the group of rational points of ? over K), X* = X*(S) = 
HomK(S, Mult) (resp. X* = X*(S) = HomK(Mult, S)) the group of characters 
(resp. cocharacters) of S, V the real vector space X* ® R, (/) = </J(G, S) c X* 
the set of roots of G relative to S, •W the Weyl group of the root system (/) which 
we identify with a normal subgroup of • W (equal to • W if G = G0

) and u
0

, for 
a E </J, the unipotent subgroup of G0 normalized by Sand corresponding to the root 
a (i.e., the group called Uca> in [3, 5.21). 

1. The apartment of a maximal split torus and the affine root system. 
1.1. The split case. As a motivation for what follows, we first consider the case 

where G0 is split, that is, where Sis a maximal torus of G. Then, the groups U
0 

are 
K-isomorphic to the additive group. Indeed, the choice of a "Chevalley basis" in 
the Lie algebra of G determines a system of K-isomorphisms x0 : Add -+ U0 (an 
"epinglage") satisfying the commutation relations of Chevalley [10, p. 27]. Since 
K is a local field , its additive group is filtered and so are the groups Ua(K), "par 
transport de structure". The terms of those filtrations are conveniently indexed by 
affine functions on V: for a E </J and r E I', a + r is such a function and we set 

(I) 

If we transform the Chevalley basis by Ad s for an element s e S(K), the system 
(x0 ) is replaced by (x:) = (xa O a(s)) and, setting x;+r = x: (w- 1 [r, oo]), we have 

(2) 

Thus, the terms of the filtrations of the groups Ua(K) are unchanged but their 
indexation has undergone a translation. The same conclusion holds for an arbitrary 
change of Chevalley basis ( one just has to replace s by a rational element of the 
image of Sin the adjoint group). 

We may express that conclusion in a more invariant way as follows. There exist 
an affine space A under V, a system </Jaf of affine functions on A and a mapping 
a >-+ Xa of (/)

0
£ onto a set of subgroups of G(K) with the following property: to every 

Chevalley basis, there corresponds a point O E A such that </Jaf consists of all 
functions 

(3) a: X >-+ a(X - 0) + f (x EA; a E </J, r E I') 

and that, if (x.) denotes the "epinglage" associated with the given basis, the group 
Xa corresponding to the function (3) is given by (1). The group S(K) operates by 
translations on A in such a way that, for s E S(K), we have 

(4) 

From (2) it follows that the translation v(s) E V of A induced bys (i.e., defined by 
s(x) = x + v(s) for x EA) is given by 

(5) a(v(s)) = - w(a(s)) for every a E </J. 

More generally, the normalizer N(K) of S(K) in G(K) operates on A by affine trans­
formations in such a·way that (4) holds for any s E N(K) . 

1.2. The apartment A(G, S, K). Our purpose is to generalize the above results to 
an arbitrary group G in the following form: to G, S, K, we want to associate an 



32 J. TITS 

affine space A = A(G, S, K ) under V 011 which N(K) operates. a system <P.r = 
<P.1(G, S, K ) of affine functions on A and a mapping a >-+ Xa of (f).r onto a set of 
subgroups of G(K), such that the relation 1.1(4) holds for s E N(K), that the rector 
parts 1'(a) of the functions a E (f).r are the elements of(/), and that, for a E (/), the 
groups Xa with 1'(a) = a form a.filtration of Ua(K ). 

We first proceed with the construction of the space A; the set (/). and the X/s 
will be defined in §§1.6 and 1.4. The relations (5) show us the way. The group 
X*(Z) of K-rational characters of Z can be identified with a subgroup of finite index 
of X*. Let)); Z(K)-> Vbe the homomorphism defined by 

(1) x())(z)) = - ill{z(z)) for z E Z(K) and i.'. E X'-'(Z ), 

and let Z , denote the kernel of )). Then, A = Z(K)/Z, is a free abelian group of rank 
dim S = dim V. The quotient W = N(K)/Z , is an extension of the finite group " W 
by A. Therefore, there is an affine space A ( = A(G, S, K)) under Vand an extension 
of )) to a homomorphism, which we shall also denote by )), of N in the group of 
affine transformations of A. If C is semisimple, the system (A , ))) is canonical, that 
is, unique up to unique isomorphism. Otherwise, it is only unique up to isomor­
phism, but one can, following G . Rousseau [19), " canonify'' it a s follows : calling 
~ G0 the derived g roup of C0 and S 1 the maximal split torus of the center of 
G0

, one takes for A the direct product of A(!ZC 0
, C0 n S, K) (which is cano­

nica l) and X *(S1) ® R .The affine space A is called the apartment of S (relative 
to G and K.). The group N(K) operates on A through W. 

1.3. Remark. Since V = Hom(X\ R) = Hom(X':'(Z), R), the groups 
Hom(X*, I') and Hom(X*(Z), I') are lattices in Vand one has 

(1) Hom(X'\ I') c ))(Z(K)) = A c Hom(X*(Z), f'). 

If G is connected and split,. both inclusions are equalities, but in general they can be 
proper. Suppose for instance that G = RLI K M ult, where Lis a separable extension 
of K of degree n, and let ['1 be the value group of L. The group X *(Z) is generated 
by the norm homomorphism NL/ x, hence has index n in X':,_ On the other end, A 
is readily seen to be equal to n · Hom(X*(Z), ['1). In particular, the first (resp. the 
second) inclusion (l) is an equality if and only if the extension L /K is unramified 
(resp. totally ramified). A semisimple example is provided by G = SU3 with split­
ting field L ; exactly the same conclusions a s above hold with n = 2 (indeed, in that 
case Z = RLI K Mult). One can prove that the.first inclusion (l) is an equality when­
ever G splits over an unrami.fied extension of K. 

1.4. Filtration of the groups Ua(K). Let a E (/) a nd u E U0(K) - {l }. It is known 
(cf. (3, §5)) that the intersection U_0 uU_a n N consists of a single element m(u) 
whose image in •Wis the reflection ra associated with a, from which follows that 
r(u) = ))(m(u)) is an affine reflection whose vector part is ra. Let a(a, u) denote the 
affine function on A whose vector part is a and whose vanishing hyperplane is the 
fixed point set of r(u) and let (/)' be the set of a ll affine functions whose vector 
part belongs to </J. For a E </J', we set Xa = {u E Ua(K) I u = l or a(a, u) ~ a} . 
The following results are fundamental. 

I .4. l. For every a as above, Xa is a group. 
1.4.2. If a, /3 E </J', the commutator group (Xa, Xp) is contained in the group gen­

erated by all Xpa+qp for p, q E N * and pa + q{3 E </)'. 
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Clearly, the Xa's with v(a) = a form a filtration of Ua(K). We denote by Xa+ the 
union of all Xa+• fore e R, e > 0 ( of course, Xa+ = Xa+• for e sufficiently small). 
From 1.4.2, it follows that Xa+ is a normal subgroup of Xa, and we set Xa = 
Xa/Xa+· Thus, the X/s, for v(a) = a, are the quotients of the filtration of Ua(K) 
in question. It is obvious that for n E N(K), one has n- 1xa n = Xa•v(n). 

1.5. About proofs, references and generalizations. Let us identify A with V via the 
choice of an " origin" 0, and, for every a e (/) and u e Ua(K), set rpa(u) = a (a, u) -a 
(e R). The assertions 1.4.1 and 1.4.2 essentially mean that the system of functions 
(<pa)ae ,r, is a valuation of the root datum (Z(K) ; (Ua(K))ae ,r,), as defined in [8, 6.2]. 
That fact itself is roughly equivalent with (actually somewhat stronger than) the ex­
istence of a certain RN-pair in the group generated by all Ua(K) (cf. [8, 6.5 and 
6.2.3(e)]), and with the existence of the affine building of Gover K (cf. §2 below 
and [8, §7]). Those results have been announced in [6], [7] and [8, 6.2.3(c)]), but 
complete proofs by the same authors have not yet appeared (though the case of 
classical groups is completely handled in [8, §10], and quasi-split groups are es­
sentially taken care of by [8, 9.2.3]). In the meantime, proofs of closely related 
results have been published by H. Hijikata [14] and by G. Rousseau [19]. 

In the sequel, quite a few statements will be followed by references to [8] ; this 
will usually mean that the quoted section of [8] contains a proof of the statement 
in question once 1.4.1 and l .4.2 are admitted. 

For the sake of simplicity we have assumed that w is discrete and K perfect. In 
fact, much of what we shall say until §3.3 remains valid (with suitable reformula­
tions) without those assumptions, provided that 1.4.1 and 1.4.2 hold, and this has 
been shown to be always the case except possibly if char K = 2 for some groups G 
whose semisimple part has factors of exceptional type and relative rank ~ 2 (cf. 
[8, §10], [25] and [19]). 

l .6. The affine root system (f). r. For every affine function a on A whose vector part 
a = v(a) belongs to (/), one has an obvious inclusion X2a 4 Xa (if 2a ¢ (/), we set 
X2a = {l }) and the quotient Xaf X2a has a natural structure of vector space over K 
(cf. 3.5.1) whose dimension is finite and will be denoted by d(a). In particular, if 
char K = p, Xa is a p-group. An affine function a such that a = v(a) e (/) is called 
an affine root of G (relative to Sand K) if d(a) # 0, that is, if Xa is not contained in 
Xa+, • U2a(K) ( = Xa+• if 2a ¢(/))for any strictly positive constant e. We denote by 
(f).r(G, S, K) = (f). r the affine root system of G, i.e., the set of all its affine roots. 
Note that if 2a ¢ (/), one has a(a, u) e (f).r for every u e Ua(K) - {1}; in particular, 
if(/) is reduced, (f).r = {a(a, u) I a e (/), u e Ua(K) - {I}}. 

1.7. Half-apartments, chambers, affine Wey/ group. For every affine function a 
such that a = v(a ) e (/), we denote by Aa the set a - 1([0, oo)), by iM a its boundary 
a-1(0) and by r a the affine reflection whose vector part is the reflection r a ( cf. 1 .4) 
and whose fixed hyperplane is oAa. The sets Aa (resp. oAa) for a e <Par are called the 
half-apartments (resp. the walls) of A , and the chambers are defined as the connected 
components of the complement in A of the union of all walls. The facets of the 
chambers are also called the facets of A; thus, the chambers are the facets of 
maximum dimension. If G is quasi-simple the facets (and in particular the cham­
bers) are simplices, if G is semisimple they are polysimplices (i.e., direct products of 
simplices) and in general they are direct products of a polysimplex and a real affine 
space. 
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The group W generated by all r a with a E (J).r is called the Wey/ group of the affine 
root system (/)a1. (If G is not semisimple, this is a slight abuse of language since W 
depends not only on (/)0 r but also on the subspace of V generated by X * (~ G0 n S), 
where ~ G0 denotes the derived group of G0

.) If G is semisimple, W is the affine 
Wey! group of a reduced root system (cf. (5, VI. 2.1]) whose elements are propor­
tional to those of(/), but which is not necessarily proportional to (/), even if(/) is re­
duced ( cf. the exam pies in §§ 1.15, 1.16). 

Clearly, <P.r is stable by the group W = v(N(K)) (cf. §1.2). It follows that the 
half-apartments, the walls and the chambers are permuted by W, and that W is a 
normal subgroup of W. 

1.8. Bases, local Dynkin diagram, characteristic dimensions. The Wey! group W 
is simply transitive on the set of all chambers (i .e., it permutes the chambers transi­
tively and the stabilizer of a chamber in Wis reduced to the identity). Let C be a 
chamber and let L0, •· •, L1 be the walls bounding C. For i E {0, •· •, /}, let a; be the 
unique affine root such that L; = oAa, and -la;¢ <Pa1. The set {a; I i = 0, • • •, I} 
is called the basis of(J).r associated to C. 

Let a,- be the vector part of a,- and let us introduce in the dual of Va positive de­
finite scalar product ( , ) invari<mt by the (ordinary) Wey( group •W. To <P.r, 
one associates a (local) Dynkin diagram L1 = L1 ((J).c) obtained as follows: 

The elements a; of a basis are represented by dots v,-, called the l'ertices of the 
diagram ; 

if2a; E <P.r, the vertex I'; is marked with a cross; 
two distinct vertices v,-, vi are joined by an empty, a simple, a double, a 

triple or a fat segment (edge of the diagram) according as the integer ).,"i = 
4(a,-, ai)2/(a,-, a,-)(ai, ai) equals 0, I, 2, 3 or 4 (in the latter case, ai is a positive multiple 
of -a,-); 

if ).,1 = 2 or 3 (which implies that (a,., a,.) # (ai, ai)) or if ).,1 = 4 and ai # -a,-, 
the edge joining 1•,- and l'i is oriented by an arrow pointing toward the vertex re­
presenting the "shortest" of the two roots a,- and a i· 

Since the chambers are permuted simply transitively by W, 
1.8. 1. the Dynkin diagram does not depend, up to canonical isomorphism, on the 

choice of the chamber C. 
It is easily seen that the system (A, <P.c) is determined up to isomorphism by the 

Dynkin diagram L1 and the dimension of A (i.e., the relative rank ofG). The Coxeter 
diagram underlying the Dynkin diagram- i.e., deduced from it by disregarding the 
crosses and arrows- is the Coxeter diagram of W, hence the Coxeter diagram of an 
affine reflection group (cf. (5, V.3.4, and VI.4.3], where our "diagrams" are called 
"graphes''). 

Conversely, consider any Coxeter diagram which is the diagram of an affine 
reflection group, orient all double and triple edges and possibly some fat ones, and 
mark some vertices (possibly none) with a cross. Then, the diagram thus obtained 
is the local Dynkin diagram L1 of some group Gover some field Kif and only if, for 
every vertex v marked with a cross, all edges having v as an extremity are double or 
fat and none of them is oriented away from v. 

The necessity of the condition is obvious. As for the sufficiency, the classification 
of §4 even shows that for any given locally compact local field K, every diagram 
satisfying the above condition is the local Dynkin diagram of some semisimple 
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group Gover K: indeed, it is an easy matter to list all irreducible diagrams in ques­
tion, and one verifies readily that they all appear in the tables of §4. Note that the 
above statement, or alternatively the tables of §4, provide the classification of all 
affine root systems, for a suitable " abstract" definition of such systems, which the 
interested reader will have no difficulty to formulate ( cf. also [8, I .4], where the 
affine root systems are called " echelonnages", and, for the reduced case, [17]). 

If the vertex v of L1 represents the affine root a, we set d(v) = d(a) + d(2a) 
( = d(a) if 2a rt ([).r), where the function d is defined as in § l .6. The integer d( v) 
of course depends not only on L1 and v but on the group G itself. In the tables of 
§4, the value of d( v) is indicated for every v whenever it is not equal to I. If G is 
split or if the residue.field K is algebraically closed, all d( v) are equal to l . 

1.9. Root system attached to a point of A and special points. For x E A , we denote 
by ([),, the subset of(/) consisting of the vector parts of all affine roots vanishing in 
x, and by W,, the group generated by all reflections ra for a e (/).rand a(x) = 0 
(cf. §1.7). To x, we also associate as follows a set/,, of vertices of the local Dynkin 
diagram L1: there is an element w of the Wey! group Wwhich carries x in the closure 
of the "fundamental chamber" C and one sets/,, = { v; jwx rt L,-}, with the notations 
of §1.8; that/,, is independent of the choice of w follows from well-known pro­
perties of Coxeter groups: cf., e.g., [5, V. 3.3, Proposition l]. The objects(/),,, W,,, 
I,, depend only on the facet F containing x and will also be denoted by (/)F, W F, I F· 

The set(/),, is a (not necessarily closed) subroot system of(/) whose Wey! group is 
the vector part of W,, and whose (ordinary) Dynkin diagram is obtained by delet­
ing from L1 the vertices belonging to I,, and all edges containing such a vertex. The 
set I,, has a nonempty intersection with every connected component of L1 and, con­
versely, every set of vertices with that property is the set I,, for some x. 

The point x is called special for (/).r if every element of the root system (/) is pro­
portional to some element of </J,,, that is, if </J and </J,, have the same Wey! group. 
When it is so, Wis the semidirect product of W,, by the group of all translations 
contained in W; similarly, if G is connected, Wis the semidirect product of W,, by 
v(Z(K)) = Z(K)/Zc (cf. 1.2). 

The fact for a point x to be special can be recognized from the set of vertices I,, 
as follows. A vertex of the Coxeter diagram of an irreducible affine reflection group 
is called special if by deleting from the diagram that vertex and all adjoining edges, 
one obtains the Coxeter diagram of the corresponding finite (spherical) reflection 
group. (Equivalently: such a diagram being the Coxeter diagram underlying the 
extended Dynkin diagram-"graphe de Dynkin complete" in the terminology of 
[5]-of a reduced root system, the special vertices are the vertex representing the 
minimum root and all its transforms by the automorphisms of the diagram.) 
Clearly, such vertices exist. Now, x e A is special if and only if/,, consists of one 
special vertex out of each connected component of L1. In particular, special points 
always exist. In the tables of §4, the special vertices are marked with an s or an hs 
("hyperspecial points": see below). 

l.10. Behaviour under field extension and hyperspecial points. Let K1 be a Galois 
extension of K with Galois group Gal(K1/K) = e, and let S1 be a maximal Kr 
split torus of G containing S and defined over K. Such a torus exists for instance 
in the following cases: 

if G is quasi-split over K (obvious!); 
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if K1 is the maximal unramified extension of K [6(c), 3, Corollaire J); 
if the residue field K is finite and Kif K is unramified. 

(The latter condition is necessary as is shown by the following example due to 
Serre: suppose that e has even order and no subgroup of index 2, and that G is the 
norm one group of a division quaternion algebra; then G splits over K1 but none 
of its maximal tori does.) Let A1 = A(G, Si, K1) be the apartment of S1 and let 
<Piaf = <P.r(G, Si, K 1) be the corresponding affine root system. The Galois group 
fJ operates on A1 ("canonified" as in § 1.2) " par transport de structure", and A 
can be identified with the fixed point set Af 

That identification is not quite obvious. To characterize it, we have to describe 
an operation of N(K) on Af (cf. 1.2). First observe that Af clearly is an affine space 
under V. Let now n E N(K), let N1 be the normalizer of S1 in G and let lJ1 be the 
canonical homomorphism of N 1(K 1) into the group of affine transformations of A 1• 

Since the conjugate nS 1 is a maximal K1-split torus of Z , there exists z E Z(K1) with 
n' = nz-1 E N 1(K1). Upon multiplying z by a suitable element of (Z n N 1) (K1), one 
may choose it so that lJ1(n') stabilizes Af . Let now lJ(z) be the element of V defined 
by the relation 1.2(1) where w must be replaced by the valuation of K 1• Then n = 
n'z operates on Af through lJ1(n') o lJ(z). That this action is independent of the 
choices made and indeed defines an operation of N(K) on At is best seen by using 
the "building" of G over K 1 defined in §2: that building contains Af and is 
operated upon by G(K1) , hence by N(K), and one verifies that N(K) stabilizes Af 
and operates on it as described above. Note that, more generally, the results of 
§2.6 show that if S{ is any maximal K 1-split torus of G containing S, A can be 
naturally identified with an affine subspace of A(G, S{, K 1); much of what we shall 
say here extends to that situation. 

1.10. I. If K 1/ K is unramified, <Par consists of all nonconstant restrictions al A, with 

a E </J1af• 

That is no longer true in general when Kif K is ramified. An obvious example is 
provided by the case where G is split over K. Then, S1 = S, A1 = A, and if we 
identify A with V as in §I. l , we have <P.r = { a + rl a E (/), r E I'} and (/J1ar = 
{a + rl a E </J, r E I'i}, where /71 denotes the value group of K1• 

From 1.10.1, it follows readily that 
1.10.2. If K i/K is unramified, every point of A which is special for (/)1ac is also 

special for <P.r. 
The above example shows that that assertion becomes false without the assump­

tion on Kif K. A point x EA is called hyperspecial if there exist Ki, S1 as above such 
that Kif K is unramified, that G splits over K1 and that xis special for (/)1.r. Then, it 
is easily seen, using l.10.2, that the same holds for any Galois unramified splitting 
field K1 of G and any choice of S 1 (assuming that such a torus exists). More in­
trinsic characterizations of the hyperspecial points will be given in 3.8. 

If G is quasi-split and splits over an unramified extension of K, hyper special points 
do exist. Indeed, take for K1 the minimum splitting field of G and (obligatorily) 
S1 = Z, let ai, · ··, a1 be a basis of the root system (JJ(G, S1) invariant by e and 
choose ai, ·· ·, a 1 E (/J1af so that v(a;) = a; and that {ai, · · ·, a1} is stable bye (the 
possibility of such a choice readily follows from the description of A and <P.r given 
in §I. I). Then, the equations a 1 = •·· = a1 = 0 define an affine subspace of A 1 
invariant bye (in fact a single point if G is semisimple), and every point invariant 
bye in that subspace belongs to A and is clearly hyperspecial. 
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Suppose G is quasi-simple. We say that a vertex v of the local Dynlcin diagram is 
hyperspecia/ (with respect to G) if the points x EA such that I, = { v} are hyper­
special (a property which depends only on v obviously). In the tables of §4, hyper­
special vertices are marked with an hs. 

Let now K1 be the maximal unramified extension of K. The group G is said to be 
residually quasi-split over Kif there is a chamber of A1 stable by Gal(Ki/K), and 
hence meeting A. We say that G is residually split if A1 is fixed by Gal(Ki/K), that is, 
if G has the same rank over Kand over Ki, i.e., if S1 = S. For an explanation of 
the terminology and another definition, cf. 3.5.2. 

1. 10.3. If the residue.field K is.finite, G is residually quasi-split. If K is algebraically 
closed, G is residually split. 

By a well-known result of R. Steinberg, if K is algebraically closed, G is quasi­
split. From that, it follows that: 

1.10.4. Every residually split group is quasi-split. 
If K is finite and, more generally, if G is residua lly quasi-split, G has a "natural 

splitting field". Indeed, there is a smallest unramified extension K' of Kon which G 
is residually split, namely the smallest splitting field of S1 (which does not depend 
on the choice of that torus), and the group G, being quasi-split over K ', has a 
smallest splitting field K" over K ' . The field K " can also be characterized among aJl 
splitting fields of G over K as the unique one for which the pair consisting of the 
degree [K": K] and the ramification index e(K"/K) is minimal for the lexicographic 
ordering. 

I. 11. Absolute and relative local Dynkin diagram; the index. In this section, K1 

denotes the maximal unramified extension of K , and Ai, S1, <JJ1.r have the same 
meaning as in §I.IO. As in the classical, "global" situation (cf. [22) and the 
references given there), one associates to G, K, S 1 (in fact, to G, K alone: cf. §2.4) 
a local index consisting of 

the Dynkin diagram L/1 of <JJ1.r (absolute local Dynkin diagram), 
the action of e = Gal (Ki/K) on LJ1 " par transport de structure", and 
a 8 -invariant set of vertices of Lli, called the distinguished vertices. 
The latter are characterized as follows: to define (/)1.r, one uses a chamber C 1 of 

A1 whose closure contains a chamber of A (such a C 1 exists by 1.10.l), and then, the 
distinguished vertices are those representing the elements of the basis of <JJ1af asso­
ciated to C1 (§ 1.8) whose restriction to A is not constant. 

Residually quasi-split and residually split groups can be characterized as follows 
in terms of the index. The group G is residually quasi-split if and only if the orbits 
of e in the set of all nondistinguished vertices are unions of full connected com­
ponents of J i, and G is residually split if and only if e operates trivially on Ll1, 

all vertices of J 1 are distinguished and the smallest splitting field of the connected 
center of G is totally ramified. 

The index of G determines its relative local Dynkin diagram L1 = Ll(G, S, K) 
and the integers d(r) (cf. § 1.8) uniquely. We shall indicate an easy algorithm which 
allows us, in most cases, to deduce the latter from the former. First of all , there is a 
canonical bijective correspondence 1• ,_. O(v) between the vertices of L1 and the or­
bits of e in the set of distinguished vertices of L11• For every vertex v (resp. every 
pair { r, 1''} of verti~es) of LI, let '11.v (resp . .:11,vv') denote the subdiagram of Ll1 
obtained by removing from it all vertices not belonging to O(v) (resp. O(v) U 
O(v')) and all edges containing such vertices, and let Ll1,v (resp. L/1_.,.,,) be the 
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subdiagram of J1, 0 (resp. J1, 1111,) consisting of its connected components which con­
tain at least one distinguished vertex. Then, L11, 0 , together with the action of 8 ~ 
Gal(Ki/K) on it and the set of distinguished orbits it contains, is the index (in the 
sense of [3] and [22)) of a semisimple group of relative rank one over K, the integer 
d(v) is half the total number of absolute roots of that group and vis marked with a 
cross in L1 if and only if the relative root system of the group in question has type 
BC, (if K is finite-or more generally if all vertices of L11, 0 are distinguished-that 
means that L11,0 is a disjoint union of diagrams of type Az). 

As for the edge of (/J joining v and v', its type is determined by L11, 00,, 0(v) and 
0( v'). If no connected component of L11, ••' meets both 0( v) and 0( v'), then v and 
v' are joined by an "empty edge". Otherwise, e permutes transitively the connected 
components of L11, 00, and the result can be described in terms of any one of them, 
say L11, ..,,. If the latter has only two vertices v1 e 0( v) and vie 0( v'), then v and v' are 
joined in L1 in the same way as v1 and vi in Lt;, 1111,. Thus, we may assume that Lf;, 00, 

has at least three vertices. Suppose first that Lt; 1111, is not a full connected component 
of L11• Then, there is an "admissible index" (i.~ .• an index appearing in the tables of 
[22]) of relative rank 2 whose underlying Dynkin diagram is Lt;, .. , and whose dis­
tinguished orbits are 0( v) n Lt;,••' and 0( v') n L1f, ••'; indeed, it follows from the 
assertions 3.5.2 below that to { v, v'} is canonically associated a quasi-simple group 
defined over a certain extension of Kand having such an index. The relative Dynkin 
diagram corresponding to that index, which can be computed by simple explicit 
formulae given in [22, 2.5], provides the nature of the edge joining v and v' in L1. 
The following table gives the result in the case where all vertices of Lt;, 1111, are dis­
tinguished (e.g., in the case where the residue field K is finite); in the first row, 
which represents Lt;, 00, , the sets 0( v) n L1r, 00, and 0( v' ) n L1~. ••' are circled: 

L1~ ... , 

corresponding edge in L1 ~ l===<=I ~ 
X 

There remains to consider the case where Lt;, vv' is a full connected component of 
L11, which means that v, v' are the two vertices of the local Dynkin diagram of a 
quasi-simple factor of relative rank I of G ( cf. § 1.12). Here we shall restrict our­
selves to the case where alJ vertices are distinguished and simply refer the reader to 
the tables of §4 which give L1 in all the cases that can occur. 

1.12. Reduction to the absolutely quasi-simple case; restriction of scalars. We 
shall now indicate how the local Dynkin diagram-with the attached integers d(v)­
and the index of an arbitrary group G can be deduced from those of related ab­
solutely simple groups. 

First of all, those data are the same for G and for the adjoint group of G0
• Thus, 

we may assume that G is connected and adjoint, hence is a direct product of K­
simple groups. Then, the Dynkin diagram- with the d(v) attached-and the index 
of G are the disjoint unions of the Dynkin diagrams and the indices of its simple 
factors. 
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There remains to consider the case where G is K-simple, which means [3, 6.21] 
that G = Ru K H, where L is a separable extension of K, His an absolutely simple 
group defined over L and Ru K denotes, as usual, the restriction of scalars. We 
shall, more generally, assume that G = Ru K H for an a rbitrary reductive group 
H; this allows us to decompose the extension L/ K into its unramified and its totally 
ramified parts and to handle the two cases separately. 

If L /K is totally ramified, the index, the local Dynkin diagram and the integers 
d(v) are the same for G, K as for H, L. 

If L /K is unramified, the index of G, K consists of [L: K] copies of the index of 
H, L permuted transitively by Gal(Ki/K) whose operation on the whole diagram 
is "induced up" from the operation of Gal(Ki/L) on one copy, the relative local 
Dynkin diagram of G, K is the same as that of H , L, and the integers d(v) are 
[L: K] times as big. 

1.13. The case of simply connected groups. In §1.7, we have seen that the Weyl 
group W of <l>.r is a normal subgroup of W = N(K)/Z(K). When G is semisimple 
and simply connected, one has W = W. In this and in other instances, nonsimply 
connected groups behave with respect to the "local theory" in a way similar to non­
connected groups with respect to the classical theory. 

1.14. Example. General linear groups. Let D be a finite dimensional central divi­
sion algebra over K. The unique extension of the valuation w to D will also be 
denoted by w. Suppose that G = GLn.D, the algebraic group defined by G(L) = 
GLn(D ® L) for any K-algebra L, and take for S the "group of invertible diagonal 
matrices with central entries", that is, the split torus whose group of rational 
points S(K) consists of all diagonal matrices Diag(si, · · ·, sn) with S; E K x. The 
homomorphisms e;: Mult ➔ S defined by 

e,-(t) = Diag(l, · · ·, 1, i - 1, l, ·· ·, 1)1 

with the coefficient i - 1 in the ith place (i = I, • • •, n) form a basis of X * and hence of 
V = X * ® R. If (a;)1:;;:;n is the dual basis in the dual of V, the relative roots of G 
are the characters a;i = ai - a; (i -t, j), the group Ua,-;CK) consists of the matrices 

U;j{d) = 1 + ((grs)) with Kr, = 0~ o{ d (d e D), 

and N(K) is the group of all invertible monomial matrices 

n(<1; di,·· ·, dn) = ((g,"i)) with g;i = 07U> di, 

where <1 is a permutation of {l, •· ·, n} and d; e nx ( = D - {O}). Forde nx, one 
has, with the notations of 1.4, 

(1) 

where <1 is the transposition of i and j, di = d, d; = - d- 1 and dk = l for k -t, i, j. 
We may identify the apartment A with Vin such a way that 

v(n(<1; di,···, dn)) (ti v;e,) = fi.v;-e; with v~Cil = V; + w(d;). 

'To avoid confusion, we adhere to the notations of [8, §IO] which, unfortunately, impose 
this somewhat unnatural choice of the basis (e;) (and, consequently, of (a;)). This remark also 
applies to §§1.15 and 1.16. 
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From (I) and the definition of a(a, u), it now follows that a(a;j, u,id)) = aii + w(d). 
Thus 

(2) 

and the filtration of U0 ;;(K) by the groups Xa with v(a) = a;i (cf. §1.4) is the 
image of the natural filtration of D by the isomorphism d ...... u;id). In particular, 
for any a e <Par, the integer d(a) of § 1.6 is equal to the dimension of the residual 
algebra of D over K.. The description of the walls and half-apartments is readily 
deduced from (2). The chambers are prisms with simplicial bases, one of them, call 
it C, being defined by the inequalities a1 < a2 < · · · < an < a1 + w(1.1), where 
1.1 denotes a uniformizing element of D. The corresponding basis consists of the 
affine roots a;,;+1 (i = I, ···, n -1) and an1 + w(1.1), and we see that the local 
Dynkin diagram is a cycle of length n (affine diagram of type An_1). The special 
points are all the points of the one-dimensional facets of the chambers, that is, all 
the points .E v,-e; where v,. - v1 is an integral multiple of w(1.1) for all i ; they are 
hyperspecial if and only if D = K. 

1.15. Example. Quasi-split special unitary groups in odd dimension. Let L be a 
separable quadratic extension of K. The valuation of L extending w will also be 
called w, and we denote by 1.1 a uniformizing element of L, by I'1 the value group 
w(Lx) = Z • w(1.1) and by 'I:' the nontrivial K-automorphism of L. Let n be a strictly 
positive integer and set I = {± I, • • •, ± n}. In £2n+1, we consider the hermitian form 

(I) 

Suppose that G is the algebraic group SU(h) and let the torus S be defined by 
S(K) = {Diag (d- n, · · ·, dn)ld; e Kand d_,.d,. = d0 = I for all i}. The homomorphisms 
e; : Mult ➔ S (i = J, ... , n) defined by e,-(t) = Diag(d-n,", dn) with d_,. = t, 
d; = r- 1, di = 1 for j # ±i form a basis of X *· If we denote by (a;)u;;~n the 
dual basis and if we set a_,. = - a; and a;i = a; + ai, we have</) = {a,'i I i,j e /, 
j # ±i} U {a;, 2a,- Ii e /}. For c, de L such that c•c + d + d• = 0 and i, j e / 
withj # ± i, we define the following elements of G(K): 

u;ic) = 1 + ((g,,)) with g- i, i = c•, g_,.,i = -c and all other g,, = 0, 
u,{c, d) = 1 + ((grs)) with g- ;.o = -c', g- ;,; = d, g0; = c and all other g ,, = 0. 
Then, U0 ,.;CK) = {u;j(c) Ic e L}, U0 ;(K) = {u,{c, d) I c, d E L, c•c + d + d• = ~} 

and U2a;(K) = {u,{0, d) Ide L, d + d• = 0}. The group N(K) consists of all 
matrices of determinant one of the form n(q; d_m ... , dn) = ((g;j)) with gii = 
o/(J) dj, where O' is a permutation of I U {0} = { -n, ... , n} which fixes 0 and pre-
seFes the partition of/ in pairs ( - i, i), and the d,-'s are elements of L such that 
d!_; d; = 1 for all i. 

For c e L, one has, with the notations of 1.14, 

(2) 
m(u;ic)) = U-;,- j(-c- 1)u,ic)u_;.- /-c- 1) 

where O' is the permutation (i, -j) U, - i), d_; = c- 1, d _i = -(c•)- 1, di = - c, d; 
= c' and all other d, are equal to I. Similarly, for c, d as above with c # 0 (and 
hence d # 0), 

(3) 
m(u;(c, d)) = u_,.( - cd-1, (d•)- 1)u;(c, d)u_;( -c(d•)- 1, (d•)- 1) 
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where a is the transposition (i, -i), d_; = (d•)-1, d0 = - d•d- 1, d; = d and all 
other d, are equal to I. 

We may identify the apartment A with Vin such a way that, for vi, •··, vn ER 
and setting v_; = - v;, one has 

(4) v(n(a; d_n,··, dn)) Ct. v;e;) = fi v;e; with v;m = V; + (J)(d;). 

From (2), (3), (4) and the definition of a(a, u), it follows that 
for c # 0, a(a;j, uii(c)) = a,"i + (J)(c), 
for c, d as above and c # 0, a(a;, u; (c, d)) = a; + ½ (JJ(d), 
for d EL x with d + d• = 0, a(2a;, u,{0, d)) = 2a; + (J)(d). 
Setting I" = {(J)(d)ld EU, d + d• = 0}, we see that for r EI' (resp. r EI") 

aii + r (resp. 2a; + r) is an affine root for all i, j. Furthermore, the filtration of 
U0 ;;(K) (resp. U2a;(K)) by the subgroups X 0 is the image of the natural filtration of 
L (resp. its intersection with the subgroup {did EL, d + d• = 0}) by the isomor­
phism c,.... u;(c) (resp. d,.... u;(0, d)). In particular, the corresponding values of 
the integer d(a) of §1.6 are d(2a; + r) = l and d(a;i + r) = I or 2 according as 
LJK is ramified or not. 

To determine under which condition a; + ½ r E </Jaf, we first note that, with the 
notations of§l.4, Xa;+rt2= {u;(c, d)lc'c + d + d• = 0, (J)(d) ~ r}- By definition, 
a; + ½ r E <Paf if and only if Xa,+rtz <t. Xa,+rl2+• · U2a; for every strictly positive e. 
That means that there exists c E L such that 

(5) r = sup {(J)(d) I c'c + d+ d• = 0}. 

More precisely, an easy computation shows that, with the notations of §1.6, the 
group 20 ,+712/ X2a,+r is isomorphic to the residue field of L or is trivial according 
as whether or not r is given by (5) for some c; thus, we see that, in the first case 
(i.e., when a; + ½re </Jaf), d(a; + ½ r) = 2 or I according as LJK is unramified or 
ramified. Ifwe set o = sup {(J)(d) Id EL, d + d• + I = 0}, a real number which is 
strictly negative if L/K is ramified and char K = 2, and = 0 otherwise, the right­
hand side of (5) can be written (J)(c•c) + o = 2(J)(c) + o, and we conclude that 

<Paf = {aij + TI i,j El, j "'F ± i, TE I'1} LJ {2a; + TI i E /,TE I"} 
u { a; + ½ r I i E /, r E 2I'1 + o}. 

Let us show that 

(6) if L/K is ramified, o it I". 
Indeed, assume the contrary and let x, y E L be such that x + x' + I = Y + Y' = 0 
and (J)(x) = (J)(y) = o. Upon multiplying y by a suitable unit of K, we may assume 
that xy-1 + 1 = 0 (mod 7"1), but then (x + y) + (x + y)• + 1 = 0 and (J)(x + y) 
> o, which contradicts the maximality of o. 

In view of ( 6), one of the following holds: 

(7) 

(8) 

L/ K is unramified and I' = I'1 = [" ; 

L/K is ramified, I'= 2I'1 and I" = 2I'1 + o + w(7"1)-

In both cases, I" U (2I'1 + o) = I'1 ; therefore, the walls are the vanishing sets of 
the affine functions a;i + rand 2a; + T, with re r1, and the inequalities 0 < a1 < 
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a 2 < •·· < a,. < ½ a,(:ir1) define a chamber. The corresponding basis is {ai, a_1.2, 

• •·, a_,,+1.,., 2a_,, + a,(:ir1)} if o is an even multiple of a,(:ir1) and {a_,, + ½ a,(:ir1), 

a-n+1.n, · · •, a_1.2, 2a1} otherwise. It follows from (7), (8) that in the first case, 2a1 

is an affine root if and only if L/K is unramified, and in the second case (where 
L/K is necessarily ramified) 2a_,, + a,(:ir1) is never an affine root. As a result, we see 
that, whatever the value of o, the local Dynkin diagram, together with the attached 
integers d(v) (cf. §1.8) are 

(9) X 

3 2 2 2 2 if n = I) 
or 

(IO) 
I I 

if n = I) 
according as L/K is unramified or ramified. 

A point v = I:7=i v,-e.- E A is special if and only if either v.- E I'1 for all i or 
v.- - ½a,(:ir1) E I'1 for all i. It is hyperspecial if and only if L/K is unramified and 
v.- E I'1 for all i, which means that / 0 consists of the vertex at the right end of the 
diagram (9). 

1.16. Example. Quasi-split but nonsp/it orthogonal groups. Let L be a separable 
quadratic extension of Kand let n be an integer ~ 2. In the space Kn$ L EB Kn, 
viewed as a (2n + 2)-dimensional vector space over K, we consider the quadratic 
form 

n 

q: (x_,,, •··, x,.) >-+ I; x _,.x,. + NL/ xx0 
i= l 

(xo e L; x.- e K for i ,t, 0) 

(where NL/ K: L -+ K denotes the norm), and we suppose that G is the orthogonal 
group O(q). The elements of G(R), for any K-algebra R, are conveniently repre­
sented by (2n + I) x (2n + I) matrices ((g.-i))_,,:;;.;, i~" where g,.i ER if both i 
and j are not zero, g0i E L®xR if j ,t, 0, g,.0 E Homx(L, R) if i # 0, and gr,o E 

Homx(L, L) ©x R. For S, we take the group of diagonal matrices Diag(d_,,, ... , d,.) 
with d_,-d,. = I for I ~ i ~ n and d00 = id. The characters a,-: Diag(d_,,, ... , d,.) 
>-+ d_,. for I ~ i ~ n form a basis of X*(S) and if we set a_,. = - a,-, aii = a,. + ai 
and / = {± I, •·· , ±n}, we have 

</J = {a,"ili, j e l , j ,t, ± i} U {a.-1 ie I}, 

a root system of type B,.. 
Here, we shall simply describe the affine root system </J.1 and the local Dynkin 

diagram without giving the details of the calculations, which can be found, in a 
more general setting (covering also the groups handled in the previous section) in 
(8, IO.I]. Calling again I'1 the value group of L, one has, for a suitable identification 
of A and V, 

</J.1 = {a.-i + r I i , j e I, j # ± i, re I' } U {a.- + r Ii e I, re I'1}. 

If the extension L /K is unramified, the ·inequalities O < a1 < •·· < a,. < 
a,(:ir) - a,,_1 define a chamber, the corresponding basis of </J.1 is {ai, a_1.2, . . •, 
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a_11+1.n, a-n+l.-n + w(n')} and the local Dynkin diagram, together with the at­
tached integers d(v), is 

(l) 
2 

The special vertices are the two endpoints on the ramified side of the diagram (the 
two endpoints of the diagram if n = 2); both correspond to hyperspecial points of 
A. If L/K is ramified, the inequalities O < ai < •·· < a,. < ½w(:ir) define a chamber, 
the corresponding basis is 

{a1, a-1.2, .. ·, a- n+l.n, a_,, + ½w(:ir)} 

and the local Dynkin diagram is 

I I I I I 

The special vertices are the two endpoints of the diagram and they do not cor­
respond to hyperspecial points. Note that in the unramified case, the Wey] group 
Wis an affine reflection group of type B,., whereas in the ramified case, it is of type 
c,.. 

2. The building. 
2.1. Definitions. The building fJ = fJ(G, K) of Gover K can be constructed by 

"gluing together" the apartments of the various maximal K-split tori of G. More 
precisely, a definition of fJ is provided by the following statement where by "G(K)­
set", we mean a set with a left action of G(K) on it. 

Let A = A(G, K) be given as in §1.2. Then, there exists one and, up to unique 
isomorphism, only one G(K)-set fJ containing A and having the following properties: 
f!.i = UceG(K> gA, the group N(K) stabilizes A and operates on it through v (cf §1.2) 
and for every affine root a, the group Xa of §1.4 fixes the half-apartment Aa = 
a - 1([0, oo )) pointwise. 

(N .B. The " canonicity" of the building f!.i is the same as that of A: cf. § 1.2.) 
The proof roughly goes as follows. We assume that G is semisimple (which is no 

essential restriction). Modulo 1.4.1 and 1.4.2- as explained in §1.5-the existence 
of@ is proved in [8, 7.4]. It is then clear that there is a "universal" G(K)-set ~ with 
the given properties, which is obtained by taking the quotient of the direct product 
G(K) x A by a certain equivalence relation. The canonical mapping of ~ in the 
building J defined in [8, 7.4.2] is obviously surjective, and it is also injective be­
cause, as is readily verified, the stabilizer of a point of fJ contains the stabilizer of its 
image in J. Thus, J maps onto any G(K)-set f!.i with the required properties and, 
using [8, 7.3.4], one shows that the stabilizers of the points of A cannot be bigger 
in@ than they are in Jwithout "eating more of N(K)" than they are allowed to by 
the prescribed action of N(K) on A. 

The sets gA with g E G(K) are called the apartments of the building. The apart­
ment gA can be identified with "the" apartment of the maximal split torus cS. 
That gives a one-to-one correspondence between the apartments of @ and the 
maximal K-split tori of G: indeed, gA is the only apartment stable by cS(K) (the 
proof of[8, 2.8.1 I] shows that) and cN(K), which determines cs, is the stabilizer of 
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gA in G(K). "In most cases•·, gA can also be characterized as the fixed-point set in 
ff6 of the group of units 8S0 = {s E 8S(K)kv(x(s)) = 0 for all characters x E X*(8S)}, 
but that is not always true (for more precise statements, cf. §3.6). 

In this context, it is worthwhile to note also that the half-apartment Aa (for 
a E <1>.r) is never the fixed-point set of the group X a: indeed, if fB is metrized in the 
way described below (§2.3), there is a constant c such that for every point x E A a at 
distanced of the wall oAa, the whole ball with center x and radius cd is pointwise 
fixed by Xa (cf. [8, 7.4.33)). 

If S1 is the maximal split torus of the center of G0 and if Ci, ... , Gm are the almost 
simple factors of G0

, the building~ is canonically isomorphic with the direct product 
of the buildings@(S1, K) (which is an affine space) and M(G;, K ) (i = 1, ... , m). If 
G is K-anisotropic (i.e., if S = { I}), fB consists of a single point. If G = Ru K H, 
where Lis a separable extension of Kand His a reductive group over L , the build­
ings @(G, K) and @(H, L) are canonically isomorphic. 

2.2. Affine structures, facets, retractions, topology and other canonical structures 
on@. Since the stabilizer N(K) of A in G(K) preserves its affine structure and its 
partition in facets, each apartment gA of Yl (with g e G(K)) is endowed with a 
natural structure of real affine space and a partition in facets. Those structures 
agree on intersections. Indeed, 

2.2.1. If A' and A" are two apartments, there is an element ofG(K) which maps A ' 
onto A" and fixes the intersection A' n A" pointwise; furthermore, A ' n A" is a 
closed com•ex union of facets in A ' (hence also in A ") [8, 7.4.8]. 

From that, we deduce a partition of Ba in.facets, among which those which are 
open in apartments are called chambers. In particular, if G0 is quasi-simple (resp. 
semisimple), fB is a simplicial (resp. polysimplicial) complex. 

Given two facets of ff6, there is an apartment containing them both [8, 7.4.18]. 
In particula r, given two points x , y E :18, there is an apartment which contains them 
and it follows from 2.2.1 that, for t e [O, I] c R , the point (I - t)x + ty, which is 
well defined in any such apartment, is independent of it. The set {( I - t)x + ty I 
t E [O, l]} is called the geodesic segment joining x and y in .?J. 

Let A' be an apartment and let C c A ' be a chamber. For every apartment con­
taining C, there is a unique isomorphism of affine spaces of that apartment onto A ' 
which fixes C pointwise. In view of 2.2.1, all those isomorphisms can be glued 
together in a mapping PA';c: ff6 -> A' called the retraction of fj(j onto A' with center 
C. Clearly, geodesic segments are mapped by PA';C onto broken lines (connected 
unions of finitely many geodesic segments). 

The building fB is commonly endowed with a topology invariant by G(K) which 
is most naturally defined via the metric considered below (2.3), but which can also 
be more canonically defined as the weakest topology such that all PA' ;c are con­
tinuous. If the residue field K is finite, that topology makes FA into a locally compact 
space and coincides with the "CW-topology" (that is, the quotient topology of 
the natural topology of the disjoint union of all apartments). Otherwise, it is strictly 
weaker than the latter. In all cases, the topological space 81 is contractible; indeed, 
for every point x E @, the mappings rp1: fB ..... ff6 defined by rp,(y) = tx + (l - t)y 
form a homotopy from the identity to the retraction of@ onto {x} [8, 7.4.20]. 

A subset of @ is called bounded if its image by some retraction .0 A';C is bounded, 
in which case its image by every such retraction is bounded, as is easily seen. As 
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usual, a subset H of G(K) is called bounded if for every K-regular function/ on G, 
the set w(f(H )) is bounded from below. The action of G(K) on @ is bounded and 
" proper" in the following sense: in the mapping (g, b)>->(gb, b) of G(K) x @ in 
18 x @, bounded subsets of G(K) x @-i.e., subsets of products of bounded sets­
are mapped onto bounded sets, and the inverse images of bounded subsets of@ 
x @ are bounded. If K is finite, "bounded" becomes synonymous with " relatively 
compact"; in particular, the action of G(K ) on @ is proper in the usual sense. 

2.3. Metric and simplicial decomposition. In various questions, buildings p lay 
for p-adic reductive groups the same role as the symmetric spaces in the study of 
noncompact real simple Lie groups (cf. [24, §5] and the references given there). 
This section shows some aspects of the analogy; cf. also [18, 5.32]. Note that, 
unlike those introduced in §2.2, the structures considered here are not canonical, at 
least when G is not semisimple. 

Let us choose in Va scalar product invariant under the Wey) group •W. If G is 
quasi-si mple, such a scalar product is unique up to a scalar factor, and there are 
vario us "natural'' ways of normalizing it (Killing form, prescription of the length 
of short coroots, etc.). Canonical choices are also possible-componentwise-if G 
is semisimple, but not in general. From the scalar product in question, one deduces 
a Euclidean distance on A, hence, through the action of G(K), on any apartment. 
From 2.2. 1, it follows that two points x, y of @ have the same distance d(x, y) in 
all apartments containing them, and the properties of the retractions PA';c described 
in §2.2 readi ly imply that the building @ endowed with the distance function d: 
@ x @ _. R+ is a complete metric space [8, 2.5]. The associated topology coincides 
with that defined in §2.2. Again using the retractions PA';C one shows [8, 3.2.1) 
that d satisfies the following inequality, where x, y, z, m E fiJ and d(x, m) = 
d(y, m) = ½ d(x, y): 

d(x, z)2 + d(y, z)2 £ 2d(m, z)2 + td(x, y)2. 

In Riemannian geometry, that inequality characterizes the spaces with nega­
tive sectional curvatures (hence is valid in noncompact irreducible symmetric 
spaces!); as in the Riemannian case, it can be used here to prove the following 
fixed-point theorem: 

2.3. 1. A bounded group of isometries of &a has a fixed point [8, 3.2.4]. Interesting 
applications are provided by Galois groups ("Galois descent" of the building) 
and by bounded subgroups of G(K) (cf. §3.2). 

In some applications (cf., e.g., [2]), it is useful to dispose of a simplicial decom­
position of fiJ invariant under G(K). To obtain it, it suffices to choose a simplicial 
decomposition of A invariant under N(K) and finer than the partition in facets-it 
is easily seen that such a decomposition always exists-and to carry it over to all 
apartments by means of the G(K)-action. If G is semisimple, one can more directly 
use the canonical barycentric subdivision of the partition of B in polysimplical 
facets. If G is quasi-simple, that partition itself meets the requirements. 

2.4. Dynkin diagram; special and hyperspecial points. Let C be a chamber of @ . 

Starting from any apartment containing C, we can, following §1.8, define a local 
Dynkin diagram J(G, C) which, in view of 2.2.1 , does not depend, up to unique 
isomorphisms, on the choice of the apartment. If C' is another chamber, 1.8.1, 
applied to any apartment containing C and C', provides an isomorphism <pc,c: 
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Ll(G,C)--+ Ll(G, C') which,again by 2.2.1, is independent of the apartment in ques­
tion. All those isomorphisms are coherent: if C, C', C" are three chambers, one 
has <fJc•c = <f)c•c' 0 <fJc'c• Thus, we can talk about the local Dynkin diagram Ll(G) = 
Ll(G, K) of Gover K, a diagram which is well-defined up to unique isomorphisms. 
The same is true of the absolute local Dynkin diagram(§ I.I I), which is nothing else 
but the diagram LI( G, K1) of G over the unramified closure K1 of K, and of the local 
index (§1.1 I). 

The definitions of §§ 1.9 and I. IO can be immediately transposed to arbitrary 
points x and arbitrary facets F of the building tJ : one chooses an apartment con­
taining x or F, uses the definition under consideration and deduces from 2.2.1 that 
the result is independent of the apartment chosen. Thus, to every point x (resp. 
facet F) of tJ is canonically associated a set Ix (resp. IF) of vertices of Ll(G) and a 
root system </Jx (resp. </JF), the latter being only defined up to noncanonical iso­
morphisms. We can also talk about special and hyperspecial points of tJ. The 
criterion in terms of Ix for a point x to be special (last paragraph of§ 1.9) remains 
of course valid. A necessary condition for the existence of hyperspecial points is 
that G split over an unramified extension of K; that condition is also sufficient if G 
is quasi-split. 

To every vertex v of the diagram Ll(G) is attached an integer d(v): the definition 
given in §1.8 made reference to an apartment A but the result is independent of its 
choice, always by 2.2.1 . If the residue field K is finite, isomorphic with Fq, the 
number d(v) can be interpreted as follows: a facet F of codimension one and "type 
v", that is, such that IF is the complement of v in the set of all vertices of Ll(G), is 
contained in the closure of exactly qd<•> + I chambers ( cf. §3.5). 

2.5. Action of (Aut G)(K) on P,d and LI; conjugacy classes of special and hyper­
special points. The group (Aut G)(K) of all K-automorphisms of G and, in par­
ticular, the group Gad(K) of rational points of the adjoint group Gad of G0

, act on 
P,d and on the local Dynkin diagram LI = Ll(G) "par transport de structure". 
Through the canonical homomorphism int: G --+ Aut G, that gives an action of 
G(K) on tJ and on LI. The action of G(K) on @ provided by the definition of tJ as a 
G{K)-set coincides with this one if G is semisimple but not in general; however, the 
induced actions on LI are always the same. We call B = B(G, K) the image of G(K) 
in Aut L1. 

If G is semisimple and simply connected, it operates trivially on LI, i.e. , B = {I} 
(another illustration of the "philosophy" of§ 1.13). 

Suppose G connected. Then, Bis also the image of Z(K) in Aut LI, and it can be 
computed as follows. We denote by G a simply connected covering of the derived 
group of G, by S the maximal split torus of G whose image in G is contained in S, 
by Z the centralizer of S in G, by S1 the maximal subtorus of S which is central in 
G and by Z, the image of Z(K) in Z(K). Then, S1(K), Z, and Z, = {z E Z(K)I 
w(x(z)) = 0 for all x E X*(Z)} (cf. §1.2) are normal subgroups of Z(K) and their 
product S1(K) · Z, • Z, is the kernel of the action of Z(K) on LI; thus B = 
Z(K)f (Si(K) · Z, • Z,). If Gis quasi-split-in particular if K is algebraically closed­
Z and Z are tori and the computation of B is particularly easy. Note that, in most 
interesting cases, the subgroup B of Aut LI is uniquely determined by tlie underlying 
"abstract" group. 

Two facets F and F' of PA are in the same orbit of G(K)-for any one of the two 
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actions of G(K) on f!J described above-if and only if/ F and IF' (cf. §2.4) are in the 
same orbit of E. In particular, if G is semisimple and simply connected, the orbits of 
G(K) in the set of special points of !!J are in canonical one-to-one correspondence with 
the sets of vertices of L1 consisting of one special vertex out of each connected com­
ponent. 

Suppose G semisimple. If G is K-split, the group G.d(K) permutes transitively 
the special points of f!J: that is an immediate consequence of Proposition 2 in 
[5,VI.2.2). A case analysis shows that, for any semisimple G, G.d(K) permutes 
transitively the special points except possibly if the Coxeter diagram underlying 
L1 has a connected component of the form 

s s s s 
+-----i== or - . 

Suppose now that G is quasi-simple and that the Coxeter diagram in question 
is one of those above. Then, obvious necessary conditions for G.d(K) (and even 
(Aut G)(K)) to permute transitively the special points are the existence of an auto­
morphism of L1 permuting its two special vertices, and the equality of the numbers 
d(v) attached to them. One verifies that if the residue field K is finite, those conditions 
are also sufficient. 

For arbitrary G, if f!J has hyper special points, the facets consisting of such points-
hence the points themselves if G is semisimp/e- are permuted transitively by G.d(K). 

2.6. Behaviour under field extensions. 
The buildings behave functorially with respect to Galois extensions. 
More precisely, for every Galois extension K 1 of K , we can consider the building 

!!J(G, K 1), on which the Galois group Gal(Ki/K) acts naturally (in the nonsemi­
simple case, one has to "canonify" the apartments-and hence @-as described in 
§ 1.2), and there is a unique system of injections 

'KzKi : !!J(G, K1) -+ f!J(G, K2) (K1,K2 Galois extensions of K with K 1 c K2) 

with the following properties: 
the image of cKzK, is pointwise fued by Gal(K2/K1); 

the restriction of 'KzKi to any apartment of f!J(G, K1) is an affine mapping into 
an apartment of f!J(G, K2); 

'KzK, is G(K1)-covariant; 
if K1 c K2 c K3, one has has tK3K , = cKJKz O tK2K,· 

The last property allows us to identify coherently every f-a(G, Ki) with its image 

by every 'KzK,· 

2.6.1. If Ki/K is unrami.fied (or even tamely ramified: cf. [19)), f!J is the.fixed point 
set of Gal(Ki/K) in f!J(G, K1) and the apartment A = A(G, S, K) is the intersection 
of f!J with the apartment A(G, Si, K1) of any maximal K1-sp/it K-torus S1 of G contain­
ing S. Still assuming that Kif K is unramified, one deduces from 1. 10.2 that a point 
x off$ which is special in f!J( G, K 1) is also special in f!J ; if furthermore G is split over 
K1, the point x is hyperspecial. 

If Kif K is wildly ramified, the fixed point set of Gal(Ki/K) in f!J(G, K 1) may be 
strictly bigger than @: it then looks like the building !!J "covered with barbs". 
Suppose for example that G is split and is not a torus, that K = Q2 and that K1 is 
totally ramified over Kand different from K (which implies that Ki/K is wildly 
ramified). The apartment A = A(G, S, K) of !!J is also an apartment of !!J(G, K1). 
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Let F be a facet of codimension one of A with respect to K1 which is not a facet 
with respect to K(cf. the example following 1.10.1). By the last assertions of§§l.8 
and 2.4, there is exactly one chamber of ~ (G, K1) not contained in A and whose 
closure contains F; it must of course be fixed by Gal(Ki/K) and cannot be con­
tained in PJ since Fis not a facet of PJ. 

For a proof of the above results and a more detailed analysis of the situation, 
cf. [19]. 

2.7. Example. Groups of relative rank I. The building of a semisimple group of 
relative rank I is a contractible simplicial complex of dimension 1, i.e., a tree. All 
its vertices are special points. If K ~ Fq and if d, d' are the integers d(v) attached to 
the two vertices of the Dynkin diagram, each edge of the tree has one vertex of 
order qd + I and one vertex of order qd' + 1 ( cf. §2.4). Consider for instance the 
special orthogonal group of a nonsplit quadratic form in 5 variables over Q2 : here, 
d = 1, d' = 2, and the building looks as suggested by the picture below. In that 
case, the vertices of order 5 are hyperspecial and the others are not. 

2.8. Example. SL3 and G~. Suppose that G = SL3. The building ~ = ~ (G, K) 
is a 2-dimensional simplicial complex whose maximal simplices are equilateral 
triangles, for the metric introduced in §2.3. The apartments are Euclidean planes 
triangulated in the familiar way: 

To picture the building itself, one must imagine it "ramifying" along every edge, 
each edge belonging to q + 1 triangles if q = card K. The link of each vertex in-16 
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is the "spherical building" of SLs(.K), that is, the "flag complex" of a projective 
plane over K, a picture of which can be found in [24] or [26] for the special case 
where K ~ F2. All vertices of eJ are hyperspecial. 

The building 9.S'(GL:i, K) is the direct product of eJ and an affine line. 
2.9. Example. General linear groups. We adopt the hypotheses and the notations 

of §1.14. In particular, D denotes a finite dimensional central division algebra over 
Kand G = GLn,o (thus G(K) = GL,.(D)). Then, the building Pd = 9.S'(G, K) can be 
interpreted as the set % of all "additive norms" in Dn, that is, of all functions 
rp : D" -+ R U { + oo} such that 

<p(X + y) ~ inf{rp(x), <p(y)} 

rp(xd) = rp(x) + w(d) 

(x, y E Dn), 

(xED", dED). 

More precisely, if we identify the apartment A with Vas in §1.14, the mapping 
A -+ .;V which maps I:7=1 v,-e,. onto the norm 

(xi, ···, x,.) ....... inf{w(x.-) - v,-li = I, ···, n} 

extends-of course uniquely- to an isomorphism of G(K)-sets Pd -+ %, where 
G(K) operates on JV by (g<p)(x) = rp(g-1x). A norm <p is-special- i.e., corresponds 
to a special point of B-if and only if there is a basis (b.-)1~ .-~ " of the vector space 
Dn and a real number f such that 

(d.-ED); 

<p is hyperspecial if and only if it is special and D = K. 
A similar interpretation of 9.S'(SL,.,0 , K) can be found in [8, p. 238]. The space 

JV has been first considered by 0. Goldman and N. Iwahori [12]. 
2.10. Example. Special unitary groups. Let L, w, n-1, I'i, -rand o have the same 

meaning as in §1.15. In particular, Lis a separable quadratic extension of Kand 
o = sup{ w(d) I d E L, d + d~ = 1}. Let E be a finite dimensional vector space 
over L endowed with a nondegenerate hermitian form h relative to -r, and suppose 
that G = SU(h). Then, the building eJ of G over K, which is also, by the way, the 
building of U(h), can be interpreted as the set .;Vh of all additive norms rp: E -+ 
R U { + oo} satisfying the inequalities 

(J)(h(x, x)) ~ 2rp(x)-o 

w(h(x, y)) ~ cp(x) + rp(y) 

(xEE), 

(x,y E £), 

and maximal with that property (cf. [8, p. 239] for a more general result). 
Suppose further that E = L2n+1 and that his as in 1.15(1). Then, the identification 

of eJ and ..#" h can be described more explicitly as follows: with the notations of 
§1.15, the mapping A-+ .;Vh which maps I:7=1 v,-e.- onto the norm 

(x_,,, ... ' Xn) ....... inf{ w(x.-)- v,., w(x_,.) + V;, w(xo) - ol I ~ i ~ n} 

extends uniquely to an isomorphism of G(K)-sets !,I -+ % h· A norm <p E JV h is spe­
cial- i.e., corresponds to a special point of .c?a-if and only if there is a basis 
(b.-), rr.;~,. of Ewith respect to which h has the form 1.15(1) and a constant/E ½I'i 
such that, for x,- E L , 
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( one can then choose the basis (b,-) so that f = 0 or ½c:o(ni) ). The norm <p is hyper­
special if L/Kis unramified and if there is a basis (b,-) of E such that (1) holds for 
f= 0. 

3. Stabilizers and centralizers. From now on, G is assumed to be connected. 
3.1. Notations; a BN-pair. For every algebraic extension Ki of K with finite 

ramification index and every subset {) of the building F,/(G, Ki), we denote by 
G(Ki}° the group of all elements of G(Ki) fixing {) pointwise. If {) is reduced to a 
point x, we also write G(K1)" for G(K1}°. Note that if Fis a facet of f,/(G, K1) and if 
xis a point of F "in general position", one has G(K1)F = G(K1)". The stabilizers 
G(K)" of special (resp. hyperspecial) points x e @ are called special (resp. hyper­
special) subgroups of G(K). 

We recall that if G is semisimple and simply connected, the group W = 
N(K)/Z(K) coincides with the Weyl group W of the affine root system <!J.f. As be­
fore, we set@ = @(G, K). 

3.1.1. Suppose that W = W. Then G(K)F = G(K)" for every facet F of~ and 
every x e F. Furthermore, if C is a chamber of A = A( G, S), the pair ( G(K)C, N(K)) 
is a BN-pair (or Tits system: cf [5], [23]) in G(K) with Wey/ group W. In that case, 
the groups G(K)" for x e ~ are called the parahoric subgroups of G(K) (cf. [8]), 
but we shall avoid using that terminology here in order not to prejudge of its 
most suitable extension to the nonsimply connected case. An alternative con­
struction of the building f,/ starting from the above BN-pair (which can be defined 
independently of the building, as we shall see) and using the parahoric subgroups 
defined by means of that BN-pair is given in [8, §2]. 

Let{) be a nonempty subset of the apartment A whose projection on the building 
of the semisimple part of G (cf. last paragraph of 2.1) is bounded. For any root 
a e <!J, let a(a, D) denote the smallest affine root whose vector part is a and which is 
positive on D. Let <!J' be the set of all nondivisible roots-i.e., all roots a e <!J such 
that ½a¢ <!J-and let <!J'+ (resp. (J)'-) be the set of aU nondivisible roots which 
are positive (resp. negative) with respect to a basis of <!J, arbitrarily chosen. Set 
N(K)0 = N(K) n G(K)0 and let Z c and Xa be defined as in §§1.2 and 1.4. Then 
one has the following group-theoretical .description of G(K)a (cf. [8,6 .4.9, 6.4.48, 
7.4.4]): 

If X ±(D) denotes the group generated by all Xa(a, O) with a e (JJ'±, the product 
mapping TI aE0'± X a(a, 0 ) ➔ X±(D) is bijective for every ordering of the factors of 
the product and one has G(K)0 = x-(D) · X+(Q) · N(K)0 . If Q contains an open 
subset of A , the product mapping TI aE0' Xa(a, 0) X Z c ➔ G(K)0 is b(jective for every 
orqering of the factors of the product. 

3.2. Maximal bounded subgroup. For every nonempty subset {) of ~ . G(K)0 is a 
bounded subgroup of G(K) (cf. §2.2). If the residue field K is finite, G(K)0 is even 
compact and, in what follows, "maximal bounded" can be replaced by "maximal 
compact". 

From 2.3.1, one easily deduces that: 
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every bounded subgroup of G(K) is contained in a maximal one and every maximal 
bounded subgroup is the stabilizer G(K)" of a point x of PA. 

It is now clear that if x belongs to a facet of minimal dimension of 11,1, G(K)" is a 
maximal bounded subgroup of G(K), in particular, special subgroups are maximal 
bounded subgroups. From 3.1.1, it follows that the above two statements give a 
complete description of the maximal bounded subgroups in the simply connected 
case: 

if G is semi simple and simply connected, the maximal bounded subgroups of G(K) are 
precisely the stabilizers of the vertices of the building 11,1; they form TI i=l (/; + 1) con­
jugacy classes, where Ii, · · ·, 1, denote the relative ranks of the quasi-simple factors of G. 

For an analysis of the nonsimply connected case, cf. [8, 3.3.5]. 
3.3. Various decompositions. Let C be a chamber of A = A(G, S). We identify A 

with the vector space Vin such a way that O becomes a special point contained in 
the closure of C; in particular, G(K)O is a special subgroup of G(K). Set D = Rt • C 
(a "vector chamber") and B = G(K)C; if K is finite or, more generally, if G is re­
sidually quasi-split, and if G is simply connected, Bis an lwahori subgroup of G(K) 
(cf. §3.7). Let u+ be the group generated by all Ua for which ale-and hence alv­
is positive and let Y be the " intersection of V and W", that is, the group of all 
translations of A contained in W; thus, Y is the image of Z(K) by the homomor­
phism v of§I.2. Set Y+ = Y n i> (closure of D) and Z(K)+ = v- 1(Y+), a subsemi­
group of Z(K). 

3.3. l. Bruhat decomposition. One has G(K) = BN(K)B and the mapping BnB ,_. 
v(n) (n e N(K)) is a bijection of the set {BgB I g e G(K)} onto W. 

If n e N(K) and v(n) = w, we also write BnB = BwB, as usual. If K = F9, the 
cardinality qw of BwB/B (used for instance in [11) is given by the following formula 
in terms of the integers d( v) of §1.8: set w = r1 • • •r1w0, where (ri, • • •, r1) is a reduced 
word in the Coxeter group Wand w0(C) = C, and let v; be the vertex of LI repre­
senting r;; then qw = qd with d = 1:;:=1 d(v;). In particular, we have another inter­
pretation of d(v): qd<v> = q,<v> where r(v) denotes the fundamental reflection cor­
responding to the vertex v of LI. 

More generally, for any K, the quotient BwB/B has a natural structure of "per­
fect variety" over K, in the sense of Serre [Puhl. Math. I.H.E.S. 7 (1960), 1.4], and, 
as such, it is isomorphic to a K-vector space of dimension 1:;:=1 d(v;), with the above 
notations. 

3.3.2. Iwasawa decomposition. One has G(K) = G(K)0Z(K)U+(K) and the map­
ping G(K)OzU+(K) 1-+ v(z) (z e Z(K)) is a bijection of {G(K)0gU+(K)I g E G(K)} 
onto Y. 

3.3.3. Cartan decomposition. One has G(K) = G(K)0Z(K)G(K)0 and the map­
ping G(K)OzG(K)O 1-+ v(z) (z e Z(K)+J is a bijection of {G(K)OgG(K)O/g E G(K)} 
onto Y+. 

In particular, we see that if K is finite, the convolution algebra of all functions 
G(K) 1-+ C with compact support which are bi-invariant under G(K)O (Hecke al­
gebra) has a canonical basis indexed by Y +· That algebra is commutative. 

For the proofs and some generalizations of the above results, cf. [8, §4]. 
3.4. Some group schemes. The results of this section and the next are special 

cases of results which will be established in [9]. 
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It is well known that the maximal bounded subgroups of SLn(K) are the group 
SLn(o) and its conjugates under GLn(K). It is natural to ask whether, more gener­
ally, the maximal bounded subgroups of G(K) can always be interpreted as the 
groups of units of some naturally defined o-structures on G. A positive answer is 
provided by the statement 3.4.1 below. In this section, we denote by G •• the derived 
group of G and by pr •• the canonical projection PJ(G, K1) -+ PJ(G •• , K1) (cf. the 
last paragraph of2.I) for any K 1• 

3.4.1. If{) is a nonempty subset of an apartment of YI whose projection pr .. ({)) is 
bounded, there is a smooth affine group scheme <§ 0 over o, unique up to unique isomor­
phism, with the following properties : 

the generic.fiber <§0 ,K of<§0 is G; 
for every unramified Galois extension K1 of K with ring of integers o K 

1
, the group 

<§0(0K1) is equal to G(K1) 0 (cf 3.1), where{) is identified with its canonical image in 
the building f!A(G, K1) (cf 2.6). 

Clearly, <§0 depends only on the closed convex hull of pr •• (.O). 
The following two statements are easy consequences of the definitions. 
3.4.2. If G is split, the group schemes<§,, associated to the special points x of fJ 

are the Cheval/ey group schemes with generic.fiber G. 
3.4.3. Let K 1 be an unramified Galois extension of K with ring of intel(ers 0K1, let 

{) c: fJ be as above and let {)1 be the canonical image of Qin PA1 = PA(G, K1) (2.6). 
Then <§01 is the group scheme over oK1 deduced from <§0 by change of base. Con­
versely, let<§ be a smooth group scheme over o with generic fiber G and suppose that, 
by change of base from o to 0K1, <§ becomes a group scheme <§01 with 0 1 c: PJ1 

as in 3.4.1; then pr •• (01) is stable by Gal(Ki/K), and if it is pointwise fixed by 
Gal(Ki/K), hence can be identified with a subset of PJ(G • ., K) (cf 2.6.1) whose 
inverse image by pr •• in PA we denote by Q, one has<§ = <§0 . 

If Q' is any nonempty subset of the closure of D, the inclusion homomorphisms 
G(K1}°-+ G(K1)0 ' , for K 1 as in 3.4.1, define a morphism of group schemes <§0 -+ 
<§0 , which we denote by p0 ,0 . We represent by G0 and p0 ,0 the algebraic group 
defined over Kand the K-homomorphism obtained from <§0 and p0 ,0 by reduction 
modµ. 

3.4.4. The reduction homomorphism <§0 (o) = G(K}°-+ Go(K) is surjective. 
3.5. Reduction mod µ. Let {) be as in 3.4. Our next purpose is to investigate the 

group G0 . We assume, without Joss of generality, that[} c: A(G, S). Then, the well­
defined split torus scheme whose generic fiber is Sis a closed subscheme of <§0, 

and its reduction modµ, called S, is a maximal K-split torus of G0 . The character 
group of Sis canonically isomorphic with the character group X* of S and will be 
identified with it; similarly, we identify the cocharacter group of S with X*. The 
neutral component 0° of G possesses a unique Levi subgroup containing S, which 
we denote by G'fr; it is defined over K. We suppose {) convex. 

Let F be a facet meeting Q and of maximal dimension with that property. Since 
Fsatisfies all the conditions imposed on D, the reductive group Gr;d is defined and it 
also conta:ns S. One shows that the identity map of S onto itself extends uniquely to 
an isomorphism Grf1 -+ G'ped; if F c: {), that is nothing else but the restriction of 
poF to Gb•d. In the sequel, we shall be mainly concerned with the group Gr;d. 

The notion of coroot associated with a root a is usually defined for split groups 
(cf. [11, XX, 2.8], [20, §1]). In view of the next statement, we extend it as follows to 
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arbitrary reductive groups: if 2a is not a root, we simply take the coroot associated 
with a in the split subgroup of maximal rank defined in [3, §7); if 2a is a root, we 
define the coroot associated with a as being twice the coroot associated with 2a 
(X* being written additively). 

3.5.I. The root system of G';d with respect to Sis the system (/)F (cf 1.9); in partic­
ular, its Dynkin diagram is obtained from the local Dy nkin diagram LJ(G, K) by 
deleting the vertices belonging to IF (cf 1.9) and all edges containing such vertices. 
The co root associated with a root a E (/)Fis the same for G'fd as for G. If Da denotes the 
unipotent subgroup of G'fd corresponding to a, the group Ua(K) is nothing else but the 
group Xa of§ l .4, where a is the affine root vanishing on F and whose vector part is a. 

Applying that to the unramified closure of K, one gets the following immediate 
consequence. 

3.5.2. The index of G'fd over K, in the sense of [3] and [22], is obtained from the 
local index of G by deleting from L11 all vertices belonging to the orbits O(v) with 
v EI F (the notations are those of §I.I I) and all edges containing such vertices. In 
particular, if G is residually quasi-split (resp. residually split), G';d is quasi-split 
(resp. split). When F is a chamber, then G is residually quasi-split (resp. residually 
split) if and only if G'fd is a torus (resp. a split torus). 

If G is simply connected, the group G0 is connected. In general, the group of com­
ponents of G0 is easily computed when one knows the group 8 1 = 8(G, K1) (cf. 
§2.5), where K1 is the maximal unramified extension of K. Here, we shall give the 
result only in the case of a facet. . 

3.5.3. The group of components of GF is canonically isomorphic with the intersec­
tion of the stabilizers of the orbits 0( v) with v E IF in the group 81• A component is 
defined over K if and only if the corresponding element of 81 is centralized by 
Gal(Ki/K).IfKisfinite, every component ofGF which is defined over K has a K­
rational point (by Lang's theorem). 

The groups Gr give an insight into the geometry of the building through the 
following statement: 
, 3.5.4. The link of F in B is canonically isomorphic with the spherical building of 
Gr over K, i.e. the "building of K-parabolic subgroups" of Gr (cf (23, 5.2D. 

The groups Gr also provide an alternative definition of the integers d(v) of 
§1.8. Suppose Fis of codimension one and let v be the complement of IF in the 
set of all vertices of LJ. Then, Gr;d has semi simple K-rank I and d( v) is the dimension 
of its maximal unipotent subgroups, or, equivalently, the dimension of the variety 
GFf PF, where PF is a minimal K-parabolic subgroup of~, the neutral component of 
GF. This, together with 3.5.4, implies the interpretation of d(v) given in 2.4. If G 
is residually split, GFf PF is a projective line, hence d( v) = 1 ; in particular, we re­
cover the last statement of§ 1.8. 

While 3.5.2 gives an easy algorithm to determine the type of Gr, 3.5.1, applied 
to the unramified closure of K, actually provides the absolute isomorphism class of 
that group. Here is an immediate application of that. Suppose that G is quasi­
simple, simply connected and residually split and that F is a specia l point. Then, 
Gr;d is a simply connected quasi-simple group except if the local Dynkin diagram 
is the following one-: 
(1) 

* 
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and if IF is the vertex marked with a*· Indeed, it is readily verified that in all other 
cases, <PF contains all nonmultipliable relative roots of G, and the assertion follows 
from [4, 2.23 and 4.3]. In the exceptional case above, Grp is a special orthogonal 
group, hence not simply connected. Using the fact that in a simply connected group 
the derived group of the centralizer of a torus is also simply connected, one easily 
deduces from the preceding result the following more general one. Let us say that 
a special vertex of the absolute local Dynkin diagram L11 is good if it is not the vertex 
* ofa connected component of type (1) of that diagram. Then ifG is semisimple and 
simply connected and if U vEIFO(v) contains a good special vertex out of each 
connected component of L11, the derived group of G'J'1 is simply connected. 

3.6. Fixed points of groups of units of tori. Let M be a subgroup of the group of 
units Sc = {s E S(K) I w(x(s)) = 0 for all XE X*} of S. We wish to find under which 
condition the apartment A = A(G, S) is the full fixed point set !!JM of M in f!J. 
From the properties of the building recalled in §2.2, one deduces that A = !!JM 
if and only if, for every facet F of A of codimension one, the only chambers con­
taining Fin their closure and fixed by Mare the two chambers of A with those pro­
perties. By 3.5.4, that means that the image M of Min S(K) has only two fixed 
points in the spherical building of Gi,,ed over K. If a is any one of the two nondivi­
sible roots in <PF, that condition amounts to a(M) ef= {1}. Thus, we conclude 
that: 

3.6.1. A necessary and sufficient condition for A to be the full fixed point set of M 
in f!J is that a(M) ct. 1 + p for every relative root a E </). 

In particular, · 
if K has at least four elements (resp. if K ~ F2) A is always (resp. never) the full 

· fixed point set of Sc in B. 
The preceding discussion also gives information on the fixed point set of the 

group of units Si.c of a nonsplit torus S1 which becomes maximal split over an 
unramified Galois extension K1 of K: one applies 3.6.1 to the action of S1,c on 
Bl (G, K1) and one goes down to f!J by Galois descent, using 2.6.1. In that way, one 
gets the following result for instance: 

If S1 is an anisotropic torus which becomes maximal split over an unramified Galois 
extension of K, then S i(.K) has a unique fixed point in the building f!J. 

By contrast, it is easily shown that if S1 is a maximal torus of G = SLz whose 
splitting field is ramified, then S1(K) necessarily fixes a chamber of f!J and possibily 
more than one2 ; for a similar torus S1 in PGLz, S1(K) may have a single fixed point 
in f!J and may have more than one. 

3.7. lwahori subgroups; volume of maximal compact subgroups. In this section, we 
suppose G residually quasi-split; remember that that is no assumption if the 
residue field K is finite (1.10.3) . 
. To every chamber C of the building f!J, we associate as follows a subgroup Iw(C) 

of G(K), called the lwahori subgroup corresponding to C: if~ denotes the neutral 
component of the algebraic group Ge {cf. 3.4), Iw(C) is the inverse image in 
~:c(o) = G(K)C of the group G"c(K) under the reduction homomorphism $'c(o) -+ 

Gc(K). Clearly, all Jwahori subgroups of G(K) are conjugate. From 3.5.2, it follows 
that ~ is a solvable group, hence is the semidirect product of a torus t by a uni-

2 This answers a question of G. Lusztig. 
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potent group V. By general results on smooth group schemes, it follows that Iw(C) 
is the semidirect product of T(K) by a pronilpotent group lwu(C) ; if K has finite 
characteristic p, lwu(C) is a pro-p-group, and if K is finite, t(K) is of course a finite 
group, of order prime top. 
_ If x ~s a point of the closure of C, the image of G°c by the homomorphism Pxc: 
Ge--> Gx is a Borel subgroup fJ of Gx, and the kernel of Pxc is a connected uni­
potent group. It follows that Pxc maps G~(K) onto B(K) and consequently, by 
3.4.4, that lw(C) is the inverse image of B(K) in G(K)x = '§;r(o) under the reduc­
tion homomorphism. Thus, the Iwahori subgroups of G(K) can also be defined as 
the inverse images in the stabilizers G{K):r, for x e f,6, of the K-Borel subgroups of 
the reductions Gx. 

Now, suppose that K is finite. Then, G(K) is a unimodular locally compact group 
of which the lwahori subgroups are compact open subgroups. Therefore, there is 
a unique Haar measure µ for which the lwahori subgroups have volume I. From 
the above, it follows that, for any x e PJ, the volume of G(K):r with respect to µ is 
the index [G;r(.K): B(K)] where fJ is any K-Borel subgroup of Gx. If x is "in general 
position" in the facet F of PJ containing it, one has Gx = GF and the assertions 
3.5.2 and 3.5.3 provide an effective way of computing that volume knowing the 
local index of G (together with the correspondence v ...... O(v) of 1.1 I), the set I,, 
of vertices of L1 and the group £1 = E(G, K1) (cf. 2.5), where K1 is the unramified 
closure of K. 

3.8. Hyperspecial points and subgroups. From 3.5.1 and 3.5.3, one easily deduces 
the following characterization of the hyperspecial points of PJ defined in §I.IO: 

3.8.1. A point x of PJ is hyperspecial if and only if the neutral component of the 
group G" is reductive, in which case G,, itself is connected and hence reductive. 

One can also show that the schemes'§,, corresponding to the hyperspecial points 
x are the only smooth group schemes over o with generic fiber G and reductive 
reduction. Thus, the hyperspecial subgroups of G(K) can be characterized as the 
groups of units of such group schemes. 

3.8.2. Suppose that K is finite and that G(K) possesses hyperspecial subgroups (a 
condition satisfied, for instance, if G is quasi-split and has an unramified splitting 
field: cf. I. 10); then, the hyper special subgroups of G(K) are among all compact 
subgroups of G(K), those whose volume is maximum. 

The proof, using §§3.5 and 3.7, is not difficult. 
3.9. The global case. Let L be a global field. For every finite extension L' of Land 

every place v of L', we denote by ou (resp. o.) the ring of integers of L' (resp. of the 
completion L ~). Let H be a reductive linear group defined over L. We suppose H 
embedded in the general linear group GLn and, for every L' and v as above, we set 
H(ov) = H(L~) n GLnCov)- Another way of viewing that group consists in con­
sidering the oL-group scheme structure £'0L "on H" defined by the standard lattice 
oz in £n-in more precise terms, £'0L is the schematic closure of Hin the standard 
general linear group scheme <§!L'n,oL- ; then H(o.) = £'0/0.). For any ring R con­
taining oL, we denote by£' R the group scheme over R deduced from £'0L by change 
of base. 

3.9.l. At almost all finite places v of L, £'0_is the group scheme£',, associated with 
a hyperspecial point x of the building !JJ(H, L 0); hence H(o.) is a hyperspecial sub­
group of H(L.). 
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Indeed, let L' be a Galois extension of L over which the group H splits, and let 
ff;L, be a Chevalley group scheme over oL' with generic fiber ff L' · Since the group 
schemes ffoi ' and ff;L, have the same generic fiber, they "coincide" at almost all 
places of L'. Since almost all places of L' are unramified over their restrictions to 
L, the assertion now follows from 3.4.2, 3.4.3 and 2.6.1. 

3.10. Example. General linear groups. Suppose that G = GLn. The Iwahori sub­
groups ofGLn(K) are the subgroups conjugated to 

B = {((g;i))jg;; e ox, g;i E o for i < j and gii E µ for i ~ j }. 

Let (b;)i:.i:.n be the canonical basis of Kn. For I ~ r ~ n, let A, be the lattice in 
Kn generated by {b;/n li ~ r} U {b;li > r} and let P, be the stabilizer of A, in 
GLn(K). Thus, P, is the group of all matrices whose determinant is a unit and 
which have the following form 

r n - r 

r (~ n - 1
0 ) 

n -r no 1- o- ' 
where the notation means that the upper left corner is an r x r matrix with coef­
ficients in o, the upper right comer an r x (n - r) matrix with coefficients in 
n - 10, etc. The group Bis the centralizer in GLiK) of the chamber C described in 
§1.14. The subgroups P, are special and every special subgroup is conjugate to 
any one of them. The P;s are the stabilizers of the points of ~ contained in a 
one-dimensional facet of C; with the notations of §2.9, the points fixed by P, 
correspond to the norms of the form 

(xi, ··· , Xn) >-+ inf({(V(X;) + (V(n-) - cli ~ r} U {(V(X;) -cji > r}) 

for some constant c E R . If v is any such point, the scheme 'll. is the Chevalley 
scheme "on" GLn defined by the lattice A,. One can describe the scheme 'lie, whose 
group of units is B, by embedding GLn in GLn2 by means of the sum ofn times the 
standard representation, and considering in Kn2 the lattice A1 El:> · • • E!:> An· 

Note that Bis the stabilizer of any point of C. The corresponding statement for 
G = PGLn is not true. For instance, the image in PGLnCK) of the group generated 
by Band by the linear transfo,mation 

(I) 

is the stabilizer of the "center of gravity" y of the chamber of~ (PGLn,K) project­
ing C. That group is also a maximal bounded subgroup of PGLn(K). The scheme 
'll II can be described by means of a lattice in the Lie algebra of G = PG Ln on which 
G acts by the adjoint representation. If F denotes the cyclic group of order n 
generated by the reduction mod µ of the image of ( I) in PGLn, the group G11 is the 
semidirect product of F by a connected group; in particular, its group of com­
ponents is cyclic of order n. 

3.11. Example. Quasi-split special unitary group in odd dimension. We take over all 
hypotheses and notations from 1.15 and denote by oL the ring of integers of L. 
Let A E L be such that A + A' + l = 0 and that (VU) = o (we recall that o is de­
fined as sup{(V(d) Ide L, d + d• + I = O}). We suppose the uniformizing element 
n 1 chosen in such a way that (An1) + (h1)• = 0: if L/ K is unramified the pos-
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sibility of such a choice is obvious and if L/K is ramified it follows from 1.15(6). 
Let (b;)- n:i i '!i n be the canonical basis of L2n-+1• For O ~ r ~ n, we consider the 
basis (b,{rl)_n '!i r:in defined by b,{rl = b;/n1 for i < -r, b,{r) = b; for -r :s; i :s; 0 
and b,{r) = J.b; for i > 0, and we denote by A, the oclattice generated by th;t b~is. 
Note that if o = w().) = 0, which is always the case except if L/K is ramified and 
char K = 2, A, is also generated by the basis {b;/n1 Ii< -r} U {b;li ~ -r}. 
The stabilizer P, of A, in G(K) is also the stabilizer of the point v, of V = A c ~ 
(with the conventions of 1.15) determined by 

a.-(>',)= to ifi ~ r, 
= ½(o + w(n1)) if i > r . 

The points ., , are the vertices of the chamber defined by the inequafities ½o < a1 < 
··· < an < ½o + ½w(n1); they correspond, by ., ,..... I., to the vertices of the dia­
grams (9) and (IO) of l. I 5 in the natural order, from left to right. The scheme '§., 
is the oL-structure on G defined by the lattice A,. 

We shall now briefly investigate the algebraic group a., obtained from '§0 , by 
reduction mod µ. We choose r once and for all and use primed letters to designate 
the coordinates with respect to the basis (b,{'l). With those coordinates, the her­
mitian form h is given by 

r 
h((x;), (y;)) = x;/Yo + I; ().<x/y'...; + ).x_:;, y;) 

i=I 

,Ar ~ ' -r , 'r , + - L.., (x; Y-i - x_; Y;). 
1"1 i= r+l 

We set E = A,/nA,. That is a 2(2n + ])-dimensional vector space over Kand one 
shows that the natural morphism G. --+ GL(.E) is a monomorphism; in other words 
G., can be viewed as a subgroup ~f GL(E). From this point on, we must treat 
separately the unramified and the ramified case. 

First case. L /K is unramified. Then, Eis also a vector space over the residue field 
L of L. By reduction mod ni, the antihermitian form n1h/).< becomes the antiher­
mitian form li1: ((x;), (ji;)) ,..... I:7=,+i (x/ji'... ,- - x'.!.; y;) in E, with obvious nota­
tion. Let £0 be the kernel of that form, defined by the equations x; = 0 for Iii > r, 
and let A,.o be the inverse image of £0 in A,. We now consider the restriction of h 
to A,.o x A,.o which, by reduction mod µ, becomes the hermitian form 

liz: ((x;)_, ,,. ; ,,. ,, (y;-)_, ,,. ,.~,),..... xo<Yo + t ().< x; . .P'...; + ). x'...,-y;) 
i=l 

in £0 • Finally, G
0

, can be described as the stabilizer of the pair (hi, li2) in the group 
R "l!K (SLr(E)), that is, the special linear group of the I-vector space E "considered 
as an algebraic group over K" by restriction of scalars. Let £1 be the subspace of 
.E defined by the equations x;- = 0 for - r ~ i ~ r, and let h1 denote the restriction 
of the antihermitian form li1 to E1 x £ 1. Then, G0 clearly contains the group 
SU(h1) x SU(li2), which is nothing else but its Levi subgroup G~~ ( cf. 3.5). Observe 
that, in conformity with 3.5.l, the diagram obtained from the diagram (9) of l.15 
by deleting its (r + l)st vertex and the adjoining edges is a diagram of type BC, x 
C,._,, which is indeed the type of the relative root system of SU(h1) x SU(h2). 

Second case. L /K is ramified. Then, the scalar multiplication by n1 in A,, reduced 
mod n, provides an endomorphism v: E --+ E, obviously centralized by G and .,, 
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whose kernel is equal to its image v(E). The quotient E = E/v(E) is canonically 
isomorphic with the quotient A,/11:1A, and will be identified with it. From the fact 
that v is centralized by G0 , it follows that the projection E ➔ E induces a homo­
morphism of K-algebraic groups G0 ➔ GL(E) whose kernel is unipotent. Here, we 
shall only describe the image G0 of that homomorphism, leaving as an exercise the r 

determination of the full structure of G0 • 

By reduction mod 11:i, the antihermitian form 11:1h/ ).~ becomes the alternating 
form li1: ((x;), (.y;-)) ...... I:7=r+i (x; y'_; - x:..; y;) in E. Let E0 be the kernel of that 
form, defined by the equations x;. = 0 for Iii > r, and let A,.o be the inverse image 
of £0 in A,. We now consider the function q: A,.o ➔ K defined by q(x) = h(x, x). 
By reduction, it becomes the quadratic form q: £0 -+ K given by 

Finally, the group G0 is the group of all elements ofSL(.E) stabilizing li1 and induc­
ing on £0 an elemen't of the (reduced) group SO(q). Let E1 be the subspace of E 
defined by the equations x; = 0 for - r < i < r and let li1 denote the restriction of 
li1 to £1 x £1. Then Sp(h1) x SO(q) is a Levi subgroup of G0 ,, which is the iso­
morphic image in that group of the Levi subgroup G~:d of G0,. As in the unramified 
case, we can test the statement 3.5.1, this time by using the diagram (IO) of 1.15 
which provides, for G~;'1. a root system of type B, x Cn-r· 

Note that, also in the unramified case, we could have, instead of the restriction of 
h to A,.o x A,.o, considered its " contraction" q: A,.o ➔ K defined by q(x) = 
h(x, x), thus making the treatment of the two cases still more similar. On the other 
hand, we have introduced). in order to reduce the case distinction to a minimum; 
in the unramified case, as well as if char K =I- 2, we could have replaced ). by I every­
where, thus simplifying the equations somewhat. 

3.12. Example. Quasi-split but nonsplit special orthogonal group. Now, we take 
over the hypotheses and notations of §1.16 except that we take for G the special 
orthogonal group SO(q). We shall not, as in §3.11, treat that example in any 
systematic way. Our only aim here is to give an example of a vertex v of the building 
such that G0 is not connected. We suppose that L/ K is unramified. Let A be the 
lattice on $ 11:oL $ on in Kn $ L $ Kn where oL is the ring of integers of L. The 
stabilizer P of A in G(K) is also the stabilizer of the point v e V c A defined by 
a,-(v) = ½w(11:) for 1 ~ i ~ n, which is a vertex of the chamber described in §1.16. 
In the diagram (1) of §1.16, / 0 is the vertex at the extreme left. As in §3.11, one 
can describe G0 as a subgroup of GL(E), where Eis the K-vector space A/11:A. By 
reduction, the form q, restricted to A, becomes the quadratic form q : (x;)- n&i:.n ...... 
I: 7=1 x_;X; in £, with obvious notations (x; belongs to the residue field of L if 
i = 0 and to K otherwise). Let £0 be the two-dimensional kernel of q defined by 
the equations x; = 0 for i =I- 0, and let ij be the quadratic form in .E = E/£0 image 
of q. Clearly, G0 preserves the form q. Therefore, the projection E-+ E induces a 
K-homomorphism G

0 
➔ O(q). One verifies that that homomorphism is surjective 

(in particular, G0 is not connected) and that it maps G~•d isomorphically onto 
SO(ij). If -. denotes the nontrivial K-automorphism of L, the linear transformation 
(x;)- n:.i,1,n 1-+ (xn, X-n+h · · ·, X - i, X6, Xi, · · ·, Xn-b x_n), which belongs to P, provides 
by reduction an element of Go(K) which is mapped into O(q) but not into SO(q). 
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4. Classification. 
4.1. Introduction. To finish with, we give the classification of simple groups 

in the case where the residue field K is finite, which will be assumed from now on. 
We recall that, in the characteristic zero case, that classification has been given first 
by M. Kneser [16]. The tables 4.2 and 4.3, together with the comments in §4.5, 
provide a list of all central isogeny classes of absolutely quasi-simple groups over 
K. For each type of group, they give the following information, where K1 denotes 
the unramified closure of K: 

a name of the shape 0 Xwhere the symbol X represents the absolute local Dynkin 
diagram Ll1 (I.I I) with the notations of [8, 1.4.6)-except that our C-BC cor­
responds to the C-BC111 of [8)-and where a is the order of the automorphism 
group of L11 induced by Gal(K1/K); for residually split groups, a= 1 and the 
superscript a is omitted from the notation; note that the index on the right of Xis 
the relative rank over K1, hence equal to the number of vertices of Ll1 minus one; 
primes, double primes, etc. are used to distinguish types of groups which would 
otherwise have the same name; 

the symbol representing the affine root system (or echelonnage) in the notations 
of [8]; in the residually split case, that symbol coincides with the name of the type 
and is not given separately; note that the right part of the symbol gives the type of 
the relative root system </J and, in particular, that the index on the right of it is the 
relative rank over K, hence equal to the number of vertices of the relative local 
Dynkin diagram LI minus one; 

the local index (§l.l I), the relative local Dynkin diagram L1 (§1.8) and the 
integers d(v) attached to its vertices (§1.8); the action of Gal(K1/K) on Ll1-

through a cyclic group of order a (see above)-is essentially characterized by its 
orbits in the set of vertices of Llr, orbits which are exhibited as follows: the elements 
of the orbit O(v) corresponding to a vertex v of L1 (1.11) are placed close together on 
the same vertical line as v (in the few cases, such as 2Dm 2D2,n, etc., where two 
vertices of LI are on the same vertical, the correspondence v ..... O(v) should be clear 
from the way the diagrams are drawn) ; since K is finite G is residually quasi-split 
( 1.10.3), hence all vertices of Ll1 are distinguished except for the unique anisotropic 
type dAd-l (§1.11), and there is no need for a special notation like the circling of 
orbits, as in [22); hyper special vertices(§ 1.10) are marked with an hs and the other 
special vertices(§ 1.9) with ans; 

the index of the form, in the " usual" sense of [3) and (22]; for simplicity, we do 
not represent that index by a picture but rather by the corresponding symbol in the 
notation of (22] ; we recall that that symbol carries, among other, the following in­
formation: the absolute type of the group, the absolute rank, the relative rank 
(already provided by the symbol representing </JaI) and the order of the auto­
morphism group of the ordinary Dynkin diagram induced by the Galois group of 
the separable closure of K. 

In the case of the inner forms of An, the diagrams are, for technical reasons, re­
placed by explanations in words. 
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4.2. Residually split groups. 

Name 

B-C,. (n ;;; 3) 

C,. (n ;;; 2) 

C-B,.(n;;; 2) 

C-BC,. (n;;; 2) 

Local Dynkin diagram 

A cycle of length n + I a ll vertices of which 
are hyperspecial 

~ 
hs hs 

hs hs 

s s 

t:I :zZ=::j-1--tl·----·l----l:~::::1 
s 

~ 
s s 

s 

Index (22] 

IA (l ) ,,,,, 

2ACI) 
2n- l ,n 

2fl0 l 
nf-1, n 



Name 

Dn 
(n ~ 4) 

£6 

£7 

Fi 
4 

REDUCTIVE GROUPS OVER LOCAL FIELDS 

Local Dynkin diagram 

··~ ~fu ------· 
hs hs 

hs 

I 

hs 

hs 

s 

hs 

I 
s 

hs 

hs 

I I 

hs 

I 

I ( I 

61 

Index (22] 

IDr~ 

1E8,6 

£9.7 

EH,s 

Ft4 
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4.3. Nonresidually split groups. 

Name 

(m ~ 3, 

d~2) 

(d ~ 2) 

(d ~ 2) 

(m ~ 2) 

2A ~ - l 

(m ~ 3) 

Affine root 
system 
(notations of 
[8, I .4.6)) 

0 

C-BC';!._1 

C-Bq1 

Local index and relative 
local Dynkin diagram. 

The absolute local Dynkin diagram Ll1 is a cycle 
of length md on which Gal(K1/ K) acts through a 
cyclic group of order d generated by a rotation 
of the cycle. The relative diagram is a cycle of 
length m all vertices of which are special but not 
hyperspecial and carry the number d. 

L11 is as above, with m = 2 

L1 is 
d d 

s s 

Index [22] 

IA (d) 
Zd - 1, 1 

LI, is as above, with m = 1, or, if d = 2, consists 
of a fat segment whose vertices are permuted by 1 AJ'!!i, o 
Gal(K1/K)and LI= 0 

..---------.------~ ~----__ ,____...----, 

2 2 2 2 
l====>=:t----◄------1------i=::::<~ 

hs hs 

c: : :------: -·----- : :) 
3 2 2 2 2 3 

X ----- X 
s 

, 
s 

2A c1J 
Zm- 1 m 

2A.J:J- 1,m- l 
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Affine root 
system 

Local index and relative 
Name (notations of 

local Dynkin diagram. Index (22] 
(8, 1.4.6)) 

2A~ C-BCI,: c: : :·-----~ ------ 2A:J:~.m 

(m ~ 2) 3 2 2 2 2 
X - - - - · I I z I 

s hs 

2A2 C-BCfV ~ 2A?l 
3 '1 

x ~ 
s hs 

2B,. C-B,,_1 >--+---- B,,,,,_1 

(n ~ 3) 2 
I ( I I --- 1 I ; I 
s s . 

2B-C,. C-BC'!;!..1 ~----- , 
2A:J:I) n-1, n-l 

(n ~ 3) 2 , ------ . 
s s 

: 
, 

2C2m-l c-Bc~v_1 c: : ·---- , C2<m- 1,m-l ------ ' 

(m ~ 3) 3 2 2 2 2 2 
>< I ! I I - --

s s 

2Ca C-BC? ~ C (2l 3, 1 
X ~ 

s s 
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Affine root 
system Local index and relative 

Name (notations of local Dynkin diagram. Index (22] 
[8, 1.4.6)) 

~ - --1 I : I 
2C2m Cm ----·• I ! I GJ';l,m 

(m ~ 2) 2 2 2 2 _2 
I ;) I I ·----
s s 

2c 2 A1 < Cfi 
2 --.. 

s s 

c: : : ----
2C-B2m- 1 C-BC~- I 2Dru m-1 ----

3 2 2 2 2 . 2 -
(m ~ 3) X ----- ~ 

s s 

2C-B3 C-BCf c:= 2D fl 
3 2 

• I x---s s 

2C-B2m C-BC~• 
~-----

-----
. 

2Dru+i,m 

(m ~ 2) 2 2 2 2 2 
I ;- I I -----

~ 

s s 

2C-B2 C-BC{11 < 
2 2D i2l 

• I 
i,,,,..t 
s s 
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Affine root 
system 

Local index and relative (notations of Index [22) Name (8, 1.4.6)) local Dynkin diagram. 

2D,. B,._1 >-+------< 2m~~-1 
(n;?; 4) 2 ------<:: 
2D~ C-B,.-2 ~-----~ lDr~-2 

(n ;?; 4) 2 2 -- --
s s 

~-----~ 
2Di,,, B-Cm 

-- ---
1D~,m 

2 
(m;;; 3) - 2 2 ______ ~ 

s 

2D2m+1 B-BCm c: : : --~ ----- 2D~+i.m 

(m ;;; 3) 2 

3 2 
2-----~: X 

2 

2D; B-BC2
3 ~ 2Df1 

2 3<s 
X S 

2 

I ·~ 3D4 G2 
3 

3D4.2 
I I ; I 

hs 

3This "echelonnage" is missing in the table of (8, p. 29]. 
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Affine root 
system Local index and relative 

Name (notations of local Dynkin diagram. Index (22] 
(8, 1.4.6]) 

4D2m C-BC;,~1 

<::-------< --------< 2Df> m, m-1 

(m ~ 3) 
2 2 2 2 4 ----- , 

s s 

4D4 C-BClll 
~ 2Dfi 
......4 
s s 

4D2m+ l c-nci-1 c: : : ·---·I < 
-----~ lD~2> m+l, m- 1 

(m ~ 3) 3 2 2 2 2. 4 
X ------ ~ 

s s 

4Ds C-BC{ Q 
3 4 x ........... 

IDJ2> , l 

s s 

2E6 F4 ~ 2£ 2 
2 2 

6, 4 
-. 

hs 

<.£3 3E6 G~ 1£16 
3 3 

6,2 

I ) I I 
s 

Fl ----<==:=:: 
_ 2 · 2 2 

s 
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4.4. Interpretation. We shall now repeat the classification in classical terms. The 
following enumeration gives a representative of every central isogeny class of 
absolutely quasi-simple groups over K and, in each case, the name of the cor­
responding type, with the notations of the first column of the Tables 4.2 and 4.3. 

Special linear group SLm of a d 2-dimensional central division K-algebra 
(md ~ 2). The type is d Amd- l · 

Special unitary group SU(h) of a hermitian form hi~ r variables (r ~ 3) with Witt 
index r' over a quadratic extension L of K. If L/ K is ramified, we assume r # 4 
because the case r = 4 is more adequately represented by an ordinary special 
orthogonal group in 6 variables or a quaternionic special orthogonal group in 3 
variables according as r ' = 2 or I. If the form h is split, the type is 2A~_1 if L/K 
is unramified and C-BCn (r = 2n + 1) or B-Cn (r = 2n) otherwise. If his not split, 
one has r = 2r' + 2 and the type is 2A;_1 or 2B-Cr+i according as L/K is un­
ramified or ramified. 

Special orthogonal group SO(q) of a quadratic form q in r variables (r ~ 6) with 
Witt index r' over K. If r is even, we denote by L the center of the even Clifford 
algebra of q which is isomorphic to K Er) K (form q of discriminant one or Arf 
invariant zero) or is a quadratic extension of K. If L/ K is unramified (in particular 
if L = K Ef.) K), we assume r # 6 because the case r = 6 is more adequately re­
presented by a special unitary group in 4 variables. If r = 2r' (resp. 2r' + I), the 
type is Dr, (resp. B,,). If r = 2r' + 2, Lis a quadratic extension of Kand the type 
is 2D,,+i or C-B,, according as L /K is unramified or ramified. Finally, if r = 2r' + 3 
(resp. 2r '+ 4), the type is 2Br'+I (resp. 2D~-+2). 

The symplectic group in 2n ~ 4 variables is of type Cn. 
Special unitary group of a quaternion hermitian form in r variables (r ~ 2) re­

lative to the standard involution. The Witt index is always maximal and the type is 
zc,. 

Special orthogonal group SO(q) of a quaternionic o--quadratic form in r variables 
(r ~ 3) relative to an involution o- of the quaternion algebra whose space of sym­
metric elements is 3-dimensional (cf. [21], [23]; if char K # 2, o--quadratic amounts 
to o--hermitian and the group is also the special unitary group of an antihermitian 
form relative to the standard involution). Let r ' be the Witt index of the form and 
L the center of its "even" Clifford algebra Cl(q) (cf. [21]). If L/K is unramified (in 
particular if L ;;; K EB K), we assume r # 3 because the case r = 3 is more ade­
quately represented by a special unitary group in 4 variables; if furthermore r = 
2r', we also assume r # 4 because the case r = 2r' = 4 is more adequately re­
presented, through the triality principle, by an ordinary special orthogonal group 
in 8 variables with Witt index 2. One always has 2r' ~ r ~ 2r' + 3. If r = 2r', 

· one has L ;;; K Ef.) Kand the group is of type zn;. If r = 2r' + I (resp. 2r' + 2), 
Lis a quadratic extension of Kand the type is 2D; (resp. 4D,) or 2C-B,_1 according 
as L/ K is unramified or ramified. If r = 2r' + 3, one has L ;;; K Er> Kand the type 
is 4D,. 

Quasi-split tria/ity D4• Let L denote the splitting field, which is a cyclic extension 
of degree 3 or a Galois extension of degree 6 with Galois group @;3• If L IK is unra­
mified (hence cyclic of degree 3), the type is 3 D

4
; otherwise, it is G!. 

Split exceptional groups. The type has the same name G2, F4, Es, E1 or E8 as the 
absolute type of the group. 
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Quasi-split groups of type E6• The type is 2E6 or Fl according as the quadratic 
splitting field L is unramified or ramified. 

Nonquasi-sp/it groups of type E6 and E7• They are tlie forms of E6 and E7 con­
structed by means of a central division algebra of dimension 9 and 4 respectively; 
their types are 3E6 and 2E7• 

4.5. Invariants. All types of groups listed in the Tables 4.2, 4.3 exist over an arbi­
trary field K with finite residue field. The central isogeny class corresponding to a 
given name is always unique except in the following cases. 

The isogeny classes of type dAmd-l ford~ 5 are classified by the pairs of op­
posite central division algebras of dimension d 2 over K; their number is therefore 
½<p(d), where <pis the Euler function. 

The isogeny classes of the types B-Cn, 2B-Cn, C-Bn, 2C-Bm C-BCn and Fl are 
classified by the ramified quadratic extensions of K, namely the extension always 
called L in §4.4. 

The groups of type G~ are classified by the Galois extensions L of K which are 
either cyclic of degree 3 or noncyclic of degree 6. 

4.6. The classification kit. The following experimental facts provide a handy way 
of reconstructing the classification. First note that, except for d Ad-h each type in 
the Tables 4.2 and 4.3 is completely characterized by the local Dynkin diagram and 
the integers d(v) attached. Now, consider a connected Coxeter diagram of affine 
type and rank (number of vertices) at least three, attach an integer to all vertices, 
mark some of them (possibly none) with a cross and orient each double or triple 
link with an arrow. Then a necessary and sufficient condition for the existence of a 
semisimple group G having the resulting diagram as its relative local Dynkin 
diagram with the given integers as d(v) is that all subdiagrams formed by the pairs 
of vertices belong to one of the following types, representing the ordinary Dynkin 
diagrams of quasi-split groups of relative rank two: 

d d' 
X X 

d d 
1------1 

d d 
t==<.==I 

2d d 
~ 

3d d 
X ~ 

d d 
l==3E=:I 

3~ 

The group G can furthermore be chosen to be absolutely quasi-simple if and only if 
the integers d(v) are relatively prime or if the underlying Coxeter diagram is a cycle. 
As for the types of relative rank one, whose underlying Coxeter diagram is 1-4 , 

they can be obtained as "limit cases" of types of higher ranks, but we shall not 
elaborate on that. 
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