
CHAPTER 2 

Bruhat-Tits Theory and Buildings 

JIU-KANG Yu (PURDUE UNIVERSITY) 

Introduction 

This article originated from slides used for a mini-course on Bruhat-Tits theory 
in a Fields institute workshop in 2004, which were slightly edited and expanded 
shortly after the workshop, then again in 2008. The informal style of the original 
lectures is perserved. Some imprecisions and mistakes were fixed but some more 
probably remain. 

Ahead of the workshop we recommended that the participants study Tits' sum­
mary of Bruhat-Tits theory in the Corvallis proceedings [Tit79]. This summary has 
been the portal to Bruhat-Tits theory for most people, and it will continue to be 
the best user guide. It is very well-written and precise. It does an excellent job of 
hiding the technicalities and of describing everything in terms of elegant abstract 
characterizations. 

The goal of my lectures is to provide more hints and help to people who want 
to use Bruhat-Tits theory. I tried to be as orthogonal to Tits' summai;y as pos­
sible. Therefore, I do not give a systematic ~ccourit ~f the theory itself. In the 
first lecture, I provide some background materials that are probably most useful if 
you learn them before starting to read Tits' article. In the second lecture, I give 
diverse complements to Tits' article. From my experience, these should be helpful 
to someone who is currently studying Tits' article. In particular, I try to explain 
how to go between [Tits] and [BTl-5]. For the third lecture, I discuss more re­
cent developments in representation theory and "functoriality" of buildings that go 
beyond Tits' article. 

2.1 Lecture 1 

2.1.1 History and Literature. 

Prehistory 

0. Goldman and N. Iwahori: The theory of p-adic norms, Acta Math. 109 
(1963), 41 pages [GI63]. 
N. Iwahori and H. Matsumoto: On some Bruhat decomposition and the 
structure of the Hecke ring of p-adic Chevalley groups, Publ. IRES. 25 
(1965), 44 pages [IM65]. 

- H. Hijikata: On the arithmetic of p-adic Steinberg groups, Mimeographed 
notes at Yale University (1964) [Hij64]. 
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54 2. Bruhat-Tits The ory and Buildings 

The beginning 
It all started from Bruhat 's article in the Proceedings of t he Boulder conference 
(1965) "Algebraic groups and discontinuous subgroups" 1 

p-adic Groups 
BY 

FRANyOIS BRUHAT 

I. Bounded subgroups. If G is a real connected Lie group, then the following 
two statements are well known: ...__ - --

( l) Any compact subgroup of G is contained in a maximal compact subgroup 
of G. 

(2) Two maximal compact subgroups are conjugate by an inner automorphism. 

{skipping to the end of the article} 

Added in November 1965. During the conference, considerable progress was 
made towards an affirmative solution of the conjectures above. It also appeared 
that the properties thus established have interesting applications; for instance, 
they provide a simplified approach to Kneser's theorem on H 1 of simply con­
nected groups over the p-adics. A joint paper on this subject is in preparation, 
by F. Bruhat and J. Tits. 

These results were exposed orally by J. Tits at the conference. The precise 
form on which they are given in the mimeographed notes of his talk must 
however be somewhat modified; in particular, it is not true that minimal k­
parahoric subgroups of a group G- as defined in these notes- are conjugate 

\ by elements of Gk. In fact, the notion of k-parahoric subgroup given there does 

\ 
not appear lo be " the good one" when G does not split over an unramified 
extension of k. 

On the other hand, the methods sketched there turn out to give further results. 
For instance, it can be shown that the Conjecture (II) (iv) above is essentially a 
consequence of the other parts of that conjecture a nd, in particular, is true in 
the split case. 

BIDLIOGRAPHY 

1. F. Bru hat. Disn ibu tirms sur w1 groupe Jocaleme111 compact er applica tions O /' (:rude des represenltl~ 
rions des groupes p-ndiques . Bull. Soc. Mat h. France 89 (1961). 4l -75. 

Announcem ents by Bruhat- Tits 

Groupes algebriques simples sur un corps local, Proceedings of a Conference 
on Local Fields (Driebergen, 1966) , 14 pages [BT67]. 
BN -paires de type affine et donnees radicielles, C.R. Acacl. Sci. Paris 263 
(1966) , 4 pages [BT66a]. 
Groupes simples residuellem ent deployes sur un corps local, ibid ., 3 pages 
[BT66b]. 
Groupes algebriques simples sitr un corps local, ibid., 4 pages [BT66c] . 
Groupes algebriques simples sitr un corps local: cohomologie galoisienne, 
decompositions d'Jwasawa et de Cartan, ibid ., 3 pages [BT66d]. 

Tits ' summary 

Tits It is [Tit79] in the Corvallis proceedings (1977) [BC79] . A must read. 

1 Reprinted from [Brn66], with permission. 
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The canon 

BTl Groupes reductifs sur un corps local I, Pub!. Iviath. I.H.E.S. 41 (1 972) , 247 
pages [BT72]. 

BT2 Groupes reductifs sur un corps local II, Pub!. Math. I.H.E.S. 60 (1984) , 180 
pages [BT84a] . 

BT3 Schemas en groupes et immeubles des groupes classiques sur un corps local, 
Bulletin Soc. Math. France 112 (1984) , 43 pages [BT84b]. 

BT4 Schemas en groupes et immeubles des groupes classiques sur un corps local II: 
groupes unitaires, Bulletin Soc. Math. France 115 (1987), 55 pages [BT87a] . 

BT5 Groupes algebriques sur un corps local, J. Fae. Sci. Univ. Tokyo Sect . IA 
Math. 34 (1987) , 28 pages [BT87b]. 

Remark 2.1.1.1 (i) Officially, [BTl ], [BT2], [BT5] are labelled as Chapter 
I , Chapter II and Chapter III . (ii) Somehow [BT3], [BT4], [BT5] are relatively 
unknown to users of Bruhat-Tits t heory. Some of the results there have been , 
rediscovered years later by other aut hors, repeatedly. 

Comments 

- The writing took over 20 years (1965- 1987) . 
- The canon all together is over 550 pages. 
- The formulation evolved during the period. 
- Tits' summary, which is the portal for most users of Bruhat-Tits theory, was 

written way before most of the canon. 
[BT] ( =[BTl- 5]) always tried to pursue _maximaLgy:,neralities. Some of t hese 
are not necessary for representation th~~ry. But it is amazing that essentially 
everything in their theory became quite useful to certain part of mathematics 
later. 

Some work on B ruhat-Tits theory itself 

- I.G. Iviacdonald: Spherical functions on a group ofp-adic type (1971) [Mac71]. 
- G. Rousseau 's thesis ( 1977) , unpublished [Rou 77]. 
- P. Garret: Buildings and classical groups (1997) , about 400 pages [Gar97]. 

W.T. Gan and J.-K. Yu: Schemas en groupes et immeubles des groupes 
exceptionnels sur un corps local, Premiere partie: Le groupe G2 , Bulletin 
SMF, 55 pages [GY03]. 
W.T. Gan and J.-K. Yu: Schemas en groupes et immeubles des groupes 
exceptionnels sur un corps local, Deuxiem e partie: Les groupes F4 et E 6 , 

Bulletin SMF, 43 pages [GY05]. 
J.-1. Kim and A. Moy: Invo lutions, classical groups and buildings, J. Algebra 
(2000) , 17 pages [KM0l]. 
E. Landvogt , A compactification of the Bruhat-Tits building, Springer LNivI 
(1995), 156 pages [Lan96]. 
E. Landvogt , Some functo rial properties of the Bruhat-Tits building, J. Reine 
Angew. Iviath. 518 (2000) , 29 pages [Lan00]. 
A. Moy: Displacement functions on the Bruhat-T its building, The mathe­
matical legacy of Harish-Chandra (Baltimore 1998) , 17 pages [Moy00]. 

- G. Prasad: Galois-fixed points in the Bruhat-Tits building of a reductive 
group, Bulletin SMF [PraOl] . 

- PY G. Prasad and J.-K. Yu, On finite group actions on reductive groups and 
buildings, Invent. Math. (2002) [PY02]. 
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J .-K. Yu: Smooth models associated to concave functions in Bruhat-Tits 
theory, preprint (2003), 34 pages [Yu03]. 

Remark 2.1.1.2 Several articles by G. Prasad and S. Raghunathan were writ­
ten before [BT2]. They worked out many results and formulas independently. 
Therefore, these articles can be used as alternative references to some extent. 

, Their Annals ar ticles [PR84] about central extensions (which is the precursor of 
7 ; Moy-Prasad theory) are particularly useful. 

Applications to representation theory (The list is short and incomplete, concentrat­
ing on more recent ones.) 

- J.D. Adler: Refined anisotropic K-types and supercuspidal representations, 
Pacific J . Math. 185 (1998) , 32 pages [Adl98]. 

- J .D. Adler and S. DeBacker: Some applications of Bruhat-Tits theory to 
harmonic analysis on the Lie algebra of a reductive p-adic group, Michigan 
Math. J. 50 (2002) , 19 pages [AD02]. 

- D. Barbasch and A. Moy: A new proof of the Howe conjecture, Journal of 
the AlVIS 13 (2000) , 12 pages [BM00]. 
S. DeBacker: Some applications of Bruhat-Tits theory to Harmonic analysis 
on a reductive p-adic group, Michigan Math. J. (2002), 21 pages [DeB02b] . 
S. DeBacker: Parametrizing nilpotent orbits via Bruhat-Tits theory, Ann. of 
Math. 156 (2002) , 38 pages [DeB02c]. 
S. DeBacker: Homogeneity results for invariant distributions of a reductive 
p-adic group, Ann. Sci. Ecole Norm. Sup. 35 (2002), 32 pages [DeB02a]. 

- S. DeBacker and M. Reeder: Depth-zero supercuspidal L-packets and their 
stability, Ann. of Math, to appear [DR]. 

- A. Moy and G. Prasad: Unrefined minimal K-types for p-adic groups, Inv. 
Math. 116, 393-408 (1994) [MP94]. 

- A. Moy and G. Prasad: Jacquet fun ctors and unrefined minimal K-types, 
Comment. Math. Helvetici 71 , 96- 121 (1996) [MP96] . 
P. Schneider and U. Stuhler: Representation theory and sheaves on the 
Bruhat-Tits building, Inst. Hautes Etudes Sci. Pub!. Math. 85, 97- 191 (1997) 
[SS97]. 
J.-K. Yu: Construction of tame supercuspidal representations, J. Amer. 
Math. Soc. 14, 579-622 (2001) [YuOl]. 

Comments For reasons commented above, Bruhat-Tits theory is not easy to read 
for many people. In particular, people in representation theory only want to learn 
it as a foundation. For that, going through 550 pages would be a lot . Tits ' sum­
mary [Tits] is the portal into Bruhat-Tits theory for most people, and is highly 
recommended. 

Macdonald's little book is also quite accessible, but it only sketches the case of 
simply connected groups. Now Landvogt 's book is a usable replacement to many 
results of [BTl] and [BT2]. However, it doesn 't treat groups associated to concave 
fun~tions which have become increasingly useful now n his-theory is not cov~red.-in 
Tits' summary or Macdonald's book either). My article on smooth models [Yu03] c, 

can replace most of the algebro-geometric part of [BT2], at least in the case of 
discrete valuations. 

Garret 's book describes the buildings of classical groups as a simplicial com­
plex, in a rather concrete way. However , it is not clear that the building in his 
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book is the building described in Bruhat-Tits theory. In fact, Bruhat and Tits 
realized this kind of matching is not obvious at all , so they wrote [BT3] and [BT4] " , 
to match their buildings and the theory of Goldman-Iwahori. Today i~_is fairly 
easy to ~atch the building in Garret's bo_9k_ witµ_ that in Bruhat-Tits theory. A 
general~trategy wa; -developed Ill the -two article; ;f-Gan and--myself ( [GY03] , "--' 
[GY05]), and t hen was applied to exceptional groups. I sketched the case of classi-
cal groups in a lecture at Banff. Notes of that lecture can be found on my webpage 

/. _ _:_..,, 
http://www. math. purdue. edu;- j yu. ' 

In addit ion, I will give a few suggestions, which are of course very subj ective. 

About learning to use Bruhat-Tits theory 

- Don't try to swallow all proofs. 
- Learn a bit about symmetric spaces. 
- Learn a bit about spherical buildings of a reductive group. 
- Learn t he case of GLn really well. 
- Learn a bit about affine root systems. 
- Learn a bit about EN-pairs (a.k.a. Tits systems). 

Draw / play with the 2-dimensional apartments. 
- Understand the case of split/quasi-split groups. 
- (Learn the t heory of schemes). 

Remark 2.1.1.3 It may look like I am recommending a lot or things not 
directly related to the Bruhat-Tits t heory; you may suspect that this is overloading 
on top of something which is already complicated. However, most users of Bruhat­
Tits t heory want to learn the facts and to get the feeling , not going through details 
and proofs. It is best to achieve this through analogies. We only need a little bit 
of everything from abm~e ·and I belie~e that in th~ end you will find the experience 
rewarding. 

A few things that I do not recommend 

- Don't try to picture a building of dimension > l. 
- It is not necessary to learn a lot about (poly-)simplicial complexes. 
- It is not necessary to learn a lot about general buildings. 
- Don't think of Bruhat-Tits theory ~~ just a case of EN- airs (even though 

the building can be described using a EN-pair, the E and the N are not 
easy to specify; moreover, there are many features in Bruhat-Tits t heory 
that are not in the theory of EN-pairs). 
Although one can say a lot by just talking about chambers (a.k.a. alcoves) 
and apartments, don 't be afraid of talking about the whole building. 

2.1.2 Symmetric spaces of real reductive groups. 

References 

- T .A. Springer, Reductive groups, the Corvallis proceedings (A. Borel and 
W. Casselman, Eds.) , v. l. , 3-27 (1977) [Spr79]. 

- W.T. Gan and J .-K. Yu: Schemas en groupes et immeubles des groupes 
exceptionnels sur un corps local, Premiere partie: Le groupe G2, Bulletin 
SMF, 55 pages [GY03]. 

Notation 

G: a connected reductive group over IR; 
- K : a maximal compact subgroup of G(IR); 
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- g := LieG. 

The symmetric space Y = Y(G) of G (or of G(JR)) is essentially G(JR)/ K. But 
we want to talk about this more intrinsically without singling out K. 

If G is semisimple, we can say that Y is the set of maximal compact subgroups 
of G(JR) (since all of them are G(JR)-conjugate to K). 

But I prefer to use the bijections 

{maximal compact subgroups of G(JR)} 

...... { Cartan involutions on G(JR)} 

...... {Cartan involutions on g} 

to say that Y is the set of Cartan involutions on g. 

Recall: A)CartanmvoJ~!l2!1 on g is an order 2 automorphism 0 of g such that if 
e and p are -tneT -1)- and (+1)-eigenspaces of g under 0, then e + ip is a compact 
form of g (and compactness of a real form can be detected by the positivity of the 

, Killing form). A Cartan involution 0 induces a unique au tomorphism on G(JR), 
again denoted by 0. The subgroup K 0 := G(JR) 0 is then a maximal compact 
subgroup of G(JR) and all maximal compact subgroups can be obtained this way. 

Remark 2.1.2.1 We will deal with all reductive groups later. 

Example 2.1.2.2 Let G = SLn. Then the standard corresponding Cartan 
involution is X f---+ _tx on g = s[n, and g f---+ (tg) - 1 on G(JR). 

Let us consider the case G = SL(V) more intrinsically. A maximal compact 
\.Q.'> subgroup of G(JR) is SO(q) for a positive definite quadratic form q on V. The 

Cartan involution is again g f---+ (t g )- 1 , and now t g is the adjoint of g relative to 
the symmetric bilinear form ( - , - ) = ( - , - ) q associated to q: 

(g.v, w) = (v , tg.w). 

Of course, .jq is then a Euclidean norm on V. Therefore, 

~ Y(SL(V)) is the space of norms on V (up to constant multiples). 
I r---·1 

In general, for a connected reductive group G /JR, we write )Yi•ed ( G) for the 
space of Cartan involutions on g ( or on G). --

1 

Example 2.1.2.3 Let G = (G~ be and-dimensional split torus. Then Yi-ed(G) 
consists of one element, which is X f---+ -X on LieG and g f---+ g- 1 on G(JR). On the 
other hand, Y( G) = (JR~ 0 )d c:::: (JR x / { ±1} )d (see below for the definition of Y( G) 
for non-semisimple G). 

If G is anisotropic, then G(JR) is compact and Yi ed(G) consists of only one 
point, which is X f---+ X on Lie G and g f---+ g on G(JR). 

1 More generally, if G is anisotropic modulo its center , then Yi-ed ( G) consists of 
\ one point only. 

Almost every statement about Y( G) that has a counterpart in Bruhat-Tits 
theory can be deduced from the following (together with a few standard facts): 

}(/ Theorem 2.1.2.4 Let G C H be connected rerj,uctive groups over JR . Then 

'\ (i) If 0' E Y:ed(H) stabilizes G(JR), then 0'!G(JR) E Yie<l(G). ""'"l ,i,\-\,.~· 
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(ii) For any 0 E 9.-ec1(G), the set 

{0' E 9.ec1(H) : 0'IG(JR) = 0} 
\ 

is non-empty, and is permuted transitive ly by the real points of ZH(G) , the •,t," " 

centralizer of G in H. 

Apartments For each maximal JR-split torus S of G, let Arecl (S) = { 0 E 9.-ecl ( G) : 
0(S(JR) ) C S(JR)}. We call Arec1(S) the apartment of S. We notice that 0 E Arec1(S) \ ><. ,~_,,~1 •• 0 

if and only if 0 extends the only Cartan involut ion of S(JR) . . cZ.'7 c;·,. ,,~ ,\ 
Example 2.1.2.5 Let G = GL(V). To give a maximal JR-split torus S of ~,,, ') -,i,.•,f'' 

G amounts to giving a decomposition of V into I-dimensional subspaces: V = x,.,.,n, 
JRv1 E9 · · · E9 JRvn. 

The quadratic form q lies in Arecl ( S) if and only if the form is diagonalized with 
respect to the basis v1, ... , Vn: 

ai > 0. 

Remarks 

If we give 9.-ecl the structure of a Riemannian symmetric space, then the 
apartments are the maximal fl at subspaces. 
All apartments are conjugate by G(JR) . Since all the S's are conjugate. 
Each point lies in an apartment. The unique Cartan involution of S(JR) al­
ways extends to a Cartan involution of G(JR) by (ii) of the theorem. There­
fore, at least one Cartan involution lies on an apartment. It follows that any 
Cartan involution lies on an apartment. 
S (JR) acts on A reel ( S) transitively. If 01 and 02 both extend the only Cartan 
involut ion of S , then 02 = z.01 are conjugate by some z of Z(JR) by (ii) of the 
theorem, where Z = Zc(S). 'vVe can write z = sk, where z E S(JR) and k is 
in the maximal compact subgroup of Z(JR) (Cartan decomposition). Since 
k E K0 1 , we have K0 2 = zK0 1 z- 1 = sK01 s-1. Hence 02 = s.01. 
The dimension of Arec1(S) is rankIR G - rankIR Z(G). Let 0 E Arec1(S) . The 
stabilizer of 0 in G (JR) is the same as the normalizer of K 0 in G (JR), and is 
simply Zc(JR).K0, where Zc = Z(G) is the center of G. In particular, the 
stabilizer of 0 in S(JR) is S(JR) n Zc(JR).K0 is the maximal JR-split torus of 
Z(G). 
Any two points x, y E 9.-ecl ( G) lie on some apartment A reel ( S). Suppose t hat 
x E Arec1(S). Then we have the Cartan decomposition G(JR) = KxS(JR)Kx. 
Suppose that Ky = gKxg- 1 with g = ksk', where k, k' E Kx and s E 

S. Then it is clear that K y = (ks)Kx(ks)- 1 and y lies on the apartment 
associated to (ks)S(ks) - 1 = kSk - 1. It is also clear that x lies in kSk - 1 

also since 0x(kSk- 1) = 0x(k)0x (S)0x(k)- 1 = kSk- 1. Thus x, y both lie on 
Arec1 (kSk- 1). 

Remark 2.1.2.6 In fact , the above statement is equivalent to the Cartan 
decomposition. Notice that when G = GL(V), the above statement is the following 
familiar fact in linear algebra: any two positive definite symmetric real matrices 1Jv-1 ' Ve 

can be diagonalized simultanenously. -'1--c-( 0 
(o{'f . .,,. ,_\-c 

Kx permutes apartments containing x transitively. Suppose that x E Arecl (S) 
and x E Arec1(S1

). We may assume that S' = gSg- 1
. The points of 9.-ec1(G) 
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on Ared(S') are precisely gS(JR)g- 1 .(gx) = gS(JR).x. Therefore, there ex­
ists s E S(JR) such that x = gs.x. Let k = gs , then we have k E Kx and 
kSk- 1 = S'. Therefore, Ared(S') = k.A,-ed(S). 
Another description of the apartments containing x. Let g = e EB p be the 
Cartan decomposition relative to 0x. Then there is a bijection between the 
apartments containing x and the maximal abelian sub-algebras of p. The 
bijection is A red ( S) - Lie S. Therefore the previous statement is the well­
known fact that Kx permutes transitively the abelian sub-algebras of p. 

In general, let V = V ( G) be the maximal vector subgroup in the center of 
G(JR), and we define ,9 = Yred x V. We can put a natural action of G(JR) on ,9 to 
reinstate the property that the stabilizer of points on ,9 are precisely the maximal 
compact subgroups. (Here I am following the definition of V ( G) in the literature. 
One can also define V(G) to be the maximal connected abelian quotient of G(JR). 
In fact this makes the action of G (JR) on V ( G) more transparent , and makes a 
better analogy with the p-adic case). 

We also define the extended apartment A(S) as Ared(S) x V(G). In particular, 
dimA(S) = dimS. See the appendix of Gan-Yu [GY03] for more details. 

The point of these discussions is: the symmetric space has many properties 
0 analogous to those of the Bruhat-Tits building. But they are a lot easier to derive 

from basic facts in Lie groups. 

j 
The analogous results in Bruhat-Tits theory are often related to analogous 

structure theory and analogous decompositions. But the arguments are often more 
/ convoluted. Therefore, learning the real case helps us to get a picture, and pinpoint 
L some basic ingredients. 

2.1.3 The building of a p-adic GLn. 

References 

Goldman-Iwahori [G163]. 
[BTl], 10.2, Note ajoutee sur epreuves. 
[Tits], 2.9 
[BT3]: this is the definitive treatment. 
Gan-Yu, the G2 article [GY03]. 

Motivation For a real vector space V , 

Y(GL(V)) is the space of Euclidean norms on V. 

Notation Let K be a non-archimedean local field , and Va finite-dimensional vector 
space over K. 

Definition 2.1.3.1 A (classical) norm on Vis a function II - Ila : V---> JR2:o 
satisfying: 

• llx + Yll a :S: max{l lxlla , IIYll a }, for all x,y EV; 
• 11>-x lla = l>-1 · llx lla, for A EK and XE V; 
• llx lla = 0 if and only if x = 0. 

Definition 2. 1. 3. 2 An (additive) norm on V is a function a: : V ---> JR U { oo} 
satisfying: 

• a:( x + y) 2: min { a:( x), a(y)}, for all x, y E V ; 
• a(>.x) = ord(,\) + a(x), for,\ EK and x EV; 
• a(x) = oo if and only if x = 0. 
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Clearly, I I - I la is a classical norm ¢==? ex( - ) = log I I - I la is an additive norm. 
From now on, "norm" means "additive norm". 

Definition 2.1.3.3 The Bruhat-Tits building of GL(V) , ~ := ~ (GL(V)) , is 
the set of all norms on V. 

We let GL(V) act on ~ by 

-1 ( -1 ) g.ex = ex o g : v 1---> ex g .v . 

It is clear that g.ex is also a norm on V. 
Later, we will put a metric on~ so that ~ becomes a topological space. 

Example 2.1.3.4 (i) Say V = K. v is 1-dimensional. Pick c E JR and put 
ex(>..v) = ord(>.) + c. Then ex is a norm on V. 

Clearly, all norms on V = K. v is of this form. 
(ii) IfV = Vi EB V2 , and exi is a norm on V;. Put ex(v1EB v2) = min{ex1(v1),a2(v2)} , 

then a is a norm on V. 
(iii) Pick a basis v1, ... , Vn of V , and real numbers c1, ... , Cn- Put 

Then a is a norm on V. 

Definition 2.1.3.5 We say that {v1, ... ,vn } is a splitting basis for a if (iii) 
holds. 

Fact 2.1.3.6 Any norm on V admits a splitting basis. 

Compare. Any quadratic form on a real vector space can be diagonalized. 

Fact 2.1.3.7 Any two norms on V have a common splitting basis. 

Compare . Any two positive definite quadratic forms on a real vector space can 
be diagonalized simultaneously. 

We now interprete Fact 2.1.3. 7 in a special case . In the description of a splitting 
norm, if Ci = 0 for all i, t hen 

a(v) = max{m: v E ?rmL} , 

where Lis the lattice tJ(v1, ... , Vn/, {J = {JK, 7r is a prime in tJ. 
Such a norm is a called a hyperspecial norm, or a hyperspecial point on ~- Now 

Fact 2.1.3.7 for hyperspecial points means the following: 

Let L, M be lattices in V . T hen t here is an tJ-basis {v1 , ... ,vn } of 
L and integers e1 :S · · · :S en such that ?re, v1 , ... , ?re" Vn is a basis of 
M. 

This is the fundamental theorem of fini tely generated modules over a PID / DVR 
(theorem of elementary divisors). It is also equivalent to the Cartan decomposition 
for GLn(K): 

where A consists of diagonal matrices diag( 7re 1 , •. . , ?re" ) with e1 :S · · · :S en . 
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The m etric 
We now use Fact 2.1.3.7 to put two metrics on !!a as follows: if a , (3 are two norms 
with common splitting basis { v1 , .. . , Vn}, we put 

d(a, ~) ~ ( ~ ( a(v;) - ~(v; ) )' f', 
d'(a ,(3) = max{la(vi) - (J(vi)I : i}. 

Challenge. Show that d is well-defined (independent of the splitting basis; I 
don't know any simple proof of this). Show that d and d' satisfy the triangle 
inequality. It is easy to show: d' is well-defined, and if d is also well-defined, d and 
d' define the same topology on !!a. 

Observation 2.1.3.8 If {v1 , ... ,vn} is a basis of V , c E !Rn, and ac is the 
norm ac (vi ) = Ci - Then c - ac is an isometry !Rn--> !!a for the metric d. 

Definition 2.1.3.9 The image of this isometry is called the apartment associ­
ated to the split torus S for which { v1 , . .. , Vn } is an eigen-basis for all g E S ( K). 
We denote this apartment by A(S). 

Interpretation of Fact 2.1.3.6. Every point of !!a lies on an apartment. 

Interpretation of Fact 2.1.3.7. Every two points lie on a common apart­
ment. 

Observation. S - A(S) is a bij ection. 

Observation 2.1.3.10 The action of S(K) on !!a stabilizes A(S). But it 
doesn 't act on A(S) transitively. For any x E A(S), S(K).x looks like a set of 
lattice points on the Euclidean space A(S) . 

Observation 2.1.3.11 A(S) is isometric to a Euclidean space. But there is 
no natural base point . A(S) is an affine space, not a vector space. The space of 
translations can be identified with X * ( S) @z R 

Observation 2.1.3.12 Let N be the normalizer of S. Then the elements of 
N(K) , represented by matrices with respect to the basis {v1 , ... ,vn } are simply 
the group of monomial matrices. The quotient N(K)/S(K) is the Weyl group of 
(G, S). The action of N(K) on !!a also stabilizes A(S), and there the action is given 
by affine transformations. 

Simplicial structure The topological space !!a carry a canonical poly-simplicial struc­
ture. For simplicity I want to get rid of the prefix "poly". So I define a ~ (3 if 
a(v ) = (J (v) + c for some c E IR and put !!a,ed = !!a/~. This is the reduced building 
of GL(V) , or the building of PGL(V) or SL(V). Now gg,ed is truely a simplicial 
complex, as I will describe presently (Remark. A poly-simplex is a direct product 
of simplices, and a poly-simplicial structure on a topological space is a division into 
poly-simplices). 

The vertices are the hyperspecial points , which now correspond to lat tices mod­
ulo the equivalence L ~ 1rn L for all n E Z. So they are really lattice classes. 

A set of k + 1 vertices form a k-simplex if and only if there are lattices Lo, ... , Lk 
representing the corresponding lattice classes, such that 

Lo ;? L1 ;? · · · ;? Lk ;? 1r Lo. 
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Now we have seen a few essential feautures of the Bruhat-Tits building associ-
ated to a p-adic reductive group, namely 

• 86(G) is a complete metric space (with an affine structure); 
• 86( G) is a (poly-)simplicial complex; 
• G(K) acts isometrically on 86( G ) by (poly-)simplicial automorphisms; 
• 86( G) has a collection of distinguished subsets, known as apar tments, which 

are indexed by the maximal spli t tori of G. Each apartment is isometric to 
a Euclidean space. 

R emark 2.1.3.13 If you are familiar with t he work of Bushnell-Kutzko, you 
would recognize a simplex on the Bruhat-Tits building of SL(V) as a lattice chain. 
It is possible to rephrase the notion of "norm" in a lattice-theoretical language. 
Bruhat-T its did this and called the notion "a graded lat t ice chain". The same 
notion has been rediscovered again and again. For example, they correspond to 
"fil trations" in Moy-Prasad theory, and "lattice sequences" in Bushnell-Kutzko's 
work on semisimple types of GL11 • 

Therefore, we review here the translation between the language of norms, and 
that of fi ltration/ lattice sequences/graded la tt ice chains. We will adopt the termi­
nology of "fil tration" . 

D efinition 2. 1.3.14 A filtration on Vis a decreasing family of lattices { L ,. }rE IR 
in V , indexed by real numbers r such that L ,-+1 = 1rLr . 

Observation 2.1.3.15 T here is a bijection 

{ norms on V} ._. {filtrations on V} . 

The construction is: a - {Lr }rE IR such that L ,. = {v E V: a(x);::: r }. 

2.2 Lecture 2 

2.2.1 Characte rization of the apartment. 

We first proceed with the con struction of the space A; the set r/J. and the X,,' s 
will be defined in §§ 1. 6 and 1.4. The relations (5) sho w us the way. The group 
X '-' (Z) of K-rational characters of Z can be identified with a subgroup of finite index 
of X* . Let l.J: Z(K) __, V be the homomorphism defined by 

(1) x(l.J(z)) = - w(x(z)) for z E Z(K) and XE Xi'(Z) , 

and let Z , denote the kernel of v. Then , JI = Z(K)/Z , is a free abelian group of rank 
dim S = dim V. The quotient W = N(K) /Z , is an extension of the finite group " W 
by JI . Therefore, there is an affine space A ( = A(G, S, K)) under V and an extension 
of l.J to a homomorphism, which wc shall also denote by l.J , of N in the group of 
affine transformations of A. 1f G is semisimple, the system (A , v) is canonical , that 
is, unique up to unique isomorphism. Otherwise, it is only unique up to isomor­
phi sm, but one can , followin g G. Rousseau (19] , ''canonify" ' it as follo ws: calling 
§ G0 the derived group of C0 and S 1 the maximal split torus of the center of 
G0

, one takes for A the direct product of A(Q' G0
, C0 n S, K) (which is cano­

nical) and X *(S1) ® R .The affine space A is called the apartment of S (relative 
to G and K) . The group N(K ) operates on A through W. 
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This is one of the questions I was asked most often regarding Tits' article. What 
does this paragraph mean?2 It is not difficult , but not entirely obvious either. The 
detail can be found in Landvogt's book. 

Explanation The principle is this: suppose that you have an extension of groups 

1----> A----> N----> HI----> 1, 

where A is a free abelian group of finite rank, normal in N , and W is finite. Let 
V = A ®z JR. Then we can pull out the above diagram with A '--) V and get 

1 ----> V ----> N' ----> W ----> 1. 

If you represent the first extension by a class in H 2 (vV, A) , the second extension 
is represented by the image of that class in H 2 (W, V). But H 2 (W, V) = 0, so the 
second extension is trivial. 

Vie notice that the action map a : W ----> Autgrou p(V) is induced from W ----> 
Autgroup(A) = GL2 (A) , hence factors through GLIPl (V). Thus it is obvious that 
there exists a pair (A , J) such that A affine space under V (i.e., a principal homo­
geneous space of V) , f : N----> Autaffine(A) such that f(>.) is translation by >. for all 
>.EA, and d(J(n)) = a(n) for all n EN, where n is the image of n in W. 

Now assume that vw = 0. Suppose that both the pairs (A , J) and (A' , J') have 
the above property. We claim that there is a unique isomorphism (A , f) ::::: (A' , J'). 
Indeed, a simple analysis shows that the obstruction to the existence of such an 
isomorphism lies in H 1 (W, V) = 0, and the obstruction to its uniqueness lies in 
vw = H 0 (w, V) = o. 

This, when applied to the context in [Tits, 1.2], shows that for semisimple G, 
A(G, S, K) is uniquely characterized as an affine space (up to a unique isomor­
phism). For reductive G, the reduced apartment has the same uniqueness. 

2.2.2 Extended building versus reduced building. [Tits] deals exclu­
sively with the extended building (a.k.a. enlarged building, reductive building). 
But throughout [BT], "building" usually mean the reduced building (a.lea. semi­

simple building). 
We recall that the reduced building is really canonically defined. The extended 

building is canonical in the sense that we can "canonify" the definition. But this 
is somewhat artificial and hence the behavior is not ideal. The main reason to 
favor the extended building is this: when the center of G is of split rank > 0, the 
stabilizer of points on 86'red is no longer a compact subgroup of G(K). 

We now recall that the construction of 86'ext from 86'red· It is completely 
analogous to going from Yi-ed to Y = Yext· We put 

G(K) 1 = {g E G(K) : ord x(g) = 0 Vx E Homg(G, Gm)}. 

Then G(K) / G(K) 1 is a finite generated abelian group, and there is an isomorphism 

( G(K)/G(K) 1
) ®z IR'.:::'. x.(Z) ®z IR, 

where Z is the center of G. We let G ( K) acts on the vector space X * ( Z) ®z IR 
by translations via the above isomorphism, and define 86'ext as the product of two 
G(K)-sets: 86'ext = 86'red X (X. (Z) ®z IR). 

There is another way of dealing with this, and this viewpoint is also often used 
in [BT] : instead of using G(K) and 86'ext, we use G(K) 1 and 86'red · 

2 Reprinted from [Tit79], with permission . 
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In fact , since most results in [BT] are stated using 88,-ed, it is often necessary to 
do the above. Notice that this means that the results in [BT] often actually apply 
to G(K) 1 instead of G(K). Therefore, one gets decomposition theorems etc. for 
G(K) 1 . Then one does a little bit more work to get the results for G(K). 

2.2.3 The maximal bounded subgroups. I want to bring attention to the 
fact t hat "maximal bounded subgroups", "stabilizer of vertices", and "maximal 
parahoric subgroups" are all different concepts. Although Tits' article is rather 
clear about this , this is still a common misconception (probably because people 
tend to extrapolate the easier case of EN-pairs). A few examples should impress 
you about this. For simplicity, assume that K is a locally compact non-archimedean 
field. 

It is a consequence of Bruhat-Tits fixed-point theorem that every maximal 
compact subgroup of G(K) is the stabilizer of some point on the building of G. 
But not all such stabilizers are maximal compact subgroups. 

If x is a vertex (for the canonical polysimplicial structure on 88), then the 
stabilizer G(Kr of X is a maximal compact subgroup . If G is semi-simple and 
simply connected , this gives precisely all the maximal compact subgroup. 

This fai ls for non-simply connected groups. A simple and instructive example 
is G = PGL2 (K). Recall that the lattice classes represented by the lattices L = 
o'.e1 + o'.e2 , M = o'.e1 + 1ro'.e2 corresponds to vertices x , y on the building which 
are connected by a 1-simplex xy. For most point z on the interior of xy , G(KY is 

G(Krnc(K)Y = { ( : ~b) }, and is equal to the Iwahori subgroup .Jf associated 

to xy. 
But there is one exception: when z is the midpoint of xy , G(KY ".Jf contains 

an extra element which is represented by ( ~ ~). Notice that this switches x and 

y and hence fixes z. In this case, [G(KY : f] = 2 and G(K)z is another maximal 
compact subgroup. 

Here is another example. 

Example 2.2.3.1 Let G = S0(2n), n 2:: 5. For simplicity let us assume G 
split . Write G = SO(V) , and let e1 , . . . , en, Ji , ... , fn be a Witt basis of V (so the 
quadratic form is q(I;xiei + LYdi) = LXiYi)-

For O :::; i :::; n, let Li be the lattice with basis 

According to Bruhat's Boulder conference article [Bru66], each G(K) n GL(Li) is a 
maximal compact subgroup of G(K), and there are exactly n+ 1 conjugacy classes 
of maximal compact subgroups. There are n + 1 vertices on a chamber. Are the 
maximal compacts simply the stabilizer of vertices? This seems reasonable. But if 
you look at the local Dynkin diagram (whose vertices correspond to vertices of a 
chamber) of this group, you may be puzzled: how can we assign these lattices to 
the vertices on the local Dynkin diagram reasonably? 

0 0 
X --0---0•••·•••····0---0-- Z 

0 ------ ----- 0 y w 
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The answer is: no , there are two maximal compacts (up to conjugacy) which 
are not stabilizer of vertices. T here are 4 "terminal vert ices" on the local Dynkin 
diagram. Let's call t hem x , y , z, w so that x , y is on one end and z, w on the other 
end. Then the stabilizer of xis G(K)-conjugate to that of y, and the stabilizer of z 

is G(K)-conjugate to that of w . Therefore, the stabilizers of vert ices only give n -1 
conjugacy classes of maximal compacts. However, the stabilizer of the midpoint 
of xy (resp. zw) is also a maximal compact . This accounts for then+ 1 maximal 
compacts. 

2.2.4 The parahoric subgroups. It is quite interesting to notice what T its 
said about lwahori subgroups and parahoric subgroups in his summary. 3 

We recall that if G is semisimple and simply connected, the group W = 
N(K)/Z(K) coincides with the Wey! group W of the affine root system (/)al• As be­
fore, we set fd = ld(G, K). 

3.1.1. Suppose that W = W. Then G(K)F = G(K)x for every facet F of ,u,B and 

every x E F. Furthermore, if C is a chamber of A = A(G, S), the pair (G(K)C, N(K)) 
is a BN-pair (or Tits system: cf [5], [23]) in G(K) with Wey! group W. fn that case, 
the groups G(K)x for x E fd are called the parahoric subgroups of G(K) (cf. [8]), 
but we shall avoid using that terminology here in order not to prejudge of its 
most suitable extension to the nonsimply connected case. An alternative con­
struction of the building fd starting from the above BN-pair (which can be defined 
independently of the building, as we shall see) and using the parahoric subgroups 
defined by means of that BN-pair is given in [8, §2]. 

3.3. Various decompositions. Let C be a chamber of A = A(G, S). We identify A 
with the vector space Vin such a way that O becomes a special point contained in 
the closure of C; in particular, G(K)O is a special subgroup of G(K). Set D = R+ • C 
(a "vector chamber" ) and B = G(K)C; if K is finite or, more generally, if G is re­
sidually quasi-split, and if G is simply connected, B is an Jwahori subgroup of G(K) 
(cf. §3.7). Let u+ be the group generated by all Va for which ale-and hence aln­
is positive and let Y be the "intersection of V and W", that is, the group of all 
translations of A contained in W; thus, Y is the image of Z(K) by the homomor­
phism v of §1.2. Set Y+ = Y n fj (closure of D) and Z(K)+ = v- 1(Y+), a subsemi­
group of Z(K). 

3.3.1. Bruhat decomposition. One has G(K) = BN(K)B and the mapping BnB ..... 
v(n) (n E N(K)) is a bijection of the set {BgB I g E G(K)} onto W. 

3 Reprinted from [Tit79] , with permission. 
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3.7. lwahori subgroups; volume of maximal compact subgroups. In this section, we 
suppose G residually quasi-split; remember that that is no assumption if the 
residue field K is finite ( 1.10.3). 

To every chamber C of the building 3$, we associate as follows a subgroup Iw(C) 
of G(K), called the lwahori subgroup corresponding to C: if G~ denotes the neutral 
component of the algebraic group Ge (cf. 3.4), Iw(C) is the inverse image in 
'.9'c(o) = G(K)C of the group G~(K) under the reduction homomorphism o/c(o) -> 

Gc(K). Clearly, all Jwahori subgroups of G(K) are conjugate. From 3.5.2, it follows 
that G~ is a solvable group, hence is the semidirect product of a torus t by a uni-
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Tits was indeed very careful in stating everything precisely. But still, in the 
literature people sometimes quote these results incorrectly. 

We saw that Tits was undecided about what parahoric subgroups should be 
(though he was firm about the case of lwahori subgroups). Today there should 
be no ambiguity. In [BT2], Bruhat-Tits defined parahoric subgroups in the same 
way Tits defined the lwahori subgroups. Namely, the definition has to involve the 
smooth group schemes constructed by Bruhat-Tits and their neutral components. 

Therefore, the parahoric subgroups are not the stabilizer/fixer of a facet on 
the building. However, we caution you that in the literature, some people use 
conventions inconsistent with Bruhat-Tits. 

Bruhat-Tits' choice has several advantages: 

- There is a bijection between facets and parahoric subgroups, Ff---+ G(K)F­
The bijection is order reversing: G(K)F C G(K)F, {=:::} F' C F. [This is 
just like the case of a EN-pair]. 
The parahoric subgroups contained in a fixed parahoric subgroups G(K)F 
are in bijection with the parabolic subgroups of<§ mod 1r, where <§ is the 
neutral component of the smooth group scheme associated to G(K)F- In 
other words, they are in bijection with facets on the associated spherical 
building. 

- The smooth group scheme<§ associated to a parahoric subgroup is connected 
by definition. We can apply representation theory of<§ ( tJ / 1r). Most theories 
( e.g., work of Lusztig) do require<§ mod 1r to be connected. 

Caution. Be careful about the following statement regarding the disconnection 
of stabilizers.4 The proof cannot be found in [BT] and the statement is incorrect. 

If G is simply connected, the group G0 is connected. In general, the group of com­
ponents of G0 is easily computed when one knows the group 5'i = S(G, K1) (cf. 
§2.5), where K1 is the maximal unramified extension of K. Here, we shall give the 
result only in the case of a facet. 

3.5.3. The group of components of GF is canonically isomorphic with the intersec­
tion of the stabilizers of the orbits 0( v) with v E / F in the group .S'i. A component is 
defined over K if and only if the corresponding element of E1 is centralized by 
Gal(K1/K). If K is.finite, every component of GF which is defined over K has a K­
rational point (by Lang's theorem). 

4 Reprinted from [Tit79], with permission. 
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Example 2.2.4.1 If G = T is a torus and K is strict ly henselian, and x any 
point on the building, then a result of Kottwitz in [Kot97] (which was made explicit 
by Rapoport5 ) says that the component group is the torsion subgroup of the group 
of co-invariants X * (T)cal(k; K). 

Remark 2.2.4.2 E. Kushnirsky has found a formula for computing the order 
of the component group [Kus04]. A more recent preprint ( On parahoric subgroups, 
2008) by Haines and Rapoport [HR08] gives more information on the component 
groups. 

2.2.5 Valuation of root datum. A basic feature of Bruhat-Tits theory is 
that if Ua is a root subgroup, then Ua(K) is filtred. For example, for split groups, 
Ua(K) is (isomorphic to) the additive group of K, and is filtred by the subgroups 
7rn{jK· 

For Bruhat-Tits theory, it is important that you index the filtrations on Ua(K), 
for varying a's, in a coherent way. In fact, this point is almost the whole theory. 
But the languages of doing this in [Tits] and [BT] are different. 

• In [Tits], Ua(K) is filtred by the groups X<>, where a varies over affine 
functions on A with vector part a. The set of such functions form a real 
line, of course. 

• In [BT], Ua(K) is filtred by Ua(K)cp ,r, a family of groups indexed by the real 
line IR directly [the notation r.p is there to indicate the choice of a "valuation 
of root datum"]. 

The approach of [Tits] is elegant, since it does not depend on any anxiliary 
choice. In contrast, the filtration in [BT] depends on the choice of r.p, "the valuation 
of root datum". The precise definition is somewhat long, and it is difficult to show 
that such an object exists. In fact, a very large part of [BT] is devoted to its 
existence. 

Once the existence is known, the whole theory of Bruhat-Tits buildings can be 
developed. In fact , it then follows that to give a valuation of root datum is to give 
a point on the building. Therefore, the notion of valuation of root datum is indeed 
very natural, and it can be considered as a remote analog of Cartan involution. 

In [Tits], this filtration of Ua(K) indexed by affine functions is always well­
defined. What is not clear is that this filtration has many wonderful properties. 
If you read [BT], you don't see any attempt to prove these properties from the 
definition in [Tits]. Instead, all the effort is putting into proving the existence of a 
valuation of root datum. It will follow, however (since there is a translation between 
the two languages), that all the nice properties are valid for the groups X"'. 

In order to access the results in [BT] not summarized in [Tits], one needs to 
know the translation, which we give now. 

First, today "root datum" usually means the gadget ( consisting of a dual pair 
of lattices and a dual pair of root systems) classifying a split reductive group, as 
defined in SGA3 (see also, Springer's Corvallis article [Spr79]). 

5Rapoport originally wrote a short note about this which was not published. Now this result 
is incorporated into his article with Haines [HR08]. 
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However, in [BT], "root datum" is a gadget in abstract group theory. For us, the 
"root datum" for a reductive group over K is the datum ({Ua(K)} aE<I>(G,S), Z(K)) , 
where Sis a maximal K-split torus in G , Ua the root subgroup, and Z = Zc(S) . 

Then, the set of valuations on the root datum ( {Ua(K)} aE<I>(G ,S), Z(K)) is in 
bijection with points on Ared = A,-ed(G, S , K). Indeed, by fixing x E Ared, we can 
put a filtration {Ua(K) x,r }rEIR on Ua(K) by setting 

Ua(K)x ,r = LJ Xe, , 
do. = a 

a:(x)?:r 

Conversely, if these filtration groups are known, then we can recover the group 
X a's by 

Xe,= Ua(K) x,a(x) · 

Notice that I have adopted the convention that a point on the building is a valuation 
of a root datum. This completes the translation. 

2.2.6 Figuring out the filtration. As we have mentioned, [Tits, 1.4]6 de­
fined the filtration {Xa}a on Ua(K) by an elegant recipe. But it is quite hard to 
prove the good properties of this filtration ([Tits, 1.5]). 

1 .4. Filtration of the groups Ua(K). Let a E </J and u E U0 (K) - { 1 }. It is known 
(cf. [3, §5)) that the intersection U_auU_a n N consists of a single element m(u) 
whose image in v Wis the reflection ra associated with a, from which follows that 
r(u) = ),J(m(u)) is an affine reflection whose vector part is ra. Let a(a, u) denote the 
affine function on A whose vector part is a and whose vanishing hyperplane is the 
fixed point set of r(u) and let </J' be the set of all affine functions whose vector 
part belongs to </J . For a E r/J', we set Xa = {u E U0(K) I u = I or a(a, u) ~ a}. 
The following results are fundamental. 

1.4.1. For every a as above, Xa is a group. 
1.4.2. If a, [3 E (/)', the commutator group (Xa, Xp) is contained in the group gen­

erated by all Xpa+qfJ for p, q EN* and pa + q[3 E (/)'. 

[Tits] also provided several examples of computing the filtration Xa, However, 
in my experience this is not a very pleasant drill , in particular for the exceptional 
groups. 

Therefore, in practice, to figure out the filtration , it is easier to follow the 
strategy in [BT], which is to go through two descent steps: descending from the 
split case to the quasi-split case, and descending from the quasi-split case through 
an unramified extension. 

I do not have the time to go through either steps. So I will just recast the 
starting point: the split case (which was already emphasized by [Tits] in the be­
ginning, Section 1.1) in the language of valuation of root datum. You will see that 
it is very simple. The quasi-split case is also fairly simple, and can be found in 
either [BT2], Landvogt's book [Lan96], or Prasad-Raghunathan's article [PR88] on 
central extensions. 

6 Reprinted from [Tit79], with permission. 
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So let ':1 be a Chevalley scheme over eJ. This means that ':1 is a smooth group 
scheme over eJ, such that both the generic fiber G and t he special fiber are split 
reductive groups. 

Then ':1 has a maximal split torus Y' over eJ, with respect to which there is a 
root decomposition of Lie ':1, and root subgroups ~a, a E <!)( G, S) , S = Y'K- There 
are isomorphisms Xa : Ga ---+ ~a over eJ. Then we put 

It can be shown that this is indeed a valuation of root datum , and hence determines 
a point on A(G, S, K) C !Jg(G, K). This point, of course, is the hyperspecial point 
whose stabilizer is ':1( eJK ). 

2.3 Lecture 3 

2.3.1 Notation for the third lecture. 

• K: non-archimedean local field 
• k: the maximal unramified extension of K 
• eJ = eJK, 6' = eJk, 1r a uniformizer of K ,,,;, = eJ/1r, F;, = 6'/1r 
• G: connected reductive group over K 
• S: maximal K-split torus in G 
• <p = <p ( G, S): relative root system 
• <!) aff : relative affine root system 
• {Ua}aeI>: root subgroups 
• Z = Zc(S): centralizer of S, also denoted by U0 

Theorem 2.3.1.1 (A theorem of Steinberg) G 0 K k is quasi-split. Therefore, 
if T is a maximal k-split torus in G 0 K k, then Zc(T) is a torus. 

Theorem 2.3.1.2 (Key result of Bruhat-Tits ' "Etale Descent") There exists 
a torus T over K , containing S , such that T 0 K k is a maximal k -split torus. 

Consequence. Bruhat-Tits theory behaves very well respect to unramified 
extensions. For example, !Jg( G0 K kf = !Jg( G), where r = Gal(K / K) '.::::' Gal(.ii/ ,,;,). 

Convention. Today I will always assume: G is quasi-split over K and in 
addit ion, we can take S = T. This is for simplicity of exposition. The extension to 
the general case is fairly easy. 

2.3.2 Background about integral models. 

Remark 2.3.2.1 For the discussion here , G can be any linear algebraic group 
over K . 

Definition 2.3.2.2 A (integral) model of G is an affine group scheme ':1 ( of 
finite type) over eJ with generic fiber 

':1K := ':1 @ (j K = G. 

Concretely, you try to rewrite the defining equations and the polynomials defin­
ing multiplication and inverse using polynomials over eJ. A model is just such a 
system of eJ-equations. 

Remark 2.3.2.3 A model carries more structure than the original algebraic 
groups. Examples: 
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• 0'(6) : groups of integral points, i.e. , solutions to the equations with coordi­
nates in 6; 

• 0'K: special fiber of0' or reduction of0': take the defining equations/polynomials 
mod n , we get an "algebraic group" over,-,, (more properly: a group scheme 
over ,-,,, which is not necessarily smooth) . 

• Lie0' : Lie algebra of 0' , a~ in Lie G , closed under Lie bracket. 

For simplicity, assume that K = k for a while. 
One may consider all subgroups of G(K) of the form 0'(6) privileged. Such a 

subgroup is quite special, e.g. , it is open and bounded (and more). Here , we call 
such a subgroup schematic. 

If His schematic subgroup of G(K) , t here are many 0''s such that 0'(6) = H. V 

But one of them is canonical, and is characterized by either b 

• it is the initial object in the category of models 0' such that 0' ( 6 ) = H ; or 
• it is smooth over 6 . 

This follows from the theory of group smoothening ( due to Neron, Raynaud, 
etc. ). This canonical model will be denoted by 0' H. 

Remark 2.3.2.4 Bruhat-Tits showed that many groups occuring in Bruhat­
Tits theory are schematic. 

This theory attached to schematic subgroups H extra structures which are 
quite non-trivial, e.g. , 

• the congruence subgroups 

r(nn;0'H) = {g E 0'H (o') I g mod 7fn = 1 in 0'H (tr/n no' ) }, 

• the special fiber of 0'H, 
• t he Lie algebra of 0'H. 

Remark 2.3.2.5 If K -=/- k , and H is a schematic subgroup of G(K) which 
is stable under Gal(K / K) , then 0'H, which is defined over if a priori, is actually 
defiend over 6 . 

2.3.3 The filtration on Ua revisited. We recall that Ua(K) is filtred by the 
{Xc, }dc,=a, or by the {Ua(K) x,r }rE IR· 

Now according to my convention S = T, the meaning of "Ua" doesn't change 
when you go from K to k. So we can also talk about Ua(K) x,r etc. This group is 
Gal(K / K)-stable. 

Fact 2.3.3.1 The group Ua(K) x,r is schematic. Let %'a,x,r b e the associated 
smooth model over 6 . Then %'a ,x,r (o') = Ua(K)x ,r· 

Fact 2.3.3.2 f(nn; %'a,x,r) = Ua(K) x,r+n · 

Fact 2.3.3.3 The special fiber of %'a,x,r is a product of additive groups Ga. 

2.3.4 The filtration on Lie Ua. It is natural to consider the Lie algebra of 
%'a ,x,r · Although this is already considered in [BT], Moy-Prasad seems to be the 
first to consider the whole family {Lie %'a,x,r }rEIR together. 

Fact 2.3.4.1 Let Ua,x ,r = Lie%'a,x,r· Then the family {ua,x,,·} is a fi ltration 
on Lie Ua in the sense we discussed in the first lecture ( of the kind called "latt ice 
sequence" by Bushnell-Kutzko; i.e., Ua,x ,r+ l = nua,x,r )-

\ 
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Remark 2.3.4.2 The definition here is not the one given by Moy-Prasad. 
They made more ad hoc use of the fact that G is quasi-split and specific knowledge 
of the structure of Ua. There was no direct connection to Ua ,x,r · It was just an 
analogy. 

The definition here is more natural, and it shows that Ua,x ,r is attached to 
~a ,x,r or Ua(K)x ,r canonically. It also makes the following transparent: 

Theorem 2.3.4.3 (Moy-Prasad isomorphism) We have 

Ua (K)x ,r /Ua (K)x ,r+ '.:::'. Ua ,x,r /ua ,x,r+, 

where 

Ua(K)x,r+ = LJ Ua(K)x ,s, 
s>r 

etc. 

2.3.5 The filtration on U0 (K) and Lie U0 • We recall that we apply the 
convention U0 = Zc(S). Also notice that U0 is the last part of Bruhat-Tits' "root 
datum" ((Ua)aE<I>, Uo)-

It is interesting to observe that from Chapter I of [BT], it is clear that Bruhat­
Tits wanted to consider a filtration on U0 (K). But somehow this was not done in 
Chapter II or any subsequent chapters. Ten years later , Moy-Prasad (Inventiones 
1994, [MP94]) and Schneider-Stuhler (Publ. IRES 1997, [SS97]) supplied the (same) 
definition (Schneider-Stuhler acknowledged help from Tits). 

Definition 2.3.5.1 Let Z be any torus over K. Let L/ K be an extension over 
which Z is split. Define Z(L) 0 to be the maximal bounded subgroup of Z(L) and 
for r > 0, 

Z(L)r := {z E Z(L) : ordK(x(z - 1))?: r Vx E HomL(Z, Gm)}. 

Here ordK : Lx ___, Q is the valuation extending the normalized valuation ordK 
Kx --» Z. We then define Z(K)o to be the Iwahori subgroup of Z(K), and for 
r > 0, 

Z(K)r := Z(K)o n Z(L)r-

Let 3 = Lie Z = Lie U0 = u0 . Moy-Prasad also defined 

3r = uo,r = {x E 3: ordK(dx(x)?: r Vx E HomL(Z, Gm)}. 

One can show that { Z(K)r} satisfies the conditions prescribed in Chapter I of 
[BT]. However, there are some problems with these definitions. The most serious 
one is that there is no Moy-Prasad isomorphism (similar to the one stated above, but 
with a= 0) in general. But the Moy-Prasad isomorphism is used in a fundamental 
way in the proof of Moy-Prasad theory. 

We remark that the Moy-Prasad isomorphism is valid in many cases, for exam­
ple when Z becomes an induced torus over a tamely ramified extension. Therefore, 
the first paper of Moy-Prasad is free from this issue since they deal with simply 
connected groups, and for such groups, Z is an induced torus. 

There are now two ways to resolve the situation. 

(i) DeBacker has given alternative arguments to the main results in Moy-Prasad 
theory, without using the Moy-Prasad isomorphism. But some features of 
the theory is lost [DeB02b]. 
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(ii) I hav:e given a different definition of {Z(K),-} and {3,- }. For this definition, 
the Moy-Prasad isomorphism is valid and hence the rest of the Moy-Prasad 
theory can be used without any modification [Yu03]. 

But the new definition involves a lot more algebraic geometry, and is more ·-• ~ 
difficult to compute. I will not give it here. However, if Z becomes an induced 
torus over a tamely ramified extension, the two definitions agree. 

For the rest of this lecture, I will use my definition, or assume that Z becomes 
an induced torus over a tamely ramified extension. 

2.3.6 The Moy-Prasad filtration. 

Definition 2.3.6.1 Let x E 8?J (G) , r 2='. 0. The Moy-Prasad filtration group 
associated to (G, x, r) is the subgroup of G(K) generated by Ua(K) x,r for all a E 

<I> U {O} , where we put Ua(K),- = Z(K),-. 

Similarly, 9x,r is the (direct) sum of Ua ,x,r for all a E <I> U { 0} , where uo ,x,r = 
Uo ,r = Jr· 

Theorem 2.3.6.2 (The Moy-Prasad isomorphism) For r > 0, 

G(K) x,,)G(K) x,1·+ '.::::' 9x,r/9x,r+ · 

Theorem 2.3.6.3 (Main theorem in Moy-Prasad theory) Let (1r , V) be an 
irreducible admissible representation of G(K). The number 

p = inf{r E G(K): ::lx E 8?J (G) s.t. VG(K) , .,.+ -=J 0} 

is a rational number and the infimum can be achieved for some x E 8?J ( G). It is 
called the depth of 1r . 

Moreover , if vc(K) x.p+ -=J 0, the irreducible constituents of this space as a 
representation of G(K)x,r/G(K) x,r+ enjoy a certain nice non-degeneracy charac­
terization (which relies on the Moy-Prasad isomorphism). 

The depth of a representation is preserved by the Jacquet functor and parabolic 
induction. 

I would like to mention a nice interpretation of the depth. 

Theorem 2.3.6.4 Let G = GLn, or a tamely ramified torus. Let 1r be an irre­
ducible smooth representation of G and q> : w;, --> LG the corresponding Langlands 
parameter. Then 

Here, P C WK C w;< is the wild inertia group and the filtration is the upper 
number filtration by ramification groups. 

The case of GLn can be proved as follows. One first reduces to the case of a 
supercuspidal representation. In this case the depth can be related to conductoral 
exponent and the standard £-function of 1r by a paper of Bushnell [Bus87]. Since 
this £-function agrees with the Artin £-function of ¢, and the depth of ¢ is related 
to its conductoral exponent and the Artin £-function in a similar manner, one can 
derive the result. 

For the case of a tamely ramified torus , see my article on the local Langlands 
correspondence for tori in Chapter 7. 
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Remark 2.3.6.5 We suspect that this relation is valid fair ly generally. There­
C fore, the depth should be preserved by Langlands functoriality. 

For example, it should be preserved by the Generalized Jacquet-Langlands 
/ Deligne-Kahzdan-Vigneras correspondence between representations of GLn and 
those of division algebras. (See Theorem 3.1.2 or Theorem 4.5) Recently, Lansky 
and Raghuram [LR03] proved that it is so in some cases. 

2.3.7 More group schemes. 

Theorem 2.3.7.1 (Yu) The groups G(K)x ,r are schematic. Let 'i§x,r be the 
associated smooth model over tl, then Lie'i§x,r = 9x,r · Moreover, 

It is interesting to remark that the definition of Moy-Prasad filtrations and 
, Schneider-Stuhler filtrations are rather involved. But the theory of smooth models 

now allow us to give a very short and conceptual description of the Schneider­
Stuhler filtration uie) associated to facet F: 

Let °l,(p be the canonical model for Stab(G, F) , and let '2(/ be the 

dilatation on °l,(p of Ru (('2(F)~)- Then uie) = r(1re;'2(J ) for all 
e E Z~o-

2.3.8 An interpretation of the Moy-Prasad filtration. 

Fact 2.3.8.1 The lattices {9 x,r }rEIR form a filtration on the vector space g 
corresponding to a norm on g, i.e., 9x,r+n = 7rn9x,r · 

Denote this norm on g by ax. Recall that we can regard a x as a point on 
&?(GL(g)) . Therefore, the theory of Moy-Prasad filtrations for g is a map 

l: &?(G)---> &?(GL(g)). 

Remark 2.3.8.2 Moy-Prasad also defined a filtration on g*. From our point 
of view, this is simply obtained by composing the above map with the natural 
isomorphism &?(GL(g)) c:::c &?(GL(g*)) . The latter map is the one induced by the 
identification GL(g) = GL(g*) and is described explicitly in [BT3]. 

For simplicity, assume that G is adjoint, so G c__; GL(g). Then the map i : 

&?(G)---> &?(GL(g)) enjoys the followiO:-g properties.·--------

(i) it is G(K)-equivariant; 
(ii) it is continuous and injective; 

(iii) it is tom! in the sense that if S is a maximal K-split torus of G , there 
exists a maximal K-split torus S' of G = GL(g) such that S c S' and 
iA(G, S) c A(G', S') and the restriction ilA(G, S) ___. A(G' , S') is affine; 

(iv) it is compatible with base field extensions. 

This is an example of descent maps between buildings, and in this case it is canon­
ically defined. The theory of descent maps can be considered as the functoriality 
of the building. Below we first review the case of symmetric spaces (see [GY03] for 
details). 
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2.3.9 Functoriality of symmetric spaces. 

Functoriality 
Assume that G , H are reductive groups over IR such that G c H. Suppose that 
x E Y'(G) , y E Y'(H) are such that the associated maximal compact subgroups 
G x C G(IR), Hy C H(IR) satisfy G x C Hy , then we have a G(IR)-equivariant map 
Y' (G)----> Y' (H) , sending g. x to g.y. It is easy to see that Hy n G(IR) = G x, hence 
this equivariant map is always injective. 

However, the Cartan involution 0y associated to y may not stabilize G. 

Example 2.3.9.1 Let G = S12 , H = S14 , and define the inclusion l: G '--> H 
by g 1--, [~ , / - , ] . The standard maximal compact subgroup I< of G( IR) is the 
stabilizer of the quadratic form represented by the 2 x 2 ident ity matrix 12 . 

It is easy to see that LI< stabilizes the quadratic form q represented by the 
4 x 4 matrix [ ~f i ~~~]. When q is positive definite (for example, a = c = 1 and b 
sufficiently small) , the stabilizer K q of Qq in H(IR) is a maximal compact subgroup 
such that LI< C Kq. But the Cartan involution 0q associated to Kq does not 
stabilize LG(IR) as long as b =I= 0. 

Definition 2.3.9.2 

(i) We say that the map Y' (G) ----> Y'(H) , g.x 1--, g.y is a descent map if 0y 
stabilizes G(IR) (and hence 0y descends to 0x: 0vlc( IR) = 0x) -

(ii) We say that Y' (G)----> Y' (H) is a toral m ap if there exists a maximal IR-split 
torus S of G, a maximal IR-split torus T of G such that x E A(S) , y E A(T) , 
and Sc T. 

Proposition 2.3.9.3 

(i) A descent map is a toral map. 
(ii) A toral map is a descent map. 

(iii) If Y'(G) ----> Y'(H) is a descent map then 0y,IG(IR) = 0x, for all x' E Y'(G), 
where y' is the image of x'. 

Base change 
Denote Resic;IR ( G ® <C) by Ge. Then there is a canonical map Yi:ed ( G) ----> Yi-ed ( Ge). 
It is constructed as follows: let 0 E Y:ed ( G), and let e and p be the + 1 and -1 
eigenspaces of 0 on g = LieG. Then a Cartan involution 0c on gic = g® C = Lie Ge 
is defined by 0c(k + p) = k - j5 for all k Ee ® C, p E p ® C. 

Now the base change map Yied ( G) ----> Yied ( Ge) is 0 1--, 0c . It is easy to see 
that this map is G(IR)-equivariant. 

We also have an obvious inclusion V(G) '--> V(Gc) . Combining with the pre­
vious construction, we get a base change map 

Y'(G) ----> Y'(Gc) , 

which is clearly a G(IR)-equivariant descent map. 

Proposition 2.3.9.4 The image of the base change descent map Y'( G) ----> 
Y' (Gc) is Y'( Gic)Gal(IC / IR) . 

Proposition 2.3.9.5 Assume that G C H is an embedding of complex groups 
in the sense that there are complex reductive groups G' C H' such that G = 
Resic / IR G' and H = Resic; IR H' . Then any equivariant map Y' ( G) ----> Y' ( H) de­
termined by an inclusion G x C Hy is a descent map. 
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Descent maps and base change 
Let i: G c H be an inclusion of real reductive groups. Assume x E Y(G) , y E 

Y( H ) are such that Gx C Hy and denote by i* the equivariant map Y(G) --+ 

Y(H) , g .x - g.y. 

Proposition 2.3.9.6 The map i* is a descent map if and only if i* extends to 
a Gic(JR) -equivariant map Y(Gc)--+ Y (Hc) . 

Finite group actions 
Suppose that we have a finite group F acting on H. Then G = (HF )0 is also 
reductive. 'Ne denote the inclusion G --+ H by i. 

Theorem 2.3.9.7 Let X be the set of descent maps i* : Y(G) --+ Y( H) 
satisfying i*(Y(G)) c Y(H)F. Then, 

(i) X is non-empty. 
(ii) i*(Y(G)) = Y(H)F for all i. EX. 

(iii) X is a principal homogeneous space of V(G) . 

2.3.10 Functoria lity of buildings. Unfortunately, this is still not well un­
derstood and t here is no adequate literature. The main reference is [BTl] and 

- E. Landvogt, Some functorial properties of the Bruhat-Tits building, J. Reine 
Angew. Math. 518 (2000) , 29 pages [Lan00]. 

Nothing is mentioned about the analogy with the case of symmetric spaces. 
C) But I think that this analogy provides very good insights and motivations. The two 

references also talk in totally different languages. [BTl] talks about analogues of 
the descent maps, namely they want to consider a compatibility condit ion regarding 
valuation ofroot data. In Landvogt 's article, he considers the analogoue of the toral 
maps. 

In an article which I am guilty of not finishing , I showed that these two concepts 
are the same, and so are several analogues of the above-mentioned results in the 
symmetric space case. The analogue of the theorem about finite group action (with 
a tameness assumpt ion) is now a Theorem of Gopal Prasad and myself [PY02]. 

The most important result in this direction is the main theorem of Landvogt in 
the above ment ioned paper, which asserts the existence of descent maps compatible 
with unramified base change. However, for some applications we do want to know 
the existence of descent maps compatible with ramified finite extension of base field. 
I can show the existence if the residue characteristic is not 2. 

Remark 2.3.10.1 Proposition 2.4.1 in [Landvogt] ([Lan00, Prop. 2.4.1]) can 
be proved easily from Proposition 1.3 [Prasad-Yu] ([PY02 , Prop. 13]) . This would 
save a few pages of arguments. 

Remark 2.3.10.2 The last main theorem (2 .7.4 and 2.7.5) in [Landvogt] ap­
pears to be incorrect in both the statement and the proof. The case G = split SO3 

and H = S1(3) in residue characteristic 2 provides a simple counterexample. How­
ever, Gopal Prasad has shown me a different argument for 2.7.4 when t he residue 
characteristic is 0. 

Remark 2.3.10.3 It is often asked whether for an embedding G '----, H and 
descent map i: &l(G) --+ §g (H) , we have compatibility of Moy-Prasad filtrations: 

G(K) x,r = H(K) lx ,r n G(K)? 
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Again, this is true if the residue characteristic is sufficiently large. But it fai ls in 
some cases. 

2.3.11 Concave functions. 

Definition 2 .3 .11.1 A function f : <I> U { 0} ---. JR is called concave if f (a+ b) :S 
f(a) + f(b) whenever a, b, a+ b E <I> U {0}. 

For such a function , we define G(K)x,1 to be the subgroup of G(K) generated 
by Ua(K)x,J(a) for all a E <I> U {0}. 

Example 2.3.11.2 If f(a) = r for all a, then f is concave and the associated 
G(K)x,! is the Moy-Prasad G(K) x,r· 

These groups are used more and more frequently in representation theory. Un­
fortunately they are not mentioned in Tits' article. To prove many basic facts in 
Moy-Prasad theory, one needs to use results about Gx,1 in [BT] but not in [Tits]. 
We will just mention two results here. 

Theorem 2.3.11.3 

(i) G(K)x,1 is bounded and open. 
(ii) If f (0) > 0, then the multiplication map 

II Ua(K)x,J(a) ---+ G(K)x,J 
aE <l> U{O} 

is a bijection (the map sends ( ua)a to the product of the Ua 's for a suitable 
order). 

Theorem 2.3.11.4 G(K)x,1 is schematic. 

This result is proved in [BT2] when f(O) = 0. The proof there doesn 't seem 
to extend to the general case. So I proved the above result in a preprint using 
the theory of group smoothening [Yu03]. It turns out that t his new approach is 
substantially simpler, and can be used as a subtitute for a large part of [BT2] if 
one only concerns the case of discrete valuations. 

For more properties of G(K) x,1, see [BTl , 6.4]. 




