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Summary. In this note we discuss a class of hyperelliptic curves introduced by Abel in
an 1826 paper. After some indications of the context in which he introduced them and
a description of his main result we give some results on the moduli space of such curves.

In particular we compute the dimension of it at each of its points as well as giving
a combinatorial formula for the number of components.

In his paper [1] Abel takes up a very special case of the problem of deciding
when a rational differential form is the logarithmic differential of a rational function.
Even though it is easy to imagine that the problem later led Abel to his famous
Paris dissertation, the solution that Abel proposed is very special and quite different
from the approach he chose later. Nevertheless, the present article is concerned with
investigating the problem of [1].

A characteristic, and for the time quite unusual, feature of all of Abel’s work is
his insistence on treating general cases rather than special examples. It thus seems
entirely fitting to study the moduli problem of all the solutions to his proposed
problem and we shall indeed consider a number of aspects of the moduli spaces (or
more precisely stacks) that classify his solutions.

We start by introducing a (small) number of variants of an attempt to formulate
Abel’s condition as a moduli problem. In particular Abel’s solution of his problem
in terms of a polynomial type Pell’s equation appears not as the moduli problem that
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has been chosen as the central moduli problem of this article but as a chart for it.
We then study the relations between these variants, the end result being that they are
indeed closely related.

After a discussion of the case of genus 0 and 1 we give a reformulation of the
moduli problem in terms of families of maps between genus zero curves. We then
proceed to make an infinitesimal study of the moduli problem which allows us to
conclude that it is smooth in characteristic 0. We then go on to study a Lyashko–
Looijenga type map and show that it is a covering map. This allows us to give
a topological covering space type description of the moduli stack which in particular
gives us a combinatorial description of the set of components of the moduli space.

We shall, except for the last section, adopt a purely algebraic approach. Apart
from reasons of taste there are some arguments in favour of such a choice. The
reader’s attention should be particularly directed to Theorem 6.2, where we shall
discover that some naturally defined “equi-ramification strata” turn out to be non-
reduced. It seems likely that the multiplicity with which those strata appear is
significant.

We shall also use the language of algebraic stacks. This may seem unnecessary
particularly as our stacks are very close to being spaces (cf. Proposition 8). However, I
claim that it is the technically most convenient as well as most intuitive way of doing
things. In particular when defining maps between solutions to moduli problems,
representing these solutions as stacks means that in order to define maps between
them one may often follow the path of first deciding what the map should do on
points and then verify that this pointwise construction is natural enough so that it
makes sense for families of objects. This is in fact what we shall do most of the
time. Sometimes, however, we shall discover that some choices that were made in
the point case can not be made in the case of a family and we shall then have to
incorporate those choices in the definition of the moduli problem. This will lead for
instance to the three slightly different versions of Abel’s hyperelliptic curve.

Conventions. By a monic polynomial we shall mean a polynomial in one variable
whose highest degree coefficient is equal to 1. Such a polynomial will be said to be
normalised if its next to highest degree coefficient is equal to 0.

As we shall deal extensively with stacks it seems natural to use the term ‘scheme’
to denote an algebraic space and hence by ‘locally’ mean ‘locally in the étale
topology’.1 Though we shall do so, this is not strictly necessary, however, and then
‘locally’ may at times be interpreted as ‘locally in the Zariski topology,’ though
consistently using the étale topology will always work.

We have made only a token attempt at formulating our results in arbitrary charac-
teristics.2 Starting with Sect. 3 all our schemes and stacks will be over SpecZ[1/2]
and starting with Sect. 6 we shall work exclusively in characteristic zero, this will

1 Note that in practice the only difference between ordinary schemes and algebraic spaces
is that for the latter the Zariski topology is not available.

2 It will be clear that if the characteristic is large enough with respect to the degree n, the
situation will be similar to that of characteristic 0.
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also be true at the end of the preliminary Sect. 1 and at points in Sect. 3 (which will
be explicitly spelled out).

As usual amultiset is a set whose members are counted with certain multiplicities,
formally it is a set provided with a multiplicity function from it to the integers ≥ 1.
If S is a multiset, we shall use S to denote the domain of the multiplicity function
and μS for the multiplicity function itself. We shall use set-theoretic notation when
dealing with multisets:

• S := {1, 1, 1, 2, 2, 3}will denote the multiset for which S = {1, 2, 3} andμS(n) =
4− n.

• ∑s∈S s2 should be interpreted as
∑

s∈S μS(s)s2, i.e., 3 · 12 + 2 · 22 + 32.
• Similarly, {)s/2* | s ∈ S} should be interpreted as {0, 0, 0, 1, 1, 1}.
A multiset S is finite if S is and then its cardinality, |S|, equals

∑
s∈S 1. A multiset S

is said to be a submultiset of the multiset T if S ⊆ T and μS(s) ≤ μT (s) for all
s ∈ S.

1 Preliminaries

We shall sometimes speak about the universal object over a stack which classifies
some type of geometric object. Note that, contrary to the case when the moduli
problem of classifying such objects is representable by a scheme, this is somewhat
ambiguous and is not quite as strong. Firstly, for a family of objects over S, the family
may not be the pullback of the universal family but is so only locally on S. Secondly,
the universal object is not unique; two such objects are only locally isomorphic.
Thirdly, a universal object may in fact not even exist over the stack itself, but only
locally. It would be more proper to speak about the stack of universal objects, but we
shall allow ourselves the luxury of not doing that. The first phenomena are shown
quite clearly in the case of the classifying stack, BG, of a finite group G. A universal
object is given by the trivial G-torsor, and a non-trivial G-torsor over S is of course
not the pullback of the trivial one. In fact, any G-torsor over the base is universal
and there may very well be non-trivial G-torsors over the base.

Assume that X → S is a scheme and X → P1 × S an S-morphism. Let C and
D be the schematic inverse images of 0 × S and ∞× S and assume C and D are
Cartier divisors. We shall repeatedly use the (obvious) fact that such a morphism is
the same thing as an isomorphism OX(C) −̃→ OX(D).

Let S be a scheme. A line bundleL and a trivialisation ϕ ofL2 will be called an
involutive line bundle. Consider furtherP(OS⊕L)→ S, the projective bundle on the
vector bundleOS⊕L, the two sections∞ and 0 associated to the two projections of
OS⊕L and the involution σ of P(OS⊕L)→ S defined as the composite of the map
P(OS ⊕L)→ P(L⊕OS) that switches the two factors, the standard identification
and distributivity P(L⊕OS) = P((L⊕OS)

⊗
L) = P(L2⊕L) and ϕ applied to the

first factor P(L2 ⊕L)→ P(OS ⊕L). We shall call the data (P(OS ⊕L), 0,∞, σ)

the involutive projective bundle associated to the involutive line bundle (L, ϕ) and
denote it PL.
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Example 1. If L = OS and ϕ = λ ∈ O×S , then the involutive bundle is (P1 × S,
0× S,∞× S, x → λ/x). Locally this is the general situation.

Note also that the fixed point locus of σ is a double covering of the base that is
isomorphic to the double cover associated to L and ϕ; something which is seen for
instance by using the local description just given. We shall call it the involutive locus.

Similarly to the remark above, an S-morphism X → PL such that the inverse
images of∞ and 0 are Cartier divisors C and D is the same thing as an isomorphism
OX(C) −̃→ OX(D)⊗L.

The involutive bundle will be said to be split if one is given a trivialisation of L
for which ϕ becomes the identity. Then the involutive projective bundle is identified
with P1 × S in such a way that 0 corresponds to the zero section, ∞ to the section
at infinity and the involutive locus is given by {(s : t) | s2 = t2} which when 2 is
invertible is {(±1 : 1)}.

We may explicitly construct the quotient of τ : P(OS ⊕L)→ S by the action of
σ in the following way. We define an S-map P(OS ⊕L) → P(OS ⊕L) by giving
OP(OS⊕L)(2) as a quotient of τ∗(OS ⊕L). By adjunction giving such a map is the
same as giving a map OS ⊕L→ τ∗O(1) = S2(OS ⊕L). We do this by mapping 1
of the O-factor to 1⊗ 1⊕ ϕ(1) in S2OS ⊕L⊗2 ⊂ S2(OS ⊕L) and the L-factor to
OS⊗L ⊂ S2(OS⊕L) through 1⊗id. In the local normal form above – homogenised
– this map is given by (x : y) → (x2+λy2 : xy) which evidently has no base points,
i.e., it is surjective and hence gives a map π : P(OS ⊕L) → P(OS ⊕L). As σ

locally has the form (x : y) → (λy : x) it is clear that π is equivariant with trivial
action on the target. Using again the local form it is easily verified that it is the
quotient map. We shall speak of it as the involutive quotient map associated to L
and ϕ. Note that the involutive locus maps to the image under x → 2x of itself. For
this reason, starting with Sect. 3, we shall instead use (x : y) → (x2 + λy2 : 2xy) as
quotient map so that the involutive locus is mapped to itself.

Seen from the point of view of its target the involutive quotient map π is a double
covering. Restricting ourselves to the case when 2 is invertible we may describe this
covering as follows. We get a map OP(OS⊕L)(−1)→ π∗OP(OS⊕L): By adjunction it
corresponds to a map π∗OP(OS⊕L)(−1) → OP(OS⊕L) and by construction we have
π∗OP(OS⊕L)(−1) = OP(OS⊕L)(−2) so that such a map corresponds to a section of
OP(OS⊕L)(2), i.e., a section of S2(OS ⊕L) and we choose⊗1⊕−ϕ(1). In the local
form above the section ⊗1 ⊕ −2ϕ(1) corresponds to 1/2(x2 − λy2). From that it
is easily verified that the map OP(OS⊕L)(−1)→ π∗OP(OS⊕L) is injective and has as
image the−1-eigenspace of σ . The double cover π is now determined by the square
map OP(OS⊕L)(−1) ⊗ OP(OS⊕L)(−1) → OP(OS⊕L), i.e., a section of S2(OS ⊕ L).
A local calculation shows that that section is 1⊗ 1⊕−ϕ(1).

We shall have need of the following technical result on Cartier divisors.

Proposition 1. Let π : X → S be a smooth, proper map of schemes with connected
fibres and D ⊂ X a relative (wrt to π) effective Cartier divisor, and let n be an
integer such that nOS = OS (i.e., n is invertible in OS).

The functor that to a T → S associates the set of relative effectiveCartier divisors
D ⊂ X ×S T such that nD = C ×S T , is representable by a closed subscheme of S.
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In particular, if S is reduced and if for every geometric fibre of X → S, C is n times
an effective Cartier divisor, C itself is n times an effective Cartier divisor.

Proof. The functor is clearly representable by some S-scheme V → S locally of
finite type, and we may, by a standard limit argument, assume that S is noetherian.
What needs to be proven is that V → S is proper, injective on geometric points and
unramified. For the properness we may use the valuative criterion so that S is the
spectrum of a discrete valuation ring and we assume given a Dη over the generic
point with nDη = nCη. We then let D be the schematic closure of Dη, which is
a Cartier divisor, as X is regular and is relative as it does not have any horisontal
components.

As for injectivity on geometric points we may assume that S is the spectrum of
an algebraically closed field and then the uniqueness of D is clear as X is regular
and thus the group of Cartier divisors is torsion free.

Finally, to prove that V → S is unramified, it is enough to show that it is formally
unramified, so we may assume that S = Spec R, where (R,mR) is a local Artinian
ring, 0 �= δ ∈ R annihilates m and we assume that a D exists over the closed
subscheme defined by δ. We then are to prove that there is at most one lifting of D
to X → S. Now, a Cartier divisor E is given by specifying a line bundle L and an
injective O-homomorphism O→ L. As X → S is flat, the injectivity follows from
injectivity over the special fibre and is hence automatic in our situation. Furthermore,
if D is given by s : O→ L, then nD is given by s⊗n : O→ L⊗n . In our situation we
assume a pair (M, t) over X representing C and two pairs (L, s) and (L′, s′) whose
n’th powers are isomorphic to (M, t) and whose reductions modulo δ are isomorphic.
Now the kernel and cokernel of the reduction Pic(X)→ Pic(X/δ) are OS-modules,
so that multiplication by n is by assumption bijective on them, which shows that L′
andL are isomorphic, and we may assume them to be equal. Hence s′ is of the form
s + δw with w a section of L = L/m by the flatness of X → S. By assumption
their n’th powers are isomorphic so that (1+ δλ)sn = (s+w)n = sn + nsn−1δw for
some λ ∈ R. This gives sn−1(λs+nw) = 0, where s is the reduction of s modulom.
As s is a non-zero divisor this gives w = −λ/ns, i.e., δw = −λ/nδs, which gives
s′ = (1− λ/nδ)s, so that the pairs (L, s) and (L′, s′) are isomorphic.

The last statement follows immediately from the previous ones as under its
assumptions V has the same topological space as S. �

The following result is no doubt well known but I do not know of a reference.

Proposition 2. i) Let f : C → D be a separable non-constant map of smooth
proper curves over a field k and consider the deformation functor whose values
on a nil-thickening of Speck are isomorphism classes of deformations of C and
the map f . The map that maps such deformations to similar deformations of the
formal completions of C resp. D along the ramification resp. branch locus is an
isomorphism.

ii) Let k be a field, n an integer invertible in k and f : Specf k[[x]] →
Specf k[[t]] be the map t → xn. Then t → xn +∑0≤i<n−1 ai x

i , where the ai
are power series variables, is a miniversal deformation of f .



446 T. Ekedahl

Proof. The first part can be proved by noticing that outside of the ramification/branch
loci the map is unramified and hence extends uniquely along any nil-thickening.
This shows that the deformation problem is the same as that for the localisation
along the ramification/branch loci. The comparison between the deformation for
the localisations and the completions is also clear as when one inverts generators
for the ramification/branch loci then the map is étale. This means that the map is
specified by choosing a lattice in the ring of functions in the source over the ring of
functions of the target. Specifying such a lattice is the same in the localisation as in
the completion.

Alternatively one can use deformation theory. If R→ S is a small extension of
local Artinian algebras with residue field k, small meaning that the kernel K is killed
by the maximal ideal of R, then the liftings of a deformation over S to one over R is in
bijection with H0(C, f ∗TD/TC)⊗k K . Indeed, if the deformation of C is kept fixed,
then liftings of deformations of f , given one, are in bijection with H0(C, f ∗TD)⊗K .
Taking into account the possibility of varying also deformations of C, we have to
divide out by the action of liftings of automorphisms of the deformation of C,
i.e., sections of TC ⊗ K . This action is given by addition composed with the map
TC → f ∗TD and hence the full problem is in bijection with H0(C, f ∗TD/TC)⊗k K .
As we never used the properness, the same is true for the local or complete problem
as f ∗TD/TC is supported on the ramification locus.

As for the last part, the formula t → xn +∑0≤i<n−1 ai x
i gives a deforma-

tion over k[[a0, . . . , an−2]] and hence a map to the miniversal deformation. As
k[[a0, . . . , an−2]] is (formally) smooth, to show that this map is an isomorphism it is
enough to show that it induces an isomorphism on tangent spaces, and for that we can
use the description of deformations over k[δ], δ2 = 0, just given to show that. Indeed,
the action of the sections of TC on such deformations is by interpreting a derivation
of k[[x]] as an automorphism of the scalar extension to k[δ], k[[x]][δ], that is the
identity modulo δ, and then composing the given map k[[t]][δ] → k[[x]][δ]with that
automorphism. If the vector field is h(x)d/dx and the map has the form f(x)+g(x)δ
with f, g, h ∈ k[[x]], then this composite is f(x)+ (h(x) f ′(x)+ g(x))δ. This shows
that the tangent vector of the map is given by the residue of g modulo f ′(x), which
makes it clear that the tangent map is an isomorphism. �

When we make an infinitesimal study of the moduli stack we shall not just deal with
the stack as such but also with the natural stratification of it given by the ramification
exponents of a map between curves. We recall its definition and first properties given
in [3, App.]. We begin by noting that for technical reasons we shall need to assume
that we deal with schemes over SpecQ for the rest of this section.

Remark 1. Note that this restriction is not just due to the fact that one would need
some slight modifications to get similar results in positive characteristic. In fact
there are some truly new phenomena in positive characteristic. Consider for instance
the case of Proposition 3. Condensed it says that for a finite flat map there is
a stratification of the base such that on each stratum there is a closed subscheme of
the total space which is étale over the base and whose defining ideal is nilpotent.
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A similar result is not possible in positive characteristic. Consider for instance an
inseparable field extension k ⊂ K of degree p say. For the corresponding map of
schemes Spec K → Spec k if it had a similar stratification then there could only be
one stratum but Spec K does not have a closed subscheme which is étale over Spec k
and whose ideal is nilpotent.

Recall that if f : Y → X is a finite flat map then we define its trace form to
be the symmetric bilinear form (r, s) → Tr(rs). We then define, for each natural
number n, the closed subscheme of X given by the condition that the corank of the
map f∗OY → HomOX ( f∗OY ,OX) induced by the trace form is ≥ n. We shall call
the stratification thus obtained the trace stratification wrt f . In an open stratum we
get the following primary decomposition result.

Proposition 3. Let f : Y → X be a finite flat map for which X equals a single
open trace stratum. Then the radical of the trace form (i.e., the kernel of the map
f∗OY → HomOX ( f∗OY ,OX)) is a subbundle and an ideal. The closed subscheme Y ′
defined by it is an étale covering of X. Furthermore, there is a unique X-retraction
Y → Y ′ which makes Y a flat Y ′-scheme.

Finally, if Y → Y ′ has rank n then the n’th power of the radical of the trace map
is zero.

Proof. The fact that the radical is a subbundle follows directly from the fact that
by assumption f∗OY → HomOX ( f∗OY ,OX) has constant rank (in the schematic
sense defined by the vanishing and non-vanishing of subdeterminants when X is not
reduced) and then its kernel is a subbundle. That it is an ideal follows directly from
the definition of the trace form. Then Y ′ → X is flat so to prove that it is étale it
is enough to do it when X is the spectrum of a field in which case it is well known
and easy to see that Y ′ is étale. Assume that we know that the existence and unicity
of a retraction locally. Then the unicity forces it to exist globally by (étale) descent.
By descent again, the flatness of the retraction needs to be checked only in the case
when Y ′ is the disjoint union of copies of X in which case it is clear.

For the last statement, replacing X by Y ′ we may assume that f has rank n. If
I is the radical and x ∈ I (i.e., is a local section of that sheaf) then we have that
xi ∈ I for all i > 0 and hence Tr(xi) = 0. As we are in characteristic zero this
implies that the characteristic polynomial of multiplication by x is tn and by the
Cayley–Hamilton theorem xn = 0. Again, as we are in characteristic zero, we get
by polarisation that any product of n local sections of I is zero.

It remains to prove local existence and unicity of a retraction. Locally we may
assume that Y ′ is a disjoint union of copies of X which makes the existence of
a retraction obvious and the unicity clear. �

When the corank of the trace form is constant, the proposition shows that the function
on the points of Y defined by the rank at a point of the radical is a locally constant
function and hence the function which to a point of X associates the multisets
of those ranks is locally constant. The stratification obtained in this way will be
referred to as the stratification by multiplicity. Thus while the trace stratification



448 T. Ekedahl

is a decreasing sequence of closed subschemes, the stratification by multiplicity
is a further decomposition of the open strata. We shall also in this case denote the
subscheme defined by the radical by Xfred and call it the fibrewise reduced subscheme.

Using the primary decomposition we get an extension of the pointwise result
that expresses an effective Cartier divisor on a smooth curve as the sum of points.

Proposition 4. Let f : X → S be a smooth map of SpecQ-schemes of relative
dimension 1 and suppose D ⊂ X is a relative effective Cartier divisor and assume
that the corank of the trace form of D→ S is of locally constant rank.

i) The fibrewise reduced subscheme Dfred of SpecOX/ID is a relative effective
Cartier divisor. It can be written as the disjoint of subschemes Di having the property
that at a point d ∈ Di the defining ideal of Di in D has rank ei as ODi -module. If
that is done then we have that D =∑i ei Di as divisors.

ii) Conversely if D can be written as D =∑i ei Di with Di étale disjoint Cartier
divisors then the corank of the trace form of D → S is locally constant and the
union of the Di is the fibrewise reduced subscheme of D.

Proof. That Dfred is a Cartier divisor is clear and we get from Proposition 3 that its
defining ideal I in D is a locally freeODfred -module and hence its rank is locally con-
stant. This gives the components Di and to prove the equality of Cartier divisors we
may work locally around one of the Di , i.e., assume that the rank ofI asODfred -module
is everywhere equal to some n. By Proposition 3 the n’th power of ICfred is contained
in ID. To check that it is an equality it is enough to check on fibres over closed points
of S and then it is true as they have the same degree at all the points of Dfred.

Finally, ifD=∑i ei Di andD′ is the union of theDi thenID′/ID is an S-flat nilpo-
tent ideal ofOX/ID such that the quotient by it is étale. This shows that ID′/ID is the
radical of the trace form and thus that D′ is the fibrewise reduced subscheme of D. �
The multiplicities ei can be considered as locally constant functions on Dfred and we
may choose the Di such that the ei are all distinct. Having done that the decomposition
is unique and we shall call it the primitive decomposition of D. We shall also consider
the locally constant function on the base S which to a point s associates the multiset
of the multiplicities of the points of D in the fibre over s. This will be called the
multiplicity multiset associated to D.

If S is a scheme and f : Y → X is a finite S-map between smooth (possibly
formal) S-schemes of relative dimension 1, then we get two finite S-schemes, the
ramification locus which is a relative Cartier divisor of Y and the branch locus which
is a relative Cartier divisor of X (by definition the branch locus is the norm wrt to
f of the ramification locus considered as a Cartier divisor which is defined as f is
finite flat). We shall call the stratifications by multiplicity on S induced by them the
ramification stratification and branch stratification respectively.

2 The Original Problem

We shall begin by formulating in modern terms Abel’s question and the answer he
gave to it. The initial setup is that of a square free monic polynomial R(x) of even
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degree over the complex numbers and the rational differential form ω := ρdx/
√
R,

ρ ∈ C(x), on the compact Riemann surface C with field of rational functions
C(x,

√
R) := C(x)[y]/(y2 − R(x)). The general question Abel poses is when this

form is the logarithmic differential dlog f := d f/ f for a non-zero rational function
f . If ι is the hyperelliptic involution of C which takes x to x and

√
R to −√R, then

ι∗ω = −ω and as f is determined up to a constant we get f ◦ ι · f = λ ∈ C∗.
Modifying f by multiplying by a square root of λ−1 allows us to assume that
f ◦ ι · f = 1. By a somewhat anachronistic appeal to Hilbert’s Theorem 90 we
get that f has the form g/g ◦ ι and by clearing denominators we may assume that
g = P +√RQ with P, Q ∈ C(x), which is indeed the form that Abel assumes the
solution to have. We note that g is uniquely determined up to a rational function in x.
Abel then almost immediately restricts himself to the case where ρ is a polynomial.
This implies that ω is regular over C◦ := SpecC[x,√R] and hence in particular
that f does not have poles or zeroes in C◦, or otherwise put, if ∞1 and ∞2 are the
two points of C in the complement of C◦ in C, then ( f) = m∞1 − m∞2 for some
integer m. For a divisor D on C we denote by D◦ the part of D that has support
on C◦ and then we have 0 = ( f)◦ = ((g) − ι(g))◦. Now by assumption (g)◦ ≥ 0
and hence for r ∈ C◦, r and ιr appear with the same multiplicity in g. Now, for any
r ∈ C◦ r + ιr − (∞1 +∞2) is the divisor of a rational function in x so that if r is
a non-Weierstrass point (i.e., r �= ιr) we may modify g by a rational function in x
so that r does not appear in (g). Similarly, if r is a Weierstrass point we may assume
that it appears with at most multiplicity 1 in (g). In particular, (g)◦ has support at
the Weierstrass points of C.

Even though Abel treats the general case, we shall only be interested in the case
when (g)◦ = 0. The reason for this is that we shall be mainly interested in the
existence of a g as a condition on the curve C and we have that 2ω = dlog f 2 =
dlog g2/g2◦ι and all the Weierstrass points appear with even multiplicity in (g2), and
they can therefore be removed completely. Hence at the price of possibly replacing
ρ with 2ρ we see that Abel’s problem has been reduced to the problem of finding
g ∈ C(x,√R) with (g)◦ = 0, i.e., (g) = n(∞1 − ∞2) for some integer n and
excluding the trivial case of ρ = 0 we may assume that n is non-zero. In any case
(g)◦ = 0 and hence g is a unit in C[x,√R]. This implies that g = P + √RQ,
with P, Q ∈ C[x] and furthermore that the norm N(g) = P2 − RQ2 of g with
respect to the finite flat extension C[x,√R]/C[x] is a unit in C[x], i.e., a non-zero
constant. After changing g by a constant we may assume that P2 − RQ2 = 1. Abel
then notes that this is analogous to Pell’s equation and proceeds to use continued
fractions in analogy with the case of Pell’s equation. There is a difference however
in that the number theoretic case gives a method for solving Pell’s equation while the
geometric case gives a criterion for the existence of a solution (as well as a method
for constructing it when it does exist).

Remark 2. Abel’s approach gives a condition on R for a solution to the problem with
n arbitrary to exist. This is not appropriate for our purposes as when n varies we get
a countable union of closed subvarities in the space of R’s which is unnatural from
a geometric point of view.
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3 Abel Curves

We shall now give the formal definition of an Abel curve. To simplify the presentation
(and make it closer to Abel’s original results) we shall from now on assume that 2 is
invertible in all our schemes. If we want to consider the moduli space of Abel curves
we want to make as few choices as possible as any choice leads to a larger space
which is the reason for the somewhat lengthy definition. To avoid ambiguities in the
case of genus 1 to us a hyperelliptic curve will be a smooth proper curve C together
with a choice of an involution ι such that the quotient C/ι is of genus zero.3

Definition 1. A (smooth) Abel curve of genus g and order n over a scheme S consists
of

• a smooth and proper S-curve π : C → S,
• an S-involution ι of C making each fibre a hyperelliptic curve of genus g,
• two disjoint sections∞1 and∞2 of π such that∞2 = ι∞1,
• a line bundle L on S together with a trivialisation ϕ : OS −̃→ L2, and
• a finite flat S-map f : C→ P, where (P, σ) is the involutive bundle associated to
L and the trivialisation ϕ, of degree n such that the sections∞1 and∞2 map to
the sections 0 and∞ of the involutive bundle P and σ ◦ f = f ◦ ι.

A split Abel curve is an Abel curve together with a splitting of the involutive bundle.
An isomorphism between Abel curves consists of isomorphisms between the C

and P parts of the curves transporting all the structures of the first curve to those of
the second.

Associating to each S the groupoid of Abel curves and isomorphisms between
them gives a stack (in say the flat topology) that we shall denote Hn

g and similarly
we get the stack of split Abel curvesH s,n

g .

When the base is an algebraically closed field we get exactly the description that
came out of Abel’s problem. Note that in that case it follows from the equation
P2 − RQ2 = 1 that 2 deg P ≥ deg R, i.e., 2n ≥ 2g+ 2 which means n ≥ g+ 1.

It is not immediately clear that this is the right definition for families as one
could worry that we have made an unnecessary choice in choosing two sections∞1

and ∞2 instead of a divisor of degree 2 that only after a base change splits up into
two disjoint sections. The following definition expresses that concern.

Definition 2. A twisted (smooth) Abel curve of order n over a scheme S consists of

• a smooth and proper S-curve π : C → S,
• an S-involution ι of C making each fibre a hyperelliptic curve,
• a ι-invariant relative effective divisor D of degree 2 of C which is étale over S
and on which ι acts freely,

• a smooth and proper S-curve ρ : P→ D all of whose fibres have genus zero,
• an S-involution σ of P,

3 With this definition we can have hyperelliptic curves of genus zero which for our purposes
is quite acceptable though rather trivial.
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• a σ-invariant relative effective divisor D′ of P which is étale over S and on which
σ acts freely,

• a finite flat S-map f : C → P of degree n such that the inverse image (as effective
divisors or equivalently as subschemes) of D′ is nD and for which f ◦ ι = σ ◦ f .

Isomorphisms between Abel curves consist of an isomorphism g between the C-parts
preserving the ι’s, ∞1’s, and ∞2’s and an automorphism h of P1 × S such that
f ◦ g = h ◦ f .

Associating to each S the groupoid of twisted Abel curves and isomorphisms
between them gives a stack (in say the flat topology) that we shall denoteH t,n

g .

The relation between these definitions is expressed in the following result.

Proposition 5. i) The stack of twisted Abel curves of genus g and order n, H t,n
g , is

equivalent to BΣ2 ×Hn
g , where BΣ2 is the stack of Σ2-torsors, i.e., the stack of

étale double covers. The projection on the first factor associates to a twisted Abel
curve, using the notation of Definition 2, the étale double cover D→ S.

ii) The forgetful mapH s,n
g → Hn

g is an étale double cover.

Proof. Using the notation of Definition 2 we get from a twisted Abel curve over S an
étale double cover D→ S which gives a map from the stack of twisted Abel curves
to BΣ2. On the other hand, (ι, σ) gives an involution of the Abel curve and we may
use it and the double cover D→ S to twist the Abel curve, in particular the twist, C̃,
of C is obtained by taking the quotient of D×S C by the action of (ι, ι). The section
given by the graph of the inclusion of D in C is invariant under this map and hence
descends to a section of C̃→ S and the same is true of the group of the map D→ C
composed with ι. In other words, the divisor D twists to give a divisor that is the
disjoint union of two sections. Now, the map f : C → P maps D isomorphically
to D′ so that also D′ is the disjoint union of two sections. The existence of these
two disjoint sections makes P→ S isomorphic to P(L⊕M) for some line bundles
L and M on S, where the two sections correspond to the two summands. Now, σ
permutes the two sections, which forcesL andM to be isomorphic, so that P→ S
is isomorphic to P1× S→ S with the two sections given by 0× S and∞× S. As the
inverse images of 0× S and∞× S are n times the two sections of D, we get an Abel
curve, and consequently a map H t,n

g → Hn
g and combining the two constructed

maps we get a mapH t,n
g → BΣ2×Hn

g . Conversely, given an Abel curve over S we
can consider the map f as an isomorphism OC(n∞1) −̃→ OC(n∞2). Letting ι act
on that isomorphism gives another isomorphism OC(n∞2) −̃→ OC(n∞1). Their
composites are then multiplication by an invertible function λ on S. That means that
if we define σ on P1 × S by (x : y) → (λy : x) then f ◦ ι = σ ◦ f so that we have
a twisted Abel curve over S. Now, (ι, σ) is an involution of that object and so that if
we have an étale double cover D̃→ S we can use it to twist our twisted Abel curve
and we obtain thus a map BΣ2×Hn

g → H t,n
g which is clearly an inverse to the map

just constructed.
As for the second part it is clear. �
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The proposition shows that it is no real loss in generality to restrict ourselves to Abel
curves which we shall do from now on with the exception of the following result
which confirms the representability of the two stacks.

Proposition 6. The stacksHn
g ,H

s,n
g , andH t,n

g are Deligne–Mumford stacks of finite
type over SpecZ[1/2].
Proof. This is quite standard as soon as we have verified that the automorphism
group scheme of an (twisted) Abel curve over an algebraically closed field is finite
étale. For g ≥ 2 this is clear as it is true for all curves of genus g. For g = 1 we
have to use the fact that the hyperelliptic involution is part of the structure so that
an automorphism has to commute with it. For a hyperelliptic involution ι we may
choose a fixed point as origin and in the thus obtained group structure on the curve,
the involution is multiplication by −1; then it is clear that the automorphism group
scheme centralizer of the curve is finite étale. Finally, for genus 0 we have to look
at the automorphism group scheme of automorphisms of P1 fixing two points and
commuting with an involution that permutes the two points. It is clear that the points
and the involution is conjugate to 0, ∞, and x → 1/x and then the automorphism
group scheme that fixes these is clearly finite étale. �

Our definition of an Abel curve is chosen to be closely modeled on Abel’s original
condition. On the other hand – at least punctually – the relevant condition is that the
divisor class ∞1 −∞2 is killed by n as there is then a map to P1 whose zero and
pole divisor is n(∞1 −∞2). This turns out to be true for families.

Proposition 7. LetHg,2 be the stack of hyperelliptic curves with two distinct points
(C, ι, a, b) of genus g and let s : Hg,2 → Jg be the section of the Jacobian of the
universal curve given by a− b. LetH be the closed substack ofHg,2 defined by the
conditions ιa = b and ns = 0. Let ρ be the involution ofHn

g which takes an object
(C→ S, ι,∞1,∞2, f ) to (C→ S, ι,∞1,∞2,− f ). Then the map given by

Hn
g → H

(C,∞1,∞2, f ) → (C,∞1,∞2)

is an isomorphism of stacks.

Proof. As has been noted above, f may be thought of as an isomorphism
φ : OC(n∞1) −̃→ OC(n∞2) and then ρ takes it to −φ. On the other hand, an
S-object ofH has the property that O(n∞1 − n∞2) is a pullback of a (unique) line
bundleL on S. Now, applying ι toO(n∞1−n∞2) gives its inverse which translates
into an isomorphism L −̃→ L−1, i.e., a trivialisation ofL2. This gives an object of
Hn

g over S. �

As the zero-section in an abelian scheme is a local complete intersection subscheme
we get one immediate consequence.

Corollary 1. Hn
g → SpecZ[1/2] is of relative dimension at least g at each of

its points and at a point where the relative dimension is g it is a local complete
intersection.
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Proof. The substack H of Hg,2 fulfilling ιa = b is an open substack of the stack
Hg,1 of hyperelliptic curves with one chosen point, namely the complement of
the locus of fixed points of the hyperelliptic involution, where the isomorphism
maps (C, ι, a) to (C, ι, a, ιa). Hence that substack is smooth of relative dimension
2g− 1+ 1 = 2g. Now, by the propositionHn

g is the inverse image inH of the zero
section of Jg → Hg,2 under the map ns and Jg → Hg,2 being smooth, the zero
section is a local complete intersection map of codimension g. �

Remark 3. In characteristic 0 we shall show that the codimension is in fact g and
thatHn

g is in fact smooth.

Fix n and g with n ≥ g + 1 and consider A := A2n+g+3
Z [1/2] that we shall regard as the

parameter space for triples (P, Q, R) of polynomials of degrees n, n − g − 1, and
2g+ 2 respectively with R monic. We let Vn

g be the subscheme of triples that fulfill
P2 − RQ2 = 1 and for which R is square free (i.e., its discriminant is invertible)
and P and Q have invertible top coefficients. We let Un

g be the subscheme of Vn
g

defined by the condition that R is normalised and P and Q are monic. Over Vn
g we

have an Abel curve given by

C := ProjOUn
g [s, t, y]/

(
y2 − t2g+2R(s/t)

)
,

where deg s = deg t = 1 and deg y = g+ 1, ι is given by (s : t : y) → (s : t : − y),
∞1 and∞2 are given by (0 : 1 : 1) resp. (0 : 1 : − 1), and f is given by (s : t : y) →
(tn(P(s/t) + yQ(s/t)) : tn). This therefore gives a map Vn

g → Hn
g . We shall call

any Abel curve that is a pullback of this family by a map to Vn
g a Pell family and

if it is given as a pullback by a map to the closed subscheme Un
g we shall call it

a normalised Pell family.

Theorem 3.1. i) Vn
g → Hn

g factors through the mapH
s,n
g → Hn

g .
ii) Over SpecQ the mapVn

g → H s,n
g is a torsor under the subgroup ofGm×Aff,

where Aff is the group of affine transformations of the affine line, of pairs (λ, z →
az + b) for which λ2 = a2g+2.

iii) Over SpecQ the mapUn
g → H s,n

g is a torsor under the subgroup ofGm×Aff
of pairs (λ, z → az+b) for which λ = ag+1, an = 1 and b = 0, a group isomorphic
to the group μn of n’th roots of unity.

iv) In particular the map Vn
g → Hn

g is a chart. i.e., smooth and surjective, and
Un

g → Hn
g is even an étale chart.

Proof. To prove the first part we note that for a Pell family the involution on P1 × S
compatible with f and ι is x → 1/x whose fixed point scheme is±1 and by ordering
it as {1,−1} we get a family inH s,n

g .
Assume now that (C → S, ι,∞1,∞2, f ) is a family in H s,n

g . By assumption,
using the notation of Definition 1, P is isomorphic to P1 × S in a way such that 0
on P is 0 × S and ∞ is ∞× S and the involution σ is x → 1/x. Consider now
the quotient D of C by ι. As 2 is invertible, taking the quotient by ι commutes with
base change so that in particular π : D → S is a smooth proper map with genus 0
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fibres. Furthermore, either of the sections ∞1 or ∞2 give a section ∞ of π. Now,
again as 2 is invertible, the double cover C → D is given by a line bundleM on D
and a section of M2. As M has degree g + 1 on each fibre M(−(g + 1)∞) is the
pullback from S of a line bundle L.

We shall now show that giving an isomorphism of D with P1 × S taking ∞ to
∞× S and trivialising L is the same thing as giving a Pell family over S and an
isomorphism with it and our split Abel curve. This will prove the second part and
the third follows as the group of affine transformations is smooth.

In one direction it is clear as a Pell family gives by construction a trivialisation
of D as well as L.

For the converse we shall need to use (cf. Corollary 2 which assumes that we are
over Q) thatUn

g is smooth so that we may assume that S is smooth.4

Assume now that an isomorphism D −̃→ P1 × S and a trivialisation of L has
been given. This means thatM is isomorphic to O(g+ 1) so that the section ofM2

is a homogeneous form R(s, t) of degree 2g + 2 with coefficients in Γ(S,OS). The
existence of the sections∞1 and∞2 show that R(1, 0) is a non-zero square and hence
after scaling R we can assume that R(s, 1) is monic. Now, as the Abel curve is split
we may regard f as an isomorphism f : OC(∞1)→ OC(∞2) and then, again by the
fact that the curve is split, f ◦ ι∗( f ) is scalar multiplication by a square and hence by
scaling f we may assume that f ◦ι∗( f ) = 1. OnC◦ := C\{∞1}∪{∞2} f maps into
GmS so that f is a unit inΓ(C◦,O). This ring is equal toΓ(S,OS)[s, y]/(y2−R(s, 1))
so that f has the form P(s)+ yQ(s) and the condition f ◦ ι∗( f ) = 1 translates into
P2 − RQ2 = 1. Now, if the base is a field it is easy to see that the degree of P
is equal to the degree n and hence, as S is reduced P is of degree n and its top
coefficient is a unit. The equation P2 − RQ2 = 1 and the fact that R is monic
shows that Q has degree n − g − 1 with invertible top coefficient, i.e., we have
a map to Vn

g . The possible changes in choices is given by a scaling factor λ, which
is a unit in OS, in the choice of trivialisation of L and an affine transformation
s → as + b where s ∈ Γ(S,O×S ) and b ∈ Γ(S,OS). This change takes y to λy and
then (P(s), Q(s), R(s)) to (P(as+b), λ−2R(as+b), λQ(as+b)) so that if we want
to keep R monic we need λ2 = a2g+2 which shows ii).

Turning to iii) we may after an étale extension which extracts an n’th root of
the top coefficient compose with a change of trivialisation and affine transformation
such that P is monic. As R is also monic this forces the top coefficient of Q to be
±1 and if −1 we may change the trivialisation by −1 to get that Q is also monic.
We may then by an appropriate affine transformation of the form s → a+ s assume
that R is normalised, i.e., we have obtained an S-point of Un

g. The ambiguities in
our choices are then reduced to a pair (λ, s → as) with an = 1, λ2 = a2g+2 and
1 = λan−g−1 conditions which are equivalent to an = 1 and λ = ag+1.

The last statement is now clear. �

Remark 4. Despite the very explicit form of these charts it seems difficult to use
them. I have for instance not been able to show the smoothness of the moduli space

4 In fact we only use that it is reduced.
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using the Pell equation directly (in the generic case when R and Q have no common
zeros it can be done).

We may use this result to show thatH s,n
g is almost a scheme by computing the fixed

point sets for the action of subgroups of μn onUn
g. For this we introduceWn

g as the
closed subscheme of Vn

g consisting of tuples (P, R, Q) if Vn
g for which P and Q are

monic.

Proposition 8. Let m > 1 be an integer that divides n so that μm ⊆ μn. Then the
fixed point locus for μm acting onUn

g is empty unless 2g+ 2 ≡ 0, 1 mod m.
i) If m|g + 1 then the fixed point scheme is of the form (p(sm), r(sm), q(sm)),

where (p(t), r(t), q(t)) is the universal family ofWn/m
(g+1)/m−1.

ii) If m|2g + 2 but m/|g + 1 then the fixed point scheme is of the form
(p(sm), r(sm), sm/2q(sm)), with (p(t), r(t)t, q(t)) the universal family (P, R, Q) of
Wn/m

(g+1)/m−1/2 restricted to the closed subscheme given by R(0) = 0.
iii) Assuming that m|2g + 1 then the fixed point scheme is of the form

(p(sm), sr(sm), s(m−1)/2q(sm)), where (p(t), r(t)t, q(t)) is the universal family
(P, R, Q) of Wn/m

(2g+1)/(2m)−1/2 restricted to the closed subscheme given
by R(0) = 0.

Proof. If a tuple (P(s), R(s), Q(s) is a point ofUn
g and ζ an m’th root of unity, then

ζ takes the tuple to (P(ζs), ζ−2g−2R(ζs), ζ g+1Q(ζs). Hence, that the tuple is fixed
under μm , is equivalent to P, R, resp. Q being homogeneous of degrees 0, 2g + 2,
resp.−g−1, where the grading takes values inZ/mZ and s has degree 1. This means
that for a tuple that is a fixed point, R(s) is of the form r(sm). Furthermore, if k is the
residue modulo m of 2g+ 2, then sk will be the lowest order non-zero monomial of
R and as R does not have any multiple roots this implies that k is 0 or 1. Assume that
m|g + 1. Then R(s) has the form r(sm) and Q(s) has the form q(sm). Clearly, p, q,
and r are all monic and as p2(sm)−r(sm)q2(sm) = 1 we get p2(t)−r(t)q2(t) = 1 so
that (p, r, q) gives a family inWn/m

(g+1)/m−1 and conversely such a family gives a fixed
point (p(sm), r(sm), q(sm)) (note that as m > 1 p(sm) is automatically normalised
and that r(t) is multiplicity free precisely when r(sm) is). Assume that m|2g+ 2 but
m/|g + 1. Then we still have P(s) = p(sm) and R(s) = r(sm), but Q(s) = sm/2q(s)
and P2(s) − R(s)Q2(s) = 1 gives p2(t) − r(t)tq2(t) = 1 so that (p(t), r(t)t, q(t))
gives a family in Wn/m

(g+1)/m−1/2 for which the R-component is 0 at 0. Finally if
2g + 2 ≡ 1 mod m we get P(s) = p(sm), R(s) = r(sm)s, and Q(s) = s(m−1)/2q(s),
which gives p2(t)− r(t)tq2(t) = 1. �

Remark 5. By the arguments of the proof of Theorem 3.1 (and assuming we are
in characteristic zero) Wn

g is isomorphic to Ga × Un
g through affine translations

s → s + a in the polynomial variable. The subscheme defined by R(0) = 0 is by
the same argument isomorphic to the finite étale cover of Un

g whose S-object are
(P, Q, R), an S-object ofUn

g, together with a choice of zero of R.
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4 Low Genera

It should come as no surprise that the cases of Abel curves of genus 0 and 1 are
special and we start by treating them.

Proposition 9. i)Hn
0 is isomorphic to BΣ2 with universal family having P1 as curve

with hyperelliptic involution x → 1/x, function f : P1 → P1 given by x → xn and
involution σ(x) = 1/x. The mapping to BΣ2 giving the isomorphism is given by
associating to an Abel curve the fixed point locus of its hyperelliptic involution.

ii) Let A1 → M1 be the universal elliptic curve. Let U be the open substack
of the fibre square of A1 → M1 which is the complement of the diagonal and let
ϕ : U → A1 be the map (x, y) → x − y. Then Hn

1 is isomorphic to the inverse
image of the kernel of multiplication by n by ϕ

Proof. Starting with the genus zero case suppose we have a family of Abel curves
of genus zero and degree n (C → S, f,∞1,∞2,L, ϕ). Then O(∞1 − ∞2) is
the pullback of a (unique) line bundle M on S and the involution ι induces an
isomorphismM −̃→M−1 (which identifies C and ι with the involutive bundle and
involution associated to the obtained trivialisation ofM2). Now, f corresponds to an
isomorphism O(n∞1) −̃→ O(n∞2) ⊗ L, i.e., an isomorphism M⊗n −̃→ L and
the fact that f ◦ ι = σ ◦ f , where σ is involutive involution, implies that ϕ equals
the n’th power of the given trivialisationM −̃→M−1. This shows the whole Abel
curve is determined by the involutive line bundleM.

As for the genus 1 case we start by identifying the closed substack of H1,2

of triples (ι, a, b) with ιa = b. In fact for any two disjoint sections a and b of
a family of genus 1 curves there is a unique hyperelliptic involution that takes a to b,
namely x → −x+ a+ b. This implies is isomorphic toU and the rest follows from
Proposition 7. �

5 Hurwitz Type Description

If f : C→ P1 is a split Abel curve with hyperelliptic involution ι then f ◦ ι = f −1.
The map τ : P1 → P1 given by τ(x) = 1/2(x+ x−1) is a quotient map for the action
of the involution x → x−1. We therefore get a commutative diagram

C −−−−→ D := C/ι

f

⏐⏐8 g

⏐⏐8
P1 −−−−→

τ
P1

and we see that we may recover C from the map g by taking the normalisation of
its pullback along τ . The map f is then also determined. This gives the possibility
of describing Abel curves in terms of maps of the form g. This is precisely what we
are going to do in this section.
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Definition 3. An Abel map of genus g and degree n over a scheme S consists of

• a smooth proper map π : P→ S, the fibres of which are genus 0 curves,
• a section∞ of π and an effective Cartier divisor C of P that is étale over S,
• an involutive line bundle (L, ϕ) over S with π : Q→ S the associated projective
bundle,

• an S-morphism g : P→ Q fibrewise of degree n such that, g∗∞ = n∞ as Cartier
divisors, and

• a relative effective Cartier divisor D ⊂ P such that g∗F = C + 2D, where F is
the fixed point scheme of ϕ which is an effective Cartier divisor.

A split Abel map is an Abel map together with a splitting of the involutive bundle.

Remark 6. Note that g is flat so that g∗ of Cartier divisors is well defined.

Given an Abel family ( f : X → P, (L, ϕ), ι, σ) over a scheme S, where P is
involutive bundle associated to the involutive line bundle (L, ϕ), we may consider the
induced map g : C/ι→ P/σ . As 2 is invertible, taking the quotient by an involution
commutes with base change, so that X/ι → S is a smooth genus 0 fibration,
whereas P/σ is the involutive quotient and hence is isomorphic to P(O ⊕ L).
Consider now the induced map X → P ×P/σ X/ι. The composite with it and
the projection P ×P/σ C/ι → X/ι is the quotient map and both X → X/ι and
P ×P/σ X/ι → X/ι are double covers. As such they are specified by line bundles
M and N and sections s and t of M−2 resp. N −2. The map C → P ×P/σ C/ι
corresponds to a map N → M compatible with the sections of M−2 and N −2.
The map N → M defines a relative Cartier divisor D as it defines a Cartier
divisor on each fibre (over S). Let C be the divisor of s and note that the divisor
of t is the pullback by g of the divisor of the involutive quotient map, i.e., F ,
where F is the involutive locus. The compatibility between the coverings then
gives that g∗F = C + 2D, and as g∗∞ = n∞ as f ∗∞ = n∞1, we have an
Abel map. Finally, as X is smooth, C is étale over S. This construction can be
reversed.

Proposition 10. The stack of Abel curves is isomorphic to the stack of Abel maps.

Proof. We have just defined a map in one direction. Conversely, assume given an
Abel curve and using the notations of Definition 3 we recall that the involutive
quotient map is given by OP(O⊕L)(−1) and the section ⊗1 ⊕ ϕ(1) of OP(O⊕L)(2)
whose Cartier divisor is the involutive locus F . The pullback of it by g is then
given byN := g∗OP(O⊕L)(−1) and the Cartier divisor g∗F . If we putM := N (D)

then by assumption the section of N −2 comes from one of M−2 and hence gives
a double covering X → P that maps to the g-pullback of the involutive double
cover and X is smooth as C is étale and 2 is invertible. This gives an inverse
map. �

In the future we shall pass freely back and forth between Abel maps and Abel
curves.
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6 Infinitesimal Calculations

In this section we shall study the deformation theory of Abel maps (and hence of
Abel curves). To avoid problems with wild ramification (and worse still, inseparable
maps) we shall from now on assume that all our schemes and stacks are over SpecQ.

If (p1(x), p2(x), . . . , pn(x)) is a sequence of monic polynomials over S (i.e., with
coefficients in Γ(X,OX)) then we may put X and Y equal to Spec (⊕iOS[[x]]) and let
f be given by x → pi on the i’th component and we shall refer to the ramification and
branch stratifications associated to f as the ramification resp. branch stratifications
of the sequence (p1(x), p2(x), . . . , pn(x)).

Definition 4. Let T = (S, S1, S2) be a sequence of disjoint finite sets and r a function
from S′, the disjoint union of the components of T to the positive integers; for i = 1, 2
let Sei and S

o
i be the subsets of Si where r takes even resp. odd values and set

n :=
∑
s∈S

(r(s)− 1)+
∑

s∈Se1
.∪Se2

(r(s)/2− 1)+
∑

s∈So1
.∪So2

(r(s)− 1)/2.

We define P (T ) to be the affine space An seen as the parameter space of tuples
(ps)s∈S′ where ps is a normalised polynomial of degree r(s) if s ∈ S, a normalised
polynomial of degree r(s)/2 if s ∈ Se1

.∪ Se2 and a monic polynomial of degree
(r(s)− 1)/2 if s ∈ So1

.∪ So2 . Despite this interpretation we shall continue to refer to
the origin as the origin.

To a point (ps) of P (T ) we associate the tuple (qs)s∈S′ , where qs = ps if s ∈ S,
qs = p2

s if s ∈ Se1
.∪ Se2 and qs(x) = (x − as)p2

s (x) with as being twice the next
to highest coefficient of ps. (Thus qs is always a normalised polynomial of degree
r(s).) The ramification and branch stratifications of the sequence (qs) associated to
the tautological sequence will be referred to as simply the ramification resp. branch
stratification of P (T ).

We have the following characterisation of the points of a stratum.

Proposition 11. Let f : Y → X be a finite map of (possibly formal) smooth
1-dimensional schemes over a field k. Then the corank of the trace map of a closed
point s of the ramification locus of f is equal to the ramification index at s minus 1
and the corank of the trace map of a closed point s of the branch locus of f is equal
to the sum of the ramification indices of points of the fibres over s of f minus the
number of points of the fibre.

Proof. This is clear for the ramification locus. For the branch locus it follows from
the fact that locally at a closed point branch divisor is the sum of the norms of
the ramification divisors at the points of the fibres and that the norm of a closed
point considered as a divisor equals to the image point which is seen by looking at
valuations of a defining element. �
We are now ready to give a description of the deformation theory of Abel maps
(and equivalently Abel curves). To simplify descriptions, for an Abel map ( f : P→
Q,C, D) over a base S by its assigned branch points we shall mean the divisor of
Q which is the sum of the involutive locus and the∞-divisor.
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Theorem 6.2. Let ( f : P → Q,C, D) be a split Abel map over an algebraically
closed field k. Let S ⊂ P(k) be the ramification points that do not map to the
assigned branch points, let Se1 and S

e
2 resp. S

o
1 and S

o
2 be the ramification points

over (1 : 1) and (−1 : 1) with even resp. odd ramification index (wrt to f ) and let
T := (S, So1, S

e
1, S

o
2, S

e
2). Finally, let r associate to a point its ramification index wrt

the map f . Then the completion of the local ring of the stack of Abel maps at the
Abel map is isomorphic to the completion of the local ring ofP (T ) at the origin and
the isomorphism may be assumed to be stratification preserving.

Proof. We shall give an isomorphism of deformation functors so we consider a de-
formation of the given Abel map over a local Artinian ring R with residue field k.
Note that as 2 is invertible, the involutive bundle has just the trivial deformation so
we may restrict ourselves to split Abel maps. If we just consider deformations of the
map f , then Proposition 2 shows that such deformations are in bijection with tuples
(qs)s∈S′ , S′ being as in Definition 4, where qs is a normalised polynomial over R of
degree r(s). It remains to understand the influence the choice of relative Cartier di-
visors has. Now, the Weierstrass preparation theorem is equivalent to saying that the
ideal of a relative Cartier divisor of Spec R[[x]] → Spec R is generated by a unique
Weierstrass polynomial (i.e., of the form xn + a1xn−1 + · · · + a0 with ai ∈ mR) and
it is clear from the uniqueness that inclusion of divisors corresponds to divisibility
of polynomials and addition of divisors corresponds to product of divisors.

Hence for s ∈ So1 .∪Se1 .∪So2 .∪Se2 the inverse image of the assigned branch points at s
is defined by qs,Cs being étale is defined by a polynomial of degree 0 or 1 depending
on whether the degree of qs is odd or even (as the difference is even). In the even
case, if ps is the polynomial of Ds we have qs = p2

s and ps is normalised as qs is.
In the odd case, if Cs is given by x − as and Ds by ps we have that qs = (x − as)p2

s
and as qs is normalised we have that as is twice the next to highest coefficient of ps.
This shows that the qs for s ∈ S and the ps for s in the complement gives an R-point
of P (T ) and the converse is also clear. The definition of the stratification of P (T )
has been set up so that the constructed isomorphism preserves the strata. �

Remark 7. The assumption of an algebraically closed field as base is just for nota-
tional convenience as is the existence of a splitting.

We put the most important consequences of this theorem in the following corollary.
Note that we have identified the stack of Abel maps with that of Abel curves.

Corollary 2. i)Hn
g is a smooth stack everywhere of dimension g.

ii) The open substack ofHn
g consisting of Abelmapswith only simple ramification

(i.e., all ramification indices are ≤ 2) and for which for all branch points outside of
the assigned branch points there is only one ramification point above it, is dense.

Proof. The map H s,n
g → H s,n

g is an étale cover so we may deal with the split case
instead. The smoothness follows immediately from the theorem and we postpone
the calculation of the dimension. For the second part we may complete the local
ring at a point and then transfer the problem to the complete local ring at the origin
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of P (T ). We shall now show that the set of P (T ) where the corank of the trace
form is 0 is non-empty and by Proposition 11 it is enough to show that generically
on P (T ) the derivative of each qs has no multiple roots. If s ∈ S this is clear as
then qs is a generic monic polynomial and then so is 1/nq′s, where n is the degree
of qs. If s ∈ Sei , i = 1, 2, then qs = p2

s where ps is a generic monic polynomial and
thus q′s = 2ps p′s. Generically ps and p′s have no roots in common, ps has no double
roots and neither has p′s by the argument just given. If s ∈ Sei then qs = (x − as)p2

s
where ps is a generic monic polynomial with next to highest coefficient as. Then we
have q′s = ps(ps + 2(x − as)p′s). Again, generically ps has no double roots. Roots
that are common to ps and ps + 2(x − as)p′s are also roots of either x − as but
generically as is not a root of ps or of p′s which again is not the case generically. We
are left with showing that generically ps + 2(x − as)p′s has no double roots. Now,
ps + 2(x − as)p′s divided by 2n + 1, n being the degree of ps, is a generic monic
polynomial. Indeed, it is easily seen that the coefficients of ps can be expressed as
polynomials in those of ps + 2(x − as)p′s.

We have thus shown that generically all ramification points are simple and it
remains to show that away from the assigned branch points there is generically only
one ramification point above one branch point. For this we note that for a given
s ∈ S the contribution from that ramification point to the branch locus is defined
by the norm of q′s and hence what needs to be shown is that for two s, s′ ∈ S that
map to the same point under f , the two norms do not have a common component.
Now qs and qs′ are generic polynomials with independent coefficients. Hence the
locus defined by the common components would have to be independent of both
the coefficients of qs and qs′ (and of course only depend on their union) and would
hence have to be constant. At the origin the full ramification loci consist just of 0 and
so the common locus would have to be 0 everywhere. However, qs has generically
no factor in common with q′s.

Finally, to compute the dimension we may by what has just been proved, look
only at the case where all the ramification is simple and outside of the assigned
branch points there is only one ramification point over a given branch point. We may
also assume that the Abel curve is split. Now, if s ∈ S is a ramification point, then the
local deformation at that point depends on one parameter as qs is a normalised second
degree polynomial, whereas for a ramification point over the assigned branch points
the local deformation at that point depends on zero parameters, as ps is a normalised
first degree polynomial. Hence the dimension is equal to the cardinality of S. Let
now ei , i = 1, 2, be the number of ramification points over±1, let e′ := e1+ e2, and
let e be the number of ramification points not above ±1. By the Hurwitz formula
applied to f we have

−2 = −2n + n − 1+ e′ + e

and by the Hurwitz formula applied to double covering ramified at the non-
ramification points over ±1 we have

2g− 2 = −4+ (2n − 2e′)

and elimination gives e = g. �
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7 The Lyashko–Looijenga Map

By the Lyashko–Looijenga map is generally meant the map that to a family of
finite maps between smooth curves associates the branch locus of each member.
Sometimes one restricts oneself to families where the trace corank of the branch
locus is constant and then it is natural to consider the fibrewise reduced subscheme
of the branch locus. Furthermore, sometimes some of the branch points are by
assumption fixed and then of course it is natural to exclude them from consideration.
Our situation is of this type as the involutive fixed points are essentially fixed (i.e.,
they can not move non-trivially in a continuous fashion) and actually fixed in the
split case.

We shall see that the situation is not completely straightforward; our strata
on which the LL-map is defined will generally turn out to be non-reduced which
certainly kills all hope of the LL-map being étale. All is not lost, however, as a stratum
is locally the product of a smooth stack and a zero-dimensional one and the LL-map
turns out to be étale on the reduced substack. The most obvious reason for the stratum
being non-reduced is our definition of the branch locus. This definition is, however,
more or less forced upon us if one wants the branch divisor to vary continuously
(i.e., be a relative Cartier divisor) as generically the branch divisor is étale and hence
determined by the condition that its support be the branch locus.

Definition 5. i) A ramification specification of degree n consists of a finite multiset S
ofmultisets of (strictly) positive integers such that for eachmultiset s in S

∑
e∈s e = n.

The multiplicity multiset associated to S is the multiset {ρ(s) | s ∈ S}, where ρ(s) =
{e− 1 | e ∈ S, e > 1}. The total ramification of S is∑

e∈s∈S
(e− 1).

ii) An Abel ramification specification of order n is a ramification specification S
of order n whose total ramification equals n − 1 together with the choice of a sub-
multiset T of S of cardinality 2. If t is the number of odd integers, counted with
multiplicity, of the members of T , then the genus of S is equal to (t − 4)/2.

Remark 8. A ramification specification is determined by its associated multiplicity
multiset and the degree n. A multiplicity multiset is the same as a passport of [4].

We shall now consider stratifications ofHn
g . First we consider the ramification strat-

ification of the universal map ofHn
g giving a multiset of multiplicities associated to

each stratum. Then we consider its intersection with the trace stratification associ-
ated to the branch locus which gives a further division of the multiplicities according
to which branch point they are mapped to. This gives exactly an Abel ramification
specification S of order n associated to each such stratum. Conversely, for each Abel
ramification specification S of order n we denote byHn

g,S the corresponding stratum.
If X → S is a map of algebraic stacks andm a positive integer then Confm(X/S)

(or just Confm(X) if S is understood) is the m-point configuration space, i.e., the
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stack quotient by the permutation action of the symmetric group Σm on the open
substack of the m’th fibre power of X → S consisting of distinct points.

Our main use of this construction is to the universal involutive projective bundle;
namely the projective bundle P → BΣ2 that to an involutive line bundle over S
(i.e., a map S → BΣ2) associates the involutive projective bundle. We then let
P′ → BΣ2 be the open substack of P obtained by removing the section of infinity
and the involutive fixed point set. Note that the universal involutive line bundle of
Hn

g gives a map Hn
g → BΣ2 and the base of the universal Abel map is just the

pullback of P under this map.

Definition 6. Let S be an Abel ramification specification (S, T ) of order n and let m
be the cardinality of S minus 2. We define the Lyashko–Looijenga map LL : Hn

g,S →
Confm(P′/BΣ2) by associating to an Abel map over S its reduced branch locus
minus assigned base points.

We can now prove the major result on the LL-map after we have proven the following
lemma.

Lemma 1. Let R be a commutative ring which contains Q and a ∈ R. Then for
a strictly positive integer n the polynomial (t2n+1 − a2n+1)/(t − a) is a square of
a polynomial precisely when an+1 = 0.

Proof. In the ring of Laurent power series in t−1, R((t−1)) the polynomial has the
unique square root

tn
√

1+ at−1 + · · · + a2nt−2n

and hence the polynomial has a polynomial square root precisely when all powers
beyond t−n have zero coefficients in

√
1+ at−1 + · · · + ant−2n . This series is ob-

tained by substituting s → at−1 in
√
(1− s2n+1)/(1− s) which makes it clear that

if an+1 = 0 then the square root is a polynomial. It is equally clear that the converse
is true if the coefficient of sn+1 in

√
(1− s2n+1)/(1− s) is non-zero. However, as

n > 0, 2n+ 1 ≥ n+ 2, and thus modulo sn+2
√
(1− s2n+1)/(1− s) is congruent to

(1− t)−1/2 which clearly has all of its coefficients non-zero. �

Theorem 7.3. Let S be an Abel ramification specification (S, T ) of order n and let
m be the cardinality of S minus 2.

i) The completion ofHn
g,S at any geometric point s = Speck is isomorphic to∏

2n+1∈t∈T
n>0

Specf k[[a]]/ (an+1)× ∏
s∈S\T

Specf k[[σ, a1, . . . , am(s)]]/(σ1, . . . , σe)

where m(s) := |{e | e ∈ s; e ≥ 2}|, e(s) :=∑e∈s(e− 1) and∏
i

(s − ai)
ei−1 = se +

∑
1≤ j≤e

(−1) jσ j s
e− j
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as polynomials in s. In particular, Hn
g,S is smooth precisely when there is exactly

one ramification point over each unassigned branch point and no ramification point
of odd ramification index above involutive fixed points. It is always the case that the
reduced substack (Hn

g,S)
red is smooth.

ii) The Lyashko–Looijenga map LL : (Hn
g,S)

red → Confm(P′/BΣ2) restricted to
the reduced subscheme is an étale covering map.

Proof. We start by making a local calculation. It is clear from Theorem 6.2 that
we get a product over the elements of S. Let us first consider an unassigned branch
point. Let {e1, . . . , ek} be an element of S \ T with the members equal to 1 removed.
Hence a deformation over a local Artinian ring R is given by a collection (pi)1≤i≤k of
normalised polynomials with deg pi = ei . Now the condition, that the deformation
stay inside the stratum given by {e1, . . . , ek} means, according to Proposition 4
and the identification of Cartier divisors with Weierstrass polynomials, that each
p′i has the form ei(x − αi)

ei−1 and as pi is normalised we get that αi = 0 and
hence that pi(x) = xei + bi . Furthermore the ramification divisor is defined by xe−1.
To compute the branch divisor we have to compute the norm of xe−1, and using
the multiplicativity of the norm it is enough to compute the norm of x. Now, it
is clear that under the map R[[t]] → R[[x]] given by pi we have that R[[x]] is
isomorphic to R[[t, x]]/(xei + bi − t) which gives that the norm of x is ±(t − bi).
Hence the branch divisor is given by

∏
i(t − bi)ei−1. Now, we are working in

the stratum where the fibrewise reduced branch divisor exists, which means that
there is a σ ∈ mR such that

∏
i(t − bi)ei−1 = (t − σ)e, where e = ∑

i(ei − 1).
Comparing next to highest coefficients gives σ = ∑

i(ei − 1)bi and changing
variable s = t−σ and putting ai = bi −σ gives us

∏
i(s−bi)ei−1 = se. This shows

that the universal R is k[[σ, a1, . . . , ak]]/(σ1, . . . , σe). Now, for degree reasons, as
soon as k > 1, k[[σ, a1, . . . , ak]]/(σ1, . . . , σe) is strictly larger than k[[σ]]. On the
other hand putting s equal to ai gives aei = 0, which shows that when dividing out
by the nilradical of k[[σ, a1, . . . , ak]]/(σ1, . . . , σe), this ring equals k[[σ]].

Considering now instead one of the involutive fixed points again as we are in
a fixed ramification stratum, we get the form pi = xei + bi . This time, however, we
have that when ei is even, pi is a square and when it is odd, pi is a square times
a linear polynomial. In the first case it is easy to see that if xei + bi is a square, then
ai = 0. In the second case, if xei + bi = (x − ai)q2(x), then setting x = ai we get
bi = −aeii , so that (xei −aeii )/(a−ai) = q2(x) and we conclude from Lemma 1 that

this is possible precisely when a(ei+1)/2
i = 0. This concludes the proof of i).

Turning to ii), that the map is étale is clear from the local calculation, as the
fibrewise reduced branch divisor is defined by t − σ , using the notations of the first
part. It remains to prove that it is proper and for that we shall use the valuative
criterion, and as everything is of finite type over SpecQwe may restrict ourselves to
discrete valuations, which we may assume to be strictly Henselian. Hence we may
assume that the map is split and by Theorem 3.1 we may assume that it is given by
a Pell family (P, Q, R) such that P2 − RQ2 = 1, and P is then the Abel map in
question. By for instance [4, Lemma 3.1] (and the fact also noted in [loc. cit.] that the
inverse image of the origin under the LL-map is the origin) P has coefficients in R.
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By Gauss’ lemma so does R and Q. The next step is to show that the discriminant
of R is a unit. For this one may reduce modulo the maximal ideal of R and apply the
Hurwitz formula to the map given by P. Indeed, by assumption the number of branch
points of P is fixed and hence by Hurwitz’ formula the number of ramification points
is also fixed. This makes it impossible for zeros of R to come together. �

Remark 9. i) The local description of the stratum contradicts [3, Prop. A.3] which
claims that the LL-map always is étale. In view of the theorem (very slightly modified
to fit into the context of [loc. cit.]) this is now seen to be false when there is more
than one ramification point over a branch point. It thus has to be modified to saying
that the restriction to the reduced subscheme of an equisingular stratum is étale.
Luckily, this is what is used in the main text and it is also given a topological proof
in [3, Thm. 4.2].

ii) It is possible to get a natural interpretation of the reduced structure on the
strata. This will be treated elsewhere.

8 Topological Construction

In this section we shall study the covering given by the LL-map. Even though we
can easily get a description for all strata, using the same methods, we shall only
deal with the open stratum as that gives a combinatorial algorithm for computing
the number of connected components of the stack of Abel curves. Note however that
other strata are also interesting. For instance the lowest stratum where all the branch
points are assigned has been considered in connection with Grothendieck’s “dessin
d’enfants” (cf., [5]).

As usual the fibres of the LL-map are in bijection with conjugacy classes of cer-
tain sequences of the symmetric group. In order to give a procedure for computing
the number of components of a stratum we need generators for the fundamental group
of the appropriate configuration space. The following result can most certainly be ex-
tracted from the literature but for the convenience of the reader as well as the author
we give a proof. We start by giving some notation. IfC is a simple non-closed oriented
curve inC and S ⊂ C is a finite set then the orientation ofC induces a total order on S.
If i is a positive integer strictly smaller than the number s of elements of S then we de-
fine, as usual, the elements σi of the braid group on s strands given by letting the i’th
point move alongC to the position of the i+1’st point to the right ofC and letting the
i+1’st point move alongC to the position of the i’th point to the left ofC (“right” and
“left” being from the point of view of the orientation ofC). If s ≥ 3 and we define τ1

resp. τ2 to be the braids that takes the second resp. s − 1’st point and moves along C
on the left resp. right hand side till just before the first resp. last point, then circles that
point once counter-clockwise, and returns back to its original position along the right
resp. left hand side ofC. (They are equal to σ2

1 resp. σ−2
s−1.)

Proposition 12. Let C := [−1, 1] oriented in any direction and S ⊂ C a finite
subset with s elements containing±1, and let A := C \ {±1}. Then the map induced
by the inclusion {x1, . . . , xs−2} → {−1, 1, x1, . . . , xs−2}
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π1
(
Confs−2(A), S \ {±1})→ π1(Confs(C), S)

is an injection whose image is generated by σi , 2 ≤ i ≤ s − 2, τ1 and τ2.

Proof. By possibly applying z→−z we may assume that the orientation of [−1, 1]
is such that −1 becomes its first element.

To begin with it is clear the σi , 2 ≤ i ≤ s − 2, τ1 and τ2 lie in the image. Recall
that we have a surjection π1(Confs(C), S) → Σs taking σi to the transposition
(i − 1, i). The image of π1(ConfA(s − 2), S \ {±1}) maps into Σs−2, considered as
the subgroup that fixes the first and last elements, and as σi maps to (i − 1, i), the
subgroup generated by them maps surjectively onto Σs−2. Hence both for injectivity

and generation it suffices to consider π1(C̃onf
s−2

(A), S\{±1})→ π1(C̃onf
s
(C), S),

where C̃onf
t
(X) is the space of ordered t-subsets of X, and to show that the map is

injective and the image is generated by the conjugates of σ2
i , 1 ≤ s ≤ s − 1 in the

group generated by 2 ≤ i ≤ s − 2, τ1 and τ2.
Now, by conjugating by the σi , 2 ≤ i ≤ s−1, we can get from τ1 and τ2 all braids

A1
i and A2

i defined like τ1 resp. τ2 only starting at the i’th point for 2 ≤ i ≤ s − 1,
as well as the Aij , 2 ≤ i < j ≤ s − 2, defined like τ1 only starting at the j’th point
and encircling the i’th point. (The Aij are the Aij of [2, 1-11], A1

i is A1i and A2
i is

a mirror image of As−i,s.) Our aim is to show the injectivity and that these elements
generate the image. In this we shall follow the proof of [2, Lemma 1.8.2] and we start

following [2] in using the notation Fm,n(X) for C̃onf
n
(X \ Qm) where Qm is a fixed

subset of X of cardinality m and will use of the theorem of Fadell and Neuwirth
(cf. [2, Thm. 1.2]) which says that when X is a manifold, then the projection on the
first r factors Fm,n → Fm,r is a fibration with fibre Fm+r,n−r . Applied to r = n − 1
and X = C and X = A this will allow us to prove the statement by induction. As
the involved spaces are acyclic, the fibrations give short exact sequences, and by
induction we are reduced to showing that for 1 ≤ i < s

π1
(
A \ Si, xi+1

)→ π1
(
C \ Si, xi+1

)
,

where Si consists of the i first elements of S and xi+1 is the i + 1’st element, is an
injection and that the image is contained in the subgroup generated by Ak,i+1 and
A1
i+1 (and when i = s − 1 also the A2

k) for 1 ≤ i ≤ k. This however is clear. �

This result, combined with Theorem 7.3 and Corollary 2 ii), allows us to give
a combinatorial description of the number of components ofHn

g andH s,n
g . For this

we first introduce the following definition.

Definition 7. Let Ng,n be the set of tuples (σ, σ1, . . . , σg, τ) ∈ (Σn)
g+2 fulfilling the

conditions

• σσ1 · · · σgτ is an n-cycle and
• the σi are transpositions and σ and τ are products of disjoint transpositions and
the sum of the number of fixed points of σ and of τ equals 2g+ 2.
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Let Mg,n be the set of orbits of the action of Σn on Ng,n given by

(ρ, (σ, σ1, . . . , σg, τ)) →
(
ρσρ−1, ρσ1ρ

−1, . . . , ρσgρ
−1, ρτρ−1) .

Thus armed we can give a combinatorial description of the set of connected compo-
nents of the stacks of (split) Abel curves.

Theorem 8.4. The set of connected components ofH s,n
g is in bijection with equiva-

lence classes of Mg,n under the equivalence relation generated by the relations.

• (σ, σ1, . . . , σi , σi+1, . . . , σg, τ) ∼ (σ, σ1, . . . , σiσi+1σ
−1
i , σi , . . . , σg, τ) for all

1 ≤ i < g.
• (σ, σ1, . . . , σg, τ) ∼ (σ[σ1, σ], σσ1σ

−1, . . . , σg, τ), with [σ1, σ] = σ1σσ
−1
1 σ−1.

• (σ, σ1, . . . , σg, τ) ∼ (σ, σ1, . . . , τ
−1σgτ, [τ−1, σ−1

g ]τ).
The set of connected components of Hn

g is in bijection with equivalence classes of
Mg,n under the equivalence relation generated by the above relations together with
the relation

(a1, a2, . . . , ag+2) ∼ (bg+2ag+2b
−1
g+2, . . . , b2a2b

−1
2 , a1),

where bi = a1 . . . ai−1 for i ≥ 2.

Proof. The part on H s,n
g follows directly from the fact that the LL-map is an étale

covering (Theorem 7.3), that the fibres of the LL-mapping are in bijection with
Mg,n , the description of the generators for the fundamental group for the target of
the LL-map (Proposition 12) and the formula for the action of the σi on Mg,n .

As for the Hn
g -part the Lyashko–Looijenga map has as target the quotient of

Confg(A1 \ {±1}) divided by the map induced by z → −z. Hence we have to add
the relation that identifies an equivalence class of maps from the fundamental group to
Σn with the one obtained by composing with the action of the (outer) automorphism
induced by z → −z. For that we choose as basepoint of Confg(A1 \ {±1}) the
set {−1/2,−1/3, . . . , 1/3, 1/2} (with 0 included if g is odd) and as basepoint for
A1 \ {−1,−1/2,−1/3, . . . , 1/3, 1/2, 1} i. Acting by z → −z gives us −i as new
basepoint and we identify fundamental groups by choosing a curve from −i to i
going to the left of {−1,−1/2,−1/3, . . . , 1/3, 1/2, 1}. �
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