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Abstract. We give an algorithm that constructs, on input of a prime power q and

an integer t, a supersingular elliptic curve over Fq with trace of Frobenius t in case
such a curve exists. If GRH holds true, the expected run time of our algorithm is
eO((log q)3). We illustrate the algorithm by showing how to construct supersingular

curves of prime order. Such curves can readily be used for pairing based cryptography.

1. Introduction

Let Fq be the finite field of q = pf elements with p prime. It is a classical problem to
construct an elliptic curve E over Fq with prescribed order. In case the requested
curve is ordinary, there is no algorithm known that solves this problem in time
polynomial in log q. In this paper we investigate the supersingular case.

Efficiently constructing supersingular curves of prescribed order has its impact
outside the area of arithmetic geometry. Indeed, a supersingular curve of prime
order N = #E(Fq) has the property that its embedding degree with respect to N ,
defined as the degree of the field extension Fq(ζN )/Fq for a primitive Nth root of
unity ζN , is very small and this makes supersingular curves suitable for pairing based

cryptographic systems. We refer to [3, Ch. 24] for an overview of the cryptographic
applications.

A classical result due to Waterhouse [8, Theorem 4.1] states that there exists a
supersingular elliptic curve over Fq with trace of Frobenius t if and only if t lies in
the small set Sq consisting of those traces for which one of the following holds:

(a) if [Fq : Fp] is even and one of the following is true
(i) t = ±2

√
q

(ii) t = ±√q and p 6≡ 1 mod 3
(iii) t = 0 and p 6≡ 1 mod 4;

(b) if [Fq : Fp] is odd and one of the following is true
(i) t = 0
(ii) t = ±√2q and p = 2.
(iii) t = ±√3q and p = 3.
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In this article we give an algorithm to efficiently construct a supersingular elliptic
curve over Fq with prescribed trace of Frobenius. We prove the following Theorem.

Theorem 1.1. The algorithm presented in this paper computes, on input of a

prime power q and an integer t ∈ Sq, a supersingular elliptic curve over Fq with

trace of Frobenius t. If GRH holds true, the expected run time of the algorithm is

Õ((log q)3).

Here, the Õ-notation indicates that terms that are of logarithmic size in the main
term have been disregarded. In Section 2 we give the algorithm for prime fields,
and illustrate it with an example. The non-prime case is explained in Section 3. We
illustrate how Theorem 1.1 can be applied to efficiently construct elliptic curves of
prime order of prescribed size. The resulting supersingular curves can readily be
used for pairing based cryptography.

2. The prime case

The main ingredient in the Algorithm is to construct a supersingular curve over
the prime field Fp, i.e., a curve with trace of Frobenius 0. We will construct such a
curve as reduction of a curve in characteristic 0 using a result due to Deuring.

Theorem 2.1. Let E be an elliptic curve defined over a number field L whose

endomorphism ring is the maximal order OK in an imaginary quadratic field K, and

let p|p be a prime of L where E has good reduction. Then E mod p is supersingular

if and only if p does not split in K.

Proof. See [7, Theorem 13.12]. �

If the quadratic field K occuring in Theorem 2.1 has class number 1, then there
exists a curve E/Q with End(E) ∼= OK . For K = Q(i) we can take E defined by
Y 2 = X3 − X for instance. In this special case, we see that the reduction of E
modulo primes p ≡ 3 mod 4 yields a supersingular curve modulo p. In a similar
vein one shows that the curve defined by

Y 2 = X3 + 1

is supersingular for all odd primes p ≡ 2 mod 3. The idea of the algorithm presented
in this section is to generalize these two constructions to arbitrary imaginary qua-
dratic fields K.

Let E be a curve as in Theorem 2.1, and let H be the Hilbert class field of K, i.e.,
the largest totally unramified abelian extension of K. By CM-theory [7, Theorem
10.1], the j-invariant j(E) generates H over K. We have

H = K[X ]/(PK),

where PK is the minimal polynomial over Q of the j-invariant j(E). The polyno-
mial PK is called the Hilbert class polynomial. Its degree equals the class number
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hK of K, and it has integer coefficients. There are a few algorithms to explicity
compute PK , we refer to [2] for an overview.

If we now take K such that p remains inert in OK , then the roots of PK ∈ Fp[X ]
are j-invariants of supersingular curves by Theorem 2.1. Since the j-invariant of a
supersingular curve is contained in Fp2 by [7, Theorem 13.6], the polynomial PK

splits in this case already over Fp2 . An other way of seeing this last fact is using
class field theory: the Artin map gives an isomorphism

Gal(H/K)
∼−→ Cl(OK)

and as (p) ⊂ OK is a principal prime ideal, it splits completely in H/K. Hence, the
inertia degree of p ∈ Z is 2.

The following Lemma gives a sufficient condition for PK ∈ Fp[X ] to have a root
in Fp.

Lemma 2.3. Let K be an imaginary quadratic field with class number hK . Then:

hK is odd ⇐⇒K = Q(i) or K = Q(
√
−2) or

K = Q(
√−q) with q prime and congruent to 3 mod 4.

Proof. Let D be the discriminant of K, and let p1, . . . , pn be the odd prime factors
of D. The genus field

G = K(
√

p∗1, . . . ,
√

p∗n)

with p∗i = (−1)(pi−1)/2pi is the largest unramified abelian extension of K that is
abelian over Q, and the Galois group Gal(G/K) is isomorphic to the 2-Sylow group
of Cl(OK), cf. [4, Section 6]. We see that hK is odd if and only if we have an equality
G = K. This yields the lemma. �

These observations lead to the following algorithm to construct a supersingular
elliptic curve over Fp.

Algorithm 2.4. Input: a prime p. Output: a supersingular curve over Fp.
1. If p = 2, return Y 2 + Y = X3.
2. If p ≡ 3 mod 4, return Y 2 = X3 −X .
3. Let q be the smallest prime congruent to 3 mod 4 with

(
−q
p

)
= −1.

4. Compute PK ∈ Z[X ] for K = Q(
√−q).

5. Compute a root j ∈ Fp of PK ∈ Fp[X ].
6. If q = 3, return Y 2 = X3 + 1. Else, put a← 27j/(4(1728− j)) ∈ Fp and return

Y 2 = X3 + aX − a.

Lemma 2.5. Algorithm 2.4 returns a supersingular curve over Fp. If GRH holds

true, the expected run time is Õ((log p)3).

Proof. The correctness of the Algorithm is clear from the discussion preceding it.
The main point in the run time analysis is Step 3. As p is congruent to 1 mod 4, we
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have
(
−q
p

)
=

(
p
q

)
by quadratic reciprocity. We therefore want q to be inert in both

Q(
√

p) and Q(i). Hence, we are looking for a prime q with prescribed Frobenius
symbol in the Z/2Z×Z/2Z-extension L = Q(

√
p, i) of Q. Under GRH, there exists

[6] an effectively computable constant c with the property that there is a prime q
with

q ≤ c (log dL)2,

where dL = 24p2 is the discriminant of L/Q.

Under GRH, computing PK in Step 4 takes time Õ((log p)2) by [2, Theorem 1].
By construction, this polynomial has a root modulo p. The degree of PK equals

the class number hK which is of size Õ(log p) by Brauer-Siegel. Finding a root j

of PK ∈ Fp[X ] therefore takes probabilistic time Õ(deg(PK)(log p)2) = Õ((log p)3)
by [5, Section 14.5]. �

Example. The smallest prime p > 10100 with p ≡ 1 mod 12 is p = 10100 + 1293.
In this case, the prime q = 11 is inert in both Q(

√
p) and Q(i). An elliptic curve

with j-invariant −32768 ∈ Fp is supersingular.

3. The Algorithm

Let q = pf be a prime power and let t ∈ Sq be the trace of Frobenius of the elliptic
curve we want to construct. Using Algorithm 2.4, we construct a supersingular
curve E/Fp. Let E′/Fq be the base change of this curve to Fq. Let t′ be trace of
Frobenius of E′.

Lemma 3.1. We have t′ = 0 if f = [Fq : Fp] is odd, t′ = 2
√

q if f is divisible by 4
and t′ = −2

√
q otherwise.

Proof. The Frobenius ϕE of E satisfied ϕ2
E +p = 0. We derive Tr(ϕE′) = Tr(ϕf

E) =

Tr((−p)f/2), which yields the lemma. �

We contend that there exists a twist of E′ that has trace of Frobenius t. Indeed, if
f is odd, we only need to consider the cases p = 2, 3. For these two small primes,
there is only one supersingular j-invariant in characteristic p so the requested curve
with trace of Frobenius t has j-invariant j(E′).

Suppose that f is even. For p 6≡ 1 mod 4, we twist the curve E′ by a primitive
fourth root of unity i ∈ Fq to get curves with trace of Frobenius ±2

√
q and 0.

Similarly, for p 6≡ 1 mod 3, we can twist by a primitive sixth root of unity ζ6 ∈ Fq

to obtain curves with trace of Frobenius ±2
√

q and ±√q. For p ≡ 1 mod 12, we
twist by −1.

Algorithmically, twisting E′ to get a curve with trace of Frobenius t is easy.
Indeed, suppose that we want to twist by a power of ζ6. We compute an element
α ∈ F∗

q generating F∗

q/F
∗

q
6. The twists of E′ : Y 2 = X3 + b are then given by

Y 2 = X3 + αkb
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for k = 0, . . . , 5, and an easy computation shows that the traces of Frobenius
for these curves are t′, t′/2,−t′/2,−t′,−t′/2, t′/2 respectively. Twisting by i and
−1 proceeds similarly. Finally, also for p = 2, 3 all Fq-isomorphisms are explicitly
known [7, Appendix 1].

Proof of Theorem 1.1. We compute a supersingular elliptic curve E/Fp using Al-

gorithm 2.4 and base change this to a curve E′ over Fq. This takes time Õ((log p)3).

We compute the right twist of E′ in time Õ((log q)2). �

Example. Suppose we want to construct an elliptic curve with prime order of k ≥ 3
decimal digits. We look for a prime p such that p2 + p + 1 is a prime of k digits.
We cannot prove that such a p exists, but heuristically there are many. Indeed, by
the Bateman-Horn conjecture [1] we expect that we have

π(x, A) ∼ 1.52

∫ x

2

1

(log t)2
dt,

where π(x, A) denotes the number of primes p up to x such that p2 +p+1 is prime.
As we have p ≡ 2 mod 3, the curve E/Fp defined by Y 2 = X3+1 is supersingular.

We base change this curve to E′/Fp2 . The curve E′ has p2+2p+1 points by Lemma
3.1 and of its 6 twists has prime order p2 + p + 1.
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