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2.1 Plane conics

A conic is a plane projective curve C/k of degree 2. Such a curve is defined by an equation
of the form

ax2 + by2 + cz2 + dxy + exz + fyz = 0,

with a, b, c, d, e, f ∈ k. Assuming the characteristic of k is not 2, we can make d = e = f = 0
via an invertible linear transformation. First, if a = b = c = 0 we can make one of them
nonzero by replacing a variable by its sum with another; in this case one of d, e, f must be
nonzero, say d, and then replacing y with x + y yields an equation with a 6= 0. So assume
without loss of generality that a 6= 0. Replacing x with x− d

2ay kills the xy term, and we can
similarly kill the xz term by replacing x with x− e

2az (we are just completing the square).

Finally, if f 6= 0 we can make b nonzero and then replace y with y − f
2bz to eliminate the

yz term. Each of these substitutions corresponds to an invertible linear transformation of
the projective plane, as does their composition.

So we now assume char(k) 6= 2, and that C has the diagonal form

ax2 + by2 + cz2 = 0. (1)

If any of the coefficients a, b, c are zero, then this curve is not irreducible.1 For example, if
the coefficient c is zero, we can factor the LHS of (1) over k:

ax2 + by2 = (
√
ax +

√
−by)(

√
ax−

√
−by) = 0.

In this case C(k) is the union of two projective lines that intersect at (0 : 0 : 1) (but C(k)
might contain only one point, as when k = Q and a, b > 0, for example).

We now summarize this discussion with the following theorem.

Theorem 2.1. Over a field whose characteristic is not 2, every geometrically irreducible
conic is isomorphic to a diagonal curve ax2 + by2 + cz2 = 0 with abc 6= 0.

Remark 2.2. This does not hold in characteristic 2.

2.2 Parameterization of rational points on a conic

Suppose (x0 : y0 : z0) is a rational point on the diagonal conic C : ax2 + by2 + cz2 = 0.
Without loss of generality, we assume z0 6= 0 and consider the substitution

x = x0W + U, y = y0W + V, z = z0W (2)

1In Lecture 1 we defined a plane projective curve f(x, y, z) = 0 to be reducible if f = gh for some
g, h ∈ k[x, y, z], where k is the algebraic closure of k. Some authors distinguish between irreducibility over
k versus k, referring to the latter as geometric (or absolute) irreducibility. For us, irreducible will always
mean geometrically irreducible.

Our definition of a plane projective curve f(x, y, z) = 0 requires f to have no repeated factors in k[x, y, z],
which precludes the case where two of a, b, c are zero. In more general settings, curves defined by a polynomial
with repeated factors are said to be non-reduced. In this course all curves are reduced.



where U, V,W denote three new variables. We then have

a(x0W + U)2 + b(y0W + V )2 + c(z0W )2 = 0

(ax20 + by20 + cz20)W + 2(ax0U + by0V )W + aU2 + bV 2 = 0

2(ax0U + by0V )W = −aU2 − bV 2,

where we have used ax20 + by20 + cz20 = 0 to eliminate the quadratic term in W . After
rescaling by 2(ax0u + by0v) and substituting for W in (2) we obtain the parameterization

x = x0(−aU2 − bV 2) + 2(ax0U + by0V )U = ax0U
2 + 2by0UV − bx0V

2 = Q1(U, V )

y = y0(−aU2 − bV 2) + 2(ax0U + by0V )V = −ay0U2 + 2ax0UV + by0V
2 = Q2(U, V )

z = z0(−aU2 − bV 2) = −az0U2 − bz0V
2 = Q3(U, V )

Thus (Q1(U, V ) : Q2(U, V ) : Q3(U, V )) is a polynomial map defined over k that sends each
projective point (U : V ) on P1 to a point on the curve C. Moreover, we can recover the
point (U : V ) via the inverse map from C to P1 defined by

U = x− x0
z0

z, V = y − y0
z0

z.

Thus we have an invertible map from C to P1 that is given by rational (in fact polynomial)
functions that are defined at every point (such a map is said to be regular). In this situation
we regard C and P1 as isomorphic curves. This yields the following theorem.

Theorem 2.3. Let C/k be a geometrically irreducible conic with a k-rational point and
assume that char(k) 6= 2. Then C is isomorphic over k to the projective line P1.

Remark 2.4. This theorem also holds when char(k) = 2, but we will not prove this.

2.3 Conics over Q

We now consider the case k = Q. Given a diagonal conic

ax2 + by2 + cz2 = 0

with abc 6= 0, we wish to either find a rational point (which we can then use to parameterize
all the rational points), or prove that there are none. After clearing denominators we can
assume a, b, c are nonzero integers, and we note that if they all have the same sign then
there are clearly no rational points. So let us assume that this is not the case, and without
loss of generality suppose that a > 0 and b, c < 0. Multiplying both sides by a and setting
d = −ab and n = −ac, we can put our curve in the form

x2 − dy2 = nz2, (3)

where d and n are positive integers that we may assume are square-free. Solving this
equation is equivalent to expressing n = (xz + y

z

√
d)(xz −

y
z

√
d) as the norm of an element of

the real quadratic field Q(
√
d).

We now present a recursive procedure for doing this, based on Legendre’s method of
descent; the algorithm we give here is adapted from [1, Alg. I]. The basic idea is to either
determine that there are no integer solutions to (3) (and hence no rational solutions), or to



reduce the problem to finding a solution to a similar equation with smaller values of d or n
(this is why it is called a descent). In order to facilitate the recursion, we allow d and n to
also take negative values (but still insist that they be square-free).

Given square-free integers d and n, the procedure Solve(d, n) either returns an integer
solution to (3), or determines that no solution exists; we use the notation fail to indicate
that the latter has occured.



Solve(d, n)

1. If d, n < 0 then fail.

2. If |d| > |n| then let (x0, y0, z0) = Solve(n, d) and return (x0, z0, y0).

3. If d = 1 return (1, 1, 0); if n = 1 return (1, 0, 1); if d = −n return (0, 1, 1).

4. If d = n then let (x0, y0, z0) = Solve(−1, d) and return (dz0, x0, y0).

5. If d is not a quadratic residue modulo n then fail.

6. Let x20 ≡ d mod n, with |x0| ≤ |n|/2, and let t = t1t
2
2 = (x20−d)/n with t1 square-free.

7. Let (x1, y1, z1) = Solve(d, t1) and return (x0x1 + dy1, x0y1 + x1, t1t2z1).

It is clear that if the algorithm fails in steps 1 or 5 then (3) has no solutions, and that
the solutions returned in step 3 are all correct. Assuming the algorithm works correctly
when |d| ≤ |n|, then the solution returned in step 3 is clearly correct, and in step 4 with
d = n, if Solve(−1, d) succeeds then we have

x20 + y20 = dz20

dx20 + dy20 = (dz0)
2

(dz0)
2 − dx20 = dy20 = ny20,

and therefore the solution (dz0, x0, y0) is correct (note that −1 and d are both square-free,
assuming the input d is, so our square-free constraint is preserved in the recursive call).

It remains to show that the solution returned in step 7 is correct, and that the algorithm
is guaranteed to terminate. If we reach step 6 then we have |d| < |n|, and since x20−d = nt,
we have

|t| ≤ |x
2
0 − d|
|n|

≤ |x0|
2 + |d|
|n|

≤ |d|
2

4|n|
+
|d|
|n|

<
|n|
4

+
|d|
|n|
≤ |n|

2
,

where the last inequality is justified by checking each of the cases |n| = 2, |n| = 3, and
|n| ≥ 4, remembering that the integer |d| is at least 1 and strictly smaller than |n|. It
follows that |t1| ≤ |t| < |n|, which ensures that the algorithm will terminate, since either
|d| or |n| is reduced in every recursive call; indeed, the number of recursive calls is clearly
bounded by a logarithmic function of max(|d|, |n|).

To see that the solution returned in step 7 is correct, we first note that t1 is square-free as
required, and if Solve(d, t1) succeeds then we may inductively assume that x21−dy21 = t1z

2
1 .

Multiplying the LHS by x20 − d and the RHS by x20 − d = nt yields

(x20 − d)(x21 − dy21) = ntt1z
2
1

x20x
2
1 − dx20y

2
1 − dx21 + d2y21 = nt1t

2
2t1z

2
1

(x0x1)
2 + (dy1)

2 − d
(
(x0y1)

2 + x21
)

= n(t1t2z1)
2

(x0x1 + dy1)
2 − d(x0y1 + x1)

2 = n(t1t2z1)
2,

which shows that (x0x1 + dy1, x0y1 + x1, t1t2z1) is indeed a solution to (3), as desired.
Computationally, the most expensive step of the algorithm (by far) is the computation

of x0 in step 6. As we will see in the next lecture, it is easy to compute square-roots modulo
primes, but in general n may be composite, and the only known algorithm for computing



square-roots modulo a square-free composite integer n is to compute square-roots modulo
each of its prime factors and use the Chinese remainder theorem to get a square-root
modulo n. This requires factoring the integer n, a problem for which no polynomial-time
algorithm is known.

As described in [1], the algorithm Solve(d, n) can be modified to avoid factorization in
any of its recursive steps so that only one initial factorization is required. This does not
yield a polynomial-time algorithm, but it greatly speeds up the process, and in practice it
is now feasible to find rational solutions to ax2 + by2 + cz2 = 0 even when the coefficients
a, b, and c are as large as 10100.

Another deficiency of the algorithm Solve(d, n) is that the solutions it finds are typically
much larger than necessary. There is a theorem due to Holzer that gives us an upper bound
on the size of the smallest solution to (1), and hence of the smallest solution to (3).

Theorem 2.5 (Holzer). Let a, b, c be square-free integers that are pairwise coprime and
suppose that the equation ax2 + by2 + cz2 = 0 has a nonzero rational solution. Then there
exists a nonzero integer solution (x0, y0, z0) with

|x0| ≤
√
|bc|, |y0| ≤

√
|ac|, |z0| ≤

√
|ab|.

Proof. See [2] for a short and elementary proof.

On Problem Set 1 you will implement a simple improvement to algorithm Solve(d, n)
that significantly reduces the size of the solutions it finds (and reduces the number of
recursive calls), and generally comes close to achieving the Holzer bounds.

Finally, we note that there is a simple criterion for determining whether or not a diagonal
conic has a rational solution that does not require actually looking for one.

Theorem 2.6 (Legendre). Let a, b, c be square-free integers that are pairwise coprime and
whose signs are not all the same. The equation ax2 + by2 + cz2 = 0 has a rational solution
if and only if the congruences

X2 ≡ −bc mod a, Y 2 ≡ −ca mod b, Z2 ≡ −ab mod c

can be simultaneously satisfied.

The necessity of the condition given in Theorem 2.6 is easy to check; if we look at the
equation modulo a, for example, we have by2 ≡ −cz2 mod a, and it follows that −b/c and
therefore −bc must be a quadratic residue modulo a. The sufficiency can be proved by
showing that if the condition holds than Solve(d, n) will succeed in finding a solution to
the corresponding norm equation x2 − dy2 = nz2. This is basically how Legendre proved
the theorem, but we will prove a more general statement after we have developed the theory
of p-adic numbers.

It is worth noting that while the congruences in Legendre’s theorem apparently give
a very simple criterion for determining whether a conic has a rational point, in order to
apply them we need to know the factorization of the integers a, b, c. This means that, in
general, the problem of determining the existence of a rational solution is not significantly
easier than actually finding one, and we still do not have a polynomial-time algorithm for
determining the existence of a rational solution to a conic over Q.
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3.1 Quadratic reciprocity

Recall that for each odd prime p the Legendre symbol (ap ) is defined as

(
a

p

)
=


1 if a is a nonzero quadratic residue modulo p,

0 if a is zero modulo p,

−1 otherwise.

The Legendre symbol is multiplicative, (ap )( bp) = (abp ), and it can be computed using Euler’s
criterion: (

a

p

)
≡ a

p−1
2 mod p.

Both statements follow from the fact that the multiplicative group (Z/pZ)× is cyclic of
order p− 1 with −1 as the unique element of order 2 (the case a = 0 is clear). We also have
the well known law of quadratic reciprocity.

Theorem 3.1 (Gauss). For all odd primes p and q we have (pq )( qp) = (−1)(
p−1
2

)( q−1
2

).

I expect you have all seen proofs of this theorem, but I recently came across the following
proof due to Rousseau [4], which Math Overflow overwhelmingly voted as the “best” proof
quadratic reciprocity. The proof is quite short, so I thought I would share it with you.

Proof. Let s = (p − 1)/2, t = (q − 1)/2 and u = (pq − 1)/2. Consider the three subsets of
(Z/pqZ)× defined by

A = {x : x mod p ∈ [1, s]}, B = {x : x mod q ∈ [1, t]}, C = {x : x mod pq ∈ [1, u]}.

These subsets each contain exactly half of the (p − 1)(q − 1) = 4st elements of (Z/pqZ)×

and thus have size 2st. Furthermore, for all x ∈ (Z/pqZ)× each subset contains exactly one
of x or −x. It follows that the products a, b, c over the sets A,B,C differ only in sign, so
their ratios are all ±1. The intersection of A and B has size st, hence there are 2st−st = st
sign differences between the elements of A and B, and therefore a/b ≡ (−1)st mod pq. To
complete the proof, we just need to show that a/b ≡ (pq )( qp) mod pq, since two numbers that
are both equal to ±1 and congruent mod pq > 2 must be equal over Z.

Considering the product a modulo q, it is clear that a ≡ (q−1)!s mod q, since modulo q
we are just multiplying s copies of the integers from 1 to q − 1. To compute c modulo q
we first compute the product of the integers in [1, u] that are not divisible by q, which is
(q−1)!st!, and then divide by the product of the integers in [1, u] that are multiples of p, since
these do not lie in (Z/pqZ)×, which is p×2p×· · · tp = ptt!. Thus c ≡ (q−1)!s/pt mod q, and
we have a/c ≡ pt ≡ ±1 mod q. But we know that a/c ≡ ±1 mod pq, so this congruence also
holds mod pq. By Euler’s criterion, we have a/c ≡ (pq ) mod pq. Similarly, b/c ≡ ( qp) mod pq,

and since b/c ≡ ±1 mod pq, we have c/b ≡ b/c mod pq, and therefore c/b ≡ ( qp) mod pq.

Thus a/b = (a/c)(c/b) ≡ (pq )( qp) mod pq, as desired.

http://mathoverflow.net/questions/1420/whats-the-best-proof-of-quadratic-reciprocity


3.2 Finite fields

We recall some standard facts about finite fields. For each prime power q there is, up to
isomorphism, a unique field Fq with q elements (and it is easy to show that the order of
every finite field is a prime power). We have the prime fields Fp ' Z/pZ, and for any
positive integer n the field Fpn can be constructed as the splitting field of the (separable)
polynomial xp

n − x over Fp (thus every finite field is a Galois extension of its prime field).
More generally, every degree n extension of Fq is isomorphic to Fqn , the splitting field of
xq

n − x over Fq, and the Galois group Gal(Fqn/Fq) is cyclic over order n, generated by the
q-power Frobenius automorphism x 7→ xq. We have the inclusion Fqm ⊆ Fqn if and only if
m divides n: if m|n then xq

m
= x implies xq

n
= x, and if Fqm ⊆ Fqn then Fqn has dimension

n/m as a vector space over Fqm .
While defining Fq = Fpn as a splitting field is conceptually simple, in practice we typically

represent Fq more explicitly by adjoining the root of an irreducible polynomial f ∈ Fp[x]
of degree n and define Fq as the ring quotient Fp[x]/(f). The ring Fp[x] is a principle ideal
domain, so the prime ideal (f) is maximal and the quotient is therefore a field. Such an
irreducible polynomial always exists: by the primitive element theorem we know that the
separable extension Fq/Fp can be constructed as Fp(α) for some α ∈ Fq whose minimal
polynomial f ∈ Fp[x] is irreducible and of degree n. While no deterministic polynomial
time algorithm is known for constructing f (even for n = 2 (!)), in practice the problem is
readily solved using a randomized algorithm, as discussed below.

Elements s and t of Fq ' Fp[x]/(f) correspond to polynomials in Fp[x] of degree at
most n. The sum s+t is computed as in Fp[x], and the product st is computed as a product
in Fp[x] and then reduced modulo f , using Euclidean division and taking the remainder.
To compute the inverse of s, one uses the (extended) Euclidean gcd algorithm to compute
polynomials u, v ∈ Fp[x] that satisfy

us+ vf = gcd(s, f) = 1,

and u is then the inverse of s modulo f ; note that gcd(s, f) = 1 since f is irreducible. Using
fast algorithms for polynomial arithmetic, all of the field operations in Fq can be computed
in time that is quasi-linear in log q = n log p, which is also the amount of space needed to
represent an element of Fq (up to a constant factor).

Example 3.2. F8 ' F2[t]/(t
3 + t+ 1) = {0, 1, t, t+ 1, t2, t2 + 1, t2 + t, t2 + t+ 1} is a finite

field of order 8 in which, for example, (t2 + 1)(t2 + t) = t + 1. Note that F2 = {0, 1} is its
only proper subfield (in particular, F4 6⊆ F8).

The most thing we need to know about finite fields is that their multiplicative groups
are cyclic. This is an immediate consequence of a more general fact.

Theorem 3.3. Any finite subgroup G of the multiplicative group of a field k is cyclic.

Proof. The group G must be abelian, so by the structure theorem for finite abelian groups
it is isomorphic to a product of cyclic groups

G ' Z/n1Z× Z/n2Z× · · · × Z/nkZ,

where each ni > 1 and we may assume that ni|ni+1. If G is not cyclic, then k ≥ 2 and G
contains a subgroup isomorphic to Z/n1Z× Z/n1Z and therefore contains at least n21 > n1
elements whose orders divide n1. But the polynomial xn1 − 1 has at most n1 roots in k, so
this is not possible and G must be cyclic.



3.3 Rational points on conics over finite fields

We now turn to the problem of finding rational points on conics over finite fields. We begin
by proving that, unlike the situation over Q, there is always a rational point to find.

Theorem 3.4. Let C/Fq be a conic over a finite field of odd characteristic. Then C has a
rational point.

Proof. As shown in Lecture 2, by completing the square we can put C in the form ax2 +
by2 + cz2 = 0. If any of a, b, c is zero, say c, then (0 : 0 : 1) is a rational point on C, so
we now assume otherwise. The group F×

q is cyclic and has even order q − 1, so it contains

exactly q−1
2 squares. Therefore the set S = {y2 : y ∈ Fq} has cardinality q+1

2 (since it also
includes 0), as does the set T = {−by2 − c : y ∈ Fq}, since it is a linear transformation
of S. Similarly, the set U = {ax2 : x ∈ Fq} has cardinality q+1

2 . The sets T and U cannot
be disjoint, since the sum of their cardinalities is larger than Fq, so we must have some
−by20 − c ∈ T equal to some ax20 ∈ U , and (x0 : y0 : 1) is then a rational point on C.

Corollary 3.5. Let C/Fq be a conic over a finite field. Then one of the following holds

1. C is geometrically irreducible, isomorphic to P1, and has q + 1 rational points.

2. C is reducible over Fq, isomorphic to the union of two rational projective lines, and
has 2q + 1 rational points.

3. C is reducible over Fq2, but not over Fq, isomorphic over Fq2 to the union of two
projective lines with a single rational point at their intersection.

In every case we have #C(Fq) ≡ 1 mod q.

Proof. If C is geometrically irreducible then we are in case 1 and the conclusion follows from
Theorem 2.3, since we know by Theorem 3.4 that C has a rational point. Otherwise, C must
be the product of two degree 1 curves (projective lines), which must intersect at at a single
point. If the lines can be defined over Fq then we are in case 2 and have 2(q+1)−1 = 2q+1
projective points and otherwise the lines must be defined over the quadratic extension Fq2 .
which is case 3. The non-trivial element of the Galois group Gal(Fq2/Fq) swaps the two
lines and must fix their intersection, which consequently lies in Fq.

Remark 3.6. Theorem 3.4 and Corollary 3.5 also hold in characteristic 2.

3.4 Root finding

Let f be a univariate polynomial over a finite field Fq. We now consider the problem of
how to find the roots of f that lie in Fq. This will allow us, in particular, to compute the
square root of an element a ∈ Fq by taking f(x) = x2 − a, which is a necessary ingredient
for finding rational points on conics over Fq, and also over Q. Recall that the critical step
of the descent algorithm we saw in Lecture 2 for finding a rational point on a conic over Q
required us to compute square roots modulo a square-free integer n; this is achieved by
computing square roots modulo each of the prime factors of n and applying the Chinese
remainder theorem (of course this requires us to compute the prime factorization of n, which
is actually the hard part).

No deterministic polynomial-time algorithm is know for root-finding over finite fields.
Indeed, even the special case of computing square roots modulo a prime is not known to



have a deterministic polynomial-time solution.1 But if we are prepared to use randomized
algorithms (which we are), we can quite solve this problem quite efficiently. The algorithm
we give here was originally proposed by Berlekamp for prime fields [1], and then refined
and extended by Rabin [3], whose presentation we follow here. This algorithm is a great
example of how randomness can be exploited in a number-theoretic setting. As we will see,
it is quite efficient, with an expected running time that is quasi-quadratic in the size of the
input.

3.4.1 Randomized algorithms

Randomized algorithms are typically classified as one of two types: Monte Carlo or Las
Vegas. Monte Carlo algorithms are randomized algorithms whose output may be incorrect,
depending on random choices made by the algorithm, but whose running time is bounded
by a function of its input size, independent of any random choices. The probability of error
is required to be less than 1/2 − ε, for some ε > 0, and can be made arbitrarily small be
running the algorithm repeatedly and using the output that occurs most often. In contrast,
a Las Vegas algorithm always produces a correct output, but its running time may depend
on random choices made by the algorithm and need not be bounded as a function of the
input size (but we do require its expected running time to be finite). As a trivial example,
consider an algorithm to compute a+ b that first flips a coin repeatedly until it gets a head
and then computes a + b and outputs the result. The running time of this algorithm may
be arbitrarily long, even when computing 1 + 1 = 2, but its expected running time is O(n),
where n is the size of the inputs (typically measured in bits).

Las Vegas algorithms are generally preferred, particularly in mathematical applications,
where we generally require provably correct results. Note that any Monte Carlo algorithm
whose output can be verified can always be converted to a Las Vegas algorithm (just run the
algorithm repeatedly until you get an answer that is verifiably correct). The root-finding
algorithm we present here is of the Las Vegas type.

3.4.2 Factoring with gcds

The roots of our polynomial f ∈ Fq[x] all lie in the algebraic closure Fq. The roots that
actually lie in Fq are distinguished by the fact that they are fixed by the Frobenius auto-
morphism x 7→ xq. It follows that the roots of f that lie in Fq are precisely those that are
also roots of the polynomial xq − x. Thus the polynomial

g = gcd(f, xq − x)

has the form
∏
i(x − αi), where the αi range over the distinct roots of f that lie in Fq.

If f has no roots in Fq then g will have degree 0, and otherwise we can reduce the problem
of finding a root of f to the problem of finding a root of g, a polynomial whose roots are
distinct and known to lie in Fq. Note that this already gives us a deterministic algorithm
to determine whether or not f actually has any roots in Fq, but in order to actually find
one we may need to factor g, and this is where we will use a randomized approach.

In order to compute gcd(f, xq−x) efficiently, one does not compute xq−x and then take
the gcd with f ; this would take time exponential in log q, whereas we want an algorithm
whose running time is polynomial in the size of f , which is proportional to deg f log q.

1If one assumes the extended Riemann Hypothesis, this and many other special cases of the root-finding
problem can be solved in polynomial time.



Instead, one computes xq mod f by exponentiating the polynomial x in the ring Fq[x]/(f),
whose elements are uniquely represented by polynomials of degree less than d = deg f .
Each multiplication in this ring involves the computation of a product in Fq[x] followed
by a reduction modulo f . This reduction is achieved using Euclidean division, and can
be accomplished within a constant factor of the time required by the multiplication. The
computation of xq is achieved using binary exponentiation (or some other efficient method of
exponentiation), where one performs a sequence of squarings and multiplications by x based
on the binary representation of q, and requires just O(log q) multiplications in Fq[x](f).
Once we have computed xq mod f , we subtract x and compute g = gcd(f, xq − x).

Assuming that q is odd (which we do), we may factor the polynomial xq − x as

xq − x = x(xs − 1)(xs + 1),

where s = (q − 1)/2. Ignoring the root 0 (which we can easily check separately), this
factorization splits F×

q precisely in half: the roots of xs − 1 are the elements of F×
q that

are quadratic residues, and the roots of xs + 1 are the elements of F×
q that are not. If we

compute
h = gcd(g, xs − 1),

we obtain a divisor of g whose roots are precisely the roots of g that are quadratic residues.
If we suppose that the roots of g are as likely as not to be quadratic residues, we should
expect the degree of h to be approximately half the degree of g, and so long as the degree
of h is strictly between 0 and deg g, one of h or g/h is a polynomial of degree at most half
the degree of g and whose roots are all roots of our original polynomial f .

To make further progress, and to obtain an algorithm that is guaranteed to work no
matter how the roots of g are distributed in Fq, we take a randomized approach. Rather
than using the fixed polynomial xs − 1, we consider random polynomials of the form

(x+ δ)s − 1,

where δ is uniformly distributed over Fq. We claim that if α and β are any two nonzero
roots of g, then with probability 1/2, exactly one of these is a root (x+ δ)s − 1. It follows
from this claim that so long as g has at least 2 distinct nonzero roots, the probability that
the polynomial h = gcd(g, (x+ δ)s + 1) is a proper divisor of g is at least 1/2.

Let us say that two elements α, β ∈ Fq are of different type if they are both nonzero and
αs 6= βs. Our claim is an immediate consequence of the following theorem from [3].

Theorem 3.7 (Rabin). For every pair of distinct α, β ∈ Fq we have

#{δ ∈ Fq : α+ δ and β + δ are of different type} =
q − 1

2
.

Proof. Consider the map φ(δ) = α+δ
β+δ , defined for δ 6= −β. We claim that φ is a bijection

form the set Fq\{−β} to the set Fq\{1}. The sets are the same size, so we just need to
show surjectivity. Let γ ∈ Fq − {1}, then we wish to find a solution x 6= −β to γ = α+x

β+x .

We have γ(β + x) = α + x which means x− γx = γβ − α. This yields x = γβ−α
1−γ , which is

not equal to −β, since α 6= β. Thus φ is surjective.
We now note that

φ(δ)s =
(α+ δ)s

(β + δ)s

is −1 if and only if α+ δ and β + δ are of different type. The elements γ = φ(δ) for which
γs = −1 are precisely the non-residues in Fq\{1}, of which there are exactly (q − 1)/2.



We now give the algorithm.

Algorithm FindRoot(f)
Input: A polynomial f ∈ Fq[x].
Output: An element r ∈ Fq such that f(r) = 0, or null if no such r exists.

1. If f(0) = 0 then return 0.

2. Compute g = gcd(f, xq − x).

3. If deg g = 0 then return null.

4. While deg g > 1:

a. Pick a random δ ∈ Fq.
b. Compute h = gcd(g, (x+ δ)s − 1).

c. If 0 < deg h < deg g then replace g by h or g/h, whichever has lower degree.

5. Return r = −b/a, where g(x) = ax+ b.

It is clear that the output of the algorithm is always correct, since every root of the
polynomial g computed in step 2 is a root of f , and when g is updated in step 4c it is
always replaced by a proper divisor. We now consider its complexity.

It follows from Theorem 3.7 that the polynomial h computed in step 4b is a proper
divisor of g with probability at least 1/2, since g has at least two distinct nonzero roots
α, β ∈ Fq. Thus the expected number of iterations needed to obtain a proper factor h of
g is bounded by 2. The degree of h is at most half the degree of g, and the total cost of
computing all the polynomials h during step 4 is actually within a constant factor the cost
of computing g in step 2.

Using fast algorithms for multiplications and the gcd computation, the time to compute g
can be bounded by

O(M(d log q)(log q + log d)

bit operations, where M(b) denotes the time to multiply to b-bit integers and is asymptoti-
cally bounded by M(b) = O(b log b log log b) (in fact one can do slightly better). The details
of this complexity analysis and the efficient implementation of finite field arithmetic will not
concern us in this course, we refer the reader to [2] for a comprehensive treatment, or see
these notes for a brief overview. The key point is that this time complexity is polynomial
in d log q, in fact it is essentially quadratic, and in practice we can quite quickly find roots
of polynomials even over very large finite fields. same complexity bound, and the total
expected running time is O(M(nd)(n+ log d)).

The algorithm can easily be modified to find all the distinct roots of f , by modifying
step 4c to recursively find the roots of both h and g/h, this only increases the running time
by a factor of O(log d). Assuming that d is less than the charcteristic of Fq, one can easily
determine the multiplicity of each root of f : a root α of f occurs with multiplicity k if and
only if α is a root of f (k) but not a root of f (k+1), where f (k) denotes the kth derivative
of f . The time to perform this computation is negligible compared to the time to find the
distinct roots.

http://math.mit.edu/classes/18.783/LectureNotes4.pdf


3.5 Finding rational points on curves over finite fields

Now that we know how to find roots of univariate polynomials in finite fields (and in
particular, square roots), we can easily find a rational point on any conic over a finite field
(and enumerate all the rational points if we wish). As above, let us assume Fq has odd
characteristic, so we can put our conic C is diagonal form x2 + by2 + cz2 = 0. If C is
geometrically reducible then, as proved on Problem Set 1, it is singular and one of a, b, c
must be 0. So one of (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) is a rational point on the curve, and in
the case that C is reducible over Fq we can determine the equations of the two lines whose
union forms C by computing square roots in Fq; for example, if c = 0 we can compute
ax2 + by2 = (

√
ax+

√
−by)(

√
ax+

√
−by). It is then straight-forward to enumerate all the

rational points on C.
Now let us suppose that C is geometrically irreducible, in which case we must have

abc 6= 0. If any of −a/b,−b/c,−c/a is a square in Fq, then we can find a rational point
with one coordinate equal to 0 by computing a square-root. Otherwise we know that every
rational point (x0, y0, z0) ∈ C(Fq) satisfies x0y0z0 6= 0, so we can assume z0 = 1. For each
of the q − 1 possible nonzero choices for y0, we get either 0 or 2 rational points on C,
depending on whether −(by20 + c)/a is a square or not. By Corollary .refcor:ffconicpts, We
know there are a total of q+ 1 rational points, so for exactly (q+ 1)/2 values of y0 we must
have −(by20 + c)/a square. Thus if we pick y0 ∈ Fq at random, we have a better than 50/50
chance of finding a rational point on C by computing

√
−(by20 + c)/a. This gives us a Las

Vegas algorithm for finding a rational point on C whose expected running time is within
a constant factor of the time to compute a square-root in Fq, which is quasi-quadratic in
log q. Once we have a rational point on our irreducible conic C, we can enumerate them all
using the parameterization we computed in Lecture 2.

Remark 3.8. The argument above applies more generally. Suppose we have a geometrically
irreducible plane curve C defined by a homogeneous polynomial f(x, y, z) of some fixed
degree d It follows from the Hasse-Weil bounds, which we will see later in course, that
#C(Fq) = q + O(

√
q). Assuming q � d, if we pick a random projective pair (y0 : z0) and

then attempt to find a root x0 of the univariate polynomial g(x) = f(x, y0, z0), we will
succeed with a probability that asymptotically approaches 1/d as q →∞. This yields a Las
Vegas algorithm for finding a rational point on C in time quasi-quadratic in log q.
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4.1 Inverse limits

Definition 4.1. An inverse system is a sequence of objects (e.g. sets/groups/rings) (An)
together with a sequence of morphisms (e.g. functions/homomorphisms) (fn)

· · · −→ An+1
fn−→ An −→ · · · −→ A2

f1−→ A1.

The inverse limit
A = lim←−An

is the subset of the direct product
∏
nAn consisting of those sequences a = (an) for which

fn(an+1) = an for all n ≥ 1. For each n ≥ 1 the projection map πn : A→ An sends a to an.

Remark 4.2. For those familiar with category theory, one can define inverse limits for any
category. In most cases the result will be another object of the same category (unique up
to isomorphism), in which case the projection maps are then morphisms in that category.
We will restrict our attention to the familiar categories of sets, groups, and rings. One can
also generalize the index set {n} from the positive integers to any partially ordered set.

4.2 The ring of p-adic integers

Definition 4.3. For a prime p, the ring of p-adic integers Zp is the inverse limit

Zp = lim←−Z/pnZ

of the inverse system of rings (Z/pnZ) with morphisms (fn) given by reduction modulo pn

(for a residue class x ∈ Z/pn+1Z, pick an integer x ∈ x and take its residue class in Z/pnZ).

The multiplicative identity in Zp is 1 = (1̄, 1̄, 1̄, . . .), where the nth 1̄ denotes the residue
class of 1 in Z/pnZ. The map that sends each integer x ∈ Z to the sequence (x̄, x̄, x̄, . . .) is
a ring homomorphism, and its kernel is clearly trivial, since 0 is the only integer congruent
to 0 mod pn for all n. Thus the ring Zp has characteristic 0 and contains Z as a subring.
But Zp is a much bigger ring than Z.

Example 4.4. If we represent elements of Z/pnZ by integers in [0, pn − 1], in Z7 we have

2 = (2, 2, 2, 2, 2, . . .)

2002 = (0, 42, 287, 2002, 2002, . . .)

−2 = (5, 47, 341, 2399, 16805, . . .)

2−1 = (4, 25, 172, 1201, 8404, . . .)

√
2 =

{
(3, 10, 108, 2166, 4567 . . .)

(4, 39, 235, 235, 12240 . . .)

5
√

2 = (4, 46, 95, 1124, 15530, . . .)

Note that 2002 is not invertible in Z7, and that while 2 has two square roots in Z7, it has
only one fifth root, and no cube roots.



While representing elements of Zp as sequences (an) with an ∈ Z/pnZ follows naturally
from the definition of Zp as an inverse limit, it is redundant. The value of an constrains the
value of an+1 to just p of the pn+1 elements of Z/pn+1Z, namely, those that are congruent
to an modulo pn. If we uniquely represent each an as an integer in the interval [0, pn − 1]
we can always write an+1 = an + pnbn with bn ∈ [0, p− 1].

Definition 4.5. Let a = (an) be a p-adic integer with each an uniquely represented by an
integer in ∈ [0, pn − 1]. The sequence (b0, b1, b2, . . .) with b0 = a1 and bn = (an+1 − an)/pn

is called the p-adic expansion of a.

Theorem 4.6. Every element of Zp has a unique p-adic expansion and every sequence
(b0, b1, b2, . . .) of integers in [0, p− 1] is the p-adic expansion of an element of Zp.

Proof. This follows immediately from the definition: we can recover (an) from its p-adic
expansion (b0, b1, b2, . . .) via a1 = a0 and an+1 = an + pbn for all n ≥ 1.

Thus we have a bijection between Zp and the set of all sequences of integers in [0, p− 1]
indexed by the nonnegative integers.

Example 4.7. We have the following p-adic expansion in Z7:

2 = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

2002 = (0, 6, 5, 5, 0, 0, 0, 0, 0, 0, . . .)

−2 = (5, 6, 6, 6, 6, 6, 6, 6, 6, 6, . . .)

2−1 = (4, 3, 3, 3, 3, 3, 3, 3, 3, 3, . . .)

5−1 = (3, 1, 4, 5, 2, 1, 4, 5, 2, 1, . . .)

√
2 =

{
(3, 1, 2, 6, 1, 2, 1, 2, 4, 6 . . .)

(4, 5, 4, 0, 5, 4, 5, 4, 2, 0 . . .)

5
√

2 = (4, 6, 1, 3, 6, 4, 3, 5, 4, 6 . . .)

You can easily recreate these examples (and many more) in Sage. To create the ring of
7-adic integers, just type Zp(7). By default Sage will use 20 digits of p-adic precision, but
you can change this to n digits using Zp(p,n).

Performing arithmetic in Zp using p-adic expansions is straight-forward. One computes
a sum of p-adic expansions (b0, b1, . . .) + (c0, c1, . . .) by adding digits mod p and carrying
to the right (don’t forget to carry!). Multiplication corresponds to computing products of
formal power series in p, e.g. (

∑
bnp

n) (
∑
cnp

n), and can be performed by hand using the
standard schoolbook algorithm for multiplying integers represented in base 10, except now
one works in base p. But Sage will do happily do all this arithmetic for you; I encourage
you to experiment in Sage in order to build your intuition.

4.3 Properties of Zp
Recall that a sequence of group homomorphisms is exact if, for each intermediate group
in the sequence, the image of the incoming homomorphism is equal to the kernel of the
outgoing homomorphism. In the case of a short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0,



this simply means that f is injective, g is surjective, and im f = ker g. In this situation the
the homomorphism g induces an isomorphism B/f(A) ' C.

Theorem 4.8. For each positive integer m, the sequence

0 −→ Zp
[pm]−→ Zp

πm−→ Z/pmZ −→ 0,

is exact. Here [pm] is the multiplication-by-pm map and πm is the projection to Z/pmZ.

Proof. The map [pm] shifts the p-adic expansion (b0, b1, . . .) of each element in Zp to the
right by m digits (filling with zeroes) yielding

(c0, c1, c2, . . .) = (0, . . . , 0, b0, b1, b2, . . .),

with cn = 0 for n < m and cn = bn−m for all n ≥ m. This is clearly an injective operation
on p-adic expansions, and hence on Zp, and the image of [pm] consists of the elements in Zp
whose p-adic expansion (c0, c1, c2, . . .) satisfies c0 = · · · = cm−1 = 0.

Conversely, the map πm sends the p-adic expansion (b0, b1, b2, . . . , ) to the sum

b0 + b1p+ b2p
2 + · · · bm−1pm−1

in Z/pmZ. Each element of Z/pmZ is uniquely represented by an integer in [0, pm−1], each
of which can be (uniquely) represented by a sum as above, with b0, . . . , bm−1 integers in
[0, p−1]. It follows that πm is surjective, and its kernel consists of the elements in Zp whose
p-adic expansion (b0, b1, b2, . . .) satisfies b0 = · · · = bm−1 = 0, which is precisely im[pm].

Corollary 4.9. For all positive integers m we have Zp/pmZp ' Z/pmZ.

Definition 4.10. For each nonzero a ∈ Zp the p-adic valuation of a, denoted vp(a), is the
greatest integer m for which a lies in the image of [pm]; equivalently, vp(a) is the index of
the first nonzero entry in the p-adic expansion of a. We also define vp(0) = ∞, and adopt
the conventions that n <∞ and n+∞ =∞ for any integer n.

Theorem 4.11. The p-adic valuation vp satisfies the following properties:

(1) vp(a) =∞ if and only if a = 0.

(2) vp(ab) = vp(a) + vp(b).

(3) vp(a+ b) ≥ min(vp(a), vp(b)).

Proof. The first property is immediate from the definition. The second two are clear when
either a or b is zero, so we assume otherwise and let m = vp(a) and n = vp(b).

For (2) we have a = pma′ and b = pnb′, for some a′, b′ ∈ Zp, and therefore ab = pm+na′b′

lies in im[pm+n] and vp(ab) ≥ m+ n. On the other hand, the coefficient of pm in the p-adic
expansion of a and the coefficient of pn in the p-adic expansion of b are both nonzero, so
the coefficient of pm+n in the p-adic expansion of ab is nonzero, thus vp(ab) ≤ m+ n.

For (3) we assume without loss of generality that m ≤ n, in which case im[pn] ⊆ im[pm],
so a and b both lie in im[pm], as does a+b, and we have vp(a+b) ≥ m = min(vp(a), vp(b)).

The p-adic valuation vp is an example of a discrete valuation.

Definition 4.12. Let R be a commutative ring. A discrete valuation (on R) is a function
v : R→ Z

⋃
{∞} that satisfies the three properties listed in Theorem 4.11.



Corollary 4.13. Zp is an integral domain (a ring with no zero divisors).

Proof. If a and b are both nonzero then vp(ab) = vp(a) + vp(b) <∞, so ab 6= 0.

Definition 4.14. The group of p-adic units Z×p is the multiplicative group of invertible
elements in Zp.

Theorem 4.15. The following hold:

(1) Z×p = Zp − pZp; equivalently, Z×p = {a ∈ Zp : vp(a) = 0}.

(2) Every nonzero a ∈ Zp can be uniquely written as pnu with n ∈ Z≥0 and u ∈ Z×p .

Proof. We first note vp(p
m) = m for all m ≥ 0, and in particular, vp(1) = 0. If a ∈ Z×p , then

a has a multiplicative inverse a−1 and we have vp(a) + vp(a
−1) = vp(1) = 0, which implies

that vp(a) = vp(a
−1) = 0, since vp(a) is nonnegative for all a ∈ Zp. Conversely, if a = (an)

with each an ∈ Z/pnZ and vp(a) = 0, then a1 6≡ 0 mod p is invertible in Z/pZ, and since
an ≡ a1 6≡ 0 mod p, each an is invertible in Z/pnZ. So a−1 = (a−1n ) ∈ Zp, which proves (1).

For (2), if a ∈ Zp is nonzero, let vp(a) = m. Then a ∈ im[pm] and therefore a = pmu for
some u ∈ Zp. We then have

m = vp(a) = vp(p
mu) = vp(p

m) + vp(u) = m+ vp(u),

so vp(u) = 0, and therefore u ∈ Z×p .

Theorem 4.16. Every nonzero ideal in Zp is of the form (pm) for some integer m ≥ 0.

Proof. Let I be a nonzero ideal in Zp, and let m = inf{vp(a) : a ∈ I}. Then m < ∞
(since I is nonzero), and every a ∈ I lies in im[pm] = (pm). On the other hand, vp(a) = m
for some a ∈ I (since vp is discrete), and we can write a = pmu for some unit u. But then
u−1a = pm ∈ I (since I is closed under multiplication by elements of R), thus pm ∈ I ⊆ (pm)
which implies I = (pm).

Corollary 4.17. The ring Zp is a principal ideal domain with a unique maximal ideal.

Definition 4.18. A discrete valuation ring is a principal ideal domain which contains a
unique maximal ideal and is not a field.

This definition of a discrete valuation ring might seem strange at first glance, since it
doesn’t mention a valuation. But given a discrete valuation ring R with maximal ideal (p),
where p is any irreducible element of R, we can define v : R→ Z

⋃
{∞} by setting v(0) =∞

and for every nonzero a ∈ R defining v(a) as the greatest positive integer n for which
a ∈ (pn). It is then easy to check that v is a discrete valuation on R.

Discrete valuation rings are about as close as a commutative ring can get to being a
field without actually becoming one. To turn a discrete valuation ring into a field, we only
need to invert one element (any generator for its maximal ideal). Another remarkable fact
about discrete valuation rings is that (up to units) they are unique factorization domains
with exactly one prime!
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5.1 The field of p-adic numbers

Definition 5.1. The field of p-adic numbers Qp is the fraction field of Zp.

As a fraction field, the elements of Qp are by definition all pairs (a, b) ∈ Z2
p, typically

written as a/b, modulo the equivalence relation a/b ∼ c/d whenever ad = bc. But we can
represent elements of Qp more explicitly by extending our notion of a p-adic expansion to
allow negative indices, with the proviso that only finitely many p-adic digits with negative
indices are nonzero. If we view p-adic expansions in Zp as formal power series in p, in Qp

we now have formal Laurent series in p.
Recall that every element of Zp can be written in the form upn, with n ∈ Z≥0 and

u ∈ Z×p , and it follows that the elements of Qp can all be written in the form upn with
n ∈ Z and u ∈ Z×p . If (b0, b1, b2, . . .) is the p-adic expansion of u ∈ Z×p , then the p-adic
expansion of pnu is (cn, cn+1, cn+2, . . .) with cn+i = bi for all i ≥ 0 and cn−i = 0 for all i < 0
(this works for both positive and negative n).

We extend the p-adic valuation vp to Qp by defining vp(p
n) = n for any integer n; as

with p-adic integers, the valuation of any p-adic number is just the index of the first non-
zero digit in its p-adic expansion. We can then distinguish Zp as the subset of Qp with
nonnegative valuations, and Z×p as the subset with zero valuation. We have Q ⊂ Qp, since
Z ⊂ Zp, and for any x ∈ Qp, either x ∈ Zp or x−1 ∈ Zp. Note that analogous statement is
not even close to being true for Q and Z.

This construction applies more generally to the field of fractions of any discrete valuation
ring, and a converse is true. Suppose we have a field k with a discrete valuation, which we
recall is a function v : k → Z

⋃
{∞} that satisfies:

(1) v(a) =∞ if and only if a = 0,

(2) v(ab) = v(a) + v(b),

(3) v(a+ b) ≥ min(v(a), v(b)).

The subset of k with nonnegative valuations is a discrete valuation ring R, called the
valuation ring of k, and k is its fraction field. As with p-adic fields, the unit group of the
valuation ring of k consists of those elements whose valuation is zero.

5.2 Absolute values

Having defined Qp as the fraction field of Zp and noting that it contains Q, we now want to
consider an alternative (but equivalent) approach that constructs Qp directly from Q. We
can then obtain Zp as the valuation ring of Q.

Definition 5.2. Let k be a field. An absolute value on k is a function ‖ ‖ : k → R≥0 with
the following properties:

(1) ‖x‖ = 0 if and only if x = 0,

(2) ‖xy‖ = ‖x‖ · ‖y‖,

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.



The last property is known as the triangle inequality, and it is equivalent to

(3) ‖x− y‖ ≥ ‖x‖ − ‖y‖

(replace x by x± y to derive one from the other). The stronger property

(3’) ‖x+ y‖ ≤ max(‖x‖, ‖y‖)

is known as the nonarchimedean triangle inequality An absolute value that satisfies (3’) is
called nonarchimedean, and is otherwise called archimedean.

Absolute values are sometimes called “norms”, but since number theorists use this term
with a more specific meaning, we will stick with absolute value. Examples of absolute values
are the usual absolute value | | on R or C, which is archimedean and the trivial absolute
value for which ‖x‖ = 1 for all x ∈ k×, which is nonarchimedean. To obtain non-trivial
examples of nonarchimedean absolute values, if k is any field with a discrete valuation v
and c is any positive real number less than 1, then it is easy to check that ‖x‖v := cv(x)

defines a nonarchimedean absolute value on k (where we interpret c∞ as 0). Applying this
to the p-adic valuation vp on Qp with c = 1/p yields the p-adic absolute value | |p on Qp:

|x|p = p−vp(x).

We now prove some useful facts about absolute values.

Theorem 5.3. Let k be a field with absolute value ‖ ‖ and multiplicative identity 1k.

(a) ‖1k‖ = 1.

(b) ‖ − x‖ = ‖x‖.

(c) ‖ ‖ is nonarchimedean if and only if ‖n‖ ≤ 1 for all positive integers n ∈ k.

Proof. For (a), note that ‖1k‖ = ‖1k‖·‖1k‖ and ‖1k‖ 6= 0 since 1k 6= 0k. For (b), the positive
real number ‖ − 1k‖ satisfies ‖ − 1k‖2 = ‖(−1k)

2‖ = ‖1k‖ = 1, and therefore ‖ − 1k‖ = 1.
We then have ‖ − x‖ = ‖(−1k)x‖ = ‖ − 1k‖ · ‖x‖ = 1 · ‖x‖ = ‖x‖.

To prove (c), we first note that a positive integer n ∈ k is simply the n-fold sum
1k + · · · + 1k. If ‖ ‖ is nonarchimedean, then for any positive integer n ∈ k, repeated
application of the nonarchimedean triangle inequality yields

‖n‖ = ‖1k + · · ·+ 1k‖ ≤ max(‖1k‖, . . . , ‖1k‖) = 1.

If ‖ ‖ is instead archimedean, then we must have ‖x+y‖ > max(‖x‖, ‖y‖) for some x, y ∈ k×.
We can assume without loss of generality that ‖x‖ ≥ ‖y‖, and if we divide through by ‖y‖
and replace x/y with x, we can assume y = 1. We then have ‖x‖ ≥ 1 and

‖x+ 1‖ > max(‖x‖, 1) = ‖x‖.

If we divide both sides by ‖x‖ and let z = 1/x we then have ‖z‖ ≤ 1 and ‖z+ 1‖ > 1. Now
suppose for the sake of contradiction that ‖n‖ ≤ 1 for all integers n ∈ k. then

‖z + 1‖n = ‖(z + 1)n‖ =

∥∥∥∥∥
n∑
i=0

(
n

i

)
zi

∥∥∥∥∥ ≤
n∑
i=0

∥∥∥∥(ni
)∥∥∥∥ ‖z‖i ≤ n∑

i=0

∥∥∥∥(ni
)∥∥∥∥ ≤ n+ 1.

But ‖z + 1‖ > 1, so the LHS increases exponentially with n while the RHS is linear in n,
so for any sufficiently large n we obtain a contradiction.



Corollary 5.4. In a field k of positive characteristic p every absolute value ‖ ‖ is nonar-
chimedean and is moreover trivial if k is finite.

Proof. Every positive integer n ∈ k lies in the prime field Fp ⊆ k and therefore satisfies
np−1 = 1. This means the positive real number ‖n‖ is a root of unity and therefore equal
to 1, so ‖n‖ = 1 for all positive integers n ∈ k and ‖ ‖ is therefore nonarchimedean, by
part (c) of Theorem 5.3. If k = Fq is a finite field, then for every nonzero x ∈ Fq we have
xq−1 = 1 and the same argument implies ‖x‖ = 1 for all x ∈ F×q .

5.3 Absolute values on Q

As with Qp, we can use the p-adic valuation vp on Q to construct an absolute value. Note
that we can define vp without reference to Zp: for any integer vp(a), is the largest integer n
for which pn|a, and for any rational number a/b in lowest terms we define

vp

(a
b

)
= vp(a)− vp(b).

This of course completely consistent with our definition of vp on Qp. We then define the
p-adic absolute value of a rational number x to be

|x|p = p−vp(x),

with |0|p = p−∞ = 0, as above. Notice that rational numbers with large p-adic valuations
have small p-adic absolute values. In p-adic terms, p100 is a very small number, and p1000

is even smaller. Indeed,
lim
n→∞

|pn| = lim
n→∞

p−n = 0.

We also have the usual archimedean absolute value on Q, which we will denote by | |∞,
for the sake of clarity. One way to remember this notation is to note that archimedean
absolute values are unbounded on Z while nonarchimedean absolute values are not (this
follows from the proof of Theorem 5.3).

We now wish to prove Ostrowski’s theorem, which states that every nontrivial absolute
value on Q is equivalent either to one of the nonarchimedean absolute values | |p, or to | |∞.
We first define what it means for two absolute values to be equivalent.

Definition 5.5. Two absolute values ‖ ‖ and ‖ ‖′ on a field k are said to be equivalent if
there is a positive real number α such that

‖x‖′ = ‖x‖α

for all x ∈ k.

Note that two equivalent absolute values are either both archimedean or both nonar-
chimedean, by Theorem 5.3 part (c), since cα ≤ 1 if and only if c ≤ 1, for any c, α ∈ R>0.

Theorem 5.6 (Ostrowski). Every nontrivial absolute value on Q is equivalent to some | |p,
where p is either a prime, or p =∞.

Proof. Let ‖ ‖ be a nontrivial absolute value on Q. If ‖ ‖ is archimedean then ‖b‖ > 1 for
some positive integer b. Let b be the smallest such integer and let α be the positive real



number for which ‖b‖ = bα (such an α exists because we necessarily have b > 1). Every
other positive integer n can be written in base b as

n = n0 + n1b+ n2b
2 + · · ·+ ntb

t,

with integers ni ∈ [0, b− 1] and nt 6= 0. We then have

‖n‖ ≤ ‖n0‖+ ‖n1b‖+ ‖n2b2‖+ · · ·+ ‖ntbt‖
= ‖n0‖+ ‖n1‖bα + ‖n2‖b2α + · · ·+ ‖nt‖btα

≤ 1 + bα + b2α + · · ·+ btα

=
(
1 + b−α + b−2α + · · ·+ b−tα

)
btα

≤ cbtα

≤ cnα

where c is the sum of the geometric series
∑∞

i=0(b
−α)i, which converges because b−α < 1.

This holds for every positive integer n, so for any integer N ≥ 1 we have

‖n‖N = ‖nN‖ ≤ c(nN )α = c(nαN )

and therefore ‖n‖ ≤ c1/Nnα. Taking the limit as N →∞ we obtain

‖n‖ ≤ nα,

for every positive integer n. On the other hand, for any positive integer n we can choose
an integer t so that bt ≤ n < bt+1. By the triangle inequality ‖bt+1‖ ≤ ‖n‖+ ‖bt+1 − n‖, so

‖n‖ ≥ ‖bt+1‖ − ‖bt+1 − n‖
= b(t+1)α − ‖bt+1 − n‖
≥ b(t+1)α − (bt+1 − n)α

≥ b(t+1)α − (bt+1 − bt)α

= b(t+1)α
(
1− (1− b−1)α

)
≥ dnα

for some real number d > 0 that does not depend on n. Thus ‖n‖ ≥ dnα holds for all
positive integers n and, as before, by replacing n with nN , taking Nth roots, and then
taking the limit as N →∞, we deduce that

‖n‖ ≥ nα,

and therefore ‖n‖ = nα = |n|α∞ for all positive integers n. For any other positive integer m,

‖n‖ · ‖m/n‖ = ‖m‖
‖m/n‖ = ‖m‖/‖n‖ = mα/nα = (m/n)α,

and therefore ‖x‖ = xα = |x|α∞ for every positive x ∈ Q, and ‖ − x‖ = ‖x‖ = xα = | − x|α∞,
so ‖x‖ = |x|α∞ for all x ∈ Q (including 0).

We now suppose that ‖ ‖ is nonarchimedean. If ‖b‖ = 1 for all positive integers b then
the argument above proves that ‖x‖ = 1 for all nonzero x ∈ Q, which is a contradiction



since ‖ ‖ is nontrivial. So let b be the least positive integer with ‖b‖ < 1. We must have
b > 1, so b is divisible by a prime p. If b 6= p then ‖b‖ = ‖p‖‖b/p‖ = 1 · 1 = 1, which
contradicts ‖b‖ < 1, so b = p is prime.

We know prove by contradiction that p is the only prime with ‖p‖ < 1. If not then let
q 6= p be a prime with ‖q‖ < 1 and write up + vq = 1 for some integers u and v, both of
which have absolute value at most 1, since ‖ ‖ is nonarchimedean.1 We then have

1 = ‖1‖ = ‖up+ vq‖ ≤ max(‖up‖, ‖vq‖) = max(‖u‖ · ‖p‖, ‖v‖ · ‖q‖) ≤ max(‖p‖, ‖q‖) < 1,

which is a contradiction.
Now define the real number α > 0 so that ‖p‖ = p−α = |p|αp . Any positive integer n

may be written as n = pvp(n)r with vp(r) = 0, and we then have

‖n‖ = ‖pvp(n)r‖ = ‖pvp(n)‖ · ‖r‖ = ‖p‖vp(n) = |p|αvp(n)p = |n|αp .

This then extends to all rational numbers, as argued above.

1This is a simplification of the argument given in class, as pointed out by Ping Ngai Chung (Brian).
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In Lecture 6 we proved (most of) Ostrowski’s theorem for number fields, and we saw the
product formula for absolute values on Q. A similar product formula holds for absolute val-
ues on a number field, but in order to state and prove it we need to briefly review/introduce
some standard terminology from algebraic number theory.

7.1 Field norms and traces

Let L/K be a finite field extension of degree n = [L : K]. Then L is an n-dimensional
K-vector space, and each α ∈ L determines a linear operator Tα : L→ L corresponding to
multiplication by α (the linearity of Tα is immediate from the field axioms).

Definition 7.1. The trace TrL/K(α) is the trace of Tα, and the norm NL/K(α) is the
determinant of Tα.1

It follows immediately from this definition that the trace is additive and the norm is mul-
tiplicative, and that both take values in K.

The trace and norm can be computed as the trace and determinant of the matrix of Tα
with respect to a basis, but their values are intrinsic to α and do not depend on a choice of
basis. The Cayley-Hamilton theorem implies that Tα satisfies a characteristic equation

fα(x) = xn + an−1x+ · · ·+ a1x+ a0 = 0

with coefficients ai ∈ K. We then have

TrL/K(α) = −an−1 and NL/K(α) = (−1)na0,

equivalently, TrL/K(α) andNL/K(α) are the sum and product of the roots of fα, respectively.

These roots need not lie in L, but they certainly lie in K (in fact in the splitting field of fα),
and in any case their sum and product necessarily lie in K.

Note that α satisfies the same characteristic equation as Tα, since Tα is just multiplica-
tion by α, but fα is not necessarily the minimal polynomial gα of α over K (which is also
the minimal polynomial of the operator Tα). We know that gα must divide fα, since the
minimal polynomial always divides the characteristic polynomial, but fα must be a power
of gα. This is easy (and instructive) to prove in the case that L/K is a separable extension,
which includes all the cases of interest to us.2

Theorem 7.2. Let L/K be a separable field extension of degree n, let α ∈ L have minimal
polynomial gα over K and let fα be the characteristic polynomial of Tα Then

fα = gn/dα ,

where d = [K(α) : K].

1These are also called the relative trace/norm, or the trace/norm from L down to K to emphasize that
they depend on the fields L and K, not just α.

2Recall that separable means that minimal polynomials never have repeated roots. In characteristic zero
every finite extension is separable, and the same holds for finite fields (such fields are said to be perfect).



Proof. There are exactly n distinct embeddings σ1, . . . , σn of L into K that fix K, and
σ1(α), . . . , σn(α) are precisely the n (not necessarily distinct) roots of fα. This list includes
the d roots of gα, since gα divides fα, and these d roots are distinct, since L/K is separable.
But there are exactly n/d = [L : K(α)] distinct embeddings of L into K that fix K(α), and
each of these also fixes K and is hence one of the σi. It follows that each distinct root of fα
occurs with multiplicity at least n/d, and since fα has at least d distinct roots, the roots of
fα are precisely the roots of gα, each occuring with multiplicity n/d. Both fα and gα are

monic, so fα = g
n/d
α .

7.2 Ideal norms

Now let us fix K = Q, so that L is a number field (a finite extension of Q). Recall that the
ring of integers of L consists of the elements in L whose minimal polynomials have integer
coefficients. This subset forms a ring O that is a Dedekind domain, an integral domain in
which every nonzero proper ideal can be uniquely factored into prime ideals (equivalently,
a finitely generated Noetherian ring in which every nonzero prime ideal is maximal), and L
is its fraction field. The ring of integers is a free Z-module of rank n = [L : Q], and we can
pick a basis for L as an n-dimensional Q-vector space that consists of elements of O (such a
basis is called an integral basis). The ring O then consists of all integer linear combinations
of basis elements and can be viewed as an n-dimensional Z-lattice. For proofs of these facts,
see any standard text on algebraic number theory, such as [1].

Definition 7.3. Let a be a nonzero O-ideal. The (ideal) norm Na of a is the cardinality
of the (necessarily finite) ring O/a, equivalently, the index [O : a] of a as a sublattice of the
Z-lattice O.3 The norm of (0) is zero.

Remark 7.4. In a Dedekind domain every nonzero prime ideal is maximal, so for prime
ideals p the ring O/p is actually a field of cardinality Np = pf , for some prime p and positive
integer f called the inertia degree (also residue degree).

While it may not be immediately obvious from the definition, the ideal norm is multi-
plicative (for principal ideals this follows from Theorem 7.5 below). For an algebraic integer
α ∈ L we now have two notions of norm: the field norm NL/Q(α) and the ideal norm N(α)
of the prinicipal O-ideal generated by α. These are not unrelated.

Theorem 7.5. Let α be an algebraic integer in a number field L. Then N(α) = |NL/Q(α)|.

Proof. Fix an integral basis B for L. The field norm NL/Q(α) is the determinant of the
matrix of the linear operator Tα with respect to B. The absolute value of this determinant
is equal to the volume of a fundamental parallelepiped in the Z-lattice corresponding to the
principal ideal (α) as a sublattice of the Z-lattice O generated by B, relative to the volume
of a fundamental parallelepiped in O. But this is precisely the index [O : (α)] = N(α).

3Like the field norm NL/Q, the ideal norm N depends on L, but we typically don’t indicate L in the
notation because N is always applied to ideals, which necessarily exist in the context of a particular ring (in
our case the ring of integers of L). More generally, for any finite separable extension L/K where K is the
fraction field of a Dedekind domain A, the ideal norm is defined as a map from ideals in the integral closure
of A in L to A-ideals. In our setting A = Z is a PID, so we are effectively identifying the Z-ideal (Na) with
the integer Na. See [1, Ch. 4] for more details. Our definition here is also called the absolute norm.



7.3 Product formula for absolute values on number fields

Ostrowski’s theorem for number fields classifies the absolute values on a number field up to
equivalence. But in order to prove the product formula we need to properly normalize each
absolute value appropriately, which we now do.

Let L be a number field with ring of integers O. For each nonzero prime ideal p in O
we define the absolute value |α|p on L by

|α|p = (Np)−vp(α),

where vp(α) is the exponent of p in the prime factorization of the ideal (α) for nonzero
α ∈ O, and vp(α/β) = vp(α)− vp(β) for any nonzero α, β ∈ O (recall that L is the fraction
field of O). As usual, we let vp(0) =∞ and define (Np)−∞ = 0.

This addresses all the nonarchimedean absolute values of L (by Ostrowski’s theorem),
we now consider the archimedean ones. As a number field of degree n, there are exactly n
distinct embeddings of L into Q, hence into C. But these n embeddings do not necessarily
give rise to n distinct absolute values. Let f be a defining polynomial for L over Q, that is,
the minimal polynomial of a primitive element θ such that L = Q(θ) (such a θ exists, by
the primitive element theorem). Over C, the roots of f are either real (let r be the number
of real roots) or come in complex-conjugate pairs (let s be the number of such pairs). We
then have n = r+2s distinct embeddings of L into C, each sending θ to a different root of f
(the roots are distinct because every finite extension of Q is separable). But there are only
r + s inequivalent archimedean absolute values on L, since complex-conjugate embeddings
yield the same absolute value (|z| = |z̄|).

As with Q, it will be convenient to use the notation | |p to denote archimedean ab-
solute values as well as nonarchimedean ones, and we may refer to the subscript p as an
archimedean or “infinite” prime and write p|∞ to indicate this.4 Using σp to denote the
embedding associated to a real archimedean prime p and σp, σ̄p to denote the conjugate pair
of complex embeddings associated to a complex archimedean prime p, we now define

|α|p =

{
|σp(α)| if p is a real archimedean prime,

|σp(α)| · |σ̄p(α)| if p is a complex archimedean prime.

Of course |σp(α)| · |σ̄p(α)| = |σp(α)|2, but it is more illuminating to write it as above.
We now prove the product formula for absolute values on number fields.

Theorem 7.6. Let L be a number field. For every α ∈ L× we have∏
p

|α|p = 1,

where p ranges over all the primes of L (both finite and infinite).

Proof. We first consider the archimedean primes. Let fα be the characteristic polynomial
of the linear operator on the Q-vector space L corresponding to multiplication by α. If
p1, . . . , pr and pr+1, . . . , pr+s are the real and complex archimedean primes of L, then the
n = r + 2s (not nescessarily distinct) roots of fα are precisely

σp1(α), . . . , σpr(α), σpr+1(α), σ̄pr+1(α), . . . , σpr+s(α), σ̄pr+s(α).

4The finite and infinite primes of L are also often referred to as places of L and denoted by v.



We then have ∏
p|∞

|α|p =
r∏
i=1

|σpi(α)|
s∏

i=r+1

|σpi(α)| · |σ̄pi(α)| = |NL/Q(α)|,

since NL/Q(α) is equal to the product of the roots of fα.
Now let (α) = qa11 · · · q

at
t be the prime factorization of the principal ideal (α) in the ring

of integers of L. Then

∏
p<∞
|α|p =

t∏
i=1

(Nqi)
−ai = N(α)−1 = |NL/Q(α)|−1,

by Theorem 7.5, and therefore
∏

p |α|p = 1, as desired.

We now turn to a new topic, the completion of a field with respect to an absolute value.

7.4 Cauchy sequences and convergence

We begin with the usual definitions of convergence and Cauchy sequences, which apply to
any field with an absolute value. Let k be a field equipped with an absolute value ‖ ‖.

Definition 7.7. A sequence (xn) of elements of k converges (to `) if there is an element
` ∈ k such that for every ε > 0 there is a positive integer N such that ‖xn − `‖ < ε for all
n ≥ N . Equivalently, (xn) converges to ` if ‖xn − `‖ → 0 as n→∞.5

The element ` is called the limit of the sequence, and if it exists, it is unique: if (xn)
converges to both ` and `′ then

‖`′ − `‖ = ‖`′ − xn + xn − `‖ ≤ ‖`′ − xn‖+ ‖xn − `‖ = ‖xn − `′‖+ ‖xn − `‖ → 0 + 0 = 0,

so ‖`′ − `‖ = 0, and therefore `′ − ` = 0 and `′ = ` (note that we used ‖ − x‖ = ‖x‖).
Sums and products of convergent sequences behave as expected.

Lemma 7.8. Let (xn) and (yn) be sequences in k that converge to x and y respectively.
Then the sequences (xn + yn) and (xnyn) convege to x+ y and xy respectively.

Proof. Convergence of (xnyn) to xy follows immediately from the multiplicativity of ‖ ‖.
To check (xn + yn), for any ε > 0 pick N so that ‖x− xn‖ < ε/2 and ‖y− yn‖ < ε/2 for all
n ≥ N . Then ‖(xn+yn)− (x+y)‖ ≤ ‖xn−x‖+‖yn−y‖ < ε/2+ ε/2 = ε for all n ≥ N .

We now recall a necessary condition for convergence.

Definition 7.9. A sequence (xn) in k is a Cauchy sequence if for every ε > 0 there exists
a positive integer N such that ‖xm − xn‖ < ε for all m,n ≥ N .

Theorem 7.10. Every convergent sequence is a Cauchy sequence.

Proof. Suppose (xn) is a convergent sequence. For any ε > 0 there is a positive integer N
for which ‖xn − `‖ < ε/2 for all n ≥ N . For all m,n ≥ N we then have

‖xm−xn‖ = ‖xm− `+ `−xn‖ ≤ ‖xm− `‖+‖`−xn‖ = ‖xm− `‖+‖xn− `‖ < ε/2+ ε/2 = ε,

where we have again used ‖ − x‖ = ‖x‖.
5The notation ‖xn − `‖ → 0 refers to convergence in R in the usual sense.



The converse of Theorem 7.10 is not necessarily true, it depends on the field k.

Definition 7.11. A field k is complete (with respect to ‖ ‖) if every Cauchy sequence in k
converges (to an element of k).

Every field is complete with respect to the trivial absolute value. The field Q is not
complete with respect to the archimedean absolute value | |, but R is; indeed, R can be
(and often is) defined as the smallest field containing Q that is complete with respect to | |,
in other words, R is the completion of Q. In order to formally define the completion of a
field, we define an equivalence relation on sequences.

Definition 7.12. Two sequences (an) and (bn) are equivalent if ‖an − bn‖ → 0 as n→∞.

It is easy to check that this defines an equivalence relation on the set of all sequences in k,
and that any sequence equivalent to a Cauchy sequence is necessarily a Cauchy sequence.
We may use the notation [(xn)] to denote the equivalence class of the sequence (xn).

Definition 7.13. The completion of k (with respect to ‖ ‖) is the field k̂ whose elements
are equivalence classes of Cauchy sequences in k, where

(1) 0k̂ = [(0k, 0k, 0k, . . .)],

(2) 1k̂ = [(1k, 1k, 1k, . . .)],

(3) [(xn)] + [(yn)] = [(xn + yn)] and [(xn)][(yn)] = [(xnyn)].

To verify that that actually defines a field, the only nontrivial thing to check is that
every nonzero element has a multiplicative inverse. So let [(xn)] be a nonzero element of k̂.
The Cauchy sequence (xn) must be eventually nonzero (otherwise it would be equivalent to
zero), and if we consider the element [(yn)] ∈ k̂ defined by

yn =

{
x−1n if xn 6= 0,

0 if xn = 0,

we see that [(xn)][(yn)] = 1, since the sequence (xnyn) is eventually 1.
The map x 7→ x̂ = [(x, x, x, . . .)] is clearly a ring homomorphism from k to k̂, and

therefore a field embedding. We thus view k̂ as an extension of k by identifying k with its
image in k̂.

We now extend the absolute value of k to k̂ by defining

‖[(xn)]‖ = lim
n→∞

‖xn‖.

This limit exists because (‖xn‖) is a Cauchy sequence of real numbers and R is complete,
and we must get the same limit for any Cauchy sequence (yn) equivalent to (xn), so this
definition does not depend on the choice of representative for the equivalence class [(xn)].
Since ‖x̂‖ = ‖x‖ for any x ∈ k, this definition is compatible with our original ‖ ‖.

We now note that any Cauchy sequence (xn) in k can be viewed as a Cauchy sequence
(x̂n) in k̂, since we view k as a subfield of k̂, and (x̂n) obviously converges to [(xn)] in k̂.
Thus every Cauchy sequence in k̂ that consists entirely of elements of k converges. But
what about other Cauchy sequences in k̂? To show that these also converge we use the fact
that k is dense in k̂.

Definition 7.14. Let S be any subset of a field k with absolute value ‖ ‖. The set S is
dense in k if for every x ∈ k and every ε > 0 there exists y ∈ S such that ‖x− y‖ < ε.



Theorem 7.15. Let k be a field with absolute value ‖ ‖. Then k is dense in its completion k̂.

Proof. Let x ∈ k̂ be the equivalence class of the Cauchy sequence (xn) in k. For any ε > 0
there is an xm with the property that ‖xm−xn‖ for all n ≥ m. It follows that ‖x− x̂m‖ < ε,
where x̂m ∈ k ⊆ k̂ is just the equivalence class of (xm, xm, xm, . . .).

Corollary 7.16. Every Cauchy sequence in k̂ is equivalent to a Cauchy sequence whose
elements lie in k.

Proof. Let (zn) be a Cauchy sequence in k̂. Since k is dense in k̂, for each zn we may
pick xn ∈ k ⊆ k̂ so that ‖zn − xn‖ < 1/n. Then for any ε > 0 we may pick N such that
‖zm − xm‖ < ε/3, ‖zn − xn‖ < ε/3 and ‖zm − zn‖ < ε/3, for all m,n ≥ N . It then follows
from the triangle inequality that ‖xm−xn‖ < ε for all m,n ≥ N , hence (xn) is Cauchy.

Corollary 7.17. The completion k̂ of k is complete. Moreover it is the smallest complete
field containing k in the following sense: any embedding of k in a complete field k′ can be
extended to an embedding of k̂ into k′.

Proof. The first statement follows immediately from Corollary 7.16 and the discussion
above. For the second, if π : k → k′ is an embedding of k into a complete field k′, then we
can extend π to an embedding of k̂ into k′ by defining

π([(xn)]) = lim
n→∞

π(xn).

Such a limit always exists, since k′ is complete, and the map π : k̂ → k′ is a ring homo-
morphism (hence a field embedding) because taking limits commutes with addition and
multiplication, by Lemma 7.8.

Remark 7.18. We could have defined k̂ more categorically as the field with the universal
property that every embedding of k into a complete field can be extended to k̂. Assuming
it exists, such a k̂ is unique up to a canonical isomorphism (map Cauchy sequences to their
limits), but we still would have to prove existence.

Finally, we note that the absolute value on the completion of k with respect to ‖ ‖ is
nonarchimedean if and only if the absolute value on k is nonarchimedean.

Remark 7.19. Everything we have done here applies more generally to commutative rings.
For example, Zp is the completion of Z with respect to the p-adic absolute value | |p on Z,
as we will see in the next lecture.
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8.1 Completions of Q

We already know that R is the completion of Q with respect to its archimedean absolute
value | |∞. Now we consider the completion of Q with respect to any of its nonarchimedean
absolute values | |p.

Theorem 8.1. The completion Q̂ of Q with respect to the p-adic absolute value | |p is

isomorphic to Qp. More precisely, there is an isomorphism π : Qp → Q̂ that satisifies

|π(x)|p = |x|p for all x ∈ Q̂.

Proof. For any x ∈ Qp either x ∈ Zp or x−1 ∈ Zp, since Zp = {x ∈ Qp : |x|p ≤ 1}, so to define

π it is enough to give a ring homomorphism from Zp to Q̂. Let us uniquely represent each
a ∈ Zp as a sequence of integers (an) with an ∈ [0, pn−1], such that an+1 ≡ an mod Z/pnZ.
For any ε > 0 there is an integer N such that p−N < ε, and we then have |am− an|p < ε for
all m,n ≥ N . Thus each a ∈ Zp corresponds to a sequence of integers (an) that is Cauchy
with respect to the p-adic absolute value on Q and we define π(a) to be the equivalence
class of (an) in Q̂. It follows immediately from the definition of addition and multiplication
in both Zp and Q̂ as element-wise operations on representative sequences that π is a ring

homomorphism from Zp to Q̂. Moreover, π preserves the absolute value | |p, since

|a|p = lim
n→∞

|an|p = |π(a)|p.

Here the first equality follows from the fact that if vp(a) = m, then an = 0 for n ≤ m
and vp(an) = m for all n > m (so the sequence |an|p eventually constant), and the second

equality is the definition of | |p on Q̂.
We now extend π from Zp to Qp by defining π(x−1) = π(x)−1 for all x ∈ Zp (this is

necessarily consistent with our definition of π on Z×p , since π is a ring homomorphism). As

a ring homomorphism of fields, π : Qp → Q̂ must be injective, so we have an embedding of

Qp into Q̂. To show this it is an isomorphism, it suffices to show that Qp is complete, since

then we can embed Q̂ into Qp, by Corollary 7.17.
So let (xn) be a Cauchy sequence in Qp. Then (xn) is bounded (fix ε > 0, pick N so

that |xn − xN |p < ε for all n ≥ N and note that |xn|p ≤ maxn≤N (|xn|p) + ε). Thus for
some fixed power pr of p the sequence (yn) = (prxn) lies in Zp. We now define a ∈ Zp as
a sequence of integers (a1, a2, . . .) with ai ∈ [0, pi − 1] and ai+1 ≡ ai mod Z/piZ as follows.
For each integer i ≥ 1 pick N so that |yn − yN | < p−i for all n ≥ N . Then vp(yn − yN ) ≥ i,
and we let ai be the unique integer in [0, pi − 1] for which yn ≡ ai mod Z/piZ for all
n ≥ N . We necessarily have ai+1 ≡ ai mod pi, so this defines an element a of Zp, and by
construction (yn) converges to a and therefore (xn) converges to a/pr. Thus every Cauchy
sequence in Qp converges, so Qp is complete.

It follows from Theorem 8.1 that we could have defined Qp as the completion of Q,
rather than as the fraction field of Zp, and many texts do exactly this. If we had taken this
approach we would then define Zp as the the ring of integers of Qp, that is, the ring

Zp = {x ∈ Qp : |x|p ≤ 1}.

Alternatively, we could define Zp as the completion of Z with respect to | |p.



Remark 8.2. The use of the term “ring of integers” in the context of a p-adic field can
be slightly confusing. The ring Zp is the topological closure of Z in Qp (in other words,
the completion of Z), but it is not the integral closure of Z in Qp (the elements in Qp that
are roots of a monic polynomial with coefficients in Z). The latter set is countable, since
there are only countably many polynomials with integer coefficients, but we know that Zp

is uncountable. But it is true that Zp is integrally closed in Qp, every element of Qp that
is the root of a monic polynomial with coefficients in Zp lies in Zp, so Zp certainly contains
the integral closure of Z in Qp (and is the completion of the integral closure).

8.2 Root-finding in p-adic fields

We now turn to the problem of finding roots of polynomials in Zp[x]. From Lecture 3 we
already know how to find roots of polynomials in (Z/pZ)[x] ' Fp[x]. Our goal is to reduce
the problem of root-finding over Zp to root-finding over Fp. To take the first step toward
this goal we require the following compactness lemma.

Lemma 8.3. Let (Sn) be an inverse system of finite non-empty sets with a compatible
system of maps fn : Sn+1 → Sn. The inverse limit S = lim←−Sn is non-empty.

Proof. If the fn are all surjective, we can easily construct an element (sn) of S: pick any
s1 ∈ S1 and for n ≥ 1 pick any sn+1 ∈ f−1n (sn). So our goal is to reduce to this case.

Let Tn,n = Sn and for m > n, let Tm,n be the image of Sm in Sn, that is

Tm,n = fn(fn+1(· · · fm−1(Sm) · · · )).

For each n we then have an infinite sequence of inclusions

· · · ⊆ Tm,n ⊆ Tm−1,n ⊆ · · · ⊆ Tn+1,n ⊆ Tn,n = Sn.

The Tm,n are all finite non-empty sets, and it follows that all but finitely many of these
inclusions are equalities. Thus each infinite intersection En =

⋂
m Tm,n is a non-empty

subset of Sn. Using the restriction of fn to define a map En+1 → En, we obtain an inverse
system (En) of finite non-empty sets whose maps are all surjective, as desired.

Theorem 8.4. For any f ∈ Zp[x] the following are equivalent:

(a) f has a root in Zp.

(b) f mod pn has a root in Z/pnZ for all n ≥ 1.

Proof. (a)⇒ (b): apply the projection maps Zp → Z/pnZ to the roots and coefficients of f .
(b) ⇒ (a): let Sn be the roots of f in Z/pnZ and consider the inverse system (Sn) of
finite non-empty sets whose maps are the restrictions of the reduction maps from Z/pn+1Z
to Z/pnZ. By Lemma 8.3, the set S = lim←−Sn ⊆ lim←−Z/pnZ = Zp is non-empty, and its
elements are roots of f .

Theorem 8.4 reduces the problem of finding the roots of f in Zp to the problem of finding
roots of f modulo infinitely many powers of p. This might not seem like progress, but we
will now show that under suitable conditions, once we have a root a1 of f mod p, we can
“lift” a1 to a root an of f mod pn, for each n ≥ 1, and hence to a root of f in Zp.

A key tool in doing this is the Taylor expansion of f , which we now define in the general
setting of a commutative ring R.1

1As always, our rings include a multiplicative identity 1.



Definition 8.5. Let f ∈ R[x] be a polynomial of degree at most d and let a ∈ R. The
(degree d) Taylor expansion of f about a is

f(x) = fd(x− a)d + fd−1(x− a)d−1 + · · ·+ f1(x− a) + f0,

with f0, f1, . . . , fd ∈ R.

The Taylor coefficients f0, f1, . . . , fd are uniquely determined by the expansion of f(y+z)
in R[y, z]:

f(y + z) = fd(y)zd + fd−1(y)zd−1 + · · ·+ f1(y)z + f0(y).

Replacing y with a and z with x− a yields the Taylor expansion of f with fi = fi(a) ∈ R.
This definition of the Taylor expansion agrees with the usual definition over R or C in

terms of the derivatives of f .

Definition 8.6. Let f(x) =
∑d

n=0 anx
n be a polynomial in R[x]. The formal derivative f ′

of f is the polynomial f ′(x) =
∑d

n=1 nanx
n−1 in R[x].

It is easy to check that the formal derivative satisfies the usual properties

(f + g)′ = f ′ + g′,

(fg)′ = f ′g + fg′,

(f ◦ g)′ = (f ′ ◦ g)g′.

Over a field of characteristic zero one then has the more familiar form of the Taylor expansion

f(x) =
f (d)(a)

d!
(x− a)d + · · ·+ f (2)(a)

2
(x− a)2 + f ′(a)(x− a) + f(a),

where f (n) denotes the result of taking n successive derivatives (f (n)(a) is necessarily divisi-
ble by n!, so the coefficients lie in R). Regardless of the characteristic, the Taylor coefficients
f0 and f1 always satisfy f0 = f(a) and f1 = f ′(a).

Lemma 8.7. Let a ∈ R and f ∈ R[x]. Then f(a) = f ′(a) = 0 if and only if a is (at least)
a double root of f , that is, f(x) = (x− a)2g(x) for some g ∈ R[x].

Proof. The reverse implication is clear: if f(x) = (x−a)2g(x) then clearly f(a) = 0, and we
have f ′(x) = 2(x−a)g(x) + (x−a)2g′(x), so f ′(a) = 0 as well. For the forward implication,
let d = max(deg f, 2) and consider the degree d Taylor expansion of f about a:

f(x) = fd(x− a)d + fd−1(x− a)d−1 + · · ·+ f2(x− a)2 + f1(x)(x− a) + f0.

If f(a) = f ′(a) = 0 then f0 = f(a) = 0 and f1 = f ′(a) = 0 and we can put

f(x) = (x− a)2
(
fd(x− a)d−2 + fd−2(x− a)d−3 + · · ·+ f2

)
,

in the desired form.



8.3 Hensel’s lemma

We are now ready to prove Hensel’s lemma, which allows us to lift any simple root of
f mod p to a root of f in Zp.

Theorem 8.8 (Hensel’s lemma). Let a ∈ Zp and f ∈ Zp[x]. Suppose f(a) ≡ 0 mod p and
f ′(a) 6≡ 0 mod p. Then there is a unique b ∈ Zp such that f(b) = 0 and b ≡ a mod p.

Our strategy for proving Hensel’s lemma is to apply Newton’s method, regarding a as
an approximate root of f that we can iteratively improve. Remarkably, unlike the situation
over an archimedean field like R or C, this is guaranteed to always work.

Proof. Let a1 = a, and for n ≥ 1 define

an+1 = an − f(an)/f ′(an).

We will prove by induction on n that the following hold

f ′(an) 6≡ 0 mod p, (1)

f(an) ≡ 0 mod pn, (2)

Note that (1) ensures that f ′(an) ∈ Z×p , so an+1 is well defined and an element of Zp.
Together with the definition of an+1, (1) and (2) imply an+1 ≡ an mod pn, which means that
the sequence (an mod pn) defines an element of b ∈ Zp for which f(b) = 0 and b ≡ a1 ≡ a
modulo p (equivalently, the sequence (an) is a Cauchy sequence in Zp with limit b).

The base case n = 1 is clear, so assume (1) and (2) hold for an. Then an+1 ≡ an mod pn,
so f ′(an+1) ≡ f ′(an) mod pn. Reducing mod p gives f ′(an+1) ≡ f ′(an) 6≡ 0 mod p. So (1)
holds for an+1. To show (2), let d = max(deg f, 2) and consider the Taylor expansion of f
about an:

f(x) = fd(x− an)d + fd−1(x− an)d−1 + · · ·+ f1(x− an) + f0.

Reversing the order of the terms and noting that f0 = f(an) and f1 = f ′(an) we can write

f(x) = f(an) + f ′(an)(x− an) + (x− an)2g(x),

for some g ∈ Zp[x]. Substituting an+1 for x yields

f(an+1) = f(an) + f ′(an)(an+1 − an) + (an+1 − an)2g(an+1).

From the definition of an+1 we have f ′(an)(an+1 − an) = −f(an), thus

f(an+1) = (an+1 − an)2g(an+1).

As noted above, an+1 ≡ an mod pn, so f(an+1) ≡ 0 mod p2n. Since 2n ≥ n + 1, we have
f(an+1) ≡ 0 mod pn+1, so (2) holds for an+1.

For uniqueness we argue that each an+1 (and therefore b) is congruent modulo pn+1 to
the unique root of f mod pn+1 that is congruent to an mod pn. There can be only one such
root because an is a simple root of f mod pn, since (1) implies f ′(an) 6≡ 0 mod pn.

There are stronger version of Hensel’s lemma than we have given here. In particular,
the hypothesis f ′(a) 6≡ 0 mod p can be weakened so that the lemma can be applied even in
situations where a is not a simple root. Additionally, the sequence (an) actualy converges to
a root of f more rapidly than indicated by inductive hypothesis (2). You will prove stronger
and more effective versions of Hensel’s lemma on the problem set, as well as exploring several
applications.
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9.1 Quadratic forms

We assume throughout k is a field of characteristic different from 2.

Definition 9.1. The four equivalent definitions below all define a quadratic form on k.

1. A homogeneous quadratic polynomial f ∈ k[x1, . . . , xn].

2. Associated to f is a symmetric matrix A ∈ kn×n whose entries (aij) correspond to the
coefficients of xixj in f via f(x1, . . . , xn) =

∑
i,j aijx

ixj .1 Conversely, every symmetric
matrix defines a homogeneous quadratic polynomial.

3. Each symmetric matrix A defines a symmetric bilinear form B : kn × kn → k via
Bf (x, y) = xtAy, where x and ydenote column vectors. It is symmetric, since

B(x, y) = xtAy = (xtAy)t = ytAtx = ytAx = B(y, x),

and it is bilinear, since for any a ∈ k and x, y, z ∈ kn we have

B(ax+ y, z) = (ax+ y)tAz = (axt + yt)Az = axtAz + ytAz = aBf (x, z) +B(y, z).

Conversely, if B is a symmetric bilinear form, and e1, . . . , en are basis vectors, the
matrix A = (aij) defined by aij = B(ei, ej) is symmetric.

4. The function f : kn → k obtained by evaluating a homogeneous quadratic polynomial
is a homogeneous quadratic function. In terms of the corresponding bilinear form
B(x, y), we have f(x) = B(x, x). Conversely, we can recover B(x, y) from f(x) via

B(x, y) =
f(x+ y)− f(x)− f(y)

2
.

We thus have canonical isomorphisms between four sets of objects: homogeneous quadratic
polynomials, symmetric matrices, symmetric bilinear forms, and homogeneous quadratic
functions. We use the symbol f to refer to both a homogeneous quadratic polynomial and
its evaluation function, and we use the symbols A and B to refer to the associated matrix
and bilinear form.

The definition of a symmetric bilinear form B : V × V → k makes sense over any finite
dimensional k-vector space V , and we can define the corresponding homogeneous function
f : V → k abstractly as f(v) = B(v, v). If we then choose a basis for V we can compute
the symmetric matrix A whose coefficients define a homogeneous quadratic polynomial.

Symmetric bilinear forms can be viewed as a generalization of inner products to arbitrary
fields. Inner products are also required to satisfy B(v, v) > 0 for any nonzero vector v, but
this only makes sense if k is an ordered field.2 In general, symmetric bilinear forms are
allowed to vanish on nonzero vectors (indeed, the zero map is a symmetric bilinear form).

1Note that for i 6= j this means that if fij is the coefficient of xixj then aij = aji = fij/2, so that
fijxixj = aijxixj + ajixjxi. This is slightly unpleasant but makes everything else work nicely.

2An ordered field is a field with a total ordering≤ that satisfies a ≤ b⇒ a+c ≤ b+c and a, b > 0⇒ ab > 0.
In such a field 0 cannot be written as a sum of nonzero squares. This is a severe restriction; it rules out all
fields of positive characterstic, all p-adic fields, the complex numbers, and most number fields.



The group GLn(k) of invertible n × n matrices over k acts on the space of quadratic
forms as a linear change of variables. If T is any invertible linear transformation on V , and
A is the matrix of a quadratic form f on V , then we have

f(Tv) = (Tv)tA(Tv) = vt(T tAT )v

where T tAT is a symmetric matrix that defines another quadratic form.

Definition 9.2. Two quadratic forms f and g are equivalent if g(v) = f(Tv) for some
T ∈ GLn(k). This defines an equivalence relation on the set of all quadratic forms of the
same dimension over the field k.

Note that, in general, the matrices T tAT and T−1AT are not the same, this GLn(k)
action is not the same as its action by conjugation. In particular, equivalent symmetric
matrices need not be similar, as can be seen by the fact that equivalent matrices may have
different determinants:

det(T tAT ) = det(T t) det(A) det(T ) = det(T )2 det(A).

Definition 9.3. The rank of a quadratic form is the rank of its matrix; rank is clearly
preserved under equivalence. A quadratic form is non-degenerate if it has full rank, equiv-
alently, the determinant of its matrix is nonzero.

If B is the symmetric bilinear form associated to a non-degenerate quadratic form on V ,
then each nonzero v ∈ V defines a nonzero linear map w → B(v, w) (otherwise the matrix
of the form with respect to a basis including v would have a zero row).

Definition 9.4. The discriminant of a nondegenerate quadratic form with matrix A is the
image of detA in k×/k×2; it is clearly preserved by equivalence.

Inequivalent forms may have the same discriminant; over C for example, every non-
degenerate form has the same discriminant (in fact all nondegenerate forms of the same
dimension are equivalent). However, quadratic forms with different discriminants cannot
be equivalent; this implies that over Q, for example, there are infinitely many distinct
equivalence classes of quadratic forms in every dimension n > 0.

A quadratic form is said to be diagonal if its matrix is diagonal.

Theorem 9.5. Every quadratic form is equivalent to a diagonal quadratic form.

Proof. We proceed by induction on the dimension n. The base cases n ≤ 1 are trivial.
Let f be a quadratic form on a vector space V , and let B be the corresponding symmetric
bilinear form. If f is the zero function then its matrix is zero, hence diagonal, so assume
otherwise and pick v ∈ kn so that f(v) 6= 0. The map x→ B(x, v) is a nonzero linear map
from kn to k, hence surjective, so its kernel v⊥ = {x ∈ V : B(x, v) = 0} has dimension
n− 1. We know that v 6∈ v⊥, since B(v, v) = f(v) 6= 0, so V ' 〈v〉 ⊕ v⊥. Thus any y ∈ V
can be written as y = y1 + y2 with y1 ∈ 〈v〉 and y2 ∈ v⊥. We then have

f(y1 + y2) = B(y1 + y2, y1 + y2) = B(y1, y1) +B(y2, y2) + 2B(y1, y2) = f(y1) + f(y2),

since B(y1, y2) = 0 for any y1 ∈ 〈v〉 and y2 ∈ v⊥. By the inductive hypothesis, the
restriction f |v⊥ of f to v⊥ can be diagonalized (that is, there is a diagonal quadratic form
on v⊥ that is equivalent to f |v⊥), and the same is certainly true for the restriction of f to
the 1-dimensional subspace 〈v〉, thus f can be diagonalized.



So to understand equivalence classes of quadratic forms we can restrict our attention to
diagonal quadratic forms.

Example 9.6. The quadratic form x2 + y2 is equivalent to 2x2 + 2y2, since

(x+ y)2 + (x− y)2 = 2x2 + 2y2,

but it is not equivalent to 3x2 + 3y2. Indeed, for x2 + y2 to be equivalent to αx2 + βy2 we
must have (

a b
c d

)t(
1 0
0 1

)(
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
=

(
α 0
0 β

)
,

and in particular, α and β must both be sums of squares, which 3 is not.

Thus equivalence of quadratic forms depends on arithmetic properties of the field k.

Definition 9.7. A quadratic form f on V represents a ∈ k if a lies in the image of f : V → k.
Equivalent forms necessarily represent the same elements (but the converse need not hold).

Example 9.8. The form x2 − 2y2 represents −7 but not 0.

The constraint that x 6= 0 is critical, otherwise every quadratic form would represent 0;
the quadratic forms that represent 0 are of particular interest to us.

Theorem 9.9. If a nondegenerate quadratic form f represents 0 then it represents every
element of k.

Proof. Assume f(v) = 0 for some v ∈ V . Since f is nondegenerate, there exists w ∈ V with
B(v, w) 6= 0, and v and w must be independent, since B(v, v) = f(v) = 0 and therefore
B(v, xv) = cB(v, v) = 0 for any c ∈ k. For any x ∈ k we have

f(xv + w) = B(xv + w, xv + w) = B(v, v)x2 + 2B(v, w)x+B(w,w) = ax+ b,

with a = 2B(v, w) 6= 0 and b = f(w). For any c ∈ k we can solve ax+ b = c for x, proving
that f represents c = f(xv + w).

Our main goal is to prove the following theorem of Minkowski, which was generalized
to number fields by Hasse.

Theorem 9.10 (Hasse-Minkowski). A quadratic form over Q represents 0 if and only if it
represents 0 over every completion of Q, that is, over Qp for all primes p ≤ ∞.

This is an example of a local-global principle. We have an object f (in this case a
quadratic form) defined over a “global” field (in this case Q) and a certain property of
interest (in this case representing 0). Since f is defined over the global field, we can also
consider f as an object over any of the “local fields” associated to the global field (in
this case the completions of Q). If f satisfies the property of interest over the global field
then it typically must satisfy this property over every local field (this is certainly true in
our case), but the question is whether the converse holds. In the case of quadratic forms
representing 0, the answer is “yes”, but in many other cases we will see later in this the
answer is “no,” and it is a major point of interest in arithmetic geometry to understand
exactly when and how various local-global principles can fail.
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In this lecture we lay the groundwork needed to prove the Hasse-Minkowski theorem
for Q, which states that a quadratic form over Q represents 0 if and only if it represents 0
over every completion of Q (as proved by Minkowski). The statement still holds if Q is
replaced by any number field (as proved by Hasse), but we will restrict our attention to Q.

Unless otherwise indicated, we use p througout to denote any prime of Q, including the
archimedean prime p =∞. We begin by defining the Hilbert symbol for p.

10.1 The Hilbert symbol

Definition 10.1. For a, b ∈ Q×p the Hilbert symbol (a, b)p is defined by

(a, b)p =

{
1 ax2 + by2 = 1 has a solution in Qp,

−1 otherwise.

It is clear from the definition that the Hilbert symbol is symmetric, and that it only depends
on the images of a and b in Q×p /Q×2p (their square classes). We note that

Q×p /Q×2p '


' Z/2Z if p =∞,
' (Z/2Z)2 if p is odd,

' (Z/2Z)3 if p = 2.

The case p =∞ is clear, since R× = Q×∞ has just two square classes (positive and negative
numbers), and the cases with p < ∞ were proved in Problem Set 4. Thus the Hilbert
symbol can be viewed as a map (Q×/Q×2)× (Q×/Q×2)→ {±1} of finite sets.

We say that a solution (x0, . . . , xn) to a homogeneous polynomial equation over Qp is
primitive if all of its elements lie in Zp and at least one lies in Z×p . The following lemma
gives several equivalent definitions of the Hilbert symbol.

Lemma 10.2. For any a, b ∈ Q×p , the following are equivalent:

(i) (a, b)p = 1.

(ii) The quadratic form z2 − ax2 − by2 represents 0.

(iii) The equation ax2 + by2 = z2 has a primitive solution.

(iv) a ∈ Qp is the norm of an element in Qp(
√
b).

Proof. (i)⇒(ii) is immediate (let z = 1). The reverse implication is clear if z2−ax2−by2 = 0
represents 0 with z nonzero (divide by z2), and otherwise the non-degenerate quadratic form
ax2 + by2 represents 0, hence it represents every element of Qp including 1, so (ii)⇒(i).

To show (ii)⇒(iii), multiply through by pr, for a suitable integer r, and rearrange terms.
The reverse implication (iii)⇒(ii) is immediate.

If b is square then Qp(
√
b) = Qp and N(a) = a so (iv) holds, and the form z2 − by2

represents 0, hence every element of Qp including ax20 for any x0, so (ii) holds. If b is not
square then N(z+y

√
b) = z2−by2. If a is a norm in Q(

√
b) then z2−ax2−by2 represents 0

(set x = 1), and if z2 − ax2 − by2 represents 0 then dividing by x2 and adding a to both
sides shows that a is a norm. So (ii)⇔(iv).



Corollary 10.3. For all a, b, c ∈ Q×p , the following hold:

(i) (1, c)p = 1.

(ii) (−c, c)p = 1.

(iii) (a, c)p = 1 =⇒ (a, c)p(b, c)p = (ab, c)p.

(iv) (c, c)p = (−1, c)p.

Proof. Let N denote the norm map from Qp(
√
c) to Qp. For (i) we have N(1) = 1. For (ii),

−c = N(−c) for c ∈ Q×2 and −c = N(
√
c) otherwise. For (iii), If a and b are both norms

in Q(
√
c), then so is ab, by the multiplicativity of the norm map; conversely, if a and ab are

both norms, so is 1/a, as is (1/a)ab = b. Thus if (a, c)p = 1, then (b, c)p = 1 if and only if
(ab, c)p = 1, which implies (a, c)p(b, c)p = (ab, c)p. For (iv), (−c, c)p = 1 by (ii), so by (iii)
we have (c, c)p = (−c, c)p(c, c)p = (−c2, c)p = (−1, c)p.

Theorem 10.4. (a, b)∞ = −1 if and only if a, b < 0

Proof. We can assume a, b ∈ {±1}, since {±1} is a complete set of representatives for
R×/R×2. If either a or b is 1 then (a, b)∞ = 1, by Corollary 10.3.(i), and (−1,−1)∞ = −1,
since −1 is not a norm in C = Q∞(

√
−1).

Lemma 10.5. If p is odd, then (u, v)p = 1 for all u, v ∈ Z×p .

Proof. Recall from Lecture 3 (or the Chevalley-Warning theorem on problem set 2) that
every plane projective conic over Fp has a rational point, so we can find a non-trivial solution
to z2 − ux2 − vy2 = 0 modulo p. If we then fix two of x, y, z so that the third is nonzero,
Hensel’s lemma gives a solution over Zp.

Remark 10.6. Lemma 10.5 does not hold for p = 2; for example, (3, 3)2 = −1.

Theorem 10.7. Let p be an odd prime, and write a, b ∈ Q×p as a = pαu and b = pβv, with
α, β ∈ Z and u, v ∈ Z×p . Then

(a, b)p = (−1)αβ
p−1
2

(
u

p

)β (v
p

)α
,

where (xp ) denotes the Legendre symbol (x mod p
p ).

Proof. Since (a, b)p depends only on the square classes of a and b, we assume α, β ∈ {0, 1}.
Case α = 0, β = 0: We have (u, v)p = 1, by Lemma 10.5, which agrees with the formula.
Case α = 1, β = 0: We need to show that (pu, v)p = (vp). Since (u−1, v)p = 1, we have

(pu, v)p = (pu, v)p(u
−1, v)p = (p, v)p, by Corollary 10.3.(iii). If v is a square then we have

(p, v)p = (p, 1)p = (1, p)p = 1 = (vp). If v is not a square then z2−px2−vy2 = 0 has no non-
trivial solutions modulo p, hence no primitive solutions. This implies (p, v)p = −1 = (vp).

Case α = 1, β = 1: We must show (pu, pv)p = (−1)
p−1
2

(
u
p

)(
v
p

)
. Applying Corol-

lary 10.3 we have

(pu, pv)p = (pu, pv)p(−pv, pv)p = (−p2uv, pv)p = (−uv, pv)p = (pv,−uv)p

Applying the formula in the case α = 1, β = 0 already proved, we have

(pv,−uv)p =

(
−uv
p

)
=

(
−1

p

)(
u

p

)(
v

p

)
= (−1)

p−1
2

(
u

p

)(
v

p

)
.



Lemma 10.8. Let u, v ∈ Z×2 . The equations z2 − ux2 − vy2 = 0 and z2 − 2ux2 − vy2 = 0
have primitive solutions over Z2 if and only if they have primitive solutions modulo 8.

Proof. Without loss of generality we can assume that u and v are odd integers, since every
square class in Z×2 /Z

×2
2 is represented by an odd integer (in fact one can assume u, v ∈

{±1,±5}) The necessity of having a primitive solution modulo 8 is clear. To prove sufficiency
we apply the strong form of Hensel’s lemma proved in Problem Set 4. In both cases, if we
have a non-trivial solution (x0, y0, z0) modulo 8 we can fix two of x0, y0, z0 to obtain a
quadratic polynomial f(w) over Z2 and w0 ∈ Z×2 that satisfies v2(f(w0)) = 3 > 2 =
2v2(f

′(w0)). In the case of the second equation, note that a primitive solution (x0, y0, z0)
modulo 8 must have y0 or z0 odd; if not, then z20 and vy20, and therefore 2ux20, are divisible
by 4, but this means x0 is also divisible by 2, which contradicts the primitivity of (x0, y0, z0).
Lifting w0 to a root of f(w) over Z2 yields a solution to the original equation.

Theorem 10.9. Write a, b ∈ Q×2 as a = 2αu and b = 2βv with α, β ∈ Z and u, v ∈ Z×2 .
Then

(a, b)2 = (−1)ε(u)ε(v)+αω(v)+βω(u),

where ε(u) and ω(u) denote the images in Z/2Z of (u− 1)/2 and (u2 − 1)/8, respectively.

Proof. Since (a, b)2 only depends on the square classes of a and b, It suffices to verify the
formula for a, b ∈ S, where S = {±1,±3,±2,±6} is a complete set of representatives for
Q×2 /Q

×2
2 . As in the proof of Theorem 10.7, we can use (pu, pv)2 = (pv,−uv)2 to reduce to

the case where one of a, b lies in Z×p . By Lemma 10.8, to compute (a, b)2 with one of a, b

in Z×2 , it suffices to check for primitive solutions to z2 − ax2 − by2 = 0 modulo 8, which
reduces the problem to a finite verification which performed by Sage worksheet.

We now note the following corollary to Theorems 10.4, 10.7, and 10.9.

Corollary 10.10. The Hilbert symbol (a, b)p is a nondegenerate bilinear map. This means
that for all a, b, c ∈ Q×p we have

(a, c)p(b, c)p = (ab, c) and (a, b)p(a, c)p = (a, bc)p,

and that for every non-square c we have (b, c)p = −1 for some b.

Proof. Both statements are clear for p = ∞ (there are only 2 square classes and 4 combi-

nations to check). For p odd, let c = pγw and fix ε = (−1)γ
p−1
2 . Then for a = pαu and

b = pβv, we have

(a, c)p(b, c)p = εα
(
u

p

)γ (w
p

)α
εβ
(
v

p

)γ (w
p

)β
= εα+β

(
uv

p

)γ (w
p

)α+β
= (ab, c)p.

To verify non-degeneracy, we note that if c is not square than either γ = 1 or (wp ) = −1. If

γ = 1 we can choose b = v with (vp) = −1, so that (b, c)p = (vp)γ = −1. If γ = 0, then ε = 1
and (wp ) = −1, so withb = p we have (b, c)p = (wp ) = −1.

https://hensel.mit.edu:8003/home/pub/3/


For p = 2, we have

(a, c)2(b, c)2 = (−1)ε(u)ε(w)+αω(w)+γω(u)(−1)ε(v)ε(w)+βω(w)+γω(v)

= (−1)(ε(u)+ε(v))ε(w)+(α+β)ω(w)+γ(ω(u)+ω(v))

= (−1)ε(uv)ε(w)+(α+β)ω(w)+γω(uv)

= (ab, c)2,

where we have used the fact that ε and ω are group homomorphisms from Z×2 to Z/2Z. To
see this, note that the image of ε−1(0) in (Z/4Z)× is {1}, a subgroup of index 2, and the
image of ω−1(0) in (Z/8Z)× is {±1}, which is again a subgroup of index 2.

We now verify non-degeneracy for p = 2. If c is not square then either γ = 1, or one
of ε(w) and ω(w) is nonzero. If γ = 1, then (5, c)2 = −1. If γ = 0 and ω(w) = 1, then
(2, c)2 = −1. If γ = 0 and ω(w) = 0, then we must have ε(w) = 1, so (−1, c)2 = −1.

We now prove Hilbert’s reciprocity law, which may be regarded as a generalization of
quadratic reciprocity.

Theorem 10.11. Let a, b ∈ Q×. Then (a, b)p = 1 for all but finitely many primes p and∏
p

(a, b)p = 1.

Proof. We can assume without loss of generality that a, b ∈ Z, since multiplying each of a
and b by the square of its denominator will not change (a, b)p for any p. The theorem holds
if either a or b is 1, and by the bilinearity of the Hilbert symbol, we can assume that

a, b ∈ {−1} ∪ {q ∈ Z>0 : q is prime}.

The first statement of the theorem is clear, since a, b ∈ Z×p for p < ∞ not equal to a or
b, and (u, v)p = 1 for all u, v ∈ Z×p when p is odd, by Lemma 10.5. To verify the product
formula, we consider 5 cases.

Case 1: a = b = −1. Then (−1,−1)∞ = (−1,−1)2 = −1 and (−1,−1)p = 1 for p odd.
Case 2: a = −1 and b is prime. If b = 2 then (1, 1) is a solution to −x2 + 2y2 = 1

over Qp for all p, thus
∏
p(−1, 2) = 1. If b is odd, then (−1, b)p = 1 for p 6∈ {2, b}, while

(−1, b)2 = (−1)ε(b) and (−1, b)b = (−1b ), both of which are equal to (−1)(b−1)/2.
Case 3: a and b are the same prime. Then by Corollary 10.3, (b, b)p = (−1, b)p for all

primes p, and we are in case 2.
Case 4: a = 2 and b is an odd prime. Then (2, b)p = 1 for all p 6∈ {2, b}, while

(2, b)2 = (−1)ω(b) and (2, b)b = (2p), both of which are equal to (−1)(b
2−1)/8.

Case 5: a and b are distinct odd primes. Then (a, b)p = 1 for all p 6∈ {2, a, b}, while

(a, b)p =


(−1)ε(a)ε(b) if p = 2,(
a
b

)
if p = b,(

b
a

)
if p = a.

Since ε(x) = (x− 1)/2 mod 2, we have∏
p

(a, b)p = (−1)
a−1
2

b−1
2

(a
b

)( b
a

)
= 1,

by quadratic reciprocity.
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11.1 Quadratic forms over Qp

The Hasse-Minkowski theorem reduces the problem of determining whether a quadratic form
f over Q represents 0 to the problem of determining whether f represents zero over Qp for
all p ≤ ∞. At first glance this might not seem like progress, since there are infinitely many p
to check, but in fact we only need to check p = 2, p =∞ and a finite set of odd primes.

Theorem 11.1. Let p be an odd prime and let f be a diagonal quadratic form of dimension
n > 2 with coefficients a1, . . . , an ∈ Z×p . Then f represents 0 over Qp.

Proof. The equation f(x1, . . . , xn) ≡ 0 mod p is a homogeneous equation of degree 2 in
n > 2 variables over Fp. It follows from the Chevalley-Warning theorem that it has a
non-trivial solution (y1, . . . , yn) over Fp ' Z/pZ. Assume without loss of generality that
y1 6= 0 and let g(z) be the univariate polynomial g(y) = f(y, y2, . . . , yn) over Zp. Then
g(y1) ≡ 0 mod p and g′(y1) = 2a1y1 6≡ 0 mod p, so by Hensel’s lemma there is a root z1 of
g(y) over Zp. We then have f(z1, y2, . . . , yn) = g(z1) = 0, so f represents 0 over Qp.

Corollary 11.2. Every quadratic form of dimension n > 2 over Q represents 0 over Qp

for all but finitely many primes p.

Proof. In diagonal form the coefficients a1, . . . , an lie in Z×p for all odd p - a1 · · · an.

For quadratic forms of dimension n ≤ 2, we note that a nondegenerate unary form never
represents 0, and the nondegenerate form ax2 + by2 represents 0 if and only if −ab is square
(this holds over any field). But when −ab is not square it may still be the case that ax2+by2

represents a given nonzero element t, and having a criterion for identifying such t will be
useful in our proof of the Hasse-Minkowski theorem.

Lemma 11.3. The nondegenerate quadratic form ax2 + by2 over Qp represents t ∈ Q∗p if
and only if (a, b)p = (t,−ab)p.

Proof. Since t 6= 0, the equation ax2 + by2 = t has a non-trivial solution in Qp if and only
if (a/t)x2 + (b/t)y2 = 1 has a solution, which is equivalent to (a/t, b/t)p = 1. We have

(a/t, b/t)p = (at, bt)p = (a, bt)p(t, bt)p = (a, b)p(a, t)p(t, bt) = (a, b)p(t, abt)p

= (a, b)p(t, abt)p(t,−t)p = (a, b)p(t,−ab)p,

where we have used that the Hilbert symbol is symmetric, bilinear, invariant on square
classes, and satisfies (x,−x)p = 1. Thus (a/t, b/t)p = 1 if and only if (a, b)p(t,−ab)p = 1,
which is equivalent to (a, b)p = (t,−ab)p since both are ±1.

Corollary 11.4. The nondegenerate form ax2 + by2 + cz2 over Qp represents 0 if and only
if (a, b)p = (−c,−ab)p

Proof. By the lemma, if suffices to show that ax2 + by2 + cz2 represents 0 if and only if
the binary form ax2 + by2 represents −c. The reverse implication is clear (set z = 1).
For the forward implication, if ax20 + by20 + cz20 = 0 then either z0 6= 0, in which case
a(x0/z

2
0) + b(y0/z0)

2 = −c or z0 = 0 in which case ax2 + by2 represents 0 and therefore
every element of Qp, including −c.



Corollary 11.5. A ternary quadratic form over Q that represents 0 over all but at most
one completion of Q represents 0 over every completion of Q.

Proof. The corollary is trivially true if the form is degenerate and otherwise it follows from
the product formula for Hilbert symbols and the corollary above.

11.2 Approximation

We now prove two approximation theorems that we will need to prove the Hasse-Minkowski
theorem for Q. These are quite general theorems that have many applications, but we will
state them in a particularly simple form that suffices for our purposes here. Before proving
them we first note/recall that Q is dense in Qp and Z is dense in Zp.

Theorem 11.6. Let p ≤ ∞ be any prime of Q. Under the metric d(x, y) = |x − y|p, the
set Q is dense in Qp and the set Z is dense in Zp.

Proof. We know that Q∞ = R is the completion of Q and we proved that Qp is (isomorphic
to) the completion of Q for p < ∞, and any field is dense in its completion (this follows
immediately from the definition). We note that the completion Z∞ = Z (any Cauchy
sequence of integers must be eventually constant), and for p <∞ the we can apply the fact
that Zp = {x ∈ Qp : |x|p ≤ 1} and Z = {x ∈ Q : |x|p ≤ 1}.

Theorem 11.7 (Weak approximation). Let S be a finite set of primes p ≤ ∞, and for each
p ∈ S let xp ∈ Qp be given. Then for every ε > 0 there exists x ∈ Q such that

|x− xp|p < ε

for all p ∈ S. Equivalently, the image of Q in
∏

p∈S Qp dense under the product topology.

Proof. If S has cardinality 1 we can apply Theorem 11.6, so we assume S contains at least 2
primes. For any particular prime p ∈ S, we claim that there is a yp ∈ Q such that |yp|p > 1
and |yp|q < 1 for q ∈ S − {p}. Indeed, let P be the product of the finite primes in S, and
for each p <∞ choose r ∈ Z>0 so that p−rP < 1. Then define

yp =

{
P if p =∞,
p−rP otherwise.

We now note that for any q ∈ S,

lim
n→∞

|ynp |q =

{
∞ if q = p,

0 if q 6= p.

It follows that for each q ∈ S

lim
n→∞

ynp
1 + ynp

=

{
1 with respect to | |q for q = p,

0 with respect to | |q for q 6= p,

since limn→∞ |1− ynp /(1 + ynp )|p = limn→∞ |1/(1 + ynp )|p = 0 and limn→∞ |ynp /(1 + ynp )|q = 0
for q 6= p. For each n ∈ Z>0 define

zn =
∑
p∈S

xpy
n
p

1 + ynp
.

Then limn→∞ zn = xp with respect to | |p for each p ∈ S. So for any ε > 0 there is an n for
which x = zn satisfies |x− xp|p < ε for all p ∈ S.



Theorem 11.8 (Strong approximation). Let S be a finite set of primes p < ∞, and for
each p ∈ S let xp ∈ Zp be given. Then for every ε > 0 there exists x ∈ Z such that

|x− xp|p < ε

for all p ∈ S. Equivalently, the image of Z in
∏

p∈S Zp is dense under the product topology.

Proof. Fix ε > 0. By Theorem 11.6, for each xp we can pick yp ∈ Z≥0 so that |yp−xp|p < ε.
Let n be a positive integer such that pn > yp for all p ∈ S. By the Chinese remainder
theorem, there exists x ∈ Z such that x ≡ yp mod pn for all p ∈ S, and for this x we have
|x− xp|p < ε for all p ∈ S.

Remark 11.9. In more general settings it is natural to consider the infinite product of all
the rings of p-adic integers

Ẑ =
∏
p<∞

Zp.

Recall that for infinite products, the product topology is defined using a basis of open sets
that consists of sequences (Up), where each Up is an open subset of Zp, and for all but

finitely many p we have Up = Zp. It follows from Theorem 11.8 that the image of Z in Ẑ is
dense.

There is another way to define Ẑ, which is to consider the inverse system of rings (Z/nZ),
where n ranges over all positive integers n and we have reduction maps from Z/mZ to Z/nZ
whenever n|m (note that we now have an infinite acyclic graph of maps, not just a linear
chain). The inverse limit

Ẑ = lim←−Z/nZ

is called the profinite completion of Z. One can show that these two definitions of Ẑ are
canonically isomorphic. So a more pithy statement of Theorem 11.8 is that Z is dense in
its profinite completion (this statement applies to profinite completions in general).

Remark 11.10. Note the difference between weak and strong approximation. With weak
approximation we obtain a rational number x that is p-adically close to xp for each p in a
finite set S, but we have no control on |x|p for p 6∈ S. With strong approximation we obtain
a rational number (in fact an integer) x that is p-adically close to xp for each p ∈ S and also
satisfies |x|p ≤ 1 for all p 6∈ S, except the prime p =∞; in order to apply the CRT we may
need to make |x|∞ very large. More generally, we could allow ∞ ∈ S if we grant ourselves
the freedom to make |x|p0 large for one prime p0 6∈ S; in this case x would be a rational
number, not an integer, but its denominator would be divisible by no primes other than p0,
so that x ∈ Zp for all p 6= p0. This is characteristic of strong approximation theorems, we
obtain an element whose absolute value is bounded at all but one prime.

The following lemma follows from the strong approximation theorem and Dirichlet’s
theorem on primes in arithmetic progressions: for any relative prime integers a and b there
are infinitely many primes congruent to a mod b.

Lemma 11.11. Let S be a finite set of primes p ≤ ∞, and for each p ∈ S let xp ∈ Q×p be
given. Then there exists an x ∈ Q such that

(i) x ∈ xpQ×2p for each p ∈ S.

(ii) |x|p = 1 for all but at most one finite prime p0 6∈ S.



Proof. Let S0 = S − {∞}, and define the rational number

y = ±
∏
p∈S0

pvp(xp),

where the sign of y is negative if ∞ ∈ S and x∞ < 0, and positive otherwise. Then
|y|p = |xp|p for all p ∈ S0, and it follows that for each p ∈ S0 we have y = upxp for some
up ∈ Z×p . By the strong approximation theorem there exists an integer z ≡ up mod pep , for
all p ∈ S0, where ep = 1 for odd p and ep = 3 for p = 2. It follows that z ∈ upQ×2p for all
p ∈ S0, since the square class of up depends only on its reduction mod pep .

The integers z and m =
∏

p∈S0
pep are relatively prime, so it follows from Dirichlet’s

theorem that there are infinitely many primes congruent to z mod m. Let p0 be the least
such prime. Then p0 ∈ zQ×2p for all p ∈ S0, and x = p0y satisfies both (i) and (ii).

11.3 Proof of the Hasse-Minkowski theorem

Before proving the Hasse-Minkowski theorem for Q we make one final remark. The definition
of the Hilbert symbol we gave in the last lecture makes sense over any field, in particular Q,
and the proofs of Lemma 10.2 and Corollary 10.3 still apply. In the proof below we use
(a, b) to denote the Hilbert symbol of a, b ∈ Q×.

Theorem 11.12 (Hasse-Minkowski). A quadratic form over Q represents 0 if and only if
it represents 0 over every completion of Q.

Proof. The forward implication is clear, we only need to prove the reverse implication. So
let f be a quadratic form over Q that represents 0 over every completion of Q. We may
assume without loss of generality that f is a diagonal form a1x

2
1 + · · · + anx

2
n, which we

may denote 〈a1, . . . , an〉. We write 〈a1, . . . , an〉p to denote the same form over Qp. If any
ai = 0, then f clearly represents 0 over Q (set xi = 1 and xj = 0 for i 6= j), so we assume
f is nondegenerate and proceed by induction on its dimension n.

Case n = 1: The theorem holds trivially (f cannot represent 0 over any Qp).
Case n = 2: The form 〈a, b〉p represents 0 if and only if −ab is square in Qp. Thus

vp(−ab) ≡ 0 mod 2 for all p < ∞ and −ab > 0. It follows that −ab is square in Q, and
therefore 〈a, b〉 represents 0.

Case n = 3: Let f(x, y, z) = z2 − ax2 − by2, where a and b are nonzero square-free
integers with |a| ≤ |b|. We know (a, b)p = 1 for all p ≤ ∞ and wish to show (a, b) = 1. We
proceed by induction on m = |a| + |b|. The base case m = 2 has a = ±1 and b = ±1, in
which case (a, b)∞ = 1 implies that either a or b is 1 and therefore (a, b) = 1.

We now suppose m ≥ 3, and that the result has been proven for all smaller m. For each
prime p|b there is a primitive solution (x0, y0, z0) ∈ Z3

p to z2−ax2− by2 = 0. We must have
p|(z20−ax20), since p|b, but we cannot have p|x0 since then we would have p|z0, contradicting
primitivity. So x0 ∈ Z×p and a = (z0/x0)

2 is a square modulo p. This holds for every prime
p|b, and b is square-free, so a is a square modulo b.

It follows that a + bb′ = t2 for some t, b′ ∈ Z with t ≤ |b/2|. This implies (a, bb′) = 1,
since bb′ = t2 − a is the norm of t+

√
a in Q(

√
a). Therefore

(a, b) = (a, b)(a, bb′) = (a, b2b′) = (a, b′).

We also have (a, bb′)p = 1, and therefore (a, b′)p = (a, b)p = 1, for all p ≤ ∞. But

|b′| =
∣∣∣∣ t2 − ab

∣∣∣∣ ≤ ∣∣∣∣ t2b
∣∣∣∣+
∣∣∣a
b

∣∣∣ ≤ |b|
4

+ 1 < |b|,



so |a|+ |b′| < m and the inductive hypothesis implies (a, b′) = 1. Thus (a, b) = 1, as desired.
Case n = 4: Let f = 〈a1, a2, a3, a4〉 and let S consist of the primes p|2a1a2a3a4 and ∞.

Then ai ∈ Z×p for all p 6∈ S. For each p ∈ S there exists tp ∈ Q×p such that 〈a1, a2〉p
represents tp and 〈a3, a4〉p represents −tp (we can assume tp 6= 0: if 0 is represented, by
both forms, so is every element of Qp). By Lemma 11.11, there is a rational number t and
a prime p0 6∈ S such that t ∈ tpQ×2p for all p ∈ S and |t|p = 1 for all p 6∈ S ∪ {p0}.

The forms 〈a1, a2,−t〉p and 〈a3, a4, t〉p represent 0 for all p 6∈ S ∪{p0} because all such p
are odd, and ai,±t ∈ Z×p , so (a1, a2)p = 1 = (t,−a1a2)p and (a3, a4)p = 1 = (−t,−a3a4)p,
and we may apply Corollary 11.4. Since t ∈ tpQ×2p for all p ∈ S, the forms 〈a1, a2,−t〉p and
〈a3, a4, t〉p also represent 0 for all p ∈ S. Thus 〈a1, a2,−t〉p and 〈a3, a4, t〉p represent 0 for
all p 6= p0, and by Corollary 11.5, also for p = p0. By the inductive hypothesis 〈a1, a2,−t〉
and 〈a3, a4, t〉 both represent 0, therefore 〈a1, a2, a3, a4〉 represents 0.

Case n ≥ 5: Let f = 〈a1, . . . , an〉. Let S be the set of primes for which 〈a3, . . . , an〉p
does not represent 0. The set S is finite, by Corollary 11.2. If S is empty then 〈a3, . . . , an〉,
and therefore f , represents 0, by the inductive hypothesis, so we assume S is not empty.
For each p ∈ S pick tp ∈ Q×p represented by 〈a1, a2〉, say a1x

2
p + a2y

2
p = tp, such that

〈a3, . . . , an〉p represents −tp (such a tp exists since f represents 0 over Qp and, as above, we
can always pick tp 6= 0).

By the weak approximation theorem there exists x, y ∈ Q that are simultaneously close
enough to all the xp, yp ∈ Qp so that t = a1x

2 + a2y
2 is close enough to all the tp to

guarantee that t ∈ tpQ×2p for all p ∈ S (for p <∞ the square class only depends on at most
the first three nonzero p-adic digits, and over R = Q∞ we can ensure that x and y have the
same signs as x∞ and y∞).1 It follows that 〈t, a3, . . . , an〉p represents 0 for all p ∈ S, and
since 〈a3, . . . , an〉p represents 0 for all p 6∈ S, so does 〈t, a3, . . . , an〉p. Thus 〈t, a3, . . . , an〉p
represents 0 for all p, and by the inductive hypothesis, 〈t, a3, . . . , an〉 represents 0. Therefore
〈a3, . . . , an〉 represents −t = −a1x2 − a2y2, hence 〈a1, . . . , an〉 represents 0.

1Equivalently, the set of squares Q×2
p is an open subset of Q×

p , hence so is every square class tpQ×2
p .
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12.1 Field extensions

Before beginning our introduction to algebraic geometry we recall some standard facts about
field extensions. Most of these should be familiar to you and can be found in any standard
introductory algebra text, such as [1, 2]. We will occasionally need to results in slightly
greater generality than you may have seen before, and here we may reference [3, 4].1

We start in the general setting of an arbitrary field extension L/k with no restrictions
on k or L. The fields k and L necessarily have the same prime field (the subfield of k
generated by the multiplicative identity), and therefore the same characteristic. The degree
of the extension L/k, denoted [L : k], is the dimension of L as a k-vector space, a not
necessarily finite cardinal number. If have a tower of fields k ⊆ L ⊆M , then

[M : k] = [M : L][L : k],

where the RHS is a product of cardinals.2 When [L : k] is finite we say that L/k is a finite
extension.

An element α ∈ L is said to be algebraic over k if it is the root of a polynomial in k[x],
and otherwise it is transendental over k. The extension L/k is algebraic if every element of L
is algebraic over k, and otherwise it is transcendental. If M/L and L/k are both algebraic
extensions, so is M/k. A necessary and sufficient condition for L/k to be algebraic is that L
be equal to the union of all finite extensions of k contained in L; in particular, every finite
extension is algebraic.

The subset of L consisting of the elements that are algebraic over k forms a field called
the algebraic closure of k in L. A field k is algebraically closed if every every non-constant
polynomial in k[x] has a root in k; equivalently, k has no non-trivial algebraic extensions.
For every field k there exists an extension k̄/k with k̄ algebraically closed; such a k̄ is called
an algebraic closure of k, and all such k̄ are isomorphic (but this isomorphism is not unique
in general). Any algebraic extension L/k can be embedded into any algebraic closure of k,
since every algebraic closure of L is also an algebraic closure of k.

Remark 12.1. When working with algebraic extensions of k it is convenient to view them
all as subfields of a some fixed algebraic closure k̄ (there is in general no canonical choice).
The key point is that we can always (not necessarily uniquely) embed any algebraic extension
of L/k in our chosen k̄, and if we have another extension M/L, our embedding of L into k̄
can always be extended to an embedding of M into k̄.

A set S ⊆ L is said to be algebraically independent (over k) if for every finite subset
{s1, . . . , sn} of S and every nonzero polynomial f ∈ k[x1, . . . , xn] we have

f(s1, . . . , sn) 6= 0.

1With the exception of [1], which you should be familiar to you from 18.701/18.702, these references are
all available online through the MIT library system (just click the title links in the references section at the
end of these notes). I encourage you to consult them for further details on anything that is unfamiliar to
you. One note of caution: when jumping into the middle of a textbook (or, especially, the results of a web
search), be wary of assumptions that may have been stated much earlier (e.g. at the beginning of a chapter).

2Recall that a cardinal number is an equivalence class of equipotent sets (sets that can be put in bijection).
The product of n1 = #S1 and n2 = #S2 is n1n2 = #(S1×S2) and the sum is the cardinality of the disjoint
union: n1 + n2 = #(S1 t S2). But we shall be primarily interested in finite cardinals (natural numbers).



Note that this means the empty set is algebraically independent (just as the empty set
is linearly independent in any vector space). An algebraically independent set S ⊆ L for
which L/k(S) is algebraic is called a transcendence basis for the extension L/k.

Theorem 12.2. Every transcendence basis for L/k has the same cardinality.

Proof. We will only prove this in the case that L/k has a finite transcendence basis (which
includes all extensions of interest to us); see [3, Theorem 7.9] for the general case. Let
S = {s1, . . . , sm} be a smallest transcendence basis and let T = {t1, . . . , tn} be any other
transcendence basis, with n ≥ m. The set {t1, s1, . . . , sm} must then algebraically depen-
dent, since t1 ∈ L is algebraic over k(S), and since t1 is transcendental over k, some si, say s1,
must be algebraic over k(t1, s2, . . . , sm). It follows that L is algebraic over k(t1, s2, . . . , sm),
and the set T1 = {t1, s2, . . . , sm} must be algebraically independent, otherwise it would
contain a transcendence basis for L/k smaller than S. So T1 is a transcendence basis for
L/k of cardinality m that contains t1.

Continuing in this fashion, for i = 2, . . . ,m we can iteratively construct transcendence
bases Ti of cardinality m that contain {t1, . . . , ti}, until Tm ⊆ T is a transcendence basis of
cardinality m; but then we must have Tm = T , so n = m.

Definition 12.3. The transcendence degree of a field extension L/K is the cardinality of
any (hence every) transcendence basis for L/k.

Unlike extension degrees, which multiply in towers, transcendence degrees add in towers:
for any fields k ⊆ L ⊆M , the transcendence degree of M/k is the sum (as cardinals) of the
transcendence degrees of M/L and L/k.

We say that the extension L/k is purely transcendental if L = k(S) for some tran-
scendence basis S for L/k. All purely transcendental extensions of k with the same tran-
scendence degree are isomorphic. Every field extension L/k can be viewed as an algebraic
extension of a purely transcendental extension: if S is a transcendence basis of L/k then
L/k(S) is an algebraic extension of the purely transcendental extension k(S)/k.

Remark 12.4. It is not the case that every field extension is a purely transcendental
extension of an algebraic extension. Indeed, there are already plenty of counterexamples
with transcendence degree 1, as we shall soon see.

The field extension L/k is said to be simple if L = k(x) for some x ∈ L. A purely
transcendental extension of transcendence degree 1 is obviously simple, but, less trivially,
so is any finite separable extension (see below for the definition of separable); this is known
as the primitive element theorem.

Remark 12.5. The notation k(x) can be slightly confusing. If x ∈ L is transcendental
over k then k(x) is isomorphic to the field of rational functions over k, in which case we
may as well regard x as a variable. But if x ∈ L is algebraic over k, then every rational
expression r(x) with nonzero denominator can be simplified to a polynomial in x of degree
less than n = [k(x) : k] by reducing modulo the minimal polynomial f of x (note that
we can invert nonzero denominators modulo f); indeed, this follows from the fact that
{1, x, . . . , xn−1} is a basis for the n-dimensional k-vector space k(x).



12.1.1 Algebraic extensions

We now assume that L/k is algebraic and fix k̄ so that L ∈ k̄. The extension L/k is normal
if it satisfies either of the equivalent conditions:

• every irreducible polynomial in k[x] with a root in L splits completely in L;

• σ(L) = L for all σ ∈ Aut(k/k) (every automorphism of k that fixes k also fixes L).3

Even if L/k is not normal, there is always an algebraic extension M/L for which M/k is
normal. The minimal such extension is called the normal closure of L/k; it exists because
intersections of normal extensions are normal. It is not true in general that if L/k and M/L
are normal extensions then so is M/k, but if k ⊆ L ⊆ M is a tower of fields with M/k
normal, then M/L is normal (but L/k need not be).

A polynomial f ∈ k[x] is separable if any of the following equivalent conditions hold:

• the factors of f in k̄[x] are all distinct;

• f and f ′ have no common root in k̄;

• gcd(f, f ′) = 1 in k[x].

An element α ∈ L is separable over k if any of the following equivalent conditions hold:

• α is a root of a separable polynomial f ∈ k[x];

• the minimal polynomial of α is separable;

• char(k) = 0 or char(k) = p > 0 and the minimal polynomial of α is not of the form
g(xp) for some g ∈ k[x].

The elements of L that are separable over k form a field called the separable closure of k
in L. The separable closure of k in its algebraic closure k̄ is denoted ksep and is simply
called the separable closure of k. If k ⊆ L ⊆ M then M/k is separable if and only if both
M/L and L/k are separable.

A field k is said to be perfect if any of the following equivalent conditions hold:

• char(k) = 0 or char(k) = p > 0 and k = {xp : x ∈ k} (k is fixed by Frobenius);

• every finite extension of k is separable over k;

• every algebraic extension of k is separable over k.

Note that finite fields and all fields of characteristic 0 are perfect.

Example 12.6. The rational function field k = Fp(t) is not perfect. If we consider the finite
extension L = k(t1/p) obtained by adjoining a pth root of t to k, the minimal polynomial
of t1/p is xp − t, which is irreducible over k but not separable (its derivative is 0).

An algebraic extension L/k isGalois if it is both normal and separable, and in this case
we call Gal(L/k) = Aut(L/k) the Galois group of L/k. The extension ksep/k is always
normal: if an irreducible polynomial f ∈ k[x] has a root α in ksep, then (up to scalars) f
is the minimal polynomial of α over k, hence separable over k, so all its roots lie in ksep.
Thus ksep/k is a Galois extension and its Galois group

Gk = Gal(ksep/k)

3Some authors write Gal(L/k) for Aut(L/k), others only use Gal(L/k) when L/k is known to be Galois;
we will use the later convention.



is the absolute Galois group of k (we could also define Gk as Aut(k̄/k), the restriction map
from Aut(k̄/k) to Gal(ksep/k) is always an isomorphism).

The splitting field of a polynomial f ∈ k[x] is the extension of k obtained by adjoining
all the roots of f (which lie in k̄). Every splitting field is normal, and every finite normal
extension of k is the splitting field of some polynomial over k; when k is a perfect field we
can go further and say that L/k is a finite Galois extension if and only if it is the splitting
field of some polynomial over k.

For finite Galois extensions M/k we always have #Gal(M/k) = [M : k], and the funda-
mental theorem of Galois theory gives an inclusion-reversing bijection between subgroups
H ⊆ Gal(M/k) and intermediate fields k ⊆ L ⊆M in which L = MH and H = Gal(M/L)
(note that M/L is necessarily Galois). Beware that none of the statements in this paragraph
necessarily applies to infinite Galois extensions, some modifications are required (this will
be explored further on the next problem set).

12.2 Affine space

Let k be a perfect field and fix an algbebraic closure k̄.

Definition 12.7. n-dimensional affine space over k is the set

An
k = {(x1, . . . , xn) ∈ k̄n},

equivalently An
k is the vector space k̄n regarded as a set. When k is clear from context we

may just write An. If k ⊆ L ⊆ k̄, the set of L-rational points (or just L-points) in An is

An(L) = {(x1, . . . , xn) ∈ Ln} = An(k̄)GL ,

where An(k̄)GL denotes the set of points in An(k̄) fixed by GL = Gal(Lsep/L) = Gal(k̄/L).
In particular, An(k) = An(k̄)Gk .

Definition 12.8. If S is a set of polynomials in A = k̄[x1, . . . , xn], the set of points

ZS = {P ∈ An : f(P ) = 0 for all f ∈ S},

is called an (affine) algebraic set. If k ⊆ L ⊆ k̄, the set of L-rational points in ZS is

ZS(L) = ZS ∩ An(L).

When S is a singleton {f} we may write Zf in place of Z{f}.

Note that if I is the A-ideal generated by S, then ZI = ZS , since f(P ) = g(P ) = 0
implies (f + g)(P ) = 0 and f(P ) = 0 implies (fg)(P ) = 0. Thus we can always replace S
by the ideal (S) that it generates, or by any set of generators for (S).

Example 12.9. We have Z∅ = Z(0) = An and Z{1} = Z(1) = ∅.

For any S, T ⊆ A we have

S ⊆ T =⇒ ZT ⊆ ZS ,

but the converse need not hold, even if S and T are ideals: consider T = (x1) and S = (x21).
We now recall the notion of a Noetherian ring and the Hilbert basis theorem.



Definition 12.10. A commutative ring R is noetherian if every R-ideal is finitely gener-
ated.4 Equivalently, every infinite ascending chain of R-ideals

I1 ⊆ I2 ⊆ · · ·

eventually stabilizes, that is, In+1 = In for all sufficiently large n.

Theorem 12.11 (Hilbert basis theorem). If R is a noetherian ring, then so is R[x].

Proof. See [1, Theorem 14.6.7] or [2, Theorem 8.32].

Note that we can apply the Hilbert basis theorem repeatedly: if R is noetherian then
so is R[x1], and so is (R[x1])[x2] = R[x1, x2], . . . , and so is R[x1, . . . , xn]. Like every field,
k̄ is a noetherian ring (it has just two ideals, so it certainly satisfies the ascending chain
condition). Thus A = k̄[x1, . . . , xn] is noetherian, so every A-ideal is finitely generated. It
follows that every algebraic set can be written in the form ZS with S finite.

Definition 12.12. For an algebraic set Z ⊆ An, the ideal of Z is the set

I(Z) = {f ∈ A : f(P ) = 0 for all P ∈ Z},

where A is the polynomial ring k̄[x1, . . . , xn].

The set I(Z) is clearly an A-ideal (it is closed under addition and under multiplication
by elements of A), and we note that

Y ⊆ Z =⇒ I(Z) ⊆ I(Y )

and
I(Y ∪ Z) = I(Y ) ∩ I(Z)

(both statements are immediate from the definition).
We have Z = ZI(Z) for every algebraic set Z, but it is not true that I = I(ZI) for every

ideal I. As a counterexample, consider I = (f2) for some polynomial f ∈ A. In this case

I(Z(f2)) = (f) 6= (f2).

In order to avoid this situation, we want to restrict our attention to radical ideals.

Definition 12.13. Let R be a commutative ring. For any R-ideal I we define
√
I = {x ∈ R : xr ∈ I for some integer r > 0},

and say that I is a radical ideal if I =
√
I.

Lemma 12.14. For any ideal I in a commutative ring R, the set
√
I is an ideal.

Proof. Let x ∈
√
I with xr ∈ I. For any y ∈ R we have yrxr = (xy)r ∈ I, so xy ∈

√
I. If

y ∈
√
I with ys ∈ I, then every term in the sum

(x+ y)r+s =
∑
i

(
r + s

i

)
xiyr+s−i

is a multiple of either xr ∈ I or ys ∈ I, hence lies in I, so (x+y)r+s ∈ I and (x+y) ∈
√
I.

4The term “noetherian” refers to the mathematician Emmy Noether. The word noetherian is used so
commonly in algebraic geometry (and elsewhere) that it is typically no longer capitalized (like abelian).



Theorem 12.15 (Hilbert’s Nullstellensatz ). For every ideal I ⊆ k̄[x1, . . . , xn] we have

I(ZI) =
√
I.

Proof. See [3, Theorem 7.1].

Nullstellensatz literally means “zero locus theorem.” The theorem above is the strong
of the Nullstellensatz ; it implies the weak Nullstellensatz :

Theorem 12.16 (weak Nullstellensatz ). For any proper ideal I ⊆ k̄[x1, . . . , xn] the variety
ZI is nonempty.

Proof. Suppose I is an ideal for which ZI is the empty set. Then I(ZI) = (1), and by the
strong Nullstellensatz,

√
I = (1). But then 1r = 1 ∈ I, so I is not proper.

Note the importance of working over k̄. It is easy to find proper ideals I for which
ZI(k) = ∅ when k is not algebraically closed; consider Z(x2+y2+1)(Q) in A2. A useful
corollary of the weak Nullstellensatz is the following.

Corollary 12.17. The maximal ideals of the ring k̄[x1, . . . , xn] are all of the form

mP = (x1 − P1, . . . , xn − Pn)

for some point P = (P1, . . . , Pn) in An(k̄).

Proof. The evaluation map that sends f ∈ k̄[x1, . . . , xn] to f(P ) ∈ k̄ is a surjective ring
homomorphism with kernel mP . Thus k̄[x1, . . . , xn]/mP ' k̄ is a field, hence mP is a
maximal ideal. If m is any maximal ideal in k̄[x1, . . . , xn], then it is a proper ideal, and by
the weak Nullstellensatz the algebraic set Zm is nonempty and contains a point P ∈ An.
So mP ⊆ I(Zm), but also m ⊆ I(Zm). The ideal I(Zm) is a proper ideal (since Zm is
nonempty) and the ideals m and mP are both maximal, so m = I(Zm) = mP .

We also have the following corollary of the strong Nullstellensatz.

Corollary 12.18. There is a one-to-one inclusion-reversing correspondence between radical
ideals I ⊆ k̄[x1, . . . , xn] and algebraic sets Z ⊆ An(k̄) in which I = I(Z) and Z = ZI .

Remark 12.19. It is hard to overstate the importance of Corollary 12.18; it is the basic
fact that underlies nearly all of algebraic geometry. It tells us that the study of algebraic
sets (geometric objects) is the same thing as the study of radical ideals (algebraic objects).
It also suggests ways in which we might generalize our notion of an algebraic set: there
is no reason to restrict ourselves to radical ideals in the ring k̄[x1, . . . , xn], there are many
other rings we might consider. This approach eventually leads to the much more general
notion of a scheme, but for our first foray into algebraic geometry we will stick to algebraic
sets (in particular, varieties, which we will define momentarily).

Definition 12.20. A algebraic set is irreducible if it is nonempty and not the union of two
smaller algebraic sets.

Theorem 12.21. An algebraic set is irreducible if and only if its ideal is prime.



Proof. (⇒) Let Y be an irreducible algebraic set and suppose fg ∈ I(Y ) for some f, g ∈ A.
We will show that either f ∈ I(Y ) or g ∈ I(Y ) (and therefore I(Y ) is prime).

Y ⊆ Zfg = Zf ∪ Zg

= (Y ∩ Zf ) ∪ (Y ∩ Zg),

and since Y is irreducible we must have either Y = (Y ∩ Zf ) = Zf or Y = (Y ∩ Zg) = Zg),
hence either f ∈ I(Y ) or g ∈ I(Y ). Therefore I(Y ) is a prime ideal.

(⇐) Now suppose I(Y ) is prime and that Y = Y1∪Y2. We will show that either Y = Y1
or Y = Y2. This will show that Y is irreducible, since Y must be nonempty (I(Y ) 6= A
because I(Y ) is prime). We have

I(Y ) = I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2) ⊇ I(Y1)I(Y2),

and therefore I(Y ) divides/contains either I(Y1) or I(Y2), since I(Y ) is a prime ideal, but
it is also contained in both I(Y1) and I(Y2), so either I(Y ) = I(Y1) or I(Y ) = I(Y2). Thus
either Y = Y1 or Y = Y2, since algebraic sets with the same ideal must be equal.
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As before, k is a perfect field, k̄ is a fixed algebraic closure of k, and An = An(k̄) is
n-dimensional affine space.

13.1 Affine varieties

Definition 13.1. An algebraic set Z ∈ An is said to be defined over k if its ideal is
generated by polynomials in k[x1, . . . , kn], that is, I(Z) is equal to the ideal generated by
I(Z) ∩ k[x1, . . . , xn] in k̄[x1, . . . , kn]. We write Z/k to indicate that Z is an algebraic set
that is defined over k and define the ideal

I(Z/k) = I(Z) ∩ k[x1, . . . , xn].

When Z is defined over k the action of the absolute Galois group Gk on An induces an
action on Z, since for any σ ∈ Gk, any f ∈ k[x1, . . . , xn], and any P ∈ An we have

f(P σ) = f(P )σ.

In this case we have Z(k) = {P ∈ Z : P σ = P for all σ ∈ Gk} = ZGk .

Definition 13.2. Let Z be an algebraic set defined over k. The affine coordinate ring of
Z/k is the ring

k[Z] =
k[x1, . . . , xn]

I(Z/k)
.

We similarly define

k̄[Z] =
k̄[x1, . . . , xn]

I(Z)
.

The coordinate ring k[Z] may have zero divisors; it is an integral domain if and only if
I(Z/k) is a prime ideal. Even if k[Z] has no zero divisors, k̄[Z] may still have zero divisors
(the fact that I(Z/k) is a prime ideal does not guarantee that I(Z) is a prime ideal; the
principal ideal (x2 + 1) is prime in Q but not in Q, for example). We want k[Z] to be an
integral domain so that we can work with its fraction field. Recall from last lecture that
I(Z) is a prime ideal if and only if Z is irreducible. This motivates the following definition.

Definition 13.3. An affine variety V is an irreducible algebraic set in An.1

An algebraic set Z is a variety if and only if I(Z) is a prime ideal; the one-to-one corre-
spondence between algebraic sets and radical ideals restricts to a one-to-one correspondence
between varieties and prime ideals (note that every prime ideal is necessarily a radical ideal).
The set An is a variety since I(An) is the zero ideal, which is prime in the ring k̄[x1, . . . , kn]
because it is an integral domain (the zero ideal is prime in any integral domain).

Definition 13.4. Let V/k be an affine variety defined over k. The function field k(V ) of V
is the fraction field of the coordinate ring k[V ].

We similarly define the function field of V over any extension of k on which V is defined.
Every variety is defined over k̄, so we can always refer to the function field k̄(V ).

1Not all authors require varieties to be irreducible (but many do).



13.1.1 Dimension

Definition 13.5. The dimension of an affine variety V is the transcendence degree of the
field extension k̄(V )/k̄.

Lemma 13.6. The dimension of An is n, and the dimension of any point P ∈ An is 0.

Proof. We have k̄[An] = k̄[x1, . . . , xn]/(0) = k̄[x1, . . . , xn], so k̄(An) = k̄(x1, . . . , xn) is a
purely transcendental extension of k̄ with transcendence degree n. For the point P , the
ideal I(P ) = mP is maximal, so the coordinate ring k̄[P ] = k̄[x1, . . . , xn]/mP is a field
isomorphic to k̄, as is k̄(P ), and the transcendence degree of k̄/k̄ is obviously 0.

Let us note an alternative definition of dimension using the Krull dimension of a ring.

Definition 13.7. The Krull dimension of a commutative ring R is the supremum of the
set of integers d for which there exists a chain of distinct prime R-ideals

p0 ( p1 ( · · · ( pd.

The Krull dimension of a ring need not be finite, even when the ring is noetherian,
but the Krull dimension of k̄[x1, . . . , xn] is finite, equal to n, and this bounds the Krull
dimension of the coordinate ring of any variety V ⊆ An. The following theorem implies
that dimension of a V is equal to the Krull dimension of k̄[V ].

Theorem 13.8. Let k be a field and let R be an integral domain finitely generated as a
k-algebra. The Krull dimension of R is the transcendence degree of its fraction field over k.

Proof. See [1, Theorem 7.22].

Now consider a chain of distinct prime ideals in k̄[V ] of length d equal to the Krull
dimension of k̄[V ].

p0 ( p1 ( · · · ( pd.

Since k̄[V ] is an integral domain, the zero ideal is prime, so p0 = (0) (otherwise the chain
would not be maximal). There is a one-to-one correspondence between ideals of the quotient
ring k̄[V ] = k̄[x1, . . . , xn] and ideals of k̄[x1, . . . , xn] that contain I(V ), and this correspon-
dence preserves prime ideals (this follows from the third ring isomorphism theorem). Thus
we have a chain of distinct prime ideals in k̄[x1, . . . , xn]:

I(V ) = I0 ( I1 ( · · · ( Id,

This corresponds to a chain of distinct varieties (with inclusions reversed):

Vd ( V1 ( · · · ( V0 = V.

Conversely, we could have started with a chain of distinct varieties V and obtained a chain of
distinct prime ideals in k̄[V ]. This one-to-one correspondence yields an alternative definition
of the dimension of V .

Definition 13.9. The geometric dimension of a variety V is the largest integer d for which
there exists a chain

V0 ( · · · ( Vd = V

of distinct varieties contained in V .

The discussion above shows that this agrees with our earlier definition. This notion of
dimension also works for algebraic sets: the dimension of an algebraic set Z is the largest
integer d for which there exists a chain of distinct varieties (irreducible algebraic sets)
contained in Z.



13.1.2 Singular points

Definition 13.10. Let V ⊆ An be a variety, and let f1, . . . , fm ∈ k̄[x1, . . . , xn] be a set of
generators for I(V ). A point P ∈ V is a nonsingular (or smooth) if the m × n Jacobian
matrix M(P ) with entries

Mij(P ) =
∂fi
∂xj

(P )

has rank n− dimV ; otherwise P is a singular point of V . If V has no singular points than
we say that V is smooth.

A useful fact that we will not prove is that if one can show that the rank of M(P ) is
equal to n− d for every point P ∈ An, then V is a smooth variety of dimension d.

13.2 Projective space

Definition 13.11. n-dimensional projective space Pn over k is the set of all points in
An+1 − {0} modulo the equivalence relation

(a0, . . . , an) ∼ (λa0, . . . , λan)

for all λ ∈ k̄×. We use the ratio notation (a0 : . . . : an) to denote the equivalence class of
(a0, . . . , an), and call it a projective point or a point in Pn. The set of k-rational points in
Pn is

Pn(k) = {(a0 : . . . : an) ∈ Pn : a0, . . . , an ∈ k}

(and similarly for any extension of k in k̄).

Remark 13.12. Note that (a0 : . . . : an) ∈ Pn(L) does not necessarily imply that all ai lie
in L, it simply means that there exists some λ ∈ k̄× for which all λai lie in L. However we
do have ai/aj ∈ L for all 0 ≤ i, j ≤ n.

The absolute Galois group Gk acts on Pn via

(a0 : . . . : an)σ = (aσ0 : . . . : aσn).

This action is well defined, since (λP )σ = λσP σ ∼ P σ for any λ ∈ k̄× and P ∈ An+1 −{0}.
We then have

Pn(k) = (Pn)Gk .

13.3 Homogeneous polynomials

Definition 13.13. A polynomial f ∈ k̄[x0, . . . , xn] is homogenous of degree d if

f(λx0, . . . , λxn) = λdf(x0, . . . , xn)

for all λ ∈ k̄. Equivalently, every monomial in f has total degree d. We say that f is
homogeneous if it is homogeneous of some degree.

Fix an integer i ∈ [0, n]. Given any polynomial f ∈ k̄[x0, . . . , xi−1, xi+1, . . . , xn] in n
variables, let d be the total degree of f and define the homegenization of f (with respect
to xi) to be the polynomial

F (x0, . . . , xn) = xdi f

(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.



Conversely, given any homogenous polynomial F ∈ k̄[x0, . . . , xn], the polynomial

f(x0, . . . , xi−1, xi+1, . . .) = f(x0, . . . , xi−1, 1, xi+1, . . . , xn)

is the dehomegenization of F (with respect to xi).
Let P = (a0 : . . . : an) be a point in Pn and let and f be a homogeneous polynomial in

k̄[x0, . . . , xn]. The value f(a0, . . . , an) will depend, in general, on our choice of representative
(a0, . . . , an) for P . However,

f(a0, . . . , an) = 0 ⇐⇒ f(λa0, . . . , λan) = 0 for all λ ∈ k̄×.

Thus it makes sense to write f(P ) = 0 (or f(P ) 6= 0), and the zero locus of a homogeneous
polynomial is a well-defined subset of Pn.

13.3.1 Affine covering of projective space

For 0 ≤ i ≤ n, the zero locus of the homogeneous polynomial xi is the hyperplane

Hi = {(a0 : . . . : ai−1 : 0 : ai+1 : . . . : an) ∈ Pn},

which corresponds to a copy of Pn−1 embedded in Pn.

Definition 13.14. The complement of Hi in Pn is the affine patch (or affine chart)

Ui = {(a0 : . . . : ai−1 : 1 : ai+1 : . . . : an) ∈ Pn},

which corresponds to a copy of An embedded in Pn (note that fixing ai = 1 fixes a choices
of representative for the projective point (a0 : . . . : ai−1 : 1 : ai+1 : . . . : an)).

If we pick a hyperplane, say H0, we can partition Pn as

Pn = U0 tH0 ' An t Pn−1.

We can now apply the same procedure to H0 ' Pn−1, and repeating this yields

Pn ' An t An−1 t · · · t A1 t P0,

where the final P0 corresponds a single projective point in Pn.
Alternatively, we can view Pn as the union of n + 1 (overlapping) affine patches, each

corresponding to a copy of An embedded in Pn. Note that every projective point P lies in
at least one affine patch.

Remark 13.15. Just as a manifold is locally defined in terms of an atlas of overlapping
charts (each of which maps the neighborhood of a point to an open set in Euclidean space),
we can view Pn as being locally defined in terms of its overlapping affine patches, viewing
each as mapping a neighborhood of Pn to An (this viewpoint can be made quite rigorous,
but we will not do so here).



13.4 Projective varieties

For any set S of polynomials in k̄[x0, . . . , xn] we define the (projective) algebraic set

ZS = {P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ S}.

Definition 13.16. A homogeneous ideal in k̄[x0, . . . , xn] is an ideal that is generated by a
set of homogeneous polynomials.

Note that not every polynomial in a homogeneous ideal I is homogeneous (the sum
of homogeneous polynomials of different degrees is not homogeneous), but this has no
impact on the algebraic set ZI , since our definition of ZI ignores elements of I that are not
homogeneous.

Definition 13.17. Let Z be an algebraic set in Pn, the (homogeneous) ideal of Z is the
ideal I(Z) generated by all the homogeneous polynomials in k̄[x0, . . . , xn] that vanish at
every point in Z.

We say that Z is defined over k if its ideal can be generated by homogeneous polynomials
in k[x0, . . . , xn], and write Z/k to indicate this. If Z is defined over k the set of k-rational
points on Z is

Z(k) = Z ∩ Pn(k) = ZGk ,

and similarly for any extension of k in k̄.
As with affine varieties, we say that an algebraic set in Pn is irreducible if it is nonempty

and not the union of two smaller algebraic sets in Pn.

Definition 13.18. A (projective) variety is an irreducible algebraic set in Pn.

As you will show on the problem set, an algebraic set Z ⊆ Pn is irreducible if and only
if I(Z) is prime. One can then define the coordinate ring k[V ] and function field k(V ) of
a projective variety exactly as in the affine case. Here we take a different approach using
affine patches, which yields the same result.

Definition 13.19. Let V be a projective variety with homogeneous ideal I = (f1, . . . , fm).
Let Ii be the ideal generated by the dehomegenizations of f1, . . . , fm at xi. Then Ii is a
prime ideal (since I is) and the ith affine part of V is the affine variety Vi = V ∩ Ui whose
ideal is Ii. We can then write V =

⋃
i Vi as the union of its affine parts.

Definition 13.20. The dimension of a projective variety V is the maximum of the dimen-
sions of its affine parts, and V is smooth if and only if all its affine parts are.

Finally, we define the coordinate ring k[V ] of a projective variety V/k to be the coor-
dinate ring of any of its nonempty affine parts (we will prove below that it doesn’t matter
which one we pick), and the function field k(V ) of V is the fraction field of its coordinate
ring, and similarly for any extension of k in k̄.

13.5 Projective closure

Definition 13.21. If Z ⊆ An is any affine algebraic set, we can embed it in Pn by identifying
An with the affine patch U0 of Pn; we write Z ⊆ An ⊂ Pn to indicate this embedding. The
projective closure of Z in Pn, denoted Z, is the projective algebraic set defined by the ideal
generated by all the homogenizations (with respect to x0) of all the polynomials in I(Z).



When the ideal of an algebraic set Z ⊆ An is principal, say I(Z) = (f), then I(Z)
is generated by the homogenization of f . But in general the homegenizations of a set of
generators for I(Z) do not generate I(Z), as shown by the following example.

Example 13.22. Consider the twisted cubic C = {(t, t2, t3) : t ∈ k̄} ⊆ A3 ⊂ P3. It is the
zero locus of the ideal

(x2 − y, x3 − z)

in k̄[x, y, z], hence an algebraic set, in fact, an affine variety of dimension 1 (an affine curve).
To see this note that k̄[C] = k̄[x, y, z]/I(C) ' k̄[x] is obviously an integral domain, so I(C)
is prime, and the function field k̄(C) ' k̄(x) has transcendence degree 1.

If we homogenize the generators of I(C) by introducing a new variable w, we get the
homogeneous ideal I = (x2 − wy, x3 − w2z). The zero locus of this ideal in P3 is

{(1 : t : t2 : t3) : t ∈ k̄} ∪ {(0 : 0 : y : z) : y, z ∈ k̄},

which ought to strike you as a bit too large to be the projective closure of C; indeed, the
homogeneous polynomial y2 − xz is not in I even though y2 − x is in I(C), so this cannot
be C. But if we instead consider the homogeneous ideal

(x2 − wy, xy − wz, y2 − xz),

we see that its zero locus is

{(1 : t : t2 : t3) : t ∈ k̄} ∪ {(0 : 0 : 0 : 1)},

and we claim this is C. There are many ways to prove this, but here is completely elementary
argument: Suppose that f ∈ k̄[w, x, y, z] is homogeneous of degree d, with C in its zero
locus. Then the polynomial g(t) = f(1, t, t2, t3) must be the zero polynomial (here we use
that k̄ is infinite). If f(0, 0, 0, 1) 6= 0, then f must contain a term of the form czd with
c ∈ k̄×. But then g(t) = ct3d + h(t) with deg h ≤ 3(d− 1) + 2 = 3d− 1 < 3d, which means
that g cannot be the zero polynomial, a contradiction. The claim follows.

Theorem 13.23. If V ∈ An ⊂ Pn is an affine variety then its projective closure V is a
projective variety, and V = V ∩ An is an affine part of V .

Proof. For any polynomial f ∈ k̄[x1, . . . , xn], let f ∈ k̄[x0, x1, . . . , xn] denote its homoge-
nization with respect to x0. For any f ∈ k̄[x1, . . . , xn] and any point P ∈ An, we have
f(P ) = 0 if and only if f(P ) = 0, where P = (1 : a1 : . . . : an) is the projective closure of P
(viewing points as singleton algebraic sets). It follows that V = V ∩ An.

To show that V is a projective variety, we just need to show that it is irreducible,
equivalently (by Problem Set 6), that its ideal is prime. So let fg ∈ I(V ). Then fg vanishes
on V , hence it vanishes on V , as does the dehomegenization f(1, x1, . . . , xn)g(1, x1, . . . , xn)
But I(V ) is prime (since V is a variety), so either f(1, x1, . . . , xn) of g(1, x1, . . . , xn) lies in
I(V ), and therefore one of f and g lies in I(V ). Thus I(V ) is prime.

Theorem 13.24. Let V be a projective variety and let Vi be any of its nonempty affine
parts. Then Vi is an affine variety and V is its projective closure.

Proof. Without loss of generality we assume i = 0 and use the notation introduced in the
proof above, identifying An with U0. As above, for any f ∈ k̄[x1, . . . , xn] and any point
P ∈ An, we have f(P ) = 0 if and only if f(P ) = 0. It follows that V0 is an algebraic set



defined by the ideal generated by the dehomegenization of all the homogeneous polynomials
in I(V ), and therefore V = V0.

To show that V0 is an affine variety, we just need to check that I(V0) is a prime ideal.
So let fg ∈ I(V0). Then fg ∈ I(V ) and therefore either f or g is in I(V ) (since I(V ) is
prime), and then either f or g must lie in I(V0). Thus I(V0) is prime.

Remark 13.25. Theorem 13.23 is still true if “variety” is replaced by “algebraic set”, but
Theorem 13.24 is not.

Corollary 13.26. The dimension, coordinate ring, and function field of an affine variety
are equal to those of its projective closure. The dimension, coordinate ring, and function
field of a projective variety are equal to those of each of its nonempty affine parts.

Remark 13.27. One can define the function field of a projective variety V directly in
terms of its homogeneous ideal I(V ) rather than identifying it with the function field
of its nonempty affine pieces (all of which are isomorphic), but some care is required.
The function field k̄(V ) is not the fraction field of k̄[x0, . . . , xn]/I(V ), it is the subfield
of k̄[x0, . . . , xn]/I(V ) consisting of all fractions g/h where g and h are both homogeneous
polynomials (modulo I(V )) of the same degree, with h 6= 0. This restriction is necessary
in order for us to sensibly think of elements of k̄(V ) as functions from V to k̄. In order to
evaluate a function f(x0, . . . , xn) at a projective point P = (a0 : . . . : an) in a well-defined
way we must require that

f(λa0, . . . , λan) = f(a0, . . . , an)

for any λ ∈ k̄×. If f = g/h with g and h homogeneous of degree d, then

f(λa0, . . . , λan) =
g(λa0, . . . , λan)

h(λa0, . . . , λan)
=
λdg(a0, . . . , an)

λdh(a0, . . . , an)
=
g(a0, . . . , an)

h(a0, . . . , an)
= f(a0, . . . , an),

as required. With this definition the function field k̄(V ) is isomorphic to the function field
of each of its nonempty affine parts.
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As usual, k is a perfect field and k̄ is a fixed algebraic closure of k. Recall that an affine
(resp. projective) variety is an irreducible alebraic set in An = An(k̄) (resp. Pn = Pn(k̄)).

14.1 Affine morphisms

We begin our discussion of maps between varieties with the simplest case, morphisms of
affine varieties.

Definition 14.1. Let X ⊆ Am and Y ⊆ An be affine varieties. A morphism f : X → Y is a
map f(P ) := (f1(P ), . . . , fn(P )) defined by polynomials f1, . . . , fn ∈ k̄[x1, . . . , xm] such that
f(P ) ∈ Y for all points P ∈ X. We may regard f1, . . . , fn as representatives of elements of
the coordinate ring k̄[X] = k̄[x1, . . . , xm]/I(X); we are evaluating f1, . . . , fn only at points
in X, so there is no reason to distinguish them modulo the ideal I(X).

As befits their name, morphisms can be composed: if f : X → Y and g : Y → Z are
morphisms of varieties X ⊆ Am, Y ⊆ An, and Z ⊆ Ar, then (g ◦ f) : X → Z is defined by

(g ◦ f)(P ) := g(f(P )) =
(
g1(f1(P ), . . . , fn(P )), . . . , gr(f1(P ), . . . , fn(P ))

)
.

Notice that in order for this composition to actually make sense, we need to pick particular
representatives g1, . . . , gr ∈ k̄[y1, . . . , ym] modulo I(Y ) (of course it doesn’t matter which).
The rings k̄[x1, . . . , xm] and k̄[X] are k̄ algebras, so it makes sense to evaluate a polynomial
with coefficients in k̄ in either of these rings (depending on our perspective), but it does not
make sense to “evaluate” an element of k̄[Y ] at elements of k̄[X]. We also have the identity
morphism f : X → X, which is defined by letting fi be the polynomial xi.

1

Thus we have a category whose objects are affine varieties and whose morphisms are (no
surpise) morphisms. Contrary to what you might expect (if you happened to be thinking of
morphisms in the category of groups or rings), the image of a morphism is not necessarily
a variety, or even an algebraic set.

Example 14.2. Consider the morphism f : A2 → A2 defined by f(x1, x2) = (x1, x1x2). Its
image is the entire affine plane except for the points on the x1-axis with x2 6= 0. This is not
an algebraic set; this is obvious if k̄ = C, and in general, if g(y1, y2) vanishes on the image
of f , then for any infinitely many c ∈ k̄ the polynomial h(t) = g(t, c) has infinitely many
zeroes, hence is the zero polynomial, and this implies that g is the zero polynomial. Thus
I(im f) is the zero ideal and the only algebraic set containing im f is all of A2.

On the other hand, if you were thinking of morphisms in the category of topological
spaces (which is the better analogy), then morphisms of varieties behave as expected; indeed,
they are continuous maps (and more), we just need to put the right topology on our varieties.

Definition 14.3. In the Zariski topology on An (resp. Pn), the closed sets are precisely the
algebraic sets. Any algebraic set in An (resp. Pn) then inherits the subspace topology.

1Note that we are using the symbol xi in three different ways: as an indeterminate used to define the
polynomial ringR = k̄[x1, . . . , xm], as an element ofR (i.e., a polynomial), and as the function xi : Am(k̄)→ k̄
that evaluates the polynomial xi on a given input.



Let us verify that this actually defines a topology: the empty set and An are algebraic
sets defined by the ideals (1) and (0), respectively (and similarly for Pn), and algebraic sets
are closed under arbitrary intersections (we can take the zero locus of an arbitrary sum of
ideals), and finite unions (we can take the zero locus of a finite product of ideals).2

With a topology in place we can now use words like open, closed, dense, etc., when refer-
ring to subsets of An or Pn, with the understanding that they refer to the Zariski topology.
Note that our definition of the projective closure of an affine variety V embedded in Pn is
consistent with this; we proved last time that the projective closure of V in Pn is a variety
(hence closed), and it is clearly the smallest closed set that contains V : a homogeneous
polynomial in k̄[x0, . . . , xn] vanishes on V in Pn if and only if its dehomogenization vanishes
on V in An.

It should be noted that the Zariski topology is extremely coarse. In A1, for example,
every nonempty open set is the complements of finite sets, and in general every nonempty
open set is dense in An (and in Pn); the same applies in the subspace of a variety. And the
Zariski topology is definitely not a Hausdorff topology; indeed, the intersection of any pair
of nonempty open sets is not only nonempty, it must be dense!

Theorem 14.4. Every morphism f : X → Y of affine varieties is continuous. That is, the
inverse image f−1(Z) of any algebraic subset Z ⊆ Y is an algebraic subset of X.

Proof. Showing that the inverse image of a closed set is closed is the same thing as showing
that the inverse of an open set is open, which is the definition of a continuous map. So
let Z be an algebraic subset of Y defined by the ideal (g1, . . . , gr) (we include generators
for I(Y ) in this list). Then f−1(Z) is the zero locus of g1(f1, . . . , fn), . . . , gr(f1, . . . , fn) (as
compositions of polynomials) in X, hence an algebraic of subset of X.

Remark 14.5. It is not true that every continuous map between affine varieties is a mor-
phism; the coarseness of the Zariski topology simply makes it too easy for a function to be
continuous. The additional requirement that a morphism must satisfy is that it must also
be a rational map, as we will see in the next lecture.

For affine varieties, an isomorphism is a bijective morphism whose inverse is a morphism,
but we will use the more formal definition that applies in any category.

Definition 14.6. We say that two varieties X ' Y are isomorphic if there exist morphisms
f : X → Y and g : Y → X such that both f ◦ g and g ◦ f are the identity morphisms on X
and Y , respectively. In this case we may refer to both f and g as isomorphisms.

Just as not every continuous map is an morphism, not every bicontinuous map (home-
morphism) is an isomorphism. Indeed, not even a bicontinuous morphism is necessarily an
isomorphism.

Example 14.7. Consider the map from A1 to A2 defined by t 7→ (t2, t3). The image of this
map is a variety V (the polynomial y2 − x3 is irreducible in k̄[x, y], so the principal ideal
(y2 − x3) is prime). Thus we have a morphism f : A1 → V , and it is clearly bijective; the
inverse map can be defined as

f−1(x, y) =

{
y/x if x 6= 0,

0 otherwise.

2One needs to check that this also works for projective varieties and homogeneous ideals, but this is
straight-forward; sums and products of homogeneous ideals are again homogeneous ideals and the rest
follows from Problem 2 of Problem Set 6.



Moreover, f is a closed map (the only closed sets in A1 are points and A1 itself, and these
are all mapped to closed sets in V ), so it is bicontinuous and thus both a morphism and a
homeomorphism. But it is not an isomorphism because its inverse is not a morphism; the
function f−1 cannot be defined as a polynomial map.

The example above shows that two varieties may be isomorphic as topological spaces
without being isomorphic as varieties; this should not be too surprising, the Zariski topology
makes it very easy for varieties to be homoemorphic (indeed, every affine curve is homeo-
morphic to A1). On the other hand, in the example of the twisted cubic (see Lecture 13)
we actually have an isomorphism of affine varieties.

We now come to a very important theorem that gives a one-to-one correspondence
between morphisms of affine varieties φ : X → Y and homomorphisms of their coordinate
rings φ∗ : k̄[Y ] → k̄[X] (note that the directions of the arrows are reversed). Actually, we
want φ∗ to be more than just a ring homomorphism, we also want it to fix the field k̄.
A compact way of saying this is to regard k̄[X] and k̄[Y ] not as rings, but as algebras
over k̄, and require φ∗ to be a homomorphism of k̄-algebras. This means that that φ∗ must
commute with sums and products (in our setting this makes φ∗ a ring homomorphism), and
it must fix elements of k̄.

In order to obtain an actual equivalence of categories, we want to specify objects that
correspond to coordinate rings in a purely algebraic way that does not involve varieties. So
consider an arbitrary integral domain R that is also a finitely generated k̄-algebra; let us
call such an R an affine algebra. If we denote the generators of R by x1, . . . , xn, there is a
canonical ring homomorphism

k̄[x1, . . . , xn]→ R

from the polynomial ring with indeterminates x1, . . . , xn onto R, and the kernel of this
homomorphism is an ideal I for which R = k̄[x1, . . . , xn]/I. The ideal I is prime (since R is
an integral domain), hence a radical ideal. Let V be the variety it defines in An. Then by
Hilbert’s Nullstellensatz, we have I = I(V ) (note that here we use that k̄ is algebraically
closed). The coordinate ring of V is then k̄[V ] ' k̄[x1, . . . , xn]/I ' R.

Thus we have a one-to-one correspondence between affine varieties and affine algebras
in which varieties correspond to their coordinate rings and affine algebras correspond to
varieties as described above. By taking the morphisms to be k-algebra homomorphisms, we
can consider the category of affine algebras. In order to prove that the category of affine
varieties is equivalent to the category of affine algebras, we need to understand how their
morphisms correspond.

Theorem 14.8. The following hold:

(i) Every morphism φ : X → Y of affine varieties induces a morphism φ∗ : k̄[Y ] → k̄[X]
of affine algebras such that φ∗(g) = g ◦ φ.

(ii) Every morphism θ : R→ S of affine algebras induces a morphism θ∗ : X → Y of affine
varieties with R ' k̄[Y ] and S ' k̄[X] such that the image of θ(g) in k̄[X] is g ◦ θ∗.

(iii) If φ : X → Y and ψ : Y → Z are morphisms of affine varieties, then (ψ◦φ)∗ = φ∗◦ψ∗.

Before proving the theorem, let us comment on the notation φ∗(g) = g ◦ φ. In order for
this to make sense, we need to interpret it as follows: given g ∈ k̄[Y ] = k̄[y1, . . . , yn]/I(Y ),
we pick a representative ĝ ∈ k̄[y1, . . . , yn] (so g is the coset ĝ + I(Y )) and then φ∗(g) is the



reduction of the polynomial ĝ ◦ φ = ĝ(φ1, . . . , φn) ∈ k̄[x1, . . . , xm] modulo I(X) (i.e., its
image under the quotient map). In short, g ◦ φ means lift/compose/reduce.3

The key point is that for any f in I(Y ), the composition f ◦φ yields an element of I(X),
because φ maps points in X to points in Y and f vanishes at points in Y . Thus it does not
matter which lift ĝ we pick and our interpretation of g ◦ φ is well defined.

Proof. We assume throughout that X and Y are varieties in Am and An, respectively.
(i) We first note that the operations of lifting from k̄[Y ] to k̄[y1, . . . , yn] and reducing

from k̄[x1, . . . , xm] to k̄[X] are both compatible with ring operations, and when lifting or
reducing an element of k̄ it remains fixed. Now if g ∈ k̄ is a constant polynomial, then
g ◦ φ = g, and for any f, g ∈ k̄[y1, . . . , yn] we have

(f + g) ◦ φ = (f + g)(φ1, . . . , φn) = f(φ1, . . . , φn) + g(φ1, . . . , φn) = (f ◦ φ) + (g ◦ φ)

and
(fg) ◦ φ = (fg)(φ1, . . . , φn) = f(φ1, . . . , φn)g(φ1, . . . , φn) = (f ◦ φ)(g ◦ φ).

Thus φ∗ is a ring homomorphism that fixes k̄, hence a homomorphism of affine algebras.
(ii) Let θ : R → S be a morphism of affine algebras. As described above, there exist

varieties X and Y for which R ' k̄[Y ] and S ' k̄[X], and any morphism R → S induces
a morphism k̄[Y ] → k̄[X] that commutes with these isomorphisms.4 So without loss of
generality we assume θ : k̄[Y ]→ k̄[X] is an affine algebra morphism of coordinate rings. We
now define a morphism θ∗ : X → Y by letting θ∗ = (θ(y1), . . . , θ(yn)), where θ(yi) denotes
the image under θ of the image of the polynomial yi in k̄[Y ] under the quotient map from
k̄[y1, . . . , yn]. For any g ∈ k̄[Y ] we have

g ◦ θ∗ = ĝ(θ(y1), . . . , θ(yn)) = θ(g(y1, . . . , yn)) = θ(g),

where the middle equality follows from the fact that θ is a ring homomorphism that fixes k̄.
We also note that for any f ∈ I(Y ) we have f ◦ θ∗ = θ(f) = θ(0) = 0, so f(θ∗(P )) = 0 for
all f ∈ I(Y ) and P ∈ X, which implies that the image of θ∗ lies in Y . Thus θ∗ is indeed a
morphism from X to Y as claimed.

(iii) For any g ∈ k̄[Z] we have

(ψ ◦ φ)∗(g) = g ◦ (ψ ◦ φ) = (g ◦ ψ) ◦ φ = φ∗(g ◦ ψ) = (φ∗(ψ∗(g)) = (φ∗ ◦ ψ∗)(g).

Corollary 14.9. The categories of affine varieties and affine algebras are contravariantly
equivalent.5

Proof. The only thing that remains to be shown is that the two functors arising from (i)
and (ii) of Theorem 14.8 are inverses, that is, we need to show that (φ∗)∗ = φ and (θ∗)∗ = θ,
up to isomorphism.6 The second equality is clear from the statement of the theorem and
the first is clear from its proof.

3If we view φ1, . . . , φn as elements of k̄[X], we also need to lift the φi in order to compute g ◦ φ.
4One says that the induced morphism is natural ; more precisely, the functor from the category of function

fields to the category of function fields of varieties is a natural transformation (in fact, a natural isomorphism).
If you think this is just a fancy way of stating the obvious, you are right; but the same phenomenon occurs
in more general situations where it is not always so obvious.

5Contravariantly equivalent categories are also called dual categories; they are also said to be anti-
equivalent, but we won’t use this term.

6Up to isomorphism means that the domains and codmains of the morphisms on either side of the equality
need not be precisely equal, they just need to be isomorphic, and the isomorphisms and the morphisms must
form a commutative diagram; in other words, (φ∗)∗ is naturally isomorphic to φ (and similarly for θ).



Corollary 14.10. All the nonempty affine parts of a projective variety are isomorphic.

Proof. We proved in Lecture 13 (see Corollary 13.26) that the nonempty affine parts of a
projective variety all have the same coordinate ring (up to isomorphism).

Definition 14.11. If φ = (φ1, . . . , φn) is a morphism of varieties X → Y that are defined
over k, we say that φ is defined over k if φ1, . . . , φn ∈ k[Y ]. Equivalently, φ is defined over k
if φσ = (φσ1 , . . . , φ

σ
n) = φ for all σ ∈ Gk.7 If φ is an isomorphism defined over k and it has

an inverse isomorphism defined over k, then we say that X and Y are isomorphic over k.

Corollary 14.12. Let X and Y be affine varieties defined over k. If φ : X → Y is a
morphism defined over k then the affine algebra morphism φ∗ : k̄[Y ]→ k̄[X] restricts to an
affine algebra morphism from k[Y ] to k[X].

Proof. This follows immediately from the definition φ∗(g) = g ◦ φ.

References

[1] J.H. Silverman, The arithemetic of elliptic curves, 2nd edition, Springer, 2009.

7Proving this equivalence is not completely trivial; see [1, Ex. I.1.12a].

http://www.springerlink.com/content/978-0-387-09493-9


18.782 Introduction to Arithmetic Geometry Fall 2013
Lecture #15 10/29/2013

Andrew V. Sutherland

As usual, k is a perfect field and k̄ is a fixed algebraic closure of k. Recall that an affine
(resp. projective) variety is an irreducible alebraic set in An = An(k̄) (resp. Pn = Pn(k̄)).

15.1 Rational maps of affine varieties

Before defining rational maps we want to nail down two points on which we we were inten-
tional vague in the last lecture. We defined a morphism φ : X → Y of varieties X ⊆ Am

and Y ⊆ An as a “map defined by a tuple of polynomials (φ1, . . . , φn).” This definition is
vague in two ways. First, is a morphism a map between two sets X and Y , or is it a tuple
of polynomials? We shall adopt the second view; we still get a function by evaluating the
polynomials at points in X.

Given that we regard φ as a tuple (φ1, . . . , φn), the next question is in which ring do
its components φi lie? Are they elements of k̄[x1, . . . , xm] or k̄[X]. The function they
define is the same in either case, but we shall regard the φi as elements of k̄[X]. This
means that in order to evaluate φi at a point P ∈ X, we need to lift φi = φ̂i + I(X) to
a representative φ̂i ∈ k̄[x1, . . . , xm] and then compute φ̂i(P ). Of course it does not matter
which representative φ̂i we pick; we define φi(P ) to be the value φ̂i(P ) for any/every choice
of φ̂, and thereby define φ(P ) for P ∈ X (but note that φ(P ) is not defined for any P 6∈ X).

One advantage of this approach is that there is then a one-to-one correspondence between
morphisms and the functions they define. If φ = (φ1, . . . , φn) and ψ = (ψ1, . . . , ψn) define
the same function from X to Y then each of the polynomials φ̂i−ψ̂i in k̄[x1, . . . , xm] contains
X in its zero locus and therefore lies in the ideal I(X). This implies, by definition, that in
k̄[X] = k̄[xi, . . . , xm]/I(X) we have φi = ψi for 1 ≤ i ≤ m and therefore φ = ψ.

We now want to extend these ideas to the function field k̄(X). Elements of k̄(X) have
the form r = f/g, with f, g ∈ k̄[X] and g 6= 0, and are called rational functions (or even
just functions), on X, even though they are formally elements of the fraction field of k̄[X]
and typically do not define a function from X to k̄; indeed, this is precisely the issue we
must now address.

It seems natural to say that for a point P ∈ X we should define r(P ) to be f(P )/g(P )
whenever g(P ) 6= 0 and call it undefined otherwise. But there is a problem with this
approach: the representation r = f/g is not necessarily unique.1 We also have r = p/q
whenever pg = fq holds in k̄[X] (recall that this is part of the definition of a fraction field,
it is a set of equivalence classes of fractions). The values f(P )/g(P ) and p(P )/q(P ) are
necessarily equal wherever both denominators are nonzero, but it may be that q(P ) 6= 0 at
points where g(P ) = 0 (and vice versa).

Example 15.1. Consider the the zero locus X of x1x2 − x3x4 in A4 (which is in fact a
variety) and the rational function r = x1/x3 = x4/x2. At the point P = (0, 1, 0, 0) ∈ X the
value x1(P )/x3(P ) is not defined, but x4(P )/x2(P ) = 0 is defined, and the reverse occurs
for P = (0, 0, 1, 0) ∈ X. But we can assign a meaningful value to r(P ) at both points; the
only points in X where r is not defined are those with x2 = x3 = 0.

This motivates the following definition.

1If k̄[X] is a UFD then we can put r = f/g in lowest terms to get a unique representation. However, the
coordinate ring k̄[X] is usually not a UFD, even though k̄[x1, . . . , xm] is. A quotient of a UFD is typically
not a UFD, even when it is an integral domain; consider Z[x]/(x2 + 5), for example.



Definition 15.2. A function r ∈ k̄(X) is said to be regular at a point P ∈ X if gr ∈ k̄[X]
for some g ∈ k̄[X] ⊆ k̄(X)2 for which g(P ) 6= 0 (we then have r = f/g for some f ∈ k̄[X]).

The set of points at which a function r ∈ k̄(X) is regular form a nonempty open (hence
dense) subset dom(r) of the subspace X: the complement of dom(r) in X is the closed
subset of X defined by the denominator ideal {g ∈ k̄[X] : gr ∈ k̄[X]}, which we note is not
the zero ideal, since r = f/g for some nonzero g.3

We now associate to r the function from dom(r) to k̄ that maps P to

r(P ) = (f/g)(P ) = f(P )/g(P ),

where g is chosen so that g(P ) 6= 0 and gr = f ∈ k̄[X]. Now if r is actually an element of
k̄[X], then r is regular at every point in X and we have dom(r) = X. The following lemma
says that the converse holds.

Lemma 15.3. A rational function r ∈ k̄(X) lies in k̄[X] if and only if dom(r) = X.

Proof. The forward implication is clear, and if dom(r) = X then the complement of dom(r)
in X is the empty set and the denominator ideal is (1), which implies r ∈ k̄[X].

Definition 15.4. Let X ⊆ Am and Y ⊆ An be affine varieties. We say that a tuple
(φ1, . . . , φn) with φi ∈ k̄(X) is regular at P ∈ X if the φi are all regular at P . A rational map
φ : X → Y is a tuple (φ1, . . . , φn) with φi ∈ k̄(X) such that φ(P ) := (φ1(P ), . . . , φn(P )) ∈ Y
for all points P ∈ X where φ is regular. If φ is regular at every point P ∈ X then we say
that φ is regular.

The set of points where φ is regular form an open subset dom(φ) = ∩i dom(φi) of X.
Thus φ defines a function from dom(φ) to Y , which we may also regard as a partial function
from X to Y . We get a complete function from X to Y precisely when dom(φ) = X, that
is, when φ is regular. This occurs precisely when φ is a morphism.

Theorem 15.5. A rational map of affine varieties is a morphism if and only if it is regular.

Proof. A morphism is clearly a regular rational map. For the converse, apply Lemma 15.3
to each component of φ = (φ1, . . . , φn).

We now want to generalize the categorical equivalence between affine varieties and their
function fields, analogous to what we proved in the last lecture for affine varieties and their
coordinate rings (affine algebras), but with morphisms of varieties replaces by the more
general notion of a rational map. But there is a problem with this. In order to even define
a category of varieties with rational maps, we need to be able to compose rational maps.
But this is not always possible!

Example 15.6. Let X = Y = Z = A2, and let φ : X → Y be the rational map (1/x1, 0)
and let ψ : Y → Z be the rational map (0, 1/x2). Then the image of φ is disjoint from
dom(ψ). There is no rational function that corresponds to the composition of φ and ψ (or
ψ with φ). Even formally, the fractions 1/0 that we get by naively composing φ with ψ are
not elements of k̄(X), and the function defined by the composition of the functions defined
by φ and ψ has the empty set as its domain, which is not true of any r ∈ k̄(X).

2Recall that an integral domain can always be embedded in its fraction field by identifying g with the
equivalence class of g/1, so we assume k̄[X] ⊆ k̄(X) henceforth.

3When restricting our attention to a variety X in An it is simpler to work with ideals in k̄[X] =
k̄[x1, . . . , xm]/I(X) rather than k̄[x1, . . . , xm]. The one-to-one corrsepondence between radical ideals and
closed sets still holds, as does the correspondence between prime ideals and (sub-) varieties.



To fix this problem we want to restrict our attention to rational maps whose image is
dense in its codomain.

Definition 15.7. A rational map φ : X → Y is dominant if φ(dom(φ)) = Y .

If φ : X → Y and ψ : Y → Z are dominant rational maps then the intersection of
φ(dom(φ)) and dom(ψ) must be nonempty; the complement of dom(ψ) in Y is a proper
closed subset of Y and therefore contains no sets that are dense in Y , including φ(dom(φ)).
It follows that we can always compose dominant rational maps, and since the identity map
is also dominant rational map, we can now speak of the category of affine varieties and
rational maps. Not every morphism is a dominant rational map, but affine varieties and
dominant morphisms form a subcategory of affine varieties and dominant rational maps.
As you will show on the problem set, the closure of the image of a morphism of varieties is
a variety, so one can always make a morphism dominant be restricting its codomain.

We now prove the analog of Theorem 14.8, replacing morphisms with dominant rational
maps, and coordinate rings with function fields. We now use the term function field to
refer to any finitely generated extension of k̄, and we require morphisms of function fields
to fix k̄ (we could also call them k̄-algebra homomorphisms). Field homomorphisms are
always injective, so a morphism of function fields is just a field embedding that fixes k̄.
Note that the all the interesting function fields F/k̄ are transcendental. If F/k̄ is algebraic
then F = k̄; this corresponds to the function field of a zero-dimensional variety (a point).

Given a function field F generated by elements α1, . . . , αn over k̄, let R be the k̄-algebra
generated by α1, . . . , αn in F ; this means that R is equal to the set of all polynomial
expressions in α1, . . . , αn, but there may be algebraic relations between the αi that make
many of these expressions equivalent. In any case, R is isomorphic to the quotient of the
polynomial ring k̄[x1, . . . , xn] by an ideal I corresponding to all the algebraic relations that
exist among the αi. The ring R is an integral domain (since it is contained in a field),
therefore I is a prime ideal that defines a variety X whose coordinate ring is isomorphic
to R and whose function field is isomorphic to F , the fraction field of R.

Theorem 15.8. The following hold:

(i) Every dominant rational map φ : X → Y of affine varieties, induces a morphism
φ∗ : k̄(Y )→ k̄(X) of function fields such that φ∗(r) = r ◦ φ.

(ii) Every morphism θ : K → L of function fields induces a dominant rational map of
affine varieties θ∗ : X → Y , with K ' k̄(Y ) and L ' k̄(X), such that the image of
θ(r) in k̄(X) is r ◦ θ∗.

(iii) If φ : X → Y and ψ : Y → Z are dominant rational maps of affine varieties then
(ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

As in the analogous Theorem 14.8, to compute r ◦ φ one needs to lift/compose/reduce,
that is, pick representatives for φ1, . . . , φn that are rational functions in k̄(x1, . . . , xm),
pick a representative of r in k̄(y1, . . . , yn), then compose and reduce the numerator and
denominator modulo I(X). The fact that φ is dominant ensures that the denominator of
the composition does not lie in I(X), so r ◦ φ is an element of k̄(X).

Proof. The proofs of parts (i) and (iii) follow the proof of Theorem 14.8 verbatim, with
coordinate rings replaced by function fields, only part (ii) merits further discussion. As
discussed above, we can write K ' k̄(Y ) and L ' k̄(X) for some varieties X and Y , and



any morphism K → L induces a morphism k̄(Y ) → k̄(Y ) that is compatible with these
isomorphisms, so let us assume θ : k̄(Y )→ k̄(X).

As in the proof of Theorem 14.8 we define θ∗ : X → Y by θ∗ = (θ(y1), . . . , θ(yn)), where
we now regard the coordinate functions yi as elements of k̄(Y ). For any r ∈ k̄(Y ) we have

r ◦ θ∗ = r̂(θ(y1), . . . , θ(yn)) = θ(r(y1, . . . , yn)) = θ(r).

The fact that r ∈ k̄(Y ) ensures that the denominator of r̂ ∈ k̄[y1, . . . , yn] is not in I(Y ),
so this composition is well defined. The proof that the image of θ∗ actually lies in Y is
the same as in Theorem 14.8: for any f ∈ I(Y ) we have f ◦ θ∗ = θ(f) = 0, so certainly
f(θ∗(P )) = 0 for all P ∈ dom(θ∗). Thus θ∗ is a rational map from X to Y .

But we also need to check that θ∗ is dominant (this is the only new part of the proof).
This is equivalent to showing that the only element of k̄[Y ] that vanishes on the image of θ∗

is the zero element, which is in turn equivalent to showing that the only element of k̄(Y )
that vanishes on the intersection of its domain and the image of θ∗ is the zero element. This
is in turn equivalent to showing that if r ◦ θ∗ = θ(r) vanishes at every point in its domain
then r = 0. But the only element of k̄(X) that vanishes at every point in its domain is the
zero element, and θ is injective, so we are done.

Corollary 15.9. The category of affine varieties with dominant rational maps and the
category of function fields are contravariantly equivalent.

Proof. As in the proof of Corollary 14.9, the only thing left to show is that (φ∗)∗ = φ and
(θ∗)∗ = θ, up to isomorphism, but both follow from Theorem 15.8 and its proof.

Definition 15.10. Two affine varieties X and Y are said to be birationally equivalent if
there exist dominant rational maps φ : X → Y and ψ : Y → X such that (φ ◦ ψ)(P ) = P
for all P ∈ dom(φ ◦ ψ) and (ψ ◦ φ)(P ) = P for all P ∈ dom(ψ ◦ φ).

Corollary 15.11. Two affine varieties are birationally equivalent if and only if their func-
tion fields are isomorphic.

As with morphisms, if φ : X → Y is a rational map of varieties that are defined over k,
we say that φ = (φ1, . . . , φn) is defined over k if the φi all lie in k(X).

Corollary 15.12. Let X and Y be affine varieties defined over k. If φ : X → Y is a
dominant rational map defined over k then φ∗ : k̄(Y ) → k̄(X) restricts to a morphism
k(Y )→ k(X).

15.2 Morphisms and rational maps of projective varieties

We now want to generalize everything we have done for maps between affine varieties to
maps between projective varieties. This is completely straight-forward, we just need to
account for the equivalence relation on Pn.

Recall from Lecture 13 that although we defined the function field k̄(X) of a projective
variety X ⊆ Pn as the function field of any of its non-empty affine parts, we can always
represent r by an element r̂ ∈ k̄(x0, . . . , xn) whose numerator and denominator are homo-
geneous polynomials of the same degree, and for any point P ∈ X where r̂(P ) is defined
(has nonzero denominator), we can unambiguously define r(P ) = r̂(P ).



Definition 15.13. Let X be a projective variety. We say that r ∈ k̄(X) is regular at a
point P ∈ X if it has a representation r̂ that is defined at P . The set of points P ∈ X
at which r is regular form an open subset of X that we denote dom(r).4 For any point
P ∈ dom(r) we define r(P ) = r̂(P ), where r̂ is chosen so that r̂ is defined at P .

Definition 15.14. Let X ⊆ Pm and Y ⊆ Pn be projective varieties. A rational map
φ : X → Y is an equivalence class of tuples φ = (φ0 : . . . : φn) with φi ∈ k̄(X) not all zero
such that at any point P ∈ X where all the φi are regular and at least one is nonzero, the
point (φ0(P ) : . . . : φn(P )) lies in Y . The equivalence relation is given by

(φ0 : . . . : φn) = (λφ0 : . . . : λφn)

for any λ ∈ k̄(X)×. We say that φ is regular at P if there is a tuple (λφ0 : . . . : λφn) in its
class with each component regular at P and at least one nonzero at P . The open subset
of X at which φ is regular is denoted dom(φ).

Remark 15.15. We can alternatively represent the rational map φ : X → Y as a tuple
of homogeneous polynomials in k̄[x0, . . . , xm] that all have the same degree and not all of
which lie in I(X). To ensure that the image lies in Y one requires that for all f ∈ I(Y ) we
have f(φ0, . . . , φn) ∈ I(X). The equivalence relation is then (φ0 : . . . : φn) = (ψ0 : . . . : ψn)
if and only if φiψj − φjψi ∈ I(X) for all i.j.

Remark 15.16. One can also define rational maps X → Y where one of X,Y is an affine
variety and the other is a projective variety. When Y is projective the definition is exactly
the same as in the case that both are projective (but we don’t use homegenized functions
to represent elements of k̄(X) when X is affine). When X is projective and Y is affine, a
rational map is no longer an equivalence class of tuples, it is a particular tuple of rational
functions on X. Of course there is still a choice of representation for each rational function
(and the choice may vary with P ), but note that in this case Remark 15.15 no longer applies.

Now that we have defined rational maps for projective varieties we can define morphisms
and dominant rational maps; the definitions are exactly the same as in the affine case, so
we can now state them generically.

Definition 15.17. A morphism is a regular rational map. A rational map is dominant if
its image is dense in its codomain.

The analogs of Theorem 15.8 and Corollary 15.9 both apply to dominant rational maps
between projective varieties. The proofs are exactly the same, modulo the equivalence
relations for projective points and rational maps between projective varieties. Alternatively,
one can simply note that any dominant rational map X → Y of projective varieties restricts
to a dominant rational map between any pair of the nonempty affine parts of X and Y (the
nonempty affine parts of X (resp. Y ) are all dense in X (resp. Y ), and they are all
isomorphic as affine varieties; see Corollary 14.10). Conversely, any dominant rational map
of affine varieties can be extended to a dominant rational map of their projective closures
(but this is not true of morphisms; see Example 15.20 below).

Theorem 15.18. Theorem 15.8 and Corollary 15.9 hold for projective varieties as well as
affine varieties.

4It is clear that dom(r) is open in X; its intersection with each affine patch is an open subset of X.



Let us now look at a couple of examples.

Example 15.19. Let X ⊆ A2 be the affine variety defined by x2 + y2 = 1, and let P be
the point (−1, 0) ∈ X. The rational map φ : X → A1 defined by

φ(x, y) =

(
y

x+ 1

)
=

(
1− x
y

)
sends each point Q = (x, y) ∈ X different from P to the slope of the line PQ. The map φ
is not regular (hence not a morphism), because it is not regular at P , but it is dominant
(even surjective). The rational map φ−1 : A1 → X defined by

φ−1(t) =

(
1− t2

1 + t2
,

2t

1 + t2

)
is an inverse to φ. Note that φ−1 is also not regular (it is not defined at

√
−1), but it is

dominant (but not surjective). Thus X is birationally equivalent to A1, but not isomorphic
to A1, as expected. The function fields of X and A1 are both isomorphic to k̄(t).

Now let us consider the corresponding map of projective varieties. The projective closure
X of X in P2 is defined by x2 + y2 = z2. We now define the rational map ϕ : X → P1 by

ϕ(x : y : z) =

(
y

x+ z
: 1

)
=

(
z − x
y

: 1

)
=

(
1 :

y

z − x

)
Per Remark 15.15, we could also write ϕ as

ϕ(x : y : z) = (y : x+ z) = (z − x : y)

The first RHS is defined everywhere except (1 : 0 : −1) and the second RHS is defined
everywhere except (1 : 0 : 1), thus ϕ is regular everywhere, hence a morphism.

We also have the rational map ϕ : P1 → X defined by

ϕ−1(s : t) =

(
s2 − t2

s2 + t2
:

2st

s2 + t2
: 1

)
=

(
1 :

2st

s2 − t2
:
s2 + t2

s2 − t2

)
which can also be written as

ϕ−1(s : t) = (s2 − t2 : 2st : s2 + t2).

The map ϕ−1 is regular everywhere, hence a morphism, and the compositions ϕ ◦ ϕ−1 and
ϕ−1 ◦ ϕ are both the identity maps, thus X and P1 are isomorphic.

Example 15.20. Recall the morphism φ : A2 → A2 defined by φ(x, y) = (x, xy) from
Lecture 14, where we noted that the image of φ is not closed (but it is dense in A2, so φ is
dominant). Let us now consider the corresponding rational map ϕ : P2 → P2 defined by

ϕ(x : y : z) =
(x
z

:
xy

z2
: 1

)
= (xz : xy : z2).

We might expect ϕ to be a morphism, but this is not the case! It is not regular at (0 : 1 : 0).
This is not an accident. As we will see in the next lecture, morphisms of projective

varieties are proper, and in particular this means that they are closed maps (so unlike the
affine case, the image of a morphism of projective varieties is a variety). But there is clearly
no way to extend the morphism φ : A2 → A2 to a proper morphism ϕ : P2 → P2 (the image
of ϕ in the affine patch z 6= 0 must be dense but not surjective), and this means that ϕ
cannot be a morphism.
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Our goal for this lecture is to prove that morphisms of projective varieties are closed
maps. In fact we will prove something stronger, that projective varieties are complete, a
property that plays a role comparable to compactness in topology. For varieties, compact-
ness as a topological space does not mean much because the Zariski topology is so coarse.
Indeed, every subset of An (and hence of Pn) is compact (or quasicompact, if your definition
of compactness includes Hausdorff).

Theorem 16.1. Let S be a subset of An, and let {Ua}a∈A be any collection of open sets
of An whose union contains S. Then there exists a finite set B ⊆ A for which S ⊆ {Ub}b∈B.

Proof. By enumerating the index set A in some order (which we can do, via the axiom of
choice), we can construct a chain of properly nested open sets {Vb}b∈B, where each Vb is
the union of the sets Ua over a ∈ B with a ≤ b (in our arbitrary ordering), and B ⊆ A is
constructed so that each S ∩ Va is properly contained in S ∩ Vb for every pair a ≤ b in B.
The complements of the sets Vb then form a strictly descending chain of closed sets whose
ideals form a strictly ascending chain of nested ideals {Ib}b∈B in R = k[x1, . . . , xn]. The
ring R is Noetherian, so B must be finite, and {Ub}b∈B is the desired finite subcover.

In order to say what it means for a variety to be complete, we first need to define the
product of two varieties. Throughout this lecture k denotes a fixed algebraically closed field.

16.1 Products of varieties

Definition 16.2. Let X ⊆ Am and Y ⊆ An be algebraic sets. Let k[Am] = k[x1, . . . , xm],
k[An] = k[y1, . . . , yn], and k[Am+n] = k[x1, . . . , xm, y1, . . . , yn], so that we can identity k[Am]
and k[An] as subrings of k[Am+n] whose intersection is k. The product X × Y is the zero
locus of the ideal I(X)k[An] + I(Y )k[Am] in k[Am+n].

If I(X) = (f1, . . . , fs) and I(Y ) = (g1, . . . , gt), then I(X × Y ) = (f1, . . . , fs, g1, . . . , gt)
is just the ideal generated by the fi and gj when regarded as elements of k[Am+n]. We also
have projection morphisms

πX : X × Y → X and πY : X × Y → Y

defined by the tuples (x̄1, . . . , x̄m) and (ȳ1, . . . , ȳn), where x̄i and ȳj are the images of xi
and yj , respectively, under the quotient map k[Am+n]→ k[Am+n]/I(X × Y ) = k[X × Y ].

The coordinate ring of X×Y is isomorphic to the tensor product of the coordinate rings
of X and Y , that is

k[X × Y ] ' k[X]⊗ k[Y ].

While the tensor product can be defined quite generally in categorical terms, in the case of
k-algebras there is a very simple concrete definition. Recall that a k-algebra is, in particular,
a k-vector space. If R and S are two k-algebras with bases {ri}i∈I and {sj}j∈J , then the
set of formal symbols {ri ⊗ sj : i ∈ I, j ∈ J} forms a basis for the tensor product R ⊗ S.
Products of vectors in R⊗ S are computed via the distributive law and the rule

(ri1 ⊗ sj1)(ri2 ⊗ sj2) = ri1ri2 ⊗ sj1sj2 .



In the case of polynomial rings one naturally chooses a monomial basis, in which case this
rule just amounts to multiplying monomials and keeping the variables in the monomials
separated according to which polynomial ring they originally came from.

It is standard to generalize the ⊗ notation and write r⊗ s for any r ∈ R and s ∈ S, not
just basis elements, with the understanding that r ⊗ s represents a linear combination of
basis elements

∑
i,j αij(ri ⊗ sj) that can be computed by applying the identities

(a+ b)⊗ c = a⊗ c+ b⊗ c
a⊗ (b+ c) = a⊗ b+ a⊗ c
(γa)⊗ (δb) = (γδ)(a⊗ b)

where γ and δ denote elements of the field k. We should note that most elements of R⊗ S
are not of the form r⊗s, but they can all be written as finite sums of elements of this form.

When R and S are commutative rings, so is R⊗S. There are then natural embeddings
of R and S into R ⊗ S given by the maps r → r ⊗ 1S and s → 1R ⊗ s, and 1R ⊗ 1S is the
multiplicative identity in R ⊗ S. The one additional fact that we need is that if R and S
are affine algebras (finitely generated k-algebras that are integral domains), so is R⊗S. In
order to prove this we first note a basic fact that we will use repeatedly:

Lemma 16.3. Let V be an affine variety with coordinate ring k[V ]. There is a one-to-one
correspondence between the maximal ideals of k[V ] and the points of V .

Proof. Let P = (a1, . . . , an) be a point on V ⊆ An, and let mP be the corresponding
maximal ideal (x1 − a1, . . . , xn − an) of k[x1, . . . , xn]. Then I(V ) ⊆ mP , and the image of
mP in the quotient k[V ] = k[x1, . . . , xn]/I(V ) is a maximal ideal of k[V ]. Conversely, every
maximal ideal of k[V ] corresponds to a maximal ideal of k[x1, . . . , xn] that contains I(V ),
which is necessarily of the form mP for some P ∈ V , by Hilbert’s Nullstellensatz.

Lemma 16.4. If R and S are both affine algebras, then so is R⊗ S.

Proof. We need to show that R ⊗ S has no zero divisors. So suppose uv = 0 for some
u, v ∈ R⊗ S. We will show that either u = 0 or v = 0.

We can write u and v as finite sums u =
∑

i∈I ri ⊗ si and v =
∑

j∈J rj ⊗ sj , with
ri, rj ∈ R and si, sj ∈ S all nonzero, and we can assume the sets {si}i∈I and {sj}j∈J are
each linearly independent over k by choosing the si and sj to be basis vectors. Without loss
of generality, we may assume R = k[X], for some affine variety X. Let Xu be the zero locus
of the ri in X and and let Xv be the zero locus of the rj in X. For any point P ∈ X we have
the evaluation map φP : k[X]→ k defined by φP (f) = f(P ), which is a ring homomorphism
from R to k that fixes k. We now extend φP to a k-algebra homomorphism R⊗ S → S by
defining φP (r ⊗ s) = φP (r)s. We then have

φP (uv) = φP (u)φP (v) =

(∑
i∈I

φP (ri)si

)∑
j∈J

φP (rj)sj

 = 0

Since S is an integral domain, one of the two sums must be zero, and since the si are linearly
independent over k, either φP (ri) = 0 for all the ri, in which case P ∈ Xu, or φP (rj) = 0
for all the rj , in which case P ∈ Xv. Thus X = Xu ∪Xv. But X is irreducible, so either
X = Xu, in which cace u = 0, or X = Xv, in which case v = 0.



Corollary 16.5. If X and Y are affine varieties, then so is X × Y .

Remark 16.6. This proof is a nice example of the interaction between algebra and geom-
etry. We want to prove a geometric fact (a product of varieties is a variety), but it is easier
to prove an algebraic fact (a tensor product of affine algebras is an affine algebra). But in
order to prove the algebraic fact, we use a geometric fact (a variety is not the union of two
proper algebraic subsets). Of course we could translate everything into purely algebraic or
purely geometric terms, but the proofs are easier to construct (and easier to understand!)
when we can move back and forth freely.

A product of projective varieties is defined similarly, but there is a new wrinkle; we now
need two distinct sets of homogeneous coordinates. Points in Pm × Pn can be represented
in the form (a0 : . . . : am; b0 : . . . : bn), where

(a0 : . . . : am; b0 : . . . : bn) = (λa0 : . . . : λam;µb0 : . . . : µbn)

for all λ, µ ∈ k×. We are now interested in polynomials in k[x0, . . . , xm, y0, . . . , yn] that
are homogeneous in the xi, and in the yj , but not necessarily both. Another way of say-
ing this is that we are interested in polynomials that are homogeneous as elements of
(k[x0, . . . , xm])[y0, . . . , yn], and as elements of (k[y0, . . . , yn])[x0, . . . , xm]. Let us call such
polynomials (m,n)-homogeneous. We can then meaningfully define the zero locus of an
(m,n)-homogeneous polynomial in Pm × Pn and give Pm × Pn the Zariski topology by
taking algebraic sets to be closed.

Remark 16.7. The Zariski topology on Pm × Pn we have just defined is not the product
of the Zariski topologies on Pm and Pn. This will be explored on the problem set.

Definition 16.8. Let X ⊆ Pm and Y ⊆ Pn be algebraic sets with homogeneous ideals
I(X) ⊆ k[x0, . . . , xm] and I(Y ) ⊆ k[y0, . . . , yn]. The product X × Y is the zero locus of the
(m,n)-homogeneous polynomials in the ideal

I(X × Y ) := I(X)k[y0, . . . , yn] + I(Y )k[x0, . . . , xm]

of k[x0, . . . , xm, y0, . . . , yn]. We say that X × Y is a variety if the ideal I(X × Y ) is prime.

As in the affine case, we again have k[X × Y ] = k[X] ⊗ k[Y ], which implies that the
product of two projective varieties is again a variety.

Remark 16.9. One can identify Pm×Pn with a subvariety of a larger projective space PN
(but N is definitely not m + n). Thus the product of two projective varieties is indeed a
projective variety. This will be explored on the next problem set.

We may also consider products of affine and projective varieties. In this case we are inter-
ested in subsets of Pm⊗An that are the zero locus of polynomials in k[x0, . . . , xm, y1, . . . , yn]
that are homogeneous in xi but may be inhomogeneous in the yj . Per the remark above, we
can smoothly embed a product of projective varieties in a single projective variety, and as
we have already seen we can smoothly embed a product of affine varieties in a single affine
variety. Thus any finite product of affine and projective varieties is isomorphic to one of (1)
an affine variety, (2) a projective variety, (3) the product of a affine variety and a projective
variety.



16.2 Complete varieties

We can now say what it means for a variety to be complete.

Definition 16.10. A variety X is complete if for every variety Y the projection X×Y → Y
is a closed map; this means that the projection of a closed set in X × Y is a closed in Y .

Remark 16.11. We get the same definition if we restrict to affine varieties Y . Any variety Y
can be covered by a finite number of affine parts {Ui}, and if the projection X × Ui → Ui
is a closed map for each Ui, then the projection X × Y → Y is also a closed map, since the
union of a finite number of closed sets is a closed set.

Lemma 16.12. If X is a complete variety then any morphism φ : X → Y is a closed map
whose image is a complete variety.

Proof. Let us consider the set

Γφ := {(P, φ(P )) : P ∈ X} ⊆ X × Y,

which is the graph of φ. It is a closed set, the zero locus of y = φ(x) (here the variables x
and y represent points in X and Y that may have many coordinates; the exact equation
can be explicitly spelled out in the ambient space containing X × Y using generators for
I(X), I(Y ), and the coordinate maps of φ but there is no need to do so). The projection
map X × Y → Y is a closed map, since X is complete, so im(φ) is a closed subset of Y ,
and it must be irreducible, since it is the image of a variety. Similarly, if Z is any closed
set in X, by considering the graph of the restriction of φ to Z and applying the fact that
X is complete we can show that φ(Z) is closed. Thus φ is a closed map.

We now show that φ(X) is complete. So let Z be any variety and consider the projection
φ(X)× Z → Z. Let us define the morphism Φ: X × Z → Y × Z by Φ(P,Q) = (φ(P ), Q).
If V is a closed set in φ(X)×Z ⊆ Y ×Z, then its inverse image Φ−1(V ) is closed in X ×Z,
since Φ is continuous. Since X is complete, the projection of Φ−1(V ) to Z is closed, but this
is precisely the projection of V to Z, since the Z-component of Φ is the identity map.

Lemma 16.13. If X is complete then so is every subvariety of X.

Proof. Let V ⊆ X be a variety. For any variety Z the projection V × Z → Z is the
composition

V × Z → X × Z → Z,

where the first map is an inclusion and the second map is a projection, both of which are
closed maps. Thus the projection V × Z → Z is a closed map and V is complete.

Theorem 16.14. Every complete affine variety consists of a single point.

Proof. We first consider A1 and the closed set {(x, y) : xy = 1} in A1 ×A1. The projection
to the second A1 is A1 − {0}, not a closed set, so the first A1 is not complete.

Now suppose X is an affine variety of positive dimension and let f be a function in
k[X] that does not lie in k; such an f exists since k(X) has positive transcendence degree.
The morphism f : X → A1 that sends P to f(P ) most then be dominant, because the
dual morphism of affine algebras k[A1] → k[X] is injective; it corresponds to the inclusion
k[f ] ⊆ k[X] with k ( k[f ]. But X is complete, so by Lemma 16.12 the image of f : X → A1

is a complete variety, and f is dominant, so A1 is complete, a contradiction.
Thus every complete affine variety has dimension 0 and is therefore a point.



With one trivial exception, affine varieties are not complete. In contrast, we will prove
that every projective variety is complete.

In order to prove this we will apply a theorem of Chevalley that gives a criterion for
the completeness of a variety in terms of the valuation rings in the function fields of all its
subvarieties; this is known as the valuative criterion for completeness. But we first take a
brief interlude to discuss valuation rings.

16.3 Valuation rings

We have already seen many examples of valuation rings in this course, but let us now
formally define the general term.

Definition 16.15. A proper subring R of a field K is a valuation ring of K if for every
x ∈ K×, either x ∈ R or x−1 ∈ R (possibly both).

Note that a valuation ring R is an integral domain (since it is a subring of a field), and
that K is its field of fractions. Given an arbitrary integral domain R that is not a field, we
say that R is a valuation ring if it is a valuation ring of its fraction field. In Problem Set 2
you proved that if K is any field with an nonarchimedean absolute value ‖ ‖, then the set

R = {x ∈ K : ‖x‖ ≤ 1}

is a valuation ring. You also proved that such an R is a local ring.

Definition 16.16. A local ring is a ring R with a unique maximal ideal m. The field R/m
is the residue field of R.

Note that fields are included in the definition of a local ring (the unique maximal ideal
is the zero ideal), but specifically excluded from the definition of a valuation ring.

Lemma 16.17. A ring R is a local ring if and only if the set R−R× is an ideal.

Proof. If R−R× is an ideal, then it contains every proper ideal and is therefore the unique
maximal ideal of R. Conversely, every element of R − R× lies in a maximal ideal, and if
there is only one such ideal it must equal R−R×.

Theorem 16.18. Every valuation ring is a local ring.

Proof. Let R be a valuation ring and let m = R−R×. We must show that m is an ideal. If
a 6∈ R× then ar 6∈ R× for all r ∈ R. So mR ⊆ m. If a, b ∈ m then a/b or b/a lies in R. So
(a/b+ 1)b = a+ b or (b/a+ 1)a = b+ a lies in m, hence m is an ideal.

A key property of valuation rings is that their ideals are totally ordered.

Lemma 16.19. If a and b are two ideals of a valuation ring R then either a ⊆ b or b ⊆ a.

Proof. Suppose not. Then there exist a ∈ a−b and b ∈ b−a, both nonzero. Either a/b or b/a
lies in R, so either (a/b)b = a ∈ b or (b/a)a = b ∈ a, both of which are contradictions.

The proof of Lemma 16.19 allows us to compare nonzero elements of R: we have a/b ∈ R
if and only if (a) ⊆ (b). This leads to the following definition.

Definition 16.20. Let R be a valuation ring with fraction field K. The value group of R
is Γ = K×/R×. The valuation defined by R is the quotient map v : K× → Γ.



The abelian group Γ is typically written additively, and it follows from Lemma 16.19
that it is totally ordered (its elements are associate classes and their inverses). We have

1. v(x) = 0 if and only if x ∈ R×,

2. v(xy) = v(x) + v(y),

3. v(x+ y) ≥ min(v(x), v(y)).

The first two properties are immediate from the definition; the third will be proved on the
problem set. For x ∈ K× we then have v(x) ≥ 0 if and only if x is a nonzero element of R.
By convention we extend v to K by defining v(0) = ∞, where ∞ is greater than every
element of the valuation group Γ. We then have R = {x ∈ K : v(x) ≥ 0}.1

When a valuation ring R is a PID, it is then a UFD with a unique (up to associates)
prime element p that generates its maximal ideal. In this case Γ ' Z, since for nonzero
a ∈ R we can associate v(a) to the largest integer n for which pn|a; this also determines
v(1/a) = −v(a). In this situation we say that Γ is discrete and call R a discrete valuation
ring. Recall that earlier we defined discrete valuation rings as local rings that are PIDs but
not fields. We will see show that this definition is equivalent, and also precisely characterize
the distinctions in the inclusions

discrete valuation rings ⊂ valuation rings ⊂ local rings

Lemma 16.21. Every finitely generated ideal of a valuation ring is principal.

Proof. Let (a1, . . . , an) be a finitely generated ideal of a valuation ring R with n minimal and
suppose n > 1. We must have a1/a2 6∈ R, else the generator a1 = (a1/a2)a2 is redundant.
But then a2/a1 ∈ R and a2 = (a2/a1)a2 is redundant, a contradiction.

Lemma 16.22. A local ring is a valuation ring if and only if it is an integral domain that
is not a field and all of its finitely generated ideals are principal.

Proof. The “only if” part of the statement is clear, so let us assume that R is a local ring
that satisfies the hypothesis on the right, and let a/b be any element of its fraction field. The
ideal (a, b) is finitely generated, hence principal, say (a, b) = (c). Thus for some d, e, f, g ∈ R
we have a = cd, b = ce, and c = af + bg = cdf + ceg, and therefore df + eg = 1. If neither d
nor e is a unit, then they both lie in the maximal ideal of R and so does 1, a contradiction.
So one of d or e is a unit, and therefore one of a/b = d/e and b/a = e/d lies in R.

The second lemma implies, in particular, that our two definitions of discrete valuation
ring are equivalent. Together the two lemmas give a third definition.

Corollary 16.23. A valuation ring is discrete if and only if it is Noetherian.

When the fraction field K of a valuation ring R is an extension of a smaller field k that
is contained in R, we say that R is a valuation ring of the extension K/k.

1Note that for Γ ⊆ R we define ‖x‖ = c−v(x) for some c > 0, so this agrees with R = {x ∈ K : ‖x‖ ≤ 1}.



16.4 Localization of a ring at a prime

One of the main ways in which local rings arise is by localizing an integral domain at one
of its prime ideals.

Definition 16.24. Let R be an integral domain and let p be a prime ideal in R. The
subring of R’s fraction field defined by

Rp := {a/b : a, b ∈ R, b 6∈ p}

is called the localization of R at p.2

Remark 16.25. As we saw in Lecture 15, caution is needed when interpreting expressions
like a/b in fraction fields of rings that are not necessarily UFDs; Rp is a set of equivalence
classes, and a/b is just one representative of a particular class. It may happen that the
equivalence class a/b lies in Rp even though b ∈ p; this occurs if a/b = c/d for some d 6∈ p.
We have ad = bc, so if b ∈ p then either a or d lies in p, but it could be a and not d.

We view R as a subring of the localization Rp via the canonical embedding r → r/1.

Lemma 16.26. The ring Rp is a local ring with maximal ideal pRp

Proof. This is obvious when Rp is a UFD, but we can’t assume this; however we can assume
that we always pick representatives a/b ∈ Rp so that b 6∈ p. If a/b ∈ Rp is not in pRp then
clearly a 6∈ p and therefore b/a ∈ Rp, so a/b is a unit. Conversely, if a/b ∈ Rp is a unit then
(a/b)(c/d) = 1 for some c, d ∈ R with d 6∈ p. We then have ac = bd, and if a is in p, then
so is bd, but then either b ∈ p or d ∈ p, since p is prime, which is a contradiction. Thus
Rp = pRp tR×p , therefore Rp is a local ring with maximal ideal pRp.

In general, the localization Rp need not be a valuation ring, but provided that p is
nonzero it is always contained in one, as you will prove on the problem set.

16.5 Valuative criterion for completeness

We now return to our goal of proving that every projective variety is complete. Let X be
a variety with coordinate ring k[X], and let P be a point in X. We then define the ideal

mP := {f ∈ k[X] : f(P ) = 0}.

Note that we have defined what f(P ) = 0 means, and even how to evaluate f at P , for
all the varieties we have considered, so this definition applies to any variety, not just affine
varieties. Indeed, mP is the kernel of the evaluation map k[X] → k defined by f → f(P ).
This makes it clear that mP is a maximal ideal, since the quotient k[X]/mP ' k is a field.

Definition 16.27. Let X be a variety with coordinate ring k[X] and let P ∈ X. The local
ring of P on X is the ring

OP := OP,X := k[X]mP = {g/h ∈ k(X) : h 6∈ mP }.

With Remark 16.25 in mind, it is clear that OP is precisely the ring of functions in k(X)
that are regular at P .

2Be sure not to confuse Rp with the quotient R/p.



We are now ready to state Chevalley’s valuative criterion for completeness.

Theorem 16.28. Let X be a variety such that for every subvariety Z ⊆ X and valuation
ring R of k(Z)/k there exists a point P ∈ Z such that OP,Z ⊆ R. Then X is complete.

The proof below is adapted from [2, Prop. 7.17].

Proof. So let Y be an affine variety and let V ⊆ X × Y be a closed set. We may assume
that V is irreducible, since we can always write V as a finite union of irreducible sets (the
coordinate ring of X × Y is Noetherian) and then prove that the image of each is closed,
and we may replace Y with the image of V ⊆ X × Y → Y , since whether the image is
closed or not does not depend on anything outside of its closure. We now replace X with
the image Z of V ⊆ X × Y → X, to which we will apply the hypothesis of the theorem.

We have the following commutative diagram with dominant morphisms φ and ψ.

Y

V Z × Y

Z

ϕ

ψ

⊆

πY

πZ

We need to show that the morphism ϕ is actually a surjection. So let Q be any point in Y ;
we will construct a point P such that (P,Q) is in V , which will prove Q ∈ ϕ(V ).

Let φ : k[Y ] → k be the evaluation map φ(g) = g(Q), which we note fixes k (and is
therefore surjective). The morphism of affine algebras ϕ∗ : k[Y ]→ k[V ] is injective, since ϕ
is dominant, thus we may regard k[Y ] as a subring of k[V ], which is in turn embedded in
the function field k(V ). By Lemma 16.29 below, there exists a valuation ring S of k(V )/k
that contains the image of k[Y ] in k(V ) such that the quotient map Φ: S → k from S to
its residue field k is an extension of φ.

Let us now consider the inverse image R ⊆ k(Z) of S under ψ∗ : k(Z) → k(V ). The
ring R is a valuation ring of k(Z)/k, because its image S is a valuation ring of k(V )/k. By
the hypothesis of the theorem there is a point P ∈ Z such that local ring OP,Z of Z at P
is contained in R. We then have

k[Z] ⊆ OP,Z ⊆ R
ψ∗
−→ S −→ k

By construction, S contains k[Y ] ⊆ k(V ), and it contains the injective image of k[Z] under
the map above. It follows that S contains the surjective image of k[Z × Y ] ' k[Z] ⊗ k[Y ]
in k[V ] under the morphism dual to the inclusion V ⊆ Z × Y , and therefore S contains
k[V ] ⊆ k(V ). The intersection of ker Φ with k[V ] is a maximal ideal of k[V ] corresponding
to a point in V . This point must be (P,Q); in fact it suffices to show the second coordinate
is Q, and this is clear: the map Φ: S → k is an extension of φ : k[Y ] → k, and for any
Q′ 6= Q we can find a function in k[Y ] that vanishes at Q but not at Q′ (since k = k̄).

The lemma used in the proof above is a standard result in commutative algebra that we
won’t prove here.



Lemma 16.29. Let A be an integral domain contained in a field K and let φ : A→ k be a
homomorphism to an algebraically closed field k. Then there exists a valuation ring B of K
containing A and a homomorphism Φ: B → k that extends φ. The kernel of Φ is then the
maximal ideal of B and k is its residue field.

Proof. Apply Propositions 5.21 and 5.23 of [1].

It will follow easily from Theorem 16.28 that all projective varieties are complete once
we prove two lemmas. The first is a technical result that allows us to restrict the residue
field of the valuation ring R that appears in the hypothesis of the thoerem.

Lemma 16.30. Let R be a valuation ring of an extension F/k of an algebraically closed
field k. Then there is a valuation ring R′ ⊆ R of F/k with residue field isomorphic to k.

Proof. Let m be the maximal ideal of R and let K = R/m be its residue field. We may
view k as a subfield of K, since the map k ⊆ R → R/m = K is a ring homomorphism
of fields. So k is an integral domain contained in K, and the identity map φ : k → k is
a homomorphism to an algebraically closed field. By Lemma 16.29, there is a valuation
ring S of K/k whose residue field is k. The map k ⊆ S → k is then the identity map.

The preimage of R′ = Ψ−1(S) ⊆ R under the quotient map Ψ: R → K is a subring of
R, and the kernel of the map R′ → S → k is a maximal ideal m′ (since k is a field), and
m′ contains m = Φ−1(0). We claim that R′ is a valuation ring of F/k. It is clear that R′

contains k, we just need to show that it is a valuation ring of F .
So let x ∈ F . If x 6∈ R then 1/x ∈ m ⊆ m′ ⊆ R′. If x 6∈ R but x 6∈ R′, then x 6∈ m′

and therefore x 6∈ m, implying that 1/x ∈ R, since R is a valuation ring. The image of x
in K under the quotient map R → K does not lie in S, since x 6∈ R′, so the image of 1/x
in K must lies in S, since S is a valuation ring of K/k. Therefore 1/x ∈ R′. Thus for every
x ∈ F either x or 1/x lies in R′. So R′ is a valuation ring of F , and R′/m′ ' k.

Corollary 16.31. If X is a variety such that for every subvariety Z ⊆ X and valuation
ring R of k(Z)/k with residue field k there is a point P ∈ Z such that OP,Z ⊆ R, then X
is complete.

The next lemma is almost trivial, but it is the essential reason why projective varieties
are complete (in contrast to affine varieties), so we consider it separately.

Lemma 16.32. Let R be a valuation ring of F . For any x0, . . . , xn ∈ F× there exists
λ ∈ F× such that λx0, . . . , λxn ∈ R and at least one λxi is a unit in R.

Proof. We proceed by induction. For n = 0 we may take λ = 1/x0 so that λx0 = 1 ∈ R×.
We now assume λx0, . . . , λxn−1 ∈ R with λxi ∈ R× for some i < n. If λxn ∈ R then we are
done, and otherwise 1/(λxn) ∈ R and we let λ′ = 1/xn. Then λ′xj = xi/xn = λxj/(λxn)
lies in R for j < n, and λ′xn = 1 ∈ R×.

Theorem 16.33. All projective varieties are complete.

Proof. By Lemma 16.13, it is enough to show that Pn is complete. To do this we apply
Corollary 16.31. Let Z be a variety in Pn and let R be a valuation ring of k(Z)/k with
residue field k. We will construct a point P ∈ Z for which OP ⊆ R.

Let y0, . . . , yn be homogeneous coordinates for Pn and let z0, . . . , zn denote their images
in k(Z). Recall that elements of k(Z) can be represented as rational functions whose numer-
ator and denominator are homogeneous polynomials of the same degree; these correspond



to homegenizations of elements of k(Zi) with respect to yi, where Zi = Z∩Zi is a nonempty
affine part of Z.

By Lemma 16.32 there exists λ ∈ k(Z)× such that λz0, . . . , λzn ∈ R with at least one
λzi ∈ R×. Let φ : R→ k be the quotient map from R to its residue field, and let P be the
projective point (φ(λz0) : φ(λz1) : . . . : φ(λzn)), where we note that at least one φ(λzi) is
nonzero. The point P lies in Z, since for any homogeneous f ∈ I(Z) of degree d we have

f(λz0, . . . , λzn) = λdf(z0, . . . , zn) = 0

as an element of k(Z), and therefore

0 = φ(0) = φ(f(λz0, . . . , λzn)) = f(φ(λz0), . . . , φ(λzn)) = f(P ).

Any element of the local ring OP can be written as g/h with h(P ) 6= 0, and we can write
g and h as homogeneous polynomials in λz0, . . . , λzn that lie in R (since the λzi generate
k(Z) as a k-algebra). We then have

φ(h(λz0, . . . , λzn)) = h(φ(λz0), . . . , φ(λzn)) = h(P ) 6= 0,

so h 6∈ kerφ, and therefore h ∈ R×, so g/h ∈ R. Thus OP ⊆ R, as desired.

References

[1] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebara, Addison-
Wesley, 1969.

[2] D. Bump, Algebraic geometry, World Scientific, 1998.



18.782 Introduction to Arithmetic Geometry Fall 2013
Lecture #17 11/05/2013

Andrew V. Sutherland

Throughout this lecture k denotes an algebraically closed field.

17.1 Tangent spaces and hypersurfaces

For any polynomial f ∈ k[x1, . . . , xn] and point P = (a1, . . . , an) ∈ An we define the affine
linear form

fP (x1, . . . , xn) :=
n∑

i=1

∂f

∂xi
(P )(xi − ai).

The zero locus of fP in An is an affine hyperplane in An, a subvariety isomorphic to An−1.
Note that fP (P ) = 0, so the zero locus contains P .

Definition 17.1. Let P be a point on an affine variety V . The tangent space of V at P is
the variety TP (V ) defined by the ideal {fp : f ∈ I(V )}.

It is clear that Tp(V ) is a variety; indeed, it is the nonempty intersection of a set of
affine hyperplanes in An and therefore an affine subspace of An isomorphic to Ad, where
d = dimTP (V ). Note that the definition of TP (V ) does not require us to choose a set of
generators for I(V ), but for practical applications we want to be able to compute TP (V )
in terms of a finite set of generators for I(V ). The following lemma shows that we can do
this, and, most importantly, it does not matter which set of generators we pick.

Lemma 17.2. Let P be a point on an affine variety V . If f1, . . . , fm generate I(V ), then
the corresponding affine linear forms f1,P , . . . , fm,P generate I(TP (V )).

Proof. Let g =
∑
hifi be an element of I(V ). Applying the product rule and the fact that

fi,P (P ) = 0 yields

gP =
∑
i

(
hi(P )fi,P + hi,P fi(P )

)
=
∑
i

hi(P )fi,P , (1)

which is an element of the ideal (f1,P , . . . , fm,P ). Thus I(Tp(V )) = (f1,P , . . . , fm,P ).

When considering the tangent space of a variety at a particular point P , we may assume
without loss of generality that P = (0, . . . , 0), since we can always translate the ambient
affine space An; this is just a linear change of coordinates (indeed, this is the very definition
of affine space, it is a vector space without a distinguished origin). We can then view the
affine subspace TP (V ) ⊆ An as a linear subspace of the vector space kn. The affine linear
forms fP are then linear forms on kn, equivalently, elements of the dual space (kn)∨.

Recall from linear algebra that the dual space (kn)∨ is the space of linear functionals
λ : kn → k. The orthogonal complement S⊥ ⊆ (kn)∨ of a subspace S ⊆ kn is the set of
linear functionals λ for which λ(P ) = 0 for all P ∈ S; it is a subspace of (kn)∨, and since
kn has finite dimension n, we have dimS + dimS⊥ = n.

Theorem 17.3. Let P be a point on an affine variety V ⊆ An with ideal I(V ) = (f1, . . . , fm).
If we identify An with the vector space kn with origin at P , the subspace of (kn)∨ spanned
by the linear forms f1,P , . . . , fm,P is TP (V )⊥, the orthogonal complement of Tp(V ).



Proof. This follows immediately from Lemma 17.2 and its proof; the set of linear forms in
I(TP (V )) is precisely the set of linear forms that vanish at every point in Tp(V ), which, by
definition, is the orthogonal complement T∨P . Moreover, we see from (1) that every linear
form in I(TP (V )) is a k-linear combination of f1,P . . . , fm,P .

The vector space TP (V )⊥ is called the cotangent space of V at P . As noted above,
as a variety, TP (V ) is isomorphic to some Ad, where d = dimTP (V ), and it follows that
the dimenstion of TP (V ) as a vector space is the same as its dimension as a variety, since
dimAd = d = dimk k

d. The dimension of TP (V )⊥ is then n− d.
Recall from Lecture 13 the Jacobian matrix

JP = JP (f1, . . . , fm) :=


∂f1
∂x1

(P ) · · · ∂f1
xn

(P )
... · · ·

...
∂fm
∂x1

(P ) · · · ∂fn
xn

(P )

 .

For a variety V with I(V ) = (f1, . . . , fm), we defined a point P ∈ V to be smooth (or
nonsingular) precisely when rank JP = n − dimV . Viewing JP as the matrix of a lin-
ear transformation from (kn)∨ to (kn)∨ whose image is TP (V )⊥, we obtain the following
corollary of Theorem 17.3.

Corollary 17.4. Let P be a point on an affine variety V ⊆ An with I(V ) = (f1, . . . , fm),
and let JP = JP (f1, . . . , fm). Then dimTP (V )⊥ = rank JP and dimTP (V ) = n− rank JP .
In particular, the rank of JP does not depend on the choice of generators for I(V ) and P
is a smooth point of V if and only if dimTP = dimV .

Remark 17.5. For projective varieties V we defined smooth points P as points that are
smooth in all (equivalently, any) affine part containing P . One can also define tangent spaces
and Jacobian matrices for projective varieties directly using generators for the homogeneous
ideal of V . This is often more convenient for practical computations.

Corollary 17.13 makes it clear that, as claimed in Lecture 13, our notion of a smooth
point P ∈ V is well defined; it does not depend on which generators f1, . . . , fm of I(V ) we
use to compute JP , or even on the number of generators. Now we want to consider what
can happen when dimTP (V ) 6= dimV . In this case dimTP (V ) must be strictly greater than
dimV ; this is easy to see when V is defined by a single equation, since then JP (f) has just
one row and its rank is either 0 or 1.

Definition 17.6. A variety V for which I(V ) is a nonzero principal ideal is a hypersurface.

Lemma 17.7. Every hypersurface in An or Pn has dimension n− 1.

Proof. Let V ⊆ An be a hypersurface with I(V ) = (f) for some nonzero f ∈ k[x1, . . . , xn].
We must have dimV ≤ n − 1, since V ( An. Let φ : k[x1, . . . , xn] → k[x1, . . . , xn]/(f)
be the quotient map. We must have f 6∈ k, since V 6= ∅, so degxi

f > 0 for some xi,
say x1. If dimV < n− 1 then the transcendence degree of k(V ) is less than n− 1, therefore
φ(x2), . . . , φ(xn) must be algebraically dependent as elements of k(V ). Thus there exists
g ∈ k[x2, . . . , xn] such that g(φ(x2), . . . , φ(xn)) = 0. But then φ(g) = 0, so g ∈ kerφ = (f).
But this is a contradiction, since degx1

g = 0. So dimV = n− 1. If V ⊆ Pn, then one of its
affine parts Vi is a hypersurface in An, and then dimV = dimVi = n− 1.



The converse to Lemma 17.7 is true; every variety of codimension 1 is a hypersurface.
This follows from the general fact that every variety is birationally equivalent to a hyper-
surface. Recall that a function field F/k if any finitely generated extension; the dimension
of a function field is its transcendence degree.

Theorem 17.8. Let F/k be a function field of dimension n. Then there exist algebraically
independent elements α1, . . . , αn ∈ F and an element αn+1 algebraic over k(α1, . . . , αm)
such that F = k(α1, . . . , αn+1).

The following proof is adapted from [1, App. 5, Thm. 1].

Proof. Let γ1, . . . , γm be a set of generators for F/k of minimal cardinality m, ordered so
that γ1, . . . , γn is a transcendence basis (every set of generators contains a transcendence
basis). If m = n then we may take γn+1 = 0 and we are done. Otherwise γn+1 is algebraic
over k(γ1, . . . , γn), and we claim that in fact m = n+ 1 and we are also done.

Suppose m > n + 1. Let f ∈ k[x1, . . . , xn+1] be irreducible with f(γ1, . . . , γn+1) = 0;
such an f exists since γ1, . . . , γn+1 are algebraically dependent. We must have ∂f/∂xi 6= 0
for some xi; if not than we must have char(k) = p > 0 and f = g(xp1, . . . , x

p
n+1) =

gp(x1, . . . , xn+1) for some g ∈ k[x1, . . . , xn+1], but this is impossible since f is irreducible. It
follows that γi is algebraic, and in fact separable, over K = k(γ1, . . . , γi−1, γi+1, . . . , γn+1);
the irreducible polynomial f(γ1, . . . , γi−1, xi, γi+1, . . . , γn+1|) has γi as a root, and its deriva-
tive is nonzero. Now γm is also algebraic over K, and it follows from the primitive element
theorem [2, §6.10] that K(γi, γm) = K(δ) for some δ ∈ K.1 But this contradicts the
minimality of m, so we must have m = n+ 1 as claimed.

Remark 17.9. Theorem 17.8 holds for any perfect field k; it is not necessary for k to be
algebraically closed.

Theorem 17.10. Every affine (resp. projective) variety of dimension n is birationally
equivalent to a hypersurface in An+1 (resp. Pn+1).

Proof. Two projective varieties are birationally equivalent if and only if all their nonempty
affine parts are, and the projective closure of a hypersurface is a hypersurface, so it suffices
to consider affine varieties. Recall from Lecture 15 that varieties are birationally equivalent
if and only if their function fields are isomorphic, and it follows from Theorem 17.8 that
every function field arises as the function field of a hypersurface: if k(V ) = k(γ1, . . . , γn+1)
with γ1, . . . , γn) algebraically independent, then there exists an irreducible polynomial f in
k[x1, . . . , xn+1] for which f(γ1, . . . , γn+1) = 0, and then V is birationally equivalent to the
zero locus of f in An+1.

Corollary 17.11. The set of singular points of a variety is a closed subset; equivalently,
the set of nonsingular points is a dense open subset.

Proof. It suffices to prove this for affine varieties. So let V ⊆ An be an affine variety with
ideal (f1, . . . , fm), and for any P ∈ V let JP = JP (f1, . . . , fm) be the Jacobian matrix.
Then

Sing(V) := {P: dim TP(V) > dim V} = {P: rank JP < n− dim V}

is the set of singular points on V . Let r = n − dimV . We have rank JP < r if and only if
every r×r minor of JP has determinant zero. If we now consider the matrix of polynomials

1As noted in [2], to prove K(α, β) = K(δ) for some δ ∈ K(α, β), we only need one of α, β to be separable.



(∂fi/∂xj), the determinant of each of its r × r minors is a polynomial in k[x1, . . . , xn], and
Sing(V) is the intersection of V with the zero locus of all these polynomials. Thus Sing(V)
is an algebraic set, hence closed.

Recall the one-to-one correspondence between points P = (a1, . . . , an) in An and max-
imal ideals MP = (x1 − a1, . . . , xn − an) of k[An]. If V ⊆ An is an affine variety, then
the maximal ideals mP of its coordinate ring k[V ] = k[An]/I(V ) are in one-to-one corre-
spondence with the maximal ideals MP of k[An] that contain I(V ); these are precisely the
maximal ideals MP for which P ∈ V .

If we choose coordinates so that P = (0, . . . , 0), then MP is a k-vector space that
contains M2

P as a subspace, and the quotient space MP /M
2
P is then also a k-vector space.

Indeed, its elements correspond to (cosets of) linear forms on kn. We may similarly view
mP ,m

2
P , and mP /m

2
P as k-vector spaces, and this leads to the following theorem.

Theorem 17.12. Let P be a point on an affine variety V . Then TP (V )∨ ' mP /m
2
P .

Proof. As above we assume without loss of generality that P = (0, . . . , 0). Then MP consists
of the polynomials in k[x1, . . . , xn] for which each term has degree at least 1 (equivalently,
constant term 0). We now consider the linear transformation

D : MP → (kn)∨

that sends f ∈MP to the linear form fP ∈ (kn)∨. This map is surjective, and its kernel is
M2

P ; we have fP = 0 if and only if ∂f/∂xi(0) = 0 for i = 1, . . . , n, and this occurs precisely
when every term in f has degree at least 2, equivalently, f ∈M2

P . It follows that

MP /M
2
P ' (kn)∨.

The restriction map (kn)∨ → (TP )∨ that restricts the domain of a linear form on kn to
TP (V ) is surjective, and composing this with D yields a surjective linear transformation

d : MP → TP (V )∨

whose kernel we claim is equal to M2
P + I(V ) (this is a sum of ideals in k[x1, . . . , xn] that

is clearly a subset of MP ). A polynomial f ∈ MP lies in ker d if and only if the restriction
of fP to TP (V ) is the zero function, which occurs if and only if fP = gP for some g ∈ I(V ),
since TP the zero locus of gP for g ∈ I(V ). But this happens if and only if f − g lies
kerD = M2

P , equivalently, f ∈M2
P + I(V ).

We therefore have

TP (V )∨ ' MP

M2
P + I(V )

' MP /I(V )

(M2
P + I(V )/I(V )

=
MP /I(V )

M2
P /I(V )

' mP /m
2
P .

Corollary 17.13. The smooth points P on a variety V are precisely the points P for which

dimmP /m
2
P = dimV = dim k[V ]

The three dimensions in the corollary above are, respectively, the dimension of mP /m
2
P

as a k-vector space, the dimension of V as a variety, and the Krull dimension of the co-
ordinate ring k[V ]; as noted in Lecture 13, we always have dimV = dim k[V ]. The key
point is that we now have a completely algebraic notion of smooth points. If R is any
affine algebra, the maximal ideals m of R correspond to smooth points on a variety with
coordinate ring R, and we can characterize the “smooth” maximal ideals as those for which
dimk m/m

2 = dimR, where k = Rm/m is now the residue field of the localization of R
at m. Smooth varieties then correspond to affine algebras R in which every maximal ideal
is “smooth”.
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As usual, all the rings we consider are commutative rings with an identity element.

18.1 Regular local rings

Consider a local ring R with unique maximal ideal m. The ideal m is, in particular, an
abelian group, and it contains m2 as a normal subgroup, so we can consider the quotient
group m/m2, where the group operation is addition of cosets:

(m1 + m2) + (m2 + m2) = (m1 +m2) + m2.

But m is also an ideal, so it is closed under multiplication by R, and it is a maximal ideal,
so R/m is a field (the residue field). The quotient group m/m2 has a natural structure as
an (R/m)-vector space. Scalars are cosets r+m in the field R/m, and scalar multiplication
is defined by

(r + m)(m+ m2) = rm+ m2.

In practice one often doesn’t write out the cosets explicitly (especially for elements of the
residue field), but it is important to keep the underlying definitions in mind; they are a
valuable compass if you ever start to feel lost.

The motivation for this discussion is the case where R is the local ring OP of regular
functions at a point P on a variety V . In this setting m/m2 is precisely the vector space
mP /m

2
P that is isomorphic to the T∨P , the dual of the tangent space at P ; recall from the

previous lecture that P is a smooth point of V if and only if dimmP /m
2
P = dimV . We

now give an algebraic characterization of this situation that does not involve varieties. We
write dimm/m2 to indicate the dimension of m/m2 as an (R/m)-vector space, and we write
dimR to denote the (Krull) dimension of the ring R.

Definition 18.1. A Noetherian local ring R with maximal ideal m is a regular local ring if
dimm/m2 = dimR (note that Noetherian is included in the definition of regular).1

We are particularly interested in regular local rings of dimension 1, these correspond to
rings OP of regular functions at a smooth point P on a curve (a variety of dimension one).

Theorem 18.2. A ring R is a regular local ring of dimension one if and only if it is a
discrete valuation ring.

Proof. We prove the easier direction first. Let R be a discrete valuation ring (DVR) with
maximal ideal m = (t). Then R is a local ring, and it is certainly Noetherian, since it is a
principal ideal domain (PID). Its prime ideals are (0) and (t), so it has dimension 1, and
t+ m2 generates m/m2, so dimm/m2 = 1. Thus R is a regular local ring of dimension 1.

Let R be a regular local ring of dimension one. Its unique maximal ideal m is not equal
to m2, since dimm/m2 = 1 > 0; in particular, m 6= (0) and R is not a field. Let t ∈ m−m2.
Then t+m2 generates m/m2, since dimm/m2 = 1. By Corollary 18.4 of Nakayama’s lemma
(proved below), t generates m. So every x ∈ R − (0) has the form x = utn, with u ∈ R×
and n ∈ Z≥0 (since R is a local ring with m = (t)), and every nonzero ideal is principal,
of the form (tn). It follows that the prime ideals in R are exactly (0) and (t), since R has
dimension one. So R = R/(0) is an integral domain, and therefore a PID, hence a DVR.

1More generally, a Noetherian ring is regular if all of its localizations at prime ideals are regular.



To prove Corollary 18.4 used in the proof above we require a special case of what is
known as Nakayama’s lemma. The statement of the lemma may seem a bit strange at first,
but it is surprisingly useful and has many applications.

Lemma 18.3 (Nakayama). Let R be a local ring with maximal ideal m and suppose that M
is a finitely generated R-module with the property M = mM . Then M is the zero module.

Proof. Let b1, . . . , bn be generators for M . By hypothesis, every bi can be written in the
form bi =

∑
j aijbj with aij ∈ m. In matrix form we have B = AB, where B = (b1, . . . , bn)t

is a column vector and A = (aij) is an n × n matrix with entries in m. Equivalently,
(I − A)B = 0, where I is the n × n identity matrix. The diagonal entries 1 − aii of I − A
are units, because 1 − aii cannot lie in m (otherwise 1 ∈ m, which is not the case), and
every element of R−m is a unit (since R is a local ring). However the off-diagonal entries
of I −A all lie in m. Expressing the determinant d of I −A as a sum over permutations, it
is clear that d = 1 + a for some a ∈ m, hence d is a unit and I − A is invertible. But then
(I −A)−1(I −A)B = B = 0, which means that M is the zero module.

Corollary 18.4. Let R be a local Noetherian ring with maximal ideal m. Then t1, . . . , tn ∈ m
generate m if and only if their images generate m/m2 as an R/m vector space.

Proof. The “only if” direction is clear. Let N be the ideal (t1, . . . , tn) ⊆ m. If the images
of t1, . . . , tn in m/m2 generate m/m2 as an R/m-vector space, then we have

N + m2 = m + m2

(N + m2)/N = (m + m2)/N

m(m/N) = m/N,

where we have used N/N = 0 and m + m2 = m (since m2 ⊆ m). By Nakayama’s lemma,
M = m/N is the zero module, so m = N and t1, . . . , tn generate m.

18.2 Smooth projective curves

It follows from Theorem 18.2 that for a smooth curve C the local rings OP = k[C]mP are
all discrete valuation rings of k(C)/k. If C is a projective curve, then by Theorem 16.33
it is complete, and from the proof of Theorem 16.33 we know that it satisfies Chevalley’s
criterion: every valuation ring R of k(C)/k contains a local ring OP . The fact that OP
is a discrete valuation ring actually forces R = OP ; this is a consequence of the following
theorem.

Theorem 18.5. Let R1 and R2 be valuation rings with the same fraction field, let m1

and m2 be their respective maximal ideals, and suppose R1 ( R2. Then m2 ( m1 and
dimR2 < dimR1. In particular, R1 cannot be a discrete valuation ring.

Proof. We first note R1 ⊆ R2 implies R×1 ⊆ R×2 . For x ∈ R2 − R1 we have 1/x ∈ R1 ⊆ R2

and x ∈ R×2 , so R2 − R1 ⊆ R×2 . Thus R2 − R×2 ⊆ R2 − R×1 = (R2 − R1) t (R1 − R×1 ), and
this implies m2 = R2 −R×2 ⊆ R1 −R×1 = m1 since R2 −R1 and R2 −R×2 are disjoint. And
for any x ∈ R2 −R1 we have 1/x ∈ R×2 = R2 −m2 and 1/x ∈ R1 −R×1 = m1, so m2 ( m1.

Every prime ideal of R2 is contained in m2, hence in m1, and if p is prime in R2 then
p ∩ R1 is clearly prime in R1: if ab ∈ p for some a, b ∈ R1 ⊆ R2 then one of a, b lies in p.
Thus every chain of prime ideals in R2 is also a chain of prime ideals in R1, and in R1 any



such chain can be extended by adding the prime ideal m1. Thus dimR2 < dimR1. If R1

is a DVR then dimR2 < dimR1 = 1, but dimR2 ≥ 1, since R2 is a valuation ring (not a
field), therefore R1 is not a DVR.

Thus we have a one-to-one correspondence between the points on a smooth projective
curve C and the discrete valuation rings of k(C)/k.

Theorem 18.6. Let C be a smooth projective curve. Every rational map φ : C → V from
C to a projective variety V is a morphism.

Proof. Let φ = (φ0 : · · · : φn) and consider any point P ∈ C. Let us pick a uniformizer t
for the discrete valuation ring OP (a generator for the maximal ideal mP ), and let

n = min{ordP (φ1), . . . , ordP (φn)},

where ordP : k(C) → k(C)×/O×P ' Z is the discrete valuation of OP . If n = 0 then φ is
regular at P , since then all the φi are defined at P and at least one is a unit in O×P , hence
nonzero at P . But in any case we have

ordP (t−nφi) = ordP (φi)− n ≥ 0

for i = 0, . . . , n, with equality for at least one value of i. It follows that(
t−nφ0 : · · · : t−nφn

)
= (φ0 : · · · : φn)

is regular at P . This holds for every P ∈ C, so φ is a regular rational map, hence a
morphism.

Corollary 18.7. Every rational map φ : C1 → C2 between smooth projective curves is either
constant or surjective.

Proof. Projective varieties are complete, so im(φ) is a subvariety of C2, and since dimC2 = 1
this is either a point (in which case φ is constant) or all of C2.

Corollary 18.8. Every birational map between smooth projective curves is an isomorphism.

It follows from Corollary 18.8 that if a curve C1 is birationally equivalent to any smooth
projective curve C2, then all such C2 are isomorphic. We want to show that such a C2

always exists. Recall that birationally equivalent curves have isomorphic function fields.
Thus it suffices to show that every function field of dimension one actually arises as the
function field of a smooth projective curve.

18.3 Function fields as abstract curves

Let F/k be a function field of dimension one, where k is an algebraically closed field. We
know that if F is the function field of a smooth projective curve C, then there is a one-to-one
correspondence between the points of C and the discrete valuation rings of F . Our strategy
is to define an abstract curve CF whose “points” correspond to the discrete valuation rings
of F , and then show that it is actually isomorphic to a smooth projective curve.

So let X = XF be the set of all maximal ideals P of discrete valuation rings of F/k.
The elements of P ∈ XF are called points (or places). Let OP,X = OP denote the valuation



ring with maximal ideal P , and let ordP denote its associated valuation. For any U ⊂ X
the ring of regular functions on U is the ring

OX(U) = O(U) := ∩P∈UOP = {f ∈ F : ordP (f) ≥ 0 for all P ∈ U} ⊆ F,

and we call O(X) the ring of regular functions (or coordinate ring) of X. Note that O(X)
is precisely the intersection of all the valuation rings of F/k.

For f ∈ OP we define f(P ) to be the image of f in the residue field OP /P ' k; thus

f(P ) = 0⇐⇒ f ∈ P ⇐⇒ ordP (f) > 0.

For f ∈ OX we have f(P ) = 0 if and only if ordP (f) > 0. We then give X the Zariski
topology by taking as closed sets the zero locus of any subset of O(X).2 If F is actually the
function field of a smooth projective curve, all the definitions above agree with our usual
notation, as we will verify shortly.

Definition 18.9. An abstract curve is the topological space X = XF with rings of regular
functions OX,U determined by the function field F/k as above. A morphism φ : X → Y
between abstract curves or projective varieties is a continuous map such that for every open
U ⊆ Y and f ∈ OY (U) we have f ◦ φ ∈ OX(φ−1(U)).

As you will verify in the homework, if X and Y are both projective varieties this defini-
tion of a morphism is equivalent to our earlier definition of a morphism between projective
varieties. The identity map X → X is obviously a morphism, and we can compose mor-
phisms: if φ : X → Y and ϕ : Y → Z are morphisms, then ϕ ◦ φ is continuous, and for any
open U ⊆ Z and f ∈ OZ(U) we have f ◦ ϕ ∈ OY (ϕ−1(U)), and then

f ◦ (ϕ ◦ φ) = (f ◦ ϕ) ◦ φ ∈ OX(φ−1(ϕ−1(U))) = OX((ϕ ◦ φ)−1(U)).

Thus we have a category whose objects include both abstract curves and projective varieties.
Let us verify that we have set things up correctly by proving that every smooth projective

curve is isomorphic to the abstract curve determined by its function field. This follows
immediately from our definitions, but it is worth unravelling them once just to be sure.

Theorem 18.10. Let C be a smooth projective curve and let X = Xk(C) be the abstract
curve associated to its function field. Then C and X are isomorphic.

Proof. For the sake of clarity, let us identify the points (discrete valuation rings) of X as
maximal ideals mP corresponding to points P ∈ C. As noted above there is a one-to-one
correspondence between P ∈ C and mP ∈ X, we just need to show that this induces an
isomorphism of curves. So let φ : C → X be the bijection that sends P to mP .

For any U ⊆ C we have, by definition, OC(U) = ∩P∈UOP,C andOX(V ) = ∩mP∈VOmP ,X ,
so OC(U) = OX(φ(U)) In particular,

O(C) = O(φ(C)) = O(X),

hence the rings of regular functions of C and X are actually identical (not just in bijection).
Moreover, for any open U ⊆ X and f ∈ OX(U) we have f ◦ φ = f ∈ OC(φ−1(U)), and for
any open U ⊆ C and f ∈ OC,U we have f ◦ φ−1 = f ∈ OX(φ(U)).

2As we will prove in this next lecture, this is just the cofinite topology: the open sets are the empty set
and complements of finite sets.



A set U ⊆ C is closed if and only if it is the zero locus of some subset of O(C), and for
any P ∈ C, equivalently, any φ(P ) ∈ X, we have

f(P ) = 0⇐⇒ ordP (f) > 0⇐⇒ f(φ(P )) = 0,

where we are using the definition of f(φ(P )) = f(mP ) for mP ∈ X on the right. It follows
that φ is a topology isomorphism from C to X; in particular, both φ and φ−1 are continuous.
Thus φ and φ−1 are both morphisms, and φ ◦ φ−1 and φ−1 ◦ φ are the identity maps.

One last ingredient before our main result; we want to be able to construct smooth
affine curves with a specified function field that contain a point whose local ring is equal to
a specific discrete valuation ring.

Lemma 18.11. Let R be a discrete valuation ring of a function field F/k of dimension one.
There exists a smooth affine curve C with k(C) = F such that R = OP for some P ∈ C.

Proof. The extension F/k is finitely generated, so let α1, . . . , αn be generators, and replace
αi with 1/αi as required so that α1, . . . , αn ∈ R. Let S be the intersection of all discrete
valuation rings of F/k that contain the subalgebra k[α1, . . . , αn] ⊆ F . Then S ⊆ R is an
integral domain with fraction field F . The kernel of the map from the polynomial ring
k[x1, . . . , xn] to S that sends each xi to αi is a prime ideal I for which S = k[x1, . . . , xn]/I.
The variety C ⊆ An defined by I has coordinate ring k[C] = S ⊆ R and function field
k(C) = F , so it has dimension one and is a curve

Moreover, the curve C is smooth; its coordinate ring S is integrally closed (it is an inter-
section of discrete valuation rings, each of which is integrally closed), and by Lemma 18.12
below, all its local rings OP are discrete valuation rings, hence regular, and therefore every
point P ∈ C is smooth.

Let φ : R→ R/m = k be the quotient map and consider the point P (φ(x1), . . . , φ(xn)).
Every f in the maximal ideal mP of OP satisfies

φ(f) = φ(f(x1, . . . , xn)) = f(φ(x1), . . . , φ(xn)) = f(P ) = 0

and therefore lies in m. By Theorem 18.5, R = OP as desired.

The following lemma is a standard result of commutative algebra (so feel free to skip the
proof on a first reading), but it is an essential result that has a reasonably straight-forward
proof (using Theorem 18.2), so we include it here.3

Lemma 18.12. If A is an integrally closed Noetherian domain of dimension one then all
of its localizations at nonzero prime ideals are discrete valuation rings.4

Proof. Let F be the fraction field of A and let p be a nonzero prime ideal. We first note
that Ap is integrally closed. Indeed, if xn + an−1x

n−1 + · · · + a0 = 0 is an equation with
ai ∈ Ap and x ∈ F , then we may pick s ∈ A − p so that all the sai lie in A (let s be the
product of all the denominators ci 6∈ p of ai = bi/ci). Multiplying through by sn yields an
equation (sx)n + san−1(sx)n−1 + · · ·+ sna0 = 0 in y = sx with coefficients in A. Since A is
integrally closed, y ∈ A, therefore x = y/s ∈ Ap as desired.

3There are plenty of shorter proofs, but they tend to use facts that we have not proved.
4Such rings are called Dedekind domains. They play an important role in number theory where they

appear as the ring of integers of a number field. The key property of a Dedekind domain is that ideals can
be uniquely factored into prime ideals, although we don’t use this here.



Let m = pAp be the maximal ideal of Ap. The ring Ap has dimension one, since (0) ( m
are all the prime ideals in Ap (otherwise we would have a nonzero prime q properly contained
in m, but then q ∩ A would be a nonzero prime properly contained in p, contradicting
dimA = 1). Thus R = Ap is a local ring of dimension one. By Theorem 18.2, to show
that R is a DVR it suffices to prove that R is regular; it is clear that R is Noetherian
(since A is), we just need to show dimm/m2 = dimR = 1. By Nakayama’s lemma, m2 6= m,
so dimm/m2 6= 0. To show dimm/m2 = 1 it suffices to prove that m is principal. To do this
we adapt an argument of Serre from [1, §I.1].

Let S = {y ∈ F : ym ⊆ R}, and let mS denote the R-ideal generated by all products xy
with x ∈ m and y ∈ S (just like an ideal product). Then m ⊆ mS ⊆ R, so either mS = m
or mS = R. We claim that the latter holds. Assuming it does, then 1 =

∑
xiyi for some

xi ∈ m and yi ∈ S. The products xiyi all lie in R but not all can lie in m, so some xjyj is
invertible. Set x = xj/(xjyj) and y = yj so that xy = 1, with x ∈ m and y ∈ S. We can
then write any z ∈ m as z = 1 · z = xy · z = x · yz. But yz ∈ R, since y ∈ S, so every z ∈ m
actually lies in (x). Thus m = (x) is principal as desired, assuming mS = R.

We now prove that mS = R by supposing the contrary and deriving a contradiction. We
will do this by proving that mS = m implies both S ⊆ R and S 6⊆ R. So assume mS = m.

We first prove S ⊆ R. Since mS = m, for any λ ∈ S we have λm ⊆ m. The ring R is
Noetherian, so let m1, . . . ,mk be generators for m. We then have k equations of the form∑

i,j aijmj = λmi with aij ∈ R. Thus λ is an eigenvalue of the matrix (aij) and therefore
a root of its characteristic polynomial, which is monic, with coefficients in R. Since R is
integrally closed, λ ∈ R, and therefore S ⊆ R as claimed.

We now prove S 6⊆ R, thereby obtaining a contradiction. Let x ∈ m−{0}, and consider
the ring Tx = {y/xn : y ∈ R,n ≥ 0}. We claim Tx = F : if not, it contains a nonzero
maximal ideal q with x 6∈ q (since x is a unit in Tx), so q ∩R 6= m, and clearly q ∩R 6= (0),
but then q∩R is a prime ideal of R strictly between (0) and m, which contradicts dimR = 1.
So every element of Tx = F can be written in the form y/xn, and this holds for any x ∈ m.
Applying this to a fixed 1/z with z ∈ m − {0}, we see that every x ∈ m − {0} satisfies
xn = yz for some y ∈ R and n ≥ 0, thus xn ∈ (z) for all x ∈ m and sufficiently large n.
Applying this to our generators m1, . . . ,mk for m, choose n so that mn

1 , . . . ,m
n
k ∈ (z), and

then let N = kn so that (
∑

i rimi)
N ∈ (z) for all choices of ri ∈ R. Thus mn ⊆ (z) for all

n ≥ N , and there is some minimal n ≥ 1 for which mn ⊆ (z). If n = 1 then m = (z) is
principal and we are done. Otherwise, choose y ∈ mn−1 so thaty 6∈ (z) but ym ⊆ (z). Then
(y/z)m ∈ R, so y/z ∈ S, but y/z 6∈ R (since z ∈ m), so S 6⊆ R as claimed.

We are now ready to prove our main theorem.

Theorem 18.13. Every abstract curve is isomorphic to a smooth projective curve.

Proof. Let X = XF be the abstract curve associated to the function field F/k. Then O(X)
is an affine algebra, and there is a corresponding affine curve A. The curve A is smooth,
since all its local rings OP are discrete valuation rings, but it is not complete, so not every
point on X (each corresponding to a discrete valuation rings of F/k) corresponds to a point
on A. So let C be the projective closure of A; the curve C need not be smooth, but it is
complete, and it satisfies Chevalley’s criterion. Thus for each point P ∈ X, the associated
discrete valuation ring OP,X contains the local ring OQ,C of a point Q ∈ C1. The point Q
is certainly unique; if OP,X contained two distinct local rings it would contain the entire
function field, which is not the case (to see this, note that for any distinct P,Q ∈ C the
zero locus of mP +mQ is empty).



So let φ : X → C map each P ∈ X to the unique Q ∈ C1 for which OQ,C ⊆ OP,X .
It is easy to see that φ is continuous; indeed, since we are in dimension one it suffices to
note that it is surjective, and this is so: every local ring OQ,C is contained in a discrete
valuation ring OP,X (possibly more than one, this can happen if Q is singular).5 To check
that it is a morphism, if U ⊆ C is open and f ∈ OC(U) = ∩Q∈UOQ,C then we have
OX(φ−1(U)) = ∩φ(P )∈UOP,X ⊇ ∩Q∈UOQ,C and therefore f ◦ φ ∈ OX(V ) as required.

Now let C1 = C and φ1 = φ. There are finitely many singular points Q ∈ C (the
singular locus has dimension 0), and for each such Q the inverse image φ−1(Q) ⊆ X is
closed and not equal to X (since φ is surjective and C has more than one point), so finite.
Let P2, . . . , Pn ∈ X be the finite list of points whose images under φ1 are singular in C.

For each Pi we now let Ci be the projective closure of the smooth affine curve with
function field F/k and a local ring OP,Ci equal to OPi,X , given by Lemma 18.11. Then
k(Ci) = F and the point on Ci corresponding to Pi is smooth by construction, since its local
ring is precisely the discrete valuation ring OPi . Define a surjective morphism φi : X → Ci
exactly as we did for φ1.

We now consider the product variety Y =
∏
iCi and define the morphism ϕ : X → Y by

ϕ(P ) = (φ1(P ), . . . , φn(P )). The variety Y is a product of projective varieties and can be
smoothly embedded in a single projective space.6 The image of ϕ in Y is a projective curve
C whose function field is isomorphic to F , and C is smooth because, by construction, every
point P ∈ C is smooth in one of its affine parts. By Theorem 18.10, the smooth projective
curve C is isomorphic to the abstract curve associated to its function field, namely, X.

Corollary 18.14. Every curve C is birationally equivalent to a smooth projective curve
that is unique up to isomorphism.

Proof. By 18.10 there exists an abstract curve corresponding to the function field k(C),
and by Theorem 18.13 this abstract curve is isomorphic to a smooth projective curve.
Uniqueness follows from Corollary 18.8.

The smooth projective curve to which a given curve C is birationally equivalent is called
the desingularization C. Henceforth, whenever we write down an equation for a curve (which
may be affine and/or have singularities) we can always assume that we are referring to its
desingularization.

Remark 18.15. In the proof of Theorem 18.13 we made no attempt to control the di-
mension of the projective space into which we embedded the smooth projective curve C
isomorphic to our abstract curve X. Using more concrete methods, one can show that it is
always possible to embed C in P3. In general, one can do no better than this; indeed we
will see plenty of examples of smooth projective curves that cannot be embedded in P2.
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In this lecture (and henceforth) k denotes a perfect but not necessarily algebraically
closed field, and k̄ denote a fixed algebraic closure of k.

19.1 Curves and function fields

Henceforth we adopt the following definitions.

Definition 19.1. A curve C/k is a smooth projective variety of dimension one defined
over k. A function field F/k is a finitely generated extension of k with transcendence
degree one, such that k algebraically closed in F .

Other authors distinguish the curves we have defined as nice curves: one-dimensional
varieties that are smooth, projective, and geometrically irreducible (irreducible over k̄); for
us varieties are geometrically irreducible by definition, so this last requirement is automatic.
But perhaps a more fundamental characterization is that nice curves are isomorphic to the
abstract curve defined by their function field.

In our definition of a function field, the requirement that k be algebraically closed in F
is not a serious restriction, it is automatically satisfied when F is the function field of a
curve C/k, so it is necessary for us to obtain the following equivalence of categories.1

Theorem 19.2. The category of curves C/k with nonconstant morphisms and the category
of function fields F/k with field homomorphisms that fix k are contravariantly equivalent
under the functor that sends a curve C to the function field k(C) and a nonconstant mor-
phism of curves φ : C1 → C2 defined over k to the field homomorphism φ∗ : k(C2)→ k(C1)
defined by φ∗f = f ◦ φ.

Proof. For k = k̄ this follows from: (1) a nonconstant morphism of smooth projective curves
is surjective (Corollary 18.7), (2) a smooth projective curve is isomorphic to the abstract
curve defined by its function field (Theorem 18.10). The inverse functor sends F/k to the
smooth projective curve isomorphic to the abstract curve defined by F/k (Theorem 18.13),
which is unique up to isomorphism (Corollary 18.8).

For k 6= k̄, recall from Lecture 15 that if C1 is defined over k and the morphism φ : C1 →
C2 is defined over k then the induced morphism of function fields k̄(C2) → k̄(C1) restricts
to a morphism k(C2)→ k(C1). Conversely, given a function field F/k with k a perfect field,
by Theorem 17.8 and Remark 17.9, we can write F = k(x, α), with α algebraic over the
rational function field k(x). If we then consider the minimal polynomial of α as an element
of k(x)[y] and clear denominators in the coefficients, we obtain an irreducible polynomial
f ∈ k[x, y]. Because k is algebraically closed in F , this polynomial remains irreducible as an
element of k̄[x, y] (by [1, III.3.6.8]), and therefore defines an affine variety of dimension one
in A2 whose ideal is generated by f ∈ k[x, y]. We may then take C/k to be the (projective)
desingularization of this affine variety, which is still defined over k.2

1This follows from [1, III.3.6.8] which implies that F/k is the function field of some curve C/k if and
only if k is algebraically closed in F (we can always use F to construct an algebraic set, but if k is not
algebraically closed in F this set will not be irreducible (over k̄), hence not a variety).

2The fact that the desingularization is defined over k is not obvious from our proof of its existence, but
it can be proved by other means (the assumption that k is perfect is necessary).



From Theorem 19.2 we see that the study of curves and the study of function fields are
one and the same, a fact that we shall frequently exploit by freely moving between the two
categories. It is worth noting that this categorical equivalence does not hold for varieties of
dimension greater than one.

Definition 19.3. The degree of a morphism of curves φ : C1 → C2 is the degree of the
corresponding extension of function fields deg φ = [k(C1) : φ∗(k(C2))].

Remark 19.4. A note of caution. Since the field homomorphism φ∗ : k(C2) → k(C1) is
necessarily injective, it is standard practice to identify k(C2) with its image in k(C1). Under
this convention, one may then write deg φ = [k(C1) : k(C2)]. But the notation [L : K] for
the degree of a field extension L/K is ambiguous if K is simply a field embedded in L,
rather than an actual subfield. Without knowing the embedding, there is in general no way
to know what [L : K] actually is!

This does not cause a problem for number fields, but function fields are another story;
there are many different ways to embed one function field into another, and different embed-
dings may have different degrees. As a simple example, consider the map ϕ : k(x) → k(x)
that sends x to x2 and fixes k. The image of ϕ is a proper subfield of k(x) (namely, k(x2))
which is isomorphic to k(x) but not equal to k(x) as a subfield. Indeed, as a k(x2)-vector
space, k(x) has dimension 2, and we have [k(x) : ϕ(k(x))] = degϕ = 2 as expected. But
if we identify k(x) with its image ϕ(k(x)) then we would write [k(x) : k(x)] = 2, which is
confusing to say the least.

Corollary 19.5. A morphism of curves is an isomorphism if and only if its degree is one.

19.2 Divisors

Definition 19.6. Let C/k be a curve with k = k̄. A divisor of C is a formal sum

D :=
∑
P∈C

nPP

with nP ∈ Z and all but finitely many nP = 0. The set of points P for which nP 6= 0 is
called the support of D. The divisors of C form a free abelian group under addition, the
divisor group of C, denoted DivC.

Definition 19.7. Let F/k be a function field with k = k̄. A divisor of F is a formal sum

D :=
∑
P∈XF

nPP

with nP ∈ Z and all but finitely many nP = 0. Here XF denotes the abstract curve
defined by F/k, whose points P are the maximal ideals of the discrete valuation rings of
F/k. The divisors of F form a free abelian group DivF under addition; if C is the smooth
projective curve with function field F , this group is isomorphic to DivC and we may use
them interchangeably.

We now want to generalize to the case where k is not necessarily algebraically closed.
Let Gk = Gal(k̄/k) be the absolute Galois group of k (as usual k̄ is a fixed algebraic closure).



Definition 19.8. A divisor D =
∑
nPP ∈ DivC is defined over k if for all σ ∈ Gk we

have Dσ = D, where

Dσ =
(∑

nPP
)

=
∑

nPP
σ.

The subset of DivC defined over k forms the subgroup of k-rational divisors.

Note that D = Dσ does not necessarily imply P = P σ for all P in the support of D.
But if D = Dσ for all σ ∈ Gk, then it must be the case that nPσ = nP for all σ ∈ Gk. Thus
we can group the terms of a k-rational divisor into Gk-orbits with a single coefficient nP
applied to all the points in the orbit. Equivalently, we can view a k-rational divisor as a
sum over Gk-orbits of points P ∈ C(k̄). This turns out to be a better way of defining the
group of k-rational divisors on a curve that is defined over k.

Definition 19.9. Let C/k be a curve defined over k. The Gk-orbits of C(k̄) are called
closed points, which we also denote by P . A rational divisor of C/k is a formal sum

D :=
∑

nPP

where P ranges over the closed points of C/k, with nP ∈ Z and all but finitely many nP = 0.
The group of rational divisors on C is denoted Divk C.

For function fields F/k the divisor class group is defined exactly as when k = k̄. As
before, XF is the set of maximal ideals of discrete valuation rings of F/k, which we shall
henceforth call places of F/k in order to avoid confusion. The places of F/k are in one-
to-one correspondence with the closed points of the corresponding curve C/k. In the case
that k = k̄ this follows from the Nullstellensatz, each point P on C is the zero locus of a
place of F/k (the maximal ideal mP ), and vice versa. When k is not algebraically closed
the same statement still holds, provided we replace “point” with “closed point”. To see
this, just apply the action of Gk to a point P ∈ C(k̄) and its corresponding maximal
ideal MP ∈ k̄[x1, . . . , xn]; the Gk-orbit of P is a closed point of C/k and the intersection
of k[x1, . . . , xn] with the union of the ideals in the Gk-orbit of MP is a maximal ideal of
k[x1, . . . , xn] whose reduction modulo I(C) is a place of F/k.

Remark 19.10. Be sure not to confuse the closed points of C/k with the set of rational
points C(k). The points in C(k) correspond to a proper subset of the set of closed points,
the trivial Gk-orbits that consist of a single element. But every point in C(k̄) is contained
in a closed point of C/k. Indeed, this is the key advantage to working with closed points;
they contain all the essential information about C/k (even in cases where C(k) is empty),
while allowing us to work over k rather than k̄, which has both theoretical and practical
advantages. But it is important to remember that the set of closed points depends on the
ground field k, not just C. We will consistently write C/k to remind ourselves of this fact.
In more advanced treatments one writes Ck and regards Ck and Ck′ as distinct objects for
any extension k′/k, even when the equations defining C are exactly the same; switching
from Ck to Ck′ is known as base extension.

Definition 19.11. Let f be a nonzero element of a function field F/k. The divisor of f is

div f :=
∑
P∈XF

ordP (f)P.

Such divisors are said to be principal.3

3The principal divisor div f is also often denoted by (f), but we will not use this notation.



In order for the definition above to make sense, we need to know that ordP (f) is zero for
all but finitely many P . Under our categorical equivalence, we can assume that F = k(C)
for some curve C/k, which makes this easy to prove. Note that for any closed point, a
function f ∈ k(C) vanishes at a point P ∈ C(k̄) if and only if it vanishes on the entire
Gk-orbit of P . Thus it makes sense to say whether a closed point P of C/k lies in the zero
locus of f or not.

Theorem 19.12. Let F/k be a function field. For any f ∈ F× we have ordP (f) = 0 for
all but finitely many places P of F .

Proof. Let C be the smooth projective curve with function field k(C) ' F , and let us
identify F with k(C). Let f be a nonzero element of the coordinate ring k[C]. We then
have ordP (f) = 0 unless the closed point P lies in the zero locus of f . But the zero locus
of f is a closed set properly contained in the one-dimensional variety C (since f 6= 0), hence
finite. The general case f = g/h ∈ k(C) is similar, now ordP (f) = 0 unless P is in the zero
locus of either g or h, both of which are finite.

A sum of principal divisors is a principal divisor, since

div f + div g = div fg

(this follows from the fact that each ordP : k(C)× → Z is a homomorphism). We also have
div 1 = 0, thus the map k(C)× → Divk C defined by f 7→ div f is a group homomorphism.
Its image is Princk C, the group of k-rational principal divisors of C.

Definition 19.13. Let C/k be a curve. The quotient group

Pick C := Divk C/Princk C

is the Picard group of C (also known as the divisor class group of C). Elements D1 and D2

of Divk C that have the same image in Pick C are said to be linearly equivalent. We write
D1 ∼ D2 to indicate this equivalence.

Theorem 19.14. We have an exact sequence

1→ k× → k(C)×
div−→ Divk C → Pick C → 0.

Proof. The only place where exactness is not immediate from the definitions is at k(C)×;
we need to show that ker div = k×. It is clear that k× lies in ker div; any f ∈ k× lies in
the unit group of every discrete valuation ring of k(C)/k, in which case ordP (f) = 0 for all
P . Equality follows from the fact that k is algebraically closed in k(C). This means that
k is equal to the full field of constants of the function field k(C)/k, which is precisely the
intersection of the unit groups of all the valuation rings of k(C)/k, equivalently, the set of
functions f ∈ k(C) for which ordP (f) = 0 for all P (another way to see this is to note that
if f is nonzero on every closed point of C/k, then the zero locus of f is the empty set and
therefore f is a unit in the coordinate ring).

Definition 19.15. For a principal divisor div f =
∑
nPP , the divisors

div0 f =
∑
nP>0

nPP and div∞ f =
∑
nP<0

−nPP

are called the divisor of zeros and the divisor of poles of f , respectively. We have

div f = div0 f − div∞ f.



The quantities deg div0 f and deg div∞ f count the zeros and poles of f , with appropriate
multiplicities. While is is intuitively clear that these two quantities should be equal (recall
that we can represent f as the ratio of two homogeneous polynomials of the same degree),
to prove this rigorously we will establish a more general result that tells us that the fibers
(inverse images) of a morphism of curves φ all have cardinality equal to deg φ, provided
that we count the points in each fiber with the correct multiplicities.

Remark 19.16. In what follows we work exclusively with morphisms φ : C1 → C2 defined
over k, by which we mean that both the curves and the morphism are over k. There are
situations where one does want to consider morphisms that are note defined over k (even
though the curves are defined over k), but in order to keep things simple we will not consider
this at this stage (we can always base extend to a field where everything is defined).

Lemma 19.17. Let φ : C1 → C2 be a morphism of curves defined over k and let P be a
closed point of C1/k. Then φ(P ) is a closed point of C2/k.

Proof. Let P be the Gk-orbit {P1, . . . , Pd}, where d = degP . We have φ(Pi)
σ = φ(P σi ) for

all σ ∈ Gk, since φ is defined over k, and it follows that the set φ(P ) = {φ(P1), . . . , φ(Pd)}
is fixed by Gk, hence a union of Gk-orbits. For each Pi we have Pi = P σ1 for some σ ∈ Gk,
and it follows that φ(Pi) = φ(P σ1 ) = φ(P1)

σ, show every φ(Pi) is in the Gk-orbit of φ(P1),
so φ(P ) consists of a single Gk-orbit and is a closed point.

With Lemma 19.17 in hand, we can now sensibly speak of a morphism φ : C1 → C2

defined over k as a map of closed points.

Definition 19.18. Let φ : C1 → C2 be a morphism defined over k, and φ∗ : k(C2)→ k(C1)
the corresponding morphism of function fields. The ramification index (also called the
ramification degree) of φ at a closed point P of C1 (equivalently, a place P of k(C1)) is

eφ(P ) := ordP (φ∗tQ),

where tQ ∈ k(C2) is a uniformizer at Q = φ(P ), that is, a generator for the place Q of k(C2).
If eφ(P ) = 1, then φ is unramified at P , and if eφ(P ) = 1 for all closed points P of C1/k
we say that φ is unramified.

Definition 19.19. Let φ : C1 → C2 be a morphism defined over k. The pullback map φ∗

on divisors is the homomorphism φ∗ : Divk C2 → Divk C1 defined by

φ∗(Q) :=
∑

P∈φ−1(Q)

eφ(P )P,

where (Q) denotes the divisor in Divk C2 with support {Q} and nQ = 1. We also define the
pushforward map φ∗ on divisors as the homomorphism φ∗ : DivC1 → DivC2 defined by

φ∗(P ) = [k(P ) : φ∗(k(P ))]φ(P ) =
degP

deg φ(P )
φ(P ).

When k = k̄ is algebraically closed, the pushforward map just sends the divisor (P ) to the
divisor (φ(P )), but in general we want to scale things so that deg φ∗(P ) = degP .



It is clear that both φ∗ and φ∗ are group homomorphisms, and if φ is unramified then
for all divisors D we have

φ∗(φ
∗(D)) = deg(φ)D.

You will prove on the problem set that in fact this is true regardless; the composition φ∗◦φ∗
corresponds to multiplication by deg(φ) on Divk C2.

Remark 19.20. Using φ∗ to denote both the pullback map Divk C2 → Divk C1 and the
dual morphism k(C2) → k(C1) of function fields induced by φ : C1 → C2 might seem like
an unfortunate collision of notation, but it is standard and intentional. Recall that the
kernel of the divisor map div : C → Divk C is just k×, so up to scalars we can identify a
function f ∈ k(C) with the corresponding divisor div f ∈ Divk C. The pullback map φ∗

maps principal divisors to prinicipal divisors, thus for any f, g ∈ k(C2)
× we have

φ∗ div f = φ∗ div g ⇐⇒ φ∗f = λφ∗g for some λ ∈ k×.

Definition 19.21. Let C/k be a curve and let F/k be the corresponding function field.
If P is a closed point of C/k, or a place of F/k, we define the degree of P to be the dimension
of the residue field k(P ) = OP /mP over k (where mP = P if P is a place of F/k), that is,

degP := [k(P ) : k].

Equivalently, degP is the cardinality of the closed point P as a Gk-orbit of points in C(k̄)
(see [1, Cor. 3.6.5] for a proof of this equivalence, which depends on the fact that k is a
perfect field). The degree of a divisor D =

∑
nPP in the group of k-rational divisors is

degD :=
∑

nP degP.

Note that when k = k̄, we have degP = 1 for all P , so in this case degD =
∑
nP .

Theorem 19.22. Let φ : C1 → C2 be a morphism of curves defined over k. Then for each
closed point Q of C2/k,

deg φ∗(Q) = deg φ degQ

Here φ∗ is the pullback map on divisors. This theorem effectively says that the fibers
(inverse images of points) of the morphism φ all have cardinality equal deg φ, provided that
we count them correctly. Our definition of the degree of a divisor accounts for the size of
the Galois orbit corresponding to a closed point (so we are effectively counting k̄-points on
both sides), and the ramification index eφ incorporated in the definition of the pullback
map φ∗ correctly accounts for ramification.

We will prove Theorem 19.22 in the next lecture. Let us end this lecture by proving
that any nonzero function on a curve has the same number of zeros and poles. The proof is
essentially immediate from the definitions; in an advanced text it might be written in one
line or simply left to the reader. But we will take the time to unravel all the definitions in
gory detail, as this provides an excellent opportunity to check our understanding.

Corollary 19.23. Let f ∈ k(C)× for some curve C/k. Then f has the same number of
zeros and poles (counted with multiplicity), that is,

deg div0 f = deg div∞ f.

If f ∈ k× then this number is 0, and otherwise it is equal to [k(C) : k(f)].
In any case, we always have deg div f = 0.



Proof. For f ∈ k× we have div f = 0 and the corollary holds. Otherwise f is transcendental
over k (because k is algebraically closed in k(C)), and it defines a morphism f : C → P1

as follows: if f = g/h with g, h ∈ k[C] represented by homogeneous functions of the same
degree, with h nonzero, then the morphism f is given by (g : h).4 Recall that this represents
an equivalence class of tuples that we can scale by any λ ∈ k(C)×.

Let (x : y) be homogeneous coordinates for P1, and define 0 = (0 : 1) and ∞ = (1 : 0).
Note that 0 and ∞ are both rational points on P1, hence we may identify them with the
corresponding closed points (they are each the unique element of their Gk-orbit).

The place of k(P1) corresponding to the closed point 0 is (the maximal ideal of) the
discrete valuation that measures the order of vanishing of a homogeneous rational function
r(x, y) at (0 : 1), equivalently, it measures the order of vanishing of r(x/y, 1) at 0/1.
Similarly, the place corresponding to∞ measures the order of vanishing of r(x/y, 1) at 1/0,
equivalently, the order of vanishing of r(1, y/x) at 0/1.

The obvious choice of uniformizers for the places 0 and∞ are the functions t0 = x/y and
t∞ = y/x. The images of these uniformizers under the field embedding f∗ : k(P1) → k(C)
induced by f are, by definition,

f∗t0 = t0 ◦ f = g/h = f,

f∗t∞ = t∞ ◦ f = h/g = 1/f.

Now let us consider a closed point P of C for which f(P ) = 0 (so f(P ′) = 0 for any/all
points P ′ in the Gk-orbit P ). The ramification index of f at P is, by definition,

ef (P ) = ordP (f∗t0) = ordP (f).

If we instead consider a closed point P of C for which f(P ) =∞, we then have

ef (P ) = ordP (f∗t∞) = ordP (1/f) = −ordP (f).

Applying the pullback map f∗ : Divk P1 → Divk C to the divisor (0) yields5

f∗(0) =
∑

f(P )=0

ef (P )P =
∑

f(P )=0

ordP (f)P.

But notice that the places P of k(C) where f has positive valuation correspond exactly
to the closed points P of C/k where f(P ) = 0 (hence we use the same symbol P in both
cases). Thus, by definition,

f∗(0) =
∑

f(P )=0

ordP (f)P = div0 f

Similarly, the places where f has negative valuation are those where f(P ) = ∞ = (1 : 0),
equivalently, (1/f)(P ) = 0 = (0 : 1). Thus

f∗(∞) =
∑

f(P )=∞

ef (P )P =
∑

f(P )=∞

−ordP (f)P = div∞ f.

4How do we know f is a morphism? Because every rational map from a (smooth projective) curve to a
projective variety is a morphism; see Corollary 18.7.

5Note that this is not the zero element of Divk C, which is the divisor whose support is the empty set.
The divisor (0) has support {0}.



Applying Theorem 19.22 to f : C → P1 with Q = 0 and Q =∞ (both of which have degree
one, since they are rational points), we have

deg div0 f = deg f∗(0) = deg f deg 0 = deg f = deg f deg∞ = deg f∗(∞) = deg div∞ f,

where deg f = [k(C) : f∗(k(P1))] is the degree of f as a morphism.6 We know that k(P1)
is isomorphic to the field of rational functions k(t), thus the image of f∗ : k(P1)→ k(C) is
completely determined by the image of t (since f must fix k), and we have f∗(t) = t◦f = f ,
so deg f = [k(C) : k(f)]. Finally, we note that

deg div f = deg(div0 f − div∞ f) = deg div0 f − deg div∞ f = 0

as claimed.
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20.1 Degree theorem for morphisms of curves

Let us restate the theorem given at the end of the last lecture, which we will now prove.

Theorem 20.1. Let φ : C1 → C2 be a morphism of curves defined over k. Then for each
closed point Q of C2/k,

deg φ∗(Q) = deg φ degQ

Before beginning the proof, let us first show that we can assume without loss of generality
that k is algebraically closed. If the closed point Q is the Gk-orbit {Q1, . . . , Qd}, with
d = degQ, after base extension to k̄ we have

deg φ∗(Q) = deg φ∗(Q1 + · · ·+Qd) = deg φ∗(Q1) + · · ·+ deg φ∗(Qd),

since both the degree map and the pullback map φ∗ : Divk̄(C2) → Divk̄(C1) are group
homomorphisms. If we assume the theorem holds over k̄, then every term on the right is
equal to deg φ and the sum is ddeg φ = deg φ degQ.

We now prove the theorem assuming k = k̄, following the approach of [1, III.2].

Proof of Theorem 20.1. Fix Q ∈ C2, and let OQ be its local ring of regular functions. The
set φ−1(Q) is finite because φ is not constant and C1 is an irreducible algebraic set of
dimension one (so all its proper closed subsets are finite). Let P1, . . . , Pn ∈ C1 be the
elements of φ−1(Q), let O1, . . . ,On be the corresponding local rings of regular functions,
and define

O =
n⋂
i=1

Oi.

By Lemma 20.4 below, there exist uniformizers t1, . . . , tn for O1, . . .On such that

ordPi(tj) =

{
1 if i = j,

0 otherwise.

The maximal ideals of O are (t1), . . . , (tn) and each nonzero f ∈ O factors uniquely as

f = ute11 · · · t
en
n ,

with u ∈ O× and ei = ordPi(f).
Under the map φ∗ : k(C2)→ k(C1), for any f ∈ OQ we have

ordPi(φ
∗f) = ordPi(f ◦ φ) = ordQ(f) ≥ 0,

thus φ∗(OQ) is a subring of O. If we now let tQ be a uniformizer for OQ, and put t = φ∗tQ
we have

t = φ∗tQ = ute11 · · · t
en
n

where ei = ordPi(φ
∗tQ) = eφ(Pi). Since t1, . . . , tn are pairwise relatively prime (meaning

that (ti) + (tj) = O for all i 6= j), by the Chinese remainder theorem we have

O/(t) '
n⊕
i=1

O/(teii ) (1)



as a direct sum of rings that are also k-vectors spaces (hence k-algebras). To prove the
theorem we will compute the dimension of O(t) in two different ways, corresponding to the
two sides of the equality deg φ∗(Q) = deg φ that we are trying to prove.

On the LHS of the equality we wish to prove, the degree of the divisor φ∗(Q) is

deg φ∗(Q) =
∑

eφ(Pi) degPi =
∑

ei, (2)

since we have degPi = 1 for k = k̄. We claim that this is precisely the dimension of
O(t) '

⊕
iO/(t

ei
i ) as a k-vector space, which we will prove below.

On the RHS of the equality, after identifying k(C2) with its image φ∗(k(C2)) we have

deg φ = [k(C1) : k(C2)],

which we claim is equal to the rank of O as an OQ-module (OQ is embedded in O via φ∗).
The ring O is an integral domain that is finitely generated as a module over the principal
ideal domain OQ, so it is torsion free and isomorphic to O⊕r

Q for some integer r (by the
structure theorem for modules over PIDs), hence it makes sense to speak of its rank r.

The fields k(C1) and φ∗(k(C2)) are the fraction fields of the rings O and OQ, respectively,
and it follows that the maximal number of elements of O that are linearly independent
over OQ is exactly the same as the maximal number of elements of k(C1) that are linearly
independent over k(C2), which is precisely [k(C1) : k(C2)] = deg φ = d. If we choose a basis
α1, . . . , αd for k(C1) over k(C2) and let e = min{ordPi(αj) : 0 ≤ i ≤ n, 0 ≤ j ≤ d}, then the
functions α1/t

e, . . . , αd/t
e are regular at all the Pi and therefore lie in O. They are linearly

independent over OQ, thus r ≥ d, and clearly r ≤ d, since any r elements of O ⊆ k(C1) that
are linearly independent over O are also linearly independent over its fraction field k(C2).
We have OQ/(t) ' k, since (t) is a maximal ideal, so dimkO/(t) = r = d = deg φ.

To prove dimkO(t) = deg φ∗(Q), by (1) and (2) it suffices to show that dimkO/(teii ) = ei.
We claim that for any positive integer n, each function f ∈ O can be written uniquely as

f ≡ a0 + a1ti + · · ·+ an−1t
n−1
i mod tni ,

with each ai ∈ k. Applying this with n = ei will yield the desired result.
For n = 1 we let a0 = f(Pi) ∈ k. We then have ordPi(f − a0) = ordPi(f − f(Pi)) ≥ 1,

so f ≡ a0 mod ti as desired, and clearly a0 is uniquely determined. We now proceed by
induction on n, assuming that f ≡ g = a0+a1ti+· · · an−1t

n−1
i mod tni . The ordPi(f−g) ≥ n,

so h = t−ni (f−g) is regular at Pi and therefore lies in O (since ordPj (ti) = 0 for j 6= i). Now
let an = h(Pi) ∈ k. Then ordPi(t

n
i (h− an)) ≥ n+ 1 and we have f ≡ g + ant

n mod tn+1 as
desired.

The key to the proof of Theorem 20.1 is Lemma 20.3, which gave us the independent
uniformizers t1, . . . , tn we needed. In order to prove the lemma we need a tight form of the
(nonarchimedean) triangle inequality for valuations.

Lemma 20.2 (Triangle equality). Let v : F× → Γ be a valuation on a field F . For any
x, y ∈ F× such that v(x) 6= v(y) we have v(x+ y) = min((v(x), v(y)).

Proof. Assume v(x) < v(y). By the triangle inequality, v(x + y) ≥ min(v(x), v(y)). If this
is not tight, v(x+ y) > v(x), but then v(x) = v((x+ y)− y) ≥ min(v(x+ y), v(y)) > v(x),
a contradiction.



We now prove the main lemma we need, which is more generally known as the theorem
of independence of valuations for function fields.

Lemma 20.3 (Independence of valuations). Let P1, . . . , Pn be distinct places of a function
field F . Then there exist t1, . . . , tn so that vi(tj) = δij (Kronecker delta), where vi denotes
the valuation for Pi.

Proof. If n = 1, we can take t1 to be any uniformizer for P1. We now proceed by induction,
assuming that t1, . . . , tn−1 satisfy vi(tj) = δij . It suffices to find tn with vn(tn) = 1 and
vi(tn) = 0 for 0 ≤ i < n. With such a tn, we can then replace each ti with ti/t

e
n, where

e = vn(ti), so that vn(vi) = 0 and vi(tj) = δij as required.
If vn(ti) = 0 for 0 ≤ i < n, we can simply pick a uniformizer for Pn and multiply it by

suitable powers of the ti so that this is achieved, so let us assume otherwise. We now pick
s1, . . . , sn−1 in OPn with si 6∈ OPi ; this is possible because none of the OPi contain OPn , by
Theorem 18.5. Then vn(si) ≥ 0 and vi(si) < 0 for 0 ≤ i < n. By replacing each si with seii
for some suitably large ei > 0 we can arrange it so that at each valuation vj , for 0 ≤ j < n,
the value min{vj(seii ) : 0 ≤ i < n} is achieved by a unique seii (possibly the same seii for
different vj ’s). For s =

∑
seii we then have vj(s) < 0 for 0 ≤ j < n, by the triangle equality,

and vn(s) ≥ 0.
Now let t be a uniformizer for OPn , so vn(t) = 1. If vn(s) = 0 then we can replace t by

set for some suitable e so that vi(t) < 0 for 0 ≤ i < n and vn(t) = 1, and if vn(s) > 0 we
can achieve the same goal by replacing t with se + t (again by the triangle equality).

Now let w be the product of t with suitable powers of t1, . . . , tn−1 so that vi(w) = 0 for
0 ≤ i < n. If vn(w) = 0 then apply the same procedure to t + te for some suitably chosen
e > 0 so that this is not the case (we have vn(ti) 6= 0 for some ti, so this is always possible).
Finally, if vn(w) < 0 then replace w with 1/w so vn(w) > 0. We than have vi(w) = 0 for
0 ≤ i < n and vn(w) > 0.

Now let z = w + 1/t. We have vi(1/t) > 0 for 0 ≤ i < n and vn(1/t) = −1, so by
the triangle equality, vi(z) = 0 for 0 ≤ i < n and vn(z) = −1. For tn = 1/z we then have
vi(tn) = 0 for 0 ≤ i < n and vn(tn) = 1 as desired, and we are done.

Corollary 20.4. Let O1, . . . ,On be distinct discrete valuation rings of a function field
F/k. The ring O = ∩iOi has exactly n nonzero prime ideals (t1), . . . , (tn), each principal
and generated by a uniformizer for Oi. Every nonzero f ∈ O can be uniquely factored as
f = ute11 · · · tenn with u ∈ O× and ei = ordPi(f) ≥ 0.

Proof. The elements t1, . . . , tn given by Lemma 20.3 are uniformizers for O1, . . . ,On, and
it follows that every f ∈ F× can then be written uniquely in the form x = ute11 · · · tenn with
u ∈ O× and ei = ordPi(x). The nonzero elements of O are precisely those for which the ei
are all nonnegative, and the lemma is then clear.

We now note a further corollary of the lemma, which is an analog of the weak approxi-
mation theorem we proved in Lecture 11.

Corollary 20.5 (Weak approximation for function fields). Let P1, . . . , Pn be distinct places
of a function field F/k, and let f1, . . . , fn ∈ F be given. For every positive integer N there
exists f ∈ F such that ordPi(f − fi) > N for 0 ≤ i < n.

Proof. Let t1, . . . , tn be as in Lemma 20.3. As in the proof of Theorem 20.1, we can construct
Laurent polynomials gi ∈ k((ti)) such that gi ≡ fi mod tNi , where the first nonzero term of



gi is ast
s
i where as = ordPi(f). We then have ordPi(gi−fi) ≥ N , and ordPj (gi) ≥ 0 for j 6= i

since ordPj (ti) = 0 for j 6= i, this follows from the triangle inequality. Multiplying each gi
by (t1 · · · ti−1ti+1 · · · tn)N and summing the results yields the desired function f .

Note that in terms of absolute values, making the valuation ordPi(f − fi) large corre-
sponds to making the corresponding absolute value |f − fi|Pi small. To make the analogy
with Theorem 11.7 more precise, we could construct the completions of FPi at each place Pi
and then the fi given in the theorem would lie in FPi but f would still lie in F . The re-
lationship between F and its completions FPi is then exactly analogous to the relationship
between Q and its completions Qpi .

20.2 Divisors of degree zero

It follows from Theorem 20.1 that the group of principal divisors Princk C is a subgroup of
the group of degree zero divisors Div0

k C, the quotient Div0
k C/Princk C is denoted Pic0

k C.
Equivalently, Pic0

k C is the kernel of the degree map PicC → Z. We then have the exact
sequence

1→ k× → k(C)× → Div0
k C → Pic0

k C → 0.

Up to now all the groups of divisors and divisor classes we have considered have been
infinite, but this is not true of Pic0

k. The case where Pic0
k is trivial is already an interesting

result.

Theorem 20.6. Assume k = k̄. Then C ' P1 if and only if Pic0
k C = {0}.

Proof. The forward implication is easy. Each point P = (a0, a1) ∈ P1 is the zero locus of
the polynomial fP (x0, x1) = a1x0 − a0x1, and if we have a divisor D =

∑
nPP we can

construct a corresponding homogeneous rational function f =
∏
fnP
P . If D has degree zero

then the numerator and denominator of f have the same degree and f is an element of
k(P1) ' k(C), so D = div f . Thus Divk C = Princk C and Pic0

k C = 0.
Now let P and Q be distinct points in C(k); such P and Q exist because k is algebraically

closed. Then f = fP /fQ is a non-constant function in C(k) that defines a morphism
(fP : fQ) from C to P1. The polynomials fP and fQ have degree one, and this implies
that the morphism f has degree one and is an isomorphism. To check this, we can use
Theorem 20.1 with Q = 0 and t0 = x/y to compute

deg f = deg f∗(0) = ef (P ) = ordP (f∗t0) = ordP (t0 ◦ f) = ordP (fP /fQ) = 1.

Now let us consider the general case, where k is not necessarily algebraically closed.
We then need to work with closed points, but the forward implication still holds: if C/k is
isomorphic to P1/k then Pic0

k C is trivial; the polynomials fP in the proof are now irreducible
polynomials that may have degree greater than one, but that doesn’t change the argument.

But the converse is more interesting. We can always find closed points P and Q on C/k,
but for the above proof to work we need them to have degree one, otherwise the function
fP /fQ will not be an isomorphism. Equivalently, we need C/k to have two distinct rational
points P and Q; these are closed points of degree one. We already know from earlier in
the course that if C/k has genus 0 and even one rational point then it is isomorphic to
P1/k (and then it has more than two rational points). But if C/k has positive genus it can
happen that C/k has one rational point and Pic0

k C = {0}, but C cannot be isomorphic to
P1, because P1 has genus zero. Indeed, this is exactly what happens for the elliptic curve



y2 = x3 + 7 over Q, whose only rational point is ∞. So we need to add the hypothesis that
C/k have two distinct rational points in order to get a theorem that works for general k.

Corollary 20.7. Let C/k be a curve with at least two distinct rational points. Then C/k
is isomorphic to P1/k (with the isomorphism defined over k) if and only if Pic0

k C = {0}.

As an interesting consequence, if C has genus greater than zero and at least two rational
points, then Pic0

k C cannot be trivial. The elliptic curve C : y2 = x3 − 1 over k = Q is such
an example, with Pic0

k C of order 2.
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As usual, k is a perfect field, but not necessarily algebraically closed. Throughout this
lecture C/k denotes a curve (smooth projective variety of dimension one) and F/k the
corresponding function field. To simplify the notation, for any place P of F/k and divisor
D =

∑
nPP , we define ordP (D) = nP .

21.1 Riemann-Roch spaces

We have seen that the degree of a divisor is a key numerical invariant that is preserved
under linear equivalence; recall that two divisors are linearly equivalent if their difference is
a principal divisor, equivalently, they correspond to the same element of the Picard group.
We now want to introduce a second numerical invariant associated to each divisor. In order
to do this we first partially order divisors by defining the relation ≤ on Divk C by

A ≤ B ⇐⇒ ordP (A) ≤ ordP (B) for all P .

As usual, P ranges over all closed points of C/k, equivalently, all places of k(C), but of
course the inequality on the right is automatically satisfied for all but finitely many P . This
partial ordering is compatible with divisor addition, since

A ≤ B =⇒ A+ C ≤ B + C,

for any divisor C. We also note that

A ≤ B and C ≤ D =⇒ A+ C ≤ B +D.

It is important to remember that ≤ is not a total ordering on Divk C; most pairs of divisors
are incomparable.

Definition 21.1. A divisor D ≥ 0 is said to be effective. As with principal divisors
div f = div0 f − div∞ f , every divisor can be written uniquely as the difference of two
effective divisors, as D = D0 −D∞, where

D0 :=
∑

ordP (D)>0

ordP (D)P and D∞ :=
∑

ordP (D)<0

−ordP (D)P.

We now define the Riemann-Roch space of a divisor.

Definition 21.2. The Riemann-Roch space of a divisor D is the k-vector space

L(D) := {f ∈ k(C)× : div f ≥ −D} ∪ {0}.

That L(D) is a vector space follows immediately from:

1. div λf = div f + div λ = div f for all λ ∈ k×;

2. ordP (f + g) ≥ min(ordP (f), ordP (g) for all f, g ∈ F×.

Example 21.3. If D = 3P − 2Q then L(D) is the set of functions in k(C) that have at
most a triple pole at P , and at least a double zero at Q, and poles nowhere else (but they
may have have zeros of any order at points other than Q).



Example 21.4. If D = −P then L(D) is the set of functions that have a zero at P and no
poles at all. The only such function is the zero function (which lies in L(D) by definition).
More generally, for any D < 0 we have L(D) = {0}.

Example 21.5. If D = 0 then L(D) is the set of functions that have no poles at all. By
Corollary 19.23, for f ∈ L(0) we have deg div∞ f = 0 if and only if f ∈ k×, so L(0) = k.

We now show that L(D) is preserved (up to isomorphism) by linear equivalence.

Lemma 21.6. For any linearly equivalent divisors A ∼ B we have L(A) ' L(B).

Proof. We have A−B = div f for some f ∈ k(C)×, and we claim that the maps g 7→ fg and
g 7→ g/f are inverse k-linear maps from L(A) to L(B) and from L(B) to L(A), respectively.
Linearity is clear, and if div g ≥ −A then

div fg = div f + div g ≥ div f −A = −B.

Similarly, if div g ≥ −B then

div g/f = div g − div f ≥ −B − div f = −A.

Thus we have defined linear transformations from L(A) to L(B), hence L(A) ' L(B).

The following lemma shows that non-trivial Riemman-Roch spaces arise only (and al-
ways) for divisors that are linearly equivalent to an effective divisor.

Lemma 21.7. We have L(D) 6= {0} if and only if D ∼ D′ for some D′ ≥ 0.

Proof. If f ∈ L(D) is nonzero, then div f ≥ −D, and D ∼ D′ = D+ div f ≥ 0. Conversely,
if D ∼ D′ ≥ 0 then −D ≤ D′ −D = div f for some f ∈ k(C)×, hence L(D) 6= {0}.

Lemma 21.8. For any two divisors A ≤ B we have L(A) ⊆ L(B) and

dim(L(B)/L(A)) ≤ degB − degA.

Proof. It is clear that L(A) ⊆ L(B), and that the inequality holds if A = B. We now prove
the inequality in the case B = A + P , for some place P . Let t be a uniformizer at P ,
let k(P ) = OP /P be the residue field of P , and let n = ordP (B). Now define the linear
transformation φ : L(B)→ k(P ) by φ(f) = (tnf)(P ) = tnf mod P ; we have

ordP (tnf) = n+ ordP (f) ≥ 0

for f ∈ L(B), so tnf ∈ OP and φ is well-defined. The image of φ lies in k(P ) = kdegP , and
its kernel consists of subspace of functions f ∈ L(B) for which ordP (tnf) ≥ 1, equivalently,
ordP (f) ≥ 1− n = −ordP (A), which is precisely L(A). We have L(B)/ kerφ ' imφ, so

dim(L(B)/L(A)) = dim imφ ≤ dim k(P ) = degP = degB − degA. (1)

The general case follows from repeated application of the same result. If

A = B0 < B1 < B2 < · · · < Bm = B,

where B =
∑
nPP and m =

∑
nP , then each difference Bi+1 − Bi is a single place Pi.

Applying (1) gives dim(L(Bi+1)/L(Bi)) = degBi+1− degBi = degPi. Summing yields the
desired result dim(L(B)/L(A)) ≤ degB − degA.



We now prove that the dimension of a Riemann-Roch space is finite.

Theorem 21.9. For any divisor D we have dimL(D) ≤ degD0 + 1.

Proof. Applying Lemma 21.8 with B = D and A = 0 yields

dim(L(D0)/L(0)) ≤ degD0 − deg 0 = degD0.

As noted in Example 21.5, we have L(0) = k, and therefore

dimL(D0) = dim(L(D0)/L(0)) + 1 ≤ degD0 + 1.

We also have D ≤ D0, so by Lemma 21.8, L(D) ⊆ L(D0), and we have

dimL(D) ≤ dimL(D0) ≤ degD0 + 1

as claimed.

Definition 21.10. The dimension `(D) of a divisor is the dimension of L(D).

The following corollary summarizes what we know about `(D) so far.

Corollary 21.11. The following hold:

(a) `(0) = 1.

(d) If A ∼ B then `(A) = `(B) and deg(A) = deg(B).

(c) For any A ≤ B we have `(B)− `(A) ≤ degB − degA.

(d) For all D ≥ 0 we have `(D) ≤ degD + 1.

(e) If degD < 0 then `(D) = 0.

Proof. (a) follows from Example 21.5, (b) is Lemma 21.6 and Corollary 19.23, (c) is
Lemma 21.6, (d) is Theorem 21.9, and (e) follows from Lemma 21.7.

An equivalent form of (c) that we will often use is

A ≤ B =⇒ degA− `(A) ≤ degB − `(B).

Lemma 21.12. If degD = 0 then `(D) = 1 if D is principal and `(D) = 0 otherwise.

Proof. If D = div f is principal, then f ∈ L(D), so `(D) ≥ 1 and by Lemma 21.7 we must
have D ∼ D′ ≥ 0. But degD′ = degD = 0, so D′ = 0 and `(D) = `(0) = 1. Now suppose
`(D) ≥ 1. As just argued, we must have `(D) = 1, so there is a nonzero f ∈ L(D), and
since div f ≥ −D, we have D + div f ≥ 0. But deg(D + div f) = 0, so D + div f = 0
and therefore D = −div f = div 1/f is principal. Taking the contrapositive, if D is not
principal then we must have `(D) = 0.

It follows from Lemma 21.12 that the inequality in Theorem 21.9 is not tight for curves
for which Pic0k C is not trivial, since this implies the existence of non-principal divisors of
degree 0. On the other hand, for C = P1, the inequality is tight for all effective divisors
(as noted at the end of Lecture 20, there is a gap between these two cases, one can have
Pic0k C = {0} and C 6' P1; we will address this gap in the next lecture).

Lemma 21.13. If C is isomorphic to P1 then `(D) = degD + 1 for all D ≥ 0.



Proof. If C ' P1 then k(C) is the field of all rational functions over k. We claim that given
any effective divisor A =

∑
nPP we can construct a function fA ∈ k(C) with div∞ f = A.

Proof of claim: We just need to show that we can construct div0 f with support disjoint
from div∞ f . If k is infinite this is easy: pick a degree one place P 6∈ Supp(A) and let
div0 f = (degA)P . If k is finite, then, as noted in Lecture 3, there exist monic irreducible
polynomials of every degree in k[t], and each corresponds to a place of k(C). If A consists
of more than a single place, no place of degree degA can lie in the support of A, so pick
one such place P and let div0 f = P . Otherwise A consists of a single place and we can
pick a degree one place P not in the support of A and let div0 f = (degA)P as above.

Now let 0 = A0 < A1 < · · · < Am = D be a maximal chain of divisors, let Pi = Ai−Ai−1
for 1 ≤ i ≤ m, and let f1, . . . , fm ∈ k(C) satisfy div∞ fi = Ai (note that the list P1, . . . , Pm

may contain repetitions). These functions are linearly independent over k, since for any
nonempty subset the fi with maximal index i has a pole at Pi of order greater than that
of any fj with j < i, and the triangle equality then precludes any non-trivial relations.
Finally, for each point Pi there is a subspace Vi ⊆ L(D) corresponding to functions f for
which div f = div fi, and L(D) contains the direct sum of these subspaces, since no pair
intersects non-trivially. If we consider the linear transformation φ : Vi → k(Pi) defined by
f 7→ (tni

i f)(Pi), where ti is a uniformizer for Pi and ni = −ordPi(f), it is clear that kerφ is
trivial, and φ is surjective becuase k(C) is the rational function field. So dimVi = degPi.

We then have

`(D) = dimL(D) ≥ dimL(0) +
∑

dimVi = 1 +
∑

degPi = 1 + degD,

as claimed.

Remark 21.14. If you think the proof of Lemma 21.13 is a lot of effort to prove something
that should be obvious, your are right. Once we prove the Riemann-Roch theorem it will
follow trivially (as will many other results). Our purpose in proving it now is to help
motivate the definition of genus.

We know that the inequality in Theorem 21.9 is tight when C is rational (isomorphic to
P1), but not in general. As we will show, for suitable divisors D (which will turn out to be
almost all of them), the quantity degD+1−`(D) tells us something intrinsic to the function
field k(C); roughly speaking, it measure how far C is from being rational.1 One way to
think about this metric is as a measure of the functions that are “missing” from k(C).

We now show that the degD + 1− `(D) is bounded, independent of D.

Theorem 21.15. There is a non-negative integer g such that

deg(D) + 1− `(D) ≤ g

holds for all D ∈ Divk C.

The proof below is adapted from [1, Prop. 1.4.14].

Proof. Let f ∈ k(C) be transcendental over k, and let A = div∞ f ≥ 0. Let v1, . . . , vd be
a basis for k(C)/k(f), where d = degA = [k(C) : k(f)] (by Corollary 19.24). Choose a
divisor B ≥ 0 so that div vi ≥ −B for each vi (this is clearly possible).

1Modulo annoying special cases like genus 0 curves that are not rational (and genus 1 curves that are not
elliptic curves). Such annoyances can be eliminated by insisting on at least one rational point.



For any integer n ≥ 0, the set of functions S = {vif j : 1 ≤ i ≤ d, 0 ≤ j ≤ n} is clearly
linearly independent over k, since v1, . . . , vd are linearly independent over k(f) and f is
transcendental over k. And S ⊆ L(nA + B), since div(vif

j) ≥ −nA − B for all vif
j ∈ S.

Therefore
`(nA+B) ≥ d(n+ 1) = (n+ 1) degA (2)

for all n ≥ 0. But we also have nA ≤ nA+B, since B ≥ 0, and Corollary 21.11.c implies

`(nA+B)− `(nA) ≤ deg(nA+B)− deg(nA) = degB. (3)

Combining (2) and (3) yields

`(nA) ≥ `(nA+B)− degB ≥ (n+ 1) degA− degB = deg(nA) + (degA− degB).

It follows that
deg(nA) + 1− `(nA) ≤ degA− degB + 1

for all n ≥ 0. Let g = degA− degB + 1 so that

deg(nA) + 1− `(nA) ≤ g, (4)

where we note that g ≥ 0, by Corollary 21.11.d.
Now let D be any divisor in Divk C and write D = D0 − D∞ as the difference of two

effective divisors. We claim that D0 is equivalent to an effective divisor D′ ≤ nA, for
some n. By Corollary 21.11.c, we have

`(nA)− `(nA−D0) ≤ deg(nA)− deg(nA−D0) = degD0,

and applying (4) yields

`(nA−D0) ≥ `(nA)− degD0 ≥ deg(nA) + 1− g + degD0.

The RHS is clearly positive for sufficiently large n, so pick n so that `(nA −D0) > 0 and
let f ∈ L(nA−D0) be nonzero. Now define D′ := D0 − div f so that

D′ = D0 − div f ≤ D0 − (D0 − nA) = nA,

as claimed. We have D ≤ D0, so `(D0)− `(D) ≤ degD0− degD, by Corollary 21.11.c, and

degD + 1− `(D) ≤ degD0 + 1− `(D0)

= degD′ + 1− `(D′)
≤ deg(nA) + 1− `(nA)

≤ g,

where we used D′ ∼ D0 equality, D′ ≤ nA to get the second inequality, and then (4).
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Throughout this lecture C/k is a curve over a perfect but not necessarily algebraically
closed field k and F/k denotes the corresponding function field.1

In the last lecture we defined `(D) as the dimension of the Riemann-Roch space L(D) of
the divisor D, and we proved that `(D) is invariant under linear equivalence. It is immediate
from the definitions that for any divisors A ≤ B we have `(A) ≤ `(B) and deg(A) ≤ deg(B).
Less obvious is the fact that

deg(A)− `(A) ≤ deg(B)− `(B),

but we proved that this holds for all A ≤ B; see Lemma 21.8. As we are particularly
interested in the quantities on the two sides of the above inequality, let us define

r(D) := deg(D)− `(D).

Then r(D) is preserved under linear equivalence and A ≤ B =⇒ r(A) ≤ r(B). At the end
of Lecture 21 we proved that for every curve C/k there is an integer g ≥ 0 such that

r(D) ≤ g − 1 (1)

for all D ∈ Divk C. We also showed that for C ' P1 we can take g = 0, and that r(D) = −1
for all D ≥ 0. We always have r(0) = 0− 1 = −1, so r(D) ≥ −1 for all D ≥ 0.

22.1 The genus of a curve

We now define the genus of a curve.

Definition 22.1. The genus of the curve C/k is defined by

g := max{r(D) + 1 : D ∈ Divk(C)}.

In other words, g is the least integer for which (1) holds.

Remark 22.2. This definition of the genus of a curve is sometimes called the geometric
genus to distinguish it from other notions of genus that we won’t consider in this course.
For (smooth projective) curves the different definitions all agree.

We now give the complete statement of Riemann’s Theorem, most of which was proved
in Theorem 21.15.

Theorem 22.3 (Riemann’s Theorem). Let C/k be a curve of genus g. Then r(D) ≤ g− 1
for all D ∈ Divk C, and equality holds for all divisors of sufficiently large degree.

Proof. We have already proved the inequality. Let us pick a divisor A for which r(A) = g−1;
some such A exists, by the definition of g. We will show that r(D) = g − 1 whenever
degD ≥ degA+ g = c.

1Recall that our curves are smooth projective varieties of dimension one, and that our varieties are
geometrically irreducible.



So assume degD ≥ c. We have r(D −A) = deg(D −A)− `(D −A) ≤ g − 1, so

`(D −A) ≥ deg(D −A) + 1− g ≥ c− degA+ 1− g = 1.

There is a nonzero f ∈ L(D −A), so let D′ = D + div f ≥ D +A−D = A. Then

r(D) = r(D′) ≥ r(A) = g − 1,

and we already know that r(D) ≤ g − 1, so r(D) = g − 1.

We now want to refine Riemann’s Theorem to obtain a more precise statement that
will tell us exactly what “sufficiently large” means and give us a measure of how far the
inequality r(D) ≤ g − 1 is from being an equality for any particular divisor D; this is the
Riemann-Roch theorem.

Definition 22.4. Let C/k be a curve of genus g. For D ∈ Divk C, the non-negative integer

i(D) := g − 1− r(D)

is the index of speciality of D. Divisors for which i(D) > 0 are said to be special.

We know from Riemann’s Theorem that i(D) = 0 for all D of sufficiently large degree,
and we also know that i(0) = g, since

i(0) = g − 1− r(0) = g − 1− deg 0 + `(0) = g − 1− 0 + 1 = g.

22.2 The ring of adeles

To compute the index of speciality we introduce the adele ring. Our presentation roughly
follows that in [2, §1.5].

Definition 22.5. The adele ring of the function field F/k is the subring A = AF of the
direct product

∏
P F consisting of those elements α = (αP ) for which αP ∈ OP for all but

finitely many P . The elements of A are called adeles.

Remark 22.6. The adele ring A is also called the ring of repartitions. It is often defined
in terms of the P -adic completions of F , but we don’t need to take completions to prove
the Riemann-Roch theorem so we won’t (some authors refer to A as the ring of pre-adeles).

The function field F/k is canonically embedded in A via the diagonal embedding

f 7→ (f, f, f, . . .).

Adeles of this form are called principal adeles, terminology that is consistent with our
notion of a principal divisor; those divisors that correspond to elements of the function
field. Like F , the adele ring A is a k-vector space. We extend each valuation ordP of F/k
to a valuation on A by defining ordP (α) = ordP (αP ) for αP 6= 0 and setting ordP (0) =∞,
where ∞ is greater than any element of Z.

Definition 22.7. For a divisor D the adele space of D is the k-vector space

A(D) := {α ∈ A : ordP (α) ≥ −ordP (D) for all places P}.

It contains the Riemann-Roch space L(D) = A(D) ∩ F as a subspace, and it is in turn a
subspace of the adele ring A.



The adele space of a divisor gives us additional information beyond what we get from the
Riemann-Roch space that will allow us to characterize the index of speciality in a canonical
way. We first prove three lemmas.

Lemma 22.8. For any two divisors A ≤ B we have A(A) ⊆ A(B) and

dimA(B)/A(A) = degB − deg(A),

as k-vector spaces.

Proof. The inclusion A(A) ⊆ A(B) is clear. As in the proof of Lemma 21.8, it suffices to
consider the case B = A+P for some place P , and the proof is exactly the same. We pick a
uniformizer t for P and define the linear map φ : A(B)→ k(P ) by φ(f) = (tnf)(P ), where
n = ordP (B). The map φ is surjective and its kernel is A(A), hence

dim(A(B)/A(A)) = dim k(P ) = degP = degB − degA.

Lemma 22.9. For any two divisors A ≤ B we have A(A) + F ⊆ A(B) + F and

dim
A(B) + F

A(A) + F
= r(B)− r(A),

as k-vector spaces, where F is embedded diagonally in A.

Proof. The inclusion is clear, and the map

A(B)→ A(B) + F → (A(B) + F )/(A(A) + F )

is surjective, with kernel A(B) ∩ (A(A) + F ). We therefore have

A(B) + F

A(A) + F
' A(B)

A(B) ∩ (A(A) + F )
=

A(B)

A(A) + L(B)
' A(B)/A(A)

(A(A) + L(B))/A(A)
.

Applying Lemma 22.8 and taking dimensions gives

dim
A(B) + F

A(A) + F
= degB − degA− dim

A(A) + L(B)

A(A)
.

Finally we note that

dim
A(A) + L(B)

A(A)
= dim

L(B)

A(A) ∩ L(B)
= dim

L(B)

L(A)
= `(B)− `(A),

thus

dim
A(B) + F

A(A) + F
= degB − degA− (`(B)− `(A)) = r(B)− r(A).

Lemma 22.10. For any divisor D for which r(D) = g − 1 we have

A = A(D) + F.

Proof. Let α ∈ A. We will show α ∈ A(D) + F . Let us pick a divisor D′ ≥ D such that
α ∈ A(D′)+F ; this is clearly possible. We have g−1 = r(D) ≤ r(D′) ≤ g−1, by Riemann’s
Theorem, so r(D′) = g − 1. By Lemma 22.9 we have

dim
A(D′) + F

A(D) + F
= r(D′)− r(D) = (g − 1)− (g − 1) = 0,

so A(D′) + F = A(D) + F and therefore α ∈ A(D) + F .



We can now determine the index of speciality of a divisor in terms of its adele space.

Theorem 22.11. Let F/k be a function field. For any divisor D ∈ Divk F we have

i(D) = dimA/(A(D) + F ).

Proof. By Riemann’s Theorem there exists a divisor D′ ≥ D for which r(D′) = g − 1; we
just need to make the degree of D′ ≥ D large enough, and this is clearly possible; if D 6= 0
we can take a multiple of D0 +D∞. By Lemma 22.10 we then have A = A(D′) + F , thus

dim
A

A(D) + F
= dim

A(D′) + F

A(D) + F
= r(D′)− r(D) = g − 1− r(D) = i(D),

where we use Lemma 22.9 to get the second equality.

We now have an equality that holds for all divisors

g = r(D) + 1 + i(D),

and we know that i(D) = 0 for all divisors of sufficiently large degree. But we would like
to characterize i(D) in a canonical way that does not involve the adele ring; this will yield
the Riemann-Roch theorem.

22.3 Canonical divisors

Definition 22.12. Let F/k be a function field and let A be its adele ring. For a divisor
D ∈ Divk F the space of Weil differentials Ω(D) is the orthogonal complement of A(D)+F
(its annihilator in the dual space A∨). Explicitly, this is the set of all linear functionals
ω : A → k that vanish on A(D) + F . The k-vector space

Ω = ΩF :=
⋃

D∈Divk F

Ω(D)

is the space of Weil differentials for F/k.

It is clear that Ω is a k-vector space: if ω1 ∈ Ω(D1) and ω2 ∈ Ω(D2) then ω1 + ω2 lies
in Ω(D), where D = D1 ∧D2 is defined by ordP (D) = min(ordP (D1), ordP (D2)).

Lemma 22.13. For any divisor D ∈ Divk F we have dim Ω(D) = i(D).

Proof. The quotient space A/(A(D)+F ) has finite dimension i(A), by Theorem 22.11, thus
it has the same dimension as its dual, which is canonically isomorphic to the orthogonal
complement of A(D) + F , which is precisely ΩF (D).2 Thus dim Ω(D) = i(D).

We have seen that the space of Weil differentials Ω is a k-vector space; we now make Ω
an F -vector space by defining fω ∈ Ω for f ∈ F and ω ∈ Ω as the linear functional A → k
that sends α to ω(fα), in other words

(fω)(α) = ω(fα),

for all α ∈ A.

2If V/W is any quotient, the map Φ: (V/W )∨ →W⊥ defined by Φ(λ)(v) = λ(v+W ) is an isomorphism.



Theorem 22.14. Let F/k be a function field and let Ω be its space of Weil differentials.
Then dimF Ω = 1.

Proof. Clearly Ω 6= 0, so let ω1, ω2 ∈ Ω be nonzero. We will show that ω1/ω2 ∈ F .
For i = 1, 2, let Di be such that ωi ∈ Ω(Di) and define the k-linear map

φi : L(Di +D)→ Ω(−D),

f 7→ fωi,

where D is a fixed divisor to be determined. For any α+ g in A(−D) + F we have

(fωi)(α+ g) = ωi(fα) + ωi(fg) = 0 + 0 = 0,

since ωi vanishes on fg ∈ F and

ordP (fα) = ordP (f) + ordP (α) ≥ ordP (−Di −D) + ordP (D) = ordP (−Di)

for all P , so ωi vanishes on fα. Thus φi is well defined, and it is clearly injective.
We claim that for an appropriate choice of D we have

φ1(L(D1 +D)) ∩ φ2(L(D2 +D)) 6= {0}. (2)

Assuming the claim, we may pick nonzero f1 ∈ L(D1 +D) and f2 ∈ L(D2 +D) such that
φ1(f1) = φ2(f2). Then f1ω1 = f2ω2 and ω1/ω2 = f2/f1 ∈ F as desired.

We now prove that there is a divisor D for which (2) holds. By Riemann’s Theorem, we
can pick D > 0 of sufficiently large degree so that r(Di +D) = g− 1 for i = 1, 2. Let Ui be
the image of L(Di +D) in Ω(−D) under φi. We want to show dim(U1 ∩ U2) > 0. We have

dim Ω(−D) = i(−D) = g − 1− r(−D) = g − 1− deg(−D) + `(−D) = g − 1 + deg(D),

since `(−D) = 0 for D > 0. We have U1 + U2 ⊆ Ω(−D), and therefore

dim Ω(−D) ≥ dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2),

where all the dimensions are as k-vector spaces. Thus

dim(U1 ∩ U2) ≥ dimU1 + dimU2 − dim Ω(−D)

= `(D1 +D) + `(D2 +D)− g + 1− degD

= deg(D1 +D)− r(D1 +D) + deg(D2 +D)− r(D2 +D)− g + 1− degD

= deg(D1 +D)− g + 1 + deg(D2 +D)− g + 1− g + 1− degD

= degD + degD1 + degD2 − 3g + 3.

By choosing D of sufficiently large degree, we can make the RHS positive.

Lemma 22.15. For any nonzero ω ∈ Ω there is a unique divisor Dω such that D ≤ Dω for
all divisors D for which ω ∈ Ω(D).

Proof. By Lemma 22.13, we have dim Ω(D) = i(D), so i(D) > 0 for all divisors D such that
ω ∈ Ω(D). At least one such D exists, since ω ∈ Ω, so let us choose Dω maximal subject to
the constraint ω ∈ Ω(Dω); a maximal Dω exists because i(D) = 0 for all D of sufficiently
large degree, by Riemann’s Theorem. We now prove that Dω is unique.



Suppose not. Then there are two distinct divisors D1 and D2 that are maximal subject
to the constraints ω ∈ Ω(D1) and ω ∈ Ω(D2). Since D1 and D2 are incomparable, there
exist distinct places P1 and P2 such that

ordP1(D1) > ordP1(D2) and ordP2(D2) > ordP2(D1).

We claim that ω ∈ Ω(D1 +P2), contradicting the maximality of D1. Write α ∈ A(D1 +P2)
as α = α1+α2, where α1 is zero at P2 and equal to α otherwise, while α2 is equal to α at P2

and zero otherwise. Then α1 ∈ A(D1) and α2 ∈ A(D2) and ω(α) = ω(α1) + ω(α2) = 0,
since ω ∈ Ω(D1) and ω ∈ Ω(D2). But then ω ∈ Ω(D1 + P2) as claimed.

Definition 22.16. For a nonzero Weil differential ω ∈ Ω we define the divisor of ω to be
the unique divisor

divω := Dω

given by Lemma 22.15. A divisor D is said to be canonical if D = divω for some ω ∈ Ω.
We also define ordP (ω) := ordP (divω).

Lemma 22.17. For any nonzero f ∈ F and nonzero ω ∈ Ω we have

div(fω) = div f + divω.

Proof. We have fω ∈ Ω(div f + divω), since for any g + α in A(div f + divω) + F :

(fω)(g + α) = ω(fg + fα) = ω(fg) + ω(fα) = 0 + 0 = 0,

because ω vanishes on F and

ordP (fα) = ordP (f) + ordP (α) ≥ ordP (div f) + ordP (−D − div f) = ordP (−D)

for all places P of F , so ω(fα) = 0. It follows that div fω ≥ div f + divω.
The same argument shows that divω = div f−1fω ≥ div f−1 + div fω = div fω− div f ,

and therefore div fω ≤ div f + divω, so the claimed equality holds.

Corollary 22.18. The canonical divisors form a single linear equivalence class.

Proof. Let D1 = divω1 and D2 = divω2 be two canonical divisors for F/k. Then ω1 and
ω2 are both nonzero, and by Theorem 22.14, we have ω2 = fω1 for some f ∈ F×. But then
D2 = divω2 = div fω1 = div f + divω1 = div f +D1, so D1 ∼ D2.

Now suppose D1 = divω1 is a canonical divisor and D2 = D1 + div f for some f ∈ F×.
Then D2 = divω1 + div f = div fω1 is canonical.

Thus their is a unique element of the Picard group Pick C corresponding to the class
of canonical divisors. This is a truly remarkable fact; given the rather abstract definition
of the Picard group, there is no a priori reason to expect that it should have a uniquely
distinguished element other than zero. As we shall see in the next lecture, the canonical
divisor class is typically not the zero divisor, and the case where it is is actually quite
interesting.

We now show that, like elements of the function field, Weil differentials are determined
up to a scalar factor in k× by their divisors.

Corollary 22.19. Two nonzero Weil differentials ω1, ω2 ∈ Ω have the same divisor if and
only if one ω2 = cω1 for some c ∈ k×.

Proof. Since ω1 6= 0 and dimF Ω = 1, we can write ω2 = fω1 for some f ∈ F×. Then
divω2 = div fω1 = div f + divω1, so if divω1 = divω2 then div f = 0 and f ∈ k×.
Conversely, divω2 = div cω1 = div c+ divω1 = divω1, for any c ∈ k×.



22.4 The Riemann-Roch Theorem

We now have almost everything we need to prove the Riemann-Roch Theorem. The last
ingredient is the Duality Theorem, which gives us an isomorphism between Riemann-Roch
spaces and spaces of Weil differentials.

Theorem 22.20 (Duality). For any divisor D and canonical divisor W = divω, the linear
map φ : L(W −D)→ Ω(D) defined by φ(f) = fω is an isomorphism of k-vector spaces. In
particular, we have i(D) = `(W −D) for all divisors D.

Proof. For any nonzero f ∈ L(W −D) and ω ∈ Ω(D) we have

div fω = div f + divω ≥ −(W −D) +W = D,

thus fω ∈ Ω(D), and imφ ⊆ Ω(D). It is clear that φ is linear, and its kernel is obviously
trivial, so it is injective. To show that φ is surjective, let ω′ be any nonzero element of
Ω(D). By Theorem 22.14 we can write ω′ = fω for some f ∈ F×, and since

div f +W = div f + divω = div fω = divω1 ≥ D,

we have div f ≥ −(W −D) and therefore f ∈ L(W −D), so ω′ = φ(f). Thus φ is surjective,
hence an isomorphism, and i(D) = dim Ω(D) = `(W −D), by Lemma 22.13.

Theorem 22.21 (Riemann-Roch Theorem). Let W be a canonical divisor of the genus g
curve C/k. For every divisor D we have

`(D) = deg(D) + 1− g + `(W −D).

Proof. Immediate from Definition 22.4 and Theorem 22.20.

Corollary 22.22. For any canonical divisor W of a genus g curve we have

`(W ) = g, degW = 2g − 2, i(W ) = 1.

Proof. We apply the Riemann-Roch Theorem twice, first with D = 0, which gives

`(0) = deg 0 + 1− g + `(W ),

and since deg 0 = 0 and `(0) = 1, we have `(W ) = g. Taking D = W gives

`(W ) = degW + 1− g + `(0),

which implies degW = 2g − 2 and i(W ) = `(W −W ) = 1.

We can now give an exact value for the constant c in Riemann’s Theorem.

Corollary 22.23. For all divisors D of a genus g curve C/k with degD > 2g− 2 we have

`(D) = degD + 1− g,

equivalently, i(D) = 0.



Proof. By the Riemann-Roch Theorem,

`(D) = deg(D) + 1− g + `(W −D)

where W is a canonical divisor. We have

deg(W −D) = degW − degD < 2g − 2− (2g − 2) = 0,

so `(W −D) = 0 and the corollary follows.

We can also give some more down-to-earth characterization of a canonical divisor.

Corollary 22.24. For a divisor D of a genus g curve, the following are equivalent:

(a) D is a canonical divisor.

(b) `(D) = g and degD = 2g − 2.

(c) i(D) = 1 and degD is maximal among divisors with i(D) = 1.

Proof. That (a) implies (b) is immediate from Corollary 22.22, and the implications (b)⇒(c)
and (c)⇒(a) both follow from the combination of Corollaries 22.22 and 22.23.

Finally we note a very useful fact.

Theorem 22.25. The genus of a curve C/k over a perfect field k is preserved under base
extension.3

Proof. Let k′/k be an extension of the perfect field k (hence a separable extension). It
suffices to show that if D ∈ Divk C is a canonical divisor for C/k then it is also a canonical
divisor for C/k′. Clearly degD is not changed under base extension (some closed points may
split, but the total degree does not change), so it suffices to show that the dimension `(D)
of the Riemann-Roch space L(D) ⊆ k(C) does not change under base extension. The key
point here is that any finite-dimensional k′-vector subspace of k′(C) has a basis that lies in
k(C); this follows from a general algebraic result that we will not prove here; see Proposition
1 in §3 of the appendix to [1]. Thus `(D) does not change under base extension.
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As usual, a curve is a smooth projective (geometrically irreducible) variety of dimension
one and k is a perfect field.

23.1 Genus zero curves with a rational point

Earlier in the course we showed that all plane conics with a rational point are isomorphic
to P1. We now show that this applies to any genus zero curve with a rational point.

Theorem 23.1. Let C/k be a curve with a rational point. Then C has genus zero if and
only if it is isomorphic to P1 (over k).

Proof. Every curve that is isomorphic to P1 has genus zero; this follows from Lemma 21.13
and the Riemann-Roch theorem. Conversely, for a curve of genus g = 0 with a rational
point P , the Riemann-Roch theorem implies

`(P ) = deg(P ) + 1− g = 1 + 1− 0 = 2,

since degP = 1 > 2g − 2 = −2. Thus there exists a non-constant function f ∈ L(P ), and
such an f has a simple pole at P and no other poles. It follows that div∞ f = degP = 1,
hence f gives a degree-one morphism from C to P1 that is defined over k, since f ∈ k(C),
and this is an isomorphism (here we use Corollaries 19.3 and 19.5).

Remark 23.2. If C/k does not have a rational point, we might instead let P be any closed
point (these always exist). Everything in the above proof works except that now we have
div∞ f = degP > 1. The function f still defines a morphism to P1, but it is not an
isomorphism because its degree is greater than one. But if we base extend C/k to a finite
extension k′/k over which the place P splits into degree one places, then we can show that
C/k′ is isomorphic to P1. So every curve of genus zero is isomorphic to P1 over a finite
extension of its ground field.

23.2 Genus one curves with a rational point

Theorem 23.3. Let C/k be a curve with a rational point. Then C has genus one if and
only if it is isomorphic to a plane curve of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1)

with a1, a2, a3, a4, a6 ∈ k.

Proof. Let C/k be a curve of genus one with a rational point P . For any positive integer n
we have deg nP = n > 2g − 2 = 0, so by the Riemann-Roch theorem,

`(nP ) = deg(nP ) + 1− g = n+ 1− 1 = n.

In particular, L(2P ) has dimension 2. Clearly k ∈ L(2P ), since 0 ≥ −2P , so L(2P ) has
a k-basis of the form {1, x} for some x ∈ k(C) − k. The space L(3P ) contains L(2P ) and
has dimension 3, so it has a basis of the from {1, x, y} for some y ∈ k(C)×. The functions
1, x, y, x2 all belong to L(4P ) and have poles of distinct orders 0, 2, 3, 4 at P , respectively,



thus they are linearly independent and form a basis for L(4P ). By the same argument,
(1, x, y, x2, xy) is a basis for L(5P ).

But L(6P ) contains both x3 and y2, as well as 1, x, y, x2, xy. Thus we have 7 elements in
a k-vector space of dimension 6, and these must satisfy a linear equation. This equation must
contain terms ax3 and by2 with a, b 6= 0 (otherwise we are left with a linearly independent
set of terms), and if we replace x by ax/b and y by by/a, after multiplying through by b3/a4

and homogenizing we obtain an equation in the desired form (1).
Now suppose we have a curve C/k defined by an equation of the form (1). If we

homogenize (1) and use projective coordinates (x : y : z), then P = (0 : 1 : 0) is a rational
point, and it is clearly the only point on C (rational or otherwise) with z = 0, since z = 0
forces x = 0 and all points (0 : y : 0) are projectively equivalent.

The function x (projectively represented as x/z) defines a morphism (x : z) from C
to P1 of degree [k(C) : k(x)] = 2, since k(C) = k(x, y) and the minimal equation of y over
k(x) has degree 2 (note that C is a curve, and in particular an irreducible algebraic set,
so equation (1) must be irreducible). It follows that div∞ x = 2 (by Corollary 19.23), and
since the function x has a pole only at points with z-coordinate 0, it must have a double
pole at P . By the same argument, the function y has a pole of order 3 at P . The set of
functions {xiyj} contains elements with poles of order n = 2i + 3j at P for n = 0 and
all n ≥ 2, and none of these functions has any other poles. Thus we can construct a set
of n linearly independent functions with poles of order 0, 2, 3, . . . , n, all of which lie L(nP ).
Applying the Riemann-Roch theorem with n sufficiently large yields

n ≤ `(nP ) = deg(nP ) + 1− g = n+ 1− g,

so the genus g of C is at most 1.
To show that g 6= 0, consider the rational map ι defined by (x : −y − a1x − a3z : z).

The map ι leaves the RHS of (1) unchanged, and on the LHS we have

y(y + a1x+ a3z) 7→ (−y − a1x− a3z)(−y − a1x− a3z + a1x+ a3z) = (y + a1x+ a3z)y,

which is also unchanged, so ι is a morphism from C to itself. The morphism ι is clearly
invertible (it is its own inverse), so it is an automorphism. Let us now determine the points
fixed by ι. Clearly (0 : 1 : 0) is fixed, and a point with z 6= 0 is fixed if and only if
y = −y−a1x−a3z. Assuming char(k) 6= 2, this is equivalent to y = −(a1x+a3z)/2. There
are then three possibilities for x, corresponding to the roots of the cubic

x3 + a2x
2 + a4x+ a6z + (a1x+ a3z)

2/4.

These roots are distinct, since a repeated root would correspond to a singularity on the
smooth curve C. Thus ι fixes exactly 4 points in k̄(C). If g = 0, then C is isomorphic
to P1, by Theorem 23.1, and the only automorphism of P1 that fixes four points in P1 is the
identity map, by Lemma 23.7 below. But ι is clearly not the identity map on k̄(C), indeed,
it fixes only the 4 points already mentioned, thus g 6= 0.

If char(k) = 2 one needs a different argument to show g 6= 0; see [2].

Corollary 23.4. Every genus one curve C/k with a rational point is isomorphic to a plane
cubic curve.

Remark 23.5. It is also true that every (smooth) plane cubic has genus one, but we
won’t prove this here. The fact that genus one curves with a rational point can always be
embedded in P2 is noteworthy; the corresponding statement is already false in genus 2.



Remark 23.6. The automorphism ι used in the proof of Theorem 23.3 is an example of
an involution, an automorphism whose composition with itself is the identity map.

We now prove the lemma used in the proof of Theorem 23.3.

Lemma 23.7. Suppose φ is an automorphism of P1 that fixes more than 2 points in P1(k̄).
Then φ is the identity map.

Proof. Without loss of generality, we assume φ fixes the point ∞ = (1 : 0); if not we can
apply a linear transformation to P1 that moves a point fixed by φ to ∞. The restriction φa
of φ to A1(k̄) = P1(k̄)−{∞} is then a bijection, and also a morphism of affine varieties. As
a morphism from A1 → A1 the map φa is a polynomial map, say φa = (f), and f must have
degree one since φa is a bijection. If the equation f(x) = x has more than one solution,
then both sides must be equal as polynomials of degree one (two points uniquely determine
a line), but then φa is the identity map.

Remark 23.8. One can extend the argument above to show that every automorphism of
P1 is a rational function of the form (ax+ by)/(cx+ dy) with ad− bc 6= 0, also known as a
Möbius transformation. It is easy to see that every non-trivial Möbius transformation fixes
exactly 2 points (over k̄); they correspond to rotations of the Riemann sphere.

Definition 23.9. Equation (1) in Theorem 23.3 is called a Weierstrass equation.

Remark 23.10. There is no a5 in a Weierstrass equation. As can be seen from the proof
of Theorem 23.3, each coefficient ai appears in front of a function with a pole of order 6− i
at the given rational point (and no other poles). There are no functions with only a single
pole of order 6 − 5 = 1 on a curve of genus one (indeed, such a function would give an
isomorphism to P1).

Lemma 23.11. Let C/k be a curve defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

If the characteristic of k is not 2 (resp. not 2 or 3) then a1 and a3 (resp. a1, a2, and a3)
can be made zero via a linear change of coordinates.

Proof. If char(k) 6= 2 then we can complete the square on the LHS, writing it as

(y + (a1x+ a3)/2)2 − (a1x+ a3)
2/4.

Setting u = y + (a1x+ a3)/2) and moving the remaining terms to the RHS yields

u2 = x3 + a′2x
2 + a′4x+ a′6,

for some a′2, a
′
4, a
′
6 ∈ k. If we also have char(k) 6= 3, we can depress the cubic on the RHS

by setting v = x+ a′2/3, yielding

u2 = v3 + a4
′′v + a6

′′

with a4
′′, a

′′
6 ∈ k.

Definition 23.12. A Weierstrass equation with a1a2a3 = 0 is a short Weierstrass equation.



Lemma 23.13. The short Weierstrass equation y2 = x3 − a4x − a6 defines a genus one
curve if and only if 4a34 + 27a26 6= 0.

Proof. The partial derivatives of f(x, y, z) = y2z − x3 − a4xz2 − a6z3 are

∂f/∂x = −3x2 − a4z2,
∂f/∂y = 2yz,

∂f/∂z = y2 − 2a4xz − 3a6z
2.

Let X be the zero locus of f in P2. If P = (x0 : y0 : z0) is a singular point of X, then z0 6= 0
(otherwise we must have x0 = y0 = 0, but this is not a valid projective point). We then
have y0 = 0, (a) 3x20 + a4z

2
0 = 0, and (b) 2a4x0z0 + 3a6z

2
0 = 0. Writing x0 = −3a6z0/(2a4)

via (b) and plugging into (a) gives

3(−3a6z0)
2/(2a4)

2 + a4z
2
0 = 0

27a26 + 4a34 = 0.

The calculations above are reversible, so X has a singular point if and only if 4a34+27a26 = 0.
If X has no singular points then it must be irreducible; it is a hypersurface in P2 and it were
the union of two or more curves, then the intersection points would be singular. Thus X
is a curve defined by a Weierstrass equation with the rational point (0 : 1 : 0), so by
Theorem 23.3 it has genus one.

In what follows we may assume for the sake of simplicity, that the characteristic of k is
not 2 or 3 so that we can work with short Weierstrass equations; everything we do can be
extended to the general case, the equations are just more complicated to write down.

23.3 Elliptic curves

Definition 23.14. An elliptic curve E/k is a genus one curve with a distinguished rational
point O. Equivalently, an elliptic curve is a curve E/k defined by a Weierstrass equation
with the distinguished rational point O = (0 : 1 : 0).

Notice that an elliptic curve E/k is, strictly speaking, more than just the curve E, it is
the pair (E,O). If E has two rational points, say O1 and O2, then (E,O1) and (E,O2) are
two different elliptic curves. In practice one typically works with elliptic curves given by
Weierstrass equations, in which case the point O is always taken to be the point (0 : 1 : 0)
at infinity; thus we may refer to E/k as an elliptic curve without explicitly mentioning O.

Remark 23.15. Elliptic curves are obviously not ellipses (ellipses are curves of genus zero),
but there is a connection. If one attempts to compute the circumference of an ellipse with
semi-major axis a and eccentricity e by applying the arc-length formula, one finds that the
circumference is given by

4a

∫ 1

0

√
1− e2t
1− t2

dt.

This is known as an elliptic integral (incomplete, and of the second kind), and it does not
have a simple closed form. However, the integrand u(t) satisfies the equation

u2(1− t2) = 1− e2t2,



and this defines a genus one curve with a rational point, an elliptic curve.1 The theory of
elliptic curves originated in the study of solutions to integrals like the one above, leading
to the notion of elliptic functions that arise in complex analysis as solutions to non-linear
differential equations that correspond to Weierstrass equations.

Theorem 23.16. Let E/k be an elliptic curve with distinguished point O. The map φ that
sends the point P ∈ E(k) to the class of the divisor P − O in Pic0k(E) is a bijection. This
induces a commutative group operation on E(k) defined by

P1 + P2 := φ−1(φ(P1) + φ(P2)),

in which O acts as the identity element.

Proof. We first show that φ is injective. If P − O ∼ Q − O then P ∼ Q. We then have
div f = P − Q for some f ∈ k(E). If f is nonzero then it gives an isomorphism E → P1,
which is impossible, since E has genus one. So P = Q and φ is injective.

Now suppose D is any divisor of degree 0. Then D +O has degree 1 ≥ 2g − 1 = 1, and
by the Riemann-Roch theorem

`(D +O) = deg(D +O) + 1− g = 1 + 1− 1 = 1,

so there is a nonzero f ∈ L(D+O) such that div f+D+O ≥ 0. But deg(div f+D+O) = 1,
so we must have div f +D +O = P for some P ∈ E(k). Thus D ∼ P −O.

Thus the set of rational points E(k) form an abelian group. The same applies to every
base extension of E, so we the set E(k′) is also an abelian group (also with O as the
identity), for any extension k′/k; this follows from the fact that the genus of a curve is
preserved under base extension (of a perfect field), so E/k′ is also an elliptic curve.2

We now want to describe the group operation more explicitly. For this purpose we use
the following construction. Let us assume our elliptic curve E/k is given by a Weierstrass
equation, hence embedded in P2. If L is a line in P2 defined by a linear form (a homogeneous
polynomial of degree one) with coefficients in k, then the intersection (L ∩ E) corresponds
to a divisor in DL = Divk E of degree 3. This follows from Bezout’s Theorem, and the fact
that (L ∩ E) is fixed by the action of Gk = Gal(k̄/k); the set (L ∩ E) is a union of Galois
orbits, each a closed point of E/k, and each occurs in DL with multiplicity corresponding
to the intersection number of E and L at each k̄-point in the orbit (these all must coincide).

Lemma 23.17. Let E/k be an elliptic curve in P2, and let L1, L2 be lines in P2 defined
by linear homogeneous polynomials `1, `2 ∈ k[x, y, z]. Let f ∈ k(E) be image of `1/`2 under
the map k(P2)→ k(E) induced by the inclusion E ⊆ P2. Then

div f = (L1 ∩ E)− (L2 ∩ E).

Proof. This follows from Bezout’s theorem and the discussion above.

We now give an explicit description of the group operation on an elliptic curve E(k)
defined by a Weierstrass equation. Any two points P and Q in E(k) uniquely determine a
line L1 that is defined over k (if P = Q then take the line tangent to E at P = Q). By
Bezout’s Theorem, L∩E contains a third point R, and this point must lie in E(k) because

1The given equation is singular at u = 0 and t = ±1, but its desingularization is an elliptic curve.
2This is not always true when k is not perfect.



P , Q, and L1 ∩E are all fixed by Gk. If we now let L2 be the line z = 0 at infinity, and let
`1 and `2 be the linear forms defining L1 and L2, then

div `1/`2 = (L1 ∩ E)− (L2 ∩ E) = P +Q+R− 3O = (P −O) + (Q−O) + (R−O)

since O is the only point on E with z = 0 (so by Bezout’s Thoerem, the intersection number
IP (L2 ∩ E) must be 3). This divisor is principal, hence equivalent to the zero divisor, and
in terms of the group operation on E(K) this implies

P ⊕Q⊕R = O,

where the symbol ⊕ denotes the group operation on E(k).3 and we recall that O is the
identity element of the group operation. This is summed up in the following corollary.

Corollary 23.18. Let E/k be an elliptic curve defined by a Weierstrass equation. The sum
of any three points in E(k) that lie on a line is zero under the group law on E(k).

Corollary 23.18 completely determines the group operation on E(k). To avoid ambiguity,
we will temporarily use ⊕ to denote the group operation on E(k), in order to distinguish it
from addition in Divk E. Given any two points P and Q we compute their sum R = P ⊕Q
by noting that P ⊕ Q = R holds if and only if P ⊕ Q 	 R = O, so we may compute the
negation of R as the third point on the line determined by P and Q. To get R itself, we
use the fact that R 	 R = O if and only if O ⊕ R 	 R = O, so we obtain R as the third
point on the line determined O and the negation of R. To sum up, the group law on E(k)
can be defined as follows.

Corollary 23.19 (Geometric group law). Let P and Q be rational points on elliptic curve
embedded in P2. Then P ⊕Q is the negation of the third point in the intersection of E and
the line uniquely determined by P and Q.

For explicit computations, we can use the Weierstrass equation for E to compute the
coordinates of the point P ⊕ Q as rational functions of the coordinates of P and Q. The
case where either P or Q is equal to O is obvious, so we assume otherwise, in which case
neither P nor Q lies on the line z = 0 at infinity and we can work in the affine patch z 6= 0.

In order to simplify the formulas, let us assume that char(k) 6= 2, 3 so that E/k can be
defined by a short Weierstrass equation

y2 = x3 + a4x+ a6. (2)

The additive inverse of any affine point P = (x0 : y0 : 1) is (x0 : −y0 : 1), since the third
point on the line x− x0z determined by P and O (and of course O is its own inverse).

We now consider how to compute the sum of two affine points P1 = (x1 : y1 : z1) and
P2 = (x2 : y2 : z2). Let us first dispose of some easy cases. If x1 = x2 then y1 = ±y2,
and if y1 = −y2 then P2 is the negation of P1 and their sum is O, so we assume this is not
the case. We then have two possibilities, either x1 6= x2, or P1 = P2. In the latter case, if
y1 = 0 then P1 = P2 is its own negation (a point of order two) and P1 ⊕ P2 = O.

In every other case the slope λ of the line L determined by P1 and P2 is given by

λ =
y2 − y2
x2 − x1

(x1 6= x2), λ =
3x21 + a4

2y1
(P1 = P2 and y1 6= 0),

3We use ⊕ here to avoid confusion with the symbol + used to denote addition of divisors (and to write
divisors as formal sums of closed points); later, when there is no risk of confusion we will simply use + to
denote the group operation on E(k).



and (y − y1) = λ(x− x1) is the equation for L.
Substituting this into (2) gives the cubic equation

(λ(x− x1) + y1)
2 = x3 + a4x+ a6

0 = x3 − λ2x2 + · · · ,

whose solutions are precisely x1, x2, and x3. We now observe that the sum of the roots of any
cubic polynomial are equal to the negation of its quadratic coefficient, so x1 +x2 +x3 = λ2.
This determines x3; plugging x3 into the equation for L and negating the result gives y3.

Theorem 23.20 (Algebraic group law). Let E/k be an elliptic curve given by the short
Weierstrass equation y2 = x3 + a4x + a6. If P1 = (x1 : y1 : 1) and P2 = (x2 : y2 : 1) are
affine points whose sum is an affine point P3 = (x3 : y3 : z3), then

x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1,

where λ = (y2 − y1)/(x2 − x1) if P1 6= P2 and λ = (3x21 + a4)/(2y1) if P1 = P2.

Remark 23.21. One can define the group operation on E(k) directly via either Corol-
lary 23.19 or Theorem 23.20 (and one can extend Theorem 23.20 to general Weierstrass
equations). But in order to show that this actually makes E(k) a group, one must verify
that the group operation is associative, and this is a surprisingly non-trivial exercise. The
advantage of using the bijection between E(k) and Pic0k E given by Theorem 23.16 to define
the group operation is that it is clear that this defines a group!

It follows from Theorem 23.20 that for any fixed point P ∈ E(k̄), the translation-by-P
map τP that sends Q to P ⊕Q can be defined as a rational map (hence a morphism) from E
to itself; it clearly has an inverse (replace P with its negation), so τP is an automorphism.
The same is true of the negation map that sends P to its additive inverse. See [2, III.3.6]
for details.

23.4 Abelian varieties

A variety whose points form a group such that the group operations are defined by mor-
phisms, is called an algebraic group. More generally, this terminology is also applied to any
open subset of a variety (a quasi-variety). Examples include A1, with the group operation
given by addition of coordinates, and the general linear group GLn, which can be viewed
as an open subset of An2

corresponding to matrices with nonzero determinant.
It follows from Theorem 23.20 that an elliptic curve is an algebraic group, and in fact

an abelian variety.

Definition 23.22. An abelian variety is a projective algrebraic group.

It follows from Theorem 23.20 that an elliptic curve is an abelian variety of dimension
one. In fact, one can show that every abelian variety of dimension one is isomorphic to
an elliptic curve. It might seem strange that the definition of an abelian variety does not
include the requirement that group actually be abelian. This turns out to be a necessary
consequence of requiring the algebraic group to be a projective variety. We will only prove
this for abelian varieties of dimension one, but it is true in general.



Theorem 23.23. An abelian variety is an abelian group.

Proof in dimension one. Let G be an abelian variety of dimension one, and for any h ∈ G
consider the morphism φh : G → G defined by φh(g) = g−1hg. Since G is a projective
variety (hence complete), the image of φh is also a projective variety, which must be either
a point or all of G. Let e be the identity element of G. For h = e image of φh is clearly just
the point h = e. For h 6= e the image of φh cannot contain e, because g−1hg = e implies
hg = g and h = e. So the image of φh is a always a point, and it must be the point h, since
φh(e) = h. Thus for all g, h ∈ G we have φh(g) = g−1hg = h, equivalently, hg = gh, so G
is abelian.

The proof of Theorem 23.23 in the general case is essentially the same; one first shows
that the dimension of imφh must be the same for every h ∈ G, and since dim imφe = 0, the
image φh is a point for every h ∈ G and the proof then proceeds as above; see [1, §4.3].

Now that we know abelian varieties are in fact abelian, we will write the group operation
additively. When working with morphisms of abelian varieties it is natural to distinguish
morphisms φ that preserve the group structure, that is, we would like φ(g+h) = φ(g)+φ(h).
An obvious necessary condition is φ(0) = 0. This turns out to be sufficient.

Theorem 23.24. Let φ : G → H be a morphism of abelian varieties for which φ(0) = 0.
Then φ is a group homomorphism.

Proof. For each h ∈ G let φh : G → H be the morphism φh(g) = φ(g) + φ(h) − φ(g + h).
Then φ0(g) = φ(0) + φ(g)− φ(g + 0) = 0 for all g ∈ G. As in the proof of Theorem 23.23,
the image of φh is a single point for all h ∈ G, and since φh(0) = φ(0)+φ(h)−φ(0+h) = 0,
that point must be 0. It follows that φh(g) = 0 for all g, h ∈ G, therefore we always have
φ(g) + φ(h) = φ(g + h) and φ is a group homomorphism.
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24.1 Isogenies of elliptic curves

Definition 24.1. Let E1/k and E2/k be elliptic curves with distinguished rational points
O1 and O2, respectively. An isogeny ϕ : E1 → E2 of elliptic curves is a surjective morphism
that maps O1 to O2.

As an example, the negation map that send P ∈ E(k̄) to its additive inverse is an
isogeny from E to itself; as noted in Lecture 23, it is an automorphism, hence a surjective
morphism, and it clearly fixes the identity element (the distinguished rational point O).

Recall that a morphism of projective curves is either constant or surjective, so any
nonconstant morphism that maps O1 to O2 is automatically an isogeny. The composition
of two isogenies is an isogeny, and the set of elliptic curves over a field k and the isogenies
between them form a category; the identity morphism in this category is simply the identity
map from an elliptic curve to itself, which is is clearly an isogeny. Given that the set of
rational points on an elliptic curve form a group, it would seem natural to insist that, as
morphisms in the category of elliptic curves, isogenies should preserve this group structure.
But there is no need to put this requirement into the definition, it is necessarily satisfied.

Theorem 24.2. Let E1/k and E2/k be elliptic curves and let ϕ : E1 → E2 be an isogeny
defined over k. Then ϕ is a group homomorphism from E1(L) to E2(L), for any algebraic
extension L/k.

Proof. This is essentially immediate (just consider the pushforward map on divisors), but
let us spell out the details.

By base extension to L, it suffices to consider the case L = k. For i = 1, 2, let Oi be the
distinguished rational point of Ei and let φi : Ei(k)→ Pic0k Ei be the group isomorphism that
sends P ∈ Ei(k) to the divisor class [P−Oi]. Let ϕ∗ : Pic0k E1 → Pic0k E2 be the pushforward
map on divisor classes of degree zero. For any P ∈ E1(k) we have ϕ∗([P ]) = [ϕ(P )], since
P and ϕ(P ) both have degree one, and

ϕ∗(φ1(P )) = ϕ∗([P −O1]) = [ϕ∗(P −O1)] = [ϕ(P )− ϕ(O1)] = [ϕ(P )−O2] = φ2(ϕ(P )).

For any P,Q ∈ E1(k) with P ⊕Q = R we have

P ⊕Q = R

φ1(P ) + φ1(Q) = φ1(R)

ϕ∗(φ1(P ) + φ(Q)) = ϕ∗(φ!(R))

ϕ∗(φ1(P )) + ϕ∗(φ1(Q)) = ϕ∗(φ1(R))

φ2(ϕ(P )) + φ2(ϕ(Q)) = φ2(ϕ(R))

ϕ(P )⊕ ϕ(Q) = ϕ(R),

where ⊕ denotes the group operation on both E1(k) and E2(k).

Now that we know that an isogeny ϕ : E1 → E2 is a group homomorphism, we can speak
of its kernel ϕ−1(O2). One can view kerϕ as a set of closed points of E1/k, but it is more
useful to view it as a subgroup of E1(k̄).



Definition 24.3. Let ϕ : E1 → E2 be an isogeny of elliptic curves over k. The kernel of ϕ,
denoted kerϕ is the kernel of the group homomorphism ϕ : E1(k̄)→ E2(k̄).

Recall the translation-by-Q automorphism τQ : E → E that sends P to P ⊕ Q. The
induced map τ∗Q : k̄(E)→ k̄(E) is an automorphism of the function field k̄(E).

Lemma 24.4. Let ϕ : E1 → E2 be an isogeny of elliptic curves. For each P ∈ kerϕ, the
automorphism τ∗P fixes ϕ∗(k̄(E2)), and the map kerϕ → Aut(k̄(E1)/ϕ

∗(k̄(E2))) defined by
P 7→ τ∗P is an injective group homomorphism.

Proof. Let P ∈ kerϕ and let f ∈ k̄(E2). Then

τ∗P (ϕ∗(f))(Q) = (f ◦ ϕ ◦ τP )(Q) = f(ϕ(P ⊕Q)) = f(ϕ(Q)) = (f ◦ ϕ)(Q) = ϕ∗(f)(Q),

since ϕ is a group homomorphism and P lies in its kernel. Thus τP fixes ϕ∗(k̄(E2)).
For any P,Q ∈ kerϕ and f ∈ k̄(E1) we have

τ∗P⊕Q(f) = f ◦ τP⊕Q = f ◦ τQ ◦ τP = τ∗P (f ◦ τQ) = τ∗P (τ∗Q(f)),

so τ∗P⊕Q = τ∗P ◦ τ∗Q, and the map P 7→ τ∗P is a group homomorphism. It is clearly injective,

since if P 6= Q then P 	Q 6= O and τ∗P	Q = τ∗P ◦ (τ∗Q)−1 is not the identity map (apply it

to any nonconstant f ∈ k̄(E1)).

Corollary 24.5. For any isogeny ϕ : E1 → E2 of elliptic curves, # kerϕ divides degϕ.
In particular, the kernel of an isogeny is finite.

Proof. By definition, degϕ = [k̄(E1) : ϕ∗(k̄(E2))], and we know from Galois theory that the
order of the automorphism group of a finite extension divides the degree of the extension.
Since kerϕ injects into Aut(k̄(E1)/ϕ

∗(k̄(E2))), its order must divide degϕ.

Remark 24.6. In fact, the homomorphism in Lemma 24.4 is an isomorphism, and the
corollary implies that when ϕ is separable we have # kerϕ = degϕ; see [1, III.4.10].

24.2 Torsion points on elliptic curves

Definition 24.7. Let E/k be an elliptic curve and let n be a positive integer. The
multiplication-by-n map [n] : E(k̄)→ E(k̄) is the group homomorphism defined by

nP = P ⊕ P ⊕ · · · ⊕ P.

The points P ∈ E(k̄) for which nP = O are called n-torsion points. They form a subgroup
of E(k̄) denoted E[n].

If ϕ : E1 → E2 is an isogeny, then we know from Corollary 24.5 that n = degϕ is a
multiple of the order of kerϕ. It follows that every point in kerϕ is an n-torsion point. By
definition, [n] is a group homomorphism. We now show that [n] is an isogeny.

Theorem 24.8. The multiplication-by-n map on an elliptic curve E/k is an isogeny.

Proof assuming char(k) 6= 2: The case n = 1 is clear, and for n = 2 the map P 7→ P ⊕ P
is a rational map, hence a morphism (by Theorem 18.6, a rational map from a smooth
projective curve is a morphism), since it can be defined in terms of rational functions of
the coordinates of P via the algebraic formulas for the group operation on E(k̄). More



generally, given any morphism φ : E → E, plugging the coordinate functions of φ into the
formulas for the group law yields a morphism that sends P to φ(P ) ⊕ P . It follows by
induction that [n] is a morphism, and it clearly fixes the identity element O.

It remains to show that [n] is surjective. For this it suffices to show that it does not
map every point to O, since a morphism of smooth projective curves is either surjective or
constant (by Corollary 18.7). We have already seen that there are exactly 4 points in E(k̄)
that are fixed by the negation map, three of which have order 2 (in short Weierstrass form,
these are the point at infinity and the 3 points whose y-coordinate is zero). For n odd, [n]
cannot map a point of order 2 to O, so [n] is surjective for n odd. For n = 2km with m odd
we may write [n] = [2] ◦ · · · ◦ [2] ◦ [m]. We already know that [m] is surjective, so it suffices
to show that [2] is. But [2] cannot map any of the infinitely many points in E(k̄) that are
not one of the 4 points fixed by the negation map to O, so [2] must be surjective.

Remark 24.9. Note that in characteristic 2 there are not four 2-torsion points, in fact
there may be none. But one can modify the proof above to use 3-torsion points instead.

Corollary 24.10. Let E/k be an elliptic curve. For any positive integer n, the number of
n-torsion points in E(k̄) is finite.

Remark 24.11. In fact one can show that the number of n-torsion points divides n2, and
for n not divisible by char(k), is equal to n2.

24.3 Torsion points on elliptic curves over Q

Let E be an elliptic curve Q, which we may assume is given by a short Weierstrass equation

E : y2 = x3 + a4x+ a6,

with a4, a6 ∈ Q. Let d be the LCM of the denominators of a4 and a6. After multiplying
both sides by d6 and replacing y by d3ny and x by d2nx, we may assume a4, a6 ∈ Z. Since
E is non-singular, we must have ∆ = ∆(E) := −16(4a34 + 27a26) 6= 0.1

For each prime p the equation for E also defines an elliptic curve over Qp. For the sake
of simplicity we will focus our attention on primes p that do not divide ∆, but everything
we do below can be extended to arbitrary p (as we will indicate as we go along). Let E0

denote the elliptic curve over Qp obtained by base extension from Q to Qp. Let E/Fp denote
the curve over Fp obtained by reducing the equation for E modulo p. Here we are assuming
∆ 6≡ 0 mod p so that the reduced equation has no singular points, meaning that E is an
elliptic curve. We say that E has good reduction at p when this holds.

The reduction map E0(Qp)→ E(Fp) is a group homomorphism, and we define E1(Qp)
to be its kernel; these are the points that reduce to (0 : 1 : 0) modulo p. In fact, E1(Qp) can
be defined as the kernel of the reduction map regardless of whether E has good reduction
at p or not and one can show that the points in E1(Qp) still form a group.

The points in E1(Qp) are precisely the points in E0(Qp) that can be represented as
(x : y : z), with vp(x), vp(z) > 0 and vp(y) = 0; equivalently, the points with vp(x/y) > 0
(note that vp(x/y) does not depend on how the coordinates are scaled). For all positive
integers n we thus define

En(Qp) =
{

(x : y : z) ∈ E0(Qp) : vp(x/y) ≥ n
}
,

and note that this agrees with our previous definition of E1(Qp).

1The leading factor of −16 appears for technical reasons that we won’t explain here, but it is useful to
have a factor of 2 in ∆ because a short Weierstrass equation always has singular points in characteristic 2.



Lemma 24.12. For n > 0, each of the sets En+1(Qp) is an index p subgroup of En(Qp).

Proof. Containment is clear from the definition, but we need to show that the sets En(Qp)
are actually groups. For O = (0 : 1 : 0) we have vp(x/y) =∞, so O ∈ En(Qp) for all n. Any
affine point P ∈ En(Qp)−En+1(Qp) has vp(x/y) = n, and and after dividing through by z
can be written as (x : y : 1) with vp(y) < 0. Since a4, a6 ∈ Zp, the equation y2 = x3+a4x+a6
implies 3vp(x) = 2vp(y), so

n = vp(x/y) = vp(x)− vp(y) = −vp(y)/3,

and therefore vp(y) = −3n and vp(x) = −2n. After multiplying through by p3n we can
write P = (pnx0 : y0 : p3n) with x0, y0 ∈ Z×p . We then have

p3ny20 = p3nx30 + a4p
7nx0 + a6p

9n

y20 = x30 + a4p
4nx0 + a6p

6n.

After reducing mod p we obtain an affine point (x0 : y0 : 1) whose coordinates are all
nonzero and which lies on the singular variety C0/Fp defined by

y2z = x3,

which also contains the reduction of O = (0 : 1 : 0). If we consider the image of the group
law on E0(Qp) on C0(Fp), we still have an operation defined by the rule that three colinear
points sum to zero. We claim that this makes the set S of nonsingular points in C0(Fp) into
a group of order p. To show this, we first determine S. We have

(∂/∂x)(y2z − x3) = −3x2,

(∂/∂y)(y2z − x3) = 2yz,

(∂/∂z)(y2z − x3) = y2.

It follows that a point in C0(Fp) is singular if and only if its y-coordinate is zero. In
particular all of the reductions of points in En(Qp) are non-singular, for any n ≥ 1. Every
non-singular point in C0(Fp) can be written as (x : 1 : x3), and this gives a bijection from
Fp to S defined by x 7→ (x : 1 : x3). Thus the set S has order p and it contains the identity
element. It is clearly closed under negation, and we now show it is closed under addition.
If P and Q are two elements of S not both equal to (0 : 1 : 0), then at least one of them
has non-zero z-coordinate and the line L defined by P and Q can be written in the form
z = ax+ by. Plugging this into the curve equation gives

y2(ax+ by) = x3,

and it is then clear that the third point R in C0 ∩L must have nonzero y-coordinate, since
y0 = 0 ⇒ x0 = 0 ⇒ z0 = 0 for any (x0 : y0 : z0) ∈ C0 ∩ L. Since P and Q are both
in C0(Fp), so is R, thus R lies in S, as does its negation, which is P ⊕ Q. Therefore the
reduction map En(Qp) → C0(Fp) defines a group homomorphism from En(Qp) to S, and
its kernel is En+1(Qp), an index p subgroup of En(Qp).

Definition 24.13. The infinite chain of groups

E0(Qp) ⊃ E1(Qp) ⊃ E2(Qp) ⊃ · · ·

is called the p-adic filtration of E/Q.



Theorem 24.14. Let E/Q be an elliptic curve and let p be a prime not dividing ∆(E).
The p-adic filtration of E satisfies

(1) E0(Qp)/E
1(Qp) ' E(Fp);

(2) En(Qp)/E
n+1(Qp) ' E(Fp) ' Z/pZ for all n > 0;

(3) ∩nEn = {O}.

Proof. The group E1(Qp) is, by definition, the kernel of the reduction map from E0(Qp) to
E(Fp). To prove (1) we just need to show that the reduction map is surjective.

Let P = (a1 : a2 : a3) be a point in E(Fp) with the ai ∈ Z/pZ. The point P is non-
singular, so at least one of the partial derivatives of the curve equation f(x1, x2, x3) = 0 for
E does not vanish. Without loss of generality, suppose ∂f/∂x1 does not vanish at P . If we
pick an arbitrary point P̂ = (â1 : â2 : â3) with coefficients âi ∈ Zp such that âi ≡ ai mod p,
we can apply Hensel’s to the polynomial g(t) = f(t, â2, â3) using a1 ∈ Z/pZ as our initial
solution, which satisfies g′(ai) 6= 0. This yields a point in E0(Qp) that reduces to P , thus
the reduction map is surjective, which proves (1).

Property (2) follows from the lemma above. For (3), note that E1(Qp) contains only
points with nonzero y-coordinate, and the only such point with vp(x/y) = ∞ is O; every
other other point (x : y : z) ∈ E1(Qp) lies in En(Qp)− En+1(Qp), where n = vp(x/y).

Remark 24.15. Theorem 24.14 can be extended to all primes p by replacing E(Fp) in (1)
with the set S of non-singular points on the reduction of E modulo p. As in the proof
of Lemma 24.12, one can show that S always contains O and is closed under the group
operation, but there are now three different group structures that can arise:

1. A cyclic group of order p isomorphic to the additive group of Fp; in this case E is said
to as additive reduction at p.

2. A cyclic group of order p−1 isomorphic to the multiplicative group of Fp; in this case
E is said to have split multiplicative reduction at p.

3. A cyclic group of order p+ 1 isomorphic to the subgroup of the multiplicative group
of a quadratic extension of Fp consisting of elements of norm one; in this case E is
said to have non-split multiplicative reduction at p.

Parts (2) and (3) of the theorem remain true for all primes p (as we will now assume).

Corollary 24.16. Suppose P = (x : y : 1) is an affine point in E0(Qp) with finite order
prime to p. Then x, y ∈ Zp.

Proof. Suppose not. Then both x and y must have negative p-adic valuations in order
to satisfiy y2 = x3 + a4x + a6 with a4, a6 ∈ Zp, and we must have 2vp(x) = 3vp(y), so
vp(x/y) > 0. Let n = vp(x/y). Then P ∈ En(Qp)− En+1(Qp), and the image of P in

En(Qp)/E
n+1(Qp) ' Z/pZ

is not zero, hence it has order p. The order m of P is prime to p, so the image of mP
in En(Qp)/E

n+1(Qp) is also nonzero. Thus mP 6∈ En+1(Qp), but this is a contradiction,
because mP = O ∈ En+1(Qp).

Lemma 24.17. Suppose P1, P2, P3 are colinear points in En(Qp), for some n > 0, with
Pi = (xi : 1 : zi). Then vp(x1 + x2 + x3) ≥ 5n.



Proof. We have already seen that for Pi ∈ En(Qp) we have xi ∈ pnZp and zi ∈ p3nZp.
Fixing y = 1, if P1 6= P2 then the equation of the line through P1 and P2 in the x-z
plane has the form z = αx + β with α = (z2 − z1)/(x2 − x1). Using the curve equation
z = x3 + a3xz

2 + z3 (with y = 1), we can rewrite α as

α =
z2 − z1
x2 − x1

=
z2 − z1
x2 − x1

· 1− a4z22 − a6(z22 + z1z2 + z21)

1− a4z22 − a6(z22 + z1z2 + z21)

=
(z2 − a6z32)− (z1 − a4x1z21 − a6z31)− a4x1z22

(x1 − x2)(1− a4z22 − a6(z22 + z1z2 + z21))

=
(x32 + a4x2z

2
2)− x31 − a4x1z22

(x1 − x2)(1− a4z22 − a6(z22 + z1z2 + z21))

=
(x2 − x1)(x22 + x1x2 + x21 + a4z

2
2)

(x1 − x2)(1− a4z22 − a6(z22 + z1z2 + z21))

=
x22 + x1x2 + x21 + a4z

2
2

1− a4z22 − a6(z22 + z1z2 + z21)
.

The key point is that the denominator of α is then a p-adic unit. It follows that α ∈ p2nZp,
and then β = z1 − αx1 ∈ p3nZp. Substituting z = αx+ β into the curve equation gives

αx+ β = x3 + a4x(αx+ β)2 + b(αx+ β)3.

We know that x1, x2, x3 are the three roots of the cubic defined by the equation above, thus
x1 + x2 + x3 is equal to the coefficient of the quadratic term divided by the coefficient of
the cubic term. Therefore

x1 + x2 + x3 =
2a4αβ + 3a6α

2β

1 + a4α2 + a6β3
∈ p5nZp.

The case P1 = P2 is similar.

Corollary 24.18. The group E1(Qp) is torsion-free.

Proof. By the previous corollary we only need to consider the case of a point of order p. So
suppose pP = 0 for some P ∈ En(Qp)− En+1(Qp). Consider the map

En(Qp)→ pnZp/p
5nZp

that sends P := (x : 1 : z) to the reduction of x in pnZp/p
5nZp. By the lemma above, this is

a homomorphism of abelian groups, so it sends pP to the reduction of px ∈ pn+1Zp−pn+2Zp

modulo p5nZp, which is not zero, a contradiction.

Corollary 24.19. Let E/Q be an elliptic curve and let p be a prime of good reduction. The
torsion subgroup of E(Q) injects into E(Fp). in particular, the torsion subgroup is finite.

Proof. The group E(Q) is isomorphic to a subgroup of E0(Qp) and E(Fp) = E0(Qp)/E
1(Qp).

But E1(Qp) is torison free, so the torsion subgroup of E(Q) injects into E(Fp).



Now that we know that each elliptic curve over Q has a finite number of rational torsion
points, one might ask whether there is a uniform upper bound that applies to every elliptic
curve over Q. It’s not a priori clear that this should be the case; one might suppose that
by varying the elliptic curve we could get an arbitrarily large number of rational torsion
points. But this is not the case; an elliptic curve over Q can have at most 16 rational points
of finite order. This follows from a celebrated theorem of Mazur that tells us exactly which
rational torsion subgroups can (and do) arise for elliptic curves defined over Q.

Theorem 24.20 (Mazur). Let E/Q be an elliptic curve. The torsion subgroup of E(Q) is
isomorphic to one of the fifteen subgroups listed below:

Z/nZ (n = 1, 2, 3, . . . , 9, 10, 12), Z/2Z× Z/2nZ (n = 1, 2, 3, 4).

The proof of this theorem is well beyond the scope of this course.2 However, as a further
refinement of our results above, we can prove the Nagell-Lutz Theorem.

Theorem 24.21 (Nagell-Lutz). Let P = (x0 : y0 : 1) be an affine point of finite order on
the elliptic curve y2 = x3 +a4x+a6 over Q, with a4, a6 ∈ Z. Then x0, y0 ∈ Z, and if y0 6= 0
then y20 divides 4a34 + 27a26.

Proof. For any prime p, if vp(x0) < 0 then 2vp(y0) = 3vp(x0) and vp(x0/y0) > 0. It follows
that P ∈ E1(Q), but then P cannot be a torsion point. So vp(x) ≥ 0 for all primes p. Thus
x0 is an integer, and so is y20 = x30 + a4x0 + a6, and therefore y.

If P has order 2 then y0 = 0; otherwise, the x-coordinate of 2P is an integer equal
to λ2 − 2x0, where λ = (3x20 + a4)/(2y0) is the slope of the tangent at P . Thus 4y20 and
therefore y20 divides λ2 = (3x20 + a4)

2, as well as x30 + a4x0 + a6. We now note that

(3x20 + 4a4)(3x
2
0 + a4)

2 = 27x60 + 54a4x
4
0 + 27a24x

2
0 + 4a34

(3x20 + 4a4)(3x
2
0 + a4)

2 = 27(x30 + a4x0)
2 + 4a34

0 ≡ 27a26 + 4a34 mod y20,

since (x30 + a4x0) ≡ −a6 mod y20, thus y0 divides 4a34 + 27a26.

The Nagell-Lutz theorem gives an effective method for enumerating all of the torsion
points in E(Q) that is quite practical when the coefficients a4 and a6 are small. By factoring
D = 4a34 + 27a26, one can determine all the squares y20 that divide D. By considering each
of these, along with y0 = 0, one then checks whether there exists an integral solution x0 to
y20 = x30 + ax0 + a6 (note that such an x0 must be a divisor of a6 − y20).

This yields a list of candidate torsion points P = (x0 : y0 : 1) that are all points in
E(Q), but do not necessarily all have finite order. To determine which do, one computes
multiples nP for increasing values of n (by adding the point P at each step, using the group
law on E), checking at each step whether nP = O. If at any stage it is found that the affine
coordinates of nP are not integers then nP , and therefore P , cannot be a torsion point,
and in any case we know from Mazur’s theorem that if nP 6= O for any n ≤ 12 then P is
not a torsion point; alternatively, we also know that n must divide #E(Fp), where p is the
least prime that does not divide ∆(E).

However, this method is not practical in general, both because it requires us to factor D,
and because D might have a very large number of square divisors (if D is, say, the product

2There was recently a graduate seminar at Harvard devoted entirely to the proof of Mazur’s theorem; see
http://www.math.harvard.edu/˜chaoli/MazurTorsionSeminar.html for notes and references.

http://www.math.harvard.edu/~chaoli/MazurTorsionSeminar.html


of the squares of the first 100 primes, then we have 2100 values of y0 to consider). But
Cororllary 24.19 gives us a much more efficient alternative that can be implemented to run
in quasi-linear time (roughly proportional to the number of bits it takes to represent a4
and a6 on a computer).

We first determine the least odd prime p that does not divide D; we don’t need to
factor D to do this and we will always have p bounded by O(logD) = O(log max(|a4|, |a6|).
We then exhaustively compute the set E(Fp), which clearly has cardinality at most 2p (in
fact, at most p + 1 + 2

√
p). For each integer m > 1 there is an m-division polynomial

fm ∈ Z[x] with the property that P = (x0, y0) ∈ E(Q) satisfies mP = 0 if and only if
fm(x0) = 0. The polynomials fm can be explicitly computed using formulas for the group
law on E and have integer coefficients that depend on the integer coefficients of E and degree
bounded by m2. If P = (x0, y0) is a point of order m in E(Fp) then f(x0) ≡ 0 mod p, and
we can use Hensel’s lemma to efficiently “lift” the root x0 of fm modulo p to a root x0 of fm
modulo pn, where n is chosen so that pn is more than twice as large as the absolute value
of the x-coordinate of any torsion point in E(Q); the fact that y20 must divide D gives us
an upper bound on both y0 and x0. We choose a representative x0 ∈ Z with |x0| < pn/2
and check whether fm(x0) = 0; if so then x30 + a4x + a6 must be the square of an integer
y0 ≡ y0 mod p (which we can also compute using Hensel lifting) and (x0, y0) ∈ E(Q) is
a torsion point. Repeating this process for each P ∈ E(Fp) yields the torsion subgroup
of E(Q). But we know from Mazur’s theorem that we only need to consider the points
P ∈ E(Fp) of order m ≤ 12, which means there at only O(1) points to consider; here we
are using the fact that E(Fp) is generated by at most two elements, which we will not prove
here. Provided we use fast algorithms for integer multiplication in our implementation of
Hensel lifting, this yields a quasi-linear running time.
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25.1 Overview of Mordell’s theorem

In the last lecture we proved that the torsion subgroup of the rational points on an elliptic
curve E/Q is finite. In this lecture we will prove a special case of Mordell’s theorem, which
states that E(Q) is finitely generated. By the structure theorem for finitely generated
abelian groups, this implies

E(Q) ' Zr ⊕ T,

where Zr is a free abelian group of rank r, and T is the (necessarily finite) torsion subgroup.1

Thus Mordell’s theorem provides an alternative proof that T is finite, but unlike our earlier
proof, it does not provide an explicit method for computing T . Indeed, Mordell’s theorem
is notably ineffective; it does not give us a way to compute a set of generators for E(Q),
or even to determine the rank r. It is a major open question as to whether there exists an
algorithm to compute r; it is also not known whether r can be uniformly bounded.2

Mordell’s theorem was generalized to number fields (finite extensions of Q) and to abelian
varieties (recall that elliptic curves are abelian varieties of dimension one) by André Weil
and is often called the Mordell-Weil theorem. All known proofs of Mordell’s theorem (and
its generalizations) essentially amount to two proving two things:

(a) E(Q)/2E(Q) is a finite group.

(b) For any fixed Q ∈ E(Q), the height of 2P +Q is greater than the height of P for all
but finitely many P .

We note that there is nothing special about 2 here, any integer n > 1 works.
We will explain what (b) means in a moment, but let us first note that we really do

need some sort of (b); it is not enough to just prove (a). To see why, consider the additive
abelian group Q. the quotient Q/2Q is certainly finite (it is the trivial group), but Q is not
finitely generated. To see this, note that for any finite S ⊆ Q, we can pick a prime p such
that under the canonical embedding Q ⊆ Qp we have S ⊆ Zp, and therefore 〈S〉 ⊆ Zp, but
we never have Q 6⊆ Zp.

The height of a projective point P = (x : y : z) with x, y, z ∈ Z sharing no common
factor is defined as

H(P ) := max(|x|, |y|, |z|),

where | | is the usual archimedean absolute value on Q. The height H(P ) is a positive
integer that is independent of the representation of the representation of P , and for any
bound B, the set

{P ∈ E(Q) : H(P ) ≤ B}

is finite, since it cannot possibly have more than (2B + 1)3 elements. We will actually use
a slightly more precise notion of height, the canonical height, which we will define later.

Now let us suppose that we have proved (a) and (b), and see why this implies that E(Q)
is finitely generated. Since E(Q)/2E(Q) is finite, for any sufficiently large B the finite set
S = {P ∈ E(Q) : H(P ) ≤ B} must contain a set of representatives for E(Q)/2E(Q), and

1Any finitely generated abelian torsion group must be finite; this does not hold for nonabelian groups.
2Most number theorists think not, but there are some notable dissenters.



we can pick B so that (b) holds for all Q ∈ S and P 6∈ S . If S does not generate E(Q),
then there is a point P0 ∈ E(Q) − 〈S〉 of minimal height H(P0). Since S contains a set of
representatives for E(Q)/2E(Q), we can write P0 in the form

P0 = 2P +Q,

for some Q ∈ S and P ∈ E(Q). Since P0 6∈ 〈S〉, we must have P 6∈ 〈S〉, but (b) implies
H(P ) < H(P0), contradicting the minimality of H(P0). So the set E(Q) − 〈S〉 must be
empty and S is a finite set of generators for E(Q).

We should note that this argument does not yield an algorithm to compute S because
we do not have an effective bound on B (we know B exists, but not how big it is).

25.2 Elliptic curves with a rational point of order 2

In order to simplify the presentation, we will restrict our attention to elliptic curves E/Q
that have a rational point of order 2 (to prove the general case one can work over a cubic
extension of Q for which this is true). In short Weierstrass form any point of order 2 is an
affine point of the form (x0, 0). After replacing x with x+ x0 we obtain an equation for E
of the form

E : y2 = x(x2 + ax+ b),

on which P = (0, 0) is a point of order two. Since E is not singular, the cubic on the RHS
has no repeated roots, which implies

b 6= 0, a2 − 4b 6= 0.

The algebraic equations for the group law on curves of this form are slightly different
than for curves in short Weierstrass form; the formula for the inverse of a point is the same,
we simply negate the y-coordinate, but the formulas for addition and doubling are slightly
different. To add two affine points P1 = (x1, y1) and P2 = (x2, y2) with x1 6= x2, as in
Lecture 23 we consider the line L through P1 and P2 with equation

L : (y − y1) = λ(x− x1),

where λ = (y2 − y1)/(x2 − x1). Solving for y and plugging into equation for E, we have

λ2x2 = x(x2 + ax+ b)

0 = x3 + (a− λ2)x2 + · · ·

The x-coordinate x3 of the third point in the intersection L ∩ E is a root of the cubic on
the RHS, as are x1 and x2, and the sum x1 + x2 + x3 must be equal to the negation of the
quadratic coefficient. Thus

x3 = λ2 − a− x1 − x2,
y3 = λ(x1 − x3)− y1,

where we computed y3 by plugging x3 into the equation for L and negating the result. The
doubling formula for P1 = P2 is the same, except now λ = (3x2 + 2ax+ b)/(2y).



25.3 2-isogenies

In order to prove that E(Q)/2E(Q) is finite, we need to understand the image of the
multiplication-by-2 map [2]. We could use the doubling formula derived above to do this,
but it turns out to be simpler to decompose [2] as a composition of two isogenies

[2] = ϕ̂ ◦ ϕ,

where ϕ : E → E′ and ϕ̂ : E′ → E for some elliptic curve E′ that we will determine. The
kernel of ϕ will be {O,P}, where P = (0, 0) is our rational point of order 2. Similarly, the
kernel of ϕ̂ will be {O′, P ′}, where O′ is the distinguished point on E′ and P ′ is a rational
point of order 2 on E′.

Recall from Lecture 24 that for any isogeny ϕ : E → E′ we have an injective map

kerϕ→ Aut(Q(E)/ϕ∗(Q(E′)))

defined by P 7→ τ∗P , where τP is the translation-by-P morphism. In our present situation
there is only one non-trivial point in the kernel of ϕ, the point P = (0, 0), and it is rational,
so we can work over Q. We can determine both E′ and the morphism ϕ by computing
ϕ∗(Q(E′)) as the fixed field of the automorphism τ∗P : Q(E)→ Q(E).

Remark 25.1. This strategy applies in general to any separable isogeny with a cyclic kernel
(a cyclic isogeny), all we need is a point P that generates the kernel.

For an affine point Q = (x, y) not equal to P = (0, 0) the x-coordinate of τP (Q) = P +Q
is λ2−a−x, where λ = y/x is the slope of line throught P and Q. Using the curve equation
for E, we can simplify this to

λ2 − a− x =
y2 − ax2 − x3

x2
=
bx

x2
=
b

x
.

The y-coordinate of τP (Q) is then λ(0− b/x)− 0 = −by/x2. Thus for Q 6∈ {O,P} the map
τP is given by

(x, y) 7→ (b/x,−by/x2).

To compute the fixed field of τ∗P , note that if we regard the slope λ = y/x as a function
in Q(E), then composition with τP merely changes its sign. Thus

τ∗P (λ2) =

(
−by/x2

b/x

)2

=

(
−y
x

)2

= λ2.

We also note that the point Q + τP (Q) is fixed by τP , hence the sum of the y-coordinates
of Q and τP (Q) is fixed by τP (when represented as affine points (x : y : 1)). Thus

τ∗P (y − by/x2) = τ∗P

(
x2y − by

x2

)
=

(b/x)2(−by/x2)− b(−by/x2)
(b/x)2

= y − by/x2.

Note that λ2 = y2/x2 = x(x2 + ax+ b)/x2 = x+ a+ b/x, so let us define

X = x+ a+ b/x and Y = y(1− b/x2)

Then Q(X,Y ) is a subfield of E(Q) = Q(x, y) fixed by τ∗P , hence a subfield of ϕ∗(Q(E′)),
and we claim that it is a subfield of index 2. To see this, note that

x = (X + Y
√
X − a)/2 and y = x

√
X,



thus [Q(E) : Q(X,Y )] ≤ 2 and [Q(E) : Q(X,Y )] 6= 1 because Q(E) contains x/y =
√
X

and Q(X,Y ) does not. We also know that [Q(E) : ϕ∗(Q(E′))] ≥ 2, since kerϕ ⊆ Q(E) has
order 2 and injects into Aut(Q(E)/ϕ∗(Q(E))), therefore ϕ∗(Q(E′)) = Q(X,Y ).

Since ϕ∗ is a field embedding, we have Q(E′) ' Q(X,Y ). We now know the function
field of E′; to compute an equation for E′ we just need a relation between X and Y .

Y 2 = y2(1− b/x2)2

= x(x2 + ax+ b)(1− 2b/x2 + b2/x4)

= X(x2 − 2b+ b2/x2)

= X
(
(x+ b/x)2 − 4b

)
= X

(
(X − a)2 − 4b

)
= X(X2 − 2aX + a2 − 4b).

Let us now define A = −2a and B = a2 − 4b. Then the equation

Y 2 = X(X2 +AX +B)

has the same form as that of E, and since B = a2 − 4b 6= 0 and A2 − 4B = 16b 6= 0, it
defines an elliptic curve E′ with distinguished point O′ = (0 : 1 : 0), and the affine point
P ′ = (0, 0) has order 2. The 2-isogeny ϕ : E → E′ sends O to O′ and each affine point (x, y)
on E to (X,Y ) = (x+ a+ b/x, y(1− b/x2)) on E′.

Since E′ has the same form has E, we can repeat the process above to compute the
2-isogeny ϕ̂ : E′ → E that sends O′ to O and (X,Y ) to (X +A+B/X, Y (1−B/X2)). One
can then verify that

[2] = ϕ̂ ◦ ϕ,
by composing ϕ̂ and ϕ and comparing the result to the doubling formula on E.

But we can see this more directly by noting that ker(ϕ̂ ◦ ϕ) = E[2] and

deg(ϕ̂ ◦ ϕ) = deg ϕ̂degϕ = 2 · 2 = 4 = #E[2] = # ker(ϕ̂ ◦ ϕ).

Thus the injective homomorphism E[2] → Aut(Q(E)/(ϕ̂ ◦ ϕ)∗(Q(E))) is an isomorphism,
and the same holds for Aut(Q(E)/[2]∗Q(E)). Since we are in characteristic zero, both
extensions are separable, and it follows from Galois theory that there is a unique subfield of
Q(E) fixed by the automorphism group {τ∗P : P ∈ E[2]}. Thus the function field embeddings
(ϕ̂◦ϕ)∗ and [2]∗ are equal, and the corresponding morphisms must be equal (by the functorial
equivalence of smooth projective curves and their function fields).

Remark 25.2. The construction and argument above applies quite generally. Given any
finite subgroup H of E(k̄) there is a unique elliptic curve E′ and separable isogeny E → E′

with H as its kernel; see [2, Prop. III.4.12].

25.4 The weak Mordell-Weil theorem

We are now ready to prove that E(Q)/2E(Q) is finite (in the case that E(Q) has a rational
point of order 2). This is a special case of what is known as the weak Mordell-Weil theorem,
which says that E(k)/nE(k) is finite, for any positive integer n and any number field k.
Our strategy is to prove that E(Q)/ϕ(E(Q)) is finite, where ϕ : E → E′ is the 2-isogeny
from the previous section. This will also show that E′(Q)/ϕ̂(E(Q)) is finite, and it will
follow that E/2E(Q) is finite.

We begin by characterizing the image of ϕ in E′(Q).



Lemma 25.3. An affine point (X,Y ) ∈ E′(Q) lies in the image of ϕ if and only if either
X ∈ Q×2, or X = 0 and a2 − 4b ∈ Q×2.

Proof. Suppose (X,Y ) = ϕ(x, y). T If X 6= 0 then X = (y/x)2 ∈ Q×2. If X = 0 then
x(x2+ax+b) = 0, and x 6= 0 (since ϕ(0, 0) = O′), so x2+ax+b = 0 has a rational solution,
which implies a2 − 4b ∈ Q×2.

Conversely, if X ∈ Q×2 then x = (X + Y
√
X − a)/2 and y = x

√
X gives a point

(x, y) ∈ E(Q) for which ϕ(x, y) = (X,Y ), and if X = 0 and a2− 4b ∈ Q×2, then x2 +ax+ b
has a nonzero rational root x for which ϕ(x, 0) = (0, 0) = (X,Y ).

Now let us define the map π : E′(Q)→ Q×/Q×2 by

(X,Y ) 7→

{
X if X 6= 0,

a2 − 4b if X = 0,

and let π(O′) = 1.

Lemma 25.4. The map π : E′(Q)→ Q×/Q×2 is a group homomorphism.

Proof. By definition, π(O′) = 1, so π preserves the identity element and behaves correctly
on sums involving O′. and since π(P ) = π(−P ) and the square classes of X and 1/X are
the same, π preserves inverses. We just need to verify π(P + Q) = π(P )π(Q) for affine
points P,Q that are not inverses.

So let P and Q be affine points whose sum is an affine point R, let Y = `X +m be the
line L containing P and Q (the line L is not vertical because P +Q = R 6= O′). Plugging
the equation for Y given by L into the equation for E′ gives

(`X +m)2 = X(X2 +AX +B)

0 = X3 + (A− `2)x2 + (B − `m)x−m2.

The X-coordinates X1, X2, X3 of P,Q,R are all roots of the cubic on the RHS, hence their
product is equal to m2, the negation of the constant term. Thus X1X2X3 is a square, which
means that π(P )π(Q)π(P + Q) = 1, and therefore π(P )π(Q) = 1/π(P + Q) = π(P + Q),
since π(P +Q) and 1/π(P +Q) are in the same square-class of Q×.

Lemma 25.5. The image of π : E′(Q)→ Q×/Q×2 is finite.

Proof. Let (X,Y ) be an affine point in E′(Q) with X 6= 0, and let r ∈ Z be a square-free
integer representative of the square-class π(X,Y ). We will show that r must divide B,
which clearly implies that imπ is finite. The equation Y 2 = X(X + aX +B) for E′ implies
that X and X + aX +B lie in the same square-class, thus

X2 +AX +B = rs2

X = rt2,

for some s, t ∈ Q×. Let us write t = `/m with `,m ∈ Z relatively prime. Plugging X = rt2

into the first equation gives

r2t4 +Art2 +B = rs2

r2`4/m4 +Ar`2/m2 +B = rs2

r2`4 +Ar`2m2 +Bm4 = rm4s2,



and since the LHS is an integer, so is the RHS. Let p be any prime dividing r. Then p must
divide Bm4, since it divides every other term. If p divides m then p3 must divide r2`4, since
it divides every other term, but then p divides `, since r is squarefree, which is impossible
because ` and m are relatively prime. So p does not divide m and therefore must divide B.
This holds for every prime divisor of the squarefree integer r, so r divides B as claimed.

Corollary 25.6. E′(Q)/ϕ(E(Q)) and E(Q)/ϕ̂(E(Q)) are finite.

Proof. Lemma 25.3 implies that kerπ = ϕ(E(Q)), thus E′(Q)/ϕ(E(Q)) ' imπ is finite,
and this remains true if we replace E with E′ and ϕ with ϕ̂.

Corollary 25.7. E(Q)/2E(Q) is finite.

Proof. The fact that [2] = ϕ̂◦ϕ implies that each ϕ̂(E′(Q))-coset in E(Q) can be partitioned
into 2E(Q)-cosets. Two points P and Q in the same ϕ̂(E′(Q))-coset lie in the same 2E(Q)-
coset if and only if (P −Q) ∈ 2E(Q) = (ϕ̂ ◦ϕ)(E(Q)), equivalently, ϕ̂−1(P −Q) ∈ ϕ(E(Q).
Thus the number of 2E(Q)-cosets in each ϕ̂(E′(Q))-coset is precisely E′(Q)/ϕ(E(Q)), thus

#E(Q)/2E(Q) = #E(Q)/ϕ̂(E′(Q)) #E′(Q)/ϕ(E(Q))

is finite.

Remark 25.8. The only place in our work above where we really used the fact that we
are working over Q, as opposed to a general number field, is in the proof of Lemma 25.5.
Specifically, we used the fact that the ring of integers Z of Q is a UFD, and that its unit
group Z× is finite. Neither is true of the ring of integers Ok of a number field k, in general,
but there are analogous facts that one can use; specifically, Ok is a Dedekind domain, hence
ideals can be unique factored into prime ideals, the class number of Ok is finite, and O×k is
finitely generated. We also assumed that E has a rational point of order 2, but after a base
extension to a number field we can assume this without loss of generality.

25.5 Height functions

Let k be any number field. Recall from Lecture 6 that (up to equivalence) the absolute
values of k consist of non-archimedean absolute values, one for each prime ideal p of the
ring of integers Ok (these are the finite places of k), and archimedean absolute values, one
for each embedding of k into R and one for each conjugate pair of embeddings of k into C
(these are the infinite places of k). Let Pk denote the set of (finite and infinite) places of k.

For each place p ∈ Pk we want to normalize the associated absolute value | |p so that

(a) The product formula
∏
p∈Pk |x|p = 1 holds for all x ∈ k×.

(b) For any number field k′ ⊆ k and any place p of k′ we have
∏
q|p |x|q = |x|p, where q|p

means that the restriction of | |q to k′ is equivalent to | |p.

Both requirements are satisfied by using the standard normalization for Q, with

|x|p = p−vp(x)

for p <∞ and |x|∞ = |x|, and then for each q ∈ Pk with q|p defining

|x|q = |Nkq/Qp(x)|1/[k:Q]
p ,



where kq and Qp denote the completions of k at q and Q at p, respectively.3

Definition 25.9. The (absolute) height of a projective point P = (x0 : · · · : xn) ∈ Pn(Q) is

H(P ) :=
∏
p∈Pk

max
i
|xi|p,

where k = Q(x0, . . . , xn). For any λ ∈ Q×, if we let k = Q(x0, . . . , xnλ), then∏
p∈Pk

max
i
|λxi|p =

∏
p∈Pk

max
i

(|λ|p|xi|p) =
∏
p∈Pk

|λ|p
∏
p

max
i
|xi| =

∏
p∈Pk

max
i
|xi|,

thus H(P ) is well defined (it does not depend on a particular choice of x0, . . . , xn).

For k = Q we can write P = (x0 : · · · : xn) with the xi ∈ Z having no common factor.
Then max |xi|p = 1 for p < ∞ and H(P ) = maxi |xi|∞; this agrees with the definition we
gave earlier.

Lemma 25.10. For all P = (x0 : · · · : xn) ∈ Pn(Q) we have H(P ) ≥ 1.

Proof. Pick a nonzero xj and let k = Q(x0, . . . , xn). Then

H(P ) =
∏
p∈Pk

max
i
|xi|p ≥

∏
p∈Pk

|xj |p = 1.

Definition 25.11. The logarithmic height of P ∈ Pn(Q) is the nonnegative real number

h(P ) := logH(P ).

We now consider how the height of a point changes when we apply a morphism to it.
We will show that there for any fixed morphism φ : Pm → Pn there are constants c and d
(depending on φ) such that for any point P ∈ Pm(Q) we have

dh(P )− c ≤ h(φ(P )) ≤ dh(P ) + c.

This can be written more succinctly write as

h(φ(P )) = dh(P ) +O(1),

where the O(1) term indicates a bounded real function of P (the function h(φ(P ))−dh(P )).
We first prove the upper bound; this is easy.

Lemma 25.12. Let k be a number field and let φ : Pn → Pm be a morphism (φ0 : · · · : φn)
defined by homogeneous polynomials φi ∈ k[x0, . . . , xn] of degree d. There is a constant c
such that

h(φ(P )) ≤ dh(P ) + c

for all P ∈ Pn(k̄).

3The correctness of this definition relies on some standard results from algebraic number theory that we
will not prove here; the details are not important, all we need to know is that a normalization satisfying
both (a) and (b) exists, see [1, p. 9] or [2, pp. 225-227] for a more detailed exposition.



Proof. Let c = N
∏
p maxj |cj |p, where cj ranges over coefficients that appear in any φi,

and N bounds the number of monomials appearing in any φi. If P = (a0 : . . . : an) and
k = Q(a0, . . . , an), then

H(φ(P )) =
∏
p∈Pk

max
i
|φi(P )|p ≤

∏
p∈Pk

max
i,j
|cjadi |p = cH(P )d,

by the multiplicativity of | |p and the triangle inequality. The lemma follows.

We now make a few remarks about the morphism φ : Pn → Pm appearing in the lemma.
Morphisms with domain Pn are tightly constrained, more so than projective morphisms in
general, because the ideal of Pn ( as a variety), is trivial; this means that the polynomials
defining φ are essentially unique up to scaling. This has several consequences.

• The polynomials φi defining φ cannot have a common zero in Pn(k̄); otherwise there
would be a point at which φ is not defined. This requirement is not explicitly stated
because it is implied by the definition of a morphism as a regular map.

• The image of φ in Pm is either a point (in which case d = 0), or a subvariety of
dimension n; if this were not the case then the polynomials defining φ would have
a common zero in Pn(k̄). The fact that imφ is a variety follows from the fact that
projective varieties are complete (so every morphism is a closed map). In particular,
if φ is non-constant then we must have m ≥ n.

• If φ is non-constant, then d = [k(Pn) : φ∗(k(imφ))] is equal to the degree of the φi. In
particular, if d = 1 then φ is a bijection from Pn to its image. Note that this agrees
with out definition of the degree of a morphism of curves.

Corollary 25.13. It φ is any automorphism of Pn, then

h(φ(P )) = h(P ) +O(1). (1)

Proof. We must have d = 1, and we can apply Lemma 25.12 to φ−1 as well.

The corollary achieves our goal in the case d = 1 and m = n. If d = 1 and m > n, after
applying a suitable automorphism to Pm we can assume that imφ is the linear subvariety of
Pm defined by xn+1 = xn+2 = · · · = xm+1 = 0, and it is clear that the orthogonal projection
(x0 : · · · : xm) 7→ (x0 : · · · : xn) does not change the height of any point in this subvariety.
It follows that (2) holds whenever d = 1, whether m = n or not.

We now prove the general case

Theorem 25.14. Let k be a number field and let φ : Pn → Pm be a morphism (φ0 : · · · : φn)
defined by homogeneous polynomials φi ∈ k[x0, . . . , xn] of degree d. Then

h(φ(P )) = dh(P ) +O(1). (2)

Proof. If d = 0 then φ is constant and the theorem holds trivially, so we assume d > 0.
We will decompose φ as the composition of four morphisms: a morphism ψ : Pn → PN ,
an automorphism of PN , an orthogonal projection PN → Pn ⊆ Pm, and an automorphism
of Pm. All but the morphism ψ change the logarithmic height of a point P by at most an
additive constant that does not depend on P , and we will show that h(ψ(P )) = dh(P ).



The map ψ = (ψ0 : · · · : ψN ) is defined as follows. We let N =
(
n+d
d

)
− 1, and take

ψ0, . . . , ψN to be the distinct monomials of degree d in the variables x0, . . . , xn, in some
order. Clearly the ψN have no common zero in Pn(Q), so ψ defines a morphism Pn → PN .
Let P = (a0 : · · · : an) be any point in Pn, and let k = Q(a0, . . . , an). For each p ∈ Pk,

max
i
|ψi(P )|p = max

j
|adj |p = max

j
|aj |dp = (max

j
|aj |p)d,

and it follows that

H(ψ(P )) =
∏
p∈Pk

max
i
|ψi(P )|p =

∏
p∈Pk

(max
j
|aj |p)d = H(P )d.

Thus h(ψ(P )) = dh(P ) as claimed. We now note that each φi is a linear combination
of the ψj , thus φ induces an automorphism φ̂ : PN → PN , and after applying a second

automorphism of PN we may assume that the image of φ̂ ◦ ψ in PN is the variety defined
by xn+1 = · · · = xN = 0. Taking the orthogonal projection from PN to Pn embedded in Pm
as the locus of xn+1 = · · · = xm = 0 does not change the height of any point, and we may
then apply an automorphism of Pm to map this embedded copy of Pn to imφ.

Remark 25.15. For an alternative proof of Theorem 25.14 using the Nullstellensatz, see
[2, VIII.5.6].

Lemma 25.16. Let k/Q be a finite Galois extension. Then h(P σ) = h(P ) for all P ∈ Pn(k)
and σ ∈ Gal(k/Q).

Proof. The action of σ permutes Pk, so if P = (x0 : · · · : xn) with xi ∈ k, then

H(P σ) =
∏
p∈Pk

max
i
|xσi |p =

∏
pσ∈Pk

max
i
|xσi |pσ =

∏
pσ∈Pk

max
i
|xi|p =

∏
p∈Pk

max
i
|xi|p = H(P ).

Remark 25.17. Lemma 25.16 also holds for k = Q.

Theorem 25.18 (Northcott). For any positive integers B, d, and n, the set

{P ∈ Pn(k) : h(P ) ≤ B and [k : Q] ≤ d}

is finite.

Proof. Let P = (x0 : · · · : xn) ∈ Pn(k) with [k : Q] ≤ d. We can view each xi as a point
Pi = (xi : 1) in P1(k), and we have

H(P ) =
∏
p∈Pk

max |xi|p ≥ max
i

∏
p∈P

max
i

(|xi|p, 1) = max
i
H(Pi).

Thus it suffices to consider the case n = 1, and we may assume P = (x : 1) and k = Q(x).
Without loss of generality we may replace k by its Galois closure, so let k/Q be Galois

with Gal(k/Q) = {σ1, . . . σd}. The point Q = (xσ1 : · · · : xσd) ∈ Pd−1(k) is fixed by
Gal(k/Q), hence by Gal(Q/Q), so Q ∈ Pd−1(Q). By Lemma 25.16, h(Q) = h(P ), so we
have reduced to the case k = Q, and by the argument above we can also assume n = 1.

The set {P ∈ P1(Q) : h(P ) ≤ B} is clearly finite; each P can be represented as a pair
of relatively prime integers of which only finitely many have absolute value at most eB.



25.6 Canonical height functions on elliptic curves

Theorem 25.19 (Tate). Let S be a set and let r > 1 a real number. Let φ : X → X and
h : X → R be functions such that h ◦ φ = rh+O(1), and let

ĥφ(x) := lim
n→∞

1

rn
h(φn(x)).

Then ĥφ is the unique function S → R for which

(i) ĥφ = h+O(1);

(ii) ĥφ ◦ φ = rĥφ.

Proof. Choose c so that |1rh(φ(x))− h(x)| ≤ c
r for all x ∈ S. For all n > 1 we have∣∣∣∣ 1

rn
h(φn(x))− 1

rn−1
h(φn−1(x))

∣∣∣∣ =
1

rn−1

∣∣∣∣1rh(φ(φn−1(x))− h(φn−1(x))

∣∣∣∣ ≤ c

rn−1
,

thus for all x ∈ S the sequence 1
rnh(φn(x)) converges, so ĥφ is well defined.

For all x ∈ S we have

|ĥφ(x)− h(x)| ≤
∞∑
n=1

∣∣∣∣ 1

rn
h(φn(x))− 1

rn−1
h(φn−1(x))

∣∣∣∣ ≤ ∞∑
n=1

c

rn
=

c

r − 1
,

so (i) holds. Property (ii) is clear, and for uniqueness we note that if f = h + O(1) and
f ◦ φ = rf then applying the construction above with h replaced by f yields f̂φ = ĥφ, but

it is also clear that f̂φ = f , so f = ĥφ.

We now want to apply Theorem 25.19 to the set S = E(Q) with φ = [2] the multiplication-
by-2 map and r = 4, It might seem natural to let h be the height function on the projective
plane P2 containing our elliptic curve E, but as E is a one-dimensional variety, it is better
to work with P1, so we will use the image of E under the projection P2 → P1 defined by
(x : y : z) 7→ (x : z).

To understand how [2] operates on π(E), we recall the formula to double an affine
point P = (x1 : y1 : 1) with y1 6= 0 computes the x-coordinate of 2P = (x3 : y3 : 1) via
x3 = λ2 − 2x1, with

λ2 =

(
3x21 + a4

2y1

)2

=
9x41 + 6a4x

2
1 + a24

4y2
=

9x41 + 6a4x
2
1 + a24

4x31 + 4a4x1 + 4a6
,

where we have used the curve equation y2 = x3+a4x+a6 to get a formula that only depends
on x1. We then have

x3 =
9x41 + 6a4x

2
1 + a24

4x31 + 4a4x1 + a6
− 2x1 =

x41 + 2a4x
2
1 − 8a6x1 + a24

4x31 + 4a4x1 + a6
.

Putting this in projective form, we now define the map φ : P1 → P1 by

φ(x : z) = (x4 + 2a4x
2z2 − 8a6xz

3 + a24z
4 : 4x3z + 4a4xz

3 + a6z
4).

The fact that 4a34 + 27a26 6= 0 ensures that the polynomials defining φ have no common zero
in P1(Q), thus φ : P1 → P1 is a morphism of degree 4, and Theorem 25.14 implies that

h(φ(P )) = 4h(P ) +O(1).



Definition 25.20. Let E be an elliptic curve over a number field k. The canonical height

ĥ : E(k̄)→ R

is the function ĥ = ĥφ◦π, where ĥφ is the function given by Theorem 25.19, with φ : P1 → P1

as above and h the absolute height on P1. It satisfies ĥ(2P ) = 4ĥ(P ) for all P ∈ E(Q).

Theorem 25.21. Let E be an elliptic curve over a number field k. For any bound B the
set {P ∈ E(k) : ĥ(P ) ≤ B} is finite.

Proof. This follows immediately from Northcott’s theorem and Theorem 25.19 part (i).

Theorem 25.22 (Parallelogram Law). Let ĥ be the canonical height function of an elliptic
curve E over a number field k. Then for all P,Q ∈ E(k̄) we have

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q)

Proof. This is a straight-forward but tedious calculation that we omit; see [2, VIII.6.2].

25.7 Proof of the Mordell’s Theorem

With all the pieces in place we now complete the proof of Mordell’s theorem for an elliptic
curve E/Q with a rational point of order 2.

Theorem 25.23. Let E/Q be an elliptic curve with a rational point of order 2. Then E(Q)
is finitely generated.

Proof. By the weak Mordell-Weil theorem that we proved in §25.4 for this case we know
that E(Q)/2E(Q) is finite. So let us choose a bound B such that the set

S : = {P ∈ E(Q) : ĥ(P ) ≤ B}

contains a set S0 of representatives for E(Q)/2E(Q). We claim that S generates E(Q).
Suppose for the sake of obtaining a contradiction that this is not the case. Then there is

a point Q ∈ E(Q)− 〈S〉 of minimal height ĥ(Q); the fact that every set of bounded height
is finite implies that ĥ takes on discrete values, so such a Q exists. There is then a point
P ∈ S0 ⊂ S such that Q = P + 2R for some R ∈ E(Q). Since Q 6∈ 〈S〉, we must have
R 6∈ 〈S〉, so ĥ(R) ≥ ĥ(Q), by the minimality of ĥ(Q). By the parallelogram law,

2ĥ(P ) = ĥ(Q+ P ) + ĥ(Q− P )− 2ĥ(Q)

≥ 0 + ĥ(2R)− 2ĥ(Q)

= 4ĥ(R)− 2ĥ(Q)

≥ 2ĥ(Q)

So ĥ(Q) ≤ ĥ(P ) ≤ B and therefore Q ∈ S, a contradiction.
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26.1 Genus 1 curves with no rational points

Let C/k be a (smooth, projective, geometrically irreducible) curve of genus 1 over a perfect
field k. Let n be the least positive integer for which Divk C contains an effective divisor D of
degree n (such divisors exist; take the pole divisor of any non-constant function in k(C), for
example). If C has a k-rational point, then n = 1 and C is an elliptic curve. We now consider
the case where C does not have a rational point, so n > 1. We have deg(D) = n > 2g−2 = 0,
so the Riemann-Roch theorem implies

`(D) = deg(D) + 1− g = n,

and for any positive integer m we have

`(mD) = deg(mD) + 1− g = mn.

We now analyze the situation for some specific values of n.

26.1.1 The case n = 2

We have `(D) = 2, so let {1, x} be a basis for L(D). Then `(2D) = 4, so in addition to
{1, x, x2}, the Riemann-Roch space L(2D) contains a fourth linearly independent function y.
We then have {1, x, x2, y, xy, x3} as a basis for L(3D), but L(4D) is an 8-dimensional vector
space containing the 9 functions {1, x, x2, y, xy, x3, x2y, x4, y2}, so there is a linear relation
among them, and this linear relation must have nonzero coefficient on both y2 and x4.
Assuming we are not in characteristic 2, we can complete the square in y to obtain an
equation of the form

y2 = f(x)

where f is a quartic polynomial over k. The polynomial f must be squarefree, and it
cannot have any k-rational roots (otherwise we would have a rational point). Note that the
homegenization of this equation is singular at (0 : 1 : 0), but its desingularization is a curve
in P3. Using the same argument as used on the problem set for hyperelliptic curves, one
can show that every curve defined by an equation of this form has genus 1.

26.1.2 The case n = 3

We have `(D) = 3, so let {1, x, y} be a basis for L(D). The 10 functions

{1, x, y, x2, xy, y2, x3, x2y, xy2, y3}

all lie in the 9-dimensional Riemann-Roch space L(3D), hence there is a linear relation
among them that defines a plane cubic curve without any rational points. Conversely,
every plane cubic curve has genus 1, since over a finite extension of k we can put the
curve in Weierstrass form, which we have already proved has genus 1 (recall that genus is
preserved under base extension of a perfect field). An example of a plane cubic curve with
no rational points was given on the problem set, and here is another one:

3x3 + 4y3 + 5z3 = 0.



Unlike the example on the problem set, this curve has a rational point locally everywhere,
that is, over every completion of Q. As noted back in Lecture 3, every geometrically
irreducible plane curve has rational points modulo p for all sufficiently large primes p, and
in this example the only primes that we need to check are 2, 3, and 5; it is easy to check that
there are rational solutions modulo each of these primes, and modulo 33. Using Hensel’s
lemma, solutions modulo p (or p3, for p = 3) can be lifted to Qp, and there are clearly
solutions over R = Q∞

26.1.3 The case n = 4

We have `(D) = 4, so let {1, x, y, z} be a basis for L(D). The 10 functions

{1, x, y, z, x2, y2, z2, xy, xz, yz}

all lie in the 8-dimensional Riemann-Roch space L(2D), hence there are two independent
linear relations among them, each corresponding to a quadratic form in P3, and C is the
intersection of two quadric hypersurfaces (its clear that C is contained in the intersection,
and one can show that it is equal to the intersection by comparing degrees).

26.2 The case n > 4

One can continue in a similar fashion for n > 4; indeed, by a theorem of Lang and Tate,
over Q there are genus 1 curves that exhibit every possible value of n. But the situation
becomes quite complicated already for n = 5: we have {1, w, x, y, z} as a basis for L(D)
and in L(2D) we get 15 functions in a Riemann-Roch space of dimension 10.1

26.3 Twists of elliptic curves

A genus one curve C/k with no k-rational points is not an elliptic curve, but for some
finite extension L/k the set C(L) will be nonempty; thus if base-extend C to L, we obtain
an elliptic curve over L. We will show, this elliptic curve can be defined by a Weierstrass
equation whose coefficients actually lie in k, so it is also the base-extension of an elliptic
curve E/k. The curves E and C are clearly not isomorphic over k, since E has a k-rational
point and C does not, but they become isomorphic when we base-extend to L. In other
words, the isomorphism ϕ : C → E is defined over L, but not over k, so the distinguished
k-rational point O on E is the image of an L-rational point on C that is not defined over k.

Definition 26.1. Two varieties defined over a field k that are related by an isomorphism
defined over k̄ are said to be twists of each other.

In order to characterize the curves that are twists of a given elliptic curve E/k, we
introduce the j-invariant. For simplicity, we will assume henceforth that char(k) 6= 2, 3, so
that we can put our elliptic curves in short Weierstrass form. But the j-invariant can also
be defined in terms of a general Weierstrass equation and except where we explicitly note
otherwise, all the theorems we will prove are true in any characteristic.

1Note that while every curve can be smoothly embedded in P3, this embedding will not necessarily be
defined over k. Over k, Pn−1 is the best we can do.



Definition 26.2. Let E/k be an elliptic curve with Weierstrass equation y2 = x3+a4x+a6.
The j-invariant of E is

j(E) := 1728
4a3

4

4a3
4 + 27a2

6

.

Note that the denominator is always nonzero, since ∆(E) = −16(4a3 + 27a2
6) 6= 0.

Theorem 26.3. For every j ∈ k there exists an elliptic curve E/k with j(E) = j.

Proof. We define such an E/k via an equation y2 = x3 + a4x + a6 as follows. If j = 0, let
a4 = 0 and a6 = 1, and if j = 1728, let a4 = 1 and a6 = 0. Otherwise, let a4 = 3j(1728− j)
and a6 = 2j(1728− j)2. One can check that ∆(E) 6= 0 and j(E) = j in each case.

Theorem 26.4. Two elliptic curves defined over k have the same j-invariant if and only
if they are isomorphic over k̄.

Proof. For the forward implication, let y2 = x3 + a4x + a6 and y2 = x3 + a′4x + a′6 be
Weierstrass equations for elliptic curve E/k and E′/k, respectively, with j(E) = j(E′) = j.
If j = 0 then a4 = a′4 = 0, and we can make a6 = a′6 by a linear change of variables
defined over a suitable extension of k, hence E 'k̄ E′. If j = 1728 then a6 = a′6 = 0,
and we can similarly make a4 = a′4 via a change of variables over a suitable extension of k.
Otherwise, over a suitable extension of k we can make a4 and a′4 both equal to 1, and then
j(E) = j(E′)⇒ a6 = a′6. Thus in every case, j(E) = j(E′)⇒ E 'k̄ E′.

For the reverse implication, we note that the cubic x3 +a4x+a6 is uniquely determined
by its roots, which are precisely the x-coordinates {x1, x2, x3} of the three points of order 2
in E(k̄). If E 'k̄ E′, then both curves can be embedded in P2 so that E[2] = E′[2], and
they will then have the same Weierstrass equation, hence the same j-invariant.

Corollary 26.5. Let C/k be a genus one curve and let O and O′ be any two points in C(k̄).
Then the elliptic curves (C,O) and (C,O′) over k̄ have the same j-invariant.

Proof. The translation-by-O′ map on (C,O) is an isomorphism from (C,O) to (C,O′).

It follows from the corollary that the j-invariant of an elliptic curve (E,O) is independent
of the choice of O, it depends only on the curve E.

Definition 26.6. Let C/k be a curve of genus one. The j-invariant j(C) of C is the
j-invariant of the elliptic curve (C,O) over k̄, for any O ∈ C(k̄).

Theorem 26.7. Let C/k be a curve of genus one. Then j(C) ∈ k.

Proof. Let us pick O ∈ C(L), where L is some finite Galois extension L/k, and let E/L
be the elliptic curve (C,O). Then E is isomorphic to the base extension of C to L, so let
ϕ : C → E be the isomorphism (which is defined over L). For any σ ∈ Gal(L/k) there is an
isomorphism ϕσ : Cσ → Eσ. But C is defined over k, so Cσ = C, and therefore Eσ 'L E,
so j(Eσ) = j(E). But then j(E)σ = j(Eσ) = j(E) for all σ ∈ Gal(L/k), so j(E) ∈ k.

Corollary 26.8. Every genus one curve C/k is a twist of an elliptic curve E/k.

The corollary does not uniquely determine E, not even up to k-isomorphism; it is
possible for two elliptic curves defined over k to be twists without being isomorphic over k.
For example, for any d ∈ k× the elliptic curves defined by the Weierstrass equations

E : y2 = x3 + a4x+ a6



and
Ed : y2 = x3 + d2a4x+ d3a6

have the same j-invariant and are related by the isomorphism (x, y) 7→ (x/d, y/d3/2), which
is defined over k(

√
d). But unless d ∈ k×2, they are not isomorphic over k; the curves E

and Ed are said to be quadratic twists of each other. More generally, we have the following.

Lemma 26.9. Let E : y2 = x3 + a4x + a6 and E′ : y2 = x3 + a′4x + a′6 be elliptic curves
defined over k, with j(E) = j(E′). Then for some λ ∈ k̄× we have a′4 = λ4a4 and a′6 = λ6a6.
Moreover, the degree of k(λ)/k divides 2,4,6 when a4a6 6= 0, a6 = 0, a4 = 0, respectively.

Proof. We first assume a4a6 6= 0. From the definition of the j-invariant, we have

(4a
′3
4 + 27a

′2
6 )a3

4 = (4a3
4 + 27a2

6)a
′3
4

4 + 27(a
′2
6 /a

′3
4 ) = 4 + 27(a2

6/a
3
4)

a
′2
6 a

3
4 = a2

6a
′3
4 .

If we let λ =
√

(a′6a4)/(a6a′4) then we have a′4 = λ4a4 and a′6 = λ6a6 as desired. When
a6 = 0 we may simply take λ = 4

√
a′4/a4, and when a4 = 0 we may take λ = 6

√
a′6/a6.

We now want to distinguish (up to k-isomorphism) a particular elliptic curve E/k that
is a twist of a given genus one curve C/k. For any twist E/k of C/k we have an isomorphism
φ : C → E that is defined over some extension L/k of k that lies in k̄. Every σ ∈ Gal(k̄/k)
defines an isomorphism φσ : Cσ → Eσ, and since C and E are both defined over k, we have
Cσ = C and Eσ = E, so in fact φσ is an isomorphism from C to E. The map

ϕσ := φσ ◦ φ−1

is then an isomorphism from E to itself. Every such isomorphism can be written as

ϕσ = τPσ ◦ εσ,

where Pσ = ϕσ(O) and εσ is an isomorphism that fixes the distinguished point O ∈ E(k).
Both τP and εσ are isomorphisms from E to itself, but εσ is also an isogeny, which is not
true of τPσ unless it is the identity map.

Definition 26.10. An automorphism of an elliptic curve E is an isomorphism E → E that
is also an isogeny. The set of automorphisms of E form a group Aut(E) under composition.

Theorem 26.11. Let k be a field of characteristic not equal to 2 or 3.2 The automorphism
group of an elliptic curve E/k is a cyclic group of order 6, 4, or 2, depending on whether
j(E) is equal to 0, 1728, or neither, respectively.

Proof. We may assume E/k is in short Weierstrass form. Any automorphism ε∗ of the
function field k(E) must preserve the Riemann-Roch space L(O), which has {1, x}, as a
basis, and also the Weierstrass coefficients a4 and a6. It follows from Lemma 26.9 that
ε∗(x) = λ−2x, where λ is a 6th, 4th, or 2nd root of unity, as j(E) = 0, 1728, or neither, and
we must then have ε∗(y) = λ−3y. This uniquely determines ε∗ and therefore ε.

2Over a field of characteristic 2 or 3 one can have automorphism groups of order 24 or 12, respectively;
this occurs precisely when j(E) = 0 = 1728.



Theorem 26.12. Let C/k be a genus one curve. There is an elliptic curve E/k related
to C/k by an isomorphism φ : C → E such that for every automorphism σ ∈ Gal(k̄/k) the
isomorphism ϕσ : E → E defined by ϕσ := φσ ◦ φ−1 is a translation-by-Pσ map for some
Pσ ∈ E(k̄). The curve E is unique up to k-isomorphism.

Proof. To simplify matters we assume j(C) 6= 0, 1728 and char(k) 6= 2, 3. We first pick
a point Q0 ∈ C(k̄) and let E be the elliptic curve (C,Q0). We have j(E) = j(C) ∈ k,
so we can put E in short Weirestrass form with coefficients a4, a6 ∈ k, and we have an
isomorphism φ : C → E that sends Q0 to O := (0 : 1 : 0), but it need not be the case that
ϕσ is a translation-by-Pσ map for every σ ∈ Gal(k̄/k).

We can write each of the isomorphisms ϕσ = φσ ◦ φ−1 as

ϕσ = τPσ ◦ εσ,

where τPσ is translation by Pσ = Qσ0 −Q0, and εσ ∈ Aut(E).
Since j(E) 6= 0, 1728, we have #Aut(E) = 2. The group Aut(E) clearly contains

the identity map [1] and the negation map [−1], so Aut(E) = {[±1]}. The Galois group
Gal(k̄/k) acts on Aut(E) trivially, since both [1] and [−1] are defined over k.

If we apply an automorphism ρ ∈ Gal(k̄/k) to ϕσ we obtain

ϕρσ = (φσ)ρ ◦ (φ−1)ρ = (φρσ) ◦ φ−1 ◦ φ ◦ (φρ)−1 = ϕρσ ◦ ϕ−1
ρ .

Thus

ϕρσ = ϕρσ ◦ ϕρ = (τPσ ◦ εσ)ρ ◦ (τPρ ◦ ερ) = τP ρσ+Pρ ◦ (ερσ ◦ ερ) = τPσρ ◦ εσ ◦ ερ,

since ρ fixes εσ. But we also have ϕρσ = τPρσ ◦ερσ, thus ερσ = εσ ◦ερ = ερ ◦εσ, since Aut(E)
is commutative. The map σ → εσ is thus a group homomorphism π : Gal(k̄/k)→ Aut(E).
If the kernel of π is all of Gal(k̄/k), then every εσ is trivial and ϕσ is translation-by-Pσ for
all σ ∈ Gal(k̄/k), as desired.

Otherwise the kernel if π is an index-2 subgroup of Gal(k̄/k) whose fixed field is a
quadratic extension k(

√
d)/k for some d ∈ k×. In this case let us consider the quadratic

twist Ed of E by d, as defined above, and let χd : E → Ed be the isomorphism (x, y) 7→
(x/d, y/d3/2). We then have an isomorphism φd = χd ◦ φ from C to Ed, and for each
σ ∈ Gal(k̄/k) an isomorphism

ϕ̃σ = φσd ◦ φ−1
d = (χd ◦ φ)σ ◦ (χd ◦ φ)−1 = χσd ◦ φσ ◦ φ−1 ◦ χ−1

d = χσd ◦ ϕσ ◦ χ−1
d .

If εσ = [1] then σ fixes k(
√
d) and therefore χσd = χd and ϕ̃σ is just translation by χd(Pσ),

since in this case ϕσ = τPσ and χd commutes group operations on E and Ed (since it is an
isogeny). If εσ = [−1] then σ(

√
d) = −

√
d and χσd = χd ◦ [−1], and now ϕσ = τPσ ◦ [−1].

We then have
ϕ̃σ = (χd ◦ [−1]) ◦ (τPσ ◦ [−1]) ◦ χ−1

d ,

and now ϕ̃σ is translation by χd(−Pσ). Thus in every case ϕ̃σ is a translation map, so
replacing E by Ed and φ by φd yields the desired result.

If φ′ : C → E′ is another isomorphism with the same property then after composing with
a suitable translation if necessary we can assumeφ′(Q0) is the point O = (0 : 1 : 0) on E′.
The map φ′ ◦φ−1 is then an isomorphism from E to E′ that is fixed by every σ ∈ Gal(k̄/k),
hence defined over k, so E is unique up to k-isomorphism.



Definition 26.13. The elliptic curve E/k given by Theorem 26.12 is the Jacobian of the
genus one curve C/k; it is determined only up to k-isomorphism, so we call any elliptic
curve that is k-isomorphic to E “the” Jacobian of C.

Note that if C is in fact an elliptic curve, then it is its own Jacobian.
We now want to give an alternative characterization of the Jacobian in terms of the

Picard group. We will show that the Jacobian of a genus one curve C/k is isomorphic to
Pic0C; more precisely, for every algebraic extension L/k we have E(L) ' Pic0

LC (as abelian
groups). This characterization of the Jacobian has the virtue that it applies to curves of
any genus; although we will not prove this, for each curve C/k of genus g there is an abelian
variety A/k of dimension g such that A(L) ' Pic0

LC for all algebraic extensions L/k.
In order to to prove this for curves of genus one, we first introduce the notion of a

principal homogeneous space.

26.4 Principal homogeneous spaces (torsors)

Recall that an action of a group G on a set S is a map G × S → S such that the identity
acts trivially and the action of gh is the same as the action of h followed by the action of g.
With the action written on the left, this means (gh)s = g(hs), or on the right, s(gh) = (sh)g,
where g, h ∈ G and s ∈ S. Below are various properties that group actions may have:

• faithful : no two elements ofG act the same way on every s ∈ S (∀s(gs = hs)⇒ g = h).

• free: no two elements of G act in the same way on any s ∈ S (∃s(gs = hs)⇒ g = h).

• transitive: for every s, t ∈ S there is a g ∈ G such that gs = t.

• regular : free and transitive; for all s, t ∈ S there is a unique g ∈ G with gs = t.

Note that free implies faithful, so long as S 6= ∅.

Definition 26.14. A nonempty set S equipped with a regular group action by an abelian
group G is a principal homogeneous space for G, also known as a G-torsor.

Since a G-torsor S is being acted upon by an abelian group, it is customary to write
the action additively on the right. So for any s ∈ S and g ∈ G we write s+ g to denote the
action of g on S (which is another element t of S). Conversely, for any s, t ∈ S we write
t− s to denote the unique g ∈ G for which t = s+ g.

As a trivial example of a G-torsor, we can take G acting on itself. More generally,
any G-torsor S is necessarily in bijection with G. In fact, we can make S into a group
isomorphic to G as follows: pick any element s0 ∈ S, and define the bijection φ : G → S
by φ(g) = s0 + g. Declaring φ to be a group homomorphism makes S into a group; the
group operation is given by φ(g) + φ(h) = φ(g+ h), and φ is an isomorphism with the map
s 7→ s− s0 as its inverse.

A good analogy for the relationship between G and S is the relationship between a vector
space and affine space. A G-torsor is effectively a group with no distinguished identity
element, just as affine space is effectively a vector space with no distinguished origin.



26.5 Principal homogeneous spaces of elliptic curves

The notion of a G-torsor S defined above is entirely generic; we now specialize to the case
where G = E(k̄) is the group of points on an elliptic curve E/k and S = C(k̄) is the set of
points on a curve C/k. In this setting we add the additional requirement that the action is
given by a morphism of varieties. More formally, we make the following definition.

Definition 26.15. Let E/k be an elliptic curve. A principal homogeneous space for E (or
E-torsor), is a genus one curve C/k such that the set C(k̄) is an E(k̄)-torsor and the map
C × E → C defined by (Q,P ) 7→ Q+ P is a morphism of varieties that is defined over k.

Note that if C/k is an E-torsor and L/k is any algebraic extension over which C has
an L-rational point P , then the set C(L) is an E(L)-torsor and the elliptic curves (E,O)
and (C,P ) are isomorphic over L via the translation-by-P map. In particular, we always
have j(C) = j(E). If C has a k-rational point then C and E are isomorphic over k, and in
general E is the Jacobian of C, as we now prove.

Theorem 26.16. Let C/k be a curve of genus one and let E/k be an elliptic curve. Then C
is an E-torsor if and only if E is the Jacobian of C.

Proof. Suppose C is an E-torsor, let O be the distinguished point of E and pick any
Q0 ∈ C(k̄). Then we have an isomorphism φ : C → E that sends to Q0 to O defined by
Q 7→ Q −Q0, where Q −Q0 denotes the unique element of E(k̄) that sends Q to Q0. For
any σ ∈ Gal(k̄/k), the map ϕσ = φσ ◦ φ−1 is given by P 7→ (Q0 + P ) − Qσ0 , and is thus
translation by Pσ = Q0 −Qσ0 . So E is the Jacobian of C (up to k-isomorphism).

Now suppose E is the Jacobian of C and let φ : C → E be the isomorphism from C to E
given by Theorem 26.12. Then P ∈ E(k̄) acts on Q ∈ C(k̄) via Q 7→ φ−1(φ(Q) + P ), and
this action is regular, since φ and translation-by-P are both isomorphisms. Thus C(k̄) is
an E(k̄)-torsor, and the map µ : C ×E → C given by the action of E is clearly a morphism
of varieties, since both φ and the group operation E × E → E are.

To show that µ is defined over k, we check that µσ = µ for all σ ∈ Gal(k̄/k). The group
operation E ×E → E is defined over k, hence invariant under the action of σ, and for any
Q ∈ C and P ∈ E we have

µσ(Q,P ) = (φ−1)σ(φσ(Q) + P )

= (φ−1)σ((ϕσ ◦ φ)(Q) + P )

= (φ−1)σ(φ(Q) + Pσ + P )

= φ−1(φ(Q) + Pσ + P − Pσ)

= φ−1(φ(Q) + P )

= µ(Q,P ),

where we have used ϕσ = φσ ◦φ−1 to derive φσ = ϕσ ◦φ and (φ−1)σ = (φσ)−1 = φ−1 ◦ϕ−1
σ ,

and applied ϕσ(P ) = P + Pσ and ϕ−1
σ (P ) = P − Pσ.

Theorem 26.17. Let C/k be an E-torsor and let Q0 ∈ C(k̄). The map π : Div0
k̄
C → E(k̄)

defined by ∑
i

niPi 7→
∑
i

n(Pi −Q0)

is a surjective homorphism whose kernel consists of the principal divisors, and it is indepen-
dent of the choice of Q0. Moreover, for any extension L/k in k̄ the map π commutes with
every element of Gal(k̄/L) and therefore induces a canonical isomorphism Pic0

LC ' E(L).



Note that in the definition of π, the sum on the LHS is a formal sum denoting a divisor,
while the sum on the RHS is addition in the abelian group E(k̄), where each term Pi −Q0

denotes the unique element of E(k̄) whose action sends Q0 to Pi.

Proof. The map π is clearly a group homomorphism. To see that it is surjective, for any
point P ∈ E(k̄), if we let D = (Q0 + P )−Q0 ∈ Div0C then

π(D) = ((Q0 + P )−Q0)− (Q0 −Q0) = P.

If π(D) = π(
∑
niPi) = O for some D ∈ Div0

k̄
C, then the divisor

∑
i ni(Pi − Q0) in

div0
k̄
(E) sums to O, hence is linearly equivalent to 0 and therefore a principal divisor. Since

k̄(C) = k̄(E), the same is true of D. Conversely, if D ∈ div0
k̄
C is principal, so is the

corresponding divisor in Div0
k̄
E, and therefore π(D) = O. Thus the kernel of π is precisely

the group of principal divisors, hence π induces an isomorphism Pic0
k̄
→ E(k̄).

Now let Q1 ∈ C(k̄) and define π′(
∑
niPi) =

∑
ni(Pi −Q1). Then

π(D)− π′(D) =
∑
i

ni((Pi −Q0)− (Pi −Q1)) =
∑

ni(Q1 −Q0) = O,

since
∑
ni = deg(D) = 0, thus π′ = π and π is independent of the choice of Q0.

For any σ ∈ Gal(k̄/k) and D =
∑
niPi ∈ Div0

k̄
C we have

π(D)σ =
∑
i

ni(P
σ
i −Qσ0 ) = π(Dσ).

It follows that D ∈ Div0
LC if and only if π(D) ∈ E(L), for any extension L/k in k̄, thus π

induces an isomorphism Pic0
LC → E(L) for every L/k in k̄.

26.6 The Weil-Châtelet group

Definition 26.18. Let E/k be an elliptic curve. Two E-torsors C/k and C ′/k are equivalent
if there is an isomorphism θ : C → C ′ defined over k that is compatible with the action of E.
This means that

θ(Q+ P ) = θ(Q) + P

holds for all Q ∈ C(k̄) and P ∈ E(k̄). The Weil-Châtelet group WC(E/k) is the set of
equivalence classes of E-torsors under this equivalence relation.

The equivalence class of E is simply the set of elliptic curves that are k-isomorphic to E;
this is the trivial class of WC(E/k), and it acts as the identity element under the group
operation that we will define shortly.

Lemma 26.19. If θ : C → C ′ is an equivalence of E-torsors then

θ(P )− θ(Q) = P −Q

for all P,Q ∈ C. Conversely, if θ : C → C ′ is a k-isomorphism for which the above holds,
then θ is an equivalence of E-torsors.



Proof. If θ is an equivalence of E-torsors, then

θ(P )− θ(Q) = θ(P ) + (Q− P )− θ(Q) + P −Q
= θ(P + (Q− P ))− θ(Q) + P −Q
= P −Q.

Conversely, if θ(P ) − θ(Q) = P − Q for all P,Q ∈ C, then for any R ∈ E(k̄) we have
θ(Q + R) − θ(Q) = (Q + R) − Q = R, and therefore θ(Q + R) = θ(Q) + R for all Q ∈ C
and R ∈ E(k̄), so θ is an equivalence of E-torsors.

Recall from the proof of Theorems 26.12 and 26.16 that if C/k is an E-torsor (and
therefore E is the Jacobian of C) then each σ ∈ Gal(k̄/k) determines an isomorphism
ϕσ : E → E that is a translation-by-Pσ map, where Pσ = Qσ0−Q0 for some fixed Q0 ∈ C(k̄).
So we have a map α : Gal(k̄/k)→ E(k̄) defined by α(σ) = Qσ0−Q0. For any σ, τ ∈ Gal(k̄/k)
we have

α(σ)τ = (Qσ0 −Q0)τ = Q
(τσ)
0 −Qτ0 = (Qτσ0 −Q0)− (Qτ0 −Q0) = α(τσ)− α(τ),

thus
α(τσ) = α(τ) + α(σ)τ ,

and this holds for any choice of Q0 used to define α. If α(σ)τ = α(σ) then α is a group
homomorphism, but in general this is not the case; the map α is known as a crossed
homomorphism.

Definition 26.20. A map α : Gal(k̄/k)→ E(k̄) that satisfies

α(τσ) = α(τ) + α(σ)τ

for all σ, τ ∈ Gal(k̄/k) is called a crossed homomorphism.

If α and β are two crossed homomorphism then the map (α + β)(σ) = α(σ) + β(σ) is
also, since

(α+ β)(τσ) = α(τσ) + β(τσ) = α(τ) + α(σ)τ + β(τ) + β(σ)τ = (α+ β)(τ) + (α+ β)(σ)τ ,

and addition of crossed homomorphism is clearly associative. The difference of two crossed
homomorphisms is similarly a crossed homomorphism, and the map that sends every ele-
ment of Gal(k̄/k) to the distinguished point O acts as an additive identity. Thus the set of
all crossed homomorphisms from Gal(k̄/k) to E(k̄) form an abelian group.

The crossed homomorphisms of the form σ 7→ Qσ0 −Q0 that arise from an E-torsor C/k
with Q0 ∈ C(k̄) have the property that there is a finite normal extension L/k such that
Gal(k̄/L) = α−1(O); take L to be the normal closure of k(Q0).3 Crossed homomorphisms
with this property are said to be continuous.4 Sums and negations of continuous crossed
homomorphisms are clearly continuous, so they form a subgroup.

Now let us consider what happens when we pick a point Q1 ∈ C(k̄) different from Q0.
Let α0 be the crossed homomorphism σ 7→ Qσ0−Q0 and let α1 be the crossed homomorphism
σ 7→ Qσ1 −Q1. Then their difference is defined by

α1(σ)− α0(σ) = (Qσ1 −Q1)− (Qσ0 −Q0) = (Q1 −Q0)σ − (Q1 −Q0).

3Recall that we assume k to be perfect.
4If we give Gal(k̄/k) the Krull topology and E(k̄) the discrete topology this corresponds to the usual

notion of continuity.



The crossed homomorphism α1−α0 is defined in terms of Q1−Q0 which is actually a point
on E(k̄), rather than C(k̄). This is also true if we choose Q0 ∈ C0(k̄) and Q1 ∈ C1(k̄) where
C0 and C1 are two equivalent E-torsors.

Definition 26.21. Crossed homomorphisms of the form σ 7→ P σ − P with P ∈ E(k̄) are
principal. The principal crossed homomorphism form a subgroup, as do the continuous
principal crossed homomorphisms.

Given our notion of equivalence for E-torsors, we do not wish to distinguish between
principal crossed homomorphisms. This leads to the following definition.

Definition 26.22. Let E/k be an elliptic curve. The group of continuous crossed homo-
morphisms of E/k modulo its subgroup of principal crossed homomorphisms is the first
Galois-cohomology group of E(k̄). It is denoted by

H1(Gal(k̄/k), E(k̄)).

For the sake of brevity we may also write H1(k,E).

Remark 26.23. More generally, if M is any abelian group on which Gal(k̄/k) acts, one
can define Galois cohomology groups Hn(k,M) for each non-negative integer n. The group
H0(k,M) is simply the subgroup of M fixed by Gal(k̄/k); in our setting H0(k,E) = E(k).

We now use the group H1(k,E) to define a group operation on the WC(E/k).

Theorem 26.24. Let E/k be an elliptic curve. There is a bijection between the Weil-
Châtelet group WC(E/k) of E and its first cohomology group H1(k,E).

Proof. We have already defined a map from WC(E/k) to H1(k,E); given an E-torsor C/k
that represents an equivalence class in WC(E/k), we may pick any point Q0 ∈ C(k̄) to
get a continuous crossed homomorphism σ 7→ Qσ0 −Q0 that is uniquely determined modulo
prinicipal crossed homomorphisms, hence it represents an element of H1(k,E). We just
need to show that this map is injective and surjective.

We first prove that it is injective. Let C1/k and C2/k be E-torsors, pick Q1 ∈ C1(k̄) and
Q2 ∈ C2(k̄), and suppose that the crossed homomorphism σ 7→ Qσ1 −Q1 and σ 7→ Qσ2 −Q2

are equivalent in H1(k,E). Then their difference is a principal crossed homomorphism
σ 7→ P σ − P , for some P ∈ E(k̄). Thus we have

(Qσ1 −Q1)− (Qσ2 −Q2) = P σ − P

for all σ ∈ Gal(k̄/k). Now define the map θ : C1 → C2 by

θ(Q) = Q1 + (Q−Q2)− P.

It is clear that θ is an isomorphism, since C1 and C2 are both E-torsors, and it is defined
over k, since for any σ ∈ Gal(k̄/k) we have

θ(Q)σ = Qσ1 + (Qσ −Qσ2 )− P σ

= Q1 − (Qσ −Q2)− P + (Qσ1 −Q1)− (Qσ2 −Q2)− (P σ − P )

= Q1 − (Qσ −Q2)− P
= θ(Qσ)



Thus C1 and C2 lie in the same equivalence class in WC(E/k); this prove injectivity.
For surjectivity, let α be a continuous crossed homomorphism that represents an element

of H1(k,E). We now define an action of Gal(k̄/k) on the function field k̄(E) = k̄(x, y) as
follows: for any σ ∈ Gal(k̄/k), the elements xσ and yσ are given by

(x, y)σ = (xσ, yσ) := (x, y) + α(σ),

where the + indicates that we apply the algebraic formulas defining the group operation on
E(k̄) working with points in P2(k̄(E)). To check that this defines a group action, we note
that the identity clearly acts trivially, and for any σ, τ ∈ Gal(k̄/k) we have

(x, y)τσ = (x, y) + α(τσ) = (x, y) + α(τ) + α(σ)τ = ((x, y) + α(σ))τ + α(τ) = ((x, y)σ)τ .

The fixed field of this action is is the function field of a curve C that is defined over k and
isomorphic to E over k̄. By construction, there is an isomorphism φ : C → E such that for
any σ ∈ Gal(k̄/k) the automorphism ϕσ = φσ ◦φ−1 is a translation by Pσ = −α(σ), thus E
is the Jacobian of C, by Theorem 26.12, and therefore C is an E-torsor, by Theorem 26.16.
Thus C represents an equivalence class of WC(E/k), and if we pick Q0 = φ−1(O) then

Qσ0 −Q0 = (φσ)−1(O)− φ−1(O)

= φ−1(O + α(σ))− φ−1(O)

= α(σ),

So the class of α in H1(k,E) is the image of the class of C in WC(E/k).

The bijection given by the theorem maps the trivial class of WC(E/k) to the identity
element of H1(k,E), thus we can define a group operation on WC(E/k) via this bijection.

Corollary 26.25. The Weil-Châtelet group WC(E/k) is isomorphic to the group H1(k,E).

Definition 26.26. Let E/k be an elliptic curve. The Tate-Shafarevich group X(E) is the
kernel of the map

WC(E/k)→
∏
p

WC(Ep/kp),

where kp ranges over the completions of k and Ep denotes the base extension of E to kp.

The Tate-Shafarevich group contains precisely the equivalence classes in WC(E/k) that
are locally trivial everywhere. These are the classes of curves C/k with Jacobian E/k that
have a kp-rational point at every completion kp.

Definition 26.27. A curve C/k satisfies the local-global principle (or Hasse principle) if
either C(k) 6= ∅ or C(kp) = ∅ for some completion kp.

Theorem 26.28. Let C/k be a genus one curve with Jacobian E/k. A genus one curve
C/k fails the local-global principle if and only if it represents a non-trivial element of X(E).
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