
Chapter 4
The Genus of an Algebraic Curve

Essay 4.1 Abel’s Memoir

It appears to me that if one wants to make progress in the study of mathematics one should
study the masters and not the pupils.—Niels Henrik Abel, quoted from an unpublished
source in [72, p. 138]

Niels Henrik Abel’s submission of his Mémoire sur une propriété générale d’une
class très-étendue de functions transcendantes to the Paris Academy in October 1826
should have been a high point in the history of mathematics. Instead, it was a low
point in the history of the Paris Academy.

Abel, lonely and unknown, was temporarily in Paris thanks to a travel grant from
the government of Norway, and he hoped to win recognition in the city that was
then the mathematical capital of Europe. Unfortunately, he naively believed that
recognition could be won by submitting a work of undeniable genius to Europe’s
leading mathematical institution. He did not understand that works of undeniable
genius are inherently difficult to read, even for the most learned readers, and he did
not understand that the members of Europe’s leading mathematical institution would
not devote the needed time and thought to the work of a 24-year-old mathematician
who was unknown to them and who came from a country they had scarcely heard of.

Of course, one of the famous men of the Academy might by some lucky accident
have taken notice of the memoir long enough to realize that it was worth pursuing, but
none did. In 1837, eight years after Abel’s untimely death, the Norwegian scholars
charged with publishing Abel’s collected works applied to the Academy via the
Norwegian government and its diplomatic representatives in Paris for a copy of the
memoir—Abel had apparently not kept a copy for himself—but the effort did not
succeed, and the memoir is absent from the first publication of Abel’s works in 1839.
Finally, the Academy did publish the memoir in 1841 as [2], making it available to
eager readers like C. G. J. Jacobi for the first time.

In the two and a half years Abel (shown in Fig. 4.1) lived after submitting
the memoir, he enjoyed a growing reputation based on his publications in Crelle’s
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Fig. 4.1 Abel

Journal, but he patiently awaited publication of the Paris memoir, believing it would
ensure his fame. He even alluded to the memoir in one of his published works,
piquing the curiosity and indignation of Jacobi, who read the allusion too late to
write to Abel about it. That Abel’s memoir remained unpublished in his lifetime1

deprived him of the challenge and encouragement of readers’ responses and therefore
probably deprived mathematics of important further work.

(Incredibly, the tragedy was repeated only three years after Abel died when Galois
went to an early grave ignored by the same Paris Academy.)

Abel’s memoir deals with integrals of algebraic differentials, a topic that is not
at all easy to understand from the point of view of naive geometry and integration
along a curve. Because an algebraic differential like dx/

√
1 − x4 is “many-valued”

and because, moreover, an integral of such a differential depends on choosing both a
path and a constant of integration, modern readers may well despair of understand-
ing even what Abel means by the sum of a finite number of integrals of a given
algebraic differential, much less why questions about such sums might be interesting
or significant.

But there is another way to describe the main idea that makes better sense to
modern readers and explains the main theorem of the memoir more clearly. Abel’s
“algebraic differentials” are differentials of the form f (x, y)dx, where f is a rational
function of two variables and where y is an “algebraic function” of x. The notion of
an “algebraic function” has become a source of unease for modern readers because
an algebraic function is normally “many-valued” and the property of being single-
valued is the essence of the set-theoretic notion of a “function.” But of course there
1 The last work Abel published was a brief note that contained a theorem from the memoir. Abel’s
biographer Oystein Ore says that the theorem of that last brief note is the theorem of the memoir
[72, p. 219], but it is far short of the theorem in the introduction of the memoir that I am discussing
in this essay and that I take to be, in Ore’s phrase, “the main theorem from the Paris memoir.”
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are modern ways to deal with algebraic functions. One is to give the functions their
own special domain; this is the source of the theory of Riemann surfaces. The other
is to regard an “algebraic function” not as a function at all, but simply as an element
of an algebraic function field, which is to say an algebraic field whose transcendence
degree is positive (see Essay 2.2). The subject of Abel’s memoir is algebraic functions
of one variable, which is to say, in the terminology of Essay 2.2, elements of an
algebraic field of transcendence degree 1. In other words, Abel is dealing with the
field of rational functions on an algebraic curve defined over the rationals.

The concept that I propose as an aid to understanding Abel’s memoir is that of an
algebraic variation of a set of points on an algebraic curve. Abel describes such a
variation as the solutions of a pair of equations

χ(x, y) = 0,
θ(x, y, a, a′, a′′, . . .) = 0,

where χ(x, y) is the irreducible polynomial with integer coefficients, monic in y, that
defines the algebraic curve under discussion, and θ(x, y, a) is an auxiliary polynomial
in x and y whose coefficients a, a′, a′′, . . . are indeterminates. For each fixed value of
the coefficients a, a′, a′′, . . . the pair of equations determines a set of points {(xk, yk)}
on the curve χ = 0, and as the coefficients vary, these points vary along the curve.
A variation of points on the curve that can be generated in this way is an algebraic
variation.

Somewhat more precisely, let CN denote the set of all N-tuples of points on the
curveC defined by χ(x, y) = 0. An algebraic variation of a point ofCN is determined
by choosing a θ(x, y, a) of the form θ(x, y, a) =

∑
ai j xiy j , where the exponent pairs

(i, j) are in some specified finite set. To say that θ(x, y, a) = 0 at a particular point
of the curve χ(x, y) = 0 means that the parameters ai j in θ satisfy a certain (linear)
condition. Choose values for the ai j that make θ = 0 at all N of the given points.
There will be other points of χ(x, y) = 0 where θ = 0 for these values of ai j , say
there are M of them. An algebraic variation of the N given points is one that results
when the ai j are allowed to vary from their fixed values in such a way that the M
additional zeros all remain at zero while the N original ones are allowed to move.
For each point of CN , the points of CN that can be reached from it by a sequence of
algebraic variations lie on an algebraic subvariety of CN .

Abel probably had some geometric conception of such variations of sets of points
on χ(x, y) = 0, but exactly what it might have been can only be guessed. Today
one would never discuss intersection points without first specifying an algebraically
closed ground field, but Abel would probably not have thought of curves as ordered
pairs of complex numbers in anything like the modern way. More likely, he would
have just imagined sets of points of intersection of an ordinary plane curve with an
auxiliary curve and considered constraints on variations of the intersection points
produced by varying the auxiliary curve. In modern terms, the number of constraints
on the variation of N points of a curve is the codimension of the subvariety of
algebraic variations within the N-dimensional variety CN of all variations. This
codimension is very nearly the same as the genus of the curve, and whatever his
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geometric conception of the problem setting may have been, it is this number that
Abel successfully investigated.

In terms somewhat closer to Abel’s, if f (x, y)dx is an algebraic differential
(which is to say, a rational function f on the curve C times the symbol dx), and if an
infinitesimal algebraic variation of the points {(xk, yk)} is performed, Abel asserts
that the resulting variation of

∑
f (xk, yk)dxk is a differential that can be expressed

rationally in terms of the parameters ai j and their differentials.2 Thus, if the point
(P1, P2, . . . , PN ) can be moved to the point (Q1,Q2, . . . ,QN ) of CN by an algebraic
variation, then

∫ Q1

P1

f (x, y)dx +
∫ Q2

P2

f (x, y)dx + · · · +

∫ QN

PN

f (x, y)dx

is equal to the integral of a rational differential in the ai j and can therefore be
expressed in terms of elementary functions—logarithms and trigonometric func-
tions, as well as rational functions—of the ai j .

Now let g be the codimension of the subvarieties of algebraic variations. Then
N − g of the points (P1, P2, . . . , PN ) can be moved in arbitrary ways by an algebraic
variation, provided the remaining g points move in such a way as to keep the new
(P′

1, P
′
2, . . . , P

′
N ) on the same subvariety. Thus, ifO is a chosen base point on the curve

C, there is an algebraic variation—or at least a succession of algebraic variations—
of a point (P1, P2, . . . , PN ) of CN that connects it to a point of CN of the form
(O,O, . . . ,O,Q1,Q2, . . .Qg). Then

∫ P1

O

f (x, y)dx +
∫ P2

O

f (x, y)dx + · · · +

∫ PN−g

O

f (x, y)dx

+

∫ PN−g+1

Q1

f (x, y)dx + · · · +

∫ PN

Qg

f (x, y)dx

can be expressed in terms of elementary functions of the parameters used in the
variation, so that when the g integrals from O to Qi are added, one obtains

∫ P1

O

f (x, y)dx +
∫ P2

O

f (x, y)dx + · · · +

∫ PN

O

f (x, y)dx

=

∫ Q1

O

f (x, y)dx + · · · +

∫ Qg

O

f (x, y)dx + E,

where E can be expressed in terms of elementary functions of the parameters of
the variation. (The paths of integration are, of course, the ones determined by
the algebraic variation from (O,O, . . . ,O,Q1,Q2, . . .Qg) to (P1, P2, . . . , PN ) that
is assumed.) Thus, disregarding elementary functions, a sum of any number N of
integrals of f (x, y)dx can be expressed as a sum of just g integrals, where g depends

2 This, in essence, is the theorem of Abel’s last published note that Ore mistook for the main
theorem of the memoir. See the note above.
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only on the differential f (x, y)dx being integrated–and in fact depends only on the
algebraic curve χ(x, y) = 0 on which the differential has its existence—not on N .

This is the main theorem of Abel’s Paris memoir. In Abel’s own words, “The
number of these conditions [the number g above] does not depend at all on the
number of summands, but only on the nature of the particular integrands that one
considers. Thus, for example, for an elliptic integrand this number is 1; for an
integrand that contains no irrationalities but a radical of the second degree, under
which the variable has degree at most six, the number of necessary conditions is 2,
and so forth.”3

I have said above that the crucial number of conditions g is “roughly” the genus
of the curve C. Abel’s statement that g is 1 in the elliptic case, 2 in case y2 is
a polynomial of degree 5 or 6 in x, and so forth, of course suggests that g is
connected to the genus and is the genus in many cases. It fails to be the genus only
because Abel bases his variation of the points on the variation of parameters ai j in
functions of the form θ(x, y, a) =

∑
ai j xiy j , which is not quite general enough and

in some cases gives too large a value for g because it omits certain variations that
deserve to be called algebraic variations. When θ is instead taken to have the form
θ(x, y, a) =

∑
aiθi(x, y) where the “functions” θi(x, y) are integral over x—which

may reduce g because it may include more variations—g becomes the actual genus,
as will be shown in Essay 4.6.

Essay 4.2 Euler’s Addition Formula

Man sollte weniger danach streben, die Grenzen der mathematischen Wissenschafflen zu
erweitern, als vielmehr danach, den bereits vorhandenen Stoff aus umfassenderen Gesicht-
spunkten zu betrachten. (One should strive less to extend the boundaries of the mathematical
sciences and much more to treat the already available material from more comprehensive
viewpoints.)—Eduard Study [38, p. 140]

Euler (shown in Fig. 4.2) stated his addition formula for elliptic integrals in a variety
of ways, none of which shed enough light on the formula to suggest a generalization
to other kinds of integrands. The great achievement of Abel’s Paris memoir was to
describe Euler’s formula as the case g = 1 of a more general phenomenon.

It is customary today to describe an elliptic curve by a formula of the form
y2 = x3 + g2x + g3, in which g2 and g3 are rational numbers, called its “Weierstrass
normal form.” When the curve is written in this form, the “addition” or “group law”

3 In an effort to clarify Abel’s statement, I have taken some liberties with the translation. His
actual words were, “Le nombre de ces relations ne dépend nullement du nombre des fonctions,
mais seulement de la nature des fonctions particulière qu’on considère. Ainsi, par exemple, pour
une fonction elliptique ce nombre est 1; pour une fonction dont la dérivée ne contient d’autres
irrationalités qu’un radical du second degré, sous lequel la variable ne passe pas le cinquième ou
sixième degré, le nombre des relations nécessaires est 2, et ainsi de suite.” His “fonctions” are the
integrals above, and his “dérivées” are the integrands. What he is calling “une fonction elliptique”
is what is today called an elliptic integral.
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Fig. 4.2 Euler

on the curve is described as follows: Let P and Q be given points on the curve,
and let S be the third point in which the line through P and Q intersects the curve.
(The curve, being a cubic, intersects a line in the xy-plane in three points when
they are counted in the right way.) The sum R = P + Q of P and Q is defined to
be the third point in which the line through S and the point at infinity intersects the
curve, as shown in Fig. 4.3. (The lines through the point at infinity are the lines x =

constant—these are the lines that intersect the curve in only two finite points—so R
is the point whose x-coordinate is the same as that of S and whose y-coordinate is
the y-coordinate of S with the sign reversed.)

P
Q

S

R

x

y

Fig. 4.3 The operation of addition on an elliptic curve
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This construction is connected to the theorem of Abel’s memoir in the following
way: Let θ(x, y, a, b, c) = ax + by + c. Algebraic variations of the given points P and
Q are obtained by choosing initial values for a, b, and c that make θ zero at P and Q
and allowing a, b, and c to vary in such a way that the third point of intersection of the
line with the curve, call it S, remains fixed. In other words, the algebraic variations
of the pair (P,Q) are the pairs of points (P′,Q′) on the curve for which P′, Q′, and
S are colinear. In particular, if a point O of the curve is chosen as the origin—or the
identity of the group law—then the algebraic variation of (P,Q) that carries P to O
carries Q to the third point R in which the line through O and S intersects the curve.
When O is chosen to be the point at infinity, R is the point P +Q described above.

Abel’s point of view explains why this “addition” is useful and shows that it is
intrinsic to the curve. According to Abel, for any rational function f (x, y) of x and
y =

√
x3 + g2x + g3, the sum

∫ P

O
f (x, y)dx+

∫ Q

R
f (x, y)dx can be expressed in terms

of integrals of rational functions, or, what is the same,
∫ P

O
f (x, y)dx+

∫ Q

O
f (x, y)dx =

∫ R

O
f (x, y)dx plus an integral of rational functions. In particular, in the special

case f (x, y) = 1
y , in which the integrand is holomorphic in the sense explained in

Essay 4.6, the formula is
∫ P

O

dx
y

+

∫ Q

O

dx
y

=

∫ R

O

dx
y
,

which is one form of Euler’s addition theorem. More precisely, these integrals depend
on the paths of integration, and for the formula to hold, these paths must be chosen
correctly. Thus, the sum of two integrals of dx/y can be expressed as just one integral
of the same integrand, provided the limits of integration satisfy a certain algebraic
relation and the paths of integration are chosen correctly.

Once it is known that two such integrals can be reduced to one, it follows that
any number of such integrals can similarly be reduced to one. Abel’s construction
describes this all at once, rather than as a step-by-step reduction. An algebraic
variation of a set of points (P1, P2, . . . , PN ) on the curve is described by a function
θ(x, y, a) of the form

∑
ai j xiy j for some selection of exponent pairs (i, j). Since y2

is a polynomial in x, it is natural to assume that all of the chosen values of j are less
than 2, so that θ takes the form φ1(x)+φ2(x)y, where φ1 and φ2 are polynomials in x
containing terms of certain specified degrees whose coefficients are indeterminates
ai1 and ai2. The procedure is to give θ enough terms that values can be chosen for the
parameters ai j that make θ zero at the given points P1, P2, . . . , PN , and then to allow
the parameters to vary from their chosen values in such a way that the value of θ
remains at zero for the zeros of θ other than P1, P2, . . . , PN , while the N given zeros
of θ are allowed to vary. The main question is, How many conditions are imposed on
the variation of the N points along the curve by the requirement that the variation be
describable in this way? That the answer is l—that the genus of this curve is l—can
be seen in the following way.

The crucial step is to determine the number of zeros of θ(x, y) = φ1(x) + φ2(x)y
on the curve. A simple way to do this is to make use of the idea that a rational



124 4 The Genus of an Algebraic Curve

function on an algebraic curve assumes each value the same number of times, when
they are counted properly, and in particular that the number of zeros is equal to
the number of poles. The function x assumes every value twice, and in particular,
it has a double pole at the one point where x = ∞. The function y, on the other
hand, assumes every value three times and has a triple pole at the one point where
x = ∞. (These statements can be justified in various ways, but since they are used
here only as heuristic devices, no formal justification will be given.) It follows that a
polynomial φ(x) of degree ν has 2ν poles, all of them at the point where x = ∞, and
that φ(x)y has 2ν + 3 poles, all at that same point. Consequently, if φ1(x) has degree
ν and φ2(x) has degree ν − 2, then θ(x, y) = φ1(x) + φ2(x)y has 2ν poles, so it also
has that number of zeros. Since φ1 has ν+1 variable coefficients and φ2(x) has ν−1,
θ has 2ν coefficients. If 2ν > N , the N conditions on the 2ν coefficients of θ imposed
by the requirement that θ be zero at N given points can be satisfied by some choice
of θ. Since θ has 2ν zeros, it has 2ν−N zeros other than the N required ones, and the
algebraic variations of the N given points are found by varying the 2ν coefficients of
θ in such a way that these 2ν −N extra zeros remain as zeros. The 2ν −N conditions
stating that θ must have these zeros are independent, so the coefficients of θ then
vary with 2ν − (2ν − N) = N degrees of freedom. However, multiplication of θ by a
constant does not change its zeros, so varying the coefficients of θ with N degrees of
freedom varies its zeros with only N − 1 degrees of freedom. In short, an algebraic
variation of N given points moves them in only N − 1 different directions, which is
to say that algebraic variations satisfy one constraint in this case. Otherwise stated,
algebraic variations describe subvarieties of codimension 1 in CN .

This description of the phenomenon is in no way tied to the Weierstrass normal
form. Gauss alludes indirectly to the elliptic curve y2 = 1 − x4 in the introduction
to Section 7 of the Disquisitiones Arithmeticae [43] when he mentions the transcen-
dental functions related to integrals of dx/

√
1 − x4. Euler too dealt with the curve

y2 = 1 − x4 [40], for which explicit and beautiful formulas can be developed for the
addition law, and it is clear from Abel’s published papers that this particular curve
is one that he studied intensely. To require that it be put in Weierstrass normal form
before the group law is described loses certain symmetries that deserve to be kept.
But the above heuristic derivation of the fact that a curve in Weierstrass normal form
has genus 1 also proves that y2 = 1 − x4 has genus 1, because in this case x is ∞ at
two points, both of them simple poles, whereas y has double poles at these points
(
( y

x2

)2
=

( 1
x

)4
− 1 is finite when x = ∞), so θ(x, y) = φ1(x) + φ2(x)y has a ν-fold

pole at each—and therefore 2ν zeros—when deg φ1 = v and deg φ2 = ν − 2. Again
the number of parameters in such a function φ1(x) + φ2(x)y is 2ν, and the same
arguments then show that the algebraic variation of N points on the curve moves
them with only N − 1 degrees of freedom and therefore determines subvarieties of
CN of codimension 1.

In the same way, Abel’s construction generalizes the Euler addition formula
to any curve C for which the algebraic variations describe subvarieties of CN of
codimension 1. If (P1, P2, . . . , PN ) is moved to (O,O, . . . ,O, R) by means of an
algebraic variation, then, as before,
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∫ P1

O

f (x, y)dx +
∫ P2

O

f (x, y)dx + · · · +

∫ PN

O

f (x, y)dx =

∫ R

O

f (x, y)dx + E,(1)

where E is a quantity that can be expressed in terms of integrals of rational functions.
(Moreover, E is zero when the integrand is holomorphic in the sense defined in
Essay 4.6. This is true, as will be shown, of the integrand dx/y for curves in
Weierstrass normal form or for the curve y2 = 1 − x4.)

Essay 4.3 An Algebraic Definition of the Genus

Modern treatments of the genus of a curve normally describe it in terms of the
topology of the associated Riemann surface. Therefore, modern mathematicians are
usually amazed to learn that the idea stems from Abel, who lived and worked at a
time when even the notion of a complex function of a complex variable was in its
early infancy and the notion of a Riemann surface was still in the future. (Riemann
surfaces first appeared in Riemann’s dissertation [77] of 1851.) But as the discussion
in the preceding essay shows, Abel’s point of view does not depend on complex
numbers.

The geometric picture of N points on the curve varying with N − g degrees of
freedom that was presented in the preceding essays does depend on complex numbers,
because the coordinates of the intersection points defined by χ = 0, θ = 0 exist only
in some algebraically closed field, and the notion of continuous variation requires
something like real numbers. But the actual determination of the genus depends on
purely algebraic considerations, at least in the examples of the preceding essay. All
that is needed is to construct, for a large number ν, a formula θ(x, y, a, a′, a′′, . . .) for
the most general “function” in the field that has poles only at points where x = ∞ and
no longer has poles at those points when it is divided by xν (although this division
will probably cause it to have poles at x = 0). The genus g is determined by the
condition that the number of zeros of θ is g − 1 greater than the number of arbitrary
constants in the formula for θ.

Of course elements of a function field are not really functions in the usual sense,
so they do not really have zeros and poles, and the condition that an element have
poles only where x = ∞ is far from rigorous. Therefore, this description of the genus
needs more explanation. Starting with the field of rational functions on an algebraic
curve χ(x, y) = 0—which is simply the root field of a monic, irreducible polynomial
χ(x, y) in y with coefficients in Z[x]—one needs to define what it means to say
that an element θ of the field has no poles where x is finite and that θ/xν has no
poles where 1/x is finite, and then one needs to determine how many zeros such a θ
has and how many arbitrary constants there are in the formula for the most general
such θ.

The idea of an element θ having no poles where x is finite has a standard algebraic
formulation: An element θ of the field of rational functions on a curve χ(x, y) = 0 is
integral over x if some power of θ is equal to a sum of multiples of lower powers in
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which the multipliers are elements of the ring Q[x] of polynomials in x with rational
coefficients.4 The justification of this definition is, in the last analysis, pragmatic—it
works in the sense that it suggests correct theorems and is useful in proofs.

(The analogous definition of an algebraic integer in an algebraic number field—
see Essay 2.5—emerged in the work of Kronecker and Dedekind in the 1860s and
1870s. Bourbaki [11] claims it is in the work of Eisenstein as early as 1852, but I do
not find it there. Kronecker [55, §1] used the above definition of integrality over x
of an “algebraic function” in his study of function fields, but as far as I have found
he does not explain or motivate it.)

It is easy to see that the elements of the field of rational functions on χ(x, y) that
are integral over x form a ring in the field and that this ring contains Q[x].5

If θ is integral over x, then dividing an equation that demonstrates its integrality,
say θn = a1(x)θn−1 + · · · + an(x), by xnμ for μ larger than the maximum degree of
the ai(x) shows that θ/xμ is integral over 1/x for all such values of μ.6 The order
of θ at x = ∞ is by definition the smallest ν for which θ/xν is integral over 1/x.

Let Θ(xν) denote the elements θ of the field of rational functions on χ(x, y) = 0
that are integral over x and have order at most ν where x = ∞. The goal is to find
a formula for the most general element θ of Θ(xν), and to compare the “number of
zeros” of θ to the “number of arbitrary constants it contains.”

The “number of zeros” of such a θ has a very plausible meaning. By assumption,
χ(x, y) is monic in y, say of degree n in y. Then the values of y for a given x
are the roots of a monic polynomial of degree n, so there are n of them, counted
with multiplicities. For this reason, there are n points on the curve for each x, so x
assumes each value exactly n times on the curve, counted with multiplicities. For
this reason, it is reasonable to take the view that x also assumes the value ∞ exactly
n times—that x has n poles on the curve, counted with multiplicities. Therefore,
xν has n poles of order ν for a total of nν poles. Since θ has the same poles as xν

(except when θ is in the subset of Θ(xν) containing “functions” that have fewer than

4 One could also use the more restrictive, but perhaps more natural, definition in which the
multipliers are required to be in Z[x]. Then an element would be integral over x in the sense
defined above if and only if some integer multiple of it was integral in the more restrictive sense.
Since 1

2 is certainly a “function” without poles, the definition given above is the one that describes
“rational functions without poles” on an algebraic curve.
5 If zn1

1 can be expressed as a sum of multiples of lower powers of z1 in which the multipliers are in
Q[x], and zn2

2 can be expressed as a sum of multiples of lower powers of z2 in which the multipliers
are in Q[x], then every polynomial in z1 and z2 with coefficients in Q[x] can be expressed as a sum
of multiples of zi1z

j
2 with coefficients in Q[x], where i < n1 and j < n2. Therefore, multiplication

by any such polynomial in z1 and z2—in particular multiplication by z1 + z2 and z1z2—can be
represented by the n1n2 × n1n2 matrix of elements of Q[x] that gives its effect on these n1n2
monomials zi1z

j
2 . Therefore, since the polynomial in z1 and z2 is a root of the (monic) characteristic

polynomial of this n1n2 × n1n2 matrix by the Cayley–Hamilton theorem, z1 + z2 and z1z2, and, in
the same way, all polynomials in z1 and z2 with coefficients in Q[x], are integral over x.
6 Note that χ(x, y)/xnλ has the form χ1(1/x, y/xλ), where χ1 is irreducible with integer coeffi-
cients and monic in its second variable, when λ is large enough, and that x and y can be expressed
rationally in terms of u = 1/x and v = y/xλ , so the field of rational functions on χ(x, y) = 0 can
also be regarded as the field of rational functions on the curve χ1(u, v) = 0. To say that an element
of this field is integral over 1/x means, of course, that it is integral over u.
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the maximum number of poles allowed, which is sparse in Θ(xν)), it follows that θ
should be regarded as having nν poles; reversing the above reasoning then leads to
the conclusion that θ assumes each value nν times, including the value zero. In short,
it is plausible to take nν to be the number of zeros of a typical element of Θ(xν).

This analysis of the number of zeros of a typical element of Θ(xν) for large
ν overlooks, however, a phenomenon that is exhibited by the example χ(x, y) =

(x2 + y2)2 − 2(x + y)2. The field of rational functions on this “curve”—the root field
of this χ(x, y)—contains the element x2+y2

x+y , which is a root of X2 − 2 (by definition,
the square of x2 + y2 is 2(x + y)2). Therefore, it is reasonable to let

√
2 denote this

element of the field. Then χ(x, y) = (x2+ y2−
√

2(x+ y))(x2+ y2+
√

2(x+ y)), which
shows that the field is an extension of degree two, not four, of the field of rational
functions in x with coefficients in the number field Q(

√
2). Geometrically, the curve

(x2 + y2)2 − 2(x + y)2 = 0 is quite simple, because the reduction (x2 + y2 −
√

2(x +
y))(x2 + y2 +

√
2(x + y)) = 0 shows that it is a union of two circles, namely, the circle

whose diameter is the line from the origin to (
√

2,
√

2) and the one whose diameter
is the line from the origin to (−

√
2,−

√
2). Geometers traditionally use algebraically

closed ground fields in part to avoid situations like this in which a curve described
by a simple irreducible polynomial becomes a union of two curves when the field of
constants is extended.

The simple constructive solution to this difficulty is not to make the giant leap
to an algebraically closed ground field—the usual choice being the field of complex
numbers, which is not an algebraic but a transcendental extension—but to adjoin
new constants as needed. In the example, the constant

√
2 is not just needed, it

is already present as x2+y2

x+y , and when it is used the curve is reducible, and the
geometric picture of the (“curve” whose field of rational functions is the root field
of (x2 + y2)2 − 2(x + y)2 is a single circle x2 + y2 =

√
2(x + y). This revision of the

picture makes it clear that the number of zeros of x on the curve is two, not four.
Consequently, the number of poles of xν , which is the same as the number of zeros,
is 2ν, not 4ν, and a typical element of Θ(xν) has 2ν zeros, not 4ν.

More generally, one needs to take into consideration the possibility that the root
field of χ(x, y) may contain constants other than the obvious constants in Q. Here a
“constant” is an element of the root field that is a root of a polynomial with integer
coefficients, or, what is the same, an element of Θ(x0). (A polynomial in x with
rational coefficients is equal to a polynomial in 1/x with rational coefficients if
and only if it is a rational number, and a root of a monic polynomial with rational
coefficients is a root of a polynomial with integer coefficients.) For this reason,Θ(x0)
will be called the field of constants of the root field of χ(x, y). (Note that Θ(xν) is
a vector space over Q for all ν, and that Θ(x0) is in fact a field.)

The example then suggests the following definition: The number of zeros of a
typical element of Θ(xν) for large values of ν is n0ν, where n0 is the degree of the
root field of χ as an extension, not of the field Q(x) of rational functions in x with
integer coefficients, but of the field of rational functions of x with coefficients in the
field of constants Θ(x0). When Θ(x0) = Q, n0 is simply the degree of χ in y, but in
the general case it is this degree divided by [Θ(x0) : Q].
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Similarly, when one counts the “number of constants” in a formula for a typical
element of Θ(xν), one thinks of the constants as being in Θ(x0), not Q. Because the
product of an element of Θ(xν) and an element of Θ(xμ) is an element of Θ(xν+μ),
Θ(xν) is a vector space overΘ(x0). The number of constants in a formula for a typical
element of Θ(xν) is quite simply the dimension of Θ(xν) as a vector space over the
field Θ(x0).

In this way, Abel’s conception of the number of integrals to which a sum of
integrals of an algebraic integrand can be reduced leads to the definition of the
genus of the root field of χ(x, y) as the number g for which dimΘ(xν) = n0ν−g+1,
where ν is a large integer, where n0 is the degree n of χ in y divided by the degree c
of the field of constants Θ(x0) as an extension of Q, where Θ(xν) denotes the subset
of the root field containing elements θ that are integral over x and have order at most
ν where x = ∞, and where the dimension is the dimension ofΘ(xν) as a vector space
over the field of constantsΘ(x0). The underlying idea is that an element ofΘ(xν) has
n0ν zeros and contains dimΘ(xν) parameters; variation of all dimΘ(xν) parameters
in such a θ varies its zeros with only dimΘ(xν) − 1 degrees of freedom—one degree
of freedom is lost because multiplication of a function by a constant does not change
its zeros—so the number of constraints g on the motion of the n0ν zeros under an
algebraic variation is determined by the equation dimΘ(xν) − 1 = n0ν − g.

The main theorem will be to show that this genus is intrinsic to the curve
χ(x, y) = 0 in the sense that if the root fields of two polynomials χ(x, y) are
isomorphic—if the two corresponding curves are birationally equivalent—then
the fields have the same genus. Although the proof will be somewhat long, the
underlying reason that the genus is intrinsic stems from the above discussions: It is
the codimension of the subvarieties of CN determined by the algebraic variations of
N points on the curve.

Essay 4.4 Newton’s Polygon

. . . ses [Newton’s] principaux Guides dans ces Recherches [on cubic curves] ont été la Doc-
trine des Séries infinies, qui lui doit presque tout, & l’usage du Parallélogramme analytique,
dont il est l’Inventeur. . . . Il est facheux que Mr. Newton se soit contenté d’étaler ses décou-
vertes sans y joindre les Démonstrations, et qu’il ait préféré le plaisir de se faire admirer
à celui d’instruire. (Newton’s main guides in his researches on cubic curves were the doc-
trine of infinite series, which owes him practically everything, and the use of the analytic
parallelogram, of which he is the inventor. . . . It is annoying that Mr. Newton contented
himself with laying out his discoveries without accompanying them with proofs, and that he
preferred the pleasure of making himself admired to that of instructing.)—Gabriel Cramer
[19, Preface]

The program outlined at the end of the last essay for constructing the genus of an
algebraic curve—or, more precisely, the genus of the root field of a given χ(x, y)—
will be carried out in the following essays using an algorithm of Isaac Newton (shown
in Fig. 4.4) for expanding an algebraic function of x as a power series in fractional
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Fig. 4.4 Newton

powers of x.7 Known as Newton’s polygon, or sometimes Newton’s parallelogram, it
constructs, for a given polynomial equation χ(x, y) = 0, infinite series expansions of
y in fractional powers of x. It involves choices and results in n different expansions,
where n = degy χ.

It will be useful to expand y not only in powers of x but also in powers of x − α
for various algebraic numbers α, something that can be accomplished by the same
method, since setting x1 = x − α and χ1(x1, y) = χ(x − α, y) gives an algebraic
relation between x1 and y that can be used to expand y in (fractional) powers of x1
using Newton’s polygon.

Let χ(x, y) be an irreducible polynomial with integer coefficients that has positive
degree in both x and y and is monic in y, and letα be a given value for x. The objective
is to find infinite series “solutions” y = θ0(x −α)ε0 + θ1(x −α)ε1 + θ2(x −α)ε2 + · · ·

of χ(x, y) = 0 in which the coefficients θi are algebraic numbers and the exponents
ε0 < ε1 < · · · < εk < · · · are an increasing sequence of rational numbers. It will
also be assumed that the exponents increase without bound in the sense that for any
given N one can find a value of k for which εk > N . The meaning of the statement
that such a series “solves” χ(x, y) = 0 is clear, if somewhat nonconstructive: Such

7 Newton’s presentation is quite sketchy. My main source was Walker [82]. See also Newton [71,
vol. 3, p. 50 and p. 360, vol. 4, p. 629], Hensel–Landsberg [46], and Chebotarev [16]. Chebotarev
cites (end of §2) the Hensel–Landsberg book as his basic source, but he examines the Newton
polygon much more fully than that book does, dealing thoroughly, for instance, with the history of
the method. Unfortunately, his article is available only in Russian. Chebotarev advocates calling
it Newton’s “diagram” as Hensel and Landsberg do, saying that the “polygon” was not present in
Newton’s formulation, but the name “Newton’s polygon” now seems firmly established.
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series can be added and multiplied term by term, and x = α+ (x −α) is such a series
(a terminating one), so χ(x, y) represents such a series, the coefficients of which
can be computed in an open-ended way by finding, for any given upper bound, all
terms of the series χ(x, y) in which the exponent is less than that bound. To say that
χ(x, y) = 0 means simply that the result is always zero.

Since y is integral over x, the exponents εi are to be expected to be nonnegative.
Therefore, a knowledge of the terms of the series for y through the term θk(x − α)εk
is all that is needed to compute all terms of χ(x, y) in which the exponents are
less than or equal to εk , because all omitted terms contain (x − α)εk+i for some
i > 0 and εk+i > εk . What is sought, then, are infinite sequences θ0, θ1, θ2, . . . and
0 ≤ ε0 < ε1 < · · · for which all terms of the terminating sequence χ(x, θ0(x−α)ε0 +

θ1(x−α)ε1+· · ·+θk(x−α)εk ) have exponents greater than εk . A constructive solution
of this problem must of course be an algorithm for generating such sequences.
“Newton’s polygon” is such an algorithm.

More specifically, given the initial terms θ0(x−α)ε0+θ1(x−α)ε1+· · ·+θk(x−α)εk
of an infinite series solution y of χ(x, y) = 0 in the sense just described, the algorithm
should give all possible values θk+1(x−α)εk+1 for the next term of the sequence. They
can be completely described in the following way: To avoid fractional exponents, let
m be the least common denominator of ε0, ε1, . . . , εk and let s = (x − α)1/m, so that
the initial terms that are assumed to be known take the form β0 + β1s + · · · + βhsh ,
where h is the integer mεk and where βi is zero unless i is of the form mεj for
some j, in which case βi = θ j . Let the term following βhsh be γsρ+h , so that the
required equation is χ(α + sm, β0 + β1h + · · · + βhsh + γsh+ρ + · · · ) = 0, where ρ
is a positive rational number. To determine the possible values of γ and ρ expand
χ(α + sm, β0 + β1s + · · · + βhsh + tsh), a polynomial in s and t whose coefficients
are algebraic numbers (because they are polynomials in β0, β1, . . . , βh, α, and the
coefficients of χ), as a polynomial in t, Φ0(s) + Φ1(s)t + Φ2(s)t2 + · · · + Φn(s)tn,
whose coefficients Φi(s) are polynomials in s. Again, to avoid fractional exponents,
let ρ be written ρ = σ

τ , where σ and τ are positive integers, and let s1 = s1/τ , so that
the required identity becomes χ(α+ smτ

1 , β0+ β1s
τ
1 + · · ·+ βhs

hτ
1 +γshτ+σ1 + · · · ) = 0,

which is to say

Φ0(sτ1 ) + Φ1(sτ1 )(γs
σ
1 + · · · ) + Φ2(sτ1 )(γs

σ
1 + · · · )2 + · · · + Φn(sτ1 )(γs

σ
1 + · · · )n = 0.

The simple idea that underlies Newton’s polygon is the observation that this infinite
series in s1 with algebraic number coefficients, which is a sum of n + 1 such series,
can be identically zero only if all terms in the sum cancel, and, in particular, only if
the lowest-order terms of these series cancel. If the polynomial Φi(s) is nonzero, it
has the form ζis ji + · · · , where ζi � 0 and the omitted terms all have degree greater
than ji . With this notation, the term of Φi(sτ1 )(γs

σ
1 + · · · )i of lowest degree, when

Φi(s) � 0, is ζiγisσi+τ ji
1 . The required cancellation dictates that the positive integers

σ and τ must have the property that σi + τ ji assumes its minimum value for at
least two different pairs (i, ji) (note that these pairs are determined by χ, m, and
β0 + β1s + · · · + βhsh). These conditions limit the pairs (σ, τ) to a finite number of
possibilities—the geometrical picture is the one described below—and even gives
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strong information about the coefficient γ of the next term, namely, that it is a nonzero
root of the polynomial

∑
ζiγ

i , where the sum is extended over just those values of i
for which Φi(s) � 0 and σi + τ ji assumes its minimum value.

Some term of some series Φi(sτ1 )(γs
τ
1 + · · · )i for i > 0 must cancel the first term

ζ0s
τ j0
1 of Φ0(sτ1 ), so τ j0 ≥ σi + τ ji for some i > 0. Since σ and τ are both positive,

j0 must be greater than ji for at least one i > 0. Therefore, the above discussion
shows that the series β0 + β1s + · · · + βhsh can be extended to be an infinite series
solution y of χ(x, y) = 0 when x = α + sm only if the polynomial in two variables
χ(α + sm, β0 + β1s + · · · + βhsh + tsh) = Φ0(s) + Φ1(s)t + Φ2(s)t2 + · · · + Φn(s)tn

has the property that s divides Φ0(s) more times than it divides Φi(s) for at least one
i > 0. Otherwise stated, the term or terms of this polynomial of lowest degree in s
must all contain t.

As will be shown, these necessary conditions on the constants that describe the
next term when a certain number of terms are known permit one to construct all
possible solutions y of χ(x, y) = 0 as infinite series of fractional powers of x − α.

A truncated solution y of χ(x, y) = 0 at x = α will by definition consist of
(1) an algebraic number field A containing α, (2) a positive integer m, and (3)
a finite sequence β0, β1, . . . , βh in A with the property that the term or terms of
χ(α+ sm, β0 + β1s+ · · ·+ βhsh + tsh) of lowest degree in s all contain t. In addition,
it will be assumed that the result Φ0(s) of setting t = 0 in this polynomial is not
zero; otherwise, y = β0 + β1(x − α)1/m + · · · + βh(x − α)h/m is an actual solution
of χ(x, y) = 0 and there is no need to use higher powers of x − α.

Newton’s Polygon

Input: A truncated solution y of χ(x, y) = 0 at x = α, as that term was just defined.

Algorithm: As above, let χ(α + sm, β0 + β1s + · · · + βhsh + tsh) be written in the
formΦ0(s)+Φ1(s)t +Φ2(s)t2 + · · ·+Φn(s)tn of a polynomial in t whose coefficients
Φi(s) are polynomials in s with coefficients in the field A specified by the input.
Consider the set of pairs (i, ji) of integers, where i is in the range 0 ≤ i ≤ n, where
Φi(s) � 0, and where ji is the number of times that s divides Φi(s). By assumption,
j0 is defined and greater than at least one other ji . The segments of the Newton
polygon corresponding to this input are the line segments that join two points (i, ji),
say those corresponding to the indices i1 and i2 > i1, in such a way that (1) the
segment has negative slope, so it is described by the equation σi + τ j = k where
σ = ji1 − ji2 and τ = i2 − i1 are both positive and where k is the common value of
σi+ τ j for these two indices, (2) σi+ τ ji ≥ k for all indices i for which ji is defined,
and (3) σi + τ ji > k whenever ji is defined and i < i1 or i > i2. With each such
segment, associate the polynomial

η(c) =
∑

σi+τ ji=k

ζici

with coefficients in A, where the sum is over just those values of i for which (i, ji)
lies on the segment, of which there are at least two, and where ζi is the coefficient of
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s ji in Φi(s). Extend the input field A, if necessary, to split all polynomials η(c) that
result in this way from segments of the polygon.

(Geometrically, the segments join to form a polygonal path that joins the point
(0, j0) to the first point, call it (I, J), of the form (i, ji) at which ji assumes its
minimum value. This path is determined by the fact that it joins points of the form
(i, ji) in such a way that none of these points are in the interior of the closed polygon
formed by it and the segments from (0, j0) to (0, J) and from (0, J) to (I, J). See
Fig. 4.5.)

Output: A truncated solution of χ(x, y) = 0 for x = α for each nonzero root γ of
each polynomial η(c) in the extended field constructed by the algorithm, namely, the
truncated solution

(1)
y = β0 + β1(x − α)1/m + β2(x − α)2/m

+ · · · + βh(x − α)h/m + γ(x − α)(hτ+σ)/τm

in which one term with coefficient γ and exponent hτ+σ
τm =

h+ρ
m is added to the

input truncated solution where ρ = σ
τ . In other words, the output truncated solution

corresponding to γ consists of the (possibly) extended field A constructed by the
algorithm, the positive integer τm, and the sequence β′0, β

′
1, β

′
2, . . . , β

′
hτ+σ

in which
β′iτ = βi for i = 0, 1, . . . , h and β′

hτ+σ
= γ but all other coefficients β′i are zero.

That each output (1) is a truncated solution—unless, of course, it is an actual
solution—can be proved as follows: Set s = sτ1 and t = sσ1 (γ + t1) in the definition
of Φ0(s),Φ1(s), . . . ,Φn(s) to put the new equation in the form

(0,10)

(1,9)

(2,4)

(3,3)

(4,2)
(5,2)

(7,3)

Fig. 4.5 When there are seven points (i, ji ) = (0, 10), (1, 9), (2, 4), (3, 3), (4, 2), (5, 2), (7, 3),
Newton’s polygon has two segments. They join (0, 10) and (4, 2) via (2, 4).
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(2)
χ(α + sτm1 , β0 + β1s

τ
J + β2s2τ

1 + · · · + βhshτ1 + γshτ+σ1 + t1shτ+σ1 )

=

n∑

i=0
Φi(sτ1 )(s

σ
1 )

i(γ + t1)i

By the choice of σ and τ, no term on the right contains s1 to a power less than
the minimum value of σi + τ ji , call it k, and the terms that contain s1 to the
power k exactly are sk1η(γ + t1) by the definition of η. Since η(γ + t1) is a nonzero
polynomial (its degree in t1 is the largest value of i for which the point (i, ji) lies
on the corresponding segment of the Newton polygon) with constant term zero (by
the choice of γ), (2) is a polynomial in which the terms of lowest degree k in s1 all
contain t1, as was to be shown.

The ambiguity of a truncated solution is, in the notation used above, the least
index i for which ji attains its minimum. Otherwise stated, it is the i-coordinate I
of the endpoint (I, J) of the Newton polygon other than (0, j0). A truncated solution
will be called unambiguous if its ambiguity is 1. In this case, the polygon consists
of a single line segment, and η(c) is a polynomial of degree 1 whose single root is
nonzero, so the algorithm produces a single output; moreover, the algorithm does
not increase m, and it results in no extension of A because the root of η(c) is already
in A.

The ambiguity of an output solution is the multiplicity of its γ as a root of its
η(c), as follows from the above observation that the terms of lowest degree in s1 are
sk1η(γ + t1), because the multiplicity of γ as a root of η(c) is the number of times t1
divides η(γ + t1). Thus, among the nonzero terms εsp1 t

q
1 of (2) in which p assumes

its minimum value k, the one in which q has its least value is the one in which q is
the multiplicity of γ as a root of its η(c).

In particular, if the input truncated solution is unambiguous, so is the output
truncated solution. Thus, if it begins with an unambiguous truncated solution, the
algorithm constructs an infinite series solution (which may in rare cases be an actual
terminating solution) with coefficients in the same A. In short, the construction
of infinite series solutions is reduced by the Newton’s polygon algorithm to the
construction of unambiguous truncated solutions.
Theorem 1 Construct n distinct infinite series solutions y of χ(x, y) = 0 at x = α.

As above, α is a given algebraic number and χ(x, y) is a given polynomial with
integer coefficients that is irreducible, contains both x and y, and is monic of degree
n in y. For the reason just stated, an infinite series solution can be regarded as having
been constructed when an unambiguous truncated solution has been constructed.
The proof of the theorem will follow an example:
Example Let χ(x, y) = y3 − xy + x3 (the curve χ = 0 is the folium of Descartes—
see Fig 4.6 in Essay 4.5) and let α = 0. If one begins with the truncated solution
m = 1, y = 0, one begins with χ(0 + s, 0 + t) = s3 − st + t3, and Newton’s polygon
joins the points (0, 3) and (3, 0) via the point (1, 1). The two segments of the polygon
are described by the equations 2i + j = 3 and i + 2 j = 3.
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The first segment gives just one output truncated solution y = x2, because m = 1,
h = 0, σ = 2, τ = 1 and because the polynomial η(c) = 1 − c in this case has just
one nonzero root 1. It is a simple root, so this output solution is unambiguous.

The second segment gives two output truncated solutions y = γ
√
x (because

m = 1, h = 0, σ = 1, τ = 2), where γ is a nonzero root of η(c) = −c + c3. Thus
γ = ±1, and the output consists of two truncated solutions y = ±

√
x. Both are

unambiguous.
Thus, Newton’s polygon constructs three unambiguous truncated solutions and

therefore constructs the three required infinite series solutions of y3 − xy + x3 = 0
for x = 0. These infinite series solutions can be found by repeated application of the
Newton polygon algorithm, but the first few terms can be found more easily by the
following method.

The truncated solution y = ±
√
x. calls for the computation of χ(s2,±s + st) =

(s2)3−s2(±s+st)+(±s+st)3 = s3(s3−(±1+t)+(±1+t)3) = s3(s3+2t±3t2+t3). The
term 2t shows that this truncated solution is unambiguous. The continuation of the
truncated solution y = ±

√
x+· · · can be found using the equation s3+2t±3t2+t3 = 0

to express t as a power series in s =
√
x and substituting the result in y = ±s + st.

Consider first the case in which the sign is plus. The relation s3+2t+3t2+ t3 = 0 can
be written t = − 1

2 s
3 + t2

(
− 3

2 −
t
2
)

to find that t = − 1
2 s

3 +
(
− 1

2 s
3 + t2

(
− 3

2 −
t
2
) )2 (

−
3
2 −

t
2
)
= − 1

2 s
3 +

( 1
4 s

6 + 3
2 s

3t2 + · · ·
) (
− 3

2 −
t
2
)
= − 1

2 s
3 − 3

8 s
6 − 9

4 s
3t2 − 1

8 s
6t + · · · =

− 1
2 s

3 − 3
8 s

6 − 9
4 · 1

4 · s9 + 1
8 · 1

2 s
9 + · · · = − 1

2 s
3 − 3

8 s
6 − 1

2 s
9 + · · · , where the omitted

terms all contain s12, from which y = s + st = s − 1
2 s

4 − 3
8 s

7 − 1
2 s

10 + · · · . When
s3 + 2t + 3t2 + t3 = 0 is changed to s3 + 2t − 3t2 + t3 = 0, the corresponding solution
is found by changing s to −s and t to −t. In summary, the second segment i + 2 j = 3
corresponds to two infinite series solutions of y3 − xy + x3 = 0; they begin

y = ±
√
x −

1
2
x2 ∓

3
8
x3√x −

1
2
x5 + · · ·

The infinite series solution y = x2 + · · · corresponding to the first segment
2i + j = 3 calls for computing the polynomial χ(s, s2 + s2t) = s3 − s3(1+ t)+ s6(1+
t)3 = s3(−t + s3(1 + t)3). The term −t shows that the truncated solution y = x2 is
unambiguous. The expansion of y in powers of x can be found by using the relation
−t + s3(1 + t)3 = 0 to expand t in powers of s = x and substituting the result in
y = s2 + s2t. Now, t = s3(1 + t)3 implies

t = s3(1 + s3(1 + t)3)3 = s3(1 + 3s3(1 + t)3 + 3s6(1 + t)6 + s9(1 + t)9)

= s3 + 3s6(1 + t)3 + 3s9(1 + t)6 + s12(1 + t)9

= s3 + 3s6 + 9s6t + 9s6t2 + · · · + 3s9 + 18s9t + · · · + s12 + · · ·

= s3 + 3s6 + 12s9 + 28s12 + · · · ,

so

y = x2 + x5 + 3x8 + 12x11 + 28x14 + · · ·
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is the beginning of this infinite series solution of y3 − xy + x3 = 0.
(Note that the sum of the three series is zero, at least up to the terms in x5, in

accord with the fact that the coefficient of y2 in y3 − xy + x3 is zero.)

Proof of Theorem 1 A truncated solution of χ(x, y) at x = α in which m = 1 and
h = 0 is an algebraic number β0 for which the terms of χ(α + s, β0 + t) of lowest
degree in s all contain t; since χ(α + s, β0 + t) contains the term tn with no s at
all, y = β0 is a truncated solution if and only if χ(α + s, β0) does not contain a
term without s or, to put it more simply, if and only if χ(α, β0) = 0. In short, these
truncated solutions y = β0 are the roots of χ(α, y).

The ambiguity of such a truncated solution y = β0 of χ(x, y) at x = α is
equal to the multiplicity of β0 as a root of χ(α, y), because the ambiguity of the
truncated solution is by definition the least index i for which Φi(0) � 0, where
χ(α + s, β0 + t) = Φ0(s) + Φ1(s)t + Φ2(s)t2 + · · · + tn, which is the multiplicity of
β0 as a root of χ(α, y). In particular, if all roots of χ(α, y) are simple, the Newton
polygon algorithm applied to any one of the n unambiguous truncated solutions
y = β0 generates an infinite series solution y of χ(x, y) = 0 at x = α, which proves
the theorem in this case. In the general case, one can apply the following algorithm:

Input: A set of truncated solutions of χ(x, y) = 0 at x = α.

Algorithm: While the set contains a truncated solution whose ambiguity is greater
than 1, let the Newton polygon algorithm be used to replace one such truncated
solution with one or more longer truncated solutions.

The theorem will be proved by proving that this algorithm terminates—that is,
it reaches a stage at which all truncated solutions in the set that has been found
are unambiguous—and by proving that each step leaves the sum of the ambiguities
unchanged, so that if the algorithm starts with the truncated solutions y = β0, the
sum of whose ambiguities is degy χ(α, y) = n (because this sum is the sum of the
multiplicities of the roots β0 of χ(α, y)), it terminates with a set of n unambiguous
truncated solutions, which then imply n infinite series solutions.

That the sum of the ambiguities does not change can be seen as follows: Let the
notation be as in the description of Newton’s polygon. The ambiguity of the input
truncated solution is the least index I for which ji attains its minimum value J.
Since the segments of the Newton polygon join (0, j0) to (I, J) and since the number
of nonzero roots—counted with multiplicities—of any η(c) is its degree minus the
number of times c divides it, which is the difference i2 − i1 of the i-coordinates of
the endpoints of the corresponding segment, the ambiguity of the input truncated
solution is the total number of nonzero roots, counted with multiplicities, of the
polynomials η(c) corresponding to segments of the polygon. Since, as was noted
above, the multiplicity of γ as a root of η(c) is the ambiguity of the output truncated
solution corresponding to γ, the sum of the ambiguities of the output solutions is the
ambiguity of the input solution, as was to be shown.

Each step of the above algorithm increases the number of truncated solutions
in the list unless the input truncated solution, which has ambiguity greater than 1
by assumption, yields a single output truncated solution, which means that η(c) is
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a constant times (c − γ)μ for some nonzero algebraic number γ, where μ is the
ambiguity of the input solution. It will be shown that the number of steps of this
type is bounded above, so that repeated application of the Newton polygon algorithm
eventually must increase the number of truncated solutions in the set. Since the total
of their ambiguities is n at each step, it will follow that the process must terminate
with n unambiguous truncated solutions, and the theorem will be proved.

Suppose, therefore, that the (ambiguous) input truncated solution is one that
produces a single output truncated solution. It is to be shown that iteration of the
algorithm eventually produces more than one output truncated solution. Let μ be the
ambiguity of the input solution, which is therefore the ambiguity of each subsequent
output solution as long as there is only one of them. As was just noted, when there is
only one output truncated solution, η(c) is a constant times (c−γ)μ for some algebraic
number γ, which implies that Newton’s polygon consists of a single segment that
passes through pairs (i, ji) in which i has all values from 0 to μ because η(c) contains
terms in which c has all of these exponents. The single segment of the polygon is
( j0 − jμ)i + μ j = k, where k = μ j0. Then ( j0 − jμ)1 + μ j1 = μ j0, which shows that
j0 − j1 is divisible by μ. Therefore, the segment can also be written σi + j = j0,
where σ =

j0−jμ
μ ; that is, τ can be taken to be 1, so that s1 = s. Then (2) is divisible

at least j0 times by s (because k = j0), whereas χ(α+ sm, β0 + β1s+ · · ·+ γsh + tsh)
is, by the definition of jμ, divisible exactly jμ times by s. In other words, adding the
next term γsh+σ to the truncated solution increases the number of times s divides
χ(α + sm, β0 + β1s + · · · + βhsh + tsh) from jμ to at least j0 = jμ + σμ.

Thus, if ν successive steps repeat the phenomenon of producing a single output
truncated solution, it produces a truncated solution y = β0 + · · · + βhsh + γ1sh+σ1 +

γ2sh+σ1+σ2+· · ·+γvsh+Σ, where Σ = σ1+σ2+· · ·+σν , for which χ(α+sm, y+tsh+Σ)
is divisible jμ + μΣ times by s, say

χ(α + sm, β0 + β1s + · · · + βhsh + · · · + γνsh+Σ + tsh+Σ) = s jμ+μΣq(s, t).

Differentiation with respect to t gives

sh+Σ
∂ χ

∂y
(α + sm, β0 + β1s + · · +βhsh + · · · + γvsh+Σ + tsh+Σ)

= s jμ+μΣ
∂q
∂t

(s, t).

On the other hand, elimination of y between χ(x, y) and ∂χ
∂y (x, y) (see Essay 1.3)

gives, because the irreducibility of χ implies that these polynomials are relatively
prime, an equation of the form

A(x, y)χ(x, y) + B(x, y)
∂ χ

∂y
(x, y) = D(x),

in which A(x, y), B(x, y), and D(x) are polynomials with integer coefficients. Sub-
stitution of x = α + sm and y = β0 + β1s + · · · + βhsh + · · · + γνsh+Σ + tsh+Σ in
A(x, y)χ(x, y) + B(x, y) ∂ χ

∂ y (x, y) = D(x) gives D(α + sm) on the right and on the
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left gives a polynomial in s and t that is divisible at least ( jμ + μΣ) − (h + Σ) times
by s. Thus jμ + (μ − 1)Σ − h is bounded above by the number of times s divides
D(α + sm). Since μ > 1, this implies an upper bound on Σ; but Σ ≥ v, because Σ is
a sum of ν terms, each of which is at least 1, so ν is bounded above, and the proof
of Theorem 1 is complete.8 �	

Theorem 2 Every truncated solution of χ(x, y) = 0 for x = α is a truncation of one
of the infinite series solutions constructed by Theorem 1.

Proof As was shown prior to the statement of the Newton polygon algorithm, if
an infinite series solution is truncated, and the algorithm is applied to the result,
one of the outputs is the truncated series with the next nonzero term after the
truncation added. Therefore, any truncated solution is among the outputs if one starts
with the truncated solutions y = β0 in which χ(α, β0) = 0 and repeatedly applies
the algorithm. Since these are the truncated solutions constructed by Theorem 1,
Theorem 2 follows. �	

Essay 4.5 Determination of the Genus

On doit donner au problème une forme telle qu’il soit toujours possible de le résoudre, ce
qu’on peut toujours faire d’un problème quelquonque. (One should give the problem a form
in which it will always be possible to solve it, which can always be done for any problem
whatever.)—Niels Henrik Abel [6, p. 217]

I confess that the meaning of this dictum of Abel’s is not altogether clear to me.
Certainly it sounds like good advice, if one can understand what it means. My best
guess is that he means something like what Kronecker meant when he said that one
should require of one’s definitions that one be able to determine by a finite calculation
whether the definition is fulfilled in any given case. In the case of the determination
of the genus of an algebraic field of transcendence degree one—the genus of a given
algebraic curve—I believe both men would focus on constructive techniques like the
ones given in this essay.

The genus was described in Essay 4.3 in terms of the dimensions of the spaces
Θ(xν) of elements of the root field of χ(x, y) (as always, an irreducible polynomial
with integer coefficients that contains both x and y and is monic in y) that are integral
over x and become integral over 1

x when they are divided by xν These dimensions
can be determined easily once one constructs what Dedekind and Weber [22] called
a normal basis of the root field.

Theorem For a given χ(x, y), construct a subset y1, y2, . . . , yn of its root field with
the property that y1, y2, . . . , yn is a basis of the field over the field of rational functions

8 Walker’s proof of this point [82, p. 102] is not constructive, because he jumps from the observation
that the ambiguity can never increase and can never go below 1 to the conclusion that he can find a
step beyond which the ambiguity never decreases.
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in x in the sense that each element w of the root field has a unique representation in
the form

w = φ1(x)y1 + φ2(x)y2 + · · · + φn(x)yn,(1)

where the coefficients φi(x) are rational functions of x, and is an integral basis in the
sense that w is integral over x if and only if each coefficient φi(x) in its representation
(1) is a polynomial with rational coefficients, and further is a normal basis in the
sense that w is in Θ(xν) if and only if each coefficient φi(x) in its representation (1)
is not only a polynomial but also satisfies deg φi + λi ≤ ν, where λi is the order of
yi at x = ∞ for each i, that is, the least integer for which yi is in Θ(xλi ).

Proof Dedekind and Weber gave what appears to be an algorithm for constructing
an integral basis (their §3), but their construction relies on the assumption that for a
given constant α one can either find an element y that is integral over x and remains
integral over x when it is divided by x −α or prove that there is no such y. The proof
below uses, in essence, the method of Newton’s polygon to justify this assumption
and then constructs an integral basis using a method similar to theirs. However, they
also assume that a polynomial with rational coefficients can be written as a product
of linear factors—they assume complex number coefficients—and the proof below
is a modified version of theirs that adjoins only the constants that are needed. The
first step will be to find a common denominator of the elements integral over x.

The operation of multiplication by an element of the field can be described by
the n × n matrix of rational functions of x that describes it with respect to the basis
1, y, . . . , yn−1 of the root field as a vector space over the field of rational functions in
x. In other words, an element z of the root field of χ(x, y) can be described by the
matrix whose entry mi j in the ith row of the jth column is the rational function of x
that is the coefficient of y j−1 in the representation of zyi−1 with respect to the basis
1, y, . . . , yn−1. The trace

∑n
i=1 mii of the matrix obtained in this way is the trace of

z with respect to x.

Lemma If an element of the root field of χ(x, y) is integral over x, its trace is a
polynomial in x with rational coefficients.

Proof Let ψ = p(x, y)/q(x) be integral over x. Then, by the definition of integrality,
there is a relation of the form F(ψ) = 0, in which F is a monic polynomial with
coefficients in Q[x]. Since F can be written as a product of irreducible, monic
polynomials with coefficients in Q[x], ψ must be a root of an irreducible monic
polynomial with coefficients in Q[x]; call it F1.

By the proposition of Essay 2.3, the root field of χ(x, y), because it contains ψ and
is generated over Q(x) by y, can be described by two adjunction relations f1(ψ) = 0
and f2(y, ψ) = 0, where f1 and f2 have coefficients that are rational functions of x,
f1 is monic of degree ν1, say, and is irreducible, while f2 is monic of degree ν2, say,
in y and is irreducible as a polynomial in y with coefficients in the field of rational
functions in x with ψ adjoined. Because f1 and F1 both have ψ as a root, because
both are monic with coefficients that are rational functions of x, and because both
are irreducible over the field of rational functions in x (F1 is irreducible in this sense
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by virtue of Gauss’s lemma), f1 = F1. In particular, the coefficients of f1 are not just
rational functions of x, they are polynomials in x with rational coefficients.

The trace of ψ is by definition the trace of the matrix that represents multiplication
by ψ relative to the basis 1, y, . . . , yn−1 of the root field over the field of rational
functions in x. Therefore (because tr(AB) = tr(BA), so tr(M−1AM) = tr(AMM−1) =
tr(A)), it is the trace of the matrix that represents multiplication by ψ relative to any
basis. In particular, it is the trace of the matrix that represents multiplication by ψ
relative to the basis ψiy j , 0 ≤ i < ν1, 0 ≤ j < ν2. When the elements of this basis
are suitably ordered, the matrix that represents multiplication by ψ becomes a ν2×ν2
matrix of ν1 × ν1 blocks (note that ν1ν2 = n) in which the blocks off the diagonal are
all 0 and the blocks on the diagonal are all the same matrix: Its first ν1 − 1 rows are
the last ν1 − 1 rows of Iν1 , and its last row contains the negatives of the coefficients
(after the first) of the polynomial f1 = F1, listed in reverse order. In particular, its
entries are all in Q[x], so its trace is in Q[x]. (In fact, its trace—and therefore the
trace of ψ—is simply −ν2 times the second coefficient of F1.) �	

The matrix, call it S, whose entry in the ith row of the jth column is the trace
of yi+j−2, is a matrix of polynomials in x with integer coefficients. Therefore, its
determinant, call it D(x), is a polynomial in x with integer coefficients. The lemma
implies that D(x) is a common denominator of the elements of the root field integral
over x. In fact, if p(x, y)/q(x) is integral over x, where p(x, y) and q(x) are polyno-
mials with rational coefficients and q(x) � 0, and if it is in lowest terms, then not
only does q(x) divide D(x), but so does q(x)2. This can be proved as follows:

The matrix S of which D(x) is the determinant represents the bilinear form “the
trace of the product” on the root field of χ(x, y) relative to the basis 1, y, . . . , yn−1.
This observation implies that D(x) � 0, because if D(x) were zero, there would be a
solution v(x) of S · v(x) = 0 that was a nonzero column matrix whose entries vi(x)
were rational functions of x, and this would imply trx(ŵv̂) = 0 for all elements ŵ of
the root field, where v̂ =

∑n
i=1 vi(x)y

i−1, contrary to the fact that trx(ŵv̂) = n when
ŵ is the reciprocal of v̂.

If p(x, y)/q(x) is integral over x and in lowest terms in the sense that q(x) and the
coefficients pi(x) of p(x, y) = p0(x) + p1(x)y + · · · + pn−1(x)yn−1 have no common
divisor of positive degree, and if one of the coefficients pi(x) is nonzero, then a new
basis of integral elements is obtained by replacing yi with p(x, y)/q(x) in the basis
1, y, . . . , yn−1 The entries of the matrix that represents the bilinear form “the trace of
the product” relative to this new basis are polynomials in x with rational coefficients,
because they are traces of elements integral over x. Therefore, its determinant is
a polynomial in x. On the other hand, its determinant is

( pi (x)
q(x)

)2D(x), because the
matrix that makes the transition from one basis to the other is the identity matrix with
the (i + 1)st row replaced by a new row consisting of the coefficients of p(x, y)/q(x)
and which therefore has pi (x)

q(x) in its (i+1)st column, so both the transition matrix and
its transpose have determinant pi (x)

q(x) . Therefore, q(x)2 divides pi(x)2D(x) for each i
(trivially so when pi(x) = 0). Thus, q(x)2 divides the greatest common divisor of
these polynomials pi(x)2D(x), which is the greatest common divisor of the pi(x)2

times D(x). Since p(x, y)/q(x) is in lowest terms by assumption, q(x)2 is relatively
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prime to the greatest common divisor of the pi(x)2, so q(x)2 divides D(x), as was to
be shown.

Since every element p(x, y)/q(x) of the root field can be written in the form
P(x, y) + r(x,y)

q(x) , where P(x, y) is a polynomial in x and y and where r(x,y)
q(x) is a

proper fraction in the sense that degx r < deg q (and, as it is natural to assume,
degy r < n = degy χ), in order to determine which elements p(x, y)/q(x) are
integral over x it will suffice to determine which elements r(x, y)/q(x) are integral
over x, because polynomials P(x, y) are always integral over x. But since r(x, y)/q(x)
for a given q(x) contains just n · deg q unknown rational coefficients, the following
proposition reduces this determination to the solution of a system of homogeneous
linear equations.

Proposition A rational function p(x, y)/q(x) with rational coefficients is integral
over x if and only if for each algebraic number α that is a root of q(x) and for
each infinite series solution y of χ(x, y) = 0 in fractional powers of x − α given by
Newton’s polygon, all terms of the power series in s that results from substituting
the series for y in p(x, y) and then substituting α + sm for x, where m clears the
denominators in the functional exponents, are divisible by s at least as many times
as the polynomial q(α + sm) is.

Loosely speaking, the condition is that each expression of p(x, y)/q(x) obtained
by using an expansion of y as a power series in fractional powers of x−α, where α is
a root of q(x), and writing the reciprocal of q(x) as a negative power of x − α times
a power series in x − α with nonzero constant term, contains nonnegative exponents
exclusively; in short, p(x, y)/q(x) has no poles where x is finite.

Proof Let Ψ(x, p) = pv + c1(x)pv−1 + · · · + cv(x) be the irreducible, monic polyno-
mial9 whose coefficients ci(x) are rational functions of x of which p(x, y)—regarded
as an element of the root field—is a root. Because p(x, y) is integral over x (it is
a polynomial in y with coefficients in Q[x]), the coefficients ci(x) are polynomials
in x with rational coefficients. To say that p(x, y)/q(x) is integral over x means
that ci(x) is divisible by q(x)i for each i. It is to be shown that this is true if and
only if p(α + sm, β0 + β1s + β2s2 + · · · ) ≡ 0 mod se for all infinite series solu-
tions y = β0 + β1s + β2s2 + · · · of χ(x, y) = 0, where α is a root of q(x), where
s = (x − α)1/m, and where e is the number of times that s divides q(α + sm).

By definition, to say that Ψ(x, p) = 0, where x and p are regarded as elements of
the root field, means that Ψ(x, p(x, y)) ≡ 0 mod χ(x, y). In other words, it means that
Ψ(x, p(x, y)) = q(x, y)χ(x, y) for some polynomial q(x, y) with rational coefficients.
Since χ(α + sm, β0 + β1s + · · · + βhsh) ≡ 0 mod sh+1 for each h, it follows that
Ψ(α + sm, p(α + sm, β0 + β1s + · · · + βhsh)) ≡ 0 mod sh+1 for each h. Therefore,
p(α + (x − α), β0 + β1(x − α)1/m + · · · + βh(x − α)h/m), when it is regarded as a
polynomial in (x − α)1/m and truncated by omitting all terms in which the exponent
is larger than h/m, is a truncated solution of Ψ(x, p) = 0 for x = α. By Theorem 2

9 This polynomial can be found because Ψ(x, p) is a factor of the characteristic polynomial of the
matrix that represents multiplication by p(x, y) relative to the basis 1, y, . . ., yn−1.
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of the last essay, it is therefore a truncation of one of the infinite series solutions p of
Ψ(x, p) = 0 for x = α found by the construction10 of Theorem 1 of the last essay. It is
to be shown, therefore, that q(x)i divides ci(x) for each i if and only if for each root
α of q(x) in an algebraic number field, every infinite series solution p of Ψ(x, p) = 0
in fractional powers of x − α is divisible by the highest power of x − α that divides
q(x) = q(α + (x − α)).

Suppose first that q(x)i divides ci(x) for each i. For a given root α of q(x) whose
multiplicity is e, (x − α)ei then divides ci(x). The initial term of any infinite series
solution p ofΨ(x, p) = 0 in fractional powers of x−α can be found using the method
by which the Newton’s polygon algorithm finds the next term of a truncated series
solution. Specifically, the equation Ψ(α + s, p) = cν(α + s) + cν−1(α + s)p + · · · +

c1(α + s)pν−1 + pν = 0 shows, because the terms of lowest degree cancel, that the
lowest order term of a series expansion p = γsσ/τ + · · · corresponds to a segment
of the “Newton polygon” dictated by the points (i, ji), where ji for i = 0, 1, . . . , ν is
the number of times s = x − α divides cν−i(α + s), except that ji is undefined when
cν−i(x) = 0. Since (x − α)e(ν−i) divides cν−i(x), ji is at least e(ν − i) whenever it is
defined. In particular, the minimum value 0 of ji occurs only for i = ν. The rightmost
segment of the polygon, call it σi + τ j = k, therefore has (ν, 0) as its right end; its
other end is at a point (i, ji) for which σi + τ ji = k = σν + τ · 0. For this index i,
both ji = σ

τ (ν − i) and ji ≥ e(ν − i) hold. Therefore, for this segment of the polygon,
σ
τ ≥ e. All infinite series solutions p = γ(x − α)σ/τ + · · · that correspond to this
segment of the polygon are therefore divisible by (x − α)e. As is easily shown, the
ratio σ

τ is smallest for this rightmost segment,11 so all solutions p = γ(x−α)σ/τ+ · · ·

are divisible by (x − α)e, as was to be shown.

10 Strictly speaking, this construction does not apply toΨ(x, p), because its coefficients are rational
and the description of the Newton polygon algorithm in Essay 4.4 assumes that the coefficients
of the given equation χ(x, y) = 0 are integers, but the algorithm applies without modification to
the case of rational coefficients. Moreover, χ(x, y) was assumed in Essay 4.4 to be irreducible.
The series expansions of a reducible polynomial can be found by finding the expansions of its
irreducible factors.
11 What is to be shown is that the ratio σ/τ for any segment of the polygon is larger than the
ratio σ/τ for the segment to its right. Since σ/τ is minus the slope of the segment, this is the
statement that the slopes of the segments increase as one moves from left to right, which is evident.
In actual inequalities, the three endpoints of two successive segments of Newton’s polygon, call
them (r, jr ), (s, js ), (t, jt ), satisfy

σr + τ jr = σs + τ js < σt + τ jt,

σ′r + τ′ jr > σ′s + τ′ js = σ′t + τ′ jt,

where σ′ and τ′ pertain to the segment from (s, js ) to (t, jt ), from which

τ(jr − js ) = σ(s − r) and τ′(jr − js ) > σ′(s − r)

follow. Therefore

σ

τ
=

jr − js

s − r
>

σ′

τ′
,

as was to be shown.
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Conversely, if q(x)i fails to divide ci(x) for some i, then (x − α)ei fails to divide
ci(x) for some root α of multiplicity e of q(x) and some index i. For such an α the
points (i, ji) of the polygon arising fromΨ(α+s, p) = cν(α+s)+cν−1(α+s)p+. . .+pν

include at least one for which e(ν − i) > ji . If ji = 0 for some i < ν, then Ψ(α, p)
contains a term of degree less than ν in p, so this polynomial in p has a nonzero root,
call it β0, and there is a solution p = β0 + · · · of Ψ(α, p) = 0 that is not divisible
by s = x − α, and therefore not divisible by (x − α)e. Otherwise, as before, the
rightmost segment of the polygon, call it σi + τ j = k, passes through (ν, 0) and at
least one other point of the form (i, ji). At least one point (i, ji) lies below the line
j = e(ν − i) of slope −e passing through (ν, 0); since all points (i, ji) lie on or above
any segment of the polygon, the rightmost segment j = σ

τ (ν − i) must lie under the
line j = e(ν − i) for i < ν. Thus, σ

τ < e, so no solution p = γ(x − α)σ/τ + · · ·

arising from this segment of the polygon is divisible by (x − α)e, and the proof of
the proposition is complete. �	

Thus, in a proper fraction r(x, y)/q(x) that is integral over x, the coefficients of
r(x, y) satisfy a homogeneous system of linear equations, so the most general such
fraction can be written as a linear combination of a finite number of them, say of
ξ1, ξ2, . . . , ξk , with rational coefficients. When these elements ξ1, ξ2, . . . , ξk together
with 1, y, y2, . . . , yn−1 are taken as input to the following algorithm of Kronecker [56,
§7], the algorithm produces an integral basis of the root field of χ(x, y) as described
in the statement of the theorem.

Construction of an Integral Basis

Input: Elements y1, y2, . . . , yl of the root field of χ(x, y) integral over x that span
the elements integral over x in the sense that each element integral over x can be
expressed in the form

∑l
i=1 φi(x)yi where the coefficients φi(x) are polynomials in

x with rational coefficients. (At the outset, l = n + k, and the coefficients of the ξi
can be taken to be rational numbers.)

Algorithm: As long as the number l of elements in the spanning set is greater than n,
carry out the following operations. Consider the l×l symmetric matrix [trx(yiyj)] and
consider its symmetric n × n minor determinants—those n × n minor determinants
in which the indices of the n columns selected coincide with those of n the rows
selected. Each such minor determinant is a polynomial in x with rational coefficients
because all of its entries are. Rearrange y1, y2, . . . , yl , if necessary, to make the first
such minor—the one formed by selecting the first n rows and columns—nonzero and
of degree no greater than that of any other nonzero symmetric n × n minor. Then
the first n entries of y1, y2, . . . , yl are linearly independent over Q(x), which means
that each remaining entry yn+1, yn+2, . . . , yl can be expressed as a sum of multiples
of the first n in which the multipliers are rational functions of x. Each multiplier in
each of these expressions can be written as a polynomial in x plus a proper rational
function of x, one in which the degree of the numerator is less than the degree of
the denominator. Let polynomial multiples of the first n of the y’s be subtracted from
the later y’s in order to make the multipliers in the representations of the later y’s



Essay 4.5 Determination of the Genus 143

in terms of the first n all proper rational functions. Delete any y’s that have become
zero as a result of these subtractions, rearrange the list again, and repeat.

Output: A list y1, y2, . . . , yn of just n elements integral over x that span, over Q[x],
the set of all elements integral over x.

The operations of the algorithm—rearrange the y’s, delete zeros, and subtract one
y times a polynomial in x with rational coefficients from another y—do not change
the conditions satisfied by the original set of y’s that they span the elements integral
over x when coefficients that are polynomials in x with rational coefficients are used.

An argument like the one above that proves that D(x) is a common denominator
of the elements integral over x proves that each iteration of the algorithm reduces
the degree of the determinant of the first n × n symmetric minor. Specifically, if,
after the multipliers in the representations of yn+1, yn+2, . . . , yl as sums of multiples
of y1, y2, . . . , yn have been reduced so that they are proper rational functions, and
after zeros have been deleted, there are more than n items in the list, then one of the
coefficients—say the coefficient of y1—in the representation of yn+1 is a nonzero
proper fraction, call it p(x)

q(x) , where deg p < deg q. The symmetric n × n minor for
any selection of n indices is a polynomial. As before, M1 =

( p(x)
q(x)

)2M0 when M1 is
the minor in which the selected indices are 2, 3, . . . , n+ 1 and M0 is the one in which
they are 1, 2, . . . , n. Thus, q(x)2M1 = p(x)2M0, which shows that deg M1 < deg M0.
Thus, the minor of least degree has degree less than deg M0, and deg M0 decreases
with each step, as was to be shown.

In this way, the algorithm continues to reduce the degree of the first n × n minor.
By the principle of infinite descent, the algorithm must terminate. In other words, a
stage must be reached at which the list contains only n elements. Clearly, they are an
integral basis of the root field.

The proof of the theorem will be completed by a second algorithm, which starts
with an integral basis and produces a normal basis. It requires that one also construct
an integral basis relative to the parameter u = 1

x ; in other words, it uses a set
z1, z2, . . . , zn of elements of the root field of χ(x, y) with the property that every
element of the root field has a unique representation in the form

∑
ψi(x)zi , where

the coefficients ψi(x) are rational functions of x, and that the element is integral over
u = 1

x if and only if each ψi(x) is a polynomial in 1
x . The algorithm just given can be

used to construct such a set z1, z2, . . . , zn; simply describe the root field as the root
field of χ1(u, v) = χ(x, y)/xnλ, where u = 1

x , v =
y

xλ
, and λ is large enough to make

χ1 a polynomial in u and v.
Such an integral basis z1, z2, . . . , zn relative to 1

x will be used to determine, given
an integral basis y1, y2, . . . , yn, whether the basis

y1

xλ1
,

y2

xλ2
, . . . ,

yn

xλn
,

is an integral basis relative to 1
x , where λi , for each i, is the order of yi at x = ∞;

that is, λi is the least integer for which yi/xλi is integral over 1
x .
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Construction of a Normal Basis

Input: An integral basis y1, y2, . . . , yn of the root field of χ(x, y) relative to x.

Algorithm: Find the orders λ1, λ2, . . . , λn of y1, y2, . . . , yn at x = ∞. As long as
y1
xλ1 ,

y2
xλ2 , . . . ,

yn
xλn

(which is a basis consisting of elements integral over 1
x ) is not

an integral basis relative to 1
x , construct a new integral basis in which one yk is

replaced by a new y′
k

whose order λ′
k

at x = ∞ is less than λk in the following
way. Write each zi of an integral basis relative to 1

x in the form
∑

j ψi j(x)
yj

x
λ j

, where
the ψi j(x) are rational functions of x. By assumption, at least one ψi j(x) is not a
polynomial in 1

x . (If all were polynomials in 1
x , then each zi and therefore each

element integral over 1
x would be a sum of multiples of the yi

xλi
with coefficients that

were polynomials in 1
x .) Choose a value of i for which at least one ψi j(x) is not

a polynomial in 1
x . Since xνzi =

∑
ψi j(x)xν−λ j yj is integral over x for sufficiently

large ν, and y1, y2, . . . , yn is an integral basis, the denominator of ψi j(x) is a power
of x for each j = 1, 2, . . . , n, sayψi j(x) = xξj(x)+θ j

( 1
x

)
, where ξj(x) is a polynomial

in x, and θ j
( 1
x

)
is a polynomial in 1

x . By the choice of i, ξj(x) � 0 for at least one j.
Let σ > 0 be the maximum of the degrees of ξ1(x), ξ2(x), . . . , ξn(x). Among those
indices j for which deg ξj = σ, let k be one for which λk is as large as possible and
set y′

k
=

∑
cj xλk−λ j yj , where cj is the coefficient of xσ in ξj(x) (which is zero if

deg ξj � σ).

Output: An integral basis y1, y2, . . . , yn with the property that
y1

xλ1
,
y2

xλ2
, . . . ,

yn

xλn
,

is an integral basis relative to 1
x .

Justification Replacement of yk with y′
k

gives an integral basis, as is shown by the
two formulas y′

k
=

∑
j cj xλk−λ j yj (note that λk ≥ λj for all j by the choice of k)

and yk = 1
ck
y′
k
−
∑

j�k
c j
ck
yj (note that ck � 0 by the choice of k). All that is to be

shown, then, is that λ′
k
< λk . To this end, note that zi

xσ+1 =
∑
(cj + · · · ) ·

yj

x
λ j

, where
the omitted terms contain 1

x ,
1
x2 ,

1
x3 , . . .. Multiply by x and use the definition of y′

k

to obtain zi
xσ = x ·

y′
k

xλk
+
∑
ηj
( 1
x

)
·

yj

x
λ j

, where ηj
( 1
x

)
for each j is x · ψi j (x)−c j x

σ+1

xσ+1 ,

which is a polynomial in 1
x . Thus, x · y′

k

xλk
is a difference of elements integral over 1

x ,
which implies that the order of y′

k
at x = ∞ is at most λk−1, as was to be shown.

Since the algorithm reduces the sum of the λi at each step, it must terminate by
the principle of infinite descent. When it terminates, the integral basis y1, y2, . . . , yn
is a normal basis, because w =

∑
φi(x)yi has order at most ν if and only if all

coefficients of w
xν =

∑ φi (x)

xν−λi
·

yi
xλi

are polynomials in 1
x , which is true if and only if

deg φi ≤ ν − λi , and the proof of the theorem is complete. �	

If y1, y2, . . . , yn is a normal basis of the root field of χ(x, y), the elements of
Θ(xν) are those whose representations in the form

∑
i φi(x)yi have coefficients φi(x)
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that are polynomials in x, with rational coefficients, of degree at most ν − λi for
each i. When ν < λi this condition of course means that φi(x) = 0. Therefore, the
dimension of Θ(xν) as a vector space over Q is the sum of the numbers ν − λi + 1
over all indices i for which λi ≤ ν. For large ν, then, the dimension of Θ(xν) as a
vector space over Q is exactly (ν + 1)n−

∑
λi . At the other extreme, when ν = 0 this

dimension—which is the degree of the field of constants Θ(x0) as an extension of
Q, denoted by c in Essay 4.3—is simply the number of indices i for which λi = 0.

In the notation of Essay 4.3, the genus of the root field of χ(x, y) is g = n0ν −
dimΘ(xν) + 1 for all sufficiently large ν, where n0 = n/c and the dimension is the
dimension as a vector space over the field of constants, which is the dimension as a
vector space over Q divided by c; thus,

g = n0ν −
1
c

(

(ν + 1)n −
∑
λi

)

+ 1 =

∑
λi
c

− (n0 − 1).

In particular, when Q is the field of constants of the root field of χ(x, y), the genus
of the root field is simply

(∑
λi

)

− (n − 1),

where n = degy χ and λ1, λ2, . . . , λn are the orders of the elements y1, y2, . . . , yn of
a normal basis of the field.

As the discussion of Essay 4.3 already shows, the natural description of the genus
uses the field of constants of the root field under consideration instead of the field of
rational numbers:

Determination of the Genus As was just explained, the construction of the theorem
gives a basis over Q of the field of constants of the root field of χ(x, y), namely, the
elements yi of order zero in a normal basis. When the field Q is replaced by the
(possibly) larger field of constants in the theorem, the construction gives a subset
y1, y2, . . . , yn0 of the root field of χ(x, y) and nonnegative integers μ1, μ2, . . . , μn0

with the property that the elements of Θ(xν) for any given ν are precisely those of
the form

φ1(x)y1 + φ2(x)y2 + · · · + φn0(x)yn0

where φi(x) is a polynomial of degree at most ν− μi in x whose coefficients are in the
field of constants of the root field of χ(x, y). Thus, for large ν the dimension of Θ(xν)
as a vector space over the field of constants is

∑n0
i=1(ν− μi +1) = n0ν−

∑
μi +n0. By

the definition of the genus, this dimension is n0ν − g + 1, from which it follows that

g =
( n0∑

i=1
μi

)

− (n0 − 1).

In particular,
∑
μi ≥ n0 − 1.

Example 1 χ(x, y) = y3 − xy + x3 (the folium of Descartes, shown in Fig. 4.6).
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x

y

x3+ y3 = xy

Fig. 4.6 The folium of Descartes

Multiplication by y is represented by

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1

−x3 x 0

⎤
⎥
⎥
⎥
⎥
⎦

relative to the basis 1, y, y2 of the root field over Q(x). Therefore, the trace of y is 0.
The trace of y2 is the trace of

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1

−x3 x 0

⎤
⎥
⎥
⎥
⎥
⎦

2

=

⎡
⎢
⎢
⎢
⎢
⎣

0 0 1
−x3 x 0
0 −x3 x

⎤
⎥
⎥
⎥
⎥
⎦

,

which is 2x. The trace of y3 = xy − x3 is x times the trace of y plus −x3 times the
trace of 1, which is x · 0 − x3 · 3 = −3x3. Similarly, the trace of y4 = xy2 − x3y is
2x2, from which it follows that

S =

⎡
⎢
⎢
⎢
⎢
⎣

3 0 2x
0 2x −3x3

2x −3x3 2x2

⎤
⎥
⎥
⎥
⎥
⎦

and D(x) = 12x3 − 8x3 − 27x6 = x3(4 − 27x3).

The square of the denominator q(x) of an element of the root field integral over x
must divide x3(4− 27x3), so x is a common denominator of these integral elements.
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A proper fraction integral over x must therefore be of the form a+by+cy2

x , where a, b,
and c are rational numbers.

By the proposition, and by the fact that y = ±
√
x − · · · and y = x2 + · · · are the

series expansions of y in fractional powers of x, such an expression is integral over
x if and only if a + b(±s) + c(±s)2 ≡ 0 mod s2 and a + bs2 + cs4 ≡ 0 mod s. These
conditions hold if and only if a = b = 0, so the proper fractions integral over x are
the rational multiples of y2

x . Thus, 1, y, y
2

x are an integral basis. For this basis, λ1 = 0
and λ2 = 1. To find the order λ3 of y3 =

y2

x at x = ∞, one needs to find the equation

of which it is a root, which is the characteristic polynomial of
1
x

⎡
⎢
⎢
⎢
⎢
⎣

0 0 1
−x3 x 0
0 −x3 x

⎤
⎥
⎥
⎥
⎥
⎦

. This

characteristic polynomial is X3 − 2X2 + X − x3, so y3
3 − 2y2

3 + y3 − x3 = 0, and
( y3
x

)3
− 2 · 1

x ·
( y3
x

)2
+ 1

x2 ·
( y3
x

)
− 1 = 0, which makes it clear that λ3 = 1.

With u = 1
x and v =

y
x the equation v3 − uv + 1 = 0 holds. That 1, v, v2 is an

integral basis of the root field of v3 − uv + 1 follows from the fact that in this case

S =

⎡
⎢
⎢
⎢
⎢
⎣

3 0 2u
0 2u −3
2u −3 2u2

⎤
⎥
⎥
⎥
⎥
⎦

, from which D(u) = 4u3 − 27.

Since D(u) is square-free, 1, v, v2 is an integral basis over u. Thus, 1, y, y2/x is a
normal basis, because 1, yx ,

y2/x
x is the integral basis 1, v, v2 over u.

In this case, then, Q is the field of constants, and the genus is (0+1+1)−(3−1) = 0.

Example 2 χ(x, y) = y3 + x3y + x (the Klein curve).
In this case, D(x) = −4x9 − 27x2, whose only square factor is x2, so again the

proper fractions integral over x have the form a+by+cy2

x , where a, b, and c are rational
numbers. Application of Newton’s polygon in the case α = 0 leads easily to three
unambiguous truncated solutions of y3 + x3y + x = 0, namely, y = γ 3√x, where γ is
a cube root of −1. Substitution of y = −s + · · · for y and of s3 for x in a + by + cy2

gives a series divisible by x = s3 only if a = b = c = 0, so 1, y, y2 is an integral basis
over x. The orders of the first two are 0 and 2, respectively. The third, call it w = y2,
is a root of the characteristic polynomial of

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1
−x −x3 0

⎤
⎥
⎥
⎥
⎥
⎦

2

=

⎡
⎢
⎢
⎢
⎢
⎣

0 0 1
−x −x3 0
0 −x −x3

⎤
⎥
⎥
⎥
⎥
⎦

;

therefore, w3 + 2x3w2 + x6w − x2 = 0, from which it is clear that the order of w at
x = ∞ is 3. (Division by x9 gives an equation showing that w/x3 is integral over
1/x, but division by x6 gives one that shows that w/x2 is not integral over 1/x.) That
1, y, y2 is a normal basis follows from the observation that 1, y

x2 ,
y2

x3 is an integral
basis over u = 1

x , because division of y3 + x3y + x = 0 by x6 gives v3 + uv + u5 = 0,
where v =

y

x2 , and because, as is easily shown, 1, v =
y

x2 , v2

u =
y2

x3 is an integral basis
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over u. Since λ1 = 0, λ2 = 2, and λ3 = 3, it follows that Q is the field of constants,
and the genus is (0 + 2 + 3) − (3 − 1) = 3.

Example 3 χ(x, y) = (x2 + y2)2 − 2(x + y)2 (see Essay 4.3).
As was noted in Essay 4.3, the algebraic analysis of this example should begin

with the observation that the root field of χ(x, y) contains a square root of 2 in the
form of the element x2+y2

x+y , which enables one to treat the root field as the root field
of the polynomial x2 + y2 −

√
2(x + y), whose degree in y is 2 instead of 4.

(The irrational constants in the root field, if there are any, can be found by
constructing one solution y of χ(x, y) = 0 for one rational value α of x; the field
of constants A needed to express such a solution must contain all constants in the
root field, because the solution makes it possible to express any element of the root
field as a power series—possibly with some negative exponents—with coefficients
in A, and in particular to express any constant in the root field as an element of A.
For example, when α = 0 the roots of χ(0, y) = y4 − 2y2 yield two unambiguous
truncated solutions y = ±

√
2 · x0 and the truncated solution y = 0 · x0, whose

ambiguity is 2. If the ambiguous solution y = 0 · x0 is used as an input to Newton’s
polygon, the output is the truncated solution y = −1 · x, with ambiguity 2. If this
truncated solution is the input, there are two unambiguous outputs y = −x ±

√
2 · x2,

for each of which
√

2 must be adjoined. Thus, A = Q(
√

2) for any one of the four
infinite series solutions for α = 0, and no cleverness is needed to discover the
irrational constant

√
2 in the root field. For any χ(x, y), the construction of a single

unambiguous solution x = α + sm, y = β0 + β1s + · · · of χ(x, y) = 0 gives a
number field A that contains, for the same reason, all constants in the root field of
χ(x, y); factorization of χ(x, y) over such an A will then show the extent to which
the adjunction of constants can reduce the degree in y of χ(x, y), or, more precisely,
will determine the degree of the root field as an extension of A(x).)

The elements 1,
√

2, y,
√

2y are easily shown to be a normal basis in which the λ’s
are 0, 0, 1, 1, respectively, so the genus is 1

c

∑
λi−(n0−1) = 1

2 (0+0+1+1)−(2−1) =
0. When Q is replaced by Q(

√
2), 1 and y are a normal basis in which the λ’s are 0

and 1 respectively, and the genus is (0 + 1) − (2 − 1) = 0.
Of course, the genus is 0 geometrically, because the curve is a circle, which is

birationally equivalent to a line.

Example 4 χ(x, y) = y2 + x4 − 1 (the elliptic curve mentioned in Essay 4.2).
Here the trace of 1 is 2, and the trace of y is 0, so the trace of y2 = 1 − x4 is

2(1 − x4) and D(x) = 4(1 − x4). Since this polynomial has distinct roots, 1, y is an
integral basis. The order of 1 at x = ∞ is of course 0, and the order of y is 2 (because
division of y2 + x4 − 1 by x4 gives a polynomial in y

x2 and 1
x ). Since 1 and y

x2 are
an integral basis relative to 1

x , as is easily shown, 1 and y are a normal basis and the
field of constants is Q, which implies that the genus is (0 + 2) − (2 − 1) = 1.

Example 5 χ(x, y) = y2 + x6 − 1 (a frequently cited hyperelliptic curve).
By considerations similar to those in the last example, D(x) = 4(1−x6) has distinct

roots, so 1 and y form an integral basis. The orders at x = ∞ are 0 and 3 respectively,
and this basis is a normal basis. Therefore the genus is (0 + 3) − (2 − 1) = 2.
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Example 6 χ(x, y) = y2 − f (x), where f (x) is a polynomial of degree 2n − 1 or 2n
with distinct roots (a general hyperelliptic curve).

As in the previous examples, 1 and y are a normal basis for which the orders at
x = ∞ are 0 and n, so the genus is (0 + n) − (2 − 1) = n − 1, as is implied by the
passage from Abel’s memoir quoted in Essay 4.1.

Essay 4.6 Holomorphic Differentials

Given an algebraic curve C, the method of the preceding essay determines its g

regarded as in Essay 4.3 as the codimension of the subvarieties of CN swept out by
algebraic variations of N points on the curve. The objective of the present essay is
to express this idea in terms of differential equations

N∑

i=1
hj(xi, yi)dxi = 0 ( j = 1, 2, . . . , g)(1)

describing these subvarieties of CN . Here the differentials hj(x, y)dx for j =

1, 2, . . . , g are to be a basis, over the field of constants, of the space of holomorphic
differentials on the curve, a concept that is to be defined. The equations (1) state that
algebraic variations satisfy g infinitesimal conditions, where g is the dimension of
the space of holomorphic differentials; therefore, not only do the algebraic variations
partition CN into subvarieties of codimension g, but this partition is expressed by g

explicit differential equations.
In these equations, (xi, yi) for i = 1, 2, . . . , N are given solutions of χ(xi, yi) = 0,

where χ(x, y) = 0 is the equation of the curve C. The heuristic idea of (1) is the
following: If (1) correctly describes the possible algebraic variations of N points,
it certainly describes the possible algebraic variations of fewer than N points: Just
add conditions dxi = 0 for a certain number of the points. Therefore, there is no
loss of generality in assuming that N is the number n0ν of zeros of an element of
Θ(xν) for some large ν. (Here n0 again denotes the degree of the root field as an
extension of the field obtained by adjoining all its constants to Q(x), or, in the notation
used before, n0 = n/c.) As has been shown, the most general element of Θ(xν) is
given by an explicit formula θ that contains N − g + 1 unknown constants, call them
a1, a2, . . . , aN−g+1 (and in fact contains them linearly); the conditions χ(x, y) = 0 and
θ(x, y, a1, a2, . . . , aN−g+1) = 0 define, implicitly, N solutions (xi, yi) of χ(xi, yi) = 0
as functions of a1, a2, . . . , aN−g+1, where N = n0ν. Since multiplication of θ by a
constant does not change its common zeros with χ, one of the parameters in θ, say
aN−g+1, can be set equal to 1. Then the N moving points depend on N−g parameters,
and they sweep out a subvariety of codimension g. In principle, the equations (1)
result from implicit differentiation of the defining equations χ = 0, θ = 0 of the N
moving points (xi, yi) in the following way.

For fixed values of the x’s, y’s and a’s, the 2N relations dχ(xi, yi) = 0,
dθ(xi, yi, a) = 0 give 2N homogeneous, linear equations in the 3N − g differentials
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dxi , dyi , daj , whose coefficients are rational functions of the 3N − g variables. The
relation dχ(xi, yi) = 0 involves just one pair of values (xi, yi) and a1, a2, . . . , aN−g,
so it can be used (provided xi is a local parameter at (xi, yi)) to express each dyi in
terms of the corresponding dxi and da1, da2, . . . , daN−g and in this way to reduce
the differential equations to just N equations in 2N − g differentials dxi and dai .
These equations can be solved, in the generic case, to express da1, da2, . . . , daN−g

in terms of the dxi and to eliminate them, leaving g relations among the dxi . These
g relations are the required differential equations (1) because they describe the rela-
tions satisfied by the dxi when the parameters ai are allowed to vary. In other words,
these are the infinitesimal relations satisfied by algebraic variations of the N points
(xi, yi).

In practice, the actual elimination of the dai to find the relations among the
dxi seems impractical, even in the simplest examples. Instead, the derivation of
the equations (1) will depend on observing that the holomorphic differentials, the
ones that express the crucial relations (1), are the differentials that have no poles.
Heuristically, such differentials lead to relations (1) in the following way.

If θ(x, y) has n0ν zeros on the curve χ(x, y) = 0 and no zeros where x = ∞, and if
h(x, y)dx has no poles—even when x = ∞—then the differential h(x,y)dx

θ(x,y) has poles
only at the n0ν zeros of θ(x, y). Thus, one can make use of the fact that the sum of
the residues of a differential is zero to find that

∑

zeros of θ

(

residue of
h(x, y)dx
θ(x, y)

at that zero of θ
)

= 0.

As a function on the curve χ(x, y) = 0, θ(x, y) can be regarded, locally, as a function
of x near each of its zeros (provided these zeros avoid places on the curve where x
is not a local parameter), so dθ

dx is meaningful at each zero of θ(x, y) on the curve.
When this derivative is not zero, its reciprocal is the residue of dx

θ(x,y) at the zero of
θ because θ(x, y) = a1x + a2x2 + · · · implies that this residue is, by definition, 1

a1
when a1 � 0. Thus

0 =
∑

zeros of θ

(

residue of
h(x, y)dx
θ(x, y)

at that zero of θ
)

=
∑

zeros of θ
h(xi, yi)

dxi
dθ
,

where dxi for each i is the infinitesimal change in xi that results from an infinitesimal
change dθ in θ. In other words, if the n0ν points where θ is zero are moved to the
nearby points where θ is dθ, then the n0ν changes dxi in the x-coordinates of the
intersection points satisfy

∑
h(xi, yi)dxi = 0, as was to be shown, provided the zeros

of θ(x, y) are at points where both x and θ are local parameters on the curve. That this
necessary condition for the dxi to result from an algebraic variation of the intersection
points is also a sufficient condition follows from—or at any rate is made plausible
by—the fact that the number of linearly independent holomorphic differentials is g,
so that the system of differential equations (1) describes a subvariety containing the
algebraic variations that has the same dimension N − g (at generic points) as the
subvariety of algebraic variations and that therefore must coincide with it.
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With this geometric motivation, the remainder of this essay will (a) define the
notion of “holomorphic differential” in a precise algebraic way that accords with the
notion of “no poles,” (b) prove that the dimension of the holomorphic differentials as
a vector space over the field of constants is g, (c) prove that the sum of the residues
of a differential is zero, and (d) flesh out the implicit differentiation sketched above
to reach the conclusion

∑
hj(xi, yi)dxi = 0.

As before, let χ(x, y) be an irreducible polynomial in two indeterminates with
integer coefficients that contains both indeterminates and is monic in the indetermi-
nate y. Let K denote the root field of χ(x, y). A differential in K is an expression
of the form f (x, y)dx, where f (x, y) is an element of K and dx is merely a symbol.
More precisely, f (x, y)dx is a differential expressed with respect to the parameter x;
it is easy to guess how a differential expressed with respect to the parameter x might
be expressed with respect to another parameter of K , but in this essay all differentials
will be expressed with respect to the preferred parameter x.

As before, the root field K of χ(x, y) will be regarded as an extension not of Q(x),
the field of rational functions in x, but of K0(x), the field of rational functions in x
with coefficients in the field of constants K0 of K . (The symbol K0 thus replaces the
symbol Θ(x0) as the notation for the field of constants of the root field.) As before,
let n0 be the degree of K as an extension of K0(x). By the definition of the genus,
the dimension of Θ(xv) as a vector space over K0 is n0ν − g + 1 for all sufficiently
large ν.

In this essay, instead of differentials f (x, y)dx themselves, their trace will be
considered; the trace of f (x, y)dx is by definition the differential trx( f (x, y))dx,
where dx is a symbol and trx( f (x, y)) is the element of K0(x) that is the trace of
f (x, y) with respect to the field extension K ⊃ K0(x); in other words, trx( f (x, y)) is
the trace of the n0 × n0 matrix that represents multiplication by f (x, y) with respect
to the basis 1, y, y2, . . . , yn0−1 of K over K0(x) (or, for that matter, with respect to any
basis of K over K0(x)). The heuristic idea behind this definition is that trx( f (x, y)dx)
is the sum over all n0 values at x of the differential f (x, y)dx, which, being symmetric
in the n0 values of y for any given x, is a rational function of x alone.

Holomorphic differentials were described above as differentials without poles.
Certainly, the trace of a holomorphic differential must therefore be dx times an
element of K0(x) without poles; in other words, if h(x, y)dx is holomorphic, then
trx(h(x, y)) must be a polynomial in x. However, this necessary condition should not
be expected to be sufficient, because f (x, y)dx might have two poles at the same
value of x that cancel when the sum is taken over all y. In the case of two canceling
poles, however, one would expect to be able to choose an element θ(x, y) of K that
was zero at just one of the poles and that had no poles for finite values of x, so
that θ(x, y) f (x, y)dx would be a differential that had no poles where f (x, y)dx did
not and for which the poles that canceled in trx( f (x, y)dx) no longer canceled in
trx(θ(x, y) f (x, y)dx). Therefore, such a differential would not satisfy the stronger
necessary condition for a differential f (x, y)dx to be holomorphic: For every θ(x, y)
that is integral over x, trx(θ(x, y) f (x, y)) is a polynomial in x. But this necessary
condition, too, should not be expected to be sufficient, because it would not detect
poles of f (x, y)dx at places where x = ∞.
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For these reasons, a differential f (x, y)dx will be said to be holomorphic for
finite x if trx(θ(x, y) f (x, y)) is a polynomial in x whenever θ(x, y) is integral over
x, and will be said to be holomorphic if it is holomorphic for finite x and if
f d

( 1
u

)
= −

f

u2 du is holomorphic for finite u. (Here d
( 1
u

)
= − du

u2 is a definition. It
will be justified by Corollary 1 below. Since tru is the same as trx when u = 1

x—
both are found using a basis of the field over Q(x) = Q(u)—to say that − f

u2 du is
holomorphic for finite u means that tru(θ · f

u2 ) = trx(x2θ f ) is a polynomial in u = 1
x

whenever θ is integral over u.)

Theorem Construct the holomorphic differentials for a given χ(x, y) and prove that
their dimension as a vector space over the field of constants K0 is the genus of the
root field of χ(x, y).

Proof Let the construction that was used to determine the genus in Essay 4.5 be
used to construct a normal basis y1, y2, . . . , yn0 of the root field as an extension of
the field K0(x) of rational functions of x with coefficients in the field of constants
K0 and to construct nonnegative integers μ1, μ2, . . . , μn0 for which an element of
the root field is in Θ(xν) if and only if its unique expression in the form φ1(x)y1 +
φ2(x)y2 + · · · + φn0(x)yn0 , where the coefficients are in K0(x), has coefficients that
are polynomials in x with coefficients in K0 and the degrees of these polynomials
satisfy deg φi + μi ≤ ν.

Let S1 denote the symmetric n0×n0 matrix of polynomials in x with coefficients in
K0 whose entry in the ith row of the jth column is trx(yiyj), where the trace is taken
relative to the extension K ⊃ K0(x). (In other words, this entry is the trace of the
matrix that represents multiplication by yiyj relative to the basis y1, y2, . . . , yn0 of
K over K0(x).) The symmetric bilinear form “the trace of the product” is represented
by S1 in the sense that if h = h1y1 + h2y2 + · · · + hn0 yn0 and θ = θ1y1 + θ2y2 +

· · · + θn0 yn0 are the representations of two elements h and θ of K relative to this
basis, then trx(hθ) = [h]S1[θ] where [h] represents the row matrix whose entries are
h1, h2, . . . , hn0 , and [θ] represents the column matrix whose entries are θ1, θ2, . . . , θn0 .

With this notation, to say that hdx is holomorphic is to say that [h]S1[θ] is a
polynomial of degree at most ν − 2 whenever the ith entry θi of the column matrix
[θ] is a polynomial whose degree is at most ν − μi , because trx(hθ) must be a
polynomial in x, while trx(−x2h · θ

xν ) = −
trx (hθ)
xν−2 must be a polynomial in 1

x . (Note
that the hi need not be polynomials.) In other words, the row matrix [h]S1 has the
property that its product with a column matrix [θ] is a polynomial of degree at most
ν−2 when the ith entry of θ is a polynomial of degree at most ν− μi . If one takes all
entries but one of [θ] to be zero and that one to be a polynomial of degree ν − μi for
some large ν, one sees that the ith entry of [h]S1 must be a rational function whose
product with any polynomial of degree ν − μi is a polynomial of degree at most
ν − 2. Thus, the ith entry of [h]S1 must be a polynomial of degree at most μi − 2
when μi ≥ 2 and must be zero if μi is 0 or 1. In other words, [h] must have the form
[c]S−1

1 , where c is a row matrix whose ith entry is a polynomial in x of degree at
most μi − 2 with coefficients in K0. (In particular, the ith entry is zero when μi is 0
or 1.) This formula [h] = [c]S−1

1 completely describes the holomorphic differentials
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hdx. The number of constants in the coefficients of the entries of [c] is the sum of
the numbers μi − 1 over all values of i for which μi > 0. Since exactly one μi is zero
(because K0 = Θ(x0) consists of all elements φ1y1 + φ2y2 + · · · + φn0 yn0 in which
φi = 0 when μi > 0 and φi is constant when μi = 0), it follows that the number of
arbitrary constants in this formula for h is (

∑
μi) − (n0 − 1), which is the genus, as

was to be shown. �	

The proof that the sum of the residues of any differential f (x, y)dx is zero reduces,
by virtue of the definition of the sum of the residues as the sum of the residues of the
rational differential trx( f (x, y))dx, to the same statement for rational differentials
p(x)
q(x) dx, where p(x) and q(x) are polynomials with coefficients in some algebraic
number field K0 and q(x) � 0. To define the sum of the residues of such a differential,
it will be convenient to assume that the denominator q(x) splits into linear factors
over K0, although, as will be seen, the sum of the residues can be expressed rationally
in terms of the coefficients of p(x) and q(x) even when this condition is not fulfilled.
By the method of partial fractions, one can see that if q(x) =

∏
(x − ai)ei , where the

ai are distinct constants, then

p(x)
q(x)

= P(x) +
∑

i

ei∑

σ=1

ρiσ
(x − ai)σ

for suitable constants ρiσ . (One can assume without loss of generality that deg p <
deg q, so that P(x) = 0. Multiplication of both sides of the required equation

p(x)
q(x)

=
∑

i

ei∑

σ=1

ρiσ
(x − ai)σ

by q(x) =
∏
(x−ai)ei gives an equation of the form p(x) =

∑
ρiσAiσ(x) in which the

polynomials Aiσ(x) have degree less than k = deg q and depend only on q(x). This
gives an inhomogeneous k × k system of linear equations satisfied by the k required
coefficients ρiσ . When p(x) = 0, these equations have only the trivial solution,12

so for any p(x) of degree less than k they have a unique solution.) The residue at
x = a of p(x)

q(x) dx is defined to be ρi1, the coefficient of 1
x−ai

in the partial fractions
expansion of p(x)

q(x) , when a is one of the roots ai of q(x); otherwise, the residue at
x = a of p(x)

q(x) dx is zero.
Note that the residue at x = a of

( p(x)
q(x) +

p1(x)
q1(x)

)
dx is the sum of the residues at

x = a of p(x)
q(x) dx and p1(x)

q1(x)
dx. (The partial fractions decomposition of a sum is the

sum of the partial fractions decompositions when terms with the same denominators
are combined.)

12 Multiplication of
∑μ

i=1
φi (x)

(x−ai )
νi = 0, where a1, a2, . . . , aμ are distinct algebraic numbers and

degφi < νi for each i, by
∏μ

i=1(x − ai )
νi gives an equation

∑μ
i=1 ψi (x) = 0 in which the ψi (x)

are polynomials. All but one of these polynomials is divisible by (x − a1)
ν1 , so the remaining one

must also be divisible by (x − a1)
ν1 , from which it follows that φ1(x) must be zero. In the same

way, φi (x) = 0 for each i.
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The conventional statement that the sum of the residues of a rational differential
is zero assumes that the “residue at x = ∞” is included in the sum. In this way,
the conventional statement can be seen, as the corollary below shows, as a method
of evaluating the sum of the residues of p(x)

q(x) dx over all finite values of a. This
evaluation is in fact quite easy:

Proposition The sum of the residues at a of a rational differential p(x)
q(x) dx over all

finite values of a is

lim
x→∞

x · r(x)
q(x)

=
ue−1r

( 1
u

)

ueq
( 1
u

)

�
�
�
�
�
u=0

(e = deg q),

where r(x) is the remainder when p(x) is divided by q(x), where the limit on the left
is merely a mnemonic standing for the expression on the right, and the expression on
the right denotes the quotient of constants in which the denominator is the leading
coefficient of q and the numerator is the coefficient of xe−1 in r(x).

Proof Since the residues of
(
P(x) + r(x)

q(x)

)
dx are the same as those of r(x)

q(x) dx, one
can assume without loss of generality that the quotient p(x)

q(x) in the given differential
is a proper fraction; i.e., one can assume r(x) = p(x). The residue of ρ

(x−a)e is ρ
if e = 1 and 0 if e > 1, so for fractions of the particular form r(x)

q(x) =
ρ

(x−a)e the
residue is given by the formula limx→∞

x ·r(x)
q(x) . The theorem therefore follows from

the observation that if r(x)
q(x) and r1(x)

q1(x)
are proper fractions, then

x · r(x)
q(x)

+
x · r1(x)
q1(x)

=
x · r(x)q1(x) + x · r1(x)q(x)

q(x)q1(x)
,

so the same is true of their limits as x → ∞, interpreted as in the statement of the
theorem. (Note also that limx→∞

x ·r(x)
q(x) is unchanged if a common factor is canceled

from numerator and denominator.) �	

Corollary 1 The sum of the residues of p(x)
q(x) dx over all finite values of x is minus

the residue at x = ∞, which residue is by definition the residue at u = 0 of

p
( 1
u

)

q
( 1
u

) d
(1
u
)
= −

p
( 1
u

)

u2q
( 1
u

) du.

(The expression on the left is a mere mnemonic that takes advantage of the formula
d
( 1
u

)
= − du

u2 of elementary calculus.)

Deduction What is to be shown is that the value of

ue−1r
( 1
u

)

ueq
( 1
u

)
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at u = 0 is the residue at u = 0 of

p
( 1
u

)

u2q
( 1
u

) du =
ue−1p

( 1
u

)

u · ueq
( 1
u

) du.

Since this differential has the form

P(u)
uQ(u)

du, where
P(u)
Q(u)

is a proper fraction in which Q(0) � 0, this conclusion follows immediately from the
definition. �	

Corollary 2 When the residue of p(x)
q(x) dx at x = ∞ is defined as in Corollary 1, the

sum of the residues of a rational differential is zero.

These algebraic facts make possible a plausible implicit differentiation of
χ(x, y) = 0 and θ(x, y, a1, a2, . . . , aN−g) = 0 that leads to

N∑

i=1
hj(xi, yi)dxi = 0 ( j = 1, 2, . . . , g)(2)

when the dy’s and da’s are eliminated.
As before, there is no loss of generality in assuming that N = n0ν for some large

ν and that the (xi, yi) are the intersection points χ(xi, yi) = 0, θ(xi, yi) = 0 for some
fixed θ = a1θ1 + a2θ2 + · · · + aN−g+1θN−g+1, where the θi are a basis of Θ(xν) over
K0 and a1, a2, . . . , aN−g+1 are fixed constants. In addition, it will be assumed that
the chosen θ is in “general position” in the sense that x is a local parameter at each
of the N intersection points (xi, yi) and θ has poles of order ν at each of the n points
where x = ∞.

Each of the N intersection points (xi, yi) implies a pair of differential equations

(3)
χx dxi + χy dyi = 0,

θx dxi + θy dyi + θ1 da1 + θ2 da2 + · · · + θN−g+1 daN−g+1 = 0,

where subscripts x and y denote partial derivatives, and these partial derivatives are
to be evaluated at the point (xi, yi, a1, a2, . . . , aN−g+1) at which a1, a2, . . . , aN−g+1
have the given values that determine the N points (xi, yi), and xi and yi are the
coordinates of one of these points.

Elimination of dyi from the pair of equations (3) gives the single equation dxi +
Q(θ1da1 + θ2da2 + · · · + θN−g+1daN−g+1) = 0 in which Q denotes the quotient

χy
χyθx−θy χx

. This quotient is in fact the reciprocal of the derivative of θ with respect
to x (eliminate dy from the equations χx dx + χy dy = 0 and θx dx + θy dy = dθ,
a computation that assumes x is a parameter on the curve at the point in question).
Otherwise stated, it is the residue of the differential dx

θ at this zero of the denominator
θ, because it is the value of the quotient x−xi

θ(x,y) at the point (xi, yi) where numerator
and denominator, taken separately, are both zero. (It is natural to think of this number
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as a limit, but of course it can be described algebraically as the value of the rational
function of x and y when it is put in canonical form—a numerator in which y has
degree less than n = degy χ and a denominator that is a polynomial in x alone that
is relatively prime to the numerator.)

Therefore, if each equation dxi +Q(θ1da1 + θ2da2 + · · · + θN−g+1daN−g+1) = 0
is multiplied by the value h(xi, yi) of h at the corresponding point (xi, yi) and all N
of these equations are added, the result is

∑
h(xi, yi)dxi + C1da1 + C2da2 + · · · +

CN−g+1daN−g+1 = 0, where the coefficient Cj of daj is the sum over all N zeros of
θ on the curve χ = 0 of hθ j times the residue of dx

θ at that point. It is to be shown
that each such coefficient Cj is zero.

Since neither θ j nor hdx has poles for finite x, the differential θ jhdx/θ has
residues for finite x only at the zeros (xi, yi) of θ, and these residues are the values
at (xi, yi) of θ jh times the residue of dx/θ at (xi, yi). In short, Cj is the sum of all
residues of the differential θ jhdx/θ at points where x is finite. Therefore, it is minus
the sum of the residues at x = ∞ of the differential θ jhdx/θ. Since θ j has order at
most ν at x = ∞ (it is in Θ(xν)) and θ has order ν at x = ∞ (by assumption), θ j/θ
is finite at x = ∞, so θ jhdx/θ has no pole at x = ∞, which implies Cj = 0 and
∑

h(xi, yi)dxi = 0, as was to be shown.

Example 7 χ(x, y) = y3 + x3y + x (the Klein curve).
As was seen in Example 2 of Essay 4.5, 1, y, y2 are a normal basis over Q(x) for

which the λ’s are 0, 2, 3. Therefore (h1+ h2y+ h3y
2)dx is a holomorphic differential

if and only if [h1 h2 h3]S = [0 a bx + c], where a, b, and c are rational numbers
and the matrix S, which has tr(yi+j−2) in the ith row of the jth column, is easily
found to be

⎡
⎢
⎢
⎢
⎢
⎣

3 0 −2x3

0 −2x3 −3x
−2x3 −3x 2x6

⎤
⎥
⎥
⎥
⎥
⎦

.

When c = 1 and a = b = 0, this gives a 3 × 3 homogeneous linear system whose
solution is [h1 h2 h3] =

1
4x9+27x2 [4x6 −9x 6x3]. Thus, h =

4x6−9xy+6x3y2

4x9+27x2 , which
can be written more simply as h = 1

3y2+x3 . It is easy to see that the solution in which
b = 1 and c = a = 0 is x times this one, and the solution in which a = 1 and
b = c = 0 is y times this one, which leads to the formula

c + bx + ay
3y2 + x3 dx

for the most general holomorphic differential on this curve. The formula has three
parameters a, b, c because the genus is 3. (For an easier derivation of this formula,
see the examples of Essay 4.8.)

Example 8 χ(x, y) = y2 − f (x), where f (x) is a polynomial of degree 2n − 1 or 2n
with distinct roots (a general hyperelliptic curve).

As was seen in Example 6 of Essay 4.5, 1 and y are a normal basis for which
the orders at x = ∞ are 0 and n. (The matrix S(x) is

[ 2 0
0 2 f (x)

]
, whose determinant
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D(x) = 4 f (x) has distinct roots, so 1, y is an integral basis over x. Division of
y2 − f (x) = 0 by x2n gives

( y
xn

)2
−

f (x)

x2n = 0, which, when v =
y
xn and u = 1

x , is a
curve of the same form v2 − F(u) = 0 of which 1, v is an integral basis over u. It
follows that 1, y is a normal basis relative to x in which the order of y at x = ∞ is
n.) Therefore, (h1 + h2y)dx is a holomorphic differential if and only if

[h1 h2]

[
2 0
0 2 f (x)

]

= [0 q(x)],

where q(x) is a polynomial of degree at most n − 2. Thus, hdx =
q(x)y dx

2 f (x) =
q(x)dx

2y
is the most general holomorphic differential, where q(x) is a polynomial of degree
at most n − 2. The genus is n − 1.

Essay 4.7 The Riemann–Roch Theorem

Dedekind and Weber say in their classic treatise that the Riemann–Roch theorem,
in its usual formulation, determines the number of arbitrary constants in a function
with given poles [22, §28]. Indeed, that is exactly the way Roch himself formulated
the theorem [78], as his title “On the Number of Arbitrary Constants in Algebraic
Functions” indicates. The answer, a formula for the dimension of the vector space
of rational functions with (at most) given poles, is a corollary of the theorem of
this essay, which describes the principal parts of rational functions on an algebraic
curve.

Let f (x, y) be a rational function on a curve χ(x, y) = 0, say f (x, y) =

p(x, y)/q(x), where p and q are polynomials with integer coefficients and f is
regarded as an element of the root field of χ(x, y). The principal parts of f at finite
values of x are, by definition, the terms with negative exponents in the expansions
of f in powers of x − α for algebraic numbers α. Such expansions are obtained by
applying Newton’s polygon to expand y in n = degy χ ways in (possibly fractional)
powers of x − α, substituting these expansions in p(x, y), and multiplying the result
by the expansion of 1/q(x) in powers of x − α; they can contain negative powers of
x−α only if the expansion of 1/q(x) does, which is to say, only if α is a root of q(x).
The principal parts of f (x, y) thus amount simply to a list of the roots α of q(x) and,
for each of them, a list of the terms, if any, with negative exponents in the n series
found by substituting expansions of y in powers of x − α in f (α + (x − α), y).

One can define the principal parts of f at x = ∞ as the principal parts at
u = 0 when u = 1

x , but for the sake of simplicity this essay will deal only with
rational functions that are finite at x = ∞, so that there are no principal parts
at x = ∞. Specifically, the only functions considered will be those of the form
f (x, y) = p(x, y)/q(x), where p(x, y) is in Θ(xν) for ν = deg q. Expansion of
numerator and denominator of f (x, y) =

p(x,y)/xν

q(x)/xν in powers of 1/x then gives
a quotient of power series in 1/x in which neither numerator nor denominator
contains terms with negative exponents (the numerator is integral over 1/x) and the
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denominator is not zero when 1/x = 0, so the expansions of f (x, y) in powers of 1
x

contain no terms with negative exponents.
For values α of x at which χ(x, y) = 0 ramifies—which is to say that at least one

of the expansions of y in powers of x − α involves fractional powers—the principal
parts of a function satisfy an obvious consistency requirement, namely, since one
solution y = β0 + β1s + β2s2 + · · · in which s = m√x − α for m > 1 implies m − 1
other solutions obtained by multiplying s by some mth root of 1 other than 1, it must
be true that a term of any one of the corresponding expansions of f (x, y) determines
the term with the same exponent in any of the other m − 1 expansions: One needs
merely to change s to ωs for a suitable root of unity ω.

For these reasons, a set of proposed principal parts of a rational function on
the curve χ(x, y) = 0 will be defined to consist of (1) an algebraic number field A,
(2) a finite set of elements α1, α2, . . . , αμ of A, and (3) for each of the αi and for
each of the n ways of expanding y in powers of x − αi an expression of the form
γ1(x − αi)−1 + γ2(x − αi)−2 + · · · + γl(x − αi)−l , where l is a positive integer and the
γ’s are in A, except that in the case of expansions of y that are in powers of m√x − αi
with m > 1 the expressions must take the form γ1(

m√x − αi)−1 + γ2(
m√x − αi)−2 +

· · · + γl(
m√x − αi)−l and must satisfy the consistency requirement just described. (A

natural way to handle this consistency requirement is to prescribe the expression
γ1(

m√x − αi)−1 + γ2(
m√x − αi)−2 + · · · + γl(

m√x − αi)−l for just one expansion of y
in powers of m√x − αi in each set of m and to derive the others from it.)

The problem is to determine whether, for a given set of proposed principal parts,
there is a rational function on the curve that is finite where x = ∞ and that has the
stated principal parts. The answer given by the theorem below is that the holomorphic
differentials give simple necessary and sufficient conditions for there to be such a
function.

If hdx is a holomorphic differential and if f (x, y) = p(x,y)
q(x) is finite when x = ∞,

then trx( f h) on the one hand is a rational function of x whose denominator q(x) has
degree ν and whose numerator trx(ph) has degree at most ν − 2, so the sum of the
residues of trx( f h) over all finite values of the variable is zero, and on the other hand
is a rational function whose residue at any finite value α of x is a linear function of
the principal parts of f . In this way, a certain linear function of the principal parts
of f is necessarily zero. Explicitly, the following lemma can be used to express the
residue of trx( f h) at x = α in terms of the principal parts of f :

Lemma Let g(x, y) be a rational function on the curve χ(x, y) = 0. The expansion
of trx(g) in powers of x − α is the sum of the n expansions in (possibly fractional)
powers of x − α obtained by substituting the n solutions of χ(x, y) = 0 at x = α in
g(x, y).

Proof Let the main theorem of Chapter 1 be used to construct a minimal splitting
polynomial, call it F(x, z), of χ(x, y) regarded as a polynomial in y with coefficients
in Z[x] and let K̂ be the root field of F(x, z), which is to say that K̂ is the splitting field
of χ(x, y). Finally, let z be an expansion of a solution z of F(x, z) = 0 in (possibly
fractional) powers of x − α, say z = δ0 + δ1s + δ2s2 + · · · , where x = α + sm. (Let
m be determined by the condition that the indices i of terms in z in which δi � 0
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have no common divisor greater than 1.) The substitution x = α + sm, z = z embeds
K̂ in the field of quotients of the ring of power series in s with coefficients in A,
where A is an algebraic number field containing α that is constructed by the Newton
polygon algorithm. Let A〈s〉 denote this field of quotients; it is, in effect, the ring
of formal power series in s with coefficients in A enlarged to include power series
with a finite number of terms with negative exponents, because the reciprocal of a
power series γisi + γi+1si+1 + · · · in which the term of lowest degree has degree i
can be expressed as a power series 1

γi
s−i + · · · in which there are i or fewer terms

with negative exponents.
In short, the splitting field K̂ of χ(x, y) can be regarded13 as a subfield of A〈s〉

for a sufficiently large algebraic number field A under an embedding that carries x
to α + sm. Let g1, g2, . . . , gμ be the distinct images of g(x, y) under the Galois group
of K̂ . The irreducible polynomial ψ(X) with coefficients in14 Q(x) of which g(x, y)
is a root is then

∏μ
i=1(X − gi), and trx(g) is − j times the coefficient of Xμ−1 in ψ(X),

where j is the degree of the root field K of χ(x, y) as an extension of its subfield
generated by g, because the matrix that represents multiplication by g relative to a
basis of K over Q(x) can be arranged as a j × j matrix of μ × μ blocks in which the
blocks off the diagonal are all zero and the diagonal blocks are all the matrix whose
first μ−1 rows are the last μ−1 rows of Iμ and whose last row is the negatives of the
coefficients of ψ (except the leading coefficient 1) listed in reverse order. Thus, since
the coefficient of Xμ−1 is −(g1 + g2 + · · · + gμ), the expansion of trx(g) in powers of
s is given by trx(g) = j(g1 + g2 + · · · + gμ) when the gi are represented as elements
of A〈s〉. What is to be shown, then, is that substitution of the n expansions of y in
powers of s, along with substitution of α + sm for x, into g(x, y) gives each of the μ
expansions gi for i = 1, 2, . . . , μ exactly j times.

The Galois group of K̂ expresses each root z of F(x, z) as a polynomial in one
such root with coefficients in Q(x). Substitution of z in these polynomials, together
with substitution of α + sm for x, gives degz F(x, z) distinct embeddings of K̂ in
A〈s〉. The possible expansions of y in powers of s and the possible expansions gi
of g(x, y) all occur as images of y or g(x, y), respectively, under these embeddings.
The action of the Galois group on the embeddings implies the desired conclusion
that each gi occurs for the same number of different expansions of y.

(Note in particular that all fractional powers of x − α cancel when the sum
g1 + g2 + · · · + gμ is computed. This is a clear consequence of the “consistency
requirement” described above, because the sum 1+ωk +ω2k + · · ·+ω(m−1)k is zero
whenever ω is an mth root of unity and ωk � 1.) �	

13 Such an embedding of an algebraic field of transcendence degree 1 in A〈s〉 is analogous to an
embedding of an algebraic number field in the field of complex numbers (see Essay 5.1). As in
the latter case, the field K̂ loses much of its constructive meaning when it is regarded merely as
a subfield of A〈s〉, because elements of A〈s〉 are infinite series. An element of K̂ is a root of a
polynomial whose coefficients are rational functions of x, so the infinite series that represents it as
an element of A〈s〉 can be specified by giving enough terms to determine an unambiguous truncated
solution of the equation in question, after which all later terms are determined by Newton’s polygon.
14 As always, Q(x) denotes the field of quotients of Z[x], which is to say the field of rational
functions in x.
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Thus, the residue of trx( f h)dx at any α is the sum of the coefficients of (x −α)−1

over all n expansions of f h in powers of s = m√x − α. Not only does this sum depend
linearly on the principal parts of f , but the entries in the matrix that describes it are
coefficients in the expansion of h in powers of s. Explicitly, if h = h0+h1s+h2s2+· · ·
and if f = γ1s−1 + γ2s−2 + · · · + γls−l , then the coefficient of (x − α)−1 in f h is
h0γm + h1γm+1 + h2γm+2 + · · · + hl−mγl , a linear function of γ1, γ2, . . . , γl . When
this formula is summed over all principal parts of f it gives, for each holomorphic
differential hdx, an explicit linear function of the principal parts of f that must be
zero.

Theorem If a set of proposed principal parts satisfies the condition just described
for each holomorphic differential hi dx in a basis h1dx, h2dx, . . . , hgdx of the holo-
morphic differentials on χ(x, y) = 0, then it in fact gives the principal parts of some
rational function on the curve. In short, these g necessary conditions for a set of
proposed principal parts to be the principal parts of a function are sufficient.

Proof Let a set of proposed principal parts be called subordinate to a polynomial
q(x) if each α for which it specifies a polynomial γ1s−1 + γ2s−2 + · · · + γls−l is a
root of q(x) and if, moreover, the multiplicity of α as a root of q(x) is at least l/m,
so that multiplication of γ1s−1 + γ2s−2 + · · · + γls−l by q(x) = q(α + sm) makes
all exponents nonnegative. Every set of proposed principal parts is subordinate to
some q(x), so it will suffice to prove that the theorem holds for all sets of proposed
principal parts subordinate to a given q(x). Moreover, those subordinate to q(x) are
also subordinate to q(x)r(x) for any polynomial r(x), so one can assume without
loss of generality that q(x) is a polynomial of high degree.

If f (x, y) is finite at x = ∞ and its principal parts are subordinate to q(x), then
q(x) f (x, y) has order at most deg q at x = ∞ and has no poles for finite x, which is to
say that f (x, y) = p(x, y)/q(x), where p(x, y) is in Θ(xν) for ν = deg q. But for large
ν the set of such functions f (x, y) is a vector space of dimension nν − g + 1 over the
field of constants. Functions that differ by a constant have the same principal parts
and conversely, so the vector space of principal parts that actually occur is seen in
this way to have dimension nν − g for large ν.

On the other hand, the dimension of the space of proposed principal parts subordi-
nate to q(x) can be found in the following way. If α is a root of q(x) of multiplicity μ,
and if none of the n expansions of y in powers of x−α involve fractional powers, the
proposed principal parts subordinate to q(x) contain nμ coefficients corresponding to
this α, μ coefficients in each expansion (those of (x−α)−1, (x−α)−2, . . . , (x−α)−μ).
The same formula μn holds even when some expansions involve fractional powers,
because the proposed principal part corresponding to an expansion in powers of
m√x − α contains m times as many coefficients in the required range, but by the

“consistency requirement” the coefficients of just one determines those of a set of m
of them. Therefore, a set of proposed principal parts subordinate to q(x) contains nν
unknown coefficients γ, where n = degy χ and ν = deg q.

In short, the principal parts that actually occur are a subspace of codimension g

in the nν-dimensional space of proposed principal parts subordinate to q(x) when
ν = deg q is sufficiently large. Since the conditions imposed by the holomorphic
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differentials—the sum of the residues of trx( f h) is zero for all holomorphic differ-
entials hdx—are expressed by g homogeneous linear conditions on the coefficients
of the principal parts, the actually occurring ones account for all of those that sat-
isfy the necessary conditions provided the necessary conditions are independent
(because then they determine a subspace of codimension g). In short, it will suffice
to prove that every polynomial divides one for which the g necessary conditions are
independent as conditions on sets of proposed principal parts subordinate to that
polynomial.

The g homogeneous linear conditions imposed by the holomorphic differentials
on proposed principal parts subordinate to q(x) are expressed by a g × (nν) matrix
of elements of A, call it Cq . What is to be shown is that every polynomial divides
a polynomial q(x) for which the rank of Cq is g. This will be done by showing that
if the rank of Cq is less than g and if β is any element of A that is not a root of
q(x), then replacing q(x) with (x − β)q(x) increases the rank of Cq , except for very
extraordinary coincidences in the choice of β which can easily be avoided.

In fact, changing q(x) to (x−β)q(x) increases the degree of q(x) by 1 and therefore
adds n columns toCq . Each of the new columns contains the g values of the coefficient
hi of one of the basis h1dx, h2dx, . . . , hgdx of holomorphic differentials at one of
the n points on the curve at which x = β. More precisely, let β be required to be an
element of A (β can be taken to be a positive integer) for which χ(β, X) has distinct
roots; then each column of the new Cq corresponds to one of the roots γ of χ(β, X)
and it contains the values of h1, h2, . . . , hg when (β, γ) is substituted for (x, y). It is
to be shown that if the original Cq has rank less than g, then the extended Cq has
rank greater than that of the original, except under extraordinary circumstances.

The ranks of the original and the extended Cq are unchanged by a change of basis
of the holomorphic differentials. If the rank of the original Cq is less than g, then
there are constants c1, c2, . . . , cg, not all zero, such that multiplication of the original
Cq on the left by the row matrix with entries c1, c2, . . . , cg gives a row of zeros. If
a new basis of the holomorphic differentials is used in which the first holomorphic
differential is

∑g
i=1 cihi dx, the original Cq becomes a matrix whose first row is zero

and the extended Cq becomes a matrix in which the first row contains nν zeros and
n new entries that are the values of the new h1 at the n points (x, y) = (β, γ). Thus,
the extended Cq has greater rank unless all n of these values are zero.

Clearly, it would be an extraordinary coincidence if a value of β chosen at random
were to result in even one value of h1 that was zero, much less n of them. Since the
number of zeros of the rational function h1 (which is nonzero and does not have a
pole at (β, γ) by the choice of β) is finite, one can easily find a new β for which
the first row of the extended Cq contains a nonzero entry, and therefore find a β for
which the rank of Cq is increased. �	

This theorem determines exactly which proposed principal parts are actual prin-
cipal parts and therefore solves the Riemann–Roch problem of determining the
dimension of the space of rational functions with prescribed poles with, at most,
prescribed multiplicities. In the notation and terminology of the proof, one can say
that the vector space of functions whose principal parts are subordinate to q(x) has
dimension nν − ρ + 1, where ρ is the rank of Cq , because the proposed principal
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parts are a space of dimension nν, those that actually occur satisfy ρ independent
conditions, and the linear function that carries functions to their principal parts has
a one-dimensional kernel.

This formula nν − ρ + 1 gives the answer only in the special cases in which,
roughly speaking, a pole is allowed at one point only if a pole is allowed at all other
points where x has the same value (multiplicities counted). A more general case of
the formula can be stated by introducing a little more terminology. Let one set of
proposed principal parts be said to be subordinate to another if they make use of the
same algebraic number field A, if each α of the first also occurs in the second, and if
for each proposed expansion of y in powers of x − α, the terms in the corresponding
expression γ1(

m√x − αi)−1+γ2(
m√x − αi)−2+· · ·+γl(

m√x − αi)−l (where in most cases
m is 1) of the first all have exponents at least as great (bearing in mind that−1 is greater
than −2) as the smallest exponent of a nonzero term in the corresponding expression
of the second. In short, the first set of proposed principal parts calls for no poles of
greater multiplicity than are called for by the second. Let the number of coefficients
in a set of proposed principal parts be the number of elements of A that need to be
specified to describe a set of proposed principal parts that is subordinate to it (bearing
in mind that if it calls for terms with fractional exponents, then the coefficients of
one of the m expressions γ1(

m√x − αi)−1 + γ2(
m√x − αi)−2 + · · · + γl(

m√x − αi)−l

determine those in the other m − 1).
Corollary 3 (Riemann–Roch Theorem) The functions whose principal parts are
subordinate to a given set of proposed principal parts form a vector space of dimen-
sion N − ρ + 1, where N is the number of coefficients in the given set of proposed
principal parts and ρ is the rank of the g × N matrix that describes the necessary
and sufficient conditions of the theorem.

Deduction The sets of principal parts subordinate to the given set form a space
of dimension N; the necessary and sufficient conditions describe a subspace of
codimension ρ, which is the space of possible principal parts of actual functions;
and the space of functions with these principal parts has dimension one greater,
because two functions with the same principal parts differ by a constant. �	

The theorem also implies that the conditions (1) of Essay 4.6 satisfied by algebraic
variations of N points on a curve are sufficient, with a few added assumptions, for a
proposed variation to be algebraic:
Corollary 4 Let (xi, yi) for i = 1, 2, . . . , N be pairs of algebraic numbers that sat-
isfy χ(xi, yi) = 0, and suppose that χ(xi, X) has n distinct roots for each xi ,
i = 1, 2, . . . , N , so that Newton’s polygon gives a unique power series solution
y = yi + β(x − xi) + · · · of χ(xi, y) for each i. For any list of nonzero15 algebraic
numbers δ1, δ2, . . . , δN that satisfy

∑N
i=1 h(xi, yi)δi = 0 for all holomorphic differen-

tials, there is a rational function f on χ(x, y) = 0 whose zeros are precisely at the
points (xi, yi) and whose expansion f = γi(x − xi) + · · · in powers of x − xi at each
such point shows that dx

d f

�
�
(xi,yi )

= δi in the sense that δi = 1
γi

.

15 It is natural to exclude δi = 0, because the points (xi, yi ) for which δi = 0 can be omitted from
the list.
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More picturesquely, prescribed infinitesimal changes dxi in the x-coordinates of
the points are generated by changing f from 0 to df , which changes xi to xi + δidf ,
provided the prescribed changes satisfy the necessary conditions

∑
hdxi = 0 for all

holomorphic differentials hdx.

Deduction The required function f is found by using the theorem to construct a
function θ finite at x = ∞ whose principal parts are δi

x−xi
for i = 1, 2, . . . , N and

setting f = 1
θ . Then f is zero only at the (xi, yi), and at these points 1

f =
δi

x−xi
+ · · · ,

from which f = 1
δi
(x − xi) + · · · follows. �	

Corollary 5 When (xi, yi) for i = 1, 2, . . . , N are points on χ(x, y) = 0 as in Corol-
lary 4, the rational functions on χ(x, y) = 0 that have simple poles, at most, at these
N points and no other poles form a vector space of dimension N − g + 1 + μ, where
g is the genus of the curve and μ is the dimension of the vector space of holomorphic
differentials that are zero at all N points.

Deduction By Corollary 4, the dimension is N − ρ + 1, where ρ is the rank of the
g × N matrix whose columns correspond to the N given points and whose g entries
in each column are the values at the corresponding point of the coefficients hi of a
basis h1dx, h2dx, . . . , hgdx of the holomorphic differentials. What is to be proved
is that in this case ρ = g − μ, which follows immediately from the observation that
μ is the dimension of the kernel of the linear function from Ag to AN given by
multiplication of row matrices of length g on the right by the matrix. �	

In particular, the space of functions described in Corollary 5 has dimension at
least N − g + 1.

Essay 4.8 The Genus Is a Birational Invariant

So far in these essays, the genus of the field of rational functions on an algebraic curve
χ(x, y) = 0 has been described in ways that used the special element x of the field,
first when the description was in terms of the dimension of the vector space Θ(xν),
then when it was in terms of the dimension of the space of holomorphic differentials
hdx over the field of constants. However, the geometric motivation of the concept in
terms of algebraic variations leads one to believe that the genus depends only on the
curve, not on the parameter x used to describe the curve. If z is any element of the
root field of χ(x, y) that is not a constant, one can construct16 an element w of this
root field such that every element of the field can be expressed rationally in terms of

16 See Essay 2.2. The field Q(z) of rational functions in z is isomorphic to a subfield of the root
field, and the root field has finite degree over the subfield provided z is not a constant. Adjunction
of x and y to Q(z) gives an explicit extension of Q(z) that is isomorphic to the root field of χ(x, y).
By the theorem of the primitive element, such a double adjunction can be obtained by a simple
adjunction, and one can describe a simple adjunction as the root field of an irreducible monic
polynomial with coefficients in Z[z] in the usual way.
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z and w and such that z and w satisfy a relation of the form χ1(z,w) = 0, in which
χ1(z,w) is an irreducible polynomial with integer coefficients that is monic in w.
In short, the root field of χ(x, y) can also be described as the root field of χ1(z,w).
What is to be expected, and what will be proved in this essay, is that the genus is the
same whether x or z is the special parameter used to define it. In other words, the
genus depends only on the field of rational functions on the curve, which is what it
means to say that the genus is a birational invariant.

The needed connection is obvious from the point of view of differential calculus:
The rule hdx ↔

(
h dx
dz

)
dz establishes a one-to-one correspondence between differ-

entials expressed with respect to x and differentials expressed with respect to z. The
heuristic meaning of “holomorphic” is “no poles,” so this correspondence between
differentials with respect to x and those with respect to z should be expected to put
the holomorphic differentials in the two cases in one-to-one, linear correspondence,
implying that the dimension of these spaces of holomorphic differentials—the genus
in the two cases—should be the same.

It is easy to give algebraic meaning to dx
dz . Let x and z be given elements of

the root field K of χ(x, y). There is17 an irreducible polynomial φ(X, Z) in two
indeterminates with integer coefficients—it is uniquely determined, up to its sign,
by x and z—with the property that φ(x, z) = 0 in K . The derivative of x with respect
to z is found algebraically by implicit differentiation: differentiation of φ(x, z) = 0
gives φx(x, z)dx + φz(x, z)dz = 0 and therefore gives

dx
dz

= −
φz(x, z)
φx(x, z)

,

where the subscripts indicate partial derivatives. The theorem to be proved states that
when dx

dz is defined algebraically in this way, hdx is holomorphic if and only if h dx
dz dz

is, when, naturally, one determines whether h1dz is holomorphic for h1 = h dx
dz by

dealing with it as a differential in the root field of χ1(z,w) rather than the root field
of χ(x, y).

The notion of “principal parts” of an element of K that was defined in the
preceding essay will play an important role in the proof, but now the dependence of
these principal parts on x needs to be emphasized: The principal parts of f relative
to a parameter x are the terms with negative exponents18 in all possible expansions
of f in (possibly fractional) powers of x − α for algebraic numbers α. (Possible

17 Since the root field is an extension of Q(x) of finite degree n, the powers 1, z, z2, . . . , zn are
linearly dependent over Q(x), which is to say that one can find a nonzero polynomial of degree at
most n with coefficients in Q(x) of which z is a root. The needed relation φ(x, z) = 0 is found by
clearing denominators and passing to an irreducible factor if necessary. Because the root field of
χ(x, y) contains Q(x), the relation φ(x, z) = 0 must involve z. To say that z is a parameter—that
it is not a constant—means that φ also involves x; if this is not the case, the denominator of dx

dz is
zero and the derivative is not defined (x is not a function of z).
18 This definition is imprecise in that it ignores the question of multiplicities. In Essay 4.7, n =

degy χ distinct embeddings of the root field of χ in A〈s〉 were constructed for each given α. A
given f may have fewer than n distinct images, so the same principal parts may occur for more than
one embedding. Obviously, Lemma 1 is not affected by the way in which multiplicities are treated.
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principal parts at x = ∞ will be ignored.) As was shown in the last essay, for a given
f one can find a polynomial q(x) with the property that the only possible principal
parts of f relative to x occur when α is a root of q(x). Therefore, the determination
of the principal parts relative to x is a finite—and usually quite simple—calculation.
One can then use the following lemma to determine whether f dx is holomorphic
for finite x:

Lemma 1 A differential f dx is holomorphic for finite x if and only if all terms of all
principal parts of f relative to x have exponents greater than −1.

This criterion says roughly that f dx has no poles, because at a point of the curve
where x = α there is a local parameter s for which x − α = sm for some m; to say
that f dx has no pole at this place where s = 0 is to say that f d(sm) = m f sm−1 ds
has no pole, which is to say that multiplication of f by sm−1 clears its denominator,
or, what is the same, that its expansion in powers of x − α = sm contains no terms
whose exponents are less than or equal to −1.

Proof Suppose first that all terms of all principal parts of f relative to x do have
exponents greater than−1. If θ is integral over x, then its image under any embedding
of K in A〈s〉 that takes x to α + sm for some m is a series that contains no powers
of s with negative exponents. Therefore, it contains no powers of x − α = sm with
negative exponents, so the image of f θ under any such embedding contains no
terms in which the exponent on x − α is −1 or less. As was seen in Essay 4.7, the
expression of trx( f θ) as a power series in x − α is the sum of the n images of f θ in
A〈s〉. Therefore, it is a series in which no term has an exponent less than or equal to
−1. Thus, since it is a series expansion of a rational function of x, which implies that
it contains no terms with fractional exponents, it is a power series in x−α. Since this
is true for every α, it follows that trx( f θ) must in fact be a polynomial in x whenever
θ is integral over x. In short, f dx is holomorphic for finite x, as was to be shown.

Conversely, suppose that some embedding of the root field K of χ(x, y) in A〈s〉
that carries x to α+sm—where α is an algebraic number andm is a positive integer—
carries f to a series in which the exponent on s is less than or equal to −m, so that
the exponent on x − α is less than or equal to −1. Let z1, z2, . . . , zn be an integral
basis of the root field over x, and let θ =

∑
cizi , where c1, c2, . . . , cn are constants to

be determined. Consider the terms in the n expansions of θ in (possibly fractional)
powers of x−α in which the exponents are less than 1. When the n expansions do not
involve fractional powers, the expansion of each zi has just one term—the constant
term—in which the exponent is less than 1 in each of the n embeddings, and the
same is true of θ; in this case, the n constant terms in the series representations of θ
are the entries of the column matrix Mc where c is the column matrix with entries
c1, c2, . . . , cn and M is the n × n matrix whose jth column contains the n constant
terms in the images of zj under the n embeddings.

When one or more of the n expansions do involve fractional exponents—when
the curve is ramified at x = α—a similar statement is true. An embedding involving
powers of s = m√x − α in which m > 1 implies m − 1 others in which s is replaced
by ωs for the mth roots of unity ω other than 1. There are precisely m terms (some
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of which may be zero) in any one of these series in which the exponent on x − α
is less than 1, namely, the terms in s0, s1, . . . , sm−1. Since the sum of the various
values of m is n, it follows that all coefficients of all n expansions of θ in which
the exponents on x − α are less than 1 are determined by just n such coefficients,
namely, the coefficients of a selection of the expansions when just one expansion is
selected from each set of m related expansions. The same is true of each zj , and all
coefficients of θ are determined by those given by a formula Mc, as before, in which
the jth column of M gives the coefficients of the selected expansions of zj .

(For example, in the case of the integral basis 1, y, y2/x of the root field of
y3 − xy + x3 over x, it was shown in Essay 4.4 that there are three expansions of
y when α = 0, namely, y = ±

√
x + · · · and y = 0 + · · · , where the omitted terms

are divisible by x. Therefore, every θ integral over x has three expansions, but the
one corresponding to y = −

√
x + · · · can be derived from the one corresponding to

y =
√
x+· · · by changing

√
x to−

√
x. When just two expansions, those corresponding

to y =
√
x + · · · and y = 0 + · · · , are selected, the selected expansions of θ =

c1 + c2y + c3y
2/x are given by the formula

Mc =
⎡
⎢
⎢
⎢
⎢
⎣

1 0 1
0 1 0
1 0 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

c1
c2
c3

⎤
⎥
⎥
⎥
⎥
⎦

,

where the first two rows contain the coefficients of 1 and
√
x in the first selected

expansion and the last row contains the coefficient of 1 in the second.)
That the matrix M is invertible can be proved as follows: If Mc = 0, then the n

expansions of θ contain no terms in which the exponent on x − α is less than 1, so
θ/(x −α) is integral over x. If any ci were nonzero, one of the coefficients ci/(x −α)
in the representation of θ/(x−α) relative to the integral basis z1, z2, . . . , zn would not
be a polynomial, contrary to the definition of an integral basis. Therefore, Mc = 0
implies c = 0, so the square matrix M is invertible. In other words, the coefficients
in the terms of the expansion of θ in which the exponent on x − α is less than 1 can
be given arbitrarily chosen values (subject to the relations among m such expansions
when m > 1 that were just noted) by taking the column matrix c to be the column
matrix of chosen values multiplied on the left by M−1.

Because the principal parts of f are assumed to contain a nonzero term in which
the exponent on x − α is less than or equal to −1, the least such exponent has the
form e = −i − j

m , where i ≥ 1 and 0 ≤ j < m. Let θ =
∑
cizi be chosen so that the

coefficient of (x − α)j/m in the expansion of θ in the embedding in A〈s〉 that gives
rise to the nonzero term with exponent e in the expansion of f is nonzero, but all
other expansion coefficients of terms with exponent less than 1 are zero. Then the
expansion of f θ in m embeddings begins γ(x −α)−i + · · · , where γ � 0, while in the
remaining embeddings the expansion of f θ contains no terms in which the exponent
on x − α is less than or equal to −i. Therefore, the sum of the n expansions of f θ is
mγ(x − α)−i + · · · , where i ≥ 1. In particular, this sum is not a polynomial in x.

The bilinear form “the trace of the product” from K × K to Q(x) is described,
relative to the integral basis z1, z2, . . . , zn, by an n × n symmetric matrix S of poly-
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nomials in x with integer coefficients, namely, the matrix whose entry in the ith row
of the jth column is trx(zizj). To say that f dx is holomorphic for finite x means
simply that all entries of [ f ]S are polynomials in x when [ f ] denotes the row matrix
whose entries are the coefficients that represent f in the integral basis z1, z2, . . . , zn.
If this were the case, the sum of the expansions of f θ, which is [ f ]S[c] where [c]
contains the coefficients of θ =

∑
cizi as above, would also be a polynomial in x.

Since it is not, f dx must not be holomorphic for finite x, which completes the proof
of Lemma 1. �	

Theorem Let z be a parameter in the root field of χ(x, y) and let dx
dz be the element

of the root field defined using implicit differentiation as above. A differential f dx is
holomorphic if and only if f dx

dz dz is holomorphic.

Proof The reciprocal of dx
dz is dz

dx , so it will suffice to prove that “ f dx is holomorphic”
implies “ f dx

dz dz is holomorphic.”
Let δ be a given algebraic number and let an embedding of K in A〈σ〉 be given

that carries z to δ +σμ for some μ > 0. It is to be shown that if hdx is holomorphic,
then the image of h · dx

dz under this embedding contains no terms in which the
exponent on z − δ is less than or equal to −1, or, what is the same, that all exponents
in the expansion of (z − δ) · h · dx

dz are positive.
Assume first that the image of x under the given embedding has no terms in

which the exponent on σ is negative; say it is α + α′σ + α′′σ2 + · · · . In this case,
let m be the exponent of the first nonzero term in the expansion of x − α. (There
is such a term because x is not a constant.) When an mth root ε1 of the reciprocal
of α(m) is adjoined to A, if necessary, the following lemma constructs a substitution
σ = ε1s + ε2s2 + ε3s3 + · · · that carries x = α + α(m)σm + · · · to α + sm.

Lemma 2 Given a nonzero power series Amxm + Am+1xm+1 + Am+2xm+2 + · · · in
which the coefficients are algebraic numbers and the first nonzero term contains x
to the power m > 0, and given an mth root C1 of 1/Am, construct an infinite series
x = C1s + C2s2 + C3s3 + · · · with algebraic number coefficients whose substitution
in the series results in sm.

Proof Substitution of x = C1s+C2s2+C3s3+· · · in Amxm+Am+1xm+1+Am+2xm+2+
· · · gives Bmsm + Bm+1sm+1 + Bm+2sm+2 + · · · where Bm = AmCm

1 = 1, Bm+1 =

mAmCm−1
1 C2 + Am+1Cm+1

1 , . . .. The formula for Bm+i when i > 0 contains the
terms mAmCm−1

1 Ci+1 and Am+iCm+i
1 ; the remaining terms in the formula constitute

a polynomial in C1, C2, . . . , Ci and Am, Am+1, . . . , Am+i−1 with integer coefficients.
Thus, the requirement Bm+i = 0 for i > 0 is the statement that Ci+1 is a polynomial
in C1, C2, . . . , Ci and Am, Am+1, . . . , Am+i divided by mAmCm−1

1 = m/C1. Since
Am = 1/Cm

1 , it follows that each successive Ci+1 can be expressed rationally in
terms of C1, Am+1, Am+2, . . . , Am+i . The series C1s+C2s2 +C3s3 + · · · constructed
in this way has the required property. �	

Because the given embedding K → A〈σ〉 followed by the substitution σ =

ε1s + ε2s2 + · · · carries x to α + sm, and because hdx is holomorphic, the resulting
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embedding K → A〈s〉 carries h to a series in s in which no term has an exponent
less than or equal to −m on s. Otherwise stated, all exponents in the expansion of
(x − α) · h in powers of s are positive. Since this expansion is found by substituting
the expansion of σ in powers of s into the expansion of (x − α)h in powers of σ, it
follows that all exponents in the expansion of (x −α) · h in powers of σ are positive.

Let this expansion be multiplied by the expansion of dx
dz ·

z−δ
x−α in powers of σ. On

the one hand, the result is (z − δ) · h · dx
dz . On the other hand, if φ(x, z) = 0 is the

equation satisfied by x and z, then φ (α+α(m)σm+ · · · , δ+σμ) is identically zero, so
differentiation with respect to σ gives φx(x, z)(mα(m)σm−1+ · · · )+φz(x, z)μσμ−1 =

0, where x and z stand for their expansions as power series in σ and the omitted
terms are divisible by σm. Multiplication by σ then gives φx(x, z)(mα(m)(x − α) +
· · · )+ φz(x, z)μ(z − δ) = 0, where the omitted terms are divisible by σm+1. Division
by φx(x, z) (which is not zero, because z is not a constant) times x − α gives
mα(m) + · · · − μ dxdz · z−δ

x−α = 0, where the omitted terms are all divisible by σ. This
equation shows that the expansion in powers of σ of dx

dz
z−δ
x−α is the constant m

μ α
(m)

plus terms in σ. Therefore, (z − δ) · h · dx
dz = ((x − α) · h)

(
m
μ α

(m) + · · ·
)

is a product
of two series in σ, one with positive exponents and one with no negative exponents,
which shows that all terms in the expansion of (z − δ) · h · dx

dz in powers of σ
have positive exponents, a conclusion that holds for any embedding K → A〈σ〉 that
carries z to δ + σμ and carries x to a series with no negative exponents.

If an embedding that carries z to δ + σμ carries x to a series with some negative
exponents, it carries u = 1

x to a series in which all exponents are positive. Since h
u2 ·du

is holomorphic for finite u by virtue of the assumption that hdx is holomorphic, it
follows that all exponents in the expansion of (z − δ) · h

u2 · du
dz in powers of σ are

positive. By the chain rule, dx
dz = dx

du
du
dz = −1

u2 · du
dz when x = 1

u , so it follows that all
exponents in the expansion of (z − δ) · h · dx

dz = (z − δ) · h · −1
u2 · du

dz in powers of σ
are positive in this case too.

Thus, Lemma 1 implies that h · dx
dz · dz is holomorphic for finite z.

By the same token, h · dxdv · dv is holomorphic for finite v for any parameter v and
in particular when v = 1

z . Therefore h · dx
dz · −1

v2 · dv is holomorphic for finite v = 1
z ,

which completes the proof that h · dx
dz · dz is holomorphic. �	

Corollary The genus is a birational invariant.

The determination of the genus can be accomplished by finding holomorphic
differentials, for which the following proposition is useful.

An algebraic curve χ(x, y) = 0 is nonsingular for finite x if no pair (α, β)
of algebraic numbers satisfies all three conditions χ(α, β) = 0, χx(α, β) = 0, and
χy(α, β) = 0.
Proposition If χ(x, y) = 0 is nonsingular for finite x, then hdx is holomorphic for
finite x if and only if h · χy is integral over x.

In other words, when χ(x, y) = 0 is nonsingular for finite x, the differentials
holomorphic for finite x are those of the form φ(x,y)dx

χy (x,y)
, where φ(x, y) is integral

over x.
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Proof First assume that hdx is holomorphic for finite x. By the proposition of
Essay 4.5, it will suffice to prove that the image of h · χy in each embedding of K in
A〈s〉 that carries x to α + sm, and carries rational numbers to themselves, is without
negative exponents.

When χy(α, β) � 0, β is a simple root of χ(α, y), which implies, as was shown
in Essay 4.4, that x = α + s, y = β is an unambiguous truncated solution of
χ(x, y) = 0. Such a truncated solution implies an infinite series solution y = β +
β′(x − α) + β′′(x − α)2 + · · · . The corresponding embedding K → A〈s〉 does not
involve fractional powers of x−α. The assumption that hdx is holomorphic for finite
x implies that the image of h in A〈s〉 contains no exponents less than or equal to −1,
so all exponents are greater than or equal to zero. The same is true of the image of
χy—it is a polynomial in x and y and is therefore integral over x—so the image of
h · χy under the embedding has no negative exponents, as was to be shown.

Otherwise, χx(α, β) � 0, because the curve is nonsingular for finite x. In this case,
the polynomialΦ0(t) in χ(α+ s, β+ t) = Φ0(s)+Φ1(s)t+ · · ·+ tn is divisible by s but
not s2, so the Newton polygon algorithm leads to a “polygon” with one segment from
(0, 1) to a point where ji = 0; call it (τ, 0). The ambiguity of the truncated solution
x = α + s, y = β is then τ, and the output of Newton’s polygon is τ unambiguous
truncated solutions x = α+sτ1 , y = β+

τ√
ζ0 ·s1 (one solution for each of the τ possible

values of τ√
ζ0). By Lemma 2, the infinite series expansion y−β =

τ√
ζ0 ·s1+β

′′s1+· · ·
implies an infinite series expansion s1 = ε1(y−β)+ε2(y−β)

2+· · · , whose substitution
in τ√

ζ0 · s1 + β′′s1 + · · · gives y − β and whose substitution in the embedding
K → A〈s1〉 therefore gives an embedding K → A〈y− β〉 that carries y to β+(y− β).
Because h · dx

dy · dy is holomorphic, it follows that the image of h · dx
dy = −h ·

χy
χx

under this embedding has no exponents less than or equal to −1. It has no fractional
exponents, so all exponents in the expansion of h ·

χy
χx

in powers of y − β are at
least zero. Therefore, the same is true of its expansion in powers of s1. Since χx is a
polynomial in x = α+sτ1 and y = β+

τ√
ζ0 ·s1+· · · , the expansion of h · χy = h · χyχx

· χx
in powers of s1 has no terms with negative exponents, as was to be shown. Thus, the
proof that “hdx is holomorphic for finite x” implies “h · χy is integral over x” is
complete.

To prove, conversely, that all differentials of the form φ
χy

dx in which φ is integral
over x are holomorphic for finite x it will suffice to prove that 1

χy
dx is holomorphic

for finite x. Certainly for any embedding x = α + sm, y = β + β′s + β′′s2 + · · ·

for which χy(α, β) � 0 the expansion of 1
χy

in powers of s contains no negative
exponents. All other embeddings have the form x = α+ sτ1, y = β+ β′s1+ β

′′s2
1+ · · · ,

where β′ � 0—as was just seen—by virtue of the assumption that χ(x, y) has no
singularities for finite x. Differentiation of χ(α + sτ1, β + β

′s1 + · · · ) = 0 gives
χx(α + sτ1, β + β

′s1 + · · · ) · τsτ−1
1 + χy(α + sτ1, β + β

′s1 + · · · ) · (β′ + · · · ) = 0. Thus,
1
χy

= −
β′+· · ·

χx ·τ ·s
τ−1
1

. Since χx(α, β) � 0, it follows that −τ+1 is the least exponent in the

expansion of 1
χy

in powers of s1. Since s−τ+1
1 = (y − β)−1+ 1

τ , the desired conclusion
that the principal parts of 1

χy
relative to this embedding K → A〈s〉 contain no

exponents that are −1 or less follows. �	
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Example 9 χ(x, y) = y2 + x4 − 1 (the elliptic curve mentioned in Essay 4.2)
Since χy = 0 implies y = 0 and χx = 0 implies x = 0, this curve is nonsingular

for finite x, because (α, β) = (0, 0) does not satisfy β2 + α4 − 1 = 0. Therefore, the
differentials holomorphic for finite x are those of the form φ dx

2y , where φ is integral
over x. The substitution x = 1

u , y = v
u2 puts this curve in the form v2 + 1 − u4 = 0

and puts dx/2y in the form −
( 1
u2

)
du/2

(
v
u2

)
= −du/2v, so φdx/2y is holomorphic

if and only if φ is integral over x and over u = 1/x, which is to say, if and only if φ
is constant.

Example 10 χ(x, y) = y3 + x3y + x (the Klein curve)
This curve is nonsingular for finite x, because 3β2+α3 = 0 and 3α2β+1 = 0 imply

that β = − 1
3α2 and α3 = −3β2 = − 1

3α4 , so that α7 = − 1
3 ; therefore β3 +α3β+α � 0,

because α3β+α = α3· −1
3α2 +α =

2α
3 is not the negative of β3 =− 1

27α6 =− α
27·(−1/3) =

α
9 .

Since χy(x, y) = 3y2 + x3, every holomorphic differential can be written φ dx

3y2+x3

for some φ integral over x. Because 1, y, y2 is an integral basis over x (Example 2
of Essay 4.5), φ must be a polynomial in x and y. Determining the holomorphic
differentials on the Klein curve therefore amounts to determining the polynomials
φ(x, y) in x and y for which φ dx

3y2+x3 is holomorphic. Such a differential is holomorphic
for finite x, and the problem is to determine the conditions under which it is without
poles at x = ∞.

The substitution x = 1
u , y = v

u3 transforms the curve into v3+u3v+u8 = 0, a curve
with a singularity at (u, v) = (0, 0). The first step of the Newton polygon algorithm
in the case in which the value of u is 0 calls for setting u = s and v = 0 + t, which
leads to s8 + s3t + t3. The polygon is based on the points (0, 8), (1, 3), and (3, 0), so
it consists of two segments 5i + j = 8 and 3i + 2 j = 9. The first segment furnishes
an unambiguous truncated solution u = s, v = −s5, which implies an infinite series
solution, and the second furnishes the remaining two solutions in the form of the
unambiguous truncated solutions u = σ2, v = ±iσ3.

The expression of dx
3y2+x3 relative to the first of these is

dx
3y2 + x3 =

(

−
du
u2

)

·
1

3 · v2

u6 + 1
u3

=
−s4ds

(3s10 + · · · )2 + s3 = (−s + · · · )ds.

Therefore, there is no pole for this embedding if this differential is multiplied by
x = 1

s + · · · or by any power of y = v
u3 = −s2+ · · · . The expression of dx

3y2+x3 relative
to the second is

dx
3y2 + x3 =

−2dσ
σ3 ·

1

3 ·
(−σ6+· · · )

σ12 + 1
σ6

=
2dσ
σ3 ·

σ6

2 + · · ·
= (σ3 + · · · )dσ.

Therefore, it remains finite for this embedding if it is multiplied by x = 1
σ2 or by

y = ± i
σ3 + · · · but not if it is multiplied by any polynomial of higher degree in x

or y.
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In conclusion, the holomorphic differentials in this case are

(a + bx + cy)dx
3y2 + x3 ,

as was already found in Example 7 of Essay 4.6.



Chapter 9
Abel’s Theorem

. . . every theorem of algebra or higher analysis, no matter how remote it may seem, can
be expressed as a statement about natural numbers . . . [This is] something I often heard
Dirichlet say.1—R. Dedekind [23, p. 338, vol. 3]

Essay 9.1 What Was Abel’s Theorem?

Abel’s 1826 Paris Memoir Mêmoire sur une propriété générale d’une classe très
étendue de fonctions transcendentes [2] deals with a certain type of transcendental
function, namely, indefinite integrals of the form

∫
f (x, y)dx, where f (x, y) is a

rational function of two variables and y is an algebraic function of x. Such integrals
are now called Abelian integrals. They generalize elliptic integrals,2 which are
Abelian integrals in which the definition of y as an algebraic function of x has the
particular form y2 = f (x), where f (x) is a polynomial of degree 3 or 4 with rational
coefficients and distinct roots. Abel’s intention in the Paris Memoir, as he described
it in the introduction, was to generalize a known property of elliptic integrals to all
Abelian integrals.

For Abel, an algebraic function y of x is defined by an equation of the form

χ(x, y) = p0(x) + p1(x)y + p2(x)y2 + · · · + pn−1(x)yn−1 + yn = 0,

where p0(x), . . . , pn−1(x) are polynomials. According to Abel, this “gives for the
function y a number n of different forms.” Algebraic functions are not functions in
the modern sense, because they can take two different values for the same x. Over
the complex numbers, the implicit function theorem gives one way to make this

1 . . . daß jeder auch noch so fern liegende Satz der Algebra und höheren Analysis sich als ein Satz
über die natürlichen Zahlen aussprechen läßt, eine Behauptung, die ich auch wiederholt aus dem
Munde von Dirichlet gehört habe.
2 Abel calls these “elliptic functions,” but today the term “elliptic function” refers to a function
whose inverse is an elliptic integral.
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precise.3 However, analytic continuation can change one of these locally defined
functions into another, which is part of what led Riemann to introduce the concept
of a Riemann surface. These approaches involve complex numbers and hence are not
constructive. Instead, observe that the splitting field of χ(x, y) over Q(x) contains
n roots of the polynomial, which are algebraic versions of the “different forms”
mentioned by Abel. Adjoining one the roots, call it y, to Q(x) gives the curve field
K = Q(x, y) as studied in Chapter 8.

One expression of the property of elliptic integrals that Abel wanted to generalize
is that the sum of two elliptic integrals

∫
f (x1, y1)dx1+

∫
f (x2, y2)dx2 is an elementary

function when the points (x1, y1) and (x2, y2) satisfy a suitable condition. The theorem
sketched by Abel in the introduction to the Paris Memoir generalizes this to a
statement about arbitrary Abelian integrals. Specifically, it states that, for an Abelian
integral

∫
f (x, y)dx, the sum

∫
f (x1, y1)dx1 + · · · +

∫
f (xμ, yμ)dxμ = v,

where the xi and yi are algebraic functions of parameters a, a′, a′′, . . . , is an “alge-
braic and logarithmic function” when xi and yi satisfy certain algebraic conditions.
Unlike the special case of elliptic integrals, however, in the general case it is normally
necessary to impose more than one condition. The number of conditions is in fact
the genus of the curve field K = Q(x, y).

Abel explains “algebraic and logarithmic function” as follows:

If now dv is a rational differential function of the quantities a, a′, a′′, . . . , its integral or the
quantity v will be an algebraic and logarithmic function of the a, a′, a′′, . . . [2, p. 149]4

In other words, Abel wants to study when the sum

(1) f (x1, y1)dx1 + · · · + f (xμ, yμ)dxμ = dv

is a rational differential in the parameters a, a′, a′′, . . . This is a purely algebraic
question.

The memoir [2] has different versions of what might be called “Abel’s theorem.”
After developing background material on normal bases and holomorphic differentials
in Essays 9.2–9.5, four “Abel theorems” inspired by [2] will be discussed. The
theorem of Essay 9.7 shows that (1) is a rational differential in the parameters when
the (xi, yi) are a full set of conjugate solutions (this will be made precise), and the
theorem of Essay 9.8 proves that in the situation of Essay 9.7, the sum in (1) equals
zero when f (x, y) is a holomorphic differential. This is where the genus makes its

3 The equation χ(x, y) = 0 defines y locally as a function of x in the sense that, by the implicit
function theorem (see, for example, [27, pp. 133–134]), the relation χ(x, y) = 0 defines y as a
function of x for all values of x that are sufficiently near a value x1 of x for which there is a y1 that
satisfies χ(x1, y1) = 0 and ∂χ

∂y (x1, y1) � 0. The resulting function satisfies y(x1) = y1.
4 Loosely speaking, this claim follows from the method of partial fractions explained in Endnote 9.1.
See Essays 9.7 and 9.9 for the precise relation between dv and “algebraic and logarithmic” functions.
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first appearance. Finally, the two theorems of Essay 9.10 are versions of an addition
theorem that makes essential use of the genus.

Steven Kleiman’s paper What is Abel’s Theorem Anyway? [50] is an important
source for the history of Abel’s theorem. He discusses four “Abel theorems” implicit
in [2] that are related to the theorems stated in Essays 9.7, 9.8, and 9.10. However,
unlike [50], the treatment here is constructive and purely algebraic.

The final essay of Chapter 9 discusses the relation between Abel’s Theorem and
the well-known “addition” defined for points on elliptic curves.

Essay 9.2 Normal Bases

As will be seen, the idea of a normal basis of the field of rational functions on
the algebraic curve χ(x, y) = 0 as an extension of Q(x) plays a major role in the
statements and proofs of the theorems to be proved in this chapter. The notion of a
normal basis was defined in the paper of Dedekind and Weber [22, §22], and, as far
as I know, this was its first appearance. It leads to what is now called the genus of
the curve in question for any curve χ(x, y) = 0, and, as far as I can see, Abel did not
determine the genus in all cases, only large classes of special curves. In this respect,
then, Dedekind and Weber had made an important advance with the idea of a normal
basis (although their definition was not constructive).

As in Essay 8.11, a quantity z in a curve field K defined by χ(x, y) = 0 is integral
over x if it has poles only at places where x, regarded as a quantity in K, has poles
or, what is the same, if some power of it can be written as a linear combination of
lower powers

(1) zk = φ1(x)zk−1 + φ2(x)zk−2 + · · · + φk(x)

with coefficients φi(x) that are polynomials in x with rational coefficients.
If z is integral over x, then z

xν is integral over 1
x for all sufficiently large integers ν,

because division of (1) by xkν gives ( z
xν )

k =
φ1(x)
xν ·( z

xν )
k−1+

φ2(x)
x2ν ·( z

xν )
k−2+· · ·+

φk (x)

xνk
,

which shows that z
xν is integral over 1

x whenever ν is large enough that the degree of
φi(x) is at most νi for all i. The order of z at x = ∞ of a quantity z that is integral
over x is by definition the least integer ν for which z

xν is integral over 1
x .

A basis of K over Q(x) is of course a subset y1, y2, . . . , yn of K for which each z
in K has one and only one representation in the form

z = φ1(x)y1 + φ2(x)y2 + · · · + φn(x)yn,

where the coefficients φi(x) are in Q(x). Loosely speaking, a normal basis of K with
respect to x is one for which the representation of z in the basis reveals whether z is
integral over x and, if so, what its order is at x = ∞.

Specifically, a basis y1, y2, . . . , yn ofK over Q(x) is a normal basis ofK over Q(x)
if (1) the quantities z in K that are integral over x are those whose representations in
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the basis have coefficients φi(x) that are polynomials with rational coefficients, and
if (2) a quantity z in K that is integral over x has order at most ν at x = ∞ if and
only if each term φi(x)yi in its representation relative to the basis has order at most
ν at x = ∞.

Since the order of φi(x)yi at x = ∞ for a polynomial φi(x) is deg φi(x) plus the
order of yi at x = ∞, condition (2) states that, for large integers ν, a quantity z in K

that is integral over x has order at most ν at x = ∞ if and only if, in its representation
relative to the basis, deg φi(x) ≤ ν− μi for all i, where μi is the order at x = ∞ of yi .

A basis with just property (1) is called an integral basis. A two-part algorithm
can be given (see Construction of an Integral Basis in Essay 4.5) for constructing
an integral basis for a given K ⊃ Q(x). Briefly, the first part supplements the basis
1, y, y2, . . . , yn−1 of K over Q(x) by finding enough quantities in K that are integral
over x, if more are needed, to span, over Q[x], the set of all quantities of K that
are integral over x. It makes use of the fact that if p(x,y)

q(x) is integral over x, then the
square of q(x) must divide the determinant of the matrix S whose entry in the ith row
of the jth column is trx(yi+j−2). This observation provides a common denominator
d(x) for the quantities that are integral over x. Then the condition that p(x, y) must,
in order for a proper fraction p(x,y)

q(x) to be integral over x, have a zero of order at least
ν at every point P where d(x) has a zero of order ν provides a set of homogeneous
linear equations that the finite number of coefficients of p(x, y) must satisfy. A basis
of the solution space of these equations gives the needed spanning set.

The second part of the construction of an integral basis is an algorithm that takes
as input a set of m quantities in K that span, over Q[x], the quantities that are integral
over x and gives as output a set of m− 1 quantities with the same property whenever
m is greater than the degree n of the extension K ⊃ Q(x). Iteration of this algorithm
terminates with a set of just n quantities integral over x that span, over Q[x], all
quantities integral over x. Such a set is an integral basis of K over x.

As follows directly from the definitions, an integral basis y1, y2, . . . , yn of K over
Q(x) is a normal basis of K over Q(x) if and only if y1

xμ1 , y2
xμ2 , . . . , yn

xμn is an integral
basis of K over Q( 1

x ), where, as above, μi is the order of yi at x = ∞. Given an
integral basis that is not a normal basis, a normal basis can be constructed using the
following algorithm to replace one yi with another for which μi is reduced but the
new set of y’s is still an integral basis.

Let an integral basis z1, z2, . . . , zn of K over Q( 1
x ) be constructed. If the repre-

sentation of each zi relative to the basis y1
xμ1 , y2

xμ2 , . . . , yn
xμn of the curve field over

Q(x) has coefficients that are polynomials in 1
x with rational coefficients, then both

bases are integral bases over Q( 1
x ), and y1, y2, . . . , yn is a normal basis over Q(x).

Otherwise, at least one of z1, z2, . . . , zn is a quantity z that is integral over Q( 1
x ) but

its representation z = ψ1(x) ·
y1
xμ1 + ψ2(x) ·

y2
xμ2 + · · · + ψn(x) ·

yn
xμn has at least one

coefficient ψj(x) that is not a polynomial in 1
x . Therefore, when each coefficient is

written in the form ψj(x) = xξi(x) + θ j( 1
x ) where ξj(x) is a polynomial in x and



Essay 9.2 Normal Bases 269

θ j(
1
x ) is a polynomial in 1

x ,5 both with rational coefficients, and then at least one
ξj(x) is nonzero. Let k be an index for which ξk(x) � 0 has maximum degree, say σ
is this maximum degree, and, if ξk(x) has degree σ for more than one index, choose
k to be an index for which deg ξk(x) = σ and μk is as large as possible. Define
y′
k

to be
∑

j cj xμk−μ j yj , where cj is the coefficient of xσ in ξj(x) (so cj = 0 when
deg ξj(x) � σ). Replacement of yk with y′

k
gives a new integral basis over Q(x) in

which μ1 + μ2 + · · · + μn is reduced.
(It is still an integral basis over Q(x) because the coefficient of yk in y′

k
is ck � 0

and the exponent μk − μj on x in the terms of y′
k

is never negative. Moreover, yi
is unchanged when i � k, so μi is also unchanged, and what is to be shown is that
μk is reduced. Note that z

xσ+1 =
∑

j(cj + · · · ) ·
yj
x
μ j , where the omitted terms in the

parentheses all contain positive powers of 1
x . Thus, z

xσ+1 =
y′
k

xμk + · · · , where the
omitted terms are not only integral over 1

x but remain integral over 1
x when they are

multiplied by x. Since σ ≥ 0, z
xσ+1 is also integral over 1

x and remains integral over
1
x when it is multiplied by x. Therefore, y′

k

xμk , as the difference of two quantities with
this property, also has this property, which implies that xy′

k

xμk =
y′
k

xμk−1 is integral over
1
x , as was to be shown.)

Since one μi can be reduced without changing μj for j � i whenever the given
integral basis is not a normal basis, and since μ1 + μ2 + · · · + μn can be reduced
at most a finite number of times, the algorithm must terminate with a basis that is
normal over Q(x), as was to be constructed.

In conclusion, then:

Theorem Let K be a curve field and let x be a parameter in K. A normal basis of
the field extension K ⊃ Q(x) can be constructed by means of rational arithmetic.

Example 1 Given χ(x, y) = p0(x)+p1(x)y+ · · ·+pn−1(x)yn−1+ yn, Abel constructs
an auxiliary polynomial θ(x, y, a′, a′′, . . . ) using the basis 1, y, . . . , yn−1 of K over
Q(x) (see [2, p. 147]). Although 1, . . . , yn−1 are clearly integral over Q(x), they need
not form a normal basis. Consider χ(x, y) = y3 − xy+ x3 (folium of Descartes). One
can check that α = y2/x satisfies

α3 = 2α2 − α + x3.

Thus α in integral over Q(x). But in the basis 1, y, y2, α has the representation

α =
y2

x
= 0 · 1 + 0 · y +

1
x
· y2.

The coefficient of y2 is not a polynomial in x, so 1, y, y2 is not an integral basis,
hence not normal. Example 1 of Essay 4.5 shows that 1, y, y2/x is a normal basis.
Essay 9.6 will construct a version of θ(x, y, a′, a′′, . . . ) that uses a normal basis.

5 That ψj (x) can be written in this form is proved as follows. The quantity z integral over Q( 1
x ), so

that xνz is integral over Q(x) when ν is sufficiently large. Therefore, xν−μ jψj (x) is a polynomial
in x because y1, . . . , yn is an integral basis over Q(x).
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Essay 9.3 The Field of Constants

The constants in a curve field—those quantities that are roots of polynomials with
rational coefficients—constitute a subfield of K. This subfield, the field of constants
of K, will be denoted by K0. A quantity in K is in K0 if and only if it is integral over
x and has order 0 at x = ∞. Thus, the construction of a normal basis of K implies a
construction of its field of constants, because K0 is the span over Q of those elements
in a normal basis that are constants.

The extension K0 ⊃ Q is algebraic, and the degree of this extension is simply the
number of constants in a normal basis of K over x. This degree is also the degree of
the extension K0(x) ⊃ Q(x), because the constants in a normal basis are also a basis
of K0(x) ⊃ Q(x).

The construction of the preceding essay can easily be modified to construct a
normal basis of K over K0(x). Such a normal basis contains just one basis element
that has order 0 at x = ∞—that is, just one basis element that is a constant.

By the theorem of the primitive element (see Endnote 7.2) every curve field K

can be written as an algebraic extension of Q(x) obtained by adjoining a single root
y of an irreducible polynomial in x and y with integer coefficients that is monic
in y. However, intrinsic properties of K are more likely to be apparent when K is
represented as an algebraic extension of K0(x). For example, y4+2x2y2+ x4−2 = 0
describes a curve field that is more clearly described as the field constructed by
adjoining a root y of y2 + x2 −

√
2 to the field K0(x), where K0 is the field of

constants Q(
√

2) of this curve field.
For this reason, it is natural to break the extension K ⊃ Q(x) into two steps,

the first being the extension K0(x) ⊃ Q(x), that adjoins the constants in K, and the
second being the extension K ⊃ K0(x). Otherwise stated, it is natural to make two
uses of the theorem of the primitive element to find first a monic polynomial f (x)
with integer coefficients that is irreducible over Q and describes K0 ⊃ Q (as the
extension that adjoins one root of f (x) to Q), and then a monic polynomial χ(x, y)
in y with coefficients in K0[x] that is irreducible over K0(x), to describe K ⊃ K0(x)
(as the extension which adjoins one root y of χ(x, y) to K0(x)). The remainder of
Chapter 9 will use this χ(x, y).

An important property of χ(x, y) is that it remains irreducible when the field of
constants is enlarged:

Proposition 1 Let K be a curve field with field of constants K0, and let χ(x, y) be
as above. If an extension of K contains a finite extension K′

0 of K0, then χ(x, y)
is irreducible over K′

0(x) and K′
0 is the field of constants of the curve field K′ =

K′
0(x, y).

Proof By the theorem of the primitive element, K′
0 = K0(v) for some root v of an

irreducible polynomial φ(z) with coefficients in K0. That φ(z) is irreducible over K
is shown as follows. Let g(z) inK[z] be an irreducible factor of φ(z). The coefficients
of g(z) are (up to sign) the elementary symmetric polynomials of its roots, which are
also roots of φ(z). It follows that the coefficients of g(z) are algebraic over K0. But
they also lie in K and hence lie in the field of constants K0. So g(z) has coefficients
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in K0, which implies that g(z) = φ(z) up to a constant. Thus φ(z) is irreducible over
K and hence also irreducible over K0(x).

Let m be the degree of φ(z). The previous paragraph implies that the extensions
K ⊂ K′ = K(v) and K0(x) ⊂ K′

0(x) = K(x, v) have degree m. Furthermore,
K0(x) ⊂ K = K0(x, y) has degree n since χ(x, y) is irreducible of degree n over
K0(x). Therefore,

K0(x) ⊂ K ⊂ K′

has degree nm. Now consider

K0(x) ⊂ K′
0(x) ⊂ K′.

The whole extension has degree nm, and the extension on the left has degree m.
Thus, K′

0(x) ⊂ K′ = K′
0(x, y) has degree n, which proves that χ(x, y) is irreducible

over K′
0(x).

Finally, let K′′
0 be the field of constants of the curve field K′ = K′

0(x, y). Since
K′′

0 is algebraic over K0, the previous paragraph implies that χ(x, y) is irreducible
over both K′

0(x) and K′′
0 (x), which implies

degree of K′
0(x) ⊂ K′ = degree of K′′

0 (x) ⊂ K′.

Since K′
0(x) ⊂ K′′

0 (x), this forces K′
0(x) = K′′

0 (x), and K′
0 = K′′

0 follows because x
is transcendental over K′

0 and K′′
0 . Therefore, K′

0 is the field of constants of K′, as
was to be shown. �

A final observation is that if Q is replaced by the field Q̂ = Q(α1, . . . , αh) for
indeterminates α1, . . . , αh as in Essay 8.2, then everything done so far in Chapter 9
remains true for a curve field K = Q̂(x, y). In particular, the field of constants K0 is
now a finite extension of Q̂.

Essay 9.4 Differentials and Holomorphic Differentials

If x and y are parameters in a curve field K, the derivative dy
dx of y with respect

to x is the unique quantity in K whose value at every point (x, y) = (a, b) of K at
which x is a local parameter as in Essay 8.4 and x and y have the finite values a and
b respectively is the value of y−b

x−a at the point. The existence of such a quantity in K

follows from the fact that, when x and y are parameters in K, there is a polynomial
φ(X,Y ) with integer coefficients for which the quantity φ(x, y) of K is zero. Let
t = x − a at a point (x, y) = (a, b) of K where x is a local parameter, and let
y = b+ct+ · · · be the expansion of y in powers of t. All coefficients in the expansion
of φ(a + t, b + ct + · · · ) in powers of t must be zero, because φ(x, y) = 0 in K. On
the other hand, the coefficient of t in this expansion can be found by differentiation
(an algebraic operation) of φ(a + t, b+ ct + · · · ) at t = 0 to find that it is the rational
function ∂φ(x,y)

∂x · 1 +
∂φ(x,y)

∂y · c of x and y evaluated at the point. Thus, on the one
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hand, the coefficient c of t = x − a in the expansion ct + · · · of y − b is the value
of y−b

x−a at the point, while on the other hand, it is the value of − ∂φ(x,y)
∂x /

∂φ(x,y)
∂y at

the same point. Since a nonzero quantity in K is zero at at most a finite number of
points, and since −

∂φ(x,y)
∂x /

∂φ(x,y)
∂y has the desired value at infinitely many points, it

is the only quantity in K that fulfills the defining properties of dy
dx . (Note that the

limit concept plays no role in the definition of dy
dx .)

A differential of K with respect to x, where x is a parameter of K, is an
expression of the form F dx in which F is a quantity in K. A differential F dx of K
with respect to x is said to be equal to a differential Gdu with respect to another
parameter u of K if F

G = du
dx . The proof that this definition of “equality” defines an

equivalence relation depends on the chain rule of differentiation, which has a simple
algebraic proof.

A differential has a pole at a point if it is equal to a differential F dt where F
has value ∞ at the point and t is a local parameter as defined in Essay 8.10. This
is easily seen to be independent of the local parameter. It follows immediately that
equal differentials have the same poles.

Finally, a differential is holomorphic if it has no poles.

Proposition The differential F dx is holomorphic if and only if (1) xF is zero at
every point where x = ∞ and (2) (x− a)F is zero at each point where x has the finite
value a.

Proof First suppose that x has the finite value a at a point, and take an expansion
rule with x = a + τδ . Let t be a local parameter, so that t = τ + · · · after multiplying
by a suitable nonzero constant (omitted terms have higher degree in τ). IfΦ(x, t) = 0
is the irreducible algebraic relation between x and t, then Φ(a + τδ, τ + · · · ) = 0.
Differentiating formally with respect to τ gives

Φx(a + τδ, τ + · · · ) · δτδ−1 + Φt (a + τδ, τ + · · · ) · (1 + · · · ) = 0,

where subscripts indicate partial derivatives. Therefore, the expansion of dx
dt = − Φt

Φx

at the point is given by

dx
dt

= −
Φt (a + τδ, τ + · · · )

Φx(a + τδ, τ + · · · )
=
δτδ−1

1 + · · ·
= δτδ−1 + · · · .

If the expansion of F is cτk + · · · , where c is nonzero and k is an integer, then

(x − a)F is zero at the point ⇔ δ + k > 0

since the expansion of (x − a)F is τδ(cτk + · · · ) = cτδ+k + · · · . On the other hand,
F dx = F dx

dt dt, and F dx
dt = (cτk + · · · )(δτδ−1 + · · · ) = cδτδ+k−1 + · · · . Since t is a

local parameter,

F
dx
dt

dt has no pole at the point ⇔ F
dx
dt

is finite ⇔ δ + k − 1 ≥ 0 ⇔ δ + k > 0.



Essay 9.5 The Construction of Holomorphic Differentials 273

Therefore, F dx has no poles where x is finite if and only if (2) holds.
Where x = ∞, u = 1/x has the value zero. Then F dx = F · dxdu · du = F · −1

u2 · du =

− F
u2 du, so that by (2), − F

u2 du has no pole where x = ∞ if and only if

(u − 0)
(
−

F
u2

)
= −

F
u

= −xF

is zero where x = ∞. Thus F dx has no poles where x = ∞ if and only if (1) holds.
�

Later essays will consider differentials in several independent variables, say
a1, a2, . . . , aN . In this setting, a rational differential has the form

N∑

j=1
Rj(a1, a2, . . . , aN )daj .

where Rj(a1, a2, . . . , aN ) is a rational function of a1, a2, . . . , aN with coefficients in
the field of constants K0. Such a form is closed if in addition

∂Rj

∂ai
=
∂Ri

∂aj

for all i, j = 1, . . . , N .

Essay 9.5 The Construction of Holomorphic Differentials

Theorem The holomorphic differentials of a curve field K can be constructed using
rational arithmetic.

Specifically, if y1, y2, . . . , yn is a normal basis ofK overK0(x) for some parameter
x of K, where K0 is the field of constants of the curve field, then F dx is holomorphic
if and only if the coefficients ξi(x) of the representation F =

∑n
i=1 ξi(x)yi of F with

respect to the given normal basis have the property that the kth entry of the product
matrix S[ξi(x)], where [ξi(x)] stands for the column matrix of height n whose ith
entry is ξi(x) and S is the n × n matrix whose entry in the ith row of the jth column
is trx(yiyj), is a polynomial of degree at most μk − 2, where μk is the order of yk at
x = ∞. (In particular, the kth entry must be zero when μk is 0 or 1.)

The matrix S is invertible, so this observation implies a formula for the most
general holomorphic differential F dx.

Corollary 1 The holomorphic differentials of K form a vector space over K0 of
dimension 1 − n +

∑n
i=1 μi .

Deduction The formula implied by the theorem is [ξi(x)] = S−1[πi(x)], where
[πi(x)] is a column matrix of polynomials in x with coefficients in K0 in which the
polynomial in the ith row has degree at most μi − 2. Therefore, the holomorphic
differentials form a vector space over K0 whose dimension is the number of arbitrary
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constants in the column matrix [πi(x)]. Because the number of arbitrary constants
in the ith entry is (μi − 2) + 1, except that it is zero for the one value of i for which
μi = 0, this number is the sum of the n − 1 numbers μi − 1 in which μi � 0, which
is the number given in the statement of the corollary. �

Since the holomorphic differentials are intrinsic to K, this corollary implies that
the number 1− n+

∑n
i=1 μi is independent of the choice of both the parameter x and

the normal basis of K ⊃ K0(x) that are used. It is the genus of K, denoted by g.

Proof of the Theorem It will first be shown that if F dx is holomorphic then trx(θF)
is a polynomial in x whenever θ is integral over x.

Let K be the curve field determined by χ(x, y) = 0, where χ(x, y) is a polynomial
with coefficients in the field of constants K0 of K that is irreducible over K0 and
monic in y. When the Newton diagram algorithm is adapted to the case in which
the initial field of constants is K0 rather than Q, one finds that for every algebraic
number a there are n = degy χ(x, y) points (counted with multiplicity) of K at
which x has the value a, and they are determined by the infinite series solutions ỹ of
χ(a + t, y) = 0 in powers (nonnegative but possibly fractional) of t.

Let z be a quantity in K that is integral over x, say z = p(x,y)
q(x) , where numerator

and denominator are polynomials in the indicated quantities with coefficients in K0.
The expansion of z at the point that is described by ỹ is the infinite series in powers
of t = x − a described by the formula p(a+t,ỹ)

q(a+t) . Let z̃ denote this infinite series in
(possibly fractional) powers of t with algebraic number coefficients. Because z is
integral over x, z̃ contains no terms with negative coefficients, so the value of z at
the point in question is the constant term of z̃.

If the field K0(z, x) that adjoins z to K0(x) is an extension of degree k of K0(x),
then, because z is integral over x, an equation of the form zk+φ1(x)zk−1+· · ·+φk(x) =
0 holds in which the coefficients φ j(x) are polynomials in x with coefficients in
K0 and k divides n—specifically, n = kl, where l is the degree of the extension
K ⊃ K0(z, x). The n expansions z̃i , corresponding to the n expansions ỹi that
determine the points where x = a, are roots of (Zk+φ1(a+t)Zk−1+ · · ·+φk(a+t))l =
Zn+lφ1(a+t)Zn−1+· · · , which means that the sum6 of the expansions z̃i in fractional
powers of t determined by the algorithm is a polynomial in t with algebraic number
coefficients, namely, −lφ1(a + t). (The sum of the roots of a monic polynomial of
degree n is minus the coefficient of the term of degree n − 1.) Therefore, the sum of
the values of z at points where x = a is the constant term of −lφ1(a + t), which is
the value at a of the trace of z relative to the extension K ⊃ K0(x).7

When θ is integral over x and F dx is a holomorphic differential of K, θ is finite
and (x − a)F is zero at every point where x has a finite value a, so θ · (x − a)F
is zero at all points where x = a, which implies, on the one hand, that the sum
of these values over the points where x = a is zero, and, on the other hand, that

6 This sum is a quantity in A〈τ 〉, τ =
δ√
x − a for suitable δ (see Essay 8.8), of which any number

of initial terms can be computed exactly and which then, because it satisfies an explicit algebraic
relation, can be determined as an infinite series.
7 By definition, trx (z) is the trace of the matrix that represents multiplication by z relative to a basis
of the extension K ⊃ K0(x). As is easily shown, trx (z) is −lφ1(x).
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this sum is the value of trx(θ · (x − a)F) at x = a. As follows from the definition,
trx(θ · (x − a)F) = (x − a) · trx(θF). Thus, trx(θF) is a rational function ρ(x) of x
with the property that (x − a)ρ(x) is zero at all points where x has a finite value a.
Such a rational function is a polynomial, as was to be shown.

It will next be shown that S is invertible. A nonzero column vector of rational
functions [u j(x)] gives the nonzero element z =

∑n
j=1 u j(x)yj of the curve field K.

If z−1 =
∑n

i=1 vi(x)yi for rational functions vi(x), then

n = trx(1) = trx(z−1 · z) = trx
(∑

i j

vi(x)u j(x)yiyj
)
=
∑

i j

vi(x)u j(x) trx(yiyj)

= [vi(x)]S[u j(x)],

where [vi(x)] is the row vector of the vi(x)’s. Therefore, S[u j(x)] is nonzero whenever
[u j(x)] is nonzero. Such a matrix is invertible, as was to be shown.

Now consider S[ξi(x)] when F =
∑n

i=1 ξi(x)yi . Since the ith entry of S[ξi(x)] is∑n
j=1 trx(yiyj) · ξj(x) = trx(yi ·

∑n
j=1 ξj(x)yj) = trx(yiF), it follows that this entry

is a polynomial in x when F dx is holomorphic. But if F dx is holomorphic, then
trx(θ · (−x2F)) must be a polynomial in 1

x whenever θ is integral over 1
x . Since yi

xμi

is integral over 1
x , it follows that trx(yi x2−μiF) = 1

xμi−2 · trx(yiF) is a polynomial in
1
x . Therefore, the polynomial trx(yiF) in the ith row of S[ξi(x)] has degree at most
μi − 2. Thus, if F dx is holomorphic then S[ξi(x)] has the stated form.

It remains only to show that if F dx is not holomorphic then S[ξi(x)] does not
have the stated form. If F dx is not holomorphic, then it must have a pole, and, by
changing x to 1

x if necessary, one can assume without loss of generality that it has a
pole at a point where x is finite—that is, (x − a)F is not zero at some point where
x = a. Since the ith entry of S[ξi(x)] is trx(yiF), it will suffice to show that if (x−a)F
is not zero at some point where x = a, then there is a θ that is integral over x for
which trx(θF) is not a polynomial.

If (x−a)F is not zero at a point where x = a, then the expansion of F in powers of
t = x − a at the point must contain a term with a (possibly fractional) exponent less
than or equal to −1. Consider an integral quantity θ with the property that at each
point where x = a, the expansion of θF in powers of t is θF = tm + · · · , where m is
an integer that is negative for at least one point. As was seen above, the expansion of
trx(θF) is the sum of the n expansions of θF at the points where x = a.

To describe these expansions, suppose that x − a has a zero of multiplicity δi
at a point where x = a. Then there are δi − 1 other expansion rules at the point,
namely, one that replaces τi =

δi
√
x − a with ατi for each δith root of unity α other

than 1. In this way, the n expansion rules determined by infinite series solutions
ỹ of χ(a + t, y) = 0 are partitioned by the points to which they correspond—say
n = δ1 + δ2 + · · · + δl , where there are l distinct points, at the ith one of which there
are δi distinct expansion rules.

In this notation, the expansion of θF at the ith point is θF = tmi + · · · . Because
mi is an integer, all δi expansion rules at the ith point begin this way. If m is the
minimum of the mi , it follows that
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trx(θF) =
(∑

i

δi

)
tm + · · · ,

where the sum is over all i such that mi = m. Since m is negative, trx(θF) is not a
polynomial in x, as was to be shown.

It remains to construct θ. Let an expansion rule with x − a = t = τδii be chosen
for ith point, and for this rule, suppose that F = ciτ

ki
i + · · · with ci � 0. Pick an

integer �i between 0 and δi − 1 such that �i + ki is an integer multiple of δi , call it
δimi . If θ can be chosen so that at the ith point it has the expansion θ = 1

ci
τ
ii + · · · ,

then θF = τ
i+kii + · · · = τδimi

i + · · · = tmi + · · · , as desired. Therefore, the proof of
the theorem is completed by:

Lemma Let expansion rules for the l points where x = a be chosen at above, where
x − a = τδii at the ith point and n = δ1 + · · · + δl . A quantity θ that is integral over
x can be constructed for which the n coefficients bj that occur in the first δi terms
b1 + b2τi + b2τ

2
i + · · · + bδi τ

δi−1
i in each of the l chosen expansions of θ assume

arbitrarily chosen values in K0 in all l cases.

Proof Consider the mapping L that sends quantities θ of K that are integral over x
to the n coefficients bj in their l expansions. What is to be shown is that L (a linear
mapping of vector spaces over K0) is onto.

Since the expansion of 1
x−a has no terms with negative coefficients at points where

x � a, θ
x−a is integral over x (its expansions at points where x is finite contain no

terms with negative exponents) if and only if the expansions of θ
x−a at points where

x = a contain no terms with negative exponents. Since, for each i, the expansion of
x − a in powers of τi at the corresponding point where x = a is τδii , θ

x−a is integral
over x if and only θ is in the kernel of L.

By the definition of a normal basis, θ
x−a is integral over x if and only if each of

the coefficients θi(x) in the expansion θ =
∑n

i=1 θi(x)yi is divisible by x − a as a
polynomial with coefficients in K0. Thus θ is in the kernel of L if and only if each
θi(x) in θ =

∑n
i=1 θi(x)yi is divisible by x − a.

Consider the n-dimensional subspace consisting of θ =
∑n

i=1 ciyi for ci in K0. For
such a θ, the previous paragraph implies that θ is in the kernel of L only when θ = 0.
In other words, L is one-to-one on this subspace, and therefore, because domain and
range have the same dimension n, onto, as was to be shown. �

The lemma just proved implies the existence of local parameters:

Corollary Construct a local parameter at a given a point of a curve field K.

Deduction For any parameter x in K, x or 1
x is finite at the point. Without loss of

generality assume that x has a finite value a at the point. Then the point is given
by one of the l chosen expansion rules in the statement of the lemma. If x − a has
multiplicity δi = 1 at the point, then x − a is a local parameter. If δi > 1, the integral
quantity θ in the lemma has an expansion that begins b1+b2τi+b2τ

2
i + · · ·+bδi τ

δi−1
i ,

and the lemma shows that θ can be chosen so that b1 = 0 and b2 = 1. Therefore, θ
vanishes at the point with multiplicity one and is the desired local parameter. �
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Here is another useful corollary of the main theorem of the essay:

Corollary 2 If F dx is holomorphic then trx(F) = 0.

Deduction Suppose that F dx = −u−2F du is holomorphic. Since 1 is integral over
both x and u, trx(F) must be a polynomial in x, and tru(u−2F) = x2trx(F) must be a
polynomial in u = 1

x , which implies trx(F) = 0 because zero is the only polynomial
in x that becomes a polynomial in 1

x when it is multiplied by x2. �

Since the property of being holomorphic does not depend on the parameter x that
is used in the presentation of the field, the corollary is true for every parameter x of
the curve field in question.

Example 2 When K is defined by y2 = x3 + 1, a normal basis is given by y1 = 1,
y2 = y, from which

S =

[
2 0
0 2(x3 + 1)

]
.

Since the order of y at x = ∞ is 2, the genus of this curve field is 1− 2+ (0+ 2) = 1
and the most general holomorphic differential has the form (ξ1(x) · 1 + ξ2(x) · y)dx
where [

2 0
0 2(x3 + 1)

]−1 [ 0
π(x)

]
=

[
ξ1(x)
ξ2(x)

]

holds for a polynomial π(x) of degree zero. Therefore, the most general holomorphic
differential is a rational number times y

2(x3+1) · dx =
y dx

2y2 = dx
2y . That is, dx

y is a basis
of the vector space of holomorphic functions over the field of constants Q of this
curve field. (See also Example 6 in Essay 4.5 and Example 8 in Essay 4.6.)

Essay 9.6 Parametric Points Constructed Using a Normal Basis

In his Paris Memoir [2, p. 147], Abel defines

θ(x, y) = q0 + q1y + q2y
2 + · · · + qn−1y

n−1,

where qi is a polynomial in x, and “a certain number of coefficients of various powers
of x in these functions will be assumed to be undetermined; we designate them by
a, a′, a′′, etc.” The solutions (x1, y1), . . . , (xμ, yμ) of the simultaneous equations
χ(x, y) = 0 and θ(x, y) = 0 are algebraic functions of a, a′, a′′, . . . . These are the
variables xi and yi that appear in equation (1) in Essay 9.1.

Let K be the curve field determined by χ(x, y) = 0. The polynomial θ(x, y)
defined by Abel uses the basis 1, y, . . . , yn−1 of K over K0(x). A better choice is a
normal basis y1, y2, . . . , yn of K over K0(x). Let μi be the order of yi at x = ∞. For
any integer ν that is at least μi for each i, set
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θν(x, y) =
n∑

i=1
θi(x)yi,

where θi(x) is the polynomial in x of degree ν − μi whose ν − μi + 1 coefficients are
indeterminates. Then θν(x, y) contains a total of

n∑

i=1
(ν − μi + 1) = nν + n −

n∑

i=1
μi = nν − g + 1

indeterminate coefficients, where g = 1 − n +
∑n

i=1 μi is the genus of K as defined
in the previous essay.8

Heuristically, this choice of θν(x, y) represents—when numerical values are given
to the nν − g + 1 indeterminates in θν(x, y)—a quantity in K that is integral over
x and has order at most ν at x = ∞. In the generic case, it has nν zeros, as will be
shown below. Thus, there are nν zeros, which are the solutions of the simultaneous
equations χ(x, y) = 0 and θν(x, y) = 0. They are algebraic functions of the nν−g+1
indeterminates, which can be regarded as parameters. From a geometric point of
view, these nν parametric points (xi, yi) in which χ(x, y) = 0 and θν(x, y) = 0
intersect vary as the nν − g + 1 coefficients of θν(x, y) vary.

The solutions (xi, yi) depend on just nν − g parameters, not nν − g + 1. This
conclusion follows from the observation that multiplying θν(x, y) by a nonzero
constant does not change its zeros. This redundancy in the coefficients of θν(x, y)
can be eliminated by setting one of the coefficients equal to one. As noted at the end
of Essay 9.3, just one element, say y1, of the normal basis y1, . . . , yn is a constant,
which can be assumed to be 1. Then the degree of θ1(x) is ν. Setting the coefficient
of xν in θ1(x) to be 1 gives a rational function Θν(x, y) that depends on just nν − g

parameters.
For the moment, regard Θν(x, y) as a quantity in the curve field K̂ defined by

χ(x, y) = 0 over K̂0(x), where K̂0(x) is the field K0(a1, a2, . . . , anν−g) of rational
functions in the nν − g indeterminate coefficients a1, a2, . . . , anν−g of Θν(x, y) with
coefficients in K0. Then the solutions (xi, yi) of the simultaneous equations

(1) χ(x, y) = 0 and Θν(x, y) = 0

are then the zeros of Θν(x, y) = 0 as an element of this curve field, hence finite in
number. Furthermore, xi and yi are quantities in an algebraic extension of K̂0—they
are “algebraic functions” of a1, a2, . . . , anν−g that can be found by algebraic methods.

In what follows, ν is an integer such that ν ≥ μi for all i and also ν ≥ μ, where μ
is the order of y at x = ∞.

Lemma 1 The equations (1) have nν solutions (xi, yi), all of multiplicity one. Fur-
thermore, the x-coordinates xi are distinct and transcendental over K0.

8 θν (x, y) need not be a polynomial in x and y since, as shown by Example 1 in Essay 9.2, a normal
basis might have denominators when expressed in terms of x and y.
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Proof As just noted, the solutions of (1) are the zeros of Θν(x, y) when regarded as
an element of the curve field K̂. Proposition 1 of Essay 8.10 implies that, counted
with multiplicity, the number of zeros equals the number poles. However, Θν(x, y) is
integral over x and hence has no poles at finite values of x. For poles where x = ∞,
note that

Θν(x, y)
xν

=
θ1(x) + θ2(x)y2(x, y) + · · · + θn(x)yn(x, y)

xν

= 1 +
a1
x

+ · · · +
aν
xν

+
θ2(x)
xν−μ2

y2
xμ2

+ · · · +
θn(x)
xν−μn

yn
xμn
,

where μj is the order of yj at x = ∞ and θ j(x) has degree ν − μj with indeterminate
coefficients. Because of these coefficients, nothing can cancel the 1 at the beginning
of the right side of the second line. Thus Θν(x, y)/xν has a finite nonzero value
at any point where x = ∞, so that Θν(x, y) has a pole of order ν at such a point.
Since there are n points (counted with multiplicity) where x = ∞ by Proposition 1
of Essay 8.10, it follows that Θν(x, y) has nν poles. Consequently, Θν(x, y) also has
nν zeros, so that the system (1) has nν solutions, counting multiplicities.

The number of actual solutions cannot increase when the indeterminate coeffi-
cients of Θν(x, y) are allowed to take values in K̂0. With this in mind, consider the
case where the coefficients of θ2(x), . . . , θn(x) are set to zero and the coefficients of
θ1(x) remain indeterminate (except for the leading term 1). Then (1) becomes

χ(x, y) = 0 and θ1(x) = 0.

The second equation has ν solutions xi , i = 1, . . . , ν, all of which are transcendental
over K0. Then χ(xi, y) has n distinct solutions for each i, so that the above system
has exactly nν solutions. Hence (1) must have at least nν distinct solutions. Since it
has at most this many, there must be exactly nν solutions, all of multiplicity 1.

Consider the x-coordinates of the solutions. The number of distinct x-coordinates
cannot increase when the coefficients of Θν(x, y) are allowed to take values in K̂0.
Since y is integral over x, it can be expressed as a sum y = φ1(x)y1 + · · · + φn(x)yn
with deg φi(x) ≤ μ − μi , where μ is the order of y at x = ∞. Let θ1(x) = xν +

a1xν−1 + · · ·+aν and assign values to aν+1, . . . , anν−g as follows: If ai is a coefficient
of θ ji , then replace ai with aν+1 times the corresponding coefficient of φ ji . Since
ν ≥ μ and y1 = 1, the system (1) transforms into

χ(x, y) = 0 and θ1(x) + aν+1

( n∑

i=2
φi(x)yi

)
= θ1(x) + aν+1

(
y − φ1(x)

)
= 0.

This system has nν solutions of multiplicity 1 since setting aν+1 = 0 gives the system
of the previous paragraph. But any solution of the above system satisfies

y = φ1(x) −
1

aν+1
θ1(x),
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so that the y-coordinate is uniquely determined by the x-coordinate. Therefore, the
nν distinct solutions of the transformed system have nν distinct x-coordinates. It
follows that solutions of the original system (1) also have distinct x-coordinates.

It remains to show that the xi are transcendental over K0. Suppose there is a
solution (xi, yi) with xi algebraic over K0. Then the same is true for yi since χ(x, y)
has coefficients in K0. In the normal basis y1 = 1, y2, . . . , yn, each yj is integral over
x and hence has a finite value at (xi, yi). Therefore,

0 = Θν(xi, yi) = θ1(xi) + θ2(xi)y2(xi, yi) + · · · + θn(xi)yn(xi, yi)

is a nontrivial linear relation in a1, a2, . . . , anν−g whose coefficients are algebraic
over K0, contrary to the algebraic independence of the ai . �

The solutions (xi, yi) can be constructed as follows. The first step is the algebraic
elimination of y from the simultaneous equations (1) to express x as an algebraic
function of the indeterminate coefficients of Θν(x, y), and then to express y as a
rational function of x whose coefficients involve the indeterminate coefficients of
Θν(x, y) to make both coordinates of the solutions (xi, yi) algebraic functions of
those indeterminate coefficients.

The elimination of y from the simultaneous equations (1) can be accomplished in
the following way. Let q(x) be a common denominator of the normal basis elements
yi in the sense that q(x) · yi can be expressed as a polynomial in x and y with
coefficients in K0 for all i. Then Θν(x, y) has the form

p(x, y, a1, a2, . . . , anν−g)
q(x)

,

where numerator and denominator are polynomials in the indicated indeterminates
with coefficients in K0. Moreover, the degree of the numerator in y can be taken to
be less than n, because otherwise χ(x, y) = 0 could be used to reduce that degree.
Finally, common factors can be canceled in numerator and denominator to express
Θν(x, y) as a quotient of relatively prime polynomials with coefficients in K0.

The main step in the solution is to regard χ(x, y) and p(x, y, a1, a2, . . . , anν−g)
as polynomials in y with coefficients in the field K̂0(x), where K̂0 is the field
K0(a1, a2, . . . , anν−g), and to find their greatest common divisor using the Euclidean
algorithm for polynomials to write that common divisor in the form A(y)χ(x, y) +
B(y)p(x, y, a1, a2, . . . , anν−g) = C(y) where A(y), B(y), and C(y) are polynomials in
y with coefficients in K̂0(x). Since χ(x, y) is irreducible and p(x, y, a1, a2, . . . , anν−g)
has lower degree in y than χ(x, y) does, the common divisor C must have degree 0
in y, so that

(2) A(y)χ(x, y) + B(y)p(x, y, a1, a2, . . . , anν−g) = C,

where C is in K̂0(x).
Recall that degy χ(x, y) = n, and set degy p(x, y, a1, . . . , anν−g) = m. Then one

can assume without loss of generality that deg A(y) < m and deg B(y) < n in (2), as
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can be seen as follows. Division defines polynomials q1(y), q2(y), r1(y), and r2(y)
for which A(y) = q1(y)p(x, y, a1, . . . , anν−g)+r1(y) and B(y) = q2(y)χ(x, y)+r2(y),
where deg r1(y) < m and deg r2(y) < n. Then

(q1(y) + q2(y))χ(x, y)p(x, y, a1, . . . , anν−g)

+r1(y)χ(x, y) + r2(y)p(x, y, a1, . . . , anν−g) = C.

In this equation, χ(x, y)p(x, y, a1, . . . , anν−g) has degree n+m while the sum involv-
ing r2(y) and r1(y) has degree strictly less than n+m. Thus q1(y)+q2(y) = 0 because
C contains no terms in y. Setting A(y) = r1(y) and B(y) = r2(y), and deg A(y) < m,
deg B(y) < n follows. In particular, the number of unknown coefficients of A(y) and
B(y) is m + n.

LetC be written as a quotient of relatively prime polynomials in x, a1, a2, . . . , anν−g
with coefficients inK0 and let �(x, a1, a2, . . . , anν−g) be the numerator of this quotient
(determined up to multiplication by a nonzero quantity in K0). One obtains

A(y)χ(x, y) + B(y)p(x, y, a1, a2, . . . , anν−g) = �(x, a1, a2, . . . , anν−g).

where A(y) and B(y) have coefficients in K0[x, a1, a2, . . . , anν−g]. To highlight the
dependence on x and y, this equation will be written as

A(x, y)χ(x, y) + B(x, y)p(x, y) = �(x),

where χ(x, y) has coefficients in K0, and the other polynomials have coefficients in
K0[a1, a2, . . . , anν−g].

Roots of q(x) create extraneous roots of �(x). Given a root q(x0) = 0, construct
y0 such that χ(x0, y0) = 0 in some splitting field. Note that Θν(x0, y0) is finite since
Θν(x, y) is integral over x. Therefore, p(x0, y0) = 0 since Θν(x, y) =

p(x,y)
q(x) and

q(x0) = 0. It follows that �(x0) = 0. Let h(x) be the greatest common divisor of �(x)
and q(x)deg �(x). Then

�(x) = h(x)�1(x)

where h(x) has coefficients in K0 and �1(x) has coefficients in K0[a1, a2, . . . , anν−g].
The exponent deg �(x) in the definition of h(x) guarantees that h(x) and �1(x) are
relatively prime. In this notation,

(3) A(x, y)χ(x, y) + B(x, y)p(x, y) = h(x)�1(x).

One can assume that A(x, y), B(x, y), and h(x)�1(x) are relatively prime.
If (xi, yi) is a zero ofΘν(x, y) as a quantity in the curve field defined by χ(x, y) = 0

over K̂0, then substitution of (xi, yi) in (3) makes the left side zero, so xi must be
a root of h(x)�1(x) and thus a root of �1(x) since xi is transcendental over K0 by
Lemma 1 (roots of h(x) are roots of q(x), which are algebraic over K0). The splitting
field of �1(x) = �1(x, a1, a2, . . . , anν−g) as a polynomial in x with coefficients in
K̂0 is therefore a field that contains all x-coordinates xi of zeros of Θν(x, y) on
χ(x, y) = 0.
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Lemma 2 There is a rational function Y (x) of x with coefficients in K̂0 with the
property that if xi is a root of �1(x) in a splitting field of this polynomial in x
with coefficients in K̂0, then (xi,Y (xi)) is a solution of χ(x, y) = Θν(x, y) = 0.
Furthermore, all solutions arise in this way.

Proof Let xi be a root of �1(x). Note that q(xi) � 0 by the construction of �1(x).
Substitution of x = xi in (3) shows that

A(xi, y)χ(xi, y) + B(xi, y)p(xi, y) = 0.

Since χ(xi, y) is monic of degree n, B(xi, y) = 0 implies A(xi, y) = 0, contrary to
A(x, y), B(x, y), and h(x)�1(x) being relatively prime. Thus B(xi, y) is a nonzero
polynomial of degree at most n − 1. It therefore cannot be divisible by χ(xi, y),
which proves that χ(xi, y) and p(xi, y) have a common factor of positive degree.
Any root yi in a splitting field of this common factor gives a solution (xi, yi) of
χ(x, y) = p(x, y) = 0. But p(x, y) = q(x)Θν(x, y) and q(xi) � 0, so that (xi, yi) is a
solution of χ(x, y) = Θν(x, y) = 0. The comments made before Lemma 2 show that
this gives all solutions of χ(x, y) = Θν(x, y) = 0.

It remains to construct a rational function Y such that yi = Y (xi) for all solutions.
Equation (2) represents a solution of the problem

“A(y)χ(x, y) + B(y)p(x, y, a1, . . . , anν−g) has degree zero in y, ”

which can be seen as the solution of the system of m + n − 1 homogeneous linear
equations in the m + n coefficients of A(y) and B(y), because all of the m + n terms
of A(y)χ(x, y)+ B(y)p(x, y, a1, . . . , anν−g), except the constant term, must be zero.9
Since χ(x, y) and p(x, y, a1, . . . , anν−g) determine their greatest common divisor as
polynomials in y up to multiplication by a nonzero quantity in K̂0(x), the solution
space of this (m + n − 1) × (m + n) system of homogeneous linear equations is
1-dimensional, which means that the matrix of coefficients has rank m + n − 1, the
largest rank that a matrix of this size can have. Therefore, the matrix that results
when the bottom row is omitted has the full rank m + n − 2, which means that the
solution space of the problem

Ã(y)χ(x, y) + B̃(y)p(x, y, a1, . . . , anν−g) = α(x)y + β(x)

has dimension 2. In particular, there is a solution10 of this problem in which α(x) � 0
with deg Ã(y) < m and deg B̃(y) < n. Similar to (3), write the above equation as

(4) Ã(x, y)χ(x, y) + B̃(x, y)p(x, y) = α(x)y + β(x),

9 If, instead, one considers (2) to represent the (m + n) × (m + n) inhomogeneous system of linear
equations in which the right side is given, the determinant of the matrix of coefficients is the
resultant of χ(x, y) and p(x, y, a1, . . . , anν−g) with respect to y as it is normally defined.
10 An explicit solution can of course be expressed in terms of the entries of the matrix of coefficients
using Cramer’s rule.
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where α(x) � 0 and Ã(x, y), B̃(x, y), α(x), and β(x) are relatively prime polynomials
with degy Ã(x, y) < m and degy B̃(x, y) < n.

Substitution in (3) and (4) of a solution (xi, yi) of χ(x, y) = Θν(x, y) = 0 shows
that �1(xi) = α(xi)yi + β(xi) = 0. If α(xi) = 0, then β(xi) = 0, so that (4) becomes

(5) Ã(xi, y)χ(xi, y) + B̃(xi, y)p(xi, y) = 0.

By Lemma 1, only one solution has x-coordinate xi . Therefore, the monic greatest
common divisor of χ(xi, y) and p(xi, y) is y − yi . Then (5) implies that there is a
polynomial C(y) such that

Ã(xi, y) = C(y)
p(xi, y)
y − yi

and B̃(xi, y) = −C(y)
χ(xi, y)
y − yi

.

However, deg χ(xi, y) = n since χ(x, y) is monic in y. Thus deg B̃(xi, y) = degC(y)+
n− 1. But deg B̃(xi, y) ≤ degy B̃(x, y) ≤ n− 1. Therefore, degC(y) = 0, so that C(y)
is a constant, call it c. Therefore,

(6) Ã(xi, y) = c
p(xi, y)
y − yi

and B̃(xi, y) = −c
χ(xi, y)
y − yi

.

If c = 0, then Ã(xi, y) = B̃(xi, y) = 0, so Ã(x, y) and B̃(x, y) in (4) would be divisible
by x − xi . The same is true for α(x) and β(x), yet Ã(x, y), B̃(x, y), α(x), and β(x) are
relatively prime. Thus, c � 0 in (6)

Since �1(xi) = 0, equation (3) implies that

A(xi, y)χ(xi, y) + B(xi, y)p(xi, y) = 0.

Comparing this to (5), it follows that A(xi, y) and B(xi, y) are given by formulas
similar to (6), with a possibly different constant c′, and arguing as above shows that
c′ � 0. It follows easily that

cA(xi, y) = c′ Ã(xi, y) and cB(xi, y) = c′B̃(xi, y).

Divide A(x, y), B(x, y), Ã(x, y), B̃(x, y) by x− xi with respective remainders A(xi, y),
B(xi, y), Ã(xi, y), B̃(xi, y), and then multiply (4) by c′ and (3) by c and subtract.
The remainder terms cancel, leaving a solution of (4) (with a different β(x)) whose
coefficients are not relatively prime. Dividing out a common factor gives an equation

Â(x, y)χ(x, y) + B̂(x, y)p(x, y) = α̂(x)y + β̂(x)

where deg α̂(x) < degα(x). Therefore, α(xi) = 0 leads to a solution of (4) where
α(x) has strictly smaller degree. By infinite descent, there is a solution withα(xi) � 0.
Repeating this for the other indices gives a solution of (4) where α(xi) � 0 for all i.

For such a solution, the rational function Y (x) = −
β(x)
α(x) has the required property

that yi = Y (xi) for all (xi, yi) that satisfy χ(x, y) = Θν(x, y) = 0. �
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Thus, the 2nν coordinates of solutions (xi, yi) of Θν(x, y) = 0 and χ(x, y) = 0 are
algebraic functions of the nν−g indeterminates a1, a2, . . . , anν−g of K̂0. Specifically,
the roots of �1(x) = 0 determine the x-coordinates xi of the zeros of Θν(x, y) on
χ(x, y) = 0 as algebraic functions of a1, a2, . . . , anν−g, after which the formula
yi = Y (xi) determines the corresponding yi as an explicit rational function of xi with
coefficients in K̂0 for each i and therefore as an algebraic function of a1, a2, . . . , anν−g
for each i. In this sense, the nν zeros (xi,Y (xi)) of Θν(x, y) on χ(x, y) = 0 are
parameterized by the nν − g indeterminates a1, a2, . . . , anν−g that define K̂0.

In particular, the partial derivatives of the x-coordinates xi with respect to
the parameters aj have algebraic meaning and can be found by implicit differ-
entiation. In short, the differentials of the points (xi, yi) along χ(x, y) = 0 that
are described by Θν(x, y) can be expressed as linear combinations of the nν − g

differentials daj in which the coefficients are quantities in the splitting field of
�1(x) = �1(x, a1, a2, . . . , anν−g). The resulting algebraic expressions of the differ-
entials dxi of the x-coordinates of the solutions in terms of the differentials daj
of the indeterminates of Θν(x, y) can be regarded, heuristically, as describing the
infinitesimal motion of the zeros of Θν(x, y) along the curve χ(x, y) = 0 that result
from changes in the variable coefficients of Θν(x, y).

Example 3 When the curve field is defined by y2 = x3 + 1, a normal basis is given
by 1 and y, and Θ2(x, y) becomes x2 + ax + b+ cy. Then the intersection points are
roots of ( −x2−ax−b

c )2 − (x3 + 1), which means that �1(x, a, b, c) = �(x, a, b, c) (since
q(x) = 1) can be taken to be

�1(x, a, b, c) = (x2 + ax + b)2 − c2(x3 + 1)
= x4 + (2a − c2)x3 + (2b + a2)x2 + 2abx + (b2 − c2).

The rational function Y (x) in Lemma 2 is clearly Y (x) = −x2−ax−b
c .

Implicit differentiation of �1(x, a, b, c) = 0 with respect to a gives

dx
da

= −

∂�1
∂a
∂�1
∂x

= −
2x3 + 2ax2 + 2bx

D
= −

2x(x2 + ax + b)
D

=
2cxy
D
,

where D =
∂�1
∂x = 4x3 + 3(2a − c2)x2 + 2(2b + a2)x + 2ab. Similarly,

dx
db

=
2cy
D

and
dx
dc

=
cy2

D
.

Thus, the parametric points (xi, yi) give differentials

(7)
dxi =

2cxi yi
Di

· da +
2cyi
Di

· db +
cy2

i

Di
· dc

=
2xi(−x2

i − axi − b)
Di

· da +
2(−x2

i − axi − b)
Di

· db +
c(x3

i + 1)
Di

· dc,
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where Di = 4x3
i + 3(2a − c2)x2

i + 2(2b + a2)xi + 2ab. These computations will be
used in later examples.

Essay 9.7 The Theorem of Abel’s Last Paper

[Abel’s paper [1]] still stands for me as pure magic. Neither with Gauss nor Riemann, nor
with anybody else, have I found anything that really measures up to this.—Alte Selberg [9,
p. 648].

The themes of Abel’s 1826 Paris Memoir [2] were developed in two subsequent
papers [1, 5] published in 1828 and 1829 respectively. The Paris Memoir did not
appear in print until 1841, so these two papers represent how mathematicians first
learned of Abel’s work on algebraic curves. The hyperelliptic case is covered in
detail in [5], while [1], Abel’s last paper, gives an elegant proof of a result from [2].

Here is a version of Abel’s result adapted to the framework of the previous essay:

Abel’s Theorem 1 Let (xi, yi) be the nν solutions of χ(x, y) = 0 and Θν(x, y) = 0
constructed in Essay 9.6. Then the xi and yi are algebraic functions of the parameters
a1, a2, . . . , anν−g, and for any rational function f (x, y) with coefficients in K0, the
sum

dv = f (x1, y1)dx1 + · · · + f (xnν, ynν)dxnν

is a rational differential in a1, a2, . . . , anν−g, i.e.,

(1) dv = R1(a1, . . . , anν−g)da1 + · · · + Rnν−g(a1, . . . , anν−g)danν−g,

where the Rj(a1, . . . , anν−g) are rational functions with coefficients in K0.
Furthermore, the differential (1) is closed, meaning that the compatibility condi-

tion
∂Rj

∂ak
=
∂Rk

∂aj

is satisfied for all j < k.

Proof The x1, . . . , xnν are roots of �1(x) = �1(x, a1, a2, . . . , anν−g), which has coef-
ficients in K̂0 = K0(a1, a2, . . . , anν−g). For each j = 1, . . . , nν−g, define the rational
function

Sj(x) = −

∂�1
∂aj

(
x, a1, . . . , anν−g

)

∂�1
∂x

(
x, a1, . . . , anν−g

)

with coefficients in K̂0. Since �1(xi, a1, . . . , anν−g) = 0, implicit differentiation
implies that

dxi =
nν−g∑

j=1

dxi
daj

· daj,
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where

(2)
dxi
daj

= −

∂�1
∂aj

(
xi, a1, . . . , anν−g

)

∂�1
∂x

(
xi, a1, . . . , anν−g

) = Sj(xi).

By Lemma 2 of Essay 9.6, there is a rational function Y (x) with coefficients in
K̂0 such that yi = Y (xi) for all i. It follows that

nν∑

i=1
f (xi, yi)dxi =

nν−g∑

j=1

nν∑

i=1
f (xi, yi)

dxi
daj

daj =
nν−g∑

j=1

( nν∑

i=1
f (xi,Y (xi))Sj(xi)

︸���������������������︷︷���������������������︸
Rj

)
daj .

The rational function Rj inside the large parentheses is symmetric in x1, . . . , xnν with
coefficients in K̂0. By the theory of symmetric functions, Rj is a rational function in
the elementary symmetric polynomials of the xi with coefficients in K̂0. The xi are
the roots of �1(x, a1, a2, . . . , anν−g), which as a polynomial in x also has coefficients
in K̂0. It follows that Rj is in K̂0, as was to be shown.11

Finally, Rj =
∑nν

i=1 f (xi, yi)
dxi
da j

, where yi is an algebraic function of xi . The
compatibility conditions for all j < k follow easily. Hence (1) is closed. �

As noted in Essay 9.1, Abel’s version of the theorem used integrals rather than
differentials. Deducing his result from Abel’s Theorem 1 requires more than just the
method of partial fractions, which applies to differential R(x)dx of a single variable
(see Endnote 9.1). This is because the differential (1) of Abel’s Theorem 1 is rational
in a1, . . . , anν−g. However, since (1) is a closed differential, a result proved by Chen
and Koutschan [17, Theorem 8] implies that there is finite extension K′

0 of K0 and a
function

(3) v = g0(a1, . . . , anν−g) +
L∑

k=1
γk log

(
gk(a1, . . . , anν−g)

)
,

where γ1, . . . , γL are constants in K′
0, g0 is a rational function with coefficients in

K0, and g1, . . . , gL are rational functions with coefficients in K′
0, such that

dv = R1(a1, . . . , anν−g)da1 + · · · + Rnν−g(a1, . . . , anν−g)danν−g

(see Endnote 9.2 for more details). It follows that
∫

R1(a1, . . . , anν−g)da1 + · · · +

∫
Rnν−g(a1, . . . , anν−g)danν−g = v + C,

11 This argument is similar to what Abel did in [1], though his exposition is terse. Earlier, in his
1826 memoir, Abel hints at the above proof [2, p. 149] and then gives another argument that leads
to an explicit formula for the R j [2, pp. 150–159]. A detailed derivation of his formula can be found
in [41, pp. 579–582].
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where v is a “rational and logarithmic” function and C is an arbitrary constant. This
differs from the “algebraic and logarithmic” terminology used by Abel. His more
general functions will appear in Essay 9.9.

Example 4 Consider y2 = x3 + 1 as in Example 3 of Essay 9.6. When ν = 2, recall
that

�1(x, a, b, c) = x4 + (2a − c2)x3 + (2b + a2)x2 + 2abx + (b2 − c2)

and Y (x) = −x2−ax−b
c . For the rational function f (x, y) = x

y , the proof of Abel’s
Theorem 1 and the formulas from Example 3 in Essay 9.6 imply that

(4)
4∑

i=1

xi
yi

dxi =
( 4∑

i=1

2cx2
i

Di

)
da +

( 4∑

i=1

2cxi
Di

)
db +

( 4∑

i=1

cxiyi
Di

)
dc,

where Di = 4x3
i + 3(2a − c2)x2

i + 2(2b + a2)xi + 2ab. The expressions inside the
large parentheses can be computed by standard algorithms for symmetric functions
(for the third sum on the right, use cyi = −x2

i − axi − b).
These computations can be simplified by using Abel’s Theorem 2 of Essay 9.8,

which says that
dx1
y1

+
dx2
y2

+
dx3
y3

+
dx4
y4

= 0

since dx
y is holomorphic. Writing the left side in terms of da, db, dc gives

( 4∑

i=1

2cxi
Di

)
da +

( 4∑

i=1

2c
Di

)
db +

( 4∑

i=1

cyi
Di

)
dc = 0,

so that

(5)
4∑

i=1

2cxi
Di

=

4∑

i=1

2c
Di

=

4∑

i=1

cyi
Di

= 0.

The vanishing of the third sum of (5) and cyi = −x2
i − axi − b then imply that

0 =

4∑

i=1

x2
i

Di
+ a

4∑

i=1

xi
Di

+ b
4∑

i=1

1
Di
.

This and the vanishing of the first two sums of (5) yield
∑4

i=1
x2
i

Di
= 0.

It follows that in (4), the first two sums on the right vanish. Furthermore, again
using cyi = −x2

i − axi − b and the sums already known to vanish, one obtains

4∑

i=1

xi
yi

dxi =
( 4∑

i=1

cxiyi
Di

)
dc = −

( 4∑

i=1

x3
i

Di

)
dc.
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A calculation using the Magma Computational Algebra System reveals that the sum
∑4

i=1
x3
i

Di
reduces to 1, with the result that

x1 dx1
y1

+
x2 dx1
y2

+
x3 dx1
y3

+
x4 dx1
y4

= −dc,

which is a closed rational differential in a, b, c.

Essay 9.8 A Theorem About Holomorphic Differentials

Holomorphic differentials appear indirectly in Abel’s Paris Memoir [2] when he
asks when a sum of integrals

∫
f (x, y)dx can equal a constant, or equivalently, when

their differentials f (x, y)dx sum to zero. He realizes that this imposes conditions
on f (x, y). His analysis leads to differentials that are (almost) holomorphic, and the
“number of arbitrary constants” that describe these differentials (see [2, p. 167]) is
closely related to the genus g. Although the relation is imperfect,12 Abel was asking
the right question, and the answer definitely involves holomorphic differentials.

The following theorem shows how this works in the setting of the previous essay.

Abel’s Theorem 2 Let (xi, yi) be the nν solutions of χ(x, y) = 0 and Θν(x, y) = 0
constructed in Essay 9.6. If h(x, y) is a rational function with coefficients in K0, then

h(x1, y1)dx1 + · · · + h(xnν, ynν)dxnν = 0

if and only if h(x, y)dx is a holomorphic differential.

Proof Given h(x, y), the proof of Abel’s Theorem 1 (especially equation (2) from
Essay 9.7) implies that

(1)
nν∑

i=1
h(xi, yi)dxi =

nν−g∑

j=1

( nν∑

i=1
h(xi, yi)

dxi
daj

)
daj,

where dxi
da j

is a rational function of x, a1, a2, . . . , anν−g with coefficients in K0.
If h(x, y)dx is holomorphic, then so is h(x, y) dx

da j
daj , because these are by

definition two descriptions of the same differential. Because yi can be expressed as
a rational function Y (xi) of xi with coefficients in K̂0, it follows that h(xi, yi) dxida j

can be expressed as a quantity in the splitting field of �1(x, a1, a2, . . . , anν−g). The
coefficient of daj in the right side of (1) is then the trace of h(x, y) dx

da j
. Since

h(x, y) dx
da j

daj is a holomorphic differential, this trace equals zero by Corollary 2 of
Essay 9.5. Therefore, the sum on the left side of (1) equals zero, as was to be shown.

For the converse, let L be the splitting field of �1(x, a1, a2, . . . , anν−g) over K̂0 =

K0(a1, a2, . . . , anν−g). This field contains x1, . . . , xnν , and differentials in dxi with

12 See [12, pp. 215–222] and [50] for a discussion of Abel’s work on holomorphic differentials.
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coefficients in L form a vector space over L. Proposition 2, to be proved below,
shows that exactly nν − g of the xi are algebraically independent over K0. It follows
that this vector space of differentials has dimension nν − g over L.

Suppose there are differentials h1(x, y)dx, . . . , hg+1(x, y)dx with coefficients in
K0 that are linearly independent over K0 and satisfy

(2)
nν∑

i=1
hj(xi,Y (xi))dxi = 0, j = 1, . . . , g + 1.

Since the hj are linearly independent over K0, it follows that (2) imposes g + 1
independent conditions on dx1, . . . , dxnν . Thus the vector space of differentials has
dimension at most nν − (g + 1) = nν − g − 1. Yet its dimension is nν − g by the
previous paragraph. This proves that over K0, the vector space of differentials for
which

nν∑

i=1
h(xi, yi)dxi =

nν∑

i=1
h(xi,Y (xi))dxi = 0

has dimension at most g over K0. This vector space contains the subspace of holo-
morphic differentials, which has dimension g, so the two are equal. Thus every
h(x, y)dx satisfying the above equation is holomorphic. �

This proof works because g arises in two seemingly different contexts: g is the
number of linearly independent holomorphic differentials, and nν − g + 1 is the
number of indeterminates in the polynomial θν(x, y) of Essay 9.6.

Example 5 For the elliptic curve y2 = x3 + 1 from the example of the preceding
essay, Abel’s Theorem 2 implies that

dx1
y1

+
dx2
y2

+
dx3
y3

+
dx4
y4

= 0

since dx
y is a holomorphic differential. Writing this in terms of da, db, dc, one obtains

4∑

i=1

2cxi
Di

= 0,
4∑

i=1

2c
Di

= 0, and
4∑

i=1

cyi
Di

= −

4∑

i=1

x2
i + axi + b

Di
= 0,

where Di = 4x3
i + 3(2a − c2)x2

i + 2(2b + a2)xi + 2ab. Direct verification of these
equations involves expressing these symmetric polynomials in x1, x2, x3, and x4 in
terms of a, b, and c and leads to a long calculation. This can done using a computer
as in Example 4 from Essay 9.7.

A partial, but convincing, check can be made by approximating the roots xi of
�1(x, a, b, c) numerically in the case a = 1, b = 2, c = 3, in which case �1(x, a, b, c) =
x4 − 7x3 + 5x2 + 4x − 5, and using these numerical approximations and Di =

4x3
i − 21x2

i + 10xi + 4, to approximate the three sums numerically. The results will
be found to differ from 0 by an amount that can be accounted for by round-off error.
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The final task of this essay is to prove the following result used in the proof of
Abel’s Theorem 2.

Proposition 2 Let (xi, yi) be the nν solutions of χ(x, y) = 0 and Θν(x, y) = 0
constructed in Essay 9.6, and let a1, a2, . . . , anν−g be the indeterminates appearing
in Θν(x, y). Then the (xi, yi) can be renumbered so that the following hold:

1. Each aj is a rational function of xi, yi , i = 1, . . . , nν − g, with coefficients in K0.
2. There is a rational function Y (x, x1, y1, . . . , xnν−g, ynν−g) with coefficients in K0

such that yi = Y (xi, x1, y1, . . . , xnν−g, ynν−g) for i = 1, . . . , nν.
3. x1, . . . , xnν−g are algebraically independent over K0 and xnν−g+1, . . . , xnν are

algebraic over K0(x1, . . . , xnν−g).

Proof The construction of Essay 9.6 implies thatΘν(x, y) can be written in the form

Θν(x, y) = xν +
nν−g∑

j=1
ajΦj(x, y),

where the rational functions Φj(x, y) have coefficients in K0. The vanishing of
Θν(x, y) at (xi, yi) shows that the aj are solutions of the linear equations

(3)
nν−g∑

j=1
ajΦj(xi, yi) = −xνi , i = 1, . . . , nν.

Assume there is another solution b1, b2, . . . , bnν−g in K̂0 = K0(a1, a2, . . . , anν−g).
Then Θν(x, y) and

Θ̂ν(x, y) = xν +
nν−g∑

j=1
bjΦj(x, y)

vanish at the nν points (xi, yi). Thus, when regarded as a quantity in the curve field
of χ(x, y), Θ̂ν(x, y) has at least nν zeros, counted with multiplicity. But the above
formula for Θ̂ν(x, y) implies that it is integral over x with order at most ν at x = ∞.
Hence Θ̂ν(x, y) has at most nν poles, counted with multiplicity. Since the number
of zeros equals the number of poles, Θ̂ν(x, y) has exactly nν zeros, all of multiplicity
one, and its order at x = ∞ is exactly ν, so that it has poles of order ν at all n poles
of x. The same is true for Θν(x, y), so that their quotient has no poles. Therefore,
the quotient is a constant, i.e., Θ̂ν(x, y) is a constant multiple of Θν(x, y). Then
Θ̂ν(x, y) = Θν(x, y) since both come from solutions of (3). It follows that the aj are
the unique solution of (3).

The inhomogeneous system (3) consists of nν equations (one for each (xi, yi)) in
nν − g unknowns a1, a2, . . . , anν−g. Hence a subset of the equations gives a square
system with a unique solution. Renumbering if necessary, the square system

nν−g∑

j=1
ajΦj(xi, yi) = −xνi , i = 1, . . . , nν − g
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has a unique solution. Cramer’s rule expresses each aj as a rational function of
(xi, yi) for i = 1, . . . , nν − g with coefficients in K0. This proves the first assertion of
the proposition.

The second assertion follows without difficulty. By Lemma 2 in Essay 9.6, there
is a rational function Y (x) with coefficients in K̂0 = K0(a1, . . . , anν−g) such that
yi = Y (xi) for all i. Replacing each aj appearing in Y (x) with the rational function
constructed in the first assertion gives the desired Y (x, x1, y1, . . . , xnν−g, ynν−g).

For the third assertion, observe that yi algebraic over xi for all i. Thus the first
assertion implies that a1, . . . , anν−g are algebraic over x1, . . . , xnν−g. Then the alge-
braic independence of a1, . . . , anν−g immediately implies that x1, . . . , xnν−g are alge-
braically independent.

Finally, xnν−g+1, . . . , xnν are algebraic over a1, . . . , anν−g by construction, and
hence algebraic over x1, y1, . . . , xnν−g, ynν−g by the first assertion. Each yi is algebraic
over xi , so xnν−g+1, . . . , xnν are algebraic over x1, . . . , xnν−g, as was to be shown. �

Example 6 For the elliptic curve y2 = x3 +1, the smallest value of ν is 2 since y has
order 2 at x = ∞. For Θ2(x, y, a, b, c) = x2 + ax + b + cy, the four solutions (xi, yi)
satisfy

axi + b + cyi = −x2
i , i = 1, 2, 3, 4.

Using i = 1, 2, 3 and Cramer’s rule, one obtains

a =

det
⎡⎢⎢⎢⎢⎣

−x2
1 1 y1

−x2
2 1 y2

−x2
3 1 y3

⎤⎥⎥⎥⎥⎦

det
⎡⎢⎢⎢⎢⎣

x1 1 y1
x2 1 y2
x3 1 y3

⎤⎥⎥⎥⎥⎦

=
x2

1 y2 + x2
2 y3 + x2

3 y1 − x2
1 y3 − x2

2 y1 − x2
3 y2

x1y3 + x2y1 + x3y2 − x1y2 − x2y3 − x3y1
,

with similar formulas for b and c. This is the first assertion of the proposition. Then
Y (x) = −x2−ax−b

c leads to an explicit formula for Y (x, x1, y1, x2, y2, x3, y3) as in the
second assertion. Finally, since

�1(x, a, b, c) = x4 + (2a − c2)x3 + (2b + a2)x2 + 2abx + (b2 − c2)

(see Example 3 in Essay 9.6), x1 + x2 + x3 + x4 = −(2a − c2). This gives an explicit
formula for x4 in terms of x1, y1, x2, y2, x3, y3, as claimed in the third assertion.

This formula for x4 and y4 = Y (x4, x1, y1, x2, y2, x3, y3) imply that (x4, y4) is
uniquely determined by the points (x1, y1), (x2, y2), (x3, y3). In fact, Essay 9.11 will
show that (x4, y4) = −(x1, y1) − (x2, y2) − (x3, y3) with respect to the usual addition
law on the elliptic curve y2 = x3 + 1.

Something remarkable has happened here—thinking about how the points (xi, yi)
relate to each other (as codified in the proposition) leads to formulas related to the
addition law on y2 = x3 + 1. The framework developed in Essay 9.6 always involves
nν points on the curve, which for y2 = x3 + 1 is always at least four. Thus further
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thought is needed to study what happens for an arbitrary number of points on the
curve. This is the subject of the next essay.

Essay 9.9 A Change of Parameters

The indeterminates a1, a2, . . . , anν−g introduced in Essay 9.6 have played a prominent
role so far. Abel used similar quantities a, a′, a′′, . . . in the first five sections of his
Paris Memoir [2]. The situation changed in Section 6, where he let α denote their
number and asserted that their values are “functions of a number α of the quantities
x1, . . . , xμ; for example, as functions of x1, . . . , xα” [2, p. 170]. Abel also stated that
the difference μ − α is “very remarkable” [2, p. 172].

In the situation of these essays, nν − g plays that role of α and nν plays the role
of μ, so that

μ − α = nν − (nν − g) = g.

Very remarkable indeed!13 The two versions of Abel’s theorem stated and proved in
the next essay will give insight into why Abel thought the genus was so important.
The preliminary lemmas proved here lay the groundwork for the theorems. In these
lemmas, the parameters a1, a2, . . . , anν−g will be replaced with an equal number of
the xi’s. This is the “change of parameters” in the title of the essay.

In what follows, set N = nν − g and K̂0 = K0(a1, a2, . . . , aN ). Then, as in Abel’s
Theorems 1 and 2, let L be the splitting field of �1(x, a1, a2, . . . , aN ) over K̂0. Also
set yi = Y (xi) for i = 1, . . . , nν, where Y (x) is the rational function with coefficients
in K̂0 from Lemma 2 of Essay 9.6. The yi lie in L and satisfy χ(xi, yi) = 0 for all i.

By Proposition 2 of the previous essay, the xi and yi can be renumbered so that the
aj are rational functions of x1, . . . , xN, y1, . . . , yN with coefficients in K0. It follows
that

L = K0(x1, . . . , xnν, y1, . . . , ynν).

The proposition also implies that x1, . . . , xN are algebraically independent over K0
and xN+1, . . . , xN+g = xnν are algebraic over x1, . . . , xN . Consider the subfield

LN = K0(x1, . . . , xN, y1, . . . , yN )

of L. The field LN has a simple structure since x1, . . . , xN are algebraically inde-
pendent over K0 and each yi is a root of χ(xi, y) = 0. Heuristically, LN is the field
associated with N general points on the curve χ(x, y) = 0.

Given a rational function f (x, y), Abel’s Theorem 1 from Essay 9.7 constructs a
closed differential dv =

∑N
j=1 Rj(a1, . . . , aN )daj that satisfies the theorem. Replac-

ing a1, . . . , aN with the rational functions of x1, . . . , xN, y1, . . . , yN constructed in
the previous essay gives

13 Similar to footnote 12, Abel’s number μ − α has a imperfect relation to the genus g.
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dv =

N∑

j=1
Rj(a1, . . . , aN )daj =

N∑

j=1
Rj(a1, . . . , aN )

( N∑

k=1

∂aj
∂xk

dxk +
N∑

j=1

∂aj
∂yk

dyk
)
.

This is rational in x1, . . . , xN, y1, . . . , yN and hence algebraic in x1, . . . , xN since each
yi is algebraic over xi . It follows that dv is constructed via substitution of algebraic
functions into a closed rational differential in algebraically independent variables.
Such a differential is said to be rationally closed.

Preliminary Lemma 1 The algebraic extension LN ⊂ L contains solutions (x ′j, y
′
j)

of χ(x, y) = 0 for j = 1, . . . , g such that for any rational function f (x, y) over K0,
there is a differential dv satisfying

f (x1, y1)dx1 + · · · + f (xN, yN )dxN = dv −
(
f (x ′1, y

′
1)dx

′
1 + · · · + f (x ′g, y

′
g)dx

′
g

)
.

Furthermore, the differential dv satisfies

1. dv is rational in x1, . . . , xN, y1, . . . , yN and rationally closed.
2. dv = 0 when f (x, y)dx is a holomorphic differential.

Proof Abel’s Theorem 1 implies that f (x1, y1)dx1 + · · · + f (xN, yN )dxN equals

dv −
(
f (xN+1, yN+1)dxN+1 + · · · + f (xnν, ynν)dxnν

)

over K̂0 = K0(a1, . . . , aN ). The equation of the lemma follows by setting (x ′j, y
′
j) =

(xN+j, yN+j) for j = 1, . . . , g (recall that N = nν − g).
This equation continues to hold when a1, . . . , aN are replaced by rational functions

in x1, . . . , xN, y1, . . . , yN , and the resulting dv is rationally closed by the discussion
preceding the lemma.

The final assertion of the lemma (dv = 0 when f (x, y)dx is holomorphic) follows
from Abel’s Theorem 2. �

The reason for being careful about dv becomes apparent when one considers the
integral version of the equation in Preliminary Lemma 1:

∫
f (x1, y1)dx1 + · · · +

∫
f (xN, yN )dxN

= v −
( ∫

f (x ′1, y
′
1)dx

′
1 + · · · +

∫
f (x ′g, y

′
g)dx

′
g

)
.

In equation (3) of Essay 9.7, v = g0(a1, . . . , anν−g)+
∑L

k=1 γk log
(
gk(a1, . . . , anν−g)

)
,

while here, the function v arises by replacing aj with the appropriate rational function
of x1, . . . , xN, y1, . . . , yN . Since yi is an algebraic function of xi , it follows that v is
now an “algebraic and logarithmic” function of x1, . . . , xN . This is the terminology
used by Abel in [2].

The second preliminary lemma generalizes Preliminary Lemma 1 by replacing
the indeterminates x1, . . . , xN , N = nν − g, with x1, . . . , xα, where α is now allowed
to be arbitrary. This is done as follows.
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Fix a positive integer α and let x1, . . . , xα be indeterminates over the field of
constants K0. For each i = 1, . . . , α, adjoin a root yi of χ(xi, y) to get a c-field

(1) Lα = K0(x1, . . . , xα, y1, . . . , yα).

Heuristically, one can think of the (xi, yi) as giving α general points on the curve
defined by χ(x, y) = 0.

Preliminary Lemma 2 Given a positive integer α, construct an algebraic extension
Lα ⊂ L′

α that contains solutions (x ′j, y
′
j) of χ(x, y) = 0 for j = 1, . . . , g and a finite

extension K′
0 of K0 such that for any rational function f (x, y) over K0, there is a

differential dv satisfying

f (x1, y1)dx1 + · · · + f (xα, yα)dxα = dv −
(
f (x ′1, y

′
1)dx

′
1 + · · · + f (x ′g, y

′
g)dx

′
g

)
.

Furthermore, the differential dv satisfies
1. dv is rational in x1, . . . , xα, y1, . . . , yα over K′

0 and rationally closed.
2. dv = 0 when f (x, y)dx is a holomorphic differential.

Proof Pick an integer ν as in Essay 9.6 such that nν − g ≥ α and set N = nν − g.
When α = N , the lemma holds withL′

N = L andK′
0 = K0 by Preliminary Lemma 1.

To prove the lemma for α = N−1, the strategy is to replace (x1, y1)with a constant
solution (xo

1, y
o
1) that lies in a finite extension K′

0 of K0. To evaluate a quantity z in
L at (xo

1, y
o
1), the first step is to isolate x1 and y1 in z and write z = p(x1,y1)

q(x1)
, where

p(x, y) and q(x) have coefficients in K0(x2, . . . , xnν, y2, . . . , ynν). This is possible
because y1 is algebraic over K0(x1).

As explained in Essay 8.1, the evaluation of z at (xo
1, y

o
1) is equal to p(xo

1,y
o
1 )

q(xo
1 )

whenever q(xo
1) � 0. So evaluating finitely many known quantities in L at (xo

1, y
o
1)

works provided that xo
1 is not a root of any of the denominators involved. If the

product of denominators has degree m, this can be accomplished constructively by
trying m + 1 distinct integers—let xo

1 be the first where none of them vanish.
The quantities to evaluate are (x ′j, y

′
j), j = 1, . . . , g, and the rational differential dv.

For each j, there is also the monic algebraic relation of x ′j on x1, . . . , xN to consider,
along with the rational function Y (x) that satisfies y′j = Y (x ′j) for j = 1, . . . , g. (The
relation χ(x ′j, y

′
j) = 0 is unaffected by the evaluation since χ(x, y) has coefficients in

K0.). As indicated above, xo
1 can be chosen so that none of the denominators vanish.

Given xo
1 , adjoining a root yo

1 of χ(xo
1, y) to K0 gives a finite extension K′

0 of
K0. Proposition 1 of Essay 9.3 implies that χ(x, y) remains irreducible when K0 is
replaced with K′

0, which gives a new field L′. Then evaluating (x ′j, y
′
j), j = 1, . . . , g,

Y (x), and dv at (xo
1, y

o
1) gives (x ′′j , y

′′
j ), j = 1, . . . , g,Y ′(x), and dv′ with y′′i = Y ′(x ′′i ).

Since dxo
1 = 0, this evaluation transforms

f (x1, y1)dx1 + · · · + f (xN, yN )dxN = dv −
(
f (x ′1, y

′
1)dx

′
1 + · · · + f (x ′g, y

′
g)dx

′
g

)

into

f (x2, y2)dx2 + · · ·+ f (xN, yN )dxN = dv′ −
(
f (x ′′1 , y

′′
1 )dx

′′
1 + · · ·+ f (x ′′g , y

′′
g )dx

′′
g

)
,
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which has the desired form with L′
N−1 � K′

0(x2, . . . , xN, y2, . . . , yN ). Continuing in
this way, equation of the lemma follows for any positive α ≤ N .

For the final assertions of the lemma, first note that dv from Preliminary Lemma 1
remains rationally closed when evaluated at (xo

1, y
o
1). Furthermore, when N = nν− g

and f (x, y)dx is a holomorphic differential, Abel’s Theorem 2 implies that dv = 0.
This continues to hold when (x1, y1) is evaluated at (xo

1, y
o
1). Thus the final assertions

of the lemma hold for α = N − 1. As above, they hold for any positive α ≤ N . �

Example 7 For y2 = x3 + 1, Example 6 from Essay 9.8 showed that (x4.y4) can
be expressed in terms of (x1, y1), (x2, y3) and (x3, y3). Evaluating this formula at a
careful choice for (x1, y1) will yield something familiar.

As noted in Chapter 8, a “point” is a way of assigning a value (or the symbol ∞)
to each quantity in the curve field K = Q(x1, y1), where y2

1 = x3
1 + 1. By Example 4

from Essay 8.9, z = 1
x1

and w =
y1
x2

1
give the equation w2 = z + z4 with the same

curve field. Consider the point P = (0, 0) of w2 = z + z4. This corresponds to the
unique point of y2 = x3 + 1 where x = ∞.

Recall that Y = −x2−ax−b
c = − 1

c x
2 − a

c x −
b
c . To evaluate these coefficients when

z,w → 0, first observe that x1 = 1
z and y1 = w

z2 . Then solve for a, b, c using Cramer’s
rule as in Example 6 from Essay 9.8 to obtain:

1
c
=

det
⎡⎢⎢⎢⎢⎣

x1 1 y1
x2 1 y2
x3 1 y3

⎤⎥⎥⎥⎥⎦

det
⎡⎢⎢⎢⎢⎣

x1 1 −x2
1

x2 1 −x2
2

x3 1 −x2
3

⎤⎥⎥⎥⎥⎦

=

det
⎡⎢⎢⎢⎢⎣

z z2 w

x2 1 y2
x3 1 y3

⎤⎥⎥⎥⎥⎦

det
⎡⎢⎢⎢⎢⎣

z z2 −1
x2 1 −x2

2
x3 1 −x2

3

⎤⎥⎥⎥⎥⎦

z,w→0
−−−−−−→

det
⎡⎢⎢⎢⎢⎣

0 0 0
x2 1 y2
x3 1 y3

⎤⎥⎥⎥⎥⎦

det
⎡⎢⎢⎢⎢⎣

0 0 −1
x2 1 −x2

2
x3 1 −x2

3

⎤⎥⎥⎥⎥⎦

= 0,

where the second equality expresses x1, y1 in terms of z,w and multiplies the top
and bottom determinants by z2 to clear denominators. Similarly,

a
c
=

det
⎡⎢⎢⎢⎢⎣

−x2
1 1 y1

−x2
2 1 y2

−x2
3 1 y3

⎤⎥⎥⎥⎥⎦

det
⎡⎢⎢⎢⎢⎣

x1 1 −x2
1

x2 1 −x2
2

x3 1 −x2
3

⎤⎥⎥⎥⎥⎦

=

det
⎡⎢⎢⎢⎢⎣

−1 z2 w

x2 1 y2
x3 1 y3

⎤⎥⎥⎥⎥⎦

det
⎡⎢⎢⎢⎢⎣

z z2 −1
x2 1 −x2

2
x3 1 −x2

3

⎤⎥⎥⎥⎥⎦

z,w→0
−−−−−−→

det
⎡⎢⎢⎢⎢⎣

−1 0 0
x2 1 y2
x3 1 y3

⎤⎥⎥⎥⎥⎦

det
⎡⎢⎢⎢⎢⎣

0 0 −1
x2 1 −x2

2
x3 1 −x2

3

⎤⎥⎥⎥⎥⎦

=
y2 − y3
x3 − x2

,

and
b
c

z,w→0
−−−−−−→

x2y3 − x3y2
x3 − x2

.

It follows that
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Y (x) = −
1
c
x2 −

a
c
x −

b
c

z,w→0
−−−−−−→0 · x2 −

y2 − y3
x3 − x2

x −
x2y3 − x3y2
x3 − x2

=
y2 − y3
x2 − x3

x +
x2y3 − x3y2
x2 − x3

.

Denote this linear function by Y ′(x).
As in the proof of Preliminary Lemma 2, (x4, y4)

z,w→0
−−−−−−→ (x ′1, y

′
1), which satisfies

y′1 = Y ′(x ′1). An explicit formula for this point is obtained as follows. In Example 3
of Essay 9.6, �1(x) was constructed by clearing the denominator of Y (x)2 − (x3 + 1).
Here, it is more useful to let �1(x) = Y (x)2 − (x3 + 1). Since Y (x)

z,w→0
−−−−−−→ Y ′(x),

�1(x) becomes the cubic

Y ′(x)2 − (x3 + 1) =
( y2 − y3
x2 − x3

x +
x2y3 − x3y2
x2 − x3

)2
− (x3 + 1).

Since its roots satisfy x2+ x3+ x ′1 = −coefficient of x2/coefficient of x3, one obtains

(2)
x ′1 = −x2 − x3 +

( y2 − y3
x2 − x3

)2

y′1 = Y ′(x ′1) =
y2 − y3
x2 − x3

x ′1 +
x2y3 − x3y2
x2 − x3

.

These formulas, interpreted geometrically, say that Y ′(x) = 0 is the equation of the
line determined by P = (x2, y2) and Q = (x3, y3), and then S = (x ′1, y

′
1) is where this

line meets the curve y2 = x3 + 1. Figure 4.3 in Essay 4.2 shows what this looks like
for the elliptic curve y2 = 3

4 x
3 − 1

2 x +
1
4 .

For the holomorphic differential dx
y , Preliminary Lemma 2 says

dx2
y2

+
dx3
y3

= −
dx ′1
y′1
, i.e.,

dx2
y2

+
dx3
y3

+
dx ′1
y′1

= 0

when x2, y2, x3, y3, x ′1, y
′
1 are related by (2). Thus the equations (2) represent an

“algebraic integration” of the above differential equation.

Essay 9.10 Abel’s Addition Theorems

Given α > 0, Preliminary Lemma 2 from the previous essay gives an equation

(1) f (x1, y1)dx1+ · · ·+ f (xα, yα)dxα = dv−
(
f (x ′1, y

′
1)dx

′
1+ · · ·+ f (x ′g, y

′
g)dx

′
g

)
.

Setting ψi xi =
∫
f (xi, yi)dxi , Abel [2, p. 172] wrote the integral version of (1) as

ψ1x1 + · · · + ψαxα = v −
(
ψα+1xα+1 + · · · + ψμxμ

)
.
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The number of integrals on the right is μ − α, which in Preliminary Lemma 2 is the
genus g, and v is an algebraic and logarithmic function as explained in Essay 9.9.

Abel had two ways of dealing the minus sign in the right side of these equations.
This will lead to Abel’s Theorems 3 and 4. In the first of these theorems, he used a
clever trick [2, p. 186] to change the minus sign in (1) into a plus sign:

Abel’s Theorem 3 Given a positive integer α, construct an algebraic extension
Lα ⊂ L′

α that contains solutions (x ′′j , y
′′
j ) of χ(x, y) = 0 for j = 1, . . . , g, and a

finite extension K′
0 of K0 such that for any rational function f (x, y) over K0, there

is a differential dv1 satisfying

f (x1, y1)dx1 + · · · + f (xα, yα)dxα = dv1 + f (x ′′1 , y
′′
1 )dx

′′
1 + · · · + f (x ′′g , y

′′
g )dx

′′
g .

Furthermore, dv1 is rationally closed over K′
0 and equals 0 when f (x, y)dx is a

holomorphic differential.

Proof For independent variables z1, . . . , zg, Preliminary Lemma 2 applied with
α = g gives an equation

f (z1,w1)dz1 + · · · + f (zg,wg)dzg = dv′ −
(
f (z′1,w

′
1)dz

′
1 + · · · + f (z′g,w

′
g)dz

′
g

)
.

Evaluating (zi,wi) at (x ′i, y
′
i ) for i = 1, . . . , g gives

f (x ′1, y
′
1)dx

′
1 + · · · + f (x ′g, y

′
g)dx

′
g = dv′′ −

(
f (x ′′1 , y

′′
1 )dx

′′
1 + · · · + f (x ′′g , y

′′
g )dx

′′
g

)
.

Adding 0 =
∑α

i=1 f (x ′i, y
′
i )dx

′
i − dv′′ +

∑g
j=1 f (x ′′i , y

′′
i )dx

′′
i to the right side of (1)

yields the desired equation with dv1 = dv − dv′′, which is a differential of the
required form.

Finally, when f (x, y)dx is holomorphic, dv = dv′ = 0 by Preliminary Lemma 2,
so that dv1 = 0 as well. �

Example 8 Continuing with the elliptic curve y2 = x3 + 1 from Example 7 of the
previous essay, Preliminary Lemma 2 can be stated as

(2) f (x1, y1)dx1 + f (x2, y2)dx2 = dv − f (x ′1, y
′
1)dx

′
1

after replacing x2, x3 with x1, x2, and similarly for y2, y3. With this change of notation,
formula (2) from Example 7 becomes

(3)
x ′1 = −x1 − x2 +

( y1 − y2
x1 − x2

)2

y′1 = Y ′(x ′4) =
y1 − y2
x1 − x2

x ′1 +
x1y2 − x2y1
x1 − x2

.

Both (2) and (3) have interesting consequences. First note that since (x ′1, y
′
1) is a

solution of y2 = x3 + 1, so is (x3, y3) = (x ′1,−y
′
1). Writing f (x, y) = g(x)+ h(x)y for

rational functions g(x) and h(x), one easily sees that
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f (x ′1, y
′
1)dx

′
1 = dv′′ − f (x3, y3)dx3, dv′′ = 2g(x3)dx3.

Combining this with (2) gives

f (x1, y1)dx1 + f (x2, y2)dx2 = dv1 + f (x3, y3)dx3, dv1 = dv − dv′′,

exactly as in the proof of Abel’s Theorem 3. Furthermore, (x3, y3) = (x ′1,−y
′
1)

transforms (3) into

x3 = −x1 − x2 +
( y1 − y2
x1 − x2

)2

y3 = −
y1 − y2
x1 − x2

x3 −
x1y2 − x2y1
x1 − x2

,

which is the usual addition law on the elliptic curve y2 = x3 + 1.

Abel’s second way of dealing with the minus signs in (1) was to make them go
away by letting the (x ′j, y

′
j) be constant, so that dx ′1 = · · · = dx ′g = 0 in (1). This is

accomplished by imposing g conditions on (xi, yi) for i = 1, . . . , α.
Some preparation is needed before stating the result. Fix ν and set N = nν − g.

Lemma 2 of Essay 9.6 shows that x1, . . . , xnν are the roots of �1(x, a1, a2, . . . , aN ),
which here will be assumed to be monic in x. By Proposition 2 in Essay 9.8, the
aj are rational functions of x1, . . . , xN, y1, . . . , yN after relabeling. The resulting
�1(x, x1, . . . , xN, y1, . . . , yN ) is a polynomial in x that factors as

�1(x, x1, . . . , xN, y1, . . . , yN ) =

N∏

i=1
(x − xi) · F(x, x1, . . . , xN, y1, . . . , yN ),

where F has degree g in x. Its roots x ′1, . . . , x
′
g appear in the preliminary lemmas of

the previous essay when α = N .
For α < N , Preliminary Lemma 2 proved (1) by replacing the first N − α

of the (xi, yi) with carefully chosen constant solutions (xo
i , y

o
i ) and relabeling

(xN−α+1, yN−α+1), . . . , (xN, yN ) as (x1, y1), . . . , (xα, yα). The above factorization of
�1(x, x1, . . . , xN, y1, . . . , yN ) then transforms into

�o1(x, x1, . . . , xα, y1, . . . , yα) =

N−α∏

i=1
(x− xo

i ) ·

α∏

i=1
(x− xi) ·F1(x, x1, . . . , xα, y1, . . . , yα),

where

F1(x, x1, . . . , xα, y1, . . . , yα) = F(x, xo
1, . . . , x

o
N−α, x1, . . . , xα, yo

1, . . . , y
o
N−α, y1, . . . , yα).

The quantities x ′1, . . . , x
′
g that appear in (1) are the roots of F1 in some splitting field,

and y′i = Y ′(x ′i ) as in the proof of Preliminary Lemma 2.
The basic idea of Abel’s Theorem 4 is that requiring the points (x ′j, y

′
j) to be

constant imposes g conditions on (x1, y1), . . . , (xα, yα), and when these conditions
are satisfied, the right side of (1) reduces to dv.
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Algebraically, this is done using the parametric setting introduced in Essay 8.2,
where one adds algebraically independent parameters to the field of constants. Sup-
pose h of x ′1, . . . , x

′
g, say x ′1, . . . , x

′
h
, are algebraically independent over K′

0 and the
remaining x ′i are algebraic over these.14 As in Essay 8.2, this gives a curve field over
Q̂ = Q(x ′1, . . . , x

′
h
).

Originally, χ(x, y) was irreducible over K0, and when this field was enlarged to
K′

0 in Preliminary Lemma 2 of Essay 9.9, it remained irreducible by Proposition 1
of Essay 9.3. Since K̂ ′

0 = K′
0(x

′
1, . . . , x

′
h
) simply adds new indeterminates, χ(x, y)

is irreducible over K̂ ′
0. The choice of x ′1, . . . , x

′
h

guarantees that the new field of
constants K̂ ′′

0 contains x ′1, . . . , x
′
g, y

′
1, . . . , y

′
g.

In this setting, dx ′i = 0 for i = 1, . . . , h, and then dx ′i = 0 for i = 1, . . . , g since the
others are algebraic over x ′1, . . . , x

′
h
. It follows that dy′i = 0 since y′i is algebraic over

x ′i . In this way, (x ′i, y
′
i ) becomes a constant solution of χ(x, y) = 0 for i = 1, . . . , g.

Also note that x1, . . . , xα are no longer algebraically independent since the equations

(4) F1(x ′i, x1, . . . , xα, y1, . . . , yα) = 0, i = 1, . . . , g

lead to algebraic relations among x1, . . . , xα over K̂ ′
0 because yi is algebraic over xi

for i = 1, . . . , α.
Since dx ′j = 0 for all j, equation (1) has the following immediate consequence.

Abel’s Theorem 4 Let the field of constants be K̂ ′′
0 containing x ′1, . . . , x

′
g, y

′
1, . . . , y

′
g

as above. Then for any rational function f (x, y) with coefficients in K0, there is a
rationally closed differential dv, rational in x1, . . . , xα, y1, . . . , yα, such that

f (x1, y1)dx1 + · · · + f (xα, yα)dxα = dv.

Furthermore, x1, . . . , xα, y1, . . . , yα satisfy the g relations given by (4).

This theorem is remarkable because, first, the relations (4) are independent of
the differential f (x, y)dx, and second, the number of relations is the genus of the
curve. Since dv = 0 when the differential is holomorphic, Abel’s Theorem 4 has the
following immediate corollary:

Corollary 3 Let the field of constants be K̂ ′
0 = K′

0(x
′
1, . . . , x

′
h
) as above. Then for

any holomorphic differential h(x, y)dx with coefficients in K0,

h(x1, y1)dx1 + · · · + h(xα, yα)dxα = 0.

Furthermore, x1, . . . , xα, y1, . . . , yα satisfy the g relations given by (4).

In other words, an “algebraic integral” of the differential equations in the corollary
is given by the g equations (4).

14 Intuitively, h is the number of independent points among (x′1, y
′
1), . . . , (x′g, y′g). The relation

between g and h is subtle. The results of [50, Section 4] (proved non-constructively) imply that
h = g when α ≥ 2g − 1.
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Example 9 Continuing with y2 = x3+1 from Example 8, the points (x1, y1), (x2, y2),
and (x ′1, y

′
1) on the curve satisfy

x ′1 = −x1 − x2 +
( y1 − y2
x1 − x2

)2

y′1 = Y ′(x ′1) =
y1 − y2
x1 − x2

x ′1 +
x1y2 − x2y1
x1 − x2

.

When (x ′1, y
′
1) is constant as in Abel’s Theorem 4, the first line expresses an algebraic

relation between x1 and x2 (there is only one since g = 1 in this case). Then, for the
holomorphic differential dx

y , the corollary says that

dx1
y1

+
dx2
y2

= 0

when (x1, y1) and (x2, y2) satisfy the algebraic condition that −x1 − x2 +
( y1−y2
x1−x2

)2

is constant. This is the “algebraic integration” mentioned in the Synopsis to Part II.
Geometrically, this condition says that (x1, y1) and (x2, y2) vary in such a way that
the line connecting them always goes through the fixed point (x ′1, y

′
1).

Essay 9.11 Addition on an Elliptic Curve

The well-known operation of “addition” on an elliptic curve can be understood in
the following way.

An elliptic curve can be defined as one with a defining equation of the form
y2 = f (x) in which f (x) is a polynomial of degree 3 or 4 with algebraic number
coefficients and distinct roots. If f (x) has degree 4, the defining equation can be
recast as one in which f (x) has degree 3 in as follows. Let x0 be one of the four
roots of f (x) in a splitting field and let x ′ = x − x0. Then f (x ′ + x0) has degree 4 in
x ′, and zero is one of its roots. Therefore, there is no loss of generality in assuming
that 0 is a root of f (x). Division of y2 = f (x) by x4 then gives v2 = g(u) where
u = 1

x , v =
y

x2 , and g(u) has degree 3. Therefore, there is no loss of generality in
assuming that a given elliptic curve is presented in the form y2 = f (x) in which f (x)
has degree 3 and algebraic number coefficients.15

Given two points P and Q in the xy-plane that lie on y2 = f (x), the line through
them intersects y2 = f (x) in a third point S on y2 = f (x) (unless the two points
are equal, in which case the line is the tangent line at the point, or are unequal
with the same x-coordinate, in which case the line is vertical and, by convention,
15 There is a similar simplification for a hyperelliptic curve—that is, of a curve of the form
y2 = f (x), where f (x) is a polynomial with algebraic number coefficients whose roots are distinct.
In this case, too, if the degree of f (x) is 2n, the curve can also be presented—in an analogous
way—as the curve field determined by y2 = f (x), where the degree of f (x) is 2n − 1. The genus
is n − 1 and a basis of the holomorphic differentials is given by xi dx

y for i = 0, 1, . . . , n − 2 (see
Example 6 in Essay 4.5 and Example 8 in Essay 4.6).
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the third point of intersection is considered to be the unique point at infinity, where
x = ∞). Then the second point in which the vertical line through S intersects the
curve y2 = f (x) is the sum of P and Q. The point at infinity is denoted O and the
sum of P and Q is denoted P +Q.16 In Figure 4.3 of Essay 4.2, P +Q is the point R.

This description of the addition operation gives no insight into the remarkable
and useful fact that this binary operation on the points of y2 = f (x) makes them
an Abelian group with O as the additive identity. Most significantly, it leads to no
obvious proof that the associative law (P + Q) + R = P + (Q + R) holds. But the
best definition of the addition operation and the best proof of its associativity relies
on properties of the curve field of the elliptic curve and its divisors (as defined
Essay 8.12). A crucial fact is that the curve field has genus 1 in this case.

Recall from Essay 8.12 that the divisor of a nonzero quantity z in a curve field
is the formal quotient P1 · · ·Pm

Q1 · · ·Qm
where P1, . . . , Pm and Q1, . . . ,Qm are the zeros and

poles respectively of z, with repetitions determined by their multiplicities.

Lemma 3 If the divisors of two quantities in the curve field K of an elliptic curve
share the same points with at most one exception, then the divisors are equal.

Proof Let z and z′ be quantities in K with divisors P1 · · ·Pm−1P
Q1 · · ·Qm

and P1 · · ·Pm−1P
′

Q1 · · ·Qm
. Then

the divisor of w = z/z′ is

P1 · · · Pm−1P
Q1 · · ·Qm

·
Q1 · · ·Qm

P1 · · · Pm−1P′
=

P
P′
.

When w is a parameter, the number of zeros (counted with multiplicity) is the degree
of K0(w) ⊂ K by Proposition 1 of Essay 8.10. However, K0(w) � K since K has
genus 1 and K0(w) has genus 0.17 Therefore, the degree (and hence the number of
zeros) is greater than 1. Since the divisor of w is P

P′ , it follows that w is constant and
P = P′, as was to be shown.

When the possible exception occurs in the denominator, replace the quantities
with their inverses. The desired conclusion follows from the previous paragraph. �

The geometric description of the sum P +Q can be recast in terms of divisors:

Proposition Given points P and Q lying on an elliptic curve, the point P +Q is the
unique point such that PQ

O(P+Q)
is the divisor of a quantity in the curve field.

Proof First suppose that P and Q are distinct points lying on the non-vertical line
y = ax + b. Then y − ax − b, regarded as a quantity in the curve field, has divisor
PQS

O3 because y − ax − b has zeros at P, Q, and S, and its only possible pole is the
point O where x = ∞, necessarily a triple pole since there are three zeros. Also, if c
is the x-coordinate of S, then x − c has zeros at S and P + Q and a pole at O, so its
divisor is S(P+Q)

O2 . Therefore, the divisor of y−ax−b
x−c is

16 The field of constants of the curve field will always be extended to include the coordinates of all
points under consideration. Thus, for P and Q as above, the line y = ax + b through them gives
the quantity y − ax − b in the curve field whose zeros are P, Q, and S.
17 K0(w) is the curve field defined by φ(w, y) = y, with normal basis y1 = 1 and μ1 = 0. Thus,
the genus is 0 by the genus formula in Corollary 1 of Essay 9.5.
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PQS
O3 ·

O2

S(P +Q)
=

PQ
O(P +Q)

.

The uniqueness of P +Q follows from the lemma just proved.
The other cases (P = Q with nonvertical tangent line, P � Q but on the same

vertical line, P = O, etc.) are handled similarly. �

For points P, Q, and R on the curve, by the proposition, there are quantities in the
curve field whose divisors are PQ

O(P+Q)
and (P+Q)R

O((P+Q)+R) . The product of the two has
divisor PQ(P+Q)R

O2(P+Q)((P+Q)+R)
=

PQR

O2((P+Q)+R)
. But there are also quantities with divisors

QR
O(Q+R) and P(Q+R)

O(P+(Q+R)) , so that PQR

O2(P+(Q+R))
is the divisor of a quantity in the curve

field. Lemma 3 implies that (P+Q)+R = P+ (Q+R). Thus, addition is associative,
proving that P +Q + R does not rely on how the points are grouped.

Corollary When a line y = ax + b intersects the elliptic curve y2 = f (x) in points
P,Q, S, these points satisfy P +Q + S = O.

Proof Associativity and the proposition imply that (P+Q)S
O(P+Q+S) is the divisor of a

quantity in the curve field, and the proof of the proposition shows that the same is
true for S(P+Q)

O2 =
(P+Q)S
O ·O . Thus, P +Q + S = O by Lemma 3. �

Given points P1, . . . , Pm (with repetitions allowed) that lie on the elliptic curve,
the proposition constructs quantities in the curve field with divisors

P1P2
O(P1 + P2)

,
(P1 + P2)P3

O(P1 + P2 + P3)
,

(P1 + P2 + P3)P4
O(P1 + P2 + P3 + P4)

, . . . ,

so that

(1)

P1P2
O(P1 + P2)

·
(P1 + P2)P3

O(P1 + P2 + P3)
·

(P1 + P2 + P3)P4
O(P1 + P2 + P3 + P4)

· · ·

=
P1 · · · Pm

Om−1(P1 + · · · + Pm)

is the divisor of a quantity in the curve. This leads to the following general result
about divisors and addition:

Theorem Given points P1, . . . , Pm and Q1, . . . ,Qm (with repetitions allowed) that
lie on the elliptic curve, the divisor

P1 · · · Pm

Q1 · · ·Qm

is the divisor of a quantity in the curve field if and only if

P1 + · · · + Pm = Q1 + · · · +Qm.

Proof If P1 · · ·Pm

Q1 · · ·Qm
is the divisor of a quantity in the curve field, then so is
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P1 · · · Pm

Q1 · · ·Qm
·

Q1 · · ·Qm

Om−1(Q1 + · · · +Qm)
=

P1 · · · Pm

Om−1(Q1 + · · · +Qm)

by (1) applied to Q1, . . . ,Qm. Using (1) with P1, . . . , Pm and Lemma 3, it follows
that P1 + · · · + Pm = Q1 + · · · +Qm.

Conversely, assume that P1 + · · · + Pm = Q1 + · · · +Qm. Then (1) implies that

P1 · · · Pm

Om−1(P1 + · · · + Pm)
and

Q1 · · ·Qm

Om−1(Q1 + · · · +Qm)
=

Q1 · · ·Qm

Om−1(P1 + · · · + Pm)

are divisors of quantities in the curve field. Hence the same is true for their quotient,
which is P1 · · ·Pm

Q1 · · ·Qm
. �

The theorem captures the relation between divisors and addition on an elliptic
curve but seems far removed from the theorems proved in earlier essays of Chapter 9.
The strong link can be seen as follows. Since y2 = f (x) has degree n = 2 in y, the
equations

y2 = f (x) and Θν(x, y) = 0

have 2ν solutions Pi = (xi, yi) that were constructed and studied in Essay 9.6. These
are the zeros of Θν(x, y) when regarded as a quantity in the curve field, and they all
have multiplicity 1. Also, as shown in the proof of Lemma 1 of Essay 9.6, the poles
of Θν(x, y) occur where x = ∞. Since O is the only point on y2 = f (x) with x = ∞,
the divisor

P1 · · · P2ν

O2ν .

is the divisor of Θν(x, y) as a quantity in the curve field. By the theorem,

(2) (x1, y1) + · · · + (x2ν, y2ν) = P1 + · · · + P2ν = O + · · · +O︸��������︷︷��������︸
2ν times

= O

since O is the additive identity.

Example 10 The elliptic curve y2 = x3 + 1 has been used in several examples to
illustrate theorems proved in this chapter. Some of the key ideas used in the proofs
have a direct connection to the addition law in the case of an elliptic curve.

When ν = 2, Θ2(x, y) = x2 + ax + b + cy, and the solutions (x1, y1), (x2, y2),
(x3, y3), and (x4, y4) of the equations

y2 = x3 + 1 and x2 + ax + b + cy = 0

were introduced in Example 3 of Essay 9.6. The parameter change in Essay 9.9
implies that a, b, c can be expressed in terms of (x1, y1), (x2, y2), (x3, y3). Explicit
formulas were computed in Example 6 of Essay 9.8, where it was noted that (x4, y4)
can be expressed in terms of (x1, y1), (x2, y2), (x3, y3). By (2), the addition law gives
the explicit formula
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(3) (x4, y4) = −(x1, y1) − (x2, y2) − (x3, y3),

confirming the claim made at the end of Example 6.
Preliminary Lemma 2 of Essay 9.9 used Abel’s idea of replacing some of the

(xi, yi)with constant solutions in order to get results that apply to an arbitrary number
of solutions. In Example 7 of Essay 9.9, this was implemented for y2 = x3 + 1 by
letting (x1, y1) be the point O at infinity, with the result that (3) becomes

(x ′1, y
′
1) = −O − (x2, y2) − (x3, y3) = −(x2, y2) − (x3, y3).

(Since (x1, y1), (x2, y2), and (x3, y3) are independent, replacing (x1, y1) with O has
no effect on (x2, y2) and (x3, y3) but changes (x4, y4) to (x ′1, y

′
1).) Note also that in

Example 7, the solutions (x ′1, y
′
1), (x2, y2), and (x3, y3) lie on a line, so that the above

equation is an immediate consequence of the corollary proved in this essay.
Finally, the proof of Abel’s Theorem 3 in Essay 9.10 used another idea due to Abel

in order to change the minus signs in Preliminary Lemma 2 into the plus signs in
Abel’s Theorem 3. In Example 8 of Essay 9.10, this was implemented for y2 = x3+1
by replacing S = (x ′1, y

′
1) with (x ′1,−y

′
1), which is the second point where the vertical

line through S intersects the curve y2 = x3 + 1. It follows that (x ′1,−y
′
1) is the sum of

the points P and Q as defined in this essay. Example 8 relabels P, Q, and (x ′1,−y
′
1)

as (x1, y1), (x2, y2), and (x3, y3) respectively, so that the formula given in Example 8
is precisely the addition law (x3, y3) = (x1, y1) + (x2, y2).

Example 10 shows that the ideas of Abel’s Paris Memoir [2], when adapted to
elliptic curves, lead naturally to the addition law. Yet these ideas apply to all algebraic
curves, which is nothing short of amazing. There is much in [2] that is unclear and
in need of clarification. Nonetheless, Abel clearly had a profound understanding of
the phenomena involved but did not have time to work out his thoughts in detail. The
Synopsis to Part II quoted the poignant last sentence of his last paper [1]:

I intend on another occasion to develop the numerous applications of this theorem, which
will cast light on the nature of the transcendental functions in question.

The essays in this chapter have endeavored to “cast light” on Abel’s theorem.
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Endnotes to Chapter 9
Endnote 9.1 (Partial Fractions) In the setting of Essay 9.4, consider a differential
R(x)dx for a rational function R(x) with coefficients in a c-field K. There are
constructive methods (see [13, Chapter 2]) for finding a rational function S(x) and
polynomials A(x), B(x), all with coefficients in K, with the following properties:

1. A(x) and B(x) are relatively prime with deg A(x) < deg B(x).

2. B(x) has no multiple roots in a splitting field, i.e., B(x) is relatively prime to its
derivative dB

dx .

3. R(x) =
d
dx

S(x) +
A(x)
B(x)

.

Furthermore, if α1, . . . , αm are the roots of B(x) in a splitting field, then

A(x)
B(x)

=

m∑

i=1
γi

1
x − αi

, γi =
A(αi)
dB
dx (αi)

by a classic formula of Hermite. Thus,

R(x) =
d
dx

S(x) +
m∑

i=1
γi

1
x − αi

,

which implies ∫
R(x)dx = S(x) +

m∑

i=1
γi log(x − αi) + C.

To connect this with the formulas in Endnote 9.2, note that the above formula for
R(x) can be written

R(x) =
d
dx

S(x) +
m∑

i=1
γi

dgi
dx (x)

gi(x)
where gi(x) = x − αi . There are more compact versions of this decomposition that
allow the gi to have higher degree (see [13, Chapter 2]).

Endnote 9.2 (Closed Rational Differentials) Let
∑N

j=1 Rj(a1, . . . , aN )daj be a
closed rational differential with coefficients in a c-field K0. Thus

∂Rj

∂ak
=
∂Rk

∂aj

for all j < k. In this situation, Theorem 8 of [17] implies that there is a finite
extension K′

0 of K0, rational functions g0, g1, . . . , gL of a1, . . . , aN , and constants
γ1, . . . , γL such that:

1. g0 has coefficients in K0, g1, . . . , gL have coefficients in K′
0, and γ1, . . . , γL also

lie in K′
0.
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2. Rj =
∂g0
∂aj

+

L∑

k=1
γk

∂gk
∂a j

gk
for every j = 1, . . . , N .

If one formally defines the “rational and logarithmic” function

ν = g0(a1, . . . , aN ) +
L∑

k=1
γk log

(
gk(a1, . . . , aN )

)
,

then the above formula for Rj implies that dν =
∑N

j=1 Rj(a1, . . . , aN )daj .
The proof in [17] is written in the language of algebraically closed fields, but the

argument can be adapted to give a constructive proof that applies to a c-field K0.
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