
6/12/2021 CS:APP3e, Bryant and O'Hallaron

csapp.cs.cmu.edu/3e/errata.html 1/7

CONTACT US REQUEST DESK COPY CHANGES FROM 2/E AMAZON.COM PEARSON ABOUT

Computer Systems: A Programmer's Perspective, 3/E (CS:APP3e)
Randal E. Bryant and David R. O'Hallaron, Carnegie Mellon University

Home

Web Asides

Student Site

Instructor Site

TOC and Preface

Adoptions

Errata

Papers

Curriculum

Courses

Errata for CS:APP3e and its Instructors Manual
Last updated 10/02/2020.

Despite our best efforts to create a book with zero defects, our vigilant readers have pointed out some bugs. Please
report any new errata to Randy Bryant and Dave O'Hallaron. Note that some of these errors have been corrected in more
recent printings.

We maintain errata for the North American edition. Errata for editions in other languages can be found as follows:

Chinese, maintained by Prof. Yili Gong of Wuhan University.

Note on the Global Edition: Unfortunately, the publisher arranged for the generation of a different set of practice and
homework problems in the global edition. The person doing this didn't do a very good job, and so these problems and
their solutions have many errors. We have not created an errata for this edition.

North American Edition (ISBN-10: 0-13-409266-X)

Preface
Chapter 1: A Tour of Computer Systems
Chapter 2: Representing and Manipulating Information

p. 45, code for show_bytes. Variable i should be declared to have type size_t.
 Posted 07/11/2015. Randal E. Bryant

p. 47, aside “New to C? Formatted printing with printf,” second paragraph. The referenced data type should
be int32_t, not int_32t.

 Posted 05/23/2016. Yili Gong
p. 59, Aside at top of page. The second-to-last sentence should state: “This behavior is not guaranteed for C
programs, however, and so shift amounts should be kept less than the number of bits in the value being
shifted.”

 Posted 09/28/2015. Ruth Anderson
p. 71, first full paragraph, line 6. The range should be 0 ≤ x ≤ Umaxw.

Posted 10/25/2015. Shoeb Mohammed
p. 82, second line. ′x should be x′.

 Posted 10/25/2015. Shoeb Mohammed
p. 82, third line. Value x should be computed with function B2Uw(x), not B2Tw(x).

Posted 11/13/2015. Parinya Suparit
p. 82, first equation in DERIVATION. The left-hand side should be computed with function B2Uw(x), not

B2Tw(x).

Posted 11/13/2015. Parinya Suparit
p. 93, Figure 2.26. In the axis labels, the minus signs are incorrectly printed as the numeral ‘2’. A correct
version of the image can be found here.

 Posted 09/23/2016. Matt Toups
p. 111, Practice Problem 2.45. The entry in the third row should be 25/16.

 Posted 11/23/2015. Mathieu Borderé
p. 125, Line before Practice Problem 2.54. The number shown should be -2147483648 rather than
-21483648.

 Posted 09/05/2016. JiaSheng Chen
p. 153, Solution to Problem 2.32. The sentence starting on third line should state “In fact, the opposite is true:
tsub_ok(x, TMin) should yield 1 when x is negative and 0 when it is nonnegative.”

 Posted 10/25/2015. Shoeb Mohammed

p. 154, Solution to Problem 2.35, second line of part 3. It would be more precise to state |r| < |x| ≤ 2w-1. (Note

that the argument only requires |r| < 2w, and so the original statement and proof are valid.)
 Posted 07/12/2018. Wang Lei

Chapter 3: Machine-Level Representation of Programs
p. 171, second-to-last line. 248 is 256 terabytes, not 64 terabytes.

 Posted 09/09/2016. Don Bagert
p. 174, code annotation at top of page. It should read “Disassembly of function multstore in binary file
mstore.o.”

 Posted 10/25/2015. Shoeb Mohammed

http://csapp.cs.cmu.edu/3e/home.html
mailto:randy.bryant@cs.cmu.edu,%20droh@cs.cmu.edu
mailto:tracy.johnson2@pearson.com
http://csapp.cs.cmu.edu/3e/changes3e.html
http://www.amazon.com/Computer-Systems-Programmers-Perspective-Edition/dp/013409266X
http://www.pearsonhighered.com/educator/product/Computer-Systems-A-Programmers-Perspective-3E/9780134092669.page
http://csapp.cs.cmu.edu/3e/about.html
http://www.cs.cmu.edu/~bryant
http://www.cs.cmu.edu/~droh
http://csapp.cs.cmu.edu/3e/home.html
http://csapp.cs.cmu.edu/3e/waside.html
http://csapp.cs.cmu.edu/3e/students.html
http://csapp.cs.cmu.edu/3e/instructors.html
http://csapp.cs.cmu.edu/3e/pieces/preface3e.pdf
http://csapp.cs.cmu.edu/3e/adoptions.html
http://csapp.cs.cmu.edu/3e/errata.html
http://csapp.cs.cmu.edu/3e/papers.html
http://csapp.cs.cmu.edu/3e/curriculum.html
http://csapp.cs.cmu.edu/3e/courses.html
mailto:randy.bryant@cs.cmu.edu,%20droh@cs.cmu.edu
http://www.yiligong.org/csapp3e/
http://www.yiligong.org/
http://cs.whu.edu.cn/english/
http://csapp.cs.cmu.edu/3e/ics3/data/tadd4.pdf

6/12/2021 CS:APP3e, Bryant and O'Hallaron

csapp.cs.cmu.edu/3e/errata.html 2/7

p. 175, code annotation in middle of page. It should read “Disassembly of function multstore in binary file
prog.”
Posted 10/25/2015. Shoeb Mohammed
p. 175, Paragraph starting “This code is almost identical” in middle of page. The end of the sentence should
read “disassembly of mstore.o.”
Posted 09/03/2020. Weicheng Pei
p. 177, aside “ATT versus Intel assembly-code formats,” last sentence of first paragraph. The assembly code
shown is for the function multstore, not sum.
Posted 11/09/2015. Shoeb Mohammed
p. 179, Section 3.4, first paragraph. The ranges given for the eight named registers for the three different
instruction sets are incorrect. They should be:

For 8086: %ax through %sp.
For IA32: %eax through %esp.
For x86-64: %rax through %rsp.

Posted 07/19/2017. Yili Gong
p. 183, sample code near bottom of page, line 4. The code should be “movb $-17, (%rsp).”
Posted 10/24/2015. Jason Waterman
p. 184, (Clarification, not an erratum) Figure 3.5. Although there is an instruction movzbq, the GCC compiler
typically generates the instruction movzbl for this purpose, relying on the property that an instruction
generating a 4-byte with a register as destination will fill the upper 4 bytes of the register with zeros.
Posted 04/27/2018. Randal Bryant
p. 188, aside “Some examples of pointers,” call to printf. The format string should be "a = %ld, b =
%ld\n".
Posted 11/09/2015. Shoeb Mohammed
p. 191, second full paragraph. The first sentence should state: “The third column of Figure 3.9 illustrates the
effect of executing the instruction popq %rdx …”
Posted 09/28/2015. Max Ma
p. 191, fourth line of paragraph that begins “The third column of Figure 3 …” It should state that the value
0x123 remains at memory location 0x100.
Posted 11/09/2015. Carlos Galdino
p. 198, first line of first full paragraph. There should be a period after the word “forms”.
Posted 09/19/2016. Anise Ghorbani
p. 199, third full paragraph. The reference to instruction idivl should be to idivq instead.
Posted 02/21/2017. Changan Wang
p. 199, fourth full paragraph. The paragraph should start with “For most applications of 64-bit division …”
Posted 09/19/2015. Xingda Zhai
p. 200, first line of text. It should state “In this code, argument qp must first be saved in a different register (line
2), …”
Posted 08/16/2015. Dmitry Neverov
p. 201, 9 lines from bottom. For the shift instruction, it should state: “The overflow flag is changed only when
the shift amounts is 1, following rules that depend on the shift type.”
Posted 10/30/2017. Jiaheng Wang
p. 204, Practice Problem 3.13, second paragraph. It should state “Suppose a is in some portion of %rdi while
…”
Posted 10/15/2015. Ronald Greenberg
p. 205, Practice Problem 3.13, code for D. The second instruction should be “setne %al.”
Posted 11/09/2015. Carlos Galdino
p. 214, third paragraph. The second sentence should be “The function computes the absolute value of the
difference of its two arguments x and y, …”
Posted 11/11/2015. Yili Gong
p. 214, Figure 3.17(c). The comment on line 8 of the code should state “Return rval”.
Posted 03/18/2017.
p. 218, assembly code for cread. In the annotations for lines 3 and 5, “x” should be “xp”.
Posted 11/19/2015. Vlad Buslov
p. 226, last sentence before Practice Problem 3.25. It should state “The compiler has determined that the loop
can only be entered when n > 1, and that, as n is decremented, it will reach value 1 before reaching a value
less than 1.”
Posted 06/11/2017. Daniel O'Brien
p. 234, first and second lines of text. They should state “ … indexed by register %rsi, which holds … ”
Posted 09/02/2015. Dmitry Neverov
p. 235, Figure 3.23, annotation for line 5 of code. It should state “Goto *jt[index].”
Posted 12/25/2015. Xinzhen Chen
p. 238, Problem 3.31, Comments in assembly code at top of page. The register allocation is listed incorrectly. It
should state “a in %rdi, b in %rsi, c in %rdx, dest in %rcx.”
Posted 07/25/2015. Yu Zhong and Carlos Galdino
p. 241, fourth and fifth lines. They should state “Procedure P can pass up to six integral values (i.e., pointers
and integers) in registers … ”
Posted 09/02/2015. Dmitry Neverov
p. 243, Figure 3.27a, line 2. The annotation should state “L1: y+2.”
Posted 02/15/2016. Xinzhen Chen

6/12/2021 CS:APP3e, Bryant and O'Hallaron

csapp.cs.cmu.edu/3e/errata.html 3/7

p. 244, first full paragraph. The value 0x400054e should be 0x40054e.
Posted 07/26/2017. Daniel O'Brien
p. 244, second full paragraph. The value 0x4000560 should be 0x400560.
Posted 07/26/2017. Daniel O'Brien
p. 244, Comment after line 4. It should state “Disassembly of first(long x)”
Posted 09/02/2015. Dmitry Neverov
p. 249, Fourth line from bottom. Sentence ending “… and 17 (s3).” should be “… and 17 (x4).”
Posted 11/29/2016. Hyun Chun
p. 252, Practice Problem 3.34. The first two sentences should state “Consider a function P, which generates
local values, named a0–a7. It then calls function Q, which has no arguments.”
Posted 11/23/2015. Vlad Buslov
p. 257, Table near the bottom of the page. The assembly code for the first entry should be “movq
%rdx,%rax.”
Posted 10/03/2015. Zhiwei Xin
p. 259, Figure 3.36 The fourth block from the bottom should have the label A[3][2].
Posted 04/04/2017. Dean Kajmakci
p. 259, assembly code in middle of page, line 3. The annotation should state: “Read from M[xA + 12i + 4j].”

Posted 10/25/2015. Karan Dwivedi
p. 263, assembly code in middle of page, line 3. There is a missing ‘)’ at the end of the annotation.
Posted 02/11/2016. Elizabeth White
p. 264, Annotations of last block of assembly code. It should state that j is in register %rdx.
Posted 07/26/2017. Daniel O'Brien
p. 266, middle of page. The declaration and initialization of r should be:
struct rect r = { 0, 0, 10, 20, 0xFF00FF };
Posted 08/04/2015. Yu Zhong
p. 277, first bullet, second and third lines after declarations. They should state “… if the object has type T, then
the pointer has type T *.”
Posted 09/02/2015. Dmitry Neverov
p. 281, Figure 3.40. The first sentence of the caption should read “Character array buf is just below part of the
saved state.”
Posted 12/01/2015. Yili Gong
p. 282, Table with heading “Characters typed.” The second entry should have the range 8–23.
Posted 11/6/2017. Weicheng Pei
p. 282, Practice Problem 3.46, second paragraph. It should state that get_line is called with return address
0x400076.
Posted 11/23/2015. Vlad Buslov
p. 284, Practice Problem 3.46, part E. The question for ask for three things wrong with the code.
Posted 07/26/2017. Daniel O'Brien
p. 293, Practice Problem 3.49, first paragraph. The third line should state “… let s1 denote …” (delete “let us”).

Posted 12/27/2020. Ashwin Najappa
p. 293, Practice Problem 3.49, second paragraph. The text should state: “… there may be an offset of e2 bytes

between the values of s2 and p.”

Posted 11/09/2015. Shoeb Mohammed
p. 295, Figure 3.45. The lower 128 bits of register %ymm13 should be labeled %xmm13.
Posted 10/28/2015. David Hirschv
p. 300, Problem 3.51, second line. The return value has type “dest_t.”
Posted 10/13/2016. Anise Ghorbani
p. 306, Table listing two instructions. These should be vucomiss and vucomisd (AVX instructions), rather
than ucomiss and ucomisd (SSE instructions).
Posted 03/09/2018. Weicheng Pei
p. 313, Problem 3.60, first line of code. Argument n should be declared as being of type int.
Posted 07/21/2015. Lauren Cooper
p. 326, Solution to Problem 3.3, third line of text. These examples do not rely on the rules of integral promotion.
These rules concern operations performed on data values smaller than those of type int. See, for example
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules. This topic is not
covered in the book.
Posted 04/26/2018. Randal Bryant
p. 326, Solution to Problem 3.3, fifth line of code. The code should be movq %rax, $0x123 to be consistent
with the problem statement, although both versions have the same error.
Posted 06/02/2015. Zhi Li
p. 326, Solution to Problem 3.3, sixth line of code. The code should be movl %eax, %rdx to be consistent
with the problem statement, although both versions have the same error.
Posted 09/02/2015. Elizabeth White
(Clarification, not an erratum) p. 326, Solution to Problem 3.4, seventh line of code. The GCC compiler
generates the instruction movzbl for this case, even though the goal is to extend the 1-byte value to 8 bytes.
See the note on Figure 3.5 (p. 184).
Posted 04/27/2018. Randal Bryant

https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules

6/12/2021 CS:APP3e, Bryant and O'Hallaron

csapp.cs.cmu.edu/3e/errata.html 4/7

p. 330, Solution to Problem 3.14D. The comparison is for <=.
Posted 08/16/2015. Dmitry Neverov
p. 331, Solutions to Problems 3.15B and 3.15D. The values starting with “0x0x” should start with “0x” instead.
Posted 12/04/2015. Carlos Galdino and Yili Gong
p. 333, Solution to Problem 3.20. The comment on the third line of code should read “Test x”.
Posted 06/02/2015. Curtis Gagliardi
p. 338, Solution to Problem 3.30, third bullet. The final sentence should say “Thus, case labels 3 and 6 are
missing in the switch statement body.”
Posted 09/27/2015. Xinyun Zhao
p. 339, Solution to Problem 3.32, line labeled “F4”. The instruction should be “repz retq.”
Posted 10/13/2016. Wenjun Huang
p. 339, Solution to Problem 3.33, line 4. The expression should be *v += b
Posted 06/24/2019. Deepayan Patra
p. 346, Solution to Problem 3.46C. The program is attempting to return to address 0x400034, not 0x040034.
Posted 10/24/2016. Wenjun Huang
p. 347, Solution to Problem 3.46E. In addition, the program should test the value returned by gets to make
sure it's not NULL.
Posted 07/26/2017. Daniel O'Brien
p. 348, Solution to Problem 3.51. In the third entry of the table, the conversion is from double to float, as is
requested in the problem statement.
Posted 08/09/2015. Yu Zhong
p. 349, Solution to Problem 3.53, last paragraph of text. The ambiguity arises from the commutativity of
addition, not multiplication.
Posted 11/09/2015. Shoeb Mohammed

Chapter 4: Processor Architecture
p. 360, Problem 4.2A. There should be an additional byte with hexadecimal value 00 at the end of the
sequence.
Posted 08/16/2016. James Timmins
p. 360, Problem 4.2B. There should be an additional byte with hexadecimal value 90 at the end of the
sequence.
Posted 12/01/2015. Shoeb Mohammed
p. 365, Figure 4.6, Line 9 of x86-64 code. The comment should say “Test count”
Posted 01/02/2017. Lee Wintervold
p. 366, middle of page. The four words listed are incorrect. They should be 0x000d000d000d,
0x00c000c000c0, 0x0b000b000b00, and 0xa000a000a000.
Posted 06/23/2017. Yiling Gong
p. 369, paragraph in middle of page, sixth line. The value 0xabcdabcdabcdabcd should be
0xabcdabcdabcd.
Posted 10/02/2020. Radoslaw Jurga
p. 371, Practice Problem 4.7. The annotation for line 7 of the code should state “Return 0 or 8.”
Posted 12/02/2015. Alex Knaust
p. 377, Figure 4.13(b): The last selection in the HCL code should read “1 : B;” (The number 1 rather than
the letter l).
Posted 06/02/2015. Paul Anagnostopoulos
p. 404, Figure 4.26, 7th entry. The name should be IOPQ, not IOPL.
Posted 10/24/2016. Wenjun Huang
p. 404, Figure 4.26, 14th entry. The name should be RRSP, not RESP.
Posted 08/26/2015. Yu Zhong
p. 405, Caption of Figure 4.27. It should state “Ten bytes are read from the instruction memory …”
Posted 07/25/2015. Randal E. Bryant
p. 407, parenthetical remark before HCL code for srcA. Should state “recall that RRSP is the register ID of
%rsp.”
Posted 08/26/2015. Yu Zhong
p. 420, second line from bottom. Reference to Figure 4.38(c) should be to Figure 4.38(d).
Posted 07/23/2018. Jong-won Choi
p. 439, fourth and fifth lines from bottom. The sentence should state “The value for register %rbx is also
forwarded from the memory to the decode stage.”
Posted 08/09/2015. Liemin Ma
p. 434, Figure 4.47. The instruction at address 0x016 should be addq.
Posted 11/23/2015. Warren Crasta
p. 441, Figure 4.53. The instruction at address 0x32 should be addq %rbx,%rax.
Posted 07/28/2015. Randal Bryant
p. 443, Figure 4.55. Three errors:

The program is prog6.
The instruction at address 0x000 should be irmovq Stack,%rsp.
The instruction at address 0x013 should be irmovq $10,%rdx.

Posted 07/28/2015. Randal Bryant + 12/21/2017 Dave Ohlsson
p. 444, Figure 4.56. The instuctions at addresses 0x016 and 0x020 should be irmovq.
Posted 10/24/2016. Wenjun Huang

6/12/2021 CS:APP3e, Bryant and O'Hallaron

csapp.cs.cmu.edu/3e/errata.html 5/7

p. 445, first complete paragraph. As a general note, our processor designs do not attempt to set the program
counter (PC) to a consistent value when an exception occurs. In a more complete implementation, the PC
would be set to the address of the instruction that causes the exception, but this is not the case for the
pipelined implementations.
Posted 06/05/2018. Eadren King
p. 454, last sentence on page. It should read “In this figure, you can also see that many of the values in
pipeline registers M and W ….”
Posted 12/25/2015. Jiwen He
p. 473, Bibliographic Notes. In the last line, “Intel-compatible x86-64 processor” should be “Intel-compatible
IA32 processor.”
Posted 05/04/2015. Scott Wright
p. 492, Solution to Problem 4.35. Second to last sentence should state: “ … the conditional move source value
0x123 gets forwarded into ALU input valA, while input valB correctly gets operand value 0x321.”
Posted 07/21/2015. Liemin Ma
p. 494, Solution to Problem 4.44. The answers to part A and part C are both off by 2 instructions:

The inner loop of the code using the conditional jump contains 9 instructions, 8 of which are executed
when the array element is positive.
The inner loop of the code using the conditional move contains 8 instructions.
The conditional jump code requires an average of 9.5 cycles.
The conditional move code requires an average of 8.0 cycles.

Posted 12/15/2015. Nathaniel Green
Chapter 5: Optimizing Program Performance

p. 520, around 1/3 way down the page. The refererence to register “%eax” should instead be to “%rax.”
Posted 12/01/2015. Shoeb Mohammed
p. 533, second to last line in first paragraph. It should state “ … up to a factor of 6.”
Posted 07/26/2017. Daniel O'Brien
p. 533, code annotations for inner loop of combine5. Variable limit is stored in register %rbp.
Posted 12/01/2015. Shoeb Mohammed
p. 533–534, sentence spanning these two pages. It should state: “The loop unrolling leads to two vmulsd
instructions—one to multiply acc by data[i], and the second to multiply acc by data[i+1].
Posted 01/02/2016. Mark Morrissey
p. 546. Web Aside OPT:SIMD. The assembly code should reference register “%rcx,” not “%rcs.”
Posted 05/08/2016. Sheldon Guo
p. 547. Table in description of Web Aside OPT:SIMD.

The headings under the category “Floating point” should read float and double, rather than int
and long.
Posted 07/25/2015. Randal E. Bryant

p. 556, Figure 5.33 caption. dest should be dst
Posted 07/31/2018. Tanvir Alam

Chapter 6: The Memory Hierarchy
p. 602, Section 6.1.4, paragraph 4, line 9. 1980 should be 1985.
Posted 1/11/2016. Yili Gong
p. 612, [Clarification]: The last sentence of the Cache Hits section refers to Figure 6.22.
Posted 07/31/2018. Dave Ohlsson
p. 640, Figure 6.40, line 22. “i++” in for loop should be “i += stride”.
Posted 03/01/2016. Shoeb Mohammed
p. 640, Figure 6.40, line 35. sizeof(double) should be sizeof(long)
Posted 07/31/2018. Weicheng Pei
p. 645, Figure 6.44. It should be mentioned somewher that the C matrix is assumed to be initially all zeros.
Also line 6 of version ijk could eliminate an unncessary load by replacing C[i][j] += sum with C[i][j]
= sum. However, since this line is not in the inner loop, it doesn't affect the analysis either way.
Posted 07/31/2018. Debbie Neft
p. 651, Problem 6.29A, The diagram should have 12 boxes instead of 13.
Posted 11/23/2015. Tj Gilbrough
p. 661, The solution to Problem 6.4:

For parts A and B, the 1 MB file consists of 2,048 512-byte logical blocks, not 2,000 as stated in the
solution.
Posted 07/30/2018. Jonatan Schroeder
To be precise, part B should include the total transfer time for the blocks, which is 2 x Tmax rotation = 12

ms.
Posted 07/30/2018. Li Qiuhao

p. 662, Solution to Part (c) Problem 6.5, the expected lifetime is ~17,535 years, not 140 years.
Posted 03/01/2016. David Hirsch

Chapter 7: Linking
p. 682. paragraph 2. in the output from foobar5, the values of x and y are corrupted, but the precise values are
system-dependent.
Posted 12/16/2015. Yili Gong
p. 683, [Clarification]: The variable x referred to in the first paragraph is from foo5.c.
Posted 07/31/2018. Dave Ohlsson

6/12/2021 CS:APP3e, Bryant and O'Hallaron

csapp.cs.cmu.edu/3e/errata.html 6/7

p. 690, paragraph above Figure 7.9 that reads “Recall from Section 3.6.3” should be “Recall from Section
3.6.4.”
Posted 7/30/2018. Yili Gong and Jianxun Xie.

p. 698, Figure 7.15. The address for the user stack (248-1) is wrong. The correct address is much smaller,
and varies from process to process.
Posted 07/09/2015. Dave O'Hallaron
p. 698, Figure 7.15. %esp should be %rsp.
Posted 10/21/2015. Liz White
p. 715, Problem 7.8, Module 2. static int main=1[should be static int main=1;
Posted 07/30/2018. Michael Hinton and Michael Ross

Chapter 8: Exceptional Control Flow
p. 735, Figure 8.13. Two errors:

The address for the user stack (248-1) is wrong. The correct address is much smaller, and varies from
process to process.
Posted 07/14/2015. Dave O'Hallaron
%esp should be %rsp.
Posted 07/31/2018. Dave Ohlsson

p. 748. First paragraph. Remove the last sentence: “The only correct assumption is that each possible outcome
is equally likely” or replace it with “The only correct assumption is that each possible outcome can indeed
occur.”
Posted 07/31/2018. Dave Ohlsson
p. 751, definition of getenv, “Returns: pointer to name if it exists” should be “Returns: pointer to value
associated with name if it exists”
Posted 7/30/2018. Yili Gong and Jianxun Xie.
p. 752, Practice problem 8.6, output of ./myecho. “Command-ine” should be “Command-line.”
Posted 7/30/2018. Li Du.
p. 756, Figure 8.25. parseline() should check that the capacity of argv (= MAXARGS, defined in Figure
8.23) is not exceeded.
Posted 7/30/2018. Dave Ohlsson.
p. 762. Definition of signal function. On error, this function sets errno to indicate the cause. r>Posted
07/31/2018. Dave Ohlsson
p. 763, Figure 8.30. For consistency, pause() should be Pause().
Posted 02/26/2018. Bill Nace
p. 768, Fig 8.34. Fixed sio_putl so that it correctly handles negative numbers.
Posted 10/19/2016. Randy Bryant
p. 773, Fig 8.37, line 5. To avoid the signal handler potentially blocking on long-running jobs, waitpid should
be called with the WNOHANG option.
Posted 12/11/2018. Fahim Faisal
p. 777, Fig 8.39, line 9. To avoid the signal handler potentially blocking on long-running jobs, waitpid should
be called with the WNOHANG option.
Posted 12/11/2018. Fahim Faisal
p. 779, Fig 8.40, line 8. To avoid the signal handler potentially blocking on long-running jobs, waitpid should
be called with the WNOHANG option.
Posted 12/11/2018. Fahim Faisal
p. 781. In the description of sigsuspend in the second paragraph, line 1 should be
sigprocmask(SIG_SETMASK, &mask, &prev);
Posted 10/28/2015. Dave O'Hallaron
p. 796. Figure 8.47. On the top line of the process graph, p1: x=1 should be p2: x=1.
Posted 11/8/2015. Eric Adlam
p. 797. Figure 8.49. In the process graph, the bottom exit should be exit(2)
Posted 1/14/2019. Roslyn Cyrus

Chapter 9: Virtual Memory
p. 829, Figure 9.26. The kernel portion of the address space is identical for each process. There is no part of
the kernel virtual memory that is different for each process.
Posted 05/08/2018. Godmar Bak
p. 831, bottom of the page, “fvm_start” should be “vm_start”
Posted 03/01/2016. Ruth Anderson
p. 842, first paragraph. The heap shown in Figure 9.34 consists of 18 words, not 16 words.
Posted 06/26/2016. Ruth Anderson
p. 873, Section 9.11.6, paragraph 2. The explanation for why the binheapDelete function is buggy is correct
for the version of ANSI C described in the K&R book, where the unary --, ++, and * operators have the same
precedence. However, in more recent versions of C, -- and ++ have higher precedence than *. So while the
given code is always incorrect, the reason is different for different versions of C.
Posted 06/26/2016. Xinyang Zhang
p. 881, Solution to Problem 9.1. 16,384 P could be expressed more clearly as 16 E.
Posted 07/31/2018. Daniel O'Brien and Dave Ohlsson
p. 884, solution code. The #endif on line 12 should be removed.
Posted 07/30/2018. Wenjun Huang

Chapter 10: System-Level I/O

6/12/2021 CS:APP3e, Bryant and O'Hallaron

csapp.cs.cmu.edu/3e/errata.html 7/7

p. 893, Second bullet point. The relative path name should be ../droh/hello.c rather than
../home/droh/hello.c.
Posted 06/26/2016. Mathieu Bordere
p. 895, read() returns 0 not only on EOF, but also if n is 0.
Posted 07/31/2016. Dave Ohlsson
p. 904, Figure 10.10 and p. 906, Figure 10.11. main() should check that argc is at least equal to 2 before
accessing argv[1].
Posted 07/31/2016. Dave Ohlsson

Chapter 11: Network Programming
p. 949, Aside. “Marc Andreesen” should be “Marc Andreessen”
Posted 07/31/2016. Dave Ohlsson
p. 956, Figure 11.28. In the telnet trace, there should be “Connection: close” header, which is generated
by the adder.c CGI program, sandwiched between lines 8 and 9.
Posted 06/26/2016. Laura M. Roberts
p. 959, Figure 11.31. The use of multiple sprintf calls to generate body violates the following rule: C99 and
POSIX.1-2001 specify that the results are undefined if a call to sprintf(), snprintf(), vsprintf(), or vsnprintf()
would cause copying to take place between objects that overlap (e.g., if the target string array and one of the
supplied input arguments refer to the same buffer).
Posted 04/25/2019. Zeng Fan Pu and Urvi Agrawal
p. 962, Figure 11.34. The use of multiple sprintf calls to generate buf violates the same rule as p. 959.
Posted 04/25/2019. Zeng Fan Pu and Urvi Agrawal
pp. 959 and 962. Updated the Tiny code on the CS:APP Web site to fix the previous two bugs.
Posted 11/14/2019. Dave O'Hallaron
p. 989, first sentence. Delete the entire sentence that begins with “If the main thread calls pthread_exit, it
waits for all other threads to terminate...” In fact, Pthread_exit never waits for other threads to terminate.
Posted 07/30/2018. Yuan Tang

Chapter 12: Concurrent Programming
p. 989, first sentence. Delete the entire sentence that begins with “If the main thread calls pthread_exit, it
waits for all other threads to terminate...” In fact, Pthread_exit never waits for other threads to terminate.
Posted 07/30/2018. Yuan Tang
p. 997, The text describing Figure 12.17 is correct, but the Figure itself has two typos:

The Ui instruction should be addq $1, %rdx.

The Si instruction should be movq %rdx, cnt(%rip).

Posted 02/22/2018. Dr. Joann J Ordille
p. 1002, first box. In the declaration of sem_init, the middle parameter should be int pshared.
Posted 07/31/2018. Dave Ohlsson
p. 1015, Figure 12.31, code line 25. sem_init should be Sem_init
Posted 07/31/2018. Dave Ohlsson
p. 1023, ten lines from the bottom. “the static next variable” should be “the static next_seed variable”
Posted 07/31/2018. Dave Ohlsson
p. 1029. The definition of the mutex ordering rule is too strong. It should read simply “a program is deadlock
free if each thread acquires its mutexes in the same order.” In fact, the order that mutexes are released does
not matter, since V operations never block.
Posted 07/30/2018. Einar Rasmussen

Appendix A: Error Handling
Index

p. 1076. There should be no index entry for RESP. Instead, it should be for RRSP with the same information.
Posted 08/26/2015. Yu Zhong

CS:APP3e Instructor's Manual

Chapter 9: Virtual Memory
p. 107, Problem 9.16. The answer for the first case should be 16 bytes, rather than 20 bytes. Smallest possible
allocated block is 12 bytes (|hdr|4-byte payload|ftr|). Smallest free block is 16 bytes (|hdr|pred|succ|ftr|). Thus, a
minimum block size of 16 bytes.
Posted 03/01/2016. Daniel Rushton

Copyright © 2015 Randal E. Bryant and David R. O'Hallaron

