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Abstract

A sheaf-theoretic proof of de Rham cohomology being a topological invariant has been
presented. The de Rham cohomology of a smooth manifold is shown to be isomorphic to the

Čech cohomology of that manifold with real coefficients.
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Introduction

“The major virtue of sheaf theory is information-theoretic in nature. Most problems
could be phrased and perhaps solved without sheaf theory, but the notation would be
enormously more complicated and difficult to comprehend.”

— Raymond O. Wells, Differential Analysis on Complex Manifolds, p. 36

A fundamental problem of topology is that of determining, for two spaces, whether or not
they are homeomorphic. Algebraic topology originated in the attempts by mathematicians to
construct suitable topological invariants. In 1895, Henri Poincaré2 introduced a certain group,
called the fundamental group of a topological space; which is by definition a topological invariant.
Enrico Betti, on the other hand, associated with each space certain sequence of abelian groups
called its homology groups [14, p. 1]. It was eventually proved that homeomorphic spaces had
isomorphic homology groups. It was not until 1935 that another sequence of abelian groups,
called cohomology groups, was associated with each space. The origins of cohomology groups
lie in algebra rather than geometry; in a certain algebraic sense they are dual to the homology
groups [14, p. 245]. There are several different ways of defining (co)homology groups, most
common ones being simplicial and singular groups3. A third way of defining homology groups
for arbitrary spaces, using the notion of open cover, is due to Eduard Čech (1932). The Čech
homology theory is still not completely satisfactory [14, p. 2]. Apparently, Čech himself did not
introduce Čech cohomology. Clifford Hugh Dowker, Samuel Eilenberg, and Norman Steenrod
introduced Čech cohomology in the early 1950’s [2, p. 24].

In 1920s, Élie Cartan’s extensive research lead to the global study of general differential
forms of higher degrees. É. Cartan, speculating the connections between topology and differ-
ential geometry, conjectured the de Rham theorem in a 1928 paper [10, p. 95]. In 1931, in his
doctoral thesis, Georges de Rham4 showed that differential forms satisfy the same axioms as
cycles and boundaries, in effect proving a duality between what are now called de Rham coho-
mology and singular cohomology with real coefficients5. De Rham cohomology is considered to
be one of the most important diffeomorphism invariant of a smooth manifold [18, p. 274].

Jean Leray, as a prisoner of war from 1940 to 1945, set himself the goal of discovering
methods which could be applied to a very general class of topological space, while avoiding the
use of simplicial approximation. The de Rham theorem and É. Cartan’s theory of differential
forms were central to Leray’s thinking [8, §2]. After the war he published his results in 1945,
which marked the birth of sheaves and sheaf cohomology6. His remarkable but rather obscure
results were clarified by Émile Borel, Henri Cartan, Jean-Louis Koszul, Jean-Pierre Serre and

2Poincaré, Henri. “Analysis situs.” Journal de l’École Polytechnique. 2 (1895): 1-123. https://gallica.

bnf.fr/ark:/12148/bpt6k4337198
3Singular homology emerged around 1925 in the work of Oswald Veblen, James Alexander and Solomon

Lefschetz, and was defined rigorously and in complete generality by Samuel Eilenberg in 1944 [2, p. 10].
4De Rham, Georges. “Sur l’analysis situs des variétés à n dimensions.” 1931. http://eudml.org/doc/192808
5This can also be achieved directly via simplicial methods, see John Lee’s Introduction to Smooth Manifolds,

Chapter 18. In fact, this theorem has several dozens of different proofs.
6The word faisceau was introduced in the first of the announcements made by Leray in meeting of the Académie

des Sciences on May 27, 1946. In 1951, John Moore fixed on “sheaf” as the English equivalent of “faisceau”.
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André Weil in the late 1940’s and early 1950’s7. In 1952, Weil8 found the modern proof of the
de Rham theorem, this proof was a vindication of the local methods advocated by Leray [1, p.
5]. Weil’s discovery provided the light which led H. Cartan to the modern formulation of sheaf
theory [8, §2].

One can use Weil’s approach, involving generalized Mayer-Vietoris principle, to study the
relation between the de Rham theory to the Čech theory [1, p. 6]. However, we will follow the
approach due to H. Cartan, written in the early 1950’s, to give a sheaf theoretic proof of the
isomorphism between de Rham and Čech cohomology with coefficients in R [19, p. 163]. An
outline of this approach for proving de Rham cohomology to be a topological invariant can be
found in the the books by Griffiths and Harris [3, p. 44] and Hirzebruch [4, §2.9–2.12].

This report consists of three chapters. In chapter 1 we will discuss various concepts related
to differential forms and smooth manifolds needed to define de Rham cohomology. We will also
develop the tools like Poincaré lemma, which will be used later to establish important sheaf
theoretic results about the differential forms. In chapter 2 we will first discuss the sheaf theory
necessary for defining Čech cohomology, and then prove the key results about Čech cohomology
of paracompact Hausdorff spaces, like “short exact sequence of sheaves induces a long exact
sequence of Čech cohomology”, and “Čech cohomology vanishes on fine sheaves”. Finally, in
chapter 3 we will present the proof of de Rham-Čech isomorphism.

Apart from the three chapters, we have also included two appendices. In Appendix A, to
supplement the discussions in the first two chapters, we have stated few facts about paracompact
spaces. In Appendix B we have discussed the theory of direct limits needed for understanding
various definitions and proofs in the second chapter.

7Georges Elencwajg (https://math.stackexchange.com/users/3217/georges-elencwajg), Why was Sheaf
cohomology invented?, URL (version: 2016-05-24): https://math.stackexchange.com/q/1798796

8Weil, André. “Sur les théorèmes de de Rham.” Commentarii mathematici Helvetici 26 (1952): 119-145.
http://eudml.org/doc/139040.
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Chapter 1

de Rham cohomology

“The differential equation P (x, y)dx+Q(x, y)dy = 0 is said to be exact if there is a
function f such that P = ∂f/∂x and Q = ∂f/∂y. In our terminology, this means
simply that the 1-form Pdx+Qdy is the differential of the 0-form f , so that it is
exact.”

— James R. Munkres, Analysis on Manifolds, p. 260

1.1 Differential forms on Rn

In this section some basic definitions and facts from [13, Chapter 6] and [18, Chapter 1] will be
stated. All the vector spaces are over the field R of real numbers.

1.1.1 Tangent space

Definition 1.1 (Tangent vector). Given p ∈ Rn, a tangent vector to Rn at p is a pair (p; v),

where v =

[ v1
...
vn

]
∈ Rn.

Definition 1.2 (Tangent space). The set of all tangent vectors to Rn at p forms a vector space
called tangent space of Rn at p, defined by

(p; v) + (p;w) = (p; v + w) and c(p; v) = (p; cv)

It is denoted by Tp(Rn).

Definition 1.3 (Germ of smooth functions). Consider the set of all pairs (f, U), where U is a
neighborhood of p ∈ Rn and f : U → R is a smooth function. (f, U) is said to be equivalent to
(g, V ) if there is an open set W ⊂ U ∩ V containing p such that f = g when restricted to W .
This equivalence class of (f, U) is called germ of f at p.

Remark 1.1. The set of all germs of smooth functions on Rn at p is written as C∞p (Rn). The
addition and multiplication of functions induce corresponding operations of C∞p (Rn), making it
into a ring; with scalar multiplication by real numbers C∞p (Rn) becomes an algebra over R.

Definition 1.4 (Derivation at a point). A linear map Xp : C∞p (Rn)→ R satisfying the Leibniz
rule

Xp(fg) = Xp(f)g(p) + f(p)Xp(g)

is called a derivation at p ∈ Rn or a point-derivation of C∞p (Rn).

Remark 1.2. The set of all derivations at p is denoted by Dp(Rn). This set is a vector space.
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Theorem I. The linear map

φ : Tp(Rn)→ Dp(Rn)

(p; v) 7→ Dv =
n∑
i=i

vi
∂

∂xi

∣∣∣∣
p

where (p; v) = (p; v1, . . . , vn) and Dv is the directional derivative in the direction of v, is an
isomorphism.

Remark 1.3. Under this vector space isomorphism, the standard basis {e1 . . . , en} of Tp(Rn)
corresponds to the set {∂/∂x1|p, . . . , ∂/∂xn|p} of partial derivatives.

Definition 1.5 (Pushforward of a vector). Let U be an open set in Rm, α : U → Rn be a
smooth function. The function f induces the linear transformation

α∗ : Tp(Rm)→ Tα(p)(Rn)

(p; v) 7→ (α(p);Dα(p) · v)

where Dα(p) is the total derivative of α at p. In other words, α∗(Dv)f = Dv(f ◦ α) for
f ∈ C∞α(p)(R

n). Then α∗(p; v) is called the pushforward of the vector v at p,

Theorem II. Let U be open in Rm, and α : U → Rn be a smooth map. Let V be an open set
of Rn containing α(U), let β : V → Rk be a smooth map. Then (β ◦ α)∗ = β∗ ◦ α∗.

1.1.2 Multilinear algebra

Unlike the preceding and succeeding (sub)sections, here V and W denote real vector spaces
instead of open sets.

Definition 1.6 (k-tensor). Let V be a vector space over R. Let V k = V × · · · × V denote the
set of all k-tuples (v1, . . . , vk) of vectors of V . A function f : V k → R is said to be a k-tensor
if f is linear in the ith variable for each i.

Remark 1.4. The set of all k-tensors on V is denoted y the symbol Lk(V ). If k = 1 then
L1(V ) = V ∗, the dual space of V .

Theorem III. Let V be a vector space of dimension n, then Lk(V ) is a vector space of dimen-
sion nk.

Definition 1.7 (Tensor product). Let f ∈ Lk(V ) and g ∈ L`(V ), then the tensor product
f ⊗ g ∈ Lk+`(V ) is defined by the equation

(f ⊗ g)(v1, . . . , vk+`) = f(v1, . . . , vk) · g(vk+1, . . . , vk+`)

Definition 1.8 (Pullback of tensors). Let T : V →W be a linear transformation and

T ∗ : Lk(W )→ Lk(V )

be the dual transformation defined for each f ∈ Lk(W ) and v1, . . . , vk ∈ V as

(T ∗f)(v1, . . . , vk) = f(T (v1), . . . , T (vk))

Then T ∗f is called the pullback of tensor f ∈ Lk(W ).

Theorem IV. T ∗ is a linear transformation such that:

1. T ∗(f ⊗ g) = T ∗f ⊗ T ∗g

5



2. If S : W →W ′ is a linear transformation, then (S ◦ T )∗f = T ∗(S∗f).

Definition 1.9 (Alternating k-tensor). Let f be a k-tensor on V and σ be a permutation of
{1, · · · , k}. The k tensor fσ on V is defined by the equation

fσ(v1, . . . , vk) = f(vσ(1), . . . , vσ(k))

The tensor f is said to be alternating if fσ = (sgnσ)f for all permutations σ of {1, · · · , k}.

Remark 1.5. The set of all alternating k-tensors on V is denoted by the symbol Ak(V ). If
k = 1 then A1(V ) = L1(V ) = V ∗, the dual space of V .

Theorem V. Let T : V →W be a linear transformation and T ∗ : Lk(W )→ Lk(V ) be the dual
transformation. If f is an alternating tensor on W , then T ∗f is an alternating tensor on V .

Definition 1.10 (Alternating operator). The linear transformation A : Lk(V )→ Ak(V ) defined
as

Af =
∑
σ

(sgnσ)fσ

is called the alternating operator.

Remark 1.6. One can easily verify that this is a well defined linear transformation. Let τ be
any permutation and f ∈ Lk(V ) then

(Af)τ =
∑
σ

(sgnσ)(fσ)τ =
∑
σ

(sgnσ)f τ◦σ = (sgn τ)
∑
σ

(sgn τ ◦ σ)f τ◦σ = (sgn τ)Af

hence Af ∈ Ak(V ) for all f ∈ Lk(V ).

Definition 1.11 (Wedge product). Let f ∈ Ak(V ) and g ∈ A`(V ), then the wedge product
f ∧ g ∈ Ak+`(V ) is defined as

f ∧ g =
1

k!`!
A(f ⊗ g)

where A is the alternating operator.

Remark 1.7. The reason for the coefficient 1/k!`! follows from the fact that Af = k!f if
f ∈ Ak(V ).

Theorem VI. Let f, g, h be alternating tensors on V . Then the following properties hold:

1. (Associative) f ∧ (g ∧ h) = (f ∧ g) ∧ h

2. (Homogeneous) (cf) ∧ g = c(f ∧ g) = f ∧ (cg) for all c ∈ R

3. (Distributive) If f and g have the same order, then (f + g) ∧ h = f ∧ h + g ∧ h and
h ∧ (f + g) = h ∧ f + h ∧ g

4. (Anti-commutative) If f and g have orders k and `, respectively, then g∧ f = (−1)k`f ∧ g

5. Let T : V → W be a linear transformation and T ∗ : Lk(W ) → Lk(V ) be the dual
transformation. If f and g are alternating tensors on W , then T ∗(f ∧ g) = T ∗f ∧ T ∗g

Theorem VII. Let V be a vector space of dimension n, with basis {e1, . . . , en}, and {f1, . . . , fn}
be the dual basis for V ∗ = A1(V ). Then Ak(V ) is a vector space of dimension

(
n
k

)
with the set

{fI = fi1 ∧ . . . ∧ fik : I = (i1, . . . , ik)} as basis.

Remark 1.8. If k > dimV , then Ak(V ) = 0. This is because the anti-commutativity of wedge
product implies that if f ∈ V ∗ then f ∧ f = 0.
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1.1.3 Differential forms

Definition 1.12 (Tensor field). Let U be an open set in Rn. A k-tensor field in U is a
function ω assigning each p ∈ U , a k-tensor ωp defined on the tangent space Tp(Rn). That is,
ωp ∈ Lk(Tp(Rn)) for each p ∈ U .

Remark 1.9. Thus ωp is a function mapping k-tuples of tangent vectors to Rn at p into R.
The tensor field ω is said to be of class Cr if it is of class Cr as a function of (p, v1, . . . , vk) for
all p ∈ U and vi ∈ Tp(Rn).

Definition 1.13 (Differential k-form). A differential form of order k, or differential k-form on
an open subset U of Rn is a k-tensor field with the additional property that ωp ∈ Ak(Tp(Rn))
for all p ∈ U .

Definition 1.14 (Differential 0-form). If U is open in Rn, and if f : U → R is a map of class
Cr, then f is called a differential 0-form in U .

Definition 1.15 (Wedge product of 0-form and k-form). The wedge product of a 0-form f and
k-form ω on the open set U of Rn is defined by the rule

(ω ∧ f)p = (f ∧ ω)p = f(p) · ωp

for all p ∈ U .

Remark 1.10. Henceforth, we restrict ourselves to differential forms of class C∞. If U is an
open set in Rn, let Ωk(U) denote the set of all smooth k-forms on U . The sum of two such
k-forms is another k-form, and so is the product of a k-form by a scalar. Hence Ωk(U) is the
vector space of k-forms on U . Also, Ω0(U) = C∞(U).

1.1.4 Exterior derivative

Definition 1.16 (Differential of a function). Let U be open in Rn and f : U → R be a smooth
real-valued function. Then the differential of f is defined to be the smooth 1-form df on U such
that for any p ∈ U and (p; v) ∈ Tp(Rn)

(df)p(p; v) = Df(p) · v

where Df(p) is the total derivative of f at p. In other words, (df)p(Xp) = Xpf for all derivations
Xp ∈ Tp(Rn).

Remark 1.11. If x denotes the general point of Rn, the ith projection function mapping Rn
to R is denoted by the symbol xi. Then dxi equals the elementary 1-from in Rn, i.e. the set
{dx1, . . . ,dxn} is a basis of Ω1(Rn). If I = (i1, . . . , ik) is an ascending k-tuple from the set
{1, . . . , n}, then

dxI = dxi1 ∧ · · · ∧ dxik

denotes the elementary k-forms in Rn, i.e. the set {dxI : I is an ascending set of k elements}
is a basis of Ωk(Rn). The general k-form ω ∈ Ωk(U) can be written uniquely in the form

ω =
∑
[I]

aI dxI

for some aI ∈ C∞(U).

Theorem VIII. Let U be open in Rn and f ∈ C∞(U). Then

df =
∂f

∂x1
dx1 + . . .+

∂f

∂xn
dxn

In particular, df = 0 if f is a constant function.

7



Definition 1.17 (Differential of a k-form). Let U be an open set in Rn and ω ∈ Ωk(U) such
that ω =

∑
[I] fI dxI . Then for k ≥ 0, the differential of a k-form ω is defined by the linear

transformation

d : Ωk(U)→ Ωk+1(U)

ω 7→
∑
[I]

dfI ∧ dxI

where dfI is the differential of function.

Theorem IX. Let U be an open set in Rn. If ω ∈ Ωk(U) and η ∈ Ω`(U) then

1. (Antiderivation) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

2. d ◦ d = 0

Definition 1.18 (Pullback of a k-form). Let U be open in Rm and α : U → Rn be a smooth
map. Let V be an open set in Rn containing α(U). For k ≥ 1

α∗ : Ωk(V )→ Ωk(U)

is the dual transformation defined for each ω ∈ Ωk(V ) and (p; v1), . . . , (p; vk) ∈ Tp(Rm) as

(α∗ω)p((p; v1), . . . , (p; vk)) = ωα(p)(α∗(p; v1), . . . , α∗(p; vk))

Then the k-form α∗ω ∈ Ωk(U) is called the pullback of ω ∈ Ωk(V ).

Definition 1.19 (Pullback of a 0-form). Let U be open in Rm and α : U → Rn be a smooth
map. Let V be an open set in Rn containing α(U). If f : V → R be a smooth map, then the
pullback of f ∈ Ω0(V ) is the the 0-form α∗f = f ◦ α ∈ Ω0(U), i.e. (α∗f)(p) = f(α(p)) for all
p ∈ U .

Theorem X. Let U be open in R` and α : U → Rm be a smooth map. Let V be open in
Rm which contains α(U) and β : V → Rn be a smooth map. Then (β ◦ α)∗ = α∗ ◦ β∗, i.e.
(β ◦ α)∗ω = α∗(β∗ω) for all ω ∈ Ωk(W ) where W is an open set in Rn containing β(V ).

Theorem XI. Let U be open in Rm and α : U → Rn be a smooth map. If ω, η and θ are
differential forms defined in an open set V of Rn containing α(U), such that ω and η have same
order, then

1. (preservation of the vector space structure) α∗(aω+bη) = a(α∗ω)+b(α∗η) for all a, b ∈ R.

2. (preservation of the wedge product) α∗(ω ∧ θ) = α∗ω ∧ α∗θ.

3. (commutation with the differential) α∗(dω) = d(α∗ω), i.e. the following diagram com-
mutes

Ωk(V ) Ωk+1(V )

Ωk(U) Ωk+1(U)

d

α∗ α∗

d

8



1.2 Closed and exact forms on Rn

In this section the proof of Poincaré lemma following [13, Chapter 8] will be discussed.

Definition 1.20 (Closed forms). Let U be an open set in Rn and ω ∈ Ωk(U) for k ≥ 0. Then
ω is said to be closed if dω = 0.

Remark 1.12. If U is an open set in Rn, let Zk(U) denote the set of all closed k-forms on U .
The sum of two such k-forms is another closed k-form, and so is the product of a closed k-form
by a scalar. Hence Zk(U) is the vector sub-space of Ωk(U). Also, Z0(U) is the set of all locally
constant1 functions on U .

Definition 1.21 (Exact k-forms). Let U be an open set in Rn and ω ∈ Ωk(U) for k ≥ 1. Then
ω is said to be exact if ω = dη for some η ∈ Ωk−1(U).

Remark 1.13. If U is an open set in Rn, let Bk(U) denote the set of all exact k-forms on U .
The sum of two such k-forms is another exact k-form, and so is the product of a exact k-form
by a scalar. Hence Bk(U) is the vector sub-space of Ωk(U). Also, B0(U) is defined to be the set
consisting only zero.

Theorem 1.1. Every exact form is closed.

Proof. Let U be an open set in Rn and ω ∈ Bk(U) such that ω = dη for some η ∈ Ωk−1(U).
From Theorem IX we know that dω = d(dη) = 0 hence ω ∈ Zk(U) for all k ≥ 1. For k = 0, the
statement is trivially true.

Remark 1.14. This theorem implies that Bk(U) ⊆ Zk(U) for all k ≥ 0. However, the converse
doesn’t always hold for k ≥ 1. For example, if U = R2 − 0 then the 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

is closed but not exact [13, Exercise 30.5, p. 261].

1.2.1 Differentiable homotopy

Definition 1.22 (Differentiable homotopy). Let U and V be open sets in Rm and Rn, respec-
tively; let g, h : U → V be smooth maps. Then g and h are said to be differentiably homotopic
if there is a smooth map2 H : U × [0, 1]→ V such that

H(x, 0) = g(x) and H(x, 1) = h(x)

for all x ∈ U . The map H is called differentiable homotopy between g and h.

Lemma 1.1. Let U be an open set in Rn and W be an open set in Rn+1 such that U×[0, 1] ⊂W .
Let α, β : U → W be smooth maps such that α(x) = (x, 0) and β(x) = (x, 1). Then there is a
linear transformation

L : Ωk+1(W )→ Ωk(U)

defined for all k ≥ 0, such that{
dLη + Ldη = β∗η − α∗η if η ∈ Ωk+1(W ), k ≥ 0

Ldγ = β∗γ − α∗γ if γ ∈ C∞(W ) = Ω0(W )

where α∗, β∗ : Ωk(W )→ Ωk(U) are the pullback maps defined for all k ≥ 0.
1Locally constant functions are constant on any connected component of domain.
2This means that H is smooth in some open neighborhood of U × [0, 1], like U × (−ε, 1 + ε).
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Proof. Let x = (x1, . . . , xn) denote the general point of Rn, and let t denote the general point
of R. Then, as in Remark 1.11, dx1, . . . ,dxn,dt are the elementary 1-forms in Rn+1. Also, for
any continuous function b : U × [0, 1]→ R a scalar function Γb is defined on U by the formula

(Γb)(x) =

∫ t=1

t=0
b(x, t)

Then for any η ∈ Ωk+1(W )

η =
∑
[I]

aI dxI +
∑
[J ]

bJ dxJ ∧ dt

where I is an ascending (k+ 1)-tuple and J is an ascending k-tuple from the set {1, . . . , n}, we
define

L : Ωk+1(W )→ Ωk(U)

η 7→
∑
[I]

L(aI dxI) +
∑
[J ]

L(bJ dxJ ∧ dt)

where L(aI dxI) = 0 and L(bJ dxJ ∧ dt) = (−1)k(ΓbJ) dxJ .

Step 1. L is a well defined linear transformation.

We need to show that Lη ∈ Ωk(U). Clearly, Lη is a k-form on the subset U of Rn. To
prove that Lη is smooth, it’s sufficient to show that the function ΓbJ is smooth; and this
result follows from Leibniz’s rule [13, Theorem 39.1], since bJ is smooth.

Linearity of L follows from the uniqueness of the representation of η and linearity of the
integral operator Γ.

Step 2. L(adxI) = 0 and L(bdxJ ∧ dt) = (−1)k(Γb) dxJ for any arbitrary (k + 1)-tuple I and
k-tuple J from the set {1, . . . , n}.
If the indices are not distinct, then these formulae hold trivially, since dxI = 0 and dxJ = 0
in that case. If the indices are distinct and in ascending order then these formulas hold
by definition. Since rearranging the indices changes the values of dxI and dxJ only by a
sign, the formulae hold even in that case (the signs will cancel out due to linearity).

Step 3. Ldγ = β∗γ − α∗γ if γ ∈ C∞(W )

Ldγ = L

(
n∑
i=1

∂γ

∂xi
dxi

)
+ L

(
∂γ

∂t
dt

)
= 0 + (−1)0

(
Γ

dγ

∂t

)
=

∫ t=1

t=0

∂γ

∂t
(x, t)

= γ(x, 1)− γ(x, 0)

= γ ◦ β − γ ◦ α
= β∗γ − α∗γ

Step 4. dLη + Ldη = β∗η − α∗η if η ∈ Ωk+1(W ), k ≥ 0

Since d, L, α∗ and β∗ are all linear transformations, it suffices to verify the formula for
the (k + 1)-forms η = a dxI and η = bdxJ ∧ dt. We will use Step 2 and Theorem XI to
simplify and compare left hand side (LHS) and right hand side (RHS) of the formula for
both the cases.

10



Case 1. η = a dxI for any (k + 1)-tuple I from {1, . . . , n}
Simplify the LHS:

dLη + Ldη = d0 + L (da ∧ dxI)

= L

(
n∑
i=1

∂a

∂xi
dxi ∧ dxI +

∂a

∂t
dt ∧ dxI

)

= L

(
n∑
i=1

∂a

∂xi
dxi ∧ dxI

)
+ L

(
∂a

∂t
dt ∧ dxI

)
= 0 + (−1)k+1L

(
∂a

∂t
dxI ∧ dt

)
= (−1)k+1 · (−1)k+1

(
Γ
∂a

∂t

)
dxI

=

(∫ t=1

t=0

∂a

∂t
(x, t)

)
dxI

= (a(x, 1)− a(x, 0)) dxI

= (a ◦ β − a ◦ α) dxI

Simplify the RHS:

β∗η − α∗η =β∗(a dxI)− α∗(a dxI)

=β∗(a)β∗(dxI)− α∗(a)α∗(dxI)

=(a ◦ β)β∗(dxi1 ∧ · · · ∧ dxik+1
)− (a ◦ α)α∗(dxi1 ∧ · · · ∧ dxik+1

)

=(a ◦ β)(d(β∗xi1) ∧ · · · ∧ d(β∗xik+1
))−

(a ◦ α)(d(α∗xi1) ∧ · · · ∧ d(α∗xik+1
))

=(a ◦ β)(dxi1 ∧ · · · ∧ dxik+1
)− (a ◦ α)(dxi1 ∧ · · · ∧ dxik+1

)

= (a ◦ β − a ◦ α) dxI

Case 2. η = bdxJ ∧ dt for any k-tuple J from {1, . . . , n}
Simplify the LHS:

dLη + Ldη = d
(

(−1)k(Γb) dxJ

)
+ L (db ∧ dxJ ∧ dt)

=
[
(−1)k d(Γb) ∧ dxJ

]
+L

 n∑
j=1

∂b

∂xj
dxj ∧ dxJ ∧ dt+

∂b

∂t
dt ∧ dxJ ∧ dt


=

(−1)k
n∑
j=1

∂

∂xj
(Γb) dxj ∧ dxJ

+

 n∑
j=1

L

(
∂b

∂xj
dxj ∧ dxJ ∧ dt

)
=

(−1)k
n∑
j=1

∂

∂xj
(Γb) dxj ∧ dxJ

+

 n∑
j=1

(−1)k+1

(
Γ
∂b

∂xj

)
dxj ∧ dxJ


=0

since by Leibniz’s rule [13, Theorem 39.1], ∂
∂xj

(Γb) = Γ ∂b
∂xj

for all j. Now we simplify

the RHS:

β∗η − α∗η =β∗(bdxI ∧ dt)− α∗(bdxI ∧ dt)
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= [(β∗b) d(β∗xj1) ∧ · · · ∧ d(β∗xjk) ∧ d(β∗t)]−
[(α∗b) d(α∗xj1) ∧ · · · ∧ d(α∗xjk) ∧ d(α∗t)]

= [(b ◦ β) dxj1 ∧ . . . dxjk ∧ d1]− [(b ◦ α) dxj1 ∧ . . . dxjk ∧ d0]

=0− 0 = 0

This completes the proof of the lemma.

Remark 1.15. For the special case, when k = 0 we have η =
∑n

i=1 ai dxi + bdt. In this case,
we have Lη = Γb since J is empty. Hence, just as d is in some sense a “differentiation operator”,
the operator L is in some sense an “integration operator”, one that integrates η in the direction
of the last coordinate [13, Exercise 39.4].

Proposition 1.1. Let U and V be open sets in Rn and Rm, respectively. Let g, h : U → V be
smooth maps that are differentiably homotopic. Then there is a linear transformation

T : Ωk+1(V )→ Ωk(U)

defined for all k ≥ 0, such that{
dTω + T dω = h∗ω − g∗ω if ω ∈ Ωk+1(V ), k ≥ 0

T df = h∗f − g∗f if f ∈ C∞(V ) = Ω0(V )

where g∗, h∗ : Ωk(V )→ Ωk(U) are the pullback maps defined for all k ≥ 0.

Proof. The preceding lemma was a special case of this proposition since α and β were differen-
tiably homotopic. We borrow notations from the preceding lemma.

Let H : U × [0, 1] → V be the differentiable homotopy between g and h, i.e. H(x, 0) =
H(α(x)) = g(x) and H(x, 1) = H(β(x)) = h(x). Then we have the pullback map H∗ : Ωk(V )→
Ωk(W ) defined on an open neighborhood W of U × [0, 1] and k ≥ 0. Hence for k ≥ 0 we have
the following commutative diagram:

Ωk+1(V ) Ωk+1(W )

Ωk(U)

H∗

L◦H∗
L

Claim: T = L ◦H∗
We will verify both the desired properties separately.

Step 1. dTω + T dω = h∗ω − g∗ω if ω ∈ Ωk+1(V ), k ≥ 0

Let H∗ω = η ∈ Ωk+1(W ), then using Theorem XI, Theorem X, and the preceding lemma

dTω + T dω = d(L(H∗ω)) + L(H∗(dω))

= dLη + Ldη

= β∗η − α∗η
= β∗(H∗ω)− α∗(H∗ω)

= (H ◦ β)∗ω − (H ◦ α)∗ω

= h∗ω − g∗ω

12



Step 2. T df = h∗f − g∗f if f ∈ C∞(V ) = Ω0(V )

Let H∗f = γ ∈ Ω0(W ), then using Theorem XI, Theorem X, and the preceding lemma

T df = L(H∗ df)

= Ldγ

= β∗γ − α∗γ
= β∗(H∗f)− α∗(H∗f)

= (H ◦ β)∗f − (H ◦ α)∗f

= h∗f − g∗f

This completes the proof.

1.2.2 Poincaré lemma

Definition 1.23 (Star-convex). Let U be an open set in Rn. Then U is said to be star-convex
with respect to the point p ∈ U is for each x ∈ U , the line segment joining x and p lies in U .

Theorem 1.2 (Poincaré lemma). Let U be a star-convex open set in Rn. If k ≥ 1, then every
closed k-form on U is exact.

Proof. Let ω ∈ Zk(U) for k ≥ 1. We apply the preceding proposition. Let p be a point with
respect to which U is star-convex. We define the maps g and h as follows:

g : U → U

x 7→ p

h : U → U

x 7→ x

Since U is star-convex with respect to p, there always exists a straight line in U joining any
point x ∈ U with p. Hence we have the differentiable homotopy between g and h given by this
straight line

H : U × [0, 1]→ U

(x, t) 7→ th(x) + (1− t)g(x)

Therefore the maps g and h are differentiably homotopic.
Now we use the previous proposition, i.e. there exists T : Ωk(U) → Ωk−1(U) such that

dTω + T dω = h∗ω − g∗ω. Hence if dω = 0 then dTω = ω since pullback map corresponding
to the identity map is the identity map i.e. h∗ω = ω and pullback map corresponding to a
constant map is the zero map i.e. g∗ω = 0. Hence ω ∈ Bk(U) for all k ≥ 1. This completes the
proof3.

Remark 1.16. Being star-convex is not such a restrictive condition, since any open ball

B(p, ε) = {x ∈ Rn : ||x− p|| < ε}

is star-convex with respect to p. Hence, Poincaré lemma holds for any open ball in Rn.

3If we also use the second condition of the preceding proposition we get that if df = 0 then f is a constant
map. This is Munkres’ defintion of exact 0-form [13, p. 259].
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1.3 Differential forms on smooth manifolds

In this section some basic definitions and facts from [18, Chapter 2, 3 and 5] and [11, §1.1, 2.1,
3.2, 3.4 and 5.1] will be stated.

Definition 1.24 (Smooth manifold). A smooth manifold M of dimension n is a second count-
able Hausdorff space together with a smooth structure on it. A smooth structure U is the
collection of charts {(Uα, φα)}α∈A where Uα is an open set of M and φα is a homeomorphism
of Uα onto an open set of Rn such that

1. the open sets {Uα}α∈A cover M .

2. for every pair of indices α, β ∈ A with Uα ∩ Uβ 6= ∅ the homeomrphisms

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ),

φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

are smooth maps between open subsets of Rn.

3. the family U is maximal in the sense that it contains all possible pairs (Uα, φα) satisfying
the properties 1. and 2.

Example 1.1. Following two smooth manifolds will be used throughout this report:

1. The Euclidean space Rn is a smooth manifold with single chart (Rn,1Rn), where 1Rn is
the identity map. In other words, (Rn,1Rn) = (Rn, x1, . . . , xn) where x1, . . . , xn are the
standard coordinates on Rn.

2. Any open subset V of a smooth manifold M is also a smooth manifold. If {(Uα, φα)} is
an atlas for M , then {(Uα ∩V, φα|Uα∩V )} is an atlas for V , where φα|Uα∩V : Uα ∩V → Rn
denotes the restriction of φα to the subset Uα ∩ V .

Theorem XII. Every smooth manifold M is paracompact4.

Definition 1.25 (Smooth function on a manifold). Let M be a smooth manifold of dimension
n. A function f : M → R is said to be a smooth function at a point p in M if there is a chart
(U, φ) about p in M such that f ◦ φ−1, a function defined on the open subset φ(U) of Rn, is
smooth at φ(p). The function f is said to be smooth on M is it is smooth at every point of M .

(U, p) (Rn, φ(p))

(R, f(p))

φ

f
f◦φ−1

Definition 1.26 (Smooth partition of unity). Let M be a smooth manifold with an open
covering U = {Uα}α∈A. Then a smooth partition of unity on M subordinate to U is a family of
smooth functions {ψα : M → R}α∈A satisfying the following conditions

1. supp(ψα) ⊆ Uα for all α ∈ A.

2. 0 ≤ ψα(p) ≤ 1 for all p ∈M and α ∈ A

3. the collection of supports {supp(ψα)}α∈A is locally finite.

4For definition and general properties of paracompact spaces, see Appendix A.
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4.
∑

α∈A ψα(p) = 1 for all p ∈M

where supp(ψα) is the closure of the set of those p ∈M for which φα(p) 6= 0.

Theorem XIII. Any smooth manifold M with an open covering U = {Uα}α∈A admits a smooth
partition of unity subordinate to {Uα}.

Remark 1.17. If {ψα} is a smooth partition of unity on M subordinate to {Uα}, and {fα :
Uα → R} is a family of smooth functions, then the function f : M → R defined by f(x) =∑

α∈A φαfα is smooth.

Definition 1.27 (Smooth map between smooth manifolds). Let M and N be smooth manifolds
of dimension m and n, respectively. A continuous map F : M → N is smooth at a point p if M
if there are charts (V, ψ) about F (p) in N and (U, φ) about p in N such that the composition
ψ ◦ F ◦ φ−1, a map from the open subset φ(F−1(V ) ∩ U) of Rm to Rn, is smooth at φ(p).

(U, p) (V, F (p))

(Rm, φ(p)) (Rn, ψ(F (p)))

F

φ ψ

ψ◦F◦φ−1

The continuous map F : M → N is said to be smooth if it is smooth at every point in M .

Remark 1.18. In the definition of smooth maps between manifolds it’s assumed that F :
M → N is continuous to ensure that F−1(V ) is an open set in M . Thus, smooth maps between
manifolds are by definition continuous.

Theorem XIV. Let M and N be smooth manifolds of dimension m and n, respectively, and
F : M → N a continuous map. The following are equivalent

1. The map F : M → N is smooth

2. There are atlases U for M and V for N such that for every chart (U, φ) in U and (V, ψ)
in V the map

ψ ◦ F ◦ φ−1 : φ(F−1(V ) ∩ U)→ Rn

is smooth.

3. For every chart (U, φ) on M and (V, φ) on N , the map

ψ ◦ F ◦ φ−1 : φ(F−1(V ) ∩ U)→ Rn

is smooth.

Theorem XV. If (U, φ) is a chart on a smooth manifold M of dimension n, then the coordinate
map φ : U → φ(U) ⊂ Rn is a diffeomorphism.

Remark 1.19. One can generalize the notation for projection maps introduced in Remark 1.11.
If {U, φ} is a chart of a manifold, i.e. φ : U → Rn, then let ri = xi ◦ φ be the ith component of
φ and write φ = (r1, . . . , rn) and (U, φ) = (U, r1, . . . , rn). Thus, for p ∈ U , (r1(p), . . . , rn(p)) is
a point in Rn. The functions r1, . . . , rn are called coordinates or local coordinates on U .

Theorem XVI. Let M and N be smooth manifolds of dimension m and n, respectively, and
F : M → N a continuous map. The following are equivalent

1. The map F : M → N is smooth
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2. The manifold N has an atlas such that for every chart (V, ψ) = (V, s1, . . . , sn) in the
atlas5, the components si ◦ F : F−1(V )→ R of f relative to the chart are all smooth.

3. For every chart (V, ψ) = (V, s1, . . . , sn) on N , the components si ◦ F : F−1(V )→ R of F
relative to the chart are all smooth.

1.3.1 Tangent space

Definition 1.28 (Germ of smooth functions). Consider the set of all pairs (f, U), where U
is a neighborhood of p ∈ M and f : U → R is a smooth function. Then (f, U) is said to be
equivalent to (g, V ) is there is an open set W ⊂ U ∩ V containing p such that f = g when
restricted to W . This equivalence class of (f, U) is called germ of f at p.

Remark 1.20. The set of all germs of smooth functions on M at p is denoted by C∞p (M). The
addition and multiplication of functions induce corresponding operations of C∞p (M), making it
into a ring; with scalar multiplication by real numbers C∞p (M) becomes an algebra over R.

Definition 1.29 (Derivation at a point). A linear map Xp : C∞p (M)→ R satisfying the Leibniz
rule

Xp(fg) = Xp(f)g(p) + f(p)Xp(g)

is called a derivation at p ∈M or a point-derivation of C∞p (M).

Definition 1.30 (Tangent vector). A tangent vector at a point p in a manifold M is a derivation
at p.

Definition 1.31 (Tangent space). The tangent vectors at p form a real vector space TpM ,
called the tangent space of M at p.

Definition 1.32 (Partial derivative). Let M be a smooth manifold of dimension n, (U, φ) =
(U, r1, . . . , rn) be a chart and f : M → R be a smooth function. For p ∈ U , the partial derivative
∂f/∂ri of f with respect to ri at p is defined to be

∂

∂ri

∣∣∣∣
p

f :=
∂f

∂ri
(p) :=

∂(f ◦ φ−1)

∂xi
(φ(p)) :=

∂

∂xi

∣∣∣∣
φ(p)

(f ◦ φ−1)

where ri = xi ◦ φ and {x1, . . . , xn} are the standard coordinates on Rn.

Definition 1.33 (Pushforward of a vector). Let F : M → N be a smooth map between two
smooth manifolds. At each point p ∈M , the map F induces a linear map of tangent spaces

F∗ : TpM → TF (p)N

such that given Xp ∈ TpM we have (F∗(Xp))f = Xp(f ◦ F ) ∈ R for f ∈ C∞F (p)(M).

Remark 1.21. The pusforward map induced by an the identity map of manifolds is the identity
map of vector spaces, i.e. (1M )∗,p = 1TpM .

Theorem XVII. Let F : M → N and G : N → N ′ be smooth maps of manifolds, and p ∈M ,
then (G ◦ F )∗,p = G∗,F (p) ◦ F∗,p

TpM TF (p)N

TG(F (p))N
′

F∗,p

(G◦F )∗,p
G∗,F (p)

5Here si = yi ◦ ψ if we consider the coordinates of Rn to be (y1, . . . , yn) and coordinates of Rm to be
(x1, . . . , xm).
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Theorem XVIII. Let (U, φ) = (U, r1, . . . , rn) be a chart about a point p in a manifold M of
dimension n. Then φ∗ : TpM → Tφ(p)Rn is a vector space isomorphism and TpM has the basis{

∂

∂ri

∣∣∣∣
p

, . . . ,
∂

∂rn

∣∣∣∣
p

}

where ri = xi ◦ φ and {x1, . . . , xn} the standard coordinates of Rn.

Remark 1.22. Hence one observes that if M is n dimensional manifold then TpM is a vector
space of dimension n over R.

1.3.2 Cotangent bundle

Definition 1.34 (Cotangent space). Let M be a smooth manifold and p a point in M . The
cotangent space of M at point p denoted by T ∗pM is defined to be the dual space of the tangent
space TpM , i.e. the set of all linear maps from TpM to R.

Remark 1.23. Hence, if M is n dimensional manifold then T ∗pM is a vector space of dimension
n over R.

Definition 1.35 (Cotangent bundle). The cotangent bundle T ∗M of a manifold M is the union
of the tangent spaces at all points of M

T ∗M :=
⋃
p∈M

T ∗pM

Remark 1.24. The union in the definition above is disjoint, i.e. T ∗M =
∐
p∈M T ∗pM , since for

distinct points p and q in M , the cotangent spaces T ∗pM and T ∗qM are already disjoint.

Theorem XIX. Let M is a smooth manifold of dimension n, then its cotangent bundle T ∗M
is a smooth manifold of dimension 2n.

Definition 1.36 (Smooth vector bundle). A smooth vector bundle of rank n is a triple (E,M, π)
consisting of a pair of smooth manifolds E and M , and a smooth surjective map π : E → M
satisfying the following conditions

1. for each p ∈M , the inverse image Ep = π−1(p) is an n-dimensional vector space over R,

2. for each p ∈M , there is an open neighborhood U of p and a diffeomorphism φ : U ×Rn →
π−1(U) such that

(a) the following diagram commutes

U × Rn π−1(U)

U

φ

p1
π

where p1 is the projection onto the first factor,

(b) for each q ∈ U , the map φq : Rn → π−1(q), defined by φq(x) = φ(q, x), is a linear
isomorphism.

Theorem XX. The cotangent bundle T ∗M with the projection map π : T ∗M → M given by
π(α) = p if α ∈ T ∗pM , is a vector bundle of rank n over M .
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Definition 1.37 (Exterior power of cotangent bundle). Let M be a smooth manifold. Then
the kth exterior power of the cotangent bundle Λk(T ∗M) is the disjoint union of all alternating
k-tensors at all points of the manifold, i.e.

Λk(T ∗M) =
⋃
p∈M
Ak(TpM)

Theorem XXI. If M is a manifold of dimension n, then the exterior power of the cotangent
bundle Λk(M) is a manifold of dimension n+

(
n
k

)
.

Theorem XXII. The exterior power of cotangent bundle Λk(T ∗M) with the projection map
π : Λk(T ∗M)→M given by π(α) = p if α ∈ Ak(TpM), is a vector bundle of rank

(
n
k

)
over M .

1.3.3 Differential forms

Definition 1.38 (Smooth section). A smooth section of a vector bundle π : E →M is a smooth
map s : M → E such that π ◦ s = 1M .

Remark 1.25. The condition π ◦ s = 1M precisely means that for each p in M , s maps p into
Ep.

Definition 1.39 (Differential k-form). A differential k-form on M is a smooth section of the
vector bundle π : Λk(T ∗M)→M .

Remark 1.26. The vector space of all smooth k-forms on M is denoted by Ωk(M). If ω ∈
Ωk(M) then ω : M → Λk(T ∗M) is a smooth map such that ω assigns each point p ∈ M an
alternating k-tensor, i.e. ωp ∈ Ak(TpM) for all p ∈ M . In particular, if U is an open subset of
M , then ω ∈ Ωk(U) if ωp ∈ Ak(TpM) for all p ∈ U (view U as open neighborhood of point p).

Definition 1.40 (Differential 0-form). A differential 0-form on M is a smooth real valued
function on M , i.e. Ω0(M) = C∞(M).

Definition 1.41 (Wedge product of 0-form and k-form). The wedge product of a 0-form f ∈
C∞(M) and a k-form ω ∈ Ωk(M) is defined as the k-form fω where

(ω ∧ f)p = (f ∧ ω)p = f(p) · ωp

for all p ∈M .

Definition 1.42. The wedge product extends pointwise to differential forms on a manifold, i.e.
if ω ∈ Ωk(M) and η ∈ Ω`(M) then ω ∧ η ∈ Ωk+`(M) such that

(ω ∧ η)p = ωp ∧ ηp

at all p ∈M .

1.3.4 Exterior derivative

Definition 1.43 (Differential of a function). Let f : M → R be a smooth function, its differ-
ential is defined to be the 1-form df on M such that for any p ∈M and Xp ∈ TpM

(df)p(Xp) = Xpf

Remark 1.27. Let (U, r1, . . . , rn) be a coordinate chart on a smooth manifold M . Then the dif-
ferentials {dr1, . . . ,drn} are 1-forms on U . At each point p ∈ U , the 1-forms {(dr1)p, . . . , (drn)p}
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form a basis6 of A1(TpM) = T ∗pM , dual to the basis {∂/∂r1|p, . . . , ∂/∂rn|p} for the tangent
space TpM . Hence, a 1-form on U is a linear combination ω =

∑n
i=1 aidri where ai are smooth

functions on U .
If I = (i1, . . . , ik) is an ascending k-tuple from the set {1, . . . , n}, then

drI = dri1 ∧ · · · ∧ drik

denotes the the elementary k-forms on U ⊂M , i.e. the k-forms

{(drI)p : I is an ascending set k-tuple}

form a basis of Ak(TpM) for all p ∈ U . The general k-form ω ∈ Ωk(U) can be written uniquely
in the form

ω =
∑
[I]

aI drI

for some aI ∈ C∞(U).

Theorem XXIII. If f is a smooth function on M , then the restriction of the 1-from df to U
can be expressed as

df =
∂f

∂r1
dr1 + . . .+

∂f

∂rn
drn

Theorem XXIV. ω ∈ Ωk(M) if and only if on every chart (U, φ) = (U, r1, . . . , rn) on M , the
coefficients aI of ω =

∑
[I] aI drI relative to the elementary k-forms {drI} are all smooth.

Theorem XXV. Suppose ω is a smooth differential form defined on a neighborhood U of a
point p in a manifold M , i.e. ω ∈ Ωk(U). Then there exists a smooth form ω̃ on M , i.e.
ω̃ ∈ Ωk(M), that agrees with ω on a possible smaller neighborhood of p.

Remark 1.28. The extension ω̃ is not unique, it depends on p and on the choice of a bump
function at p. All this can be generalized to a family of differential forms, as in Remark 1.17,
using smooth partitions of unity.

Definition 1.44 (Differential of a k-form). Let (U, r1, . . . , rn) be a coordinate chart on a smooth
manifold M and ω ∈ Ωk(U) is written uniquely as a linear combination

ω =
∑
[I]

aI drI , aI ∈ C∞(U)

The R-linear map dU : Ωk(U)→ Ωk+1(U) defined as

dUω =
∑
[I]

daI ∧ drI

is called the exterior derivative of ω on U . Let p ∈ U , then (dUω)p is independent of the chart
containing p. Thus the differential of a k-form is defined by the linear operator

d : Ωk(M)→ Ωk+1(M)

such that for k ≥ 0 and ω ∈ Ωk(M) one has (dω)p = (dUω)p for all p ∈M .

Theorem XXVI. If ω ∈ Ωk(M) and η ∈ Ω`(M) then

1. (Antiderivation) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

6In the case of M = Rn the expression was much more straightforward because TpM ∼= Rn (vector space
isomorphism) for any n-dimensional manifold.
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2. d ◦ d = 0

Remark 1.29. Since the exterior derivative is an antiderivation, it is a local operator, i.e. for
all k ≥ 0,whenever a k-form ω ∈ Ωk(M) is such that ωp = 0 for all points p in an open set U of
M , then dω ≡ 0 on U . Equivalently, for all k ≥ 0, whenever two k-forms ω, η ∈ Ωk(M) agree
on an open set U , then dω ≡ dη on U [13, Proposition 19.3].

Definition 1.45 (Pullback of a k-form). Let F : M → N be a smooth map of manifolds. Then
for k ≥ 1

F ∗ : Ωk(N)→ Ωk(M)

is the pullback map defined for each ω ∈ Ωk(N) at every point p ∈M as

(F ∗ω)p(v1, . . . , vk) = ωF (p)(F∗,pv1, . . . , F∗,pvk)

where vi ∈ TpM . Then the k-form F ∗ω ∈ Ωk(M) is called the pullback of ω ∈ Ωk(N).

Definition 1.46 (Pullback of a 0-form). Let F : M → N be a smooth map and f ∈ C∞(N) =
Ω0(N), then the pullback of f is the the 0-form F ∗f = f ◦ F ∈ Ω0(M).

Remark 1.30. Pullback of the identity map is an identity map, i.e. (1M )∗ = 1Ωk(M).

Theorem XXVII. If F : M → N and G : N → N ′ are smooth maps, then (G◦F )∗ = F ∗ ◦G∗.

Ωk(N ′) Ωk(N)

Ωk(M)

G∗

(G◦F )∗
F ∗

Theorem XXVIII. Let F : M → N be a smooth map. If ω, η and θ are differential forms on
N , such that ω and η have same order, then

1. (preservation of the vector space structure) F ∗(aω+bη) = a(F ∗ω)+b(F ∗η) for all a, b ∈ R.

2. (preservation of the wedge product) F ∗(ω ∧ θ) = F ∗ω ∧ F ∗θ.

3. (commutation with the differential) F ∗(dω) = d(F ∗ω), i.e. the following diagram com-
mutes

Ωk(N) Ωk+1(N)

Ωk(M) Ωk+1(M)

d

F ∗ F ∗

d

1.4 Closed and exact forms on smooth manifolds

In this section the de Rham cohomology will be defined and generalization of Poincaré lemma
to smooth manifolds will be discussed following [18, §24].

Definition 1.47 (Closed forms). ω ∈ Ωk(U) for k ≥ 0 is said to be closed if dω = 0.

Remark 1.31. We denote the set of all closed k-forms on M by Zk(M). The sum of two such
k-forms is another closed k-form, and so is the product of a closed k-form by a scalar. Hence
Zk(M) is the vector sub-space of Ωk(M).

20



Definition 1.48 (Exact k-forms). ω ∈ Ωk(U) for k ≥ 1 is said to be exact if ω = dη for some
η ∈ Ωk−1(U).

Remark 1.32. We denote the set of all exact k-forms on M by Bk(U). The sum of two such
k-forms is another exact k-form, and so is the product of a exact k-form by a scalar. Hence
Bk(M) is the vector sub-space of Ωk(M). Also, B0(M) is defined to be the set consisting only
zero.

Theorem 1.3. On a smooth manifold M , every exact form is closed.

Proof. Let ω ∈ Bk(M) such that ω = dη for some η ∈ Ωk−1(M). From Theorem XXVI we
know that dω = d(dη) = 0 hence ω ∈ Zk(M) for all k ≥ 1. For k = 0, the statement is trivially
true.

Lemma 1.2. Let F : M → N be a smooth map of manifolds, then the pullback map F ∗ sends
closed forms to closed forms, and sends exact forms to exact forms.

Proof. Suppose ω is closed. From Theorem XXVIII we know that F ∗ commutes with d

dF ∗ω = F ∗ dω = 0

Hence, F ∗ω is also closed. Next suppose θ = dη is exact. Then

F ∗θ = F ∗ dη = dF ∗η

Hence, F ∗θ is exact.

1.4.1 de Rham cohomology

Definition 1.49 (de Rham cohomology of a smooth manifold). The kth de Rham cohomology
group7 of M is the quotient group

Hk
dR(M) :=

Zk(M)

Bk(M)

Remark 1.33. Hence, the de Rham cohomology of a smooth manifold measures the extent to
which closed forms are not exact on that manifold.

Proposition 1.2. If the smooth manifold M has ` connected components, then its de Rham
cohomolgy in degree 0 is H0

dR(M) = R`. An element of H0
dR(M) is specified by an ordered `-tuple

of real numbers, each real number representing a constant function on a connected component
of M .

Proof. Since there are no non-zero exact 0-forms

H0
dR(M) = Z0(M)

Suppose f is a closed 0-form on M , i.e. f ∈ C∞(M) such that df = 0. By Theorem XXIII we
know that on any chart (U, r1, . . . , rn)

df =

n∑
i=1

∂f

∂ri
dri

Thus df = 0 on U if and only if all the partial derivatives ∂f/∂ri vanish identically on U . This
is equivalent to f being locally constant on U . Hence, Z0(M) is the set of all locally constant8

functions on M . Such a function must be constant on each connected component of M . If
M has ` connected components then a locally constant function of M can be specified by an
ordered set of ` real numbers. Thus Z0(M) = R`.

7which is really a vector space over R
8Locally constant functions are constant on any connected component of domain.
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Proposition 1.3. On a smooth manifold M of dimension n, the de Rham cohomology Hk
dR(M)

vanishes for k > n.

Proof. At any point p ∈ M , the tangent space TpM is a vector space of dimension n. If
ω ∈ Ωk(M), then ωp ∈ Ak(TpM), the space of alternating k-linear functions on TpM . By
Remark 1.8, if k > n then Ak(TpM) = 0. Hence for k > n, the only k-form on M is the zero
form.

1.4.2 Poincaré lemma for smooth manifolds

Definition 1.50 (Pullback map in cohomology). Let F : M → N be a smooth map of mani-
folds, then its pullback F ∗ induces9 a linear map of quotient spaces, denoted by F#

F# :
Zk(N)

Bk(N)
→ Z

k(M)

Bk(M)

JωK 7→ JF ∗(ω)K

This is a map in cohomology F# : Hk
dR(N)→ Hk

dR(M) called the pullback map in cohomology.

Remark 1.34. From Remark 1.30 and Theorem XXVII it follows that:

1. If 1M : M → M is the identity map, then 1
#
M : Hk

dR(M) → Hk
dR(M) is also the identity

map.

2. If F : M → N and G : N → N ′ are smooth maps, then (G ◦ F )# = F# ◦G#.

Proposition 1.4 (Diffeomorphism invariance of de Rham cohomology). Let F : M → N be a
diffeomorphism of manifolds, then the pullback map in cohomology F# : Hk

dR(N)→ Hk
dR(M) is

an isomorphism.

Proof. Since F is a diffeomorphism, F−1 : N →M is also a smooth map of manifolds. Therefore,
using Remark 1.34 we have

1Hk
dR(M) = 1

#
M = (F−1 ◦ F )# = F# ◦ (F−1)#

This implies that (F−1)# is the inverse of F#, i.e. F# is an isomorphism.

Theorem 1.4 (Poincaré lemma for smooth manifold). Let M be a smooth manifold, then for
all p ∈M there exists an open neighborhood U such that every closed k-form on U is exact for
k ≥ 1.

Proof. Let (U, φ) be a chart on a smooth manifold M of dimension n such that p ∈ U . By
Theorem XV we know that the coordinate map φ : U → φ(U) ⊂ Rn is a diffeomorphism. We
choose U such that φ(U) is an open ball in Rn. Then by Theorem 1.2 every closed k-form on
φ(U) is exact for k ≥ 1, i.e. Hk

dR(φ(U)) = 0 for k ≥ 1. Now we can use Proposition 1.4 to
conclude that Hk

dR(U) = 0 for k ≥ 1, i.e. every closed k-form on U is exact for k ≥ 1.

9Follows from Lemma 1.2.
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Chapter 2

Čech cohomology

“Cohomology is a way of attaching ordinary groups to sheaves of groups (or rings to
sheaves of rings, etc.) which measure the global aspects of a sheaf. Sheaves are
designed to make all local statements easy to formulate, and this is because in many
instances local statements are easy to come by. However in geometry one is usually
interested in global information.”

— Rick Miranda, Algebraic Curves and Riemann Surfaces, p. 290

2.1 Sheaf theory

Definition 2.1 (Presheaf). A presheaf 1 F of abelian groups on a topological space X consists
of an abelian group F(U) for every open subset U ⊂ X and a group homomorphism ρUV :
F(U)→ F(V ) for any two nested open subsets V ⊂ U satisfying the following two conditions:

1. for any open subset U of X one has ρUU = 1F(U)

2. for open subsets W ⊂ V ⊂ U one has ρUW = ρVW ◦ ρUV , i.e. the following diagram
commutes

F(U) F(W )

F(V )

ρUW

ρUV ρVW

Example 2.1. Let G be a non-trivial abelian group and X be a topological space. Then the
constant presheaf GX is defined to be the collection of abelian groups GX(U) = G for all non-
empty subsets U of X and GX(∅) = {0}, along with the group homomorphisms ρUV = 1G for
nested open subsets V ⊂ U . In particular, for G = R we get the constant presheaf R which is the
collection of constant real valued functions R(U) for every open subset U of X and restriction
maps ρUV for nested open subsets V ⊂ U .

Example 2.2. Let X be a topological space. For each open subset U of X we define F(U) to be
the set of (continuous/differentiable) real valued functions2, and ρUV to be the natural restric-
tion map for the nested open subsets V ⊂ U . Then F is a presheaf of (continuous/differentiable)
real valued functions.

Definition 2.2 (Sheaf). A presheaf F on a topologial space X is called a sheaf if for every
collection {Uα}α∈A of open subsets of X with U = ∪α∈AUα the following conditions are satisfied

1Presheaves and sheaves are typically denoted by calligraphic letters, F being particularly common, presum-
ably for the French word for sheaves, faisceaux.

2Note that there exists only one function from an empty set to any other set, hence F(∅) is singleton.
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1. (Uniqueness) If f, g ∈ F(U) and ρUUα(f) = ρUUα(g) for all α ∈ A, then f = g.

2. (Gluing) If for all α ∈ A we have fα ∈ F(Uα) such that ρUα,Uα∩Uβ (fα) = ρUβ ,Uα∩Uβ (fβ)
for any α, β ∈ A, then there exists a f ∈ F(U) such that ρUUα(f) = fα for all α ∈ A (this
f is unique by previous axiom).

Example 2.3. It is easy to observe that the gluing axiom doesn’t hold for the constant presheaf
R on X if X is disconnected. We therefore define a constant sheaf R on X to be the collection
of locally constant real valued functions R(U) corresponding to every open subset U ⊂ X and
restriction maps ρUV for nested open subsets V ⊂ U .

In general, given a non-trivial abelian group G, the constant sheaf G on X is defined by
endowing G with the discrete topology and assigning each open set U of X the set G(U) of
all continuous functions f : U → G along with the restriction maps φUV for nested open sets
V ⊂ U .

Example 2.4. If one has a presheaf of functions (or forms) on X which is defined by some
property which is a local property3, then the presheaf is also a sheaf. This is because the
agreement of functions (or forms) on the overlap intersections automatically gives a well defined
unique function (or form) on the open set U , and one must only check that it satisfies the
property [9, p. 272].

In particular, if X is a smooth manifold then Ωq is the sheaf of smooth q-forms on X such
that for every open subset U of X we have the abelian group Ωq(U) of smooth q-forms on U
(smooth sections of a exterior power of cotangent bundle, i.e. smooth maps of manifolds) along
with the natural restriction maps as the group homomorphisms ρUV for nested open subsets
V ⊂ U [20, Example II.1.9].

Remark 2.1. When defining presheaf, many authors like Liu [7, §2.2.1] and Miranda [9, §IX.1],
additionally require F(∅) = 0, i.e. the trivial group with one element. This is a necessary
condition for the sheaf to be well defined, but this follows from our sheaf axioms. Namely, note
that the empty set is covered by the empty open covering, and hence the collection fi ∈ F(Ui)
from the definition above actually form an element of the empty product which is the final
object of the category the sheaf has values in4. In other words, we don’t require this condition
while defining presheaf (see [20, §II.1] or [1, §II.10]) since from the definition of sheaf one can
deduce that that F(∅) is equal to a final object, which in the case of a sheaf of sets is a singleton.

Remark 2.2. There is another equivalent way of defining sheaf F (of abelian groups) over X
as a triple (F, π,X) which satisfies certain axioms [4, §2.1]. For a discussion on the equivalence
of both these definitions see [19, §5.7]. However, the defintion that we have adopted is useful
since for many important sheaves, particularly those that arise in algebraic geometry, the sheaf
space F is obscure, and its topology complicated [6, Remark 2.6].

Remark 2.3. The definition of sheaf can be generalized to any category like groups, rings,
modules, and algebras instead of abelian groups.

2.1.1 Stalks

Definition 2.3 (Stalk). Let F be a sheaf on X, and let x ∈ X. Then the stalk of F at x is

Fx := lim−→
U3x
F(U)

3A property P is said to be local if whenever {Uα}α∈A is an open cover of an open set U , then the property
holds on U if and only if it holds for each Uα. In other words, a local property P of functions is the one which is
initially defined at points, i.e. a function f defined in a neighborhood of a point p ∈ X has property P at p if
and only if some condition holds at the point p. For example, the preoperties like continuity and differentiability.

4The Stacks project, Tag 006U: https://stacks.math.columbia.edu/tag/006U
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where the direct limit5 is indexed over all the open subsets containing x, with order relation
induced by reverse inclusion, i.e. U < V if V ⊂ U . Also, the image of f ∈ F(U) in Fx under
the group homomorphism induced6 by the inclusion map F(U) ↪→

∐
U3xF(U) is denoted by

fx, i.e JfK = fx.

Remark 2.4. This definition of stalks also holds for presheaves, which leads to the useful tool
of sheafification, i.e. finding sheaf associated to a given presheaf. This technique of sheafification
is very useful but we won’t need it in this report. For more details, see the books by Hirzebruch
[4, §2] and Liu [7, §2.2.1].

Lemma 2.1. Let F be a sheaf of abelian groups on X and f, g ∈ F(X) be such that fx = gx
for every x ∈ X. Then f = g.

Proof. Without loss of generality, we may assume g = 0. Then fx = 0 implies that fx and 0
belong to same equivalence class, i.e. for every x ∈ X there exists an open neighborhood Ux of
x such that ρXUx(f) = 0. As {Ux}x∈X covers X , we have f = 0 by the uniqueness condition
of sheaf.

2.1.2 Sheaf maps

Definition 2.4 (Map of sheaves). Let F and G be sheaves of abelian groups on a topological
space X. A maps of sheaves φ : F → G on X is given by a collection of group homomorphisms
φU : F(U)→ G(U) for any open subset U of X, which commute with the group homomorphisms
ρ for the two sheaves, i.e. for V ⊂ U the following diagram commutes

F(U) G(U)

F(V ) G(V )

φU

ρFUV ρGUV

φV

Example 2.5. The identity map 1F : F → F is always a sheaf map, and the composition of
sheaf maps is a sheaf map.

Example 2.6. As seen above, for the sheaf of functions (or forms) the natural restriction map
is the group homomorphism ρUV for nested open subsets V ⊂ U . Also, from Remark 1.29
we know that the exterior derivative is a local operator, hence it commutes with restriction.
Therefore, d : Ωq → Ωq+1 is a map of sheaves, where Ωq and Ωq+1 are sheaves of smooth q-
forms and q+ 1-forms, respectively, defined on a smooth manifold X for q ≥ 0. In other words,
Remark 1.29 implies that the following diagram commutes for V ⊂ U

Ωq(U) Ωq+1(U)

Ωq(V ) Ωq+1(V )

dU

ρUV ρUV

dV

where by abuse of notation we use the same symbol for restriction maps of both sheaves.

Definition 2.5 (Associated presheaf). Given a sheaf map φ : F → G between two sheaves
of abelian groups on X, one constructs the associated presheaves ker(φ), im(φ), and coker(φ)

5For the definition of direct limit see Appendix B. To get the direct system {F(U), ρUV }, the “reverse
inclusion” is defined to be the order relation for the directed set.

6As defined in the universal property of direct limit, see Theorem B.1.
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which are defined in the obvious way7, i.e. ker(φ)(U) = ker(φU : F(U) → G(U)) with group
homomorphism ρ inherited from F .

Proposition 2.1. Let φ : F → G be a sheaf map between two sheaves of abelian groups on X,
then ker(φ) is a sheaf.

Proof. Let {Uα}α∈A be a collection of open sets ofX, and U = ∪α∈AUα be their union. It suffices
to show that if for all α ∈ A we have fα ∈ ker(φUα) such that ρFUα,Uα∩Uβ (fα) = ρFUβ ,Uα∩Uβ (fβ)

for any α, β ∈ A, then there exists a unique f ∈ ker(φU ) such that ρFUUα(f) = fα for all α ∈ A.

Since F is a sheaf, there exists a unique element f ∈ F(U) such that ρFUUα(f) = fα for all
α ∈ A. We just need to show that f ∈ ker(φU ), i.e. φU (f) = 0 in G(U).

Let gα = ρGUUα(φU (f)), then by the commutativity of φ with ρ, we have that

gα = ρGUUα(φU (f)) = φUα(ρFUUα(f)) = φUα(fα) = 0

since fα ∈ ker(φUα). Now using the uniqueness axiom for the sheaf G we conclude that φU (f) =
0, since ρGUUα(φU (f)) = 0 for all α ∈ A.

Example 2.7. Let X be a smooth manifold and d : Ωq → Ωq+1 be the exterior derivative.
Then ker(d) = Zq is the sheaf of closed q-forms on X.

Remark 2.5. There is an important subtlety here. The associated presheaves im(φ) and
coker(φ) need not be sheaves in general. Also, in general, quotient of sheaves need not be a
sheaf. In order to define the cokernel, image and quotient sheaf one need to use sheafification,
see [5, Definition B.0.26] and [3, pp. 36-37].

Definition 2.6 (Injective map of sheaves). A map of sheaves φ : F → G is called injective if
for every open subset U of X, φU is an injective group homomorphism.

Definition 2.7 (Surjective map of sheaves). A map of sheaves φ : F → G is called surjective if
for every x ∈ X the induced map of stalks8 φx : Fx → Gx is a surjective group homomorphism.

Remark 2.6. In other words, φ is surjective if for every point x ∈ X, every open set U
containing x and every g ∈ G(U), there is an open subset V ⊂ U containing x such that
φV (f) = ρGUV (g) for some f ∈ F(V ).

Proposition 2.2. The sheaf map φ : F → G is injective if and only if φx : Fx → Gx is injective
for every x ∈ X.

Proof. (⇒) This is trivial.
(⇐) Let U be any open subset of X, it suffices to show that ker(φU ) = {0F(U)}. Let

f ∈ F(U) such that φU (f) = 0G(U). Then for every x ∈ U , φx(fx) = JφU (f)K = 0Gx . Since φx
is injective, we have fx = 0Fx for every x ∈ U . By Lemma 2.1 we conclude that f = 0F(U),
hence completing the proof.

Remark 2.7. Analogous statement is not true for the surjective map of sheaves, see [7, Example
2.2.11]

Proposition 2.3. Let φ : F → G be an injective map of sheaves. Then φ is surjective if and
only if φU : F(U)→ G(U) is surjective for all open subsets U ⊂ X.

7Let U be an open subset and f ∈ ker(φU ), then for V ⊂ U we have ρFUV (f) ∈ ker(φV ) since φV ◦ ρFUV =
ρGUV ◦ φU .

8The map of sheaves is a map of direct systems φ : {(F(U), ρFUV )} → {(G(U), ρGUV )}, and the map of stalks
φx : Fx → Gx is the direct limit of the homomorphisms φU .
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Proof. (⇒) Let U be any open subset of X, and g ∈ G(U). We need to show that there exists a
f ∈ F(U) such that φU (f) = g. Since φx is surjective for every x ∈ X, for every gx ∈ Gx there
exists an open neighborhood V of x and f ∈ F(V ) such that φx(fx) = JφV (f)K = gx. Therefore,
we can find an open covering {Uα}α∈A of U such that each Uα is an open neighborhood of x ∈ U
such that φx(fx) = JφUα(fα)K = gx for some fα ∈ F(Uα). In other words, there exist fα ∈ F(Uα)
such that

φUα(fα) = ρGUUα(g) (2.1)

for all α ∈ A. In particular, for fα ∈ F(Uα) and fβ ∈ F(Uβ) we have

φUα∩Uβ (ρFUα,Uα∩Uβ (fα)) = ρGU,Uα∩Uβ (g) and φUα∩Uβ (ρFUβ ,Uα∩Uβ (fβ)) = ρGU,Uα∩Uβ (g)

Since φ is injective, the map φUα∩Uβ : F(Uα ∩ Uβ) → G(Uα ∩ Uβ) is injective for all α, β ∈ A.
Hence we have

ρFUα,Uα∩Uβ (fα) = ρFUβ ,Uα∩Uβ (fβ)

for all α, β ∈ A. Now by the gluing axiom of the sheaf F , there exists a f ∈ F(U) such that
ρFUUα(f) = fα for all α ∈ A. Using this in (2.1) we get

ρGUUα(g) = φUα(ρFUUα(f)) = ρGUUα(φU (f))

for all α ∈ A. By the uniqueness axiom of the sheaf G, we conclude that g = φU (f). Hence
completing the proof.

(⇐) This is trivial.

2.1.3 Exact sequence of sheaves

Definition 2.8 (Exact sequence of sheaves). A sequence of sheaves F ′ F F ′′φ ψ
is

said to be exact if F ′x Fx F ′′x
φx ψx

is an exact sequence of abelian groups for every

x ∈ X.

Example 2.8. By Theorem 1.3, Theorem 1.4 and Proposition 1.2 we know that for every point
x in a smooth manifold X there exists an open subset U containing x such that

0 R(U) Ω0(U) Ω1(U) Ω2(U) · · ·dU dU dU

is an exact sequence of abelian groups. In other words, for all x ∈ X we have a long exact
sequence at the level of stalks

0 Rx Ω0
x Ω1

x Ω2
x · · ·dx dx dx

Therefore, by Poincaré lemma, the sequence of sheaves of differential forms on a smooth manifold

0 R Ω0 Ω1 Ω2 · · ·d d d

is exact.

Lemma 2.2. If 0 F ′ F F ′′φ ψ
is an exact sequence of sheaves over X, then

the induced sequence of abelian groups for any open set U ⊂ X

0 F ′(U) F(U) F ′′(U)
φU ψU

is also exact.

27



Proof. For all x ∈ X we have an exact sequence of stalks

0 F ′x Fx F ′′x
φx ψx

Using Proposition 2.2 we conclude that φU is injective. Hence we just need to show that
im(φU ) = ker(ψU ).

ker(ψU ) ⊆ im(φU ) Let f ∈ ker(ψU ), then for all x ∈ U we have fx ∈ ker(ψx) since ψx(fx) =

JψU (f)K. Since the sequence of stalks is exact at Fx, fx = φx(gx) for some gx ∈ F ′x. Therefore,
we can find an open covering {Uα}α∈A of U such that each Uα is an open neighborhood of
x ∈ U such that φx(gx) = JφUα(gα)K = fx for some gα ∈ F ′(Uα). In other words, there exist
gα ∈ F ′(Uα) such that

φUα(gα) = ρFUUα(f) (2.2)

for all α ∈ A. In particular, for gα ∈ F ′(Uα) and gβ ∈ F ′(Uβ) we have

φUα∩Uβ (ρF
′

Uα,Uα∩Uβ (gα)) = ρFU,Uα∩Uβ (f) and φUα∩Uβ (ρF
′

Uβ ,Uα∩Uβ (gβ)) = ρFU,Uα∩Uβ (f)

Since φ is injective, the map φUα∩Uβ : F(Uα ∩ Uβ) → G(Uα ∩ Uβ) is injective for all α, β ∈ A.
Hence we have

ρF
′

Uα,Uα∩Uβ (gα) = ρF
′

Uβ ,Uα∩Uβ (gβ)

for all α, β ∈ A. Now by the gluing axiom of the sheaf F ′, there exists a g ∈ F ′(U) such that
ρF
′

UUα
(g) = gα for all α ∈ A. Using this in (2.2) we get

ρFUUα(f) = φUα(ρF
′

UUα(g)) = ρFUUα(φU (g))

for all α ∈ A. By the uniqueness axiom of the sheaf F , we conclude that f = φU (g).

im(φU ) ⊆ ker(ψU ) Let f ∈ im(φU ), i.e. there exists g ∈ F ′(U) such that φU (g) = f . Then

for all x ∈ U we have fx ∈ imφx since φx(gx) = JψU (f)K = fx. Since the sequence of stalks is
exact at Fx, ψx(fx) = 0F ′′x for all x ∈ X. Since ψx(fx) = JψU (f)K, by Lemma 2.1 we conclude
that ψU (f) = 0.

Remark 2.8. In general, given a short exact sequence of sheaves

0 F ′ F F ′′ 0
φ ψ

Then the induced sequence of abelian groups

0 F ′(X) F(X) F ′′(X) 0
φX ψX

is always exact at F ′(X) and F(X) but not necessarily at F ′′(X), see [20, §II.3] and [16, §4.1].

2.2 Čech cohomology of sheaves

Definition 2.9 (Čech cochain). Let F be sheaf of abelian groups on a topologial space X. Let
U = {Ui}i∈I be an open cover of X, and fix an integer k ≥ 0. A Čech k-cochain for the sheaf
F over the open cover U is an element of

∏
(i0,i1,...,ik)F(Ui0 ∩ Ui1 ∩ · · · ∩ Uik) where Cartesian

product is take over all collections of k + 1 indices (i0, . . . , ik) from I.

Remark 2.9. To simplify the notation, we will write

Ui0 ∩ Ui1 ∩ · · · ∩ Uik := Ui0,i1,...,ik and F(Ui0,i1,...,ik) = {fi0,i1,...,ik}

Hence a Čech k-cochain is a tuple of the form (fi0,i1,...,ik). The abelian group of Čech k-cochains

for F over U is denoted by Č
k
(U ,F); thus

Č
k
(U ,F) =

∏
(i0,i1,...,ik)

F(Ui0,i1,...,ik)

28



Definition 2.10 (Coboundary operator). The coboundary operator is defined as

δ : Č
k
(U ,F)→ Č

k+1
(U ,F)

(fi0,i1,...,ik) 7→ (gi0,i1,...,ik+1
)

where

gi0,i1,...,ik+1
=

k+1∑
`=0

(−1)`ρ(fi0,i1,...,î`,...,ik+1
)

and ρ : F(Ui0,i1,...,î`,...,ik+1
) → F(Ui0,i1,...,ik+1

) is the group homomorphism for the sheaf F
corresponding to the nested open subsets Ui0,i1,...,ik+1

⊂ Ui0,i1,...,î`,...,ik+1
.

Remark 2.10. To simplify the notations above, we wrote

Ui0,i1,...,i`−1,i`+1,...,ik := Ui0,i1,...,î`,...,ik and F(Ui0,i1,...,î`,...,ik) = {fi0,i1,...,î`,...,ik}

Definition 2.11 (Čech cocycle). A Čech k-cochain f = (fi0,i1,...,ik) with δ(f) = 0 is called Čech
k-cocycle.

Remark 2.11. The abelian group of k-cocycles is denoted by Žk(U ,F), i.e. kernel of δ at the
kth level.

Proposition 2.4. Let f = (fi0,...,ik) ∈ Žk(U ,F), then

1. fi0,...,in = 0 if any two indices are equal.

2. fσ(i0),σ(i1),...,σ(ik) = sgn(σ)fi0,i1,...,ik if σ is a permutation of {i0, . . . , ik}

Proof. We will check just for the simplest case, k = 1. Let f = (fi0i1) and δ(f) = (gi0i1i2) = 0.
For any i ∈ I we have

0 = gi,i,i = ρUi,iUi,i,i(fi,i)− ρUi,iUi,i,i(fi,i) + ρUi,iUi,i,i(fi,i)

This implies that fi,i = 0 by the uniqueness axiom of sheaf. On the other hand, applied to
(i, j, i) instead, it says

0 = gi,j,i = ρUj,iUi,j,i(fj,i)− ρUi,iUi,j,i(fi,i) + ρUi,jUi,j,i(fi,j)

This implies that
ρUj,iUi,j,i(fj,i) + ρUi,jUi,j,i(fi,j) = 0 for all i ∈ I

But the {Ui,j,i}i∈I is an open cover of Ui,j , and hence indeed fi,j = −fi,j due to the uniqueness
axiom of the sheaf F .

Definition 2.12 (Čech coboundary). A Čech k-cochain f = (fi0,i1,...,ik) which is the image
of δ, i.e. there exists (k − 1)-cochain g = (gi0,i1,...,ik−1

) such that δ(g) = f , is called Čech
k-coboundary.

Remark 2.12. The abelian group of k-coboundaries is denoted by B̌k(U ,F), i.e. image of δ
at the (k − 1)th level. Also, we define B̌0(U ,F) = 0 for any sheaf F and open cover U .

Lemma 2.3. δ ◦ δ = 0
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Proof. Let {Uα}α∈A be the open cover. We will check it just for the simplest case

Č
0
(U ,F) Č

1
(U ,F) Č

2
(U ,F)

(fα) (gαβ) (hαβγ)

δ δ

By the definition of coboundary operator, for i0 = α and i1 = β, we have

gαβ = (−1)0ρUβUαβ (fβ) + (−1)1ρUαUαβ (fα)

= ρUβUαβ (fβ)− ρUαUαβ (fα)
(2.3)

Also for i0 = α, i1 = β and i2 = γ, we have

hαβγ = (−1)0ρUβγUαβγ (gβγ) + (−1)1ρUαγUαβγ (gαγ) + (−1)2ρUαβUαβγ (gαβ)

= ρUβγUαβγ (gβγ)− ρUαγUαβγ (gαγ) + ρUαβUαβγ (gαβ)
(2.4)

Using (2.3) in (2.4) we get

hαβγ = ρUβγUαβγ
(
ρUγUβγ (fγ)− ρUβUβγ (fβ)

)
− ρUαγUαβγ

(
ρUγUαγ (fγ)− ρUαUαγ (fα)

)
+ ρUαβUαβγ

(
ρUβUαβ (fβ)− ρUαUαβ (fα)

)
= ρUγUαβγ (fγ)− ρUβUαβγ (fβ)− ρUγUαβγ (fγ) + ρUαUαβγ (fα) + ρUβUαβγ (fβ)− ρUαUαβγ (fα)

= 0

Hence completing the verification.

Proposition 2.5. Every k-coboundary is a k-cocycle.

Proof. Let f = (fi0,i1,...,ik) ∈ B̌k(U ,F) such that f = δ(g) for some g = (gi0,i1,...,ik−1
) ∈

Č
k−1

(U ,F). From Lemma 2.3 we know that δ(f) = δ(δ(g)) = 0 hence f ∈ Žk(U ,F) for all
k ≥ 1. For k = 0, the statement is trivially true.

Definition 2.13 (Čech cohomology with respect to a cover). The kth Čech cohomology group
of F with respect to the open cover U is the quotient group

Ȟ
k
(U ,F) :=

Žk(U ,F)

B̌k(U ,F)

Remark 2.13. Hence, the Čech cohomology with respect to a cover measures the extent to
which cocycles are not coboundaries for a given open cover.

Lemma 2.4. For any sheaf F and open covering U of X, we have Ȟ
0
(U ,F) ∼= F(X).

Proof. Since B̌0(U ,F) = 0, we just need to show that Ž0(U ,F) ∼= F(X). Consider the following
group homomorphism

ψ : F(X)→ Č
0
(U ,F)

f 7→ (fi) = (ρXUi(f))

Then δ((fi)) = (gij), where gij = ρUjUij (fj) − ρUiUij (fi); this is zero for every i and j since

ρUiUij (ρXUi(f)) = ρUjUij (ρXUj (f)). Hence ψ maps F(X) to Ž0(U ,F). This map is injective
and surjective by the uniqueness and gluing axioms of the sheaf F , respectively.

Definition 2.14 (Refining map). Let U = {Ui}i∈I and V = {Vj}j∈J be two open coverings of
X such that V is a refinement9 of U . Then the map r : J → I such that Vj ⊂ Ur(j) for every
j ∈ J , is called the refining map for the coverings.

9For its definition see Appendix A.
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Remark 2.14. The refining map is not unique. Also, the set of all open covers is a directed
set10 where the ordering is done via refinement, i.e. U < V if V is a refinement of U . The upper
bound of U and V is given by W = {U ∩ V |U ∈ U , V ∈ V} [14, §73, Example 2].

Lemma 2.5. Let U = {Ui}i∈I and V = {Vj}j∈J be two open coverings of X such that V is a
refinement of U along with the refining map r : J → I. The induced map at the level of cochains
is given by

r̃ : Č
k
(U ,F)→ Č

k
(V,F)

(fi0,...,ik) 7→ (gj0,...,jk)

where
gj0,...,jk = ρ(fr(j0),...,r(jk))

and ρ : F(Ur(j0),...,r(jk))→ F(Vj0,...,jk) is the group homomorphism for the sheaf F corresponding
to the nested open subsets Vj0,...,jk ⊂ Ur(j0),...,r(jk). This map sends cocycles to cocycles and
coboundaries to coboundaries.

Proof. We will check it just for the simplest case. We have the map

r̃ : Č
0
(U ,F)→ Č

0
(V,F)

(fi0) 7→
(
ρUr(j0)Vj0 (fr(j0))

)
Let δ((fi0)) = 0, then ρUi1Ui0i1 (fi1) = ρUi0Ui0i1 (fi0) for every pair of indices i0, i1 ∈ I. Next we

compute δ
((
ρUr(j0)Vj0 (fr(j0))

))
= (gj0,j1)

gj0,j1 = ρVj1Vj0j1

(
ρUr(j1)Vj1 (fr(j1))

)
− ρVj0Vj0j1

(
ρUr(j0)Vj0 (fr(j0))

)
= ρUr(j1)Vj0j1 (fr(j1))− ρUr(j0)Vj0j1 (fr(j0))

But, we have
ρUr(j1)Ur(j0)r(j1)(fr(j1)) = ρUr(j0)Ur(j0)r(j1)(fr(j0))

and Vj0,j1 ⊂ Ur(j0)r(j1). Therefore gj0,j1 = 0, and r̃ maps cocycle to cocycle. Since 0 is the only
coboundary in this case, it also maps coboundary to coboundary.

Lemma 2.6. Let U = {Ui}i∈I and V = {Vj}j∈J be two open coverings of X such that V is
a refinement of U along with the refining map r : J → I. The induced map at the level of
cohomology11 is given by

Hr : Ȟ
k
(U ,F)→ Ȟ

k
(V,F)

J(fi0,...,ik)K 7→ J(gj0,...,jk)K

for (fi0,...,ik) ∈ Žk(U ,F), where

gj0,...,jk = ρ(fr(j0),...,r(jk))

and ρ : F(Ur(j0),...,r(jk))→ F(Vj0,...,jk) is the group homomorphism for the sheaf F corresponding
to the nested open subsets Vj0,...,jk ⊂ Ur(j0),...,r(jk). This map is independent of the refining map
r and depends only on the two coverings U and V.

10For its definition see Appendix B.
11This map is well defined by the previous lemma.
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Proof. Suppose the r, r′ : J → I are two distinct refining maps for the refinement V of U .
Claim: Hr = Hr′

If k = 0, then Ȟ
0
(U ,F) ∼= F(X) ∼= Ȟ

0
(V,F). Therefore Hr = 1F(X) = Hr′ . Let’s assume

that k ≥ 1, and fix a cohomology class f ∈ Ȟ
k
(U ,F) represented by (fi0,i1,...,ik) ∈ Žk(U ,F), i.e.

f = J(fi0,i1,...,ik)K. Then we have

Hr(f) = J(gj0,j1,...,jk)K and Hr′(f) = J(g′j0,j1,...,jk)K

where
gj0,j1,...,jk = ρα(fr(j0),...,r(jk)) and g′j0,j1,...,jk = ρβ(fr′(j0),...,r′(jk))

where ρα and ρβ are the appropriate group homomorphism for the sheaf F . To prove our claim,
it suffices to show that (gj0,j1,...,jk − g′j0,j1,...,jk) ∈ B̌k(V,F).

Claim: δ(h) = (g′j0,j1,...,jk − gj0,j1,...,jk) where h = (hj0,j1,...,jk−1
) ∈ Č

k−1
(V,F) is such that12

hj0,j1,...,jk−1
=

k−1∑
`=0

(−1)`ρ
(
fr(j0),...,r(j`),r′(j`),...,r′(jk−1)

)
The claim follows from the fact that (fi0,i1,...,ik) ∈ Žk(U ,F) for all indices (i0, . . . , ik).

We will check the claim just for the simplest case, when k = 1. In this case we have
f = J(fi0,i1)K, since (fi0,i1) ∈ Ž1(U ,F) we have δ((fi0,i1)) = 0, that is

ρUi1,i2Ui0i1i2 (fi1,i2)− ρUi0,i2Ui0i1i2 (fi0,i2) + ρUi0,i1Ui0i1i2 (fi0,i1) = 0 (2.5)

for any triplet of indices i0, i1, i2 ∈ I. Also,

Hr(f) = J(gj0,j1)K and Hr′(f) = J(g′j0,j1)K

where

gj0,j1 = ρUr(j0),r(j1)Vj0,j1 (fr(j0),r(j1)) and g′j0,j1 = ρUr′(j0),r′(j1)Vj0,j1
(fr′(j0),r′(j1))

From this we get

g′j0,j1 − gj0,j1 = ρUr′(j0),r′(j1)Vj0,j1
(fr′(j0),r′(j1))− ρUr(j0),r(j1)Vj0,j1 (fr(j0),r(j1)) (2.6)

We have h = (hj0) =
(
ρUr(j0)r′(j0)Vj0

(
fr(j0),r′(j0)

))
. Let δ(h) = (h′j0j1), then

h′j0j1 = ρVj1Vj0j1 (hj1)− ρVj0Vj0j1 (hj0)

= ρVj1Vj0j1

(
ρUr(j1)r′(j1)Vj1

(
fr(j1),r′(j1)

))
− ρVj0Vj0j1

(
ρUr(j0)r′(j0)Vj0

(
fr(j0),r′(j0)

))
= ρUr(j1)r′(j1)Vj0j1

(
fr(j1),r′(j1)

)
− ρUr(j0)r′(j0)Vj0j1

(
fr(j0),r′(j0)

) (2.7)

To simplify the notations, we rename indices as r(j0) = i0, r(j1) = i1, r
′(j0) = i2 and

r′(j1) = i3. Since Vj0j1 ⊂ Ui0i1i2 and Vj0,j1 ⊂ Ui1,i2,i3 from (2.5) we get

ρUi1i2Vj0j1 (fi1,i2)− ρUi0i2Vj0j1 (fi1,i2) + ρUi0i1Vj0j1 (fi0,i1) = 0

ρUi2i3Vj0j1 (fi2,i3)− ρUi1i3Vj0j1 (fi1,i3) + ρUi1i2Vj0j1 (fi1,i2) = 0
(2.8)

12For a more general argument see [19, §5.33, equation (11)] and [4, Lemma 2.6.1].
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We will use (2.8) to convert (2.7) to (2.6). Hence we have

h′j0j1 = ρUi1i3Vj0j1 (fi1,i3)− ρUi0i2Vj0j1 (fi0,i2)

=
(
ρUi1i2Vj0j1 (fi1,i2)− ρUi0i2Vj0j1 (fi0,i2) + ρUi0i1Vj0j1 (fi0,i1)

)
−
(
ρUi2i3Vj0j1 (fi2,i3)− ρUi1i3Vj0j1 (fi1,i3) + ρUi1i2Vj0j1 (fi1,i2)

)
+ ρUi2,i3Vj0,j1 (fi2,i3)− ρUi0,i1Vj0,j1 (fi0,i1)

= ρUi2,i3Vj0,j1 (fi2,i3)− ρUi0,i1Vj0,j1 (fi0,i1)

= g′j0,j1 − gj0,j1

Therefore these two cocycles differ by a coboundary. Hence completing the proof.

Remark 2.15. We will therefore denote this refining map on the cohomology level by HUV for

U < V. Hence, {Ȟk
(U ,F), HUV} is a direct system13. We have HUU = 1

Ȟ
k
(U ,F)

since we can

choose refining map r to be identity, and HUW = HVW ◦HUV for U < V <W since composition
of two refining maps is again a refining map.

Definition 2.15 (Čech cohomology). Let F be a sheaf of abelian groups on X and k ≥ 0 be
an integer. Then the kth Čech cohomology group of F on X is the group

Ȟ
k
(X,F) := lim−→

U
Ȟ
k
(U ,F)

where the direct limit14 is indexed over all the open covers of X with order relation induced by
refinement, i.e. U < V if V is a refinement of U .

Proposition 2.6. For any sheaf F of X, we have Ȟ
0
(X,F) ∼= F(X).

Proof. By Lemma 2.4 we know that at the Ȟ
0

level all the groups are isomorphic to F(X).
Since all the maps HUV are compatible isomorphisms, using Proposition B.1 we conclude that
the direct limit is also isomorphic to F(X).

Remark 2.16. What we have defined here is not the true definition of either Čech or sheaf
cohomology [9, §IX.3] [3, pp. 38-40]. Čech cohomology can be defined either using the concept
of nerve [14, §73][10, §3.4(a)], or presheaf15 [1, §10]. One can prove equivalence of both these
definitions using the constant presheaf G [19, §5.33]. Also note that Čech cohomology of the
cover U is a purely combinatorial object [1, Theorem 8.9].

Sheaf cohomology can be defined either using resolution of sheaf [20, Definition 3.10] [16,
Definition 4.2.11] or axiomatically [19, §5.18]. The definition of Čech cohomology agrees with
that of sheaf cohomology for smooth manifolds since Čech cohomology is isomorphic to sheaf
cohomology for any sheaf on a paracompact Hausdorff space [19, §5.33]. This is all we need to
obtain the desired proof, hence our definition of Čech cohomology of sheaves serves the purpose.

Remark 2.17. Another way of defining Čech cohomology groups with coefficients in sheaves is

via sheafification. First step is to define the cohomology groups Ȟ
k
(U ,F) on an open covering

U = {Ui}i∈I of X with coefficients in a presheaf F . Then the cohomology groups Ȟ
k
(U , F̃) of

U with coefficients in a sheaf F̃ are defined to be the cohomology groups of U with coefficients

in the canonical presheaf F of F̃ . Finally, the cohomology groups Ȟ
k
(X,F) and Ȟ

k
(X, F̃) are

defined as the direct limit of all groups Ȟ
k
(U ,F) and Ȟ

k
(U , F̃), respectively, as U runs through

all open coverings of X (directed by refinement) [4, §2.6].
13For its definition see Appendix B.
14For the definition of direct limit see Appendix B. To get the direct system {Ȟk

(U ,F), HUV}, the “refinement”
is defined to be the order relation for the directed set.

15For a discussion on the motivation behind this definition see [6, §2] and [2, §10.2].
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2.2.1 Induced map of cohomology

Definition 2.16 (Induced map of cochains). If φ : F → G is a map of sheaves on X, then the
induced map on cochains is defined as

φ∗ : Č
k
(U ,F)→ Č

k
(U ,G)

(fi0,i1,...,ik) 7→ (φUi0,...,ik (fi0,i1,...,ik))

for any open covering U of X.

Proposition 2.7. The coboundary operator commutes with the induced map of cochains. That
is, the following diagram commutes

Č
k
(U ,F) Č

k+1
(U ,F)

Č
k
(U ,G) Č

k+1
(U ,G)

δ

φ∗ φ∗

δ

Proof. The coboundary operator δ acts on each element via the group homomorphism ρ of the
sheaf, and the induced map φ∗ acts on each element via the group homomorphism φUi0,...,ik of
the sheaf map. By Definition 2.4, we know that the group homomorphism of the sheaf and the
group homomorphism of the sheaf map commute.

Corollary 2.1. The induced map of cochains sends cocycles to cocycles, and coboundaries to
cobundaries.

Proof. Let f be a cocycle, i.e. δ(f) = 0. From the previous proposition we know that δ(φ∗(f)) =
φ∗(δ(f)) = 0. Hence φ∗(f) is also a cocycle. Next, let g be a coboundary, i.e. g = δ(h). From
the previous proposition we know that φ∗(g) = φ∗(δ(h)) = δ(φ∗(h)). Hence φ∗(g) is also a
coboundary.

Proposition 2.8. If 0 F ′ F F ′′φ ψ
is an exact sequence of sheaves over X,

then the induced sequence of cochains for any open cover U of X

0 Č
k
(U ,F ′) Č

k
(U ,F) Č

k
(U ,F ′′)φ∗ ψ∗

is also exact.

Proof. We can re-write the desired exact sequence of abelian groups as

0
∏

(i0,i1,...,ik)

F ′(Ui0,i1,...,ik)
∏

(i0,i1,...,ik)

F (Ui0,i1,...,ik)
∏

(i0,i1,...,ik)

F ′′(Ui0,i1,...,ik)
φ∗ ψ∗

The exactness of the above sequence follows from Lemma 2.2, since

0 F ′(U) F(U) F ′′(U)
φU ψU

is an exact sequence of abelian groups for all open sets U of X.

Definition 2.17 (Induced map of cohomology). Let φ : F → G be a map of sheaves on X,
then the induced16 map of cohomology is defined as

Φ : Ȟ
k
(U ,F)→ Ȟ

k
(U ,G)

JfK 7→ Jφ∗(f)K

for f ∈ Žk(U ,F).
16It’s well defined because of Corollary 2.1.
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Lemma 2.7. The refining maps at the level of cohomology commute with any induced map of
cohomology. That is, the following diagram commutes

Ȟ
k
(U ,F) Ȟ

k
(U ,G)

Ȟ
k
(V,F) Ȟ

k
(V,G)

Φ

HUV HUV

Φ

Proof. The refining map HUV acts on each element via the group homomorphism ρ of the sheaf,
and the induced map Φ acts on each element via the group homomorphism φUi0,...,ik of the sheaf
map. By Definition 2.4, we know that the group homomorphism of the sheaf and the group
homomorphism of the sheaf map commute.

Remark 2.18. This lemma implies that Φ is a map of direct systems {Ȟk
(U ,F), HFUV} and

{Ȟk
(U ,G), HGUV}. Hence φ : F → G in fact induces the homomorphism at the level of Čech

cohomology of X

Φ→ : Ȟ
k
(X,F)→ Ȟ

k
(X,G)

2.2.2 Long exact sequence of cohomology

In this subsection, proof of the fact that a short exact sequence of sheaves on paracompact
Hausdorff space induces a long exact sequence of Čech cohomology will be presented following
Serre [17, §I.3] and Warner [19, §5.33].

Theorem 2.1. Let X be a paracompact Hausdorff space and

0 F ′ F F ′′ 0
φ ψ

be a short exact sequence of sheaves on X. Then there are connecting homomorphisms ∆ :

Ȟ
k
(X,F ′′) → Ȟ

k+1
(X,F ′) for every k ≥ 0 such that we have a long exact sequence of Čech

cohomology groups

· · · Ȟ
k
(X,F) Ȟ

k
(X,F ′′) Ȟ

k+1
(X,F ′) Ȟ

k+1
(X,F) · · ·

Φ→ Ψ→ ∆ Φ→ Ψ→

Proof. Given to us is a short exact sequence of sheaves

0 F ′ F F ′′ 0
φ ψ

Then by Proposition 2.8, for any open cover U of X,

0 Č
k
(U ,F ′) Č

k
(U ,F) Č

k
(U ,F ′′)φ∗ ψ∗

is an exact sequence. However, if we replace Č
k
(U ,F ′′) by imψ∗, we get a short exact sequence

of abelian groups:

0 Č
k
(U ,F ′) Č

k
(U ,F) imψ∗ 0

φ∗ ψ∗

To explicitly show the dependence of imψ∗ on U and k, let’s write Ik(U ,F ′′) = imψ∗. Hence
we have the following short exact sequence of cochain complexes17

0 Č
k
(U ,F ′) Č

k
(U ,F) Ik(U ,F ′′) 0

φ∗ ψ∗

17All these are chain complexes since δ ◦ δ = 0.
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Then by the zig-zag lemma18 we get a long exact sequence in cohomology with respect to open
cover U

· · · Ȟ
k
(U ,F) Ik(U ,F ′′) Ȟ

k+1
(U ,F ′) Ȟ

k+1
(U ,F) · · ·Φ Ψ ∂ Φ Ψ

where ∂ is the connecting homomorphism induced by the coboundary operator δ and

Ik(U ,F ′′) =
ker{δ : Ik(U ,F ′′)→ Ik+1(U ,F ′′)}
im{δ : Ik−1(U ,F ′′)→ Ik(U ,F ′′)}

Since direct limit is an exact functor19, we get the following long exact sequence in Čech coho-
mology

· · · Ȟ
k
(X,F) Ik(X,F ′′) Ȟ

k+1
(X,F ′) Ȟ

k+1
(X,F) · · ·

Φ→ Ψ→ ∂ Φ→ Ψ→

where we have20

Ik(X,F ′′) = lim−→
U
Ik(U ,F ′′)

Now to obtain the desired long exact sequence of Čech cohomology, it’s sufficient to show that

Ik(X,F ′′) ∼= Ȟ
k
(X,F ′′) . Then the map ∆ : Ȟ

k
(X,F ′′) → Ȟ

k+1
(X,F ′) can be defined as the

composition of the inverse of this isomorphism with ∂ : Ik(X,F ′′)→ Ȟ
k+1

(X,F ′).
We observe that the inclusion map Ik(U ,F ′′) ↪→ Č

k
(U ,F ′′) induces a group homomorphism

at the level of cohomology with respect to the cover (quotient group), which on passing through
the limit induces a map at the level of Čech cohomology. Consider the quotient group

Qk(U ,F ′′) :=
Č
k
(U ,F ′′)

Ik(U ,F ′′)

Then we have the following short exact sequence of cochain complexes

0 Ik(U ,F ′′) Č
k
(U ,F ′′) Qk(U ,F ′′) 0

Then by the zig-zag lemma we get a long exact sequence in cohomology with respect to open
cover U

· · · Ȟ
k
(U ,F ′′) Qk(U ,F ′′) Ik+1(U ,F ′′) Ȟ

k+1
(U ,F ′′) · · ·∂

where ∂ is the connecting homomorphism induced by the coboundary operator δ and

Qk(U ,F ′′) =
ker{δ : Qk(U ,F ′′)→ Qk+1(U ,F ′′)}
im{δ : Qk−1(U ,F ′′)→ Qk(U ,F ′′)}

Since direct limit is an exact functor, we get the following long exact sequence in Čech coho-
mology

· · · Ȟ
k
(X,F ′′) Qk(X,F ′′) Ik+1(X,F ′′) Ȟ

k+1
(X,F ′′) · · ·∂

18For proof see [14, Lemma 24.1] and [18, Theorem 25.6].
19For proof see Theorem B.2.
20One needs to repeat the calculations done in Lemma 2.6 to conclude that {Ik(U ,F ′′), HUV} is a direct

system. Here also the indexing set is directed by refinement, i.e. U < V is V is a refinement of U .
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where we have
Qk(X,F ′′) = lim−→

U
Qk(U ,F ′′)

Now to obtain the desired isomorphism, it’s sufficient to show that Qk(X,F ′′) = 0 . To prove

this, we will use the fact that X is a paracompact Hausdorff space and ψ is surjective.
Claim: Let U = {Ui}i∈A be an open cover of X, and f = (fi0,...,ik) be an element of

Č
k
(U ,F ′′). Then there exists a refinement V = {Vj}j∈B along with a refining map r : B → A

such that Vj ⊂ Ur(j) and r̃(f) ∈ Ik(V,F ′′), where r̃ is the map defined in Lemma 2.5. Therefore

Qk(X,F ′′) = 0.
Since X is paracompact, without loss of generality, assume U to be locally finite. Also, by

shrinking lemma (Theorem A.1) there exists a locally finite open covering W = {Wi}i∈A of X
such that Wi ⊂ Ui for each i ∈ A. For every x ∈ X, choose an open neighborhood Vx of x such
that

1. If x ∈ Ui then Vx ⊂ Ui for all such i’s. If x ∈Wi then Vx ⊂Wi for all such i’s.

2. If Vx ∩Wi 6= ∅ then Vx ⊂ Ui for all such i’s.

3. If x ∈ Ui0,i1,...,ik then there exists a h ∈ F(Vx) such that

ψVx(h) = ρF
′′

Ui0,...,ik ,Vx
(fi0,...,ik)

where by the first condition Vx ⊂ Ui0,...,ik .

The first condition can be satisfied because U and W are point finite21. Given the first
condition, the second condition will be satisfied because Wi ⊂ Ui. The third condition will
be satisfied because U is point finite and ψ is a surjective map of sheaves, i.e. there are
only finitely many Ui0,...,ik which contain x and for every open set Ui0,...,ik containing x and
every fi0,...,ik ∈ F ′′(Ui0,...,ik), there is an open subset Vx ⊂ Ui0,...,ik containing x such that
ψVx(h) = ρF

′′
Ui0,...,ik ,Vx

(fi0,...,ik) for some h ∈ F(Vx) (Remark 2.6).

Choose a map r : X → A such that x ∈ Wr(x). Then by the first condition, Vx ⊂ Wr(x) ⊂
Ur(x) and V = {Vx}x∈X is a refinement of U . Now consider the map

r̃ : Č
k
(U ,F ′′)→ Č

k
(V,F ′′)

f = (fi0,...,ik) 7→ g = (gx0,...,xk)

where
gx0,...,xk = ρ(fr(x0),...,r(xk))

and ρ : F ′′(Ur(x0),...,r(xk)) → F ′′(Vx0,...,xk) is the group homomorphism for the sheaf F ′′ cor-
responding to the nested open subsets Vx0,...,xk ⊂ Ur(x0),...,r(xk). It remains to show that

r̃(f) ∈ Ik(V,F ′′) = ψ∗(Č
k
(V,F ′′)), i.e. there exists h ∈ F(Vx0,x1,...,xk) such that

ρ(fr(x0),...,r(xk)) = ψVx0,x1,...,xk (h) (2.9)

If Vx0,...,xk = ∅ then there is nothing to prove. If not, then we have Vx0 ∩ Vx` 6= ∅ for all
0 ≤ ` ≤ k. Since Vx` ⊂ Wr(x`) we have Vx0 ∩Wr(x`) 6= ∅ for all 0 ≤ ` ≤ k, then by the second
condition we have Vx0 ⊂ Ur(x`) for all 0 ≤ ` ≤ k. Hence, x0 ∈ Ur(x0),...,r(xk) and we can use the
third condition to conclude that there exists h′ ∈ F(Vx0) such that

ψVx0 (h′) = ρF
′′

Ur(x0),...,r(xk),Vx0
(fr(x0),...,r(xk))

21An open cover U = {Ui}i∈A of X is point finite if each point of X is contained in Ui for only finitely many
i ∈ A. Every locally finite cover is point finite, but the converse is not true. For example, {1/n}n∈N is a point
finite cover of R, but is not locally finite at 0.

37



Now let h = ρF
′′

Vx0 ,Vx0,x1,...,xk
(h′) and use the fact that ψ commutes with ρ to get (2.9). Hence

completing the proof.

Remark 2.19. By Theorem XII we know that manifolds are paracompact. Hence the above
theorem can be applied to the sheaf of differential forms. In particular, by Example 2.7 and
Example 2.8, we have the short exact sequence of sheaves on a smooth manifold M

0 Zq Ωq Zq+1 0d

This induces the following long exact sequence

· · · Ȟ
k
(M,Ωq) Ȟ

k
(M,Zq+1) Ȟ

k+1
(M,Zq) Ȟ

k+1
(M,Ωq) · · ·∆

2.2.3 Fine sheaves

In this subsection, the condition under which Ȟ
k
(X,F) vanishes for all k ≥ 1 will be discussed

following Hirzebruch [4, §2.11] and Warner [19, §5.10, 5.33].

Definition 2.18 (Sheaf partition of unity). Let F be a sheaf of abelian groups over a para-
compact Hausdorff space X. Given a locally finite open cover U = {Ui}i∈I of X, the partition
of unity of F subordinate to the cover U is a family of sheaf maps {ηi : F → F} such that

1. supp(ηi) ⊂ Ui for each Ui

2.
∑

i∈I ηi = 1F (the sum can be formed because U is locally finite)

where supp(ηi) is the closure of the set of those x ∈ X for which (ηi)x : Fx → Fx is not a zero
map.

Definition 2.19 (Fine sheaf). A sheaf of abelian groups F over a paracompact Hausdorff space
X is fine if for any locally finite open cover U = {Ui}i∈I of X there exists a partition of unity
of F subordinate to the covering U .

Example 2.9. Since the multiplication by a continuous or differentiable globally defined func-
tion defines a sheaf map in a natural way. From Theorem A.2 we conclude that the sheaf of
continuous functions on a paracompact Hausdorff space is a fine sheaf. Also, by Theorem XIII,
the sheaf Ωq of smooth q-forms on a smooth manifold M is a fine sheaf [20, Example II.3.4].

Theorem 2.2. Let F be a fine sheaf over a paracompact Hausdorff space X. Then Ȟ
k
(X,F)

vanishes for k ≥ 1.

Proof. Since X is paracompact, every open cover of X has a locally finite refinement, it suffices

to prove that Ȟ
k
(U ,F) = 0 for all k ≥ 1 if U = {Ui}i∈I is any locally finite open cover of X.

For k ≥ 1, we define the homomorphism

λk : Č
k
(U ,F)→ Č

k−1
(U ,F)

(fi0,i1,...,ik) 7→ (hi0,i1,...,ik−1
)

where
hi0,i1,...,ik−1

=
∑
i∈I

ηi
(
fi,i0,...,ik−1

)
and {ηi : F → F}i∈I is a partition of unity of F subordinate to the covering U . Also, let

δk : Č
k
(U ,F) → Č

k+1
(U ,F) be the coboundary operator as in Definition 2.10. Then from

Proposition 2.4 it follows that for f = (fi0,...,ik) ∈ Žk(U ,F) we have

δk−1 (λk(f)) = f for k ≥ 1

Therefore, f ∈ B̌k(U ,F) and Ȟ
k
(U ,F) = 0 for all k ≥ 1.
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We will check the claim just for the simplest case, when k = 1. For f = (fi0i1) ∈ Ž1(U ,F)
and δ(f) = (gi0i1i2) = 0 we have [3, pp. 42]

δ0 (λ1 ((fi0i1))) = δ0

((∑
i∈I

ηi(fii0)

))

=

(
ρUi1Ui0i1

(∑
i∈I

ηi (fii1)

)
− ρUi0Ui0i1

(∑
i∈I

ηi (fii0)

))

=

(∑
i∈I

ηi

(
ρUii1Uii1i0 (fii1)

)
−
∑
i∈I

ηi

(
ρUii0Uii1i0 (fii0)

))

=

(∑
i∈I

ηi

(
ρUii1Uii1i0 (fii1)− ρUii0Uii1i0 (fii0)

))

=

(∑
i∈I

ηi

(
ρUi1i0Uii1i0 (fi0i1)

))

=

(
ρUi1i0Ui1i0

(∑
i∈I

ηi(fi0i1)

))
=(fi0i1)

since sheaf map ηi commutes with ρ, ρUU is identity, {ηi} is partition of unity and by
Proposition 2.4 we have

0 = gii1i0 = ρUi1i0Uii1i0 (fi1i0)− ρUii0Uii1i0 (fii0) + ρUii1Uii1i0 (fii1)

ρUi1i0Uii1i0 (fi0i1) = −ρUii0Uii1i0 (fii0) + ρUii1Uii1i0 (fii1)

Remark 2.20. We can apply this theorem to the the sheaf of smooth q-forms on a smooth

manifold M , hence Ȟ
k
(M,Ωq) = 0 for all k ≥ 1.
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Chapter 3

de Rham-Čech isomorphism

“Since the de Rham cohomology of a C∞ manifold is defined using differential
forms, it would seem to depend essentially on the differentiable structure of M .
However, in reality, it is determined only by the properties of M as a topological
space. It is the de Rham theorem that expresses this fact concretely.”

— Shigeyuki Morita, Geometry of Differential Forms, p. 113

Theorem 3.1. Let M be a smooth manifold. Then for each k ≥ 0 there exists a group isomor-
phism

Hk
dR(M) ∼= Ȟ

k
(M,R)

Proof. For k = 0, from Proposition 1.2 and Proposition 2.6, we know that both H0
dR(M) and

Ȟ
0
(M,R) are isomorphic to the group of locally constant real valued functions on M . That is

H0
dR(M) ∼= Ȟ

0
(M,R)

Now let’s restrict our attention to k ≥ 1. From Example 2.8 we know that the Poincaré
lemma implies the existence of the following long exact sequence of sheaves of differential forms

0 R Ω0 Ω1 Ω2 · · ·d d d

Then, as noted in Remark 2.19, we get a family of short exact sequence of sheaves

0 R Ω0 Z1 0

0 Z1 Ω1 Z2 0

...
...

...
...

...

0 Zq Ωq Zq+1 0

...
...

...
...

...

d

d

d

Since a smooth manifold is a paracompact Hausdorff space, we can apply Theorem 2.1 to get a
family of long exact sequence of Čech cohomology

· · · Ȟ
k
(M,Ω0) Ȟ

k
(M,Z1) Ȟ

k+1
(M,R) Ȟ

k+1
(M,Ω0) · · ·

· · · Ȟ
k
(M,Ω1) Ȟ

k
(M,Z2) Ȟ

k+1
(M,Z1) Ȟ

k+1
(M,Ω1) · · ·

...
...

...
...

· · · Ȟ
k
(M,Ωq) Ȟ

k
(M,Zq+1) Ȟ

k+1
(M,Zq) Ȟ

k+1
(M,Ωq) · · ·

...
...

...
...

∆

∆

∆
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Now let’s study one of these long exact sequence of Čech cohomology. By Proposition 2.6 we have

Ȟ
0
(M,Ωq) ∼= Ωq(M) and Ȟ

0
(M,Zq) ∼= Zq(M). Also by Remark 2.20 we have Ȟ

k
(M,Ωq) = 0

for all k ≥ 1 and q ≥ 0. Hence for any q ≥ 0 we get the exact sequence

0 Zq(M) Ωq(M) Zq+1(M) Ȟ
1
(M,Zq) 0 Ȟ

1
(M,Zq+1)

· · · 0 Ȟ
3
(M,Zq) Ȟ

2
(M,Zq+1) 0 Ȟ

2
(M,Zq)

d ∆

∆

∆

Now consider the following part of the above sequence

0 Zq(M) Ωq(M) Zq+1(M) Ȟ
1
(M,Zq) 0d ∆

Since this sequence is exact, the map ∆ : Zq+1(M) → Ȟ
1
(M,Zq) is a surjective group homo-

morphism and im{d : Ωq(M)→ Zq+1(M)} = ker(∆). Hence by the first isomorphism theorem
we get

Ȟ
1
(M,Zq) ∼=

Zq+1(M)

ker(∆)
for all q ≥ 0

Since im{d : Ωq(M)→ Zq+1(M)} = im{d : Ωq(M)→ Ωq+1(M)} = Bq+1(M), we get

Ȟ
1
(M,Zq) ∼= Hq+1

dR (M) for all q ≥ 0 (3.1)

Note that Z0 = R, hence from (3.1) we get

Ȟ
1
(M,R) ∼= H1

dR(M)

Next we consider the remaining parts of the long exact sequence, i.e. for k ≥ 1 and q ≥ 0 we
have

0 Ȟ
k
(M,Zq+1) Ȟ

k+1
(M,Zq) 0∆

The group homomorphism ∆ is an isomorphism since this is an exact sequence of abelian groups

Ȟ
k+1

(M,Zq) ∼= Ȟ
k
(M,Zq+1) for all k ≥ 1, q ≥ 0 (3.2)

Again substituting Z0 = R and restricting our attention to k ≥ 2, we apply (3.2) recursively to
get

Ȟ
k
(M,R) ∼= Ȟ

k−1 (
M,Z1

)
∼= Ȟ

k−2 (
M,Z2

)
...

∼= Ȟ
1
(
M,Zk−1

)
Then using (3.1) we get

Ȟ
k
(M,R) ∼= Hk

dR(M) for all k ≥ 2

Hence completing the proof.

Remark 3.1. One can use Weil’s method involving generalized Mayer-Vietoris principle for the
Čech-de Rham complex to directly show the isomorphism between Čech cohomology with values
in R and de Rham cohomology of smooth manifold M , without using sheaf theory. There are
two versions of the proof depending on the definition of Čech cohomology used, see [10, Theorem
3.19] if defined using nerve and [1, Proposition 10.6] if defined using presheaf.
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Appendix A

Paracompact spaces

In this appendix some definitions and facts from [12, §39 and 41] will be stated. Here X denotes
a topological space.

Definition A.1 (Locally finite collection). Let X be a topological space. A collection U of
subsets of X is said to be locally finite in X if every point of X has a neighborhood that
intersects only finitely many elements of U .

Lemma A.1. Let U = {Uα}α∈A be a locally finite collection of subsets of X. Then

1. any subcollection of U is locally finite.

2. the collection V =
{
Uα
}
α∈A of the closures of the elements of U is locally finite.

3.
⋃
α∈A Uα =

⋃
α∈A U

Definition A.2 (Refinement of a collection). Let U = {Uα}α∈A be a collection of subsets of
X. A collection V = {Vβ}β∈B of subsets of X is said to be a refinement of U if for each element
Vβ of V, there is an element Uα of U containing Vβ.

Remark A.1. If elements of V are open sets, the V is called an open refinement of U ; if they
are closed, V is called a closed refinement.

Definition A.3 (Paracompact space). The space X is paracompact is every open covering U
of X has a locally finite open refinement V that covers X.

Remark A.2. In most algebraic geometry textbooks, following the lead of Bourbaki, the re-
quirement that the space be Hausdorff is included as part of the definition of the term compact
and paracompact. We shall not follow this convention.

Theorem A.1 (Shrinking lemma). Let X be a paracompact Hausdorff space; let U = {Uα}α∈A
be an indexed family of pen sets covering X. Then there exists a locally finite indexed family
V = {Vα}α∈A of open sets covering X such that Vα ⊆ Uα for each α.

Definition A.4 (Continuous partition of unity). Let U = {Uα}α∈A be an indexed open covering
of X. An indexed family of continuous functions {φα : X → [0, 1]} is said to be a continuous
partition of unity on X, dominated by {Uα}, if

1. supp(φα) ⊆ Uα for each α

2. the indexed family {supp(φα)}α∈A is locally finite

3.
∑

α∈A φα(x) = 1 for each x ∈ X.

where supp(φα) is the closure of the set of those x ∈ X for which φα(x) 6= 0.

Theorem A.2. Let X be a paracompact Hausdorff space; let U = {Uα}α∈A be an indexed open
covering of X. Then there exists a continuous partition of unity on X dominated by {Uα}
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Appendix B

Direct limit

In this appendix some definitions and facts from [14, §73] and [15, §IV.2] will be stated.

Definition B.1 (Directed set). A directed set A is a set with relation < such that

1. α < α for all α ∈ A

2. α < β and β < γ implies α < γ

3. Given α and β, there exists δ such that α < δ and β < δ. The element δ is called an upper
limit for α and β.

Definition B.2 (Direct system). A direct system of abelian groups and group homomorphisms,
corresponding to the directed set A, is an indexed family {Gα}α∈A of abelian groups, along with
the family of homomorphisms {fαβ : Gα → Gβ}α,β∈A, α<β such that

1. fαα : Gα → Gα is identity

2. If α < β < γ then fβγ ◦ fαβ = fαγ ; i.e. the following diagram commutes:

Gα Gγ

Gβ

fαγ

fαβ fβγ

Definition B.3 (Direct limit). Given a directed set A and the associated direct system of
abelian groups and homomorphisms {(Gα, fαβ)}, the direct limit is defined to be the quotient

lim−→
α∈A

Gα =
∐
α∈A

Gα

/
∼

where, given gα ∈ Gα and gβ ∈ Gβ, gα ∼ gβ if there exists an upper bound δ of α and β such
that fαδ(gα) = fβδ(gβ). Also, gα ∼ gβ implies that they belong to same equivalence class, i.e.
JgαK = JgβK. The direct limit is again an abelian group under addition defined as

JgαK + JgβK := Jfαδ(gα) + fβδ(gβ)K

for some upper bound δ of α and β.

Remark B.1. Just as in case of definition of sheaf, the definition of direct limit can be gener-
alized to any category like groups, rings, modules, and algebras instead of abelian groups.
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Proposition B.1. Given a directed set A and the associated direct system {(Gα, fαβ)} of abelian
groups and homomorphisms such that all the maps fαβ are isomorphisms, then lim−→Gα is iso-
morphic to any one of the groups Gα.

Proposition B.2. Given a directed set A and the associated direct system {(Gα, fαβ)} of abelian
groups and homomorphisms such that all the maps fαβ are zero-homomorphisms, then lim−→Gα
is the trivial group. More generally, if for each α there is a β such that α < β and fαβ is the
zero homomorphism, then lim−→Gα is the trivial group.

Definition B.4 (Map of direct systems). Let A and B be two directed sets. Let {(Gα, fαβ)} and
{(G′γ , f ′γδ)} be the associated direct systems of abelian groups and homomorphisms, respectively.
A map of direct systems Φ = (φ, {φα}) : {(Gα, fαβ)} → {(G′γ , f ′γδ)} is a collection of maps such
that

1. the set map φ : A→ B that preserves order relation

2. for each α ∈ A, φα : Gα → G′φ(α) is a group homomorphism such that the following
diagram commutes

Gα G′γ

Gβ G′δ

φα

fαβ f ′γδ

φβ

for α < β, γ = φ(α) and δ = φ(β)

Definition B.5 (Direct limit of direct system homomorphisms). The map of direct systems
Φ : {(Gα, fαβ)} → {(G′γ , f ′γδ)} induces a homomorphism, called the direct limit of the homo-
morphisms φα

Φ→ : lim−→
α∈A

Gα → lim−→
γ∈B

G′γ

It maps the equivalence class of gα ∈ Gα to the equivalence class of φα(gα).

Theorem B.1 (Universal property of direct limits). Let A be a directed set and {(Gα, fαβ)} be
the associated direct system of abelian groups and homomorphisms. If G = lim−→α∈AGα, then the

inclusion iα : Gα ↪→
∐
α∈AGα induces a family of group homomorphisms {χα : Gα → G}α∈A.

If H is an abelian group such that for each α ∈ A there is a group homomorphism ψα : Gα → H
satisfying ψα = ψβ ◦ fαβ, whenever α < β. Then there exists a unique group homomorphism

Ψ : G→ H

satisfying ψα = Ψ ◦ χα for all α ∈ A.

Remark B.2. We observe that this universal property is a special case of the preceding con-
struction, in which second direct system consists of the single group H. Hence, we have Ψ = Ψ→.
One can also observe that the family of group homomorphisms {χα : Gα → G}α∈A satisfies the
condition χα = χβ ◦ fαβ for all α < β since the following diagram commutes

Gα G

Gβ G

χα

fαβ 1G

χβ
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Theorem B.2 (Direct limit is as an exact functor). Let A be a directed set1. Let {(G′α, f ′αβ)},
{(Gα, fαβ)} and {(G′′α, f ′′αβ)} be three direct systems of abelian groups and homomorphisms as-
sociated with A, with the maps of direct systems

Φ : {(G′α, f ′αβ)} → {(Gα, fαβ)} and Ψ : {(Gα, fαβ)} → {(G′′α, f ′′αβ)}

such that the sequence of abelian groups

G′α Gα G′′α
φα ψα

is exact for every α ∈ A. Then the induced sequence

lim−→
α∈A

G′α lim−→
α∈A

Gα lim−→
α∈A

G′′α
Φ→ Ψ→

is also exact.

Proof. Let G′ = lim−→
α∈A

G′α, G = lim−→
α∈A

Gα and G′′ = lim−→
α∈A

G′′α. We consider the commutative diagram,

for all α ∈ A
G′α Gα G′′α

G′ G G′′

φα

χ′α

ψα

χα χ′′α

Φ→ Ψ→

where χ′α, χα and χ′′α are the homomorphisms induced by the inclusion maps into the respective
disjoint union (as in Theorem B.1). Given to us is that imφα = kerψα for all α ∈ A.

Claim: im Φ→ = ker Ψ→
(ker Ψ→ ⊆ im Φ→) Let g ∈ G, then by the definition of direct limit there exists α ∈ A such that

for some gα ∈ Gα we have χα(gα) = g. Also, let Ψ→(g) = 0G′′ . By the commutative diagram
above, we have

χ′′α(ψα(gα)) = Ψ→(χα(gα)) = Ψ→(g) = 0G′′

The direct limit is a collection of equivalence classes, hence we have

χ′′α(ψα(gα)) = Jψα(gα)K = J0G′′αK

Since ψα(gα), 0G′′α ∈ G
′′
α, we have f ′′αδ(ψα(gα)) = f ′′αδ(0G′′α) = 0G′′δ for some δ such that α < δ.

But ψδ ◦ fαδ = f ′′αδ ◦ ψα, hence we have ψδ(fαδ(gα)) = 0G′′δ . Hence fαδ(gα) ∈ kerψδ = imφδ.
So there exist hδ ∈ G′δ such that φδ(hδ) = fαδ(gα). Using χα = χδ ◦ fαδ and commutativity of
diagram we get we get

g = χα(gα) = χδ(fαδ(gα)) = χδ(φδ(hδ)) = Φ→(χ′δ(hδ))

(im Φ→ ⊆ ker Ψ→) Suppose g ∈ im Φ→. Then g = Φ→(h), and by definition of direct limit we have
h = χ′α(hα) for some hα ∈ G′α. Now by the commutativity of diagram we have

g = Φ→(χ′α(hα)) = χα(φα(hα))

Since ψα ◦ φα = 0G′′α by exactness, we have

Ψ→(g) = Ψ→(χα(φα(hα))) = χ′′α(ψα(φα(hα))) = χ′′α(0G′′α) = 0G′′

Hence completing the proof.

1To avoid too many new symbols, let all the direct systems be associated with the same directed set, i.e.
A = B = C and φ = 1A.
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