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Hyperelliptic curves

Hyperelliptic curves are a natural generalisation of elliptic curves, and it was suggested by
Koblitz [298] that they might be useful for public key cryptography. Note that there is not
a group law on the points of a hyperelliptic curve; instead, we use the divisor class group
of the curve. The main goals of this chapter are to explain the geometry of hyperelliptic
curves, to describe Cantor’s algorithm [105] (and variants) to compute in the divisor class
group of hyperelliptic curves and then to state some basic properties of the divisor class
group.

Definition 10.0.1 Let k be a perfect field. Let H (x), F (x) ∈ k[x] (we stress that H (x) and
F (x) are not assumed to be monic). An affine algebraic set of the form C : y2 +H (x)y =
F (x) is called a hyperelliptic equation. The hyperelliptic involution ι : C → C is defined
by ι(x, y) = (x,−y −H (x)).

Exercise 10.0.2 Let C be a hyperelliptic equation over k. Show that if P ∈ C(k) then
ι(P ) ∈ C(k).

When the projective closure of the algebraic set C in Definition 10.0.1 is irreducible,
dimension 1, non-singular and of genus g ≥ 2, then we will call it a hyperelliptic curve.
By definition, a curve is projective and non-singular. We will give conditions for when a
hyperelliptic equation is non-singular. Exercise 10.1.15 will give a projective non-singular
model, but, in practice, one can work with the affine hyperelliptic equation. To “see” the
points at infinity we will move them to points on a related affine equation, namely, the
curve C† of equation (10.2).

The genus has already been defined (see Definition 8.4.7) as a measure of the complexity
of a curve. The treatment of the genus in this chapter is very “explicit”. We will give precise
conditions (Lemmas 10.1.6 and 10.1.8) that explain when the degree of a hyperelliptic
equation is minimal. From this minimal degree we define the genus. In contrast, the
approach of most other authors is to use the Riemann–Roch theorem.

We remark that one can also consider the algebraic group quotient Pic0
Fq

(C)/[−1] of
equivalence classes {D,−D} where D is a reduced divisor. For genus 2 curves this object
can be described as a variety, called the Kummer surface. It is beyond the scope of this
book to give the details of this case. We refer to Chapter 3 of Cassels and Flynn [115] for
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10.1 Non-singular models for hyperelliptic curves 179

background. Gaudry [224] and Gaudry and Lubicz [227] have given fast algorithms for
computing with this algebraic group quotient.

10.1 Non-singular models for hyperelliptic curves

Consider the singular points on the affine curve C(x, y) = y2 +H (x)y − F (x) = 0. The
partial derivatives are ∂C(x, y)/∂y = 2y +H (x) and ∂C(x, y)/∂x = H ′(x)y − F ′(x), so
a singular point in particular satisfies 2F ′(x)+H (x)H ′(x) = 0. If H (x) = 0 and if the
characteristic of k is not 2 then C is non-singular over k if and only if F (x) has no repeated
root in k.

Exercise 10.1.1 Show that the curve y2 +H (x)y = F (x) over k has no affine singular
points if and only if one of the following conditions hold.

1. char(k) = 2 and H (x) is a non-zero constant.
2. char(k) = 2, H (x) is a non-zero polynomial and gcd(H (x), F ′(x)2 − F (x)H ′(x)2) = 1.
3. char(k) �= 2, H (x) = 0 and gcd(F (x), F ′(x)) = 1.
4. char(k) �= 2, H (x) �= 0 and gcd(H (x)2 + 4F (x), 2F ′(x)+H (x)H ′(x)) = 1 (this

applies even when H (x) = 0 or H ′(x) = 0).

We will now give a simple condition for when a hyperelliptic equation is geometrically
irreducible and of dimension 1. The proof also applies in many other cases. For the remaining
cases, one has to test irreducibility directly.

Lemma 10.1.2 Let C(x, y) = y2 +H (x)y − F (x) over k be a hyperelliptic equation. Sup-
pose that deg(F (x)) is odd. Suppose also that there is no point P = (xP , yP ) ∈ C(k) such
that (∂C(x, y)/∂x)(P ) = (∂C(x, y)/∂y)(P ) = 0. Then the affine algebraic set V (C(x, y))
is geometrically irreducible. The dimension of V (C(x, y)) is 1.

Proof From Theorem 5.3.8, C(x, y) = 0 is k-reducible if and only if C(x, y) factors over
k[x, y]. By considering C(x, y) as an element of k(x)[y] it follows that such a factorisation
must be of the form C(x, y) = (y − a(x))(y − b(x)) with a(x), b(x) ∈ k[x]. Since deg(F )
is odd it follows that deg(a(x)) �= deg(b(x)) and that at least one of a(x) and b(x) is
non-constant. Hence, a(x)− b(x) is a non-constant polynomial, so let xP ∈ k be a root
of a(x)− b(x) and set yP = a(xP ) = b(xP ) so that (xP , yP ) ∈ C(k). It is then easy to
check that both partial derivatives vanish at P . Hence, under the conditions of the Lemma,
V (C(x, y)) is k-irreducible and so is an affine variety.

Now that V (C(x, y)) is known to be a variety we can consider the dimension. The
function field of the affine variety is k(x)(y), which is a quadratic algebraic extension of
k(x) and so has transcendence degree 1. Hence, the dimension of is 1. �
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180 Hyperelliptic curves

Let H (x), F (x) ∈ k[x] be such that y2 +H (x)y = F (x) is a non-singular affine curve.
Define D = max{deg(F (x)), deg(H (x))+ 1}. The projective closure of C in P2 is given by

y2zD−2 + zD−1H (x/z)y = zDF (x/z). (10.1)

Exercise 10.1.3 Show that if D > 2 then there are at most two points at infinity on the
curve of equation (10.1). Show further that if D > 3 and deg(F ) > deg(H )+ 1 then there
is a unique point (0 : 1 : 0) at infinity, which is a singular point.

In Definition 10.1.10 we will define the genus of a hyperelliptic curve in terms of the
degree of the hyperelliptic equation. To do this, it will be necessary to have conditions
that ensure that this degree is minimal. Example 10.1.4 and Exercise 10.1.5 show how a
hyperelliptic equation that is a variety can be isomorphic to an equation of significantly
lower degree (remember that isomorphism is only defined for varieties).

Example 10.1.4 The curve y2 + xy = x200 + x101 + x3 + 1 over F2 is isomorphic over
F2 to the curve Y 2 + xY = x3 + 1 via the map (x, y) �→ (x, Y + x100).

Exercise 10.1.5 Let k be any field. Show that the affine algebraic variety y2 + (1− 2x3)y =
−x6 + x3 + x + 1 is isomorphic to a variety having an equation of total degree 2. Show
that the resulting curve has genus 0.

Lemma 10.1.6 Let k be a perfect field of characteristic 2 and h(x), f (x) ∈ k[x]. Suppose
the hyperelliptic equation C : y2 + h(x)y = f (x) is a variety. Then it is isomorphic over
k to Y 2 +H (x)Y = F (x) where one of the following conditions hold:

1. deg(F (x)) > 2 deg(H (x)) and deg(F (x)) is odd;
2. deg(F (x)) = 2 deg(H (x)) = 2d and the equation u2 +Hdu+ F2d has no solution in k

(where H (x) = Hdx
d +Hd−1x

d−1 + · · · +H0 and F (x) = F2dx
2d + · · · + F0);

3. deg(F (x)) < deg(H (x)).

Proof Let dH = deg(H (x)) and dF = deg(F (x)). The change of variables y = Y + cxi

transforms y2 +H (x)y = F (x) to Y 2 +H (x)Y = F (x)+ c2x2i +H (x)cxi . Hence, if
deg(F (x)) > 2 deg(H (x)) and deg(F (x)) is even then one can remove the leading coef-
ficient by choosing i = deg(F (x))/2 and c = √F2i (remember that char(k) = 2 and k is
perfect so c ∈ k). Similarly, if deg(H (x)) ≤ j = deg(F (x)) < 2 deg(H (x)) then one can
remove the leading coefficient Fjx

i from F by taking i = j − deg(H (x)) and c = Fj/HdH
.

Repeating these processes yields the first and third claims. The second case follows
easily. �

Note that in the second case in Lemma 10.1.6 one can lower the degree using a k-
isomorphism. Hence, geometrically (i.e., over k) one can assume that a hyperelliptic equa-
tion is of the form of case 1 or 3.
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10.1 Non-singular models for hyperelliptic curves 181

Example 10.1.7 The affine curve y2 + x3y = x6 + x + 1 is isomorphic over F22 to Y 2 +
x3Y = x + 1 via Y = y + ux3 where u ∈ F22 satisfies u2 + u = 1. (Indeed, these curves
are quadratic twists; see Definition 10.2.2.)

Lemma 10.1.8 Let k be a field such that char(k) �= 2. Every hyperelliptic curve over k
is isomorphic over k to an equation of the form y2 + (Hdx

d + · · · +H0)y = F2dx
2d +

F2d−1x
2d−1 + · · · + F0 where either:

1. Hd = 0 and (F2d �= 0 or F2d−1 �= 0);
2. Hd �= 0 and (F2d �= −(Hd/2)2 or F2d−1 �= −HdHd−1/2).

Proof If Hd = F2d = F2d−1 = 0 then just replace d by d − 1. If Hd �= 0 and both F2d =
−(Hd/2)2 and F2d−1 = −HdHd−1/2 then the morphism (x, y) �→ (x, Y = y + Hd

2 xd )
maps the hyperelliptic equation to

(Y − Hd

2 xd )2 + (Hdx
d + · · · +H0)(Y − Hd

2 xd )− (F2dx
2d + F2d−1x

2d−1 + · · · + F0).

This can be shown to have the form

Y 2 + h(x)Y = f (x)

with deg(h(x)) ≤ d − 1 and deg(f (x)) ≤ 2d − 2. (This is what happened in Exer-
cise 10.1.5.) �

Exercise 10.1.9 Show that the hyperelliptic curve y2 + (2x3 + 1)y = −x6 + x5 + x + 1
is isomorphic to Y 2 + Y = x5 + x3 + x + 1.

10.1.1 Projective models for hyperelliptic curves

For the rest of the chapter we will assume that our hyperelliptic equations are k-irreducible
and non-singular as affine algebraic sets. We also assume that when char(k) = 2 one of
the conditions of Lemma 10.1.6 holds and when char(k) �= 2 one of the conditions of
Lemma 10.1.8 holds. The interpretation of deg(H (x)) and deg(F (x)) in terms of the genus
of the curve will be discussed in Section 10.1.3.

Suppose y2 +H (x)y = F (x) is a non-singular affine hyperelliptic equation for a projec-
tive non-singular curve C. Write Hj for the coefficients of H (x) and Fj for the coefficients
of F (x). Define dH = deg(H (x)) and dF = deg(F (x)). Let d = max{dH , dF /2�} and sup-
pose d > 0. Set Hd = · · · = HdH+1 = 0 and F2d = · · · = FdF+1 = 0 if necessary.

The rational map (Z, Y ) = ρ(x, y) = (1/x, y/xd ) maps C to the affine algebraic set

C† : Y 2 + (Hd +Hd−1Z + · · ·H0Z
d )Y = F2d + F2d−1Z + · · ·F0Z

2d . (10.2)

It is easy to check that C† is geometrically irreducible, since C is. Now, all affine points
(z, y) on C† with z �= 0 correspond to affine points on C and so are non-singular (since
non-singularity is a local property; see Remark 7.1.3). To show that C† is non-singular it is
sufficient to consider the points (z, y) = (0, α) where α2 +Hdα − F2d = 0.
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182 Hyperelliptic curves

The partial derivatives evaluated at (0, α) are 2α +Hd and Hd−1α − F2d−1. When
char(k) �= 2 the point being singular would imply Hd = −2α in which case F2d = α2 +
Hdα = −α2 = −(Hd/2)2 and F2d−1 = Hd−1α = −HdHd−1/2. One easily sees that these
equations contradict the conditions of Lemma 10.1.8.

Hence, C† is a hyperelliptic curve and ρ : C → C† is a birational map. It follows that ρ
induces a morphism between the corresponding projective curves. The point(s) (0, α) are
the images of the point(s) at infinity on C. Hence, we can use C† to visualise the points at
infinity on C.

Up to now the phrase “hyperelliptic curve” has meant a projective non-singular curve of
genus g ≥ 2 that has an affine model as a hyperelliptic equation. Definition 10.1.10 gives
an equivalent formulation that will be used throughout the book. Technically, this is an
abuse of notation since C is not projective.

Definition 10.1.10 Let k be a perfect field. Let H (x), F (x) ∈ k[x] be such that:

� deg(H (x)) ≥ 3 or deg(F (x)) ≥ 5;
� the affine hyperelliptic equation C : y2 +H (x)y = F (x) is k-irreducible and non-

singular;
� the conditions of Lemma 10.1.6 and Lemma 10.1.8 hold.

Then C is called a hyperelliptic curve. The genus of the hyperelliptic curve is g =
max{deg(H (x))− 1, �deg(F (x))− 1)/2�} (see Section 10.1.3 for justification of this).

It looks like Definition 10.1.10 excludes some potentially interesting equations (such as
y2 +H (x)y = F (x) where deg(F (x)) = 4 and deg(H (x)) = 2). In fact, it can be shown
that all the algebraic sets excluded by the definition are either k-reducible, singular over k
or birational over k to a curve of genus 0 or 1 over k.

The equation α2 +Hdα − F2d = 0 can have a k-rational repeated root, two roots in k,
or two conjugate roots in k. It follows that there are three possible behaviours at infinity:
a single k-rational point, two distinct k-rational points and a pair of distinct points defined
over a quadratic extension of k (which are Galois conjugates). These three cases correspond
to the fact that the place at infinity in k[x] is ramified, split or inert respectively in the field
extension k(C)/k(x). A natural terminology for the three types of behaviour at infinity is
therefore to call them ramified, split and inert.

Definition 10.1.11 Let C be a hyperelliptic curve and let C† be as in equation (10.2). Let
ρ : C → C† be as above. Let α+, α− be the roots in k of the polynomial α2 +Hdα − F2d .
We write∞+ for the point at infinity on C such that ρ(∞+) = (0, α+) and ∞− for the
point such that ρ(∞−) = (0, α−).

If α+ = α− then C is called a ramified model of a hyperelliptic curve. If there are two
distinct points at infinity with α+, α− ∈ k then C is called a split model of a hyperelliptic
curve and if α+, α− �∈ k then C is an inert model of a hyperelliptic curve.

One finds in the literature the names imaginary hyperelliptic curve (respectively, real
hyperelliptic curve) for ramified model and split model respectively. Exercise 10.1.13
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classifies ramified hyperelliptic models. Exercise 10.1.14 shows that if C(k) �= ∅ then one
may transform C into a ramified or split model. Hence, when working over finite fields, it
is not usually necessary to deal with curves having an inert model.

Exercise 10.1.12 With notation as in Definition 10.1.11 show that ι(∞+) = ∞−.

Exercise 10.1.13 Let C : y2 +H (x)y = F (x) be a hyperelliptic curve over k satisfying
all the conditions above. Let d = max{deg(H (x)), deg(F (x))/2�}. Show that this is a
ramified model if and only if (deg(H (x)) < d and deg(F (x)) = 2d − 1) or (char(k) �= 2,
deg(F (x)) = 2d, deg(H (x)) = d and F2d = −(Hd/2)2).

Exercise 10.1.14 Let C : y2 +H (x)y = F (x) be a hyperelliptic curve over k and let
P ∈ C(k). Define the rational map

ρP (x, y) = (1/(x − xP ), y/(x − xP )d ).

Then ρP : C → C ′whereC ′ is also a hyperelliptic curve. Show that ρP is just the translation
map P �→ (0, yP ) followed by the map ρ and so is an isomorphism from C to C ′.

Show that if P = ι(P ) then C is birational over k (using ρP ) to a hyperelliptic curve
with ramified model. Show that if P �= ι(P ) then C is birational over k to a hyperelliptic
curve with split model.

We now indicate a different projective model for hyperelliptic curves.

Exercise 10.1.15 Let the notation and conditions be as above. Assume C : y2 +H (x)y =
F (x) is irreducible and non-singular as an affine curve. Let Y,Xd,Xd−1, . . . , X1, X0 be
coordinates for Pd+1 (one interprets Xi = xi). The projective hyperelliptic equation is
the projective algebraic set in Pd+1 given by

Y 2 + (HdXd +Hd−1Xd−1 + · · · +H0X0)Y = F2dX
2
d + F2d−1XdXd−1 + · · ·

+F1X1X0 + F0X
2
0,

X2
i = Xi−1Xi+1, for 1 ≤ i ≤ d − 1,

XdXi = X(d+i)/2�X�(d+i)/2�, for 0 ≤ i ≤ d − 2.
(10.3)

1. Give a birational map (assuming for the moment that the above model is a variety)
between the affine algebraic set C and the model of equation (10.3).

2. Show that the hyperelliptic involution ι extends to equation (10.3) as

ι(Y : Xd : · · · : X0) = (−Y −HdXd −Hd−1Xd−1 − · · · −H0X0 : Xd : · · · : X0).

3. Show that the points at infinity on equation (10.3) satisfy X0 = X1 = X2 = · · · =
Xd−1 = 0 and Y 2 +HdXdY − F2dX

2
d = 0. Show that if F2d = Hd = 0 then there is a

single point at infinity.
4. Show that if the conditions of Lemma 10.1.6 or Lemma 10.1.8 hold then equation (10.3)

is non-singular at infinity.
5. Show that equation (10.3) is a variety.
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184 Hyperelliptic curves

10.1.2 Uniformisers on hyperelliptic curves

The aim of this section is to determine uniformisers for all points on hyperelliptic curves. We
begin in Lemma 10.1.16 by determining uniformisers for the affine points of a hyperelliptic
curve.

Lemma 10.1.16 Let P = (xP , yP ) ∈ C(k) be a point on a hyperelliptic curve. If P = ι(P )
then (y − yP ) is a uniformiser at P (and vP (x − xP ) = 2). If P �= ι(P ) then (x − xP ) is a
uniformiser at P .

Proof We have

(y − yP )(y + yP +H (xP )) = y2 +H (xP )y − (y2
P +H (xP )yP )

= F (x)+ y(H (xP )−H (x))− F (xP ).

Now, use the general fact for any polynomial that F (x) = F (xP )+ (x − xP )F ′(xP )
(mod (x − xP )2). Hence, the above expression is congruent modulo (x − xP )2 to

(x − xP )(F ′(xP )− yH ′(xP )) (mod (x − xP )2).

When P = ι(P ) then (y − yP )(y + (yP +H (xP ))) = (y − yP )2. Note also that F ′(xP )−
yPH

′(xP ) is not zero since 2yP +H (xP ) = 0 and yet C is not singular. Writing G(x, y) =
(y − yP )2/(x − xP ) ∈ k[x, y] we have G(xP , yP ) �= 0 and

x − xP = (y − yP )2 1

G(x, y)
.

Hence, a uniformiser at P is (y − yP ) and vP (x − xP ) = 2.
For the case P �= ι(P ) note that vP (y − yP ) > 0 and vP (y + yP +H (xP )) = 0. It fol-

lows that vP (y − yP ) ≥ vP (x − xP ). �

We now consider uniformisers at infinity on a hyperelliptic curve C over k. The easiest
way to proceed is to use the curve C† of equation (10.2).

Lemma 10.1.17 LetC be a hyperelliptic curve and let ρ : C → C† be as in equation (10.2).
Let P = ρ(∞+) = (0, α+) ∈ C†(k). If ι(∞+) = ∞+ (i.e., if there is one point at infin-
ity) then Y − α+ is a uniformiser at P on C† and so (y/xd )− α+ is a uniformiser at
∞+ on C. If ι(∞+) �= ∞+ then Z is a uniformiser at P on C† (i.e., 1/x is a uniformiser
at∞+ on C).

Proof Note that if ι(∞+) = ∞+ then ι(P ) = P and if ι(∞+) �= ∞+ then ι(P ) �= P . It
immediately follows from Lemma 10.1.16 that Y − α+ or Z is a uniformiser at P on
C†. Lemma 8.1.13, Exercise 8.2.8 and Lemma 8.2.6 show that for any f ∈ k(C†) and
P ∈ C(k), vP (f ◦ ρ) = vρ(P )(f ). Hence, uniformisers at infinity on C are (Y − α+) ◦ ρ =
(y/xd )− α+ or Z ◦ ρ = 1/x. �
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Exercise 10.1.18 Let C be a hyperelliptic curve in ramified model. Show that v∞(x) = −2.
Show that if the curve has equation y2 = F (x) where deg(F (x)) = 2g + 1 then xg/y is an
alternative uniformiser at infinity.

Now suppose C is given as a split or inert model. Show that v∞+(x) = v∞− (x) = −1.

Exercise 10.1.19 Let C be a hyperelliptic curve (ramified, split or inert). If u(x) = (x − x0)
is a function on C and P0 = (x0, y0) ∈ C(k) then div(u(x)) = (P0)+ (ι(P0))− (∞+)−
(∞−).

Exercise 10.1.20 Let C be a hyperelliptic curve of genus g. Show that if C is in rami-
fied model then v∞(y) = −(2g + 1) and if C is in split model then v∞+ (y) = v∞− (y) =
−(g + 1).

Exercise 10.1.21 Let C be a hyperelliptic curve. Let A(x), B(x) ∈ k[x] and let P =
(xP , yP ) ∈ C(k) be a point on the affine curve. Show that vP (A(x)− yB(x)) is equal to e

where (x − xP )e‖(A(x)2 +H (x)A(x)B(x)− F (x)B(x)2).

We now describe a polynomial that will be crucial for arithmetic on hyperelliptic curves
with a split model. Essentially, G+(x) is a function that cancels the pole of y at∞+. This
leads to another choice of uniformiser at∞+ for these models.

Exercise 10.1.22 Let C : y2 +H (x)y = F (x) be a hyperelliptic curve with split model
over k of genus g. Let α+, α− ∈ k be the roots of Y 2 +HdY − F2d . Show that there exists
a polynomial G+(x) = α+xd + · · · ∈ k[x] of degree d = g + 1 such that deg(G+(x)2 +
H (x)G+(x)− F (x)) ≤ d − 1 = g. Similarly, show that there is a polynomial G−(x) =
α−xd + · · · such that deg(G−(x)2 +H (x)G−(x)− F (x)) ≤ d − 1 = g. Indeed, show that
G−(x) = −G+(x)−H (x).

Exercise 10.1.23 Let C : y2 +H (x)y = F (x) be a hyperelliptic curve with split model
over k of genus g and let G+(x) be as in Exercise 10.1.22. Show that v∞+ (y −G+(x)) ≥ 1.

10.1.3 The genus of a hyperelliptic curve

In Lemma 10.1.6 and Lemma 10.1.8 we showed that some hyperelliptic equations
y2 + h(x)y = f (x) are birational to hyperelliptic equations y2 +H (x)y = F (x) with
deg(F (x)) < deg(f (x)) or deg(H (x)) < deg(h(x)). Hence, it is natural to suppose that
the geometry of the curve C imposes a lower bound on the degrees of the polynomials
H (x) and F (x) in its curve equation. The right measure of the complexity of the geometry
is the genus.

Indeed, the Riemann–Roch theorem implies that if C is a hyperelliptic curve over k
of genus g and there is a function x ∈ k(C) of degree 2 then C is birational over k to
an equation of the form y2 +H (x)y = F (x) with deg(H (x)) ≤ g + 1 and deg(F (x)) ≤
2g + 2. Furthermore, the Hurwitz genus formula shows that if y2 +H (x)y = F (x) is
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non-singular and with degrees reduced as in Lemma 10.1.6 and Lemma 10.1.8 then the
genus is max{deg(H (x))− 1, deg(F (x))/2− 1�}. (Theorem 8.7.3, as it is stated, cannot be
applied for hyperelliptic curves in characteristic 2, but a more general version of the Hurwitz
genus formula proves the above statement about the genus.) Hence, writing d = g + 1, the
conditions of Lemma 10.1.6 and Lemma 10.1.8 together with

deg(H (x)) = d or 2d − 1 ≤ deg(F (x)) ≤ 2d (10.4)

are equivalent to the curve y2 +H (x)y = F (x) having genus g.
It is not necessary for us to prove the Riemann–Roch theorem or the Hurwitz genus

formula. Our discussion of Cantor reduction (see Lemma 10.3.20 and Lemma 10.4.6) will
directly prove a special case of the Riemann–Roch theorem for hyperelliptic curves, namely
that every divisor class contains a representative corresponding to an effective divisor of
degree at most g = d − 1.

The reader should interpret the phrase “hyperelliptic curve of genus g” as meaning
the conditions of Lemma 10.1.6 and Lemma 10.1.8 together with equation (10.4) on the
degrees of H (x) and F (x) hold.

10.2 Isomorphisms, automorphisms and twists

We consider maps between hyperelliptic curves in this section. We are generally interested
in isomorphisms over k rather than just k.

In the elliptic curve case (see Section 9.3) there was no loss of generality by assuming
that isomorphisms fix infinity (since any isomorphism can be composed with a translation
map). Since the points on a hyperelliptic curve do not, in general, form a group, one can
no longer make this assumption. Nevertheless, many researchers have restricted attention
to the special case of maps between curves that map points at infinity (with respect to
an affine model of the domain curve) to points at infinity on the image curve. Theorem 10.2.1
classifies this special case.

In this chapter, and in the literature as a whole, isomorphisms are usually not assumed
to fix infinity. For example, the isomorphism ρP defined earlier in Exercise 10.1.14 does
not fix infinity. Isomorphisms that map points at infinity to points at infinity map ramified
models to ramified models and unramified models to unramified models.

Theorem 10.2.1 Let C1 : y2
1 +H1(x1)y1 = F1(x1) and C2 : y2

2 +H2(x2)y2 = F2(x2) be
hyperelliptic curves over k of genus g. Then every isomorphism φ : C1 → C2 over k that
maps points at infinity of C1 to points at infinity of C2 is of the form

φ(x1, y1) = (ux1 + r, wy1 + t(x1))

where u,w, r ∈ k and t ∈ k[x1]. If C1 and C2 have ramified models then deg(t) ≤ g. If C1

and C2 have split or inert models then deg(t) ≤ g + 1, and the leading coefficient of t(x1)
is not equal to the leading coefficient of −wG+(x1) or −wG−(x1) (where G+ and G− are
as in Exercise 10.1.22).
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Proof (Sketch) The proof is essentially the same as the proof of Proposition 3.1(b) of
Silverman [505]; one can also find the ramified case in Proposition 1.2 of Lockhart [353].
One notes that the valuations at infinity of x1 and x2 have to agree, and similarly for y1 and
y2. It follows that x2 lies in the same Riemann–Roch spaces as x1 and similarly for y2 and
y1. The result follows (the final conditions are simply that the valuations at infinity of y1

and y2 must agree, so we are prohibited from setting y2 = w(y1 + t(x)) such that it lowers
the valuation of y2). �

We now introduce quadratic twists in the special case of finite fields. As mentioned
in Example 9.5.2, when working in characteristic zero there are infinitely many quadratic
twists.

Definition 10.2.2 Let C : y2 = F (x) be a hyperelliptic curve over a finite field k where
char(k) �= 2. Let u ∈ k∗ be a non-square (i.e., there is no v ∈ k∗ such that u = v2) and
define C(u) : y2 = uF (x).

LetC : y2 +H (x)y = F (x) be a hyperelliptic curve over a finite field k where char(k) =
2. Let u ∈ k be such that Trk/F2 (u) = 1. Define C(u) : y2 +H (x)y = F (x)+ uH (x)2.

In both cases, the k-isomorphism class of the curve C(u) is called the non-trivial
quadratic twist of C.

Exercise 10.2.3 Show that the quadratic twist is well-defined when k is a finite field. In
other words, show that in the case char(k) �= 2 if u and u′ are two different non-squares in
k∗ then the corresponding curves C(u) and C(u′) as in Definition 10.2.2 are isomorphic over
k. Similarly, if char(k) = 2 and for two different choices of trace one elements u, u′ ∈ k
show that the corresponding curves C(u) and C(u′) are isomorphic over k.

Exercise 10.2.4 Let C be a hyperelliptic curve over a finite field k and let C(u) be a
non-trivial quadratic twist. Show that #C(Fq)+ #C(u)(Fq) = 2(q + 1).

We now consider automorphisms. Define Aut(C) to be the set of all isomorphisms
φ : C → C over k. As usual, Aut(C) is a group under composition.

Example 10.2.5 Let p > 2 be a prime and C : y2 = xp − x over Fp. For a ∈ F∗p, b ∈ Fp

one has isomorphisms

φa(x, y) = (ax,±√ay) and ψb,±(x, y) = (x + b,±y)

from C to itself (in both cases they fix the point at infinity). Hence, the subgroup of Aut(C)
consisting of maps that fix infinity is a group of at least 2p(p − 1) elements.

There is also the birational map ρ(x, y) = (−1/x, y/x(p+1)/2) that corresponds to an
isomorphism ρ : C → C on the projective curve. This morphism does not fix infinity. Since
all the compositions ψb′,± ◦ ρ ◦ ψb,± ◦ φa are distinct one has 2p2(p − 1) isomorphisms of
this form. Hence, Aut(C) has size at least 2p(p − 1)+ 2p2(p − 1) = 2p(p + 1)(p − 1).

Exercise 10.2.6 Let p > 2 be a prime and C : y2 = xp − x + 1 over Fp. Show that the
subgroup of Aut(C) consisting of automorphisms that fix infinity has order 2p.
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Exercise 10.2.7 Let p > 2 be a prime and C : y2 = xn + 1 over Fp with n �= p (when n =
p the equation is singular). Show that the subgroup of Aut(C) consisting of automorphisms
that fix infinity has order 2n.

Exercise 10.2.8 Let p ≡ 1 (mod 8) and let C : y2 = x5 + Ax over Fp. Write ζ8 ∈ Fp for
a primitive 8th root of unity. Show that ζ8 ∈ Fp4 . Show that ψ(x, y) = (ζ 2

8 x, ζ8y) is an
automorphism of C. Show that ψ4 = ι.

10.3 Effective affine divisors on hyperelliptic curves

This section is about how to represent effective divisors on affine hyperelliptic curves, and
algorithms to compute with them. A convenient way to represent divisors is using Mumford
representation, and this is only possible if the divisor is semi-reduced.

Definition 10.3.1 Let C be a hyperelliptic curve over k and denote by C ∩ A2 the affine
curve. An effective affine divisor on C is

D =
∑

P∈(C∩A2)(k)

nP (P )

where nP ≥ 0 (and, as always, nP �= 0 for only finitely many P ). A divisor on C is semi-
reduced if it is an effective affine divisor and for all P ∈ (C ∩ A2)(k) we have:

1. If P = ι(P ) then nP = 1.
2. If P �= ι(P ) then nP > 0 implies nι(P ) = 0.

We slightly adjust the notion of equivalence for divisors on C ∩ A2.

Definition 10.3.2 Let C be a hyperelliptic curve over a field k and let f ∈ k(C). We define

div(f ) ∩ A2 =
∑

P∈(C∩A2)(k)

vP (f )(P ).

Two divisors D,D′ on C ∩ A2 are equivalent, written D ≡ D′, if there is some function
f ∈ k(C) such that D = D′ + div(f ) ∩ A2.

Lemma 10.3.3 Let C be a hyperelliptic curve. Every divisor on C ∩ A2 is equivalent to a
semi-reduced divisor.

Proof Let D =∑P∈C∩A2 nP (P ). By Exercise 10.1.19 the function x − xP has divisor
(P )+ (ι(P )) on C ∩ A2. If nP < 0 for some P ∈ (C ∩ A2)(k) then, by adding an appro-
priate multiple of div(x − xP ), one can arrange that nP = 0 (this will increase nι(P )).
Similarly, if nP > 0 and nι(P ) > 0 (or if P = ι(P ) and nP ≥ 2) then subtracting a mul-
tiple of div(x − xP ) lowers the values of nP and nι(P ). Repeating this process yields a
semi-reduced divisor. �
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Example 10.3.4 Let P1 = (x1, y1) and P2 = (x2, y2) be points on a hyperelliptic curve C

such that x1 �= x2. Let D = −(P1)+ 2(P2)+ (ι(P2)). Then D is not semi-reduced. One has

D + div(x − x1) = D + (P1)+ (ι(P1)) = (ι(P1))+ 2(P2)+ (ι(P2)),

which is still not semi-reduced. Subtracting div(x − x2) from the above gives

D + div((x − x1)/(x − x2)) = (ι(P1))+ (P2),

which is semi-reduced.

10.3.1 Mumford representation of semi-reduced divisors

Mumford [399] introduced1 a representation for semi-reduced divisors. The condition that
the divisor is semi-reduced is crucial: if points P = (xP , yP ) and (xP , y

′
P ) with yP �= y ′P

both appear in the support of the divisor then no polynomial v(x) can satisfy both v(xP ) =
yP and v(xP ) = y ′P .

Lemma 10.3.5 Let D =∑l
i=1 ei(xi, yi) be a non-zero semi-reduced divisor on a hyperel-

liptic curve C : y2 +H (x)y = F (x) (hence, D is affine and effective). Define

u(x) =
l∏

i=1

(x − xi)
ei ∈ k[x].

Then there is a unique polynomial v(x) ∈ k[x] such that deg(v(x)) < deg(u(x)), v(xi) = yi

for all 1 ≤ i ≤ l, and

v(x)2 +H (x)v(x)− F (x) ≡ 0 (mod u(x)). (10.5)

In particular, v(x) = 0 if and only if u(x) | F (x).

Proof Since D is semi-reduced there is no conflict in satisfying the condition v(xi) = yi .
If all ei = 1 then the result is trivial. For each i such that ei > 1 write v(x) = yi + (x −
xi)W (x) for some polynomial W (x). We compute v(x) (mod (x − xi)ei ) so it satisfies
v(x)2 +H (x)v(x)− F (x) ≡ 0 (mod (x − xi)ei ) by Hensel lifting (see Section 2.13) as
follows: if v(x)2 +H (x)v(x)− F (x) = (x − xi)jGj (x) then set v†(x) = v(x)+ w(x −
xi)j where w is an indeterminate and note that

v†(x)2 +H (x)v†(x)− F (x) ≡ (x − xi)
j (Gj (x)+ 2v(x)w +H (x)w) (mod (x − xi)

j+1).

It suffices to find w such that this is zero, in other words, solve Gj (xi)+ w(2yi +H (xi)) =
0. Since D is semi-reduced, we know 2yi +H (xi) �= 0 (since P = ι(P ) implies nP = 1).
The result follows by the Chinese remainder theorem. �

1 Mumford remarks on pages 3–17 of [399] that a special case of these polynomials arises in the work of Jacobi. However, Jacobi
only gives a representation for semi-reduced divisors with g points in their support, rather than arbitrary semi-reduced divisors.
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Definition 10.3.6 Let D be a non-zero semi-reduced divisor. The polynomials (u(x), v(x))
of Lemma 10.3.5 are the Mumford representation of D. If D = 0 then take u(x) = 1 and
v(x) = 0. A pair of polynomials u(x), v(x) ∈ k[x] is called a Mumford representation if
u(x) is monic, deg(v(x)) < deg(u(x)) and if equation (10.5) holds.

We have shown that every semi-reduced divisor D has a Mumford representation and
that the polynomials satisfying the conditions in Definition 10.3.6 are unique. We now
show that one can easily recover an affine divisor D from the pair (u(x), v(x)): write
u(x) =∏l

i=1(x − xi)ei and let D =∑l
i=1 ei(xi, v(xi)).

Exercise 10.3.7 Show that the processes of associating a Mumford representation to a
divisor and associating a divisor to a Mumford representation are inverse to each other.
More precisely, let D be a semi-reduced divisor on a hyperelliptic curve. Show that if one
represents D in Mumford representation, and then obtains a corresponding divisor D′ as
explained above, then D′ = D.

Exercise 10.3.8 Let u(x), v(x) ∈ k[x] be such that equation (10.5) holds. Let D be the
corresponding semi-reduced divisor. Show that

D =
∑

P∈(C∩A2)(k)

min{vP (u(x)), vP (y − v(x))}(P ).

This is called the greatest common divisor of div(u(x)) and div(y − v(x)) and is denoted
div(u(x), y − v(x)).

Exercise 10.3.9 Let (u1(x), v1(x)) and (u2(x), v2(x)) be the Mumford representations of
two semi-reduced divisors D1 and D2. Show that if gcd(u1(x), u2(x)) = 1 then Supp(D1) ∩
Supp(D2) = ∅.

Lemma 10.3.10 Let C be a hyperelliptic curve over k and let D be a semi-reduced divisor
on C with Mumford representation (u(x), v(x)). Let σ ∈ Gal(k/k).

1. σ (D) is semi-reduced.
2. The Mumford representation of σ (D) is (σ (u(x)), σ (v(x))).
3. D is defined over k if and only if u(x), v(x) ∈ k[x].

Exercise 10.3.11 Prove Lemma 10.3.10.

Exercise 10.3.8 shows that the Mumford representation of a semi-reduced divisor D is
natural from the point of view of principal divisors. This explains why condition (10.5) is the
natural definition for the Mumford representation. There are two other ways to understand
condition (10.5). First, the divisor D corresponds to an ideal in the ideal class group of the
affine coordinate ring k[x, y], and condition (10.5) shows this ideal is equal to the k[x, y]-
ideal (u(x), y − v(x)). Second, from a purely algorithmic point of view, condition (10.5) is
needed to make the Cantor reduction algorithm work (see Section 10.3.3).

A divisor class contains infinitely many divisors whose affine part is semi-reduced. Later
we will define a reduced divisor to be one whose degree is sufficiently small. One can then
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consider whether there is a unique such representative of the divisor class. This issue will
be considered in Lemma 10.3.24 below.

Exercise 10.3.12 is relevant for the index calculus algorithms on hyperelliptic curves
and it is convenient to place it here.

Exercise 10.3.12 A semi-reduced divisor D defined over k with Mumford representation
(u(x), v(x)) is said to be a prime divisor if the polynomial u(x) is irreducible over k.
Show that if D is not a prime divisor, then D can be efficiently expressed as a sum of
prime divisors by factoring u(x). More precisely, show that if u(x) =∏ ui(x)ci is the
complete factorisation of u(x) over k, then D =∑ cidiv(ui(x), y − vi(x)) where vi(x) =
v(x) mod ui(x).

10.3.2 Addition and semi-reduction of divisors in Mumford representation

We now present Cantor’s algorithm [111]2 for addition of semi-reduced divisors on a
hyperelliptic curve C. As above, we take a purely geometric point of view. An alternative,
and perhaps more natural, interpretation of Cantor’s algorithm is multiplication of ideals in
k[x, y] ⊂ k(C).

Given two semi-reduced divisors D1 and D2 with Mumford representation (u1(x), v1(x))
and (u2(x), v2(x)) we want to compute the Mumford representation (u3(x), v3(x)) of the
sum D1 +D2. Note that we are not yet considering reduction of divisors in the divisor
class group. There are two issues that make addition not completely trivial. First, if P is
in the support of D1 and ι(P ) is in the support of D2 then we remove a suitable multiple
of (P )+ (ι(P )) from D1 +D2. Second, we must ensure that the Mumford representation
takes multiplicities into account (i.e., so that equation (10.5) holds for (u3(x), v3(x))).

Example 10.3.13 Let P = (xP , yP ) on y2 +H (x)y = F (x) be such that P �= ι(P ). Let
D1 = D2 = (P ) so that u1(x) = u2(x) = (x − xP ) and v1(x) = v2(x) = yP . Then D1 +
D2 = 2(P ). The Mumford representation for this divisor has u3(x) = (x − xP )2 and v(x) =
yP + w(x − xP ) for some w ∈ k. To satisfy equation (10.5) one finds that

y2
P + 2yPw(x − xP )+H (x)yP + wH (x)(x − xP )− F (x) ≡ 0 (mod (x − xP )2).

Writing F (x) ≡ F (xP )+ F ′(xP )(x − xP ) (mod (x − xP )2) and H (x) ≡ H (xP )+
H ′(xP )(x − xP ) (mod (x − xP )2) gives

w = F ′(xP )− yPH
′(xP )

2yP +H (xP )
,

which is defined since P �= ι(P ).
To help motivate the formula for v3(x) in Theorem 10.3.14 we now make some obser-

vations. First, note that the equation

1 = s1(x)(x − xP )+ s3(x)(2yP +H (x))

2 The generalisation of Cantor’s algorithm to all hyperelliptic curves was given by Koblitz [311].
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has the solution

s3(x) = 1

2yP +H (xP )
and s1(x) = −s3(x)(H ′(xP )+ (x − xP )G(x))

where G(x) = (H (x)−H (xP )−H ′(xP )(x − xP ))/(x − xP )2. Furthermore, note that

v(x) ≡ s1(x)(x − xP )yP + s3(x)(y2
P + F (x)) (mod (x − xP )2).

The core of Cantor’s addition and semi-reduction algorithm is to decide which functions
(x − xP ) are needed (and to which powers) to obtain a semi-reduced divisor equivalent to
D1 +D2. The crucial observation is that if P is in the support of D1 and ι(P ) is in the
support of D2 then (x − xP ) | u1(x), (x − xP ) | u2(x) and v1(xP ) = −v2(xP )−H (xP ) and
so (x − xP ) | (v1(x)+ v2(x)+H (x)). The exact formulae are given in Theorem 10.3.14.
The process is called Cantor’s addition algorithm or Cantor’s composition algorithm.

Theorem 10.3.14 Let (u1(x), v1(x)) and (u2(x), v2(x)) be Mumford representations of two
semi-reduced divisors D1 and D2. Let s(x) = gcd(u1(x), u2(x), v1(x)+ v2(x)+H (x)) and
let s1(x), s2(x), s3(x) ∈ k[x] be such that

s(x) = s1(x)u1(x)+ s2(x)u2(x)+ s3(x)(v1(x)+ v2(x)+H (x)).

Define u3(x) = u1(x)u2(x)/s(x)2 and

v3(x) = (s1(x)u1(x)v2(x)+ s2(x)u2(x)v1(x)+ s3(x)(v1(x)v2(x)+ F (x)))/s(x). (10.6)

Then u3(x), v3(x) ∈ k[x] and the Mumford representation of the semi-reduced divisor D

equivalent to D1 +D2 is (u3(x), v3(x)).

Proof Let D = D1 +D2 − div(s(x)) ∩ A2 so that D is equivalent to D1 +D2. By the
“crucial observation” above, s(x) has a root xP for some point P = (xP , yP ) on the curve if
and only if P and ι(P ) lie in the supports of D1 and D2. Taking multiplicities into account,
it follows that D is semi-reduced.

It is immediate that s(x)2 | u1(x)u2(x) and so u3(x) ∈ k[x]. It is also immediate that
u3(x) is the correct first component of the Mumford representation of D.

To show v3(x) ∈ k[x] re-write v3(x) as

v3 = v2(s − s2u2 − s3(v1 + v2 +H ))+ s2u2v1 + s3(v1v2 + F )

s
(10.7)

= v2 + s2(v1 − v2)(u2/s)+ s3(F − v2H − v2
2)/s. (10.8)

Since s(x) | u2(x) and u2(x) | (F − v2H − v2
2) the result follows.

We now need the equation

(v1 + v2 +H )(v3 − y) ≡ (y − v1)(y − v2) (mod u3). (10.9)

This is proved by inserting the definition of v3 from equation (10.6) to get

(v1+ v2+H )(v3− y) ≡ −(v1+ v2+H )y+ (s1u1(v2
2 +Hv2−F )+ s2u2(v2

1 +Hv1−F )

+ (v1v2+F )(s1u1+ s2u2+ s3(v1+ v2+H ))/s (mod u3(x)).
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Then using (y − v1)(y − v2) = F − (v1 + v2 +H )y + v1v2 and ui | (v2
i +Hvi − F ) for

i = 1, 2 proves equation (10.9).
Finally, it remains to prove that equation (10.5) holds. We do this by showing that

vP (v(x)2 +H (x)v(x)− F (x)) ≥ vP (u(x))

for all P = (xP , yP ) ∈ Supp(D). Suppose first that P �= ι(P ) and that (x − xP )e‖u3(x).
Then it is sufficient to show that vP (y − v3(x)) ≥ e. This will follow from equa-
tion (10.9). First note that vP (y − v3) = vP ((v1 + v2 +H )(v3 − y)) and that this is at
least min{vP (u3), vP ((y − v1)(y − v2))}. Then vP (y − v1)+ vP (y − v2) ≥ vP (u1(x))+
vP (u2(x)) ≥ e.

Now for the case P = ι(P ) ∈ Supp(D). Recall that such points only occur in semi-
reduced divisors with multiplicity 1. Since u3(x) is of minimal degree we know (x −
xP )‖u3(x). It suffices to show that v3(xP ) = yP , but this follows from equation (10.8).
Without loss of generality, P ∈ Supp(D2) and P �∈ Supp(D1) (if P ∈ Supp(Di) for both
i = 1, 2 then P �∈ Supp(D)) so (x − xP ) � s(x), v2(xP ) = yP and (u2/s)(xP ) = 0. Hence,
v3(xP ) = v2(xP )+ 0 = yP . �

Exercise 10.3.15 Let C : y2 + (x2 + 2x + 10)y = x5 + x + 1 over F11. Let D1 =
(0, 4)+ (6, 4) and D2 = (0, 4)+ (1, 1). Determine the Mumford representation of
D1,D2, 2D1,D1 +D2.

We remark that, in practical implementation, one almost always has gcd(u1(x), u2(x)) =
1 and so s(x) = 1 and the addition algorithm can be simplified. Indeed, it is possible to give
explicit formulae for the general cases in the addition algorithm for curves of small genus,
we refer to Sections 14.4, 14.5 and 14.6 of [16].

Exercise 10.3.16 Show that the Cantor addition algorithm for semi-reduced divisors of
degree ≤ m has complexity O(m2M(log(q)) bit operations.

10.3.3 Reduction of divisors in Mumford representation

Suppose we have an affine effective divisor D with Mumford representation (u(x), v(x)).
We wish to obtain an equivalent divisor (affine and effective) whose Mumford representation
has deg(u(x)) of low degree. We will show in Theorem 10.3.21 and Lemma 10.4.6 that one
can ensure deg(u(x)) ≤ g, where g is the genus; we will call such divisors reduced. The
idea is to consider

u†(x) = monic((v(x)2 +H (x)v(x)− F (x))/u(x)), v†(x) = −v(x)−H (x) (mod u†(x))

(10.10)

where monic
(
u0 + u1x + · · · + ukx

k
)

for uk �= 0 is defined to be (u0/uk)+
(u1/uk)x + · · · + xk . Obtaining (u†(x), v†(x)) from (u(x), v(x)) is a Cantor reduction
step. This operation appears in the classical reduction theory of binary quadratic forms.

https://doi.org/10.1017/CBO9781139012843.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139012843.011


194 Hyperelliptic curves

P1
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P3

P4

P5

ι(P4)

ι(P5)

Figure 10.1 Cantor reduction on a hyperelliptic curve.

Lemma 10.3.17 Let D be an affine effective divisor on a hyperelliptic curve C with
Mumford representation (u(x), v(x)). Define (u†(x), v†(x)) as in equation (10.10). Then
(u†(x), v†(x)) is the Mumford representation of a semi-reduced divisor D† and D† ≡ D

on C ∩ A2.

Proof One checks that (u†(x), v†(x)) satisfies condition (10.5) and so there is an associated
semi-reduced divisor D†.

Write D = (P1)+ · · · + (Pn) (where the same point can appear more than once).
Then div(y − v(x)) ∩ A2 = (P1)+ · · · + (Pn)+ (Pn+1)+ · · · + (Pn+m) for some points
Pn+1, . . . , Pn+m (not necessarily distinct from the earlier n points, or from each other)
and div(v(x)2 +H (x)v(x)− F (x)) ∩ A2 = div((y − v(x))(−y −H (x)− v(x))) ∩ A2 =
(P1)+ (ι(P1))+ · · · + (Pn+m)+ (ι(Pn+m)). Now, div(u†(x)) = (Pn+1)+ (ι(Pn+1))+ · · · +
(Pn+m)+ (ι(Pn+m)). It follows that D† = (ι(Pn+1))+ · · · + (ι(Pn+m)) and that D = D† +
div(y − v(x)) ∩ A2 − div(u†(x)) ∩ A2. �

Example 10.3.18 Consider

C : y2 = F (x) = x5 + 2x4 − 8x3 + 10x2 + 40x + 1

over Q. Let P1 = (−4, 1), P2 = (−2, 5), P3 = (0, 1) and D = (P1)+ (P2)+ (P3). The
Mumford representation of D is (u(x), v(x)) = (x(x + 2)(x + 4),−x2 − 4x + 1), which
is easily checked by noting that v(xPi

) = yPi
for 1 ≤ i ≤ 3.

To reduce D one sets u†(x) = monic
(
(v(x)2 − F (x))/u(x)

) = monic(−x2 + 5x −
6) = (x − 3)(x − 2) and v†(x) = −v(x) (mod u†(x)) = 9x − 7.

One can check that div(y − v(x)) = (P1)+ (P2)+ (P3)+ (P4)+ (P5) where P4 =
(2,−11) and P5 = (3,−20), that div(u†(x)) = (P4)+ (ι(P4))+ (P5)+ (ι(P5)) and that
D ≡ div(u†(x), y − v†(x)) ∩ A2 = (ι(P4))+ (ι(P5)). See Figure 10.1 for an illustration.
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Exercise 10.3.19 Show that the straight lines l(x, y) and v(x) in the elliptic curve addition
law (Definition 7.9.1) correspond to the polynomials y − v(x) and u†(x) (beware of the
double meaning of v(x) here) in a Cantor reduction step.

Lemma 10.3.20 Let C : y2 +H (x)y = F (x) and let (u(x), v(x)) be the Mumford rep-
resentation of a semi-reduced divisor D. Write dH = deg(H (x)), dF = deg(F (x)), du =
deg(u(x)) and dv = deg(v(x)). Let d = max{dH , dF /2�}. Let (u†(x), v†(x)) be the poly-
nomials arising from a Cantor reduction step.

1. If dv ≥ d then deg(u†(x)) ≤ du − 2.
2. If dF ≤ 2d − 1 and du ≥ d > dv then deg(u†(x)) ≤ d − 1 (this holds even if dH = d).
3. If dF = 2d and du > d > dv then deg(u†(x)) ≤ d − 1.

Proof Note that du > dv . If dv ≥ d then

deg(v(x)2 +H (x)v(x)− F (x)) ≤ max{2dv, dH + dv, dF }
≤ max{2(du − 1), d + (du − 1), 2d}.

Hence, deg(u†(x)) = deg(v2 +Hv − F )− du ≤ max{du − 2, d − 1, 2d − du} = du − 2.
If dF ≤ 2d − 1 and du ≥ d > dv then, by a similar argument, deg(u†(x)) ≤ 2d −

1− du ≤ d − 1. Finally, if dF = 2d and du > d > dv then deg(v2 +Hv + F ) = 2d and
deg(u†) = 2d − du < d. �

Theorem 10.3.21 Suppose C : y2 +H (x)y = F (x) is a hyperelliptic curve of genus g

with deg(F (x)) ≤ 2g + 1. Then every semi-reduced divisor is equivalent to a semi-reduced
divisor of degree at most g.

Proof Perform Cantor reduction steps repeatedly. By Lemma 10.3.20 the desired condition
will eventually hold. �

Theorem 10.3.21 is an “explicit Riemann–Roch theorem” for hyperelliptic curves with
a single point at infinity (also for hyperelliptic curves y2 +H (x)y = F (x) with two points
at infinity but deg(F (x)) ≤ 2g + 1) as it shows that every divisor class contains a represen-
tative as an affine effective divisor of degree at most g. The general result is completed in
Lemma 10.4.6 below.

Definition 10.3.22 Let C : y2 +H (x)y = F (x) be a hyperelliptic curve of genus g. A
semi-reduced divisor on C is reduced if its degree is at most g.

Exercise 10.3.23 Let C : y2 +H (x)y = F (x) be a hyperelliptic curve with d =
max{deg(H ), deg(F )/2�}. Let (u(x), v(x)) be the Mumford representation of a divisor
with deg(v(x)) < deg(u(x)) < d. Show that if deg(F (x)) ≥ 2d − 1 and one performs a
Cantor reduction step on (u(x), v(x)) then the resulting polynomials (u†(x), v†(x)) are such
that deg(u†(x)) ≥ d.

When deg(F ) = 2d then Lemma 10.3.20 is not sufficient to prove an analogue of
Theorem 10.3.21. However, one can at least reduce to a divisor of degree d = g + 1. It
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is notable that performing a Cantor reduction step on a divisor of degree d in this case
usually yields another divisor of degree d. This phenomena will be discussed in detail in
Section 10.4.2.

We now consider the uniqueness of the reduced divisor of Theorem 10.3.21.
Lemma 10.3.24 below shows that non-uniqueness can only arise with split or inert models.
It follows that there is a unique reduced divisor in every divisor class for hyperelliptic
curves with ramified model. For hyperelliptic curves with split or inert model there is not
necessarily a unique reduced divisor.

Lemma 10.3.24 Let y2 +H (x)y = F (x) be a hyperelliptic curve over k of genus g. Let
dH = deg(H (x)) and dF = deg(F (x)). Let D1 and D2 be semi-reduced divisors of degree
at most g. Assume that D1 �= D2 but D1 ≡ D2. Then dF = 2g + 2 or dH = g + 1.

Proof First note that dH ≤ g + 1 and dF ≤ 2g + 2. Let D′3 = D1 + ι∗(D2) so that D′3 ≡
D1 −D2 ≡ 0 as an affine divisor. Let D3 be the semi-reduced divisor equivalent to D′3
(i.e., by removing all occurences (P )+ (ι(P ))). Note that the degree of D3 is at most
2g and that D3 �= 0. Since D3 ≡ 0 and D3 is an effective affine divisor we have D3 =
div(G(x, y)) on C ∩ A2 for some non-zero polynomial G(x, y). Without loss of generality,
G(x, y) = a(x)− b(x)y. Furthermore, b(x) �= 0 (since div(a(x)) is not semi-reduced for
any non-constant polynomial a(x)).

Exercise 10.1.21 shows that the degree of div(a(x)− b(x)y) on C ∩ A2 is the degree
of a(x)2 +H (x)a(x)b(x)− F (x)b(x)2. We need this degree to be at most 2g. This is
easily achieved if dF ≤ 2g (in which case dH = g + 1 for the curve to have genus g).
However, if 2g + 1 ≤ dF ≤ 2g + 2 then we need either deg(a(x)2) = deg(F (x)b(x)2) or
deg(H (x)a(x)b(x)) = deg(F (x)b(x)2). The former case is only possible if dF is even
(i.e., dF = 2g + 2). If dF = 2g + 1 and dH ≤ g then the latter case implies deg(a(x)) ≥
g + 1+ deg(b(x)) and so deg(a(x)2) > deg(F (x)b(x)2) and deg(G(x, y)) > 2g. �

For hyperelliptic curves of fixed (small) genus it is possible to give explicit formulae for
the general cases of the composition and reduction algorithms. For genus 2 curves this was
done by Harley [251] (the basic idea is to formally solve for u†(x) such that u†(x)u(x) =
monic(v(x)2 +H (x)v(x)− F (x)) as in equation (10.10)). For extensive discussion and
details (and also for non-affine coordinate systems for efficient hyperelliptic arithmetic) we
refer to Sections 14.4, 14.5 and 14.6 of [16].

10.4 Addition in the divisor class group

We now show how Cantor’s addition and reduction algorithms for divisors on the affine
curve can be used to perform arithmetic in the divisor class group of the projective curve.
A first remark is that Lemma 10.3.3 implies that every degree zero divisor class on a
hyperelliptic curve has a representative of the form D + n+(∞+)+ n−(∞−) where D is a
semi-reduced (hence, affine and effective) divisor and n+, n− ∈ Z (necessarily, deg(D)+
n+ + n− = 0).
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10.4.1 Addition of divisor classes on ramified models

On a hyperelliptic curve with ramified model there is only a single point at infinity. We will
show in this section that, for such curves, one can compute in the divisor class group using
only affine divisors.

We use the Cantor algorithms for addition, semi-reduction and reduction. In general,
if one has a semi-reduced divisor D then, by case 1 of Lemma 10.3.20, a reduction step
reduces the degree of D by 2. Hence, at most deg(D)/2 reduction steps are possible.

Theorem 10.4.1 Let C be a hyperelliptic curve with ramified model. Then every degree
zero divisor class on C has a unique representative of the form D − n(∞) where D is
semi-reduced and where 0 ≤ n ≤ g.

Proof Theorem 10.3.21 showed that every affine divisor is equivalent to a semi-reduced
divisor D such that 0 ≤ deg(D) ≤ g. This corresponds to the degree zero divisor D − n(∞)
where n = deg(D). Uniqueness was proved in Lemma 10.3.24. �

A degree zero divisor of the form D − n(∞) where D is a semi-reduced divisor of
degree n and 0 ≤ n ≤ g is called reduced. We represent D using Mumford representation
as (u(x), v(x)) and we know that the polynomials u(x) and v(x) are unique. The divisor
class is defined over k if and only if the corresponding polynomials u(x), v(x) ∈ k[x].
Addition of divisors is performed using Cantor’s composition and reduction algorithms as
above.

Exercise 10.4.2 Let C : y2 +H (x)y = F (x) be a ramified model of a hyperelliptic curve
over Fq . Show that the inverse (also called the negative) of a divisor class on C represented
as (u(x), v(x)) is (u(x),−v(x)− (H (x) (mod u(x)))).

Exercise 10.4.3 Let C be a hyperelliptic curve over k of genus g with ramified model.
Let D1 and D2 be reduced divisors on C. Show that one can compute a reduced divisor
representing D1 +D2 in O(g3) operations in k. Show that one can compute [n]D1 in
O(log(n)g3) operations in k (here [n]D1 means the n-fold addition D1 +D1 + · · · +D1).

When the genus is 2 (i.e., d = 3) and one adds two reduced divisors (i.e., effective
divisors of degree ≤ 2) then the sum is an effective divisor of degree at most 4 and so only
one reduction operation is needed to compute the reduced divisor. Similarly, for curves
of any genus, at most one reduction operation is needed to compute a reduced divisor
equivalent to D + (P ) where D is a reduced divisor (such ideas were used by Katagi,
Akishita, Kitamura and Takagi [299, 298] to speed up cryptosystems using hyperelliptic
curves).

For larger genus there are several variants of the divisor reduction algorithm. In Section 4
of [111], Cantor gives a method that uses higher degree polynomials than y − v(x) and
requires fewer reduction steps. In Section VII.2.1 of [61], Gaudry presents a reduction
algorithm, essentially due to Lagrange, that is useful when g ≥ 3. The NUCOMP algorithm
(originally proposed by Shanks in the number field setting) is another useful alternative.
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We refer to Jacobson and van der Poorten [289] and Section VII.2.2 of [61] for details. It
seems that NUCOMP should be used once the genus of the curve exceeds 10 (and possibly
even for g ≥ 7).

Exercise 10.4.4 Let C be a hyperelliptic curve of genus 2 over a field k with a ramified
model. Show that every k-rational divisor class has a unique representative of one of the
following four forms:

1. (P )− (∞) where P ∈ C(k), including P = ∞. Here u(x) = (x − xP ) or u(x) = 1.
2. 2(P )− 2(∞) where P ∈ C(k), excluding points P such that P = ι(P ). Here u(x) =

(x − xP )2.
3. (P )+ (Q)− 2(∞) where P,Q ∈ C(k) are such that P,Q �= ∞, P �= Q, P �= ι(Q).

Here u(x) = (x − xP )(x − xQ).
4. (P )+ (σ (P ))− 2(∞) where P ∈ C(K)− C(k) for any quadratic field extension K/k,

Gal(K/k) = 〈σ 〉 and σ (P ) �∈ {P, ι(P )}. Here u(x) is an irreducible quadratic in k[x].

Exercise 10.4.5 can come in handy when computing pairings on hyperelliptic curves.

Exercise 10.4.5 Let D1 = div(u1(x), y − v1(x)) ∩ A2 and D2 = div(u2(x), y − v2(x)) ∩
A2 be semi-reduced divisors on a hyperelliptic curve with ramified model over k. Write
d1 = deg(u1(x)) and d2 = deg(u2(x)). Let D3 = div(u3(x), y − v3(x)) ∩ A2 be a semi-
reduced divisor of degree d3 such that D3 − d3(∞) ≡ D1 − d1(∞)+D2 − d2(∞). Show
that if d2 = d3 then D1 − d1(∞) ≡ D3 −D2.

10.4.2 Addition of divisor classes on split models

This section is rather detailed and can safely be ignored by most readers. It presents results
of Paulus and Rück [429] and Galbraith, Harrison and Mireles [202].

Let C be a hyperelliptic curve of genus g over k with a split model. We have
already observed that every degree zero divisor class has a representative of the form
D + n+(∞+)+ n−(∞−) where D is semi-reduced and n+, n− ∈ Z. Lemma 10.3.20 has
shown that we may assume 0 ≤ deg(D) ≤ g + 1. One could consider the divisor to be
reduced if this is the case, but this would not be optimal.

The Riemann–Roch theorem implies we should be able to take deg(D) ≤ g but Cantor
reduction becomes “stuck” if the input divisor has degree g + 1. The following simple trick
allows us to reduce to semi-reduced divisors of degree g (and this essentially completes the
proof of the “Riemann–Roch theorem” for these curves). Recall the polynomial G+(x) of
degree d = g + 1 from Exercise 10.1.22.

Lemma 10.4.6 Let y2 +H (x)y = F (x) be a hyperelliptic curve of genus g over k with split
model. Let u(x), v(x) be a Mumford representation such that deg(u(x)) = g + 1. Define

v‡(x) = G+(x)+ (v(x)−G+(x) (mod u(x))) ∈ k[x]
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where we mean that v(x)−G+(x) is reduced to a polynomial of degree at most
deg(u(x))− 1 = g. Define

u†(x) = monic

(
v‡(x)2 +H (x)v‡(x)− F (x)

u(x)

)
and

v†(x) = −v‡(x)−H (x) (mod u†(x)). (10.11)

Then deg(u†(x)) ≤ g and

div(u(x), y − v(x)) ∩ A2 = div(u†(x), y − v†(x)) ∩ A2 − div(u†(x)) ∩ A2

+ div(y − v‡(x)) ∩ A2. (10.12)

Proof Note that v‡(x) ≡ v(x) (mod u(x)) and so v‡(x)2 +H (x)v‡(x)− F (x) ≡ 0
(mod u(x)); hence, u†(x) is a polynomial. The crucial observation is that deg(v‡(x)) =
deg(G+(x)) = d = g + 1 and so the leading coefficient of v‡(x) agrees with that of
G+(x). Hence, deg(v‡(x)2 +H (x)v‡(x)− F (x)) ≤ 2d − 1 = 2g + 1 and so deg(u†(x)) ≤
2d − 1− d = d − 1 = g as claimed. To show equation (10.12) it is sufficient to write
u(x)u†(x) =∏l

i=1(x − xi)ei and to note that

div(y − v‡(x)) ∩ A2 =
l∑

i=1

ei(xi, v
‡(yi))

= div(u(x), y − v(x)) ∩ A2 + div(u†(x), y +H (x)+ v†(x)) ∩ A2

and that div(u†(x)) = div(u†(x), y − v†(x))+ div(u†(x), y + v†(x)+H (x)). �

Example 10.4.7 Let C : y2 = F (x) = x6 + 6 = (x − 1)(x + 1)(x − 2)(x + 2)(x − 3)
(x + 3) over F7. Then G+(x) = x3. Consider the divisor D = (1, 0)+ (−1, 0)+ (2, 0)
with Mumford representation (u(x), v(x)) = ((x − 1)(x + 1)(x − 2), 0). Performing
standard Cantor reduction gives u†(x) = F (x)/u(x) = (x + 2)(x − 3)(x + 3), which
corresponds to the trivial divisor equivalence D ≡ (−2, 0)+ (3, 0)+ (−3, 0). Instead, we
take v‡ = G+(x)+ (−G+(x) (mod u(x))) = x3 + (−x3 + u(x)) = u(x). Then u†(x) =
monic

(
(v‡(x)2 − F (x))/u(x)

) = x2 + 5x + 2 and v†(x) = 3x + 5. The divisor
div(u†(x), y − v†(x)) ∩ A2 is a sum (P )+ (σ (P )) where P ∈ C(F72 )− C(F7) and
σ is the non-trivial element of Gal(F72/F7).

The operation (u(x), v(x)) �→ (u†(x), v†(x)) of equation (10.11) is called composition
and reduction at infinity; the motivation for this is given in equation (10.17) below. Some
authors call it a baby step. This operation can be performed even when deg(u(x)) < d, and
we analyse it in the general case in Lemma 10.4.14.

Exercise 10.4.8 Let the notation be as in Lemma 10.4.6. Let du = deg(u(x)) so that
v‡(x) agrees with G+(x) for the leading d − du + 1 coefficients and so m = deg(v‡(x)2+
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H (x)v‡(x)− F (x)) ≤ d + du − 1. Let du† = deg(u†(x)) so that m = du + du† . Show that
v∞− (y − v‡(x)) = −d, div(y − v‡(x)) =

div(u(x), y − v(x)) ∩ A2 + div(u†(x), y +H (x)+ v†(x)) ∩ A2

− (du + du† − d)(∞+)− d(∞−) (10.13)

and v∞+ (y − v‡(x)) = −(du + du† − d).

We now discuss how to represent divisor classes. An obvious choice is to represent
classes as D − d(∞+) where D is an affine effective divisor of degree d (see Paulus and
Rück [429] for a full discussion of this case). A more natural representation, as pointed
out by Galbraith, Harrison and Mireles [202], is to use balanced representations at infinity:
in other words, when g is even, to represent divisor classes as D − (g/2)((∞+)+ (∞−))
where D is an effective divisor of degree g.

Definition 10.4.9 Let C be a hyperelliptic curve of genus g over k with split model. If g

is even then define D∞ = g
2 ((∞+)+ (∞−)). If g is odd then define D∞ = (g+1)

2 (∞+)+
(g−1)

2 (∞−).
Let u(x), v(x) ∈ k[x] be the Mumford representation of a semi-reduced divisor D =

div(u(x), y − v(x)) ∩ A2 and n ∈ Z. Then div(u(x), v(x), n) denotes the degree zero divisor

D + n(∞+)+ (g − deg(u(x))− n)(∞−)−D∞.

If 0 ≤ deg(u(x)) ≤ g and 0 ≤ n ≤ g − deg(u(x)) then such a divisor is called reduced.

Uniqueness of this representation is shown in Theorem 10.4.19. When g is odd then
one could also represent divisor classes using D∞ = (g + 1)/2((∞+)+ (∞−)). This is
applicable in the inert case too. A problem is that this would lead to polynomials of higher
degree than necessary in the Mumford representation, and divisor class representatives
would no longer necessarily be unique.

It is important to realise that u(x) and v(x) are only used to specify the affine divisor. The
values of v∞+(y − v(x)) and v∞− (y − v(x)) have no direct influence over the degree zero
divisor under consideration. Note also that we allow n ∈ Z in Definition 10.4.9 in general,
but reduced divisors must have n ∈ Z≥0.

For hyperelliptic curves with split model,∞+,∞− ∈ k and so a divisor (u(x), v(x), n)
is defined over k if and only if u(x), v(x) ∈ k[x]. Note that when the genus is even then
D∞ is k-rational even when the model is inert, though in this case a divisor (u(x), v(x), n)
with n �= 0 is not defined over k if u(x), v(x) ∈ k[x].

We may now consider Cantor’s addition algorithm in this setting.

Lemma 10.4.10 Let C be a hyperelliptic curve over k of genus g with split model.
Let div(u1(x), v1(x), n1) and div(u2(x), v2(x), n2) be degree zero divisors as above. Write
Di = div(ui(x), y − vi(x)) ∩ A2 for i = 1, 2 and let D3 = div(u3(x), y − v3(x)) ∩ A2 be
the semi-reduced divisor equivalent to D1 +D2, and s(x) such that D1 +D2 = D3 +
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div(s(x)) ∩ A2. Let m = g/2 when g is even and m = (g + 1)/2 otherwise. Then

div(u1, v1, n1)+ div(u2, v2, n2) ≡ div(u3, v3, n1 + n2 + deg(s)−m). (10.14)

Proof We will show that

div(u1, v1, n1)+ div(u2, v2, n2) = div(u3, v3, n1 + n2 + deg(s)−m) + div(s(x)).

The left-hand side is

D1 +D2 + (n1 + n2 −m)(∞+)+ (3m− deg(u1)− deg(u2)

− n1 − n2)(∞−) − D∞. (10.15)

Replacing D1 +D2 by D3 + div(s(x)) ∩ A2 has no effect on the coefficients of ∞+
or ∞−, but since we actually need div(s(x)) on the whole of C we have D1 +D2 =
D3 + div(s(x))+ deg(s(x))((∞+)+ (∞−)). Writing div(u3, v3, n3) = div(u3, y − v3) ∩
A2 + n3(∞+)+ (g − deg(u3)− n3)(∞−)−D∞ gives n3 = n1 + n2 + deg(s(x))−m as
required.

Note that deg(u3)+ deg(s) = deg(u1)+ deg(u2), so the coefficient of ∞− in equa-
tion (10.15) is also correct (as it must be). �

We now discuss reduction of divisors on a hyperelliptic curve with a split model. We
first consider the basic Cantor reduction step. There are two relevant cases for split models
(namely, the first and third cases in Lemma 10.3.20) that we handle as Lemma 10.4.11 and
Exercise 10.4.12.

Lemma 10.4.11 LetC : y2 +H (x)y = F (x) where deg(F (x)) = 2d = 2g + 2 be a hyper-
elliptic curve over k of genus g with split model. Let div(u(x), v(x), n) be a degree zero
divisor as in Definition 10.4.9. Let (u†(x), v†(x)) be the polynomials arising from a Cantor
reduction step (i.e., u†(x) and v†(x) are given by equation (10.10)). If deg(v(x)) ≥ d =
g + 1 then set n† = n+ deg(v(x))− deg(u†(x)) = n+ (deg(u(x))− deg(u†(x)))/2 and if
deg(v(x)) < g + 1 < deg(u(x)) then set n† = n+ g + 1− deg(u†(x)). Then

div(u, v, n) = div(u†, v†, n†)+ div(y − v(x))− div(u†(x)) (10.16)

and div(u, v, n) ≡ div(u†, v†, n†).

Proof If deg(v(x)) ≥ d then deg(u(x))+ deg(u†(x)) = 2 deg(v(x)) and v∞+ (y − v(x)) =
v∞− (y − v(x)) = − deg(v(x)). For equation (10.16) to be satisfied we require

n = n† + v∞+(y − v(x))− v∞+(u†(x))

and the formula for n† follows (the coefficients of∞− must also be correct, as the divisors
all have degree zero).

In the second case of reduction, we have deg(v(x)) < d < deg(u(x)) and hence
deg(u(x))+ deg(u†(x)) = 2d and v∞+ (y − v(x)) = v∞− (y − v(x)) = −d. The formula for
n† follows as in the first case. �
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Exercise 10.4.12 Let C : y2 +H (x)y = F (x) where deg(F (x)) < 2d = 2g + 2 be a
hyperelliptic curve over k of genus g with split model. Let div(u(x), v(x), n) be a degree
zero divisor as in Definition 10.4.9 such that d ≤ deg(u(x)). Let (u†(x), v†(x)) be the poly-
nomials arising from a Cantor reduction step. Show that div(u, v, n) ≡ div(u†, v†, n†)
where if deg(v(x)) < d then n† = n+ g + 1− deg(u†(x)) and if deg(v(x)) ≥ d then
n† = n+ deg(v(x))− deg(u†(x)).

Example 10.4.13 Let C : y2 = x6 + 3 over F7. Let D1 = div((x − 1)(x − 2), 2, 0) =
(1, 2)+ (2, 2)−D∞ and D2 = div((x − 3)(x − 4), 2, 0) = (3, 2)+ (4, 2)−D∞. Cantor
addition gives D1 +D2 = D3 = div((x − 1)(x − 2)(x − 3)(x − 4), 2,−1), which is not
a reduced divisor. Applying Cantor reduction to D3 results in u†(x) = (x − 5)(x − 6)
and v†(x) = −2 and n† = n3 + (g + 1)− deg(u†(x)) = −1+ 3− 2 = 0. Hence, we have
D3 ≡ div((x − 5)(x − 6),−2, 0), which is a reduced divisor.

We now explain the behaviour of a composition at infinity and reduction step.

Lemma 10.4.14 LetC : y2 +H (x)y = F (x) where deg(F (x)) = 2d = 2g + 2 be a hyper-
elliptic curve over k of genus g with split model. Let div(u(x), v(x), n) be a degree zero
divisor as in Definition 10.4.9 such that 1 ≤ deg(u(x)) ≤ g + 1. Let v‡(x), u†(x) and v†(x)
be as in Lemma 10.4.6. Let n† = n+ deg(u(x))− (g + 1) and D† = div(u†(x), v†(x), n†).
Then

D = D† + div(y − v‡(x))− div(u†(x)).

If one uses G−(x) in Lemma 10.4.6 then n† = n+ g + 1− deg(u†(x)).

It follows that if deg(u(x)) = g + 1 then div(u, y − v) ∩ A2 ≡ div(u†, y − v†) ∩ A2 and
there is no adjustment at infinity (the point of the operation in this case is to lower the degree
from deg(u(x)) = g + 1 to deg(u†(x)) ≤ g). But if, for example, deg(u(x)) = deg(u†(x)) =
g then we have

div(u, y − v) ∩ A2 −D∞ ≡ div(u†, y − v†) ∩ A2 + (∞+)− (∞−)−D∞ (10.17)

and so the operation corresponds to addition of D with the degree zero divisor (∞−)−
(∞+). This justifies the name “composition at infinity”. To add (∞+)− (∞−) one should
use G−(x) instead of G+(x) in Lemma 10.4.6.

Exercise 10.4.15 Prove Lemma 10.4.14.

We can finally put everything together and obtain the main result about reduced divisors
on hyperelliptic curves with split model.

Theorem 10.4.16 Let C be a hyperelliptic curve over k of genus g with split model. Then
every divisor class contains a reduced divisor as in Definition 10.4.9.

Proof We have shown the existence of a divisor in the divisor class with semi-reduced affine
part, and hence of the form (u(x), v(x), n) with n ∈ Z. Cantor reduction and composition
and reduction at infinity show that we can assume deg(u(x)) ≤ g. Finally, to show that one
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may assume 0 ≤ n ≤ g − deg(u(x)) note that Lemma 10.4.14 maps n to n† = n+ (g +
1)− deg(u(x)). Hence, if n > g − deg(u(x)) then n > n† ≥ 0 and continuing the process
gives a reduced divisor. On the other hand, if n < 0 then using G−(x) instead one has
n† = n+ g + 1− deg(u†(x)) ≤ g − deg(u†(x)). �

Exercise 10.4.17 Let C : y2 +H (x)y = F (x) be a hyperelliptic curve of genus g over Fq

with split model. If g is even, show that the inverse of div(u(x), v(x), n) is div(u(x),−v(x)−
(H (x) (mod u(x))), g − deg(u(x))− n). If g is odd then show that computing the inverse
of a divisor may require performing composition and reduction at infinity.

Example 10.4.18 Let C : y2 = x6 + x + 1 over F37. Then d = 3 and G+(x) = x3. Let
D = (1, 22)+ (2, 17)+ (∞+)− (∞−)−D∞, which is represented as div(u(x), v(x), 1)
where u(x) = (x − 1)(x − 2) = x2 + 34x + 2 and v(x) = 32x + 27. This divisor is not
reduced. Then v‡(x) = x3 + 25x + 33 and deg(v‡(x)2 − F (x)) = 4. Indeed, v‡(x)2 −
F (x) = 13u(x)u†(x) where u†(x) = x2 + 28x + 2. It follows that v†(x) = 7x + 22 and
that

div(u(x), v(x), 1) ≡ div(u†(x), v†(x), 0),

which is reduced.

Explicit formulae for all these operations for genus 2 curves of the form y2 = x6 +
F4x

4 + F3x
3 + F2x

2 + F1x + F0 have been given by Erickson, Jacobson, Shang, Shen
and Stein [184].

Uniqueness of the representation

We have shown that every divisor class for hyperelliptic curves with a split model contains
a reduced divisor. We now discuss the uniqueness of this reduced divisor, following Paulus
and Rück [429].

Theorem 10.4.19 Let C be a hyperelliptic curve over k of genus g with split model. Then
every divisor class has a unique representative of the form

D + n(∞+)+ (g − deg(D)− n)(∞−)−D∞

where D is a semi-reduced divisor (hence, affine and effective) and 0 ≤ n ≤ g − deg(D).

Proof Existence has already been proved using the reduction algorithms above, so it suffices
to prove uniqueness. Hence, suppose

D1 + n1(∞+)+ (g − deg(D1)− n1)(∞−)−D∞
≡ D2 + n2(∞+)+ (g − deg(D2)− n2)(∞−)−D∞

with all terms satisfying the conditions of the theorem. Then, taking the difference and
adding div(u2(x)) = D2 + ι(D2)− deg(D2)((∞+)+ (∞−)), there is a function f (x, y)
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such that

div(f (x, y)) = D1 + ι(D2)− (n2 + deg(D2)− n1)(∞+)− (n1 + deg(D1)− n2)(∞−).

Since f (x, y) has poles only at infinity it follows that f (x, y) = a(x)+ yb(x) where
a(x), b(x) ∈ k[x]. Now, 0 ≤ ni ≤ ni + deg(Di) ≤ g and so−g ≤ v∞+ (f (x, y)) = −(n2 +
deg(D2)− n1) ≤ g and −g ≤ v∞− (f (x, y)) = −(n1 + deg(D1)− n2) ≤ g. But v∞+ (y) =
v∞− (y) = −(g + 1) and so b(x) = 0 and f (x, y) = a(x). But div(a(x)) = D + ι(D)−
deg(a(x))((∞+)+ (∞−)) and so D1 = D2, n1 + deg(D1)− n2 = n2 + deg(D2)− n1 and
n1 = n2. �

Exercise 10.4.20 LetC be a hyperelliptic curve over k of genus g = d − 1 with split model.
Show that (∞+)− (∞−) is not a principal divisor and that this divisor is represented as
(1, 0, g/2� + 1).

10.5 Jacobians, Abelian varieties and isogenies

As mentioned in Section 7.8, we can consider Pic0
k(C) as an algebraic group, by considering

the Jacobian variety JC of the curve. The fact that the divisor class group is an algebraic
group is not immediate from our description of the group operation as an algorithm (rather
than a formula).

Indeed, JC is an Abelian variety (namely, a projective algebraic group). The dimension
of the variety JC is equal to the genus of C. Unfortunately, we do not have space to introduce
the theory of Abelian varieties and Jacobians in this book. We remark that the Mumford
representation directly gives an affine part of the Jacobian variety of a hyperelliptic curve
(see Propositions 1.2 and 1.3 of Mumford [399] for the details).

An explicit description of the Jacobian variety of a curve of genus 2 has been given by
Flynn; we refer to Chapter 2 of Cassels and Flynn [115] for details, references and further
discussion.

There are several important concepts in the theory of Abelian varieties that are not able
to be expressed in terms of divisor class groups.3 Hence, our treatment of hyperelliptic
curves will not be as extensive as the case of elliptic curves. In particular, we do not give a
rigorous discussion of isogenies (i.e., morphisms of varieties that are group homomorphisms
with finite kernel) for Abelian varieties of dimension g > 1. However, we do mention one
important result. The Poincaré reducibility theorem (see Theorem 1 of Section 19 (page 173)
of Mumford [398]) states that ifA is an Abelian variety over k andB is an Abelian subvariety
of A (i.e., B is a subset of A that is an Abelian variety over k) then there is an Abelian
subvariety B ′ ⊆ A over k such that B ∩ B ′ is finite and B + B ′ = A. It follows that A is
isogenous over k to B × B ′. If an Abelian variety A over k has no Abelian subvarieties
over k then we call it simple. An Abelian variety is absolutely simple if is has no Abelian
subvarieties over k.

3 There are two reasons for this: first, the divisor class group is merely an abstract group and so does not have the geometric
structure necessary for some of these concepts; second, not every Abelian variety is a Jacobian variety.
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Despite not discussing isogenies in full generality, it is possible to discuss isogenies that
arise from maps between curves purely in terms of divisor class groups. We now give some
examples, but first introduce a natural notation.

Definition 10.5.1 Let C be a curve over a field k and let n ∈ N. For D ∈ Pic0
k(C) define

[n]D = D + · · · +D (n times).

Indeed, we usually assume that [n]D is a reduced divisor representing the divisor class nD.
Define

Pic0
k(C)[n] = {D ∈ Pic0

k(C) : [n]D = 0}.
Recall from Corollary 8.3.10 that if φ : C1 → C2 is a non-constant rational map (and

hence a non-constant morphism) over k between two curves then there are corresponding
group homomorphisms φ∗ : Pic0

k(C2)→ Pic0
k(C1) and φ∗ : Pic0

k(C1)→ Pic0
k(C2). Further-

more, by part 5 of Theorem 8.3.8 we have φ∗φ∗(D) = [deg(φ)]D on Pic0
k(C2).

In the special case of a non-constant rational map φ : C → E over k where E is an
elliptic curve we can compose with the Abel–Jacobi map E→ Pic0

k(E) of Theorem 7.9.8
given by P �→ (P )− (OE) to obtain group homomorphisms that we call φ∗ : E→ Pic0

k(C)
and φ∗ : Pic0

k(C)→ E.

Exercise 10.5.2 Letφ : C → E be a non-constant rational map over k whereE is an elliptic
curve over k. Let φ∗ : E→ Pic0

k(C) and φ∗ : Pic0
k(C)→ E be the group homomorphisms

as above. Show that φ∗ is surjective as a map from Pic0
k
(C) to E(k) and that the kernel of

φ∗ is contained in E[deg(φ)].

If C is a curve of genus 2 and there are two non-constant rational maps φi : C → Ei over
k for elliptic curves E1, E2 then one naturally has a group homomorphism φ1,∗ × φ2,∗ :
Pic0

k
(C)→ E1(k)× E2(k). If ker(φ1,∗) ∩ ker(φ2,∗) is finite then it follows from the theory

of Abelian varieties that the Jacobian variety JC is isogenous to the product E1 × E2 of the
elliptic curves and one says that JC is a split Jacobian.

Example 10.5.3 Let C : y2 = x6 + 2x2 + 1 be a genus 2 curve over F11. Consider the
rational maps

φ1 : C → E1 : Y 2 = X3 + 2X + 1

given by φ1(x, y) = (x2, y) and

φ2 : C → E2 : Y 2 = X3 + 2X2 + 1

given by φ2(x, y) = (1/x2, y/x3). The two elliptic curves E1 and E2 are neither isomorphic
or isogenous. One has #E1(F11) = 16, #E2(F11) = 14 and #Pic0

F11
(C) = 14 · 16.

It can be shown (this is not trivial) that ker(φ1,∗) ∩ ker(φ2,∗) is finite. Further, since
deg(φ1) = deg(φ2) = 2 it can be shown that the kernel of φ1,∗ × φ2,∗ is contained in
Pic0

k
(C)[2].
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The Jacobian of a curve satisfies the following universal property. Let φ : C → A be a
morphism whereA is an Abelian variety. LetP0 ∈ C(k) be such thatφ(P0) = 0 and consider
the Abel–Jacobi map ψ : C → JC (corresponding to P �→ (P )− (P0)). Then there is a
homomorphism of Abelian varieties φ′ : JC → A such that φ = φ′ ◦ ψ . Exercise 10.5.4
gives a special case of this universal property.

Exercise 10.5.4 Let C : y2 = x6 + a2x
4 + a4x

2 + a6 over k where char(k) �= 2, and let
φ(x, y) = (x2, y) be non-constant rational map φ : C → E over k where E is an elliptic
curve. Let P0 ∈ C(k) be such that φ(P0) = OE . Show that the composition

C(k)→ Pic0
k
(C)→ E(k)

where the first map is the Abel–Jacobi map P �→ (P )− (P0) and the second map, φ∗, is
just the original map φ.

There is a vast literature on split Jacobians and we are unable to give a full survey. We
refer to Sections 4, 5 and 6 of Kuhn [321] or Chapter 14 of Cassels and Flynn [115] for
further examples.

10.6 Elements of order n

We now bound the size of the set of elements of order dividing n in the divisor class group
of a curve. As with many other results in this chapter, the best approach is via the theory
of Abelian varieties. We state Theorem 10.6.1 for general curves, but without proof. The
result is immediate for Abelian varieties over C, as they are isomorphic to Cg/L where L

is a rank 2g lattice. The elements of order n in Cg/L are given by the n2g points in 1
n
L/L.

Theorem 10.6.1 Let C be a curve of genus g over k and let n ∈ N. If char(k) = 0 or
gcd(n, char(k)) = 1 then #Pic0

k
(C)[n] = n2g . If char(k) = p > 0 then #Pic0

k
(C)[p] = pe

where 0 ≤ e ≤ g.

Proof See Theorem 4 of Section 7 of Mumford [398]. �

10.7 Hyperelliptic curves over finite fields

There are a finite number of points on a curve C of genus g over a finite field Fq . There are
also finitely many possible values for the Mumford representation of a reduced divisor on
a hyperelliptic curve over a finite field. Hence, the divisor class group Pic0

Fq
(C) of a curve

over a finite field is a finite group. Since the affine part of a reduced divisor is a sum of
at most g points (possibly defined over a field extension of degree bounded by g) it is not
surprising that there is a connection between {#C(Fqi ) : 1 ≤ i ≤ g} and #Pic0

Fq
(C). Indeed,

there is also a connection between {#Pic0
Fqi

(C) : 1 ≤ i ≤ g} and #C(Fq). The aim of this
section is to describe these connections. We also give some important bounds on these
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numbers (analogous to the Hasse bound for elliptic curves). Most results are presented for
general curves (i.e., not only hyperelliptic curves).

One of the most important results in the theory of curves over finite fields is the following
theorem of Hasse and Weil. The condition that the roots of L(t) have absolute value

√
q can

be interpreted as an analogue of the Riemann hypothesis. This result gives precise bounds
on the number of points on curves and divisor class groups over finite fields.

Theorem 10.7.1 (Hasse–Weil) Let C be a curve of genus g over Fq . There exists a
polynomial L(t) ∈ Z[t] of degree 2g with the following properties:

1. L(1) = #Pic0
Fq

(C).

2. One can write L(t) =∏2g
i=1(1− αit) with αi ∈ C such that αg+i = αi (this is complex

conjugation) and |αi | = √q for 1 ≤ i ≤ g.
3. L(t) = qgt2gL(1/(qt)) and so

L(t) = 1+ a1t + · · · + ag−1t
g−1 + agt

g + qag−1t
g+1 + · · · + qg−1a1t

2g−1 + qgt2g.

4. For n ∈ N define Ln(t) =∏2g
i=1(1− αn

i t). Then #Pic0
Fqn

(C) = Ln(1).

Proof The polynomial L(t) is the numerator of the zeta function of C. For details see
Section V.1 of Stichtenoth [529], especially Theorem V.1.15. The proof that |αi | = √q for
all 1 ≤ i ≤ 2g is Theorem V.2.1 of Stichtenoth [529].

A proof of some parts of this result in a special case is given in Exercise 10.7.14. �

Exercise 10.7.2 Show that part 3 of Theorem 10.7.1 follows immediately from part 2.

Definition 10.7.3 The polynomial L(t) of Theorem 10.7.1 is called the L-polynomial of
the curve C over Fq .

Theorem 10.7.4 (Schmidt) Let C be a curve of genus g over Fq . There there exists a divisor
D on C of degree 1 that is defined over Fq .

We stress that this result does not prove that C has a point defined over Fq (though when
q is large compared with the genus, existence of a point in C(Fq) will follow by the Weil
bounds). The result implies that even a curve with no points defined over Fq does have a
divisor of degree 1 (hence, not an effective divisor) that is defined over Fq .

Proof See Corollary V.1.11 of Stichtenoth [529]. �

We now describe the precise connection between the roots αi of the polynomial L(t)
(corresponding to Pic0

Fq
(C)) and #C(Fqn ) for n ∈ N.

Theorem 10.7.5 Let C be a curve of genus g over Fq and let αi ∈ C for 1 ≤ i ≤ 2g be as
in Theorem 10.7.1. Let n ∈ N. Then

#C(Fqn ) = qn + 1−
2g∑
i=1

αn
i . (10.18)
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Proof See Corollary V.1.16 of Stichtenoth [529]. �

Equation (10.18) can be read in two ways. On the one hand, it shows that given L(t)
one can determine #C(Fqn ). On the other hand, it shows that if one knows #C(Fqn ) for
1 ≤ n ≤ g then one has g non-linear equations in the g variables α1, . . . , αg (there are
only g variables since αi+g = q/αi for 1 ≤ i ≤ g). The following result shows that one can
therefore deduce the coefficients a1, . . . , ag giving the polynomial L(t).

Lemma 10.7.6 (Newton’s identities) Let α1, . . . , α2g ∈ C and define tn =
∑2g

i=1 α
n
i . Let

a1, . . . , a2g be such that
∏2g

i=1(x − αi) = x2g + a1x
2g−1 + · · · + a2g . Then, for 1 ≤ n ≤ 2g,

nan = −tn −
n−1∑
i=1

an−i ti .

In particular, a1 = −t1 and a2 = (t2
1 − t2)/2.

Exercise 10.7.7� Prove Lemma 10.7.6.

Exercise 10.7.8 Suppose C is a genus 3 curve over F7 such that #C(F7) = 8, #C(F72 ) =
92, #C(F73 ) = 344. Determine L(t) and hence #Pic0

F7
(C). (One can take y2 = x7 + x + 1

for C.)

Exercise 10.7.9 (Weil bounds) Let C be a curve of genus g over Fq . Use Theorem 10.7.1
and Theorem 10.7.5 to show that

|#C(Fqn )− (qn + 1)| ≤ 2g
√
qn

and

(
√
qn − 1)2g ≤ #Pic0

Fqn
(C) ≤ (

√
qn + 1)2g.

More precise bounds on #C(Fq) are known; we refer to Section V.3 of Stichtenoth [529]
for discussion and references.

Consider the q-power Frobenius map π : C → C given by π (x, y) = (xq, yq ). This map
induces a morphism π : JC → JC (indeed, an isogeny of Abelian varieties) where JC is the
Jacobian variety of C. By considering the action of π on the Tate module (the Tate module
of an Abelian variety is defined in the analogous way to elliptic curves, see Section 19 of
Mumford [398]) it can be shown that π satisfies a characteristic equation given by a monic
polynomial P (T ) ∈ Z[T ] of degree 2g. It can further be shown that P (T ) = T 2gL(1/T )
(we refer to Section 21 of [398], especially the subsection entitled “Application II: The
Riemann Hypothesis”).

Definition 10.7.10 Let C be a curve over Fq . The characteristic polynomial of Frobenius
is the polynomial P (T ) = T 2gL(1/T ).

The Frobenius map π : C → C also induces the map π∗ : Pic0
Fq

(C)→ Pic0
Fq

(C), and

we abuse notation by calling it π as well. If D is any divisor representing a divisor class in
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Pic0
Fq

(C) then P (π )D ≡ 0. In other words, if P (T ) = T 2g + a1T
2g−1 + · · · + a1q

g−1T +
qg then

π2g(D)+ [a1]π2g−1(D)+ · · · + [a1q
g−1]π (D)+ [qg]D ≡ 0 (10.19)

where the notation [n]D is from Definition 10.5.1.

Exercise 10.7.11 Let C be a curve over Fq and D a reduced divisor on C over Fq

with Mumford representation (u(x), v(x)). Let π be the q-power Frobenius map on C.
For a polynomial u(x) =∑d

i=0 uix
i define u(q)(x) =∑d

i=0 u
q
i x

i . Show that the Mumford
representation of π∗(D) is (u(q)(x), v(q)(x)).

Example 10.7.12 (Koblitz [298]) Let a ∈ {0, 1} and consider the genus 2 curve Ca :
y2 + xy = x5 + ax2 + 1 over F2. One can verify that #C0(F2) = 4, #C1(F2) = 2 and
#C0(F22 ) = #C1(F22 ) = 4. Hence, the characteristic polynomial of Frobenius is P (T ) =
T 4 + (−1)aT 3 + 2(−1)aT + 4. One can determine #Pic0

F2n
(Ca) for any n ∈ N. If n is com-

posite and m | n one has #Pic0
F2m

(Ca) | #Pic0
F2n

(Ca). For cryptographic applications one
would like #Pic0

F2n
(Ca)/#Pic0

F2
(Ca) to be prime, so restrict attention to primes values for n.

For example, taking n = 113 and a = 1 gives group order 2 · r where r = 539 · · · 381 is a
225-bit prime.

If D ∈ Pic0
F2n

(C1) then π4(D)− π3(D)− [2]π (D)+ [4]D ≡ 0 where π is the map
induced on Pic0

F2n
(C1) from the 2-power Frobenius map π (x, y) = (x2, y2) on C.

A major result, whose proof is beyond the scope of this book, is Tate’s isogeny theorem.

Theorem 10.7.13 (Tate) Let A and B be Abelian varieties over a field Fq . Then A is Fq-
isogenous to B if and only if PA(T ) = PB(T ). Similarly, A is Fq-isogenous to an Abelian
subvariety of B if and only if PA(T ) | PB(T ).

Proof See [540]. �

Exercise 10.7.14 gives a direct proof of Theorems 10.7.1 and 10.7.5 for genus 2 curves
with ramified model.

Exercise 10.7.14 � Let q be an odd prime power. Let F (x) ∈ Fq[x] be square-free
and of degree 5. Then C : y2 = F (x) is a hyperelliptic curve over Fq of genus 2 with
a ramified model. For n = 1, 2 let Nn = #C(Fqn ) and define tn = qn + 1−Nn so that
Nn = qn + 1− tn. Define a1 = −t1 and a2 = (t2

1 − t2)/2. Show, using direct calculation
and Exercise 10.4.4, that Pic0

Fq
(C) has order q2 + a1(q + 1)+ a2 + 1.

10.8 Supersingular curves

Recall from Theorem 10.6.1 that if C is a curve of genus g over a field k of characteristic
p then #Pic0

k
(C)[p] ≤ pg .
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Definition 10.8.1 Let k be a field such that char(k) = p > 0 and let C be a curve of genus
g over k. The p-rank of C is the integer 0 ≤ r ≤ g such that #Pic0

k
(C)[p] = pr .

An Abelian variety of dimension g over Fq is defined to be supersingular if it is
isogenous over Fq to Eg where E is a supersingular elliptic curve over Fq . A curve C over
Fq is supersingular if JC is a supersingular Abelian variety. It follows that the p-rank of
a supersingular Abelian variety over Fpn is zero. The converse is not true (i.e., p-rank zero
does not imply supersingular) when the dimension is 3 or more; see Example 10.8.8). If
the p-rank of a dimension g Abelian variety A over Fpn is g then A is said to be ordinary.

Lemma 10.8.2 Suppose A is a supersingular Abelian variety over Fq and write PA(T ) for
the characteristic polynomial of Frobenius on A. The roots α of PA(T ) are such that α/

√
q

is a root of unity.

Proof Since the isogeny to Eg is defined over some finite extension Fqn it follows from
part 4 of Theorem 9.11.2 that αn/

√
qn is a root of unity. Hence, α/

√
q is a root of unity.

�

The converse of Lemma 10.8.2 follows from the Tate isogeny theorem.

Example 10.8.3 Let C : y2 + y = x5 over F2. One can check that #C(F2) = 3 and
#C(F22 ) = 5 and so the characteristic polynomial of the 2-power Frobenius is P (T ) =
T 4 + 4 = (T 2 + 2T + 2)(T 2 − 2T + 2). It follows from Theorem 10.7.13 (Tate’s isogeny
theorem) that JC is isogenous to E1 × E2 where E1 and E2 are supersingular curves
over F2. The characteristic polynomial of the 22-power Frobenius can be shown to be
T 4 + 8T 2 + 16 = (T 2 + 4)2 and it follows that JC is isogenous over F22 to the square of a
supersingular elliptic curve. Hence, C is a supersingular curve.

Note that the endomorphism ring of JC is non-commutative since the map φ(x, y) =
(ζ5x, y), where ζ5 ∈ F24 is a root of z4 + z3 + z2 + z+ 1 = 0, does not commute with the
2-power Frobenius map.

Exercise 10.8.4� Show that ifC is a supersingular curve over Fq of genus 2 then #Pic0
Fq

(C) |
(qk − 1) for some 1 ≤ k ≤ 12.

The following result shows that computing the p-rank and determining supersingularity
are easy when P (T ) is known.

Theorem 10.8.5 Let A be an Abelian variety of dimension g over Fpn with characteristic
polynomial of Frobenius P (T ) = T 2g + a1T

2g−1 + · · · + agT
g + · · · + png .

1. The p-rank of A is the smallest integer 0 ≤ r ≤ g such that p | ai for all 1 ≤ i ≤ g − r .
(In other words, the p-rank is zero if p | ai for all 1 ≤ i ≤ g and the p-rank is g if
p � a1.)

2. A is supersingular if and only if

pin/2� | ai for all 1 ≤ i ≤ g.
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Proof Part 1 is Satz 1 of Stichtenoth [528]. Part 2 is Proposition 1 of Stichtenoth and
Xing [530]. �

We refer to Yui [572] for a survey of the Cartier–Manin matrix and related criteria for
the p-rank.

Exercise 10.8.6 Let A be an Abelian variety of dimension 2 over Fp that has p-rank zero.
Show that A is supersingular.

In fact, the result of Exercise 10.8.6 holds when Fp is replaced by any finite field; see
page 9 of Li and Oort [348].

Exercise 10.8.7 Let C : y2 + y = F (x) over F2n where deg(F (x)) = 5 be a genus 2 hyper-
elliptic curve. Show that C has 2-rank zero (and hence is supersingular).

Example 10.8.8 shows that, once the genus is at least 3, p-rank zero does not imply
supersingularity.

Example 10.8.8 Define C : y2 + y = x7 over F2. Then P (T ) = T 6 − 2T 3 + 23 and so by
Theorem 10.8.5 the 2-rank of C is zero but C is not supersingular.

Example 10.8.9 (Hasse/Hasse-Davenport/Duursma [171]) Let p > 2 be prime and C :
y2 = xp − x + 1 over Fp. One can verify that C is non-singular and the genus of C is
(p − 1)/2. It is shown in [171] that, over Fp2 , L(T ) = �p((−1

p
)pT ) where �p(T ) is the

p-th cyclotomic polynomial. It follows that the roots of P (T ) are roots of unity and so C

is supersingular.
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