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Appetizer: Discrete logarithm



Public Key Cryptography

You are securely con-
nected to this website.
Key exchange allows
two parties to agree
on a common secret
using only publicly
exchanged informa-
tion. Digital signature
allows parties to au-
thenticate themselves.

Let’s Encrypt is the
world’s largest cer-
tificate authority with
over 2.53 billion certifi-
cates issued.For 128-bit security,
DSA (based on DLP)
needs 4096-bit keys,
but ECDSA (based on
ECDLP) only needs
256-bit key.

EdDSA is not ECDSA
over a different
curve. Rather, it is
a Schnorr signature
implemented for the
Ed25519 Edwards curve.
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Preparation for Schnorr

Most of us have used Adobe Acrobat Sign to digitally
sign PDF documents.

Let (G, ·) be a finite abelian group of prime order ℓ. The
discrete logarithm problem (DLP) in G is: given 〈g〉 = G
and h ∈ G, find an integer k ∈ {0, . . . , ℓ − 1} such that
gk = h.
Number of operations for generic G is

√
#G.

Let p be a prime larger than 3 and q = pn for n > 0. An elliptic
curve E over finite field Fq can be written as E : y2 = x3 + ax + b
where a, b ∈ Fq and 4a3 + 27b2 ̸= 0, along with an extra point OE.
Points on E form a group with OE as the neutral element. P be a
point on E of prime order ℓ, then G = ⟨P⟩ with the exponentiation
replaced with scalar point multiplication, we get ECDLP.

A cryptographic hash function H takes arbitrary length
bit strings as input and produces a fixed-length bit string
as output, such that it is preimage resistant (can’t find in-
put of given output), second preimage resistant (can’t find a
different input leading to given output), and collision resistant
(can’t find two inputs with same output).
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Schnorr signature, Step 1: Σ-protocol

Let G = 〈g〉 where g ∈ (Z/pZ)× is an element of prime order ℓ.

The prover P randomly chooses (secret) k ∈ {0, . . . , ℓ− 1} and
publishes h = gk (mod p). Now, P can prove “knowledge” of a
discrete logarithm k to a verifier V:

P V

t $← {0, . . . , ℓ− 1}
e← gt (mod p)

r← {0, . . . , ℓ− 1}

s← t+ rk (mod ℓ) gs ?
= ehr (mod p)

G,p,h

commitment: e

challe
nge: r

response: s

4
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Schnorr signature, Step 2: Fiat-Shamir transformation

Choose a random oracle cryptographic hash function H with
appropriate domain and codomain.

The key generation
algorithm G outputs a pair (k,h) such that h = gk (mod p),
where k is the secret signing key and h is the public
verification key.

Signing (G,g, k,H,m)

1. t $← {1, . . . , ℓ− 1}

2. e← gt (mod p)

3. r← H(m∥e)

4. s← t+ rk (mod ℓ)

5. return σ := (e, s)

Verification (G,g,h,H,m, σ)
1. r← H(m∥e)

2. return gs ?
= ehr (mod p)
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Secure?

On Dec 20, 2016,
NIST initiated the
process.

In 1994, quantum
algorithm for solv-
ing the DLP. Unfor-
tunately, that is the
hard-problem used
by state-of-the-art
digital signatures.
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Entrée: Supersingular isogeny graph



Supersingular elliptic curves

Recall, p is a prime larger than 3 and q = pn for n > 0. For E/Fq
we have #E(Fq) = q+ 1− t, where |t| ≤ 2√q.

Supersingular elliptic curve
An elliptic curve over Fq is called supersingular if p | t.

Example
E1 : y2 = x3 + x over F23 is a supersingular elliptic curve
because #E(F23) = 24 and t = 0.
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Isogeny

Isogeny
An isogeny between two elliptic curves E/Fq and E′/Fq is a
non-constant rational function that maps points from E to
points on E′ and is compatible with the group law.

In fact, an
isogeny ϕ : E→ E′ exists iff #E(Fq) = #E′(Fq).

Example
For E1 : y2 = x3 + x and E2 : y2 = x3 + 19x over F23 we have

ϕ : E1 → E2

(x, y) 7→
(
x2 + 1
x ,

x2y− y
x2

)

8
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Degree of isogeny

Degree of (separable) isogeny
The degree of a (separable) isogeny ϕ : E→ E′ over Fq, is the
number of points on E, taken over any extension field of Fq,
mapping to OE′ .

Example
The degree of ϕ : E1 → E2 defined above is 2, because (0, 0)
and OE1 are the only two points mapping to OE2 .

Degree is multiplicative: deg(ϕ ◦ ψ) = deg(ϕ) deg(ψ)
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Isomorphism

Isomorphism
An isogeny of degree 1 is called an isomorphism.

That is, two
elliptic curves E/Fq and E′/Fq are isomorphic over Fq if there
exists a polynomial map over Fq that maps points on E to
points on E′ in a one-to-one way which is compatible with
the group operation.

Example
For E1 : y2 = x3 + x and E3 : y2 = x3 + 2x over F23 we have

τ : E1 → E3
(x, y) 7→ (−5x,−6y)
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Isomorphism class label

j-invariant
The j-invariant uniquely describes isomorphism classes over
an algebraic closure of Fq.

For E : y2 = x3 + ax+ b we have

j(E) = 1728 4a3
(4a3 + 27b2)

Note that two curves having the same j-invariant need not be
isomorphic over Fq.

Example
We have j(E1) = j(E2) = j(E3) = 1728 (mod 23) = 3. But E1 and
E2 are not isomorphic over F23.

If E is supersingular, then we can replace “algebraic closure of
Fq” with Fp2 .

11
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Supersingular isomorphism classes

The number of supersingular isomorphism classes over an
algebraic closure of Fp, with representative curves defined
over Fp2 , is Sp :=

⌊ p
12

⌋
+ ϵ where ϵ ∈ {0, 1, 2}.

Example
S23 = 3 with the classes represented by the j-invariants
0, 3, 19.
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Supersingular ℓ-isogeny graph

Let ℓ be a prime different from
p. The supersingular ℓ-isogeny
graph over an algebraic closure
of Fq is the directed multigraph
Gℓ(p) whose vertices belong to
the set of isomorphism classes
of supersingular elliptic curves
{j(E1), . . . , j(Es)} with s = Sp
and Ei/Fp2 ; there is a directed
edge [Ei, Ei′ ] for each
equivalence class (same
kernel) of ℓ-isogenies from Ei
to Ei′ .

Hence the out-degree of
each vertex is ℓ+ 1.

Example: G2(23)
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Endomorphism ring

Endomorphism ring
The endomorphism ring of E, EndFq(E), is the set of
Fq-isogenies from E to itself, together with the zero map
[0] : E→ E given [0](P) = OE.

In particular, for isogenies over
an algebraic closure of Fq, we write End(E).

Example
For E1 : y2 = x3 + x over F23, we have

End(E1) = Z id+Zι+ Z
ι+ π

2 + Z
id+ι ◦ π

2

where π, ι ∈ End(E1) such that π(x, y) = (x23, y23) and
ι(x, y) = (−x, αy) is an isomorphism over F232 = F23(α) with
α2 + 1 = 0. Moreover, ι ◦ ι = [−1], π ◦ π = [−23], and
ι ◦ π = −π ◦ ι; i.e. End(E1) is a non-commutative ring.

14
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The endomorphism ring of E, EndFq(E), is the set of
Fq-isogenies from E to itself, together with the zero map
[0] : E→ E given [0](P) = OE. In particular, for isogenies over
an algebraic closure of Fq, we write End(E).

Example
For E1 : y2 = x3 + x over F23, we have
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2 + Z
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Maximal orders

Deuring correspondence - I
E is a supersingular elliptic curve over Fq if and only if End(E)
is isomorphic to a maximal order in the quaternion algebra
Bp,∞.
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Maximal orders

Deuring correspondence - I
E is a supersingular elliptic curve over Fq if and only if End(E)
is isomorphic to a maximal order in the quaternion algebra
Bp,∞.

Quaternion algebra
A quaternion algebra over Q is of the form Q⟨i, j⟩ = Q+Qi+Qj+Qij,
where i2, j2 ∈ Q×, and ij = −ji. In particular, we have

Bp,∞ =


i2 = −1, j2 = −1 if p = 2
i2 = −1, j2 = −p if p ≡ 3 (mod 4)
i2 = −2, j2 = −p if p ≡ 5 (mod 8)
i2 = −ℓ, j2 = −p if p ≡ 1 (mod 8)

where ℓ ≡ 3 (mod 4) is a prime quadratic non-residue mod p.
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Maximal orders

Deuring correspondence - I
E is a supersingular elliptic curve over Fq if and only if End(E)
is isomorphic to a maximal order in the quaternion algebra
Bp,∞.

Quaternion (maximal) order
O ⊆ Q〈i, j〉 is called an order if O is a ring whose elements are
integral, Z ⊆ O, and contains a basis for Q〈i, j〉 as Q-vector
space. Moreover, an order O ⊊ B is called maximal if it is not
properly contained in another order.

15



Maximal orders

Deuring correspondence - I
E is a supersingular elliptic curve over Fq if and only if End(E)
is isomorphic to a maximal order in the quaternion algebra
Bp,∞.

Example
In B23,∞ = 〈i, j | i2 = −1, j2 = −23, ij = −ji〉, two examples of
maximal orders are

O1 = Z+ Zi+ Z
i+ j
2 + Z

1+ ij
2 ; and

O2 = Z+ Zi+ Z
1+ j
2 + Z

i(1+ j)
2

Note that O1 is isomorphic to End(E1) we saw above.
15



Maximal orders

Deuring correspondence - I
E is a supersingular elliptic curve over Fq if and only if End(E)
is isomorphic to a maximal order in the quaternion algebra
Bp,∞.

Mestre-Oesterle-Ribet
isomorphism classes
of supersingular
elliptic curves over Fp

/
Gal(Fp/Fp) ←→

{
maximal orders
of Bp,∞

}
/∼=

That is, there is one-to-one correspondence if j(E) ∈ Fp and
two-to-one correspondence if j(E) ∈ Fp2 \ Fp.

15



Left ideals

Deuring correspondence - II
Fix, E, a supersingular elliptic curve over Fp with
End(E) ∼= O ⊆ Bp,∞. There is a bijection between
isomorphism classes over Fp and the left class set ClsL(O).

16



Left ideals

Deuring correspondence - II
Fix, E, a supersingular elliptic curve over Fp with
End(E) ∼= O ⊆ Bp,∞. There is a bijection between
isomorphism classes over Fp and the left class set ClsL(O).

Quaternion (left) O-ideal
I ⊆ Q〈i, j〉 is called an ideal if I is a Z-module that contains a
basis for Q〈i, j〉 as Q-vector space. Furthermore, given an
order O of Q〈i, j〉, I is called a left O-ideal if αI ⊆ I for all α ∈ O.
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Left ideals

Deuring correspondence - II
Fix, E, a supersingular elliptic curve over Fp with
End(E) ∼= O ⊆ Bp,∞. There is a bijection between
isomorphism classes over Fp and the left class set ClsL(O).

Left-ideal class set
We say ideals I, J are in the same left class, I ∼L J, if there exists α ∈ B×

such that Iα = J. Furthermore, the left equivalence class is denoted by [I]L.
In particular, we have

ClsL(O) := {[I]L | I is an invertible left O-ideal}

ClsL(O) has has the structure of a pointed set with distinguished element
[O]L ∈ ClsL(O).
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Left ideals

Deuring correspondence - II
Fix, E, a supersingular elliptic curve over Fp with
End(E) ∼= O ⊆ Bp,∞. There is a bijection between
isomorphism classes over Fp and the left class set ClsL(O).

Example
Let O2 ⊂ B23,∞ as above. Then we have ClsL(O2) = {[I1]L, [I2]L, [I3]L} with

I1 = 2Z(1+ j) + 2Zi(1+ j) + 4Zj+ 4Zij,
I2 = 2Z(1+ 3j) + 2Zi(1+ 3j) + 8Zj+ 8Zij, and
I3 = 2Z(1+ 3j+ 4ij) + 2Z(i+ 4j+ 3ij) + 16Zj+ 16Zij

Here [I1]L, [I2]L, and [I3]L correspond to the isomorphism classes of
supersingular curves represented by j-invariants 3, 19, and 0, respectively.
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Left ideals

Deuring correspondence - II
Fix, E, a supersingular elliptic curve over Fp with
End(E) ∼= O ⊆ Bp,∞. There is a bijection between
isomorphism classes over Fp and the left class set ClsL(O).

Waterhouse
E[I] := {P ∈ E(Fp) | ϕ(P) = 0 ∀ separable ϕ ∈ I}, where I is a
nonzero left End(E)-ideal. ϕI : E→ E/E[I] with deg(ϕI) = #E[I].

I(H) := {ϕ ∈ End(E) | ϕ(P) = 0 for all P ∈ H}, where H ≤ E(Fp)
is finite. If ϕ : E→ E′ an isogeny, then Iϕ := I(ker(ϕ)) a left
End(E)-ideal and right End(E′)-ideal (connecting ideal).
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Left ideals

Deuring correspondence - II
Fix, E, a supersingular elliptic curve over Fp with
End(E) ∼= O ⊆ Bp,∞. There is a bijection between
isomorphism classes over Fp and the left class set ClsL(O).

Waterhouse
• E[I(H)] = H and I(E[I]) = I (overloaded notation).
• If I ∼L J then E/E[I] ∼= E/E[J].
• ϕI·J = τJ ◦ ϕI and Iτ◦ϕ = Iϕ · Iτ
• ϕI = ϕ̂I (dual isogeny) and Iϕ̂ = Iϕ
• deg(ϕI) = nrd(I) and nrd(Iϕ) = deg(ϕ)

16



Eichler orders

Deuring correspondence - III
(E, C) is a pair of supersingular elliptic curve over Fp and
cyclic subgroup of order M with gcd(p,M) = 1 iff
End(E, C) ∼= O(M) ⊆ Bp,∞ an Eichler order of level M.

17



Eichler orders

Deuring correspondence - III
(E, C) is a pair of supersingular elliptic curve over Fp and
cyclic subgroup of order M with gcd(p,M) = 1 iff
End(E, C) ∼= O(M) ⊆ Bp,∞ an Eichler order of level M.

Eichler order
An Eichler order O ⊂ B is the intersection of two (not
necessarily distinct) maximal orders. Therefore, maximal
orders are also Eichler orders.
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Eichler orders

Deuring correspondence - III
(E, C) is a pair of supersingular elliptic curve over Fp and
cyclic subgroup of order M with gcd(p,M) = 1 iff
End(E, C) ∼= O(M) ⊆ Bp,∞ an Eichler order of level M.

Level of an Eichler order
The level of an Eichler order O, is defined as the ratio of the
reduced discriminant of order O and the discriminant of the
quaternion algebra B = Q〈i, j〉.

lev(O) = discrd(O)
disc(B)

From the definition of (reduced) discriminants it follows that
maximal orders are Eichler orders of level 1.
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Eichler orders

Deuring correspondence - III
(E, C) is a pair of supersingular elliptic curve over Fp and
cyclic subgroup of order M with gcd(p,M) = 1 iff
End(E, C) ∼= O(M) ⊆ Bp,∞ an Eichler order of level M.

Example
O3 = O1 ∩O2 = Z+Zi+Zj+Z

1+ i+ j+ ij
2 is an Eichler order

of level 2, because discrd(O3) = 26 and disc(B23,∞) = 23.
Therefore, if ϕ ∈ End(E, C) ∼= O3 then ϕ ∈ End(E) such that
ϕ(C) = C with #C = 2.
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Eichler orders

Deuring correspondence - III
(E, C) is a pair of supersingular elliptic curve over Fp and
cyclic subgroup of order M with gcd(p,M) = 1 iff
End(E, C) ∼= O(M) ⊆ Bp,∞ an Eichler order of level M.

Kohel
Fix a base point (E0, C0), where C0 ≤ E(Fp) is a cyclic
subgroup of order M. Then End(E0, C0), the subring of End(E0)
that maps C0 to itself, is an Eichler order of level M and
reduced discriminant pM.

17



Eichler orders

Deuring correspondence - III
(E, C) is a pair of supersingular elliptic curve over Fp and
cyclic subgroup of order M with gcd(p,M) = 1 iff
End(E, C) ∼= O(M) ⊆ Bp,∞ an Eichler order of level M.

Kohel
Let SM be the category of supersingular elliptic curves over
Fp equipped with a cyclic M-isogeny (under isogenies
identifying the cyclic subgroups).
Let IM be the category of left End(E0, C0)-ideals (under
module homomorphisms).

Then the functor Hom(−, (E0, C0)) from SM to IM is an
equivalence of categories. 17



Spectral graph theory

Deuring correspondence lets us use the relationship between
quaternion algebras and modular forms to study the
eigenvalues of the adjacency matrix of Gℓ(p).

1. Gℓ(p) is connected with diameter O(log p), where the
constant in the bound is independent of ℓ. That is, the
largest number of vertices which must be traversed in
order to travel from one vertex to another when paths
which backtrack, detour, or loop are excluded from
consideration is O(log p).

2. Gℓ(p) is an expander graph, i.e. simultaneously sparse and
highly connected. Therefore, the natural random walk on
Gℓ(p) converges to its limiting distribution as rapidly as
possible.

18
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G2(431) with 37 vertices and diameter 7

19



Problems about supersingular elliptic curves

Difficult problems

1. Given E/Fp2 , find a maximal
order O ⊆ Bp,∞ such that
O ∼= End(E).

2. Given E/Fp2 , chosen
uniformly at random,
determine End(E).

3. Given j, j′ ∈ Fp2 find an
isogeny ϕ : E→ E′ such that
j(E) = j and j(E′) = j′.

4. Given a maximal order in
Bp,∞, determine the ideal
class set.

Easier problems

1. Given maximal order
O ⊆ Bp,∞, find a
supersingular j-invariant
such that End(E(j)) ∼= O.

2. Find all the maximal orders
(up to isomorphism) of Bp,∞.

3. Given maximal orders
O,O′ ⊆ Bp,∞ find an ideal I
that is left O-ideal and right
O′-ideal.

4. Given p, determine (all)
supersingular j-invariants in
Fp2 .
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Problems about supersingular elliptic curves
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isogeny ϕ : E→ E′ such that
j(E) = j and j(E′) = j′.

4. Given a maximal order in
Bp,∞, determine the ideal
class set.

Equivalent and quantum-safe
• All three problems are known
to be equivalent.

• The fact that End(E) is
non-commutative makes
these problems resistant to
known quantum algorithms.

• We can rewrite these
problems in terms of cyclic
M-isogenies and Eichler
orders of level M. For SQIsign,
we assume that given E/Fp2 it
is difficult to find a
(non-trivial) cyclic
endomorphism of E of
smooth degree.

Moreover,

We can also consider
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Dessert: Quantum-safe signature



NIST list

In 2022, NIST
selected two lattice-
based signatures
(CRYSTALS-Dilithium
and FALCON) and one
hash-based signature
(SPHINCS+)

Signature schemes
with short signatures
and fast verification;
not based on struc-
tured lattices.
Only submission
based on isogeny;
shortest signatures;
fast verification; com-
plex signing procedure

21
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Preparation for SQIsign

Let λ be the security parameter.

• Fix a prime p ≡ 3 (mod 4) with log2(p) ≈ 2λ. such that the
N2f-torsion subgroup is defined over a small extension of
Fp2 for smooth number N ' p5/4 and f is as big as possible.

• Let N2f = MM′ such that M is a λ-bit integer consisting all
the smallest factors, and M′ is a 2λ-bit integer.

• Let L = 2e ' p15/4, where e is greater than the diameter of
G2(p).

• Fix E0 : y2 = x3 + x with known endomorphism ring
O0 := End(E0).
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Fp2 for smooth number N ' p5/4 and f is as big as possible.

• Let N2f = MM′ such that M is a λ-bit integer consisting all
the smallest factors, and M′ is a 2λ-bit integer.

• Let L = 2e ' p15/4, where e is greater than the diameter of
G2(p).

• Fix E0 : y2 = x3 + x with known endomorphism ring
O0 := End(E0).
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SQIsign, Step 1: Σ-protocol

The prover P chooses a random isogeny ϕ : E0 → E1 such that deg(ϕ) is a
prime smaller than 2λ/2, leading to a random elliptic curve E1. P keeps ϕ
secret and publishes E1. Now, P can prove “knowledge” of O1 := End(E1) to a
verifier V:

P V

ϕ′ $← Hom(E0,−) of degree M′

E′1 = ϕ′(E0)

C ≤ E′1(Fp), C ∼= Z/MZ
τ ← Hom((E′1, C),−)

η : E1 → E′2, ker(τ̂ ◦ η) cyclic η
?
∈ Hom(E1, E′2), ker(τ̂ ◦ η)

?
= cyclic

p,E0,O0,M,L,E1

E ′1

τ :E
′
1→

E′2

η
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SQIsign, Step 1: Σ-protocol

The prover P chooses a random isogeny ϕ : E0 → E1 such that deg(ϕ) is a
prime smaller than 2λ/2, leading to a random elliptic curve E1. P keeps ϕ
secret and publishes E1. Now, P can prove “knowledge” of O1 := End(E1) to a
verifier V:

E0 E1

E′1 E′2

secret: ϕ

response η

challenge
τ

secret: ϕ′

Computing L-isogeny η : E1 → E′2
1. Translate isogeny τ ◦ ϕ′ ◦ ϕ̂ to left O1-ideal I := Iϕ · Iϕ′ · Iτ
(isogeny-to-kernel-to-ideal).

2. From I, Iϕ get J ∈ [I]L with nrd(J) = L.

3. Translate left O1-ideal J to η (ideal-to-kernel-to-isogeny) 23



SQIsign, Step 2: Fiat-Shamir transformation

Choose a random oracle cryptographic hash function H with
appropriate domain and codomain (based on a compression
algorithm).

The key generation algorithm G outputs a pair
(O1, E1) such that O1 = End(E1), where O1 is the secret signing
key and E1 is the public verification key.

Signing (M′,M, L,O1,H,m)

1. ϕ′ $← Hom(E0,−) of degree M′

2. E′1 = ϕ′(E0)

3. b = H(m∥j(E′1))

4. τ = Decompress(E′1, b)

5. η : E1 → E′2, ker(τ̂ ◦ η) cyclic

6. return σ := (E′1, η)

Verification (M, L, E1,H,m, σ)

1. b = H(m∥j(E′1))

2. τ = Decompress(E′1, b)

3. return η
?
∈ Hom(E1, E′2),

ker(τ̂ ◦ η) ?
= cyclic
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Quantum-safe?

SIDH (2011-2022) reached
Round 4 of NIST’s quantum-
safe KEM list.

On August 5, 2022, Castryck
and Decru posted a preprint
outlining an efficient clas-
sical key recovery algorithm
against SIDH.

SQISignHD uses this con-
structively: easier to gen-
erate public parameters &
simpler signing procedure;
but needs efficient impli-
mentation of 4D isogeny.
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Questions?
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ECDSA

Choose a cryptographic hash function H with appropriate
domain and codomain. The key generation algorithm G
outputs a pair (k,Q) such that Q = [k]P, where k is the secret
signing key and Q is the public verification key.

Signing (G,P, k,H,m)

1. t $← {1, . . . , ℓ− 1}

2. R← [t]P

3. r← x(R) (mod ℓ)

4. if r = 0 then goto Step 1.

5. e← H(m)

6. s← (e+ kr)t−1 (mod ℓ)

7. if s = 0 then goto Step 1.

8. return σ := (r, s)

Verification (G,P,Q,H,m, σ)
1. e← H(m)

2. u1 ← es−1 (mod ℓ), u2 ← rs−1

(mod ℓ)

3. T← [u1]P+ [u2]Q

4. return r ?
= x(T) (mod ℓ)



EdDSA, a footnote

Twisted Edwards model
A twisted Edwards curve defined over Fq is the curve

C : ax2 + y2 = 1+ dx2y2, a,d ∈ Fq, and ad(a− d) 6= 0

with two singular points. It is birationally equivalent to
E : v2 = u3 + 2(a+ d)u2 + (a− d)2u such that every point has
order divisible by 4.

NIST IR 8214B, Notes on Threshold EdDSA/Schnorr Signatures
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