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Public Key Cryptography
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Preparation for Schnorr

Acrobat Enterprise

Enterprise Toolkit Console Help Forum Mobile

A Acrobat Desktop Digital Signatures

# » Supported Standards

el

Supported Standard:

Supported algorithms for creating the signature

v Signature algorithms

Productversion  PDFversion  Supported encryption algorithms
Message digest creation algorithms * RSA and DSA SHAT up to 4096-bit
_ . . « ECDSA elliptic curve P256 with digest
Message digest encryption algorithms algorithm SHA256
Standards « ECDSA elliptic curve P384 with digest
T.xand later PDF 17 algorithm SHA384
APIs and miscellaneous

« ECDSA elliptic curve P512 with digest
algorithm SHAS12

Most of us have used Adobe Acrobat Sign to digitally
sign PDF documents.




Preparation for Schnorr

Acrobat Enterprise Enterprise Toolkit Console Help Forum Mobile

# Acrobat Desktop Digital Signatures # » Supported Standards

o
Supported Standards _ Supported algorithms for creating the signature

v signature algorithms Productversion  PDFversion  Supported encryption algorithms

Message digest creation algorithms * RSA an HA1 up to 4096-bit

« ECDSA elliptié curve P256 with digest

Message digest encryption algorithms algorithm SHA256
« ECDSA elliptic curve P384 with digest
Standards Tixand later PDF 17 algorithm SHA384

« ECDSA elliptic curve P512 with digest

APIs and miscellaneous
algorithm SHAS12

Let (G, -) be a finite abelian group of prime order ¢. The

discrete logarithm problem (DLP) in G is: given (g) = G

and h € G, find an integer Rk € {0,...,¢ — 1} such that
k—h

gt =h.

Number of operations for generic G is v/#G.



Preparation for Schnorr

Acrobat Enterprise Enterprise Toolkit Console Help Forum Mobile
# Acrobat Desktop Digital Signatures # » Supported Standards
o
Supported Standards - Supported algorithms for creating the signature
v Signature algorithms Productversion  PDFversion  Supported encryption algorithms
Message digest creation algorithms * RSA and DSA SHAT up to 4096-bit
_ ) ) ECDSA elliptic curve P256 With digest
Message digest encryption algorithms algorithm SHA256
ECDSA elliptic curve P384 With digest
Standards Tixand later PDF 17
APIs and miscellaneous

algorithm SHA384
ECDSA elliptic curve P512 With digest

algorithm SHAS12

Let p be a prime larger than 3 and g = p" for n > 0. An elliptic
curve E over finite field F, can be written as E : y> = x> + ax+ b
where a,b € Fq and 4a® + 27b° # 0, along with an extra point Ok.
Points on E form a group with O as the neutral element. P be a

point on E of prime order ¢, then G = (P) with the exponentiation
replaced with scalar point multiplication, we get ECDLP.
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Acrobat Enterprise Enterprise Toolkit Console Help Forum Mobile

# Acrobat Desktop Digital Signatures # » Supported Standards

o
Supported Standards _ Supported algorithms for creating the signature

v Signature algorithms Productversion  PDFversion  Supported encryption algorithms
Message digest creation algorithms * RSA and DSA SHAT up to 4096-bit
. . . » ECDSA elliptic curve P256 with digest
Message digest encryption algorithms algorith

« ECDSA elliptic curve P384 with digest
algorith
APIs and miscellaneous * ECDSA elliptic curve P512 with digest

algorithm(GHAS12

Standards T.xand later PDF 17

A cryptographic hash function H takes arbitrary length
bit strings as input and produces a fixed-length bit string
as output, such that it is preimage resistant (can't find in-
put of given output), Second preimage resistant (can’t find a
different input leading to given output), and collision resistant

(can't find two inputs with same output).
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Let G = (g) where g € (Z/pZ)* is an element of prime order £.
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Schnorr signature, Step 1: X-protocol

Let G = (g) where g € (Z/pZ)* is an element of prime order £.
The prover P randomly chooses (secret) k € {0,...,¢ — 1} and
publishes h = g (mod p). Now, P can prove “knowledge” of a
discrete logarithm k to a verifier V:

t&{0,...,6—1}
e+ g (mod p)

Co,
Dmitr, ont
2z e

r<{0,...,£—1}

o
naiene

response: s

S« t+rk (mod £) g° = eh” (mod p)
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Choose a random oracle cryptographic hash function H with
appropriate domain and codomain.
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where k is the secret signing key and h is the public
verification key.
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Choose a random oracle cryptographic hash function H with
appropriate domain and codomain. The key generation
algorithm G outputs a pair (k, h) such that h = g* (mod p),
where k is the secret signing key and h is the public
verification key.
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Schnorr signature, Step 2: Fiat-Shamir transformation

Choose a random oracle cryptographic hash function H with
appropriate domain and codomain. The key generation
algorithm G outputs a pair (k, h) such that h = g* (mod p),
where k is the secret signing key and h is the public
verification key.

Signing (G, g, R, H,m) Verification (G, g, h,H, m, o)

1.
2.

i = W

t&{1,...,6—1} 1. r<H(mlle)
e« g (mod p) 2. return g° < eh’ (mod p)
r < H(mlle)

S 4 t+rk (mod ¢)

return o == (e, s)
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Neal Koblitz | University of Washington
Alfred Menezes | University of Waterloo

On Dec 20, 2016,
NIST initiated the

In August 2015, the NSA released a major policy on the need cr gt
ro CGSS concerning the NSA, el and q f Of the various
p N theories that have been proposed, some seem more plauslble than others. but a deﬁnlzlve explanation
is elusive.
“It s a riddle wrapped in a mystery inside an enigma; iali fe cr phy. While
but perhaps there is a key” —Winston Churchill, 1939 standards for new postquantum algorithms are several
(in reference to the Soviet Union) years away, in the immediate future the NSA is encour-

aging vendors to add quantum resistance to existing
protocols by means of conventional symmetric-key

tools such as the Advanced Encryption Standard

I n August 2015, the US government’s NSA released  (AES). Given the NSA' strong interest in PQC, the
a major policy statement on the need to develop demand for quantum-safe cryptographic solutions by

standards for p cryptography (PQC).! The  governments and industry will likely grow dramatically
NSA, like many other organizations, believes that the  in the coming years.
time is right to make a major push to design public-key  Most of the NSA statement was unexceptionable.

cryptographic protocols whose security depends on  However, one passage was puzzling and unexpected:!
hard problems that can't be solved efficiently by a quan-

tum computer. Ever since Peter Shor’s pioneering work For those partners and vendors that have not yet made
more than 20 years ago,? it has been known that both the transition to Suite B algorithms, we recommend
the integer factorization problem, upon which RSA is not making a significant expenditure to do so at this
based, and the elliptic curve discrete logarithm prob- point but instead to prepare for the upcoming quan-
lem (ECDLP), upon which elliptic curve cryptography tum resistant algorithm transition.... Unfortunately,
(ECC) is based, can be solved in polynomial time by a the growth of elliptic curve use has bumped up against
quantum computer. the fact of continued progress in the research on quan-

e NSA announcement will give a tremen- tum computing, necessitating a re-evaluation of our
dous boost to efforts to develop, dard and
November/December 2016 Copublished by the IEEE Comp 2016 1EEE
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Supersingular elliptic curves

Recall, p is a prime larger than 3 and g = p" for n > 0. For E£/FFq
we have #E(Fq) =g+ 1—t, where |t] < 2,/q.

Supersingular elliptic curve
An elliptic curve over Iy is called supersingular if p | t.

Example
E; :y> = x3 + x over Fo3 is a supersingular elliptic curve
because #E(IF»3) =24 and t = 0.
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non-constant rational function that maps points from E to
points on E’ and is compatible with the group law.
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Isogeny

An isogeny between two elliptic curves E/F, and E'/IFq is a
non-constant rational function that maps points from E to
points on E' and is compatible with the group law. In fact, an
isogeny ¢ : E — E" exists iff #E(Fq) = #E'(Fy).

Example
For E1:y> = x>+ xand E, : y? = x> + 19x over F,3 we have

¢:E =6

X2 +1 X2y—y
(X,y)'—>< PR, >
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The degree of a (separable) isogeny ¢ : £ — E' over Fy, is the
number of points on E, taken over any extension field of Fg,
mapping to Og.
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and Ok, are the only two points mapping to Ok,.



Degree of isogeny

Degree of (separable) isogeny

The degree of a (separable) isogeny ¢ : £ — E' over Fy, is the
number of points on E, taken over any extension field of Fg,
mapping to Og.

Example
The degree of ¢ : E; — E; defined above is 2, because (0, 0)
and Ok, are the only two points mapping to Ok,.

Degree is multiplicative: deg(¢ o ¢) = deg(¢) deg(v)
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Isomorphism
An isogeny of degree 1is called an isomorphism.
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Isomorphism

An isogeny of degree 1is called an isomorphism. That is, two
elliptic curves E/IFq and E'/Fq are isomorphic over Fy if there
exists a polynomial map over Fq that maps points on E to
points on E' in a one-to-one way which is compatible with
the group operation.
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Isomorphism

Isomorphism

An isogeny of degree 1is called an isomorphism. That is, two
elliptic curves E/Fq and E'/Fq are isomorphic over Fq if there
exists a polynomial map over Fq that maps points on E to
points on E' in a one-to-one way which is compatible with
the group operation.

Example
For £ : y?> = x>+ xand E3 : y? = x> + 2x over F3 we have

T:E1—>E3

(X7 y) = (_SXa _6y)

10
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J-invariant
The j-invariant uniquely describes isomorphism classes over
an algebraic closure of [Fq.
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J-invariant
The j-invariant uniquely describes isomorphism classes over
an algebraic closure of Fq. For £ : y? = X3 + ax + b we have

4a3

J(E) = V28 5 77

Note that two curves having the same j-invariant need not be
isomorphic over Fg.
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J-invariant

The j-invariant uniquely describes isomorphism classes over
an algebraic closure of Fq. For £ : y? = X3 + ax + b we have

4a3

J(E) = V28 5 77

Note that two curves having the same j-invariant need not be

isomorphic over Fg.

Example

We have j(E1) = j(E2) = j(E3) = 1728 (mod 23) = 3. But ;7 and
E, are not isomorphic over Fys.

n



Isomorphism class label

J-invariant

The j-invariant uniquely describes isomorphism classes over
an algebraic closure of Fq. For £ : y? = X3 + ax + b we have

4a3

J(E) = V28 5 77

Note that two curves having the same j-invariant need not be
isomorphic over Fg.

Example

We have j(E1) = j(E2) = j(E3) = 1728 (mod 23) = 3. But ;7 and
E, are not isomorphic over Fys.

If E is supersingular, then we can replace “algebraic closure of

Fy” with Fp. .



Supersingular isomorphism classes

The number of supersingular isomorphism classes over an
algebraic closure of Fp, with representative curves defined

over Fpp, is Sp = {%J + e where e € {0,1,2}.
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Supersingular isomorphism classes

The number of supersingular isomorphism classes over an
algebraic closure of Fp, with representative curves defined

over Fpp, is Sp = {%J + e where e € {0,1,2}.

Example
S,3 = 3 with the classes represented by the j-invariants
0,3,19.

12



Supersingular /-isogeny graph

Let ¢ be a prime different from
p. The supersingular ¢-isogeny
graph over an algebraic closure
of Fq is the directed multigraph
Gy(p) whose vertices belong to
the set of isomorphism classes
of supersingular elliptic curves
{(Eq),...,j(Es)} withs = Sp
and E;/F; there is a directed
edge [E;, Ej/] for each
equivalence class (same
kernel) of ¢-isogenies from E;
to E;.

13
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Supersingular /-isogeny graph

Let ¢ be a prime different from
p. The supersingular ¢-isogeny
graph over an algebraic closure
of Fq is the directed multigraph
Gy(p) whose vertices belong to
the set of isomorphism classes
of supersingular elliptic curves
{(Eq),...,j(Es)} with s =S
and E;/F; there is a directed
edge [E;, Ej/] for each
equivalence class (same
kernel) of ¢-isogenies from E;
to Ei. Hence the out-degree of
each vertex is £ + 1.

Example: G»(23)

13



Endomorphism ring

Endomorphism ring
The endomorphism ring of E, Endg, (E), is the set of
Fq-isogenies from E to itself, together with the zero map

[0] : E — E given [0](P) = Ok.
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The endomorphism ring of E, Endg, (E), is the set of
Fq-isogenies from E to itself, together with the zero map

[0] : E — E given [0](P) = O¢. In particular, for isogenies over
an algebraic closure of Fq, we write End(E).

14
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The endomorphism ring of E, Endg, (E), is the set of
Fq-isogenies from E to itself, together with the zero map

[0] : E — E given [0](P) = O¢. In particular, for isogenies over
an algebraic closure of Fq, we write End(E).

Example
For E; : y? = x> + x over Fy3, we have

id
End(E7) :Zid+ZL+ZL—;7r + 7! +2L°7T

where 7, . € End(E+) such that 7(x,y) = (x*,y?*) and
t(X,¥) = (—x,ay) is an isomorphism over F,3 = Fy3(a) with
o’ +1=0.



Endomorphism ring

Endomorphism ring

The endomorphism ring of E, Endg, (E), is the set of
Fq-isogenies from E to itself, together with the zero map

[0] : E — E given [0](P) = O¢. In particular, for isogenies over
an algebraic closure of Fq, we write End(E).

Example
For E; : y? = x> + x over Fy3, we have

id
End(E7) :Zid+ZL—|—Zh;7r + 7! +2L°7T

where 7, . € End(E+) such that 7(x,y) = (x*,y?*) and

t(X,¥) = (—x,ay) is an isomorphism over F,3 = Fy3(a) with
o? 4+ 1= 0. Moreover, to 1 = [-1], mom = [-23], and

tom = —moy le. End(E7) is a non-commutative ring.



Maximal orders

E is a supersingular elliptic curve over Fq if and only if End(E)
is isomorphic to a maximal order in the quaternion algebra

Bp,co-
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Maximal orders

E is a supersingular elliptic curve over Fq if and only if End(E)
is isomorphic to a maximal order in the quaternion algebra

Bp,co-

Quaternion algebra
A quaternion algebra over @ is of the form Q(i,j) = Q + Qi + Qj + Qij,

where i%,j> € Q*, and ij = —ji. In particular, we have

P=—1=-1 ifp=2
i?=-1j=—-p ifp=3 (mod 4)
i’=-2,j=—p ifp=5 (mod 8)

P=—0j=-p ifp=1 (mod8)

Bp,co =

where £ =3 (mod 4) is a prime quadratic non-residue mod p.

15



Maximal orders

E is a supersingular elliptic curve over Fq if and only if End(E)
is isomorphic to a maximal order in the quaternion algebra

Bp,co-

Quaternion (maximal) order
O C Q(i,j) is called an order if O is a ring whose elements are

integral, Z C 0O, and contains a basis for Q(i, j) as Q-vector
space. Moreover, an order O C B is called maximal if it is not
properly contained in another order.

15



Maximal orders

E is a supersingular elliptic curve over Fq if and only if End(E)
is isomorphic to a maximal order in the quaternion algebra
Bp,co-

Example
In Byzoo = (i,) | 12 = —1,j2 = =23,ij = —ji), two examples of
maximal orders are

|+J j

O1=7Z+Zi

1+J Z(1+J)

O, =Z+Zi+7Z 5

Note that O; is isomorphic to End(E;) we saw above.
15



Maximal orders

E is a supersingular elliptic curve over Fq if and only if End(E)
is isomorphic to a maximal order in the quaternion algebra

Bp,co-

isomorphism classes

-

. maximal orders
of supersingular 3 /GaKE/FD) “— VofB
elliptic curves over F, P

That is, there is one-to-one correspondence if j(E) € F, and
two-to-one correspondence if j(E) € Fj. \ Fp.

15



Fix, E, a supersingular elliptic curve over Fp, with
End(E) = O C By . There is a bijection between
isomorphism classes over F, and the left class set Cls (O).



Fix, E, a supersingular elliptic curve over Fp, with
End(E) = O C By . There is a bijection between
isomorphism classes over F, and the left class set Cls (O).

Quaternion (left) O-ideal
I C Q(i,j) is called an ideal if I is a Z-module that contains a

basis for Q(i, j) as Q-vector space. Furthermore, given an
order O of Q(i,j), I is called a left O-ideal if al C I forall « € O.



Fix, E, a supersingular elliptic curve over Fp, with
End(E) = O C By . There is a bijection between
isomorphism classes over F, and the left class set Cls (O).

Left-ideal class set
We say ideals I,/ are in the same left class, | ~ J, if there exists a € B*

such that la = J. Furthermore, the left equivalence class is denoted by [/]..
In particular, we have

Cls (0) == {[l]. | I is an invertible left O-ideal}

Cls.(0) has has the structure of a pointed set with distinguished element
[O]. € ClIs(0).



Fix, E, a supersingular elliptic curve over Fp, with
End(E) = O C By . There is a bijection between
isomorphism classes over F, and the left class set Cls (O).

Example

Let O, C Bx, as above. Then we have Cls (0;) = {[l1]v, [2], [l3].} with
lh = 2Z(1 +)) + 2Zi(1 + j) + 4Zj + 4Zij,
I, = 2Z(1 + 3j) + 2Zi(1 + 3j) + 8Zj + 8Zij, and
I3 = 2Z(1 + 3j + 4ij) + 2Z(i + 4j + 3ij) + 16Zj + 16Zij

Here [I1]L, [l2]t, and [Is]. correspond to the isomorphism classes of
supersingular curves represented by j-invariants 3, 19, and 0, respectively.



Fix, E, a supersingular elliptic curve over Fp, with
End(E) = O C By . There is a bijection between
isomorphism classes over F, and the left class set Cls (O).

E[l] = {P € E(Fp) | #(P) =0V separable ¢ € I}, where [ is a
nonzero left End(E)-ideal. ¢, : E — E/E[l] with deg(¢) = #E[l].

I(H) = {¢ € End(E) | ¢(P) = 0 for all P € H}, where H < E(Fp)
is finite. If ¢ : E— E' an isogeny, then I, = I(ker(¢)) a left
End(E)-ideal and right End(E’)-ideal (connecting ideal).



Fix, E, a supersingular elliptic curve over Fp, with
End(E) = O C By . There is a bijection between
isomorphism classes over F, and the left class set Cls (O).

e E[I(H)] = H and I(E[l]) = I (overloaded notation).
o If [~ Jthen E/E[I] = E/E[)].

e =mo¢and lrop =g - I,

e ¢; = ¢ (dual isogeny) and =T

e deg(¢) = nrd(/) and nrd(/,) = deg(¢)
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(E, C) is a pair of supersingular elliptic curve over F, and
cyclic subgroup of order M with ged(p, M) = 1iff
End(E, C) = O(M) C By » an Eichler order of level M.

Eichler order
An Eichler order O C B is the intersection of two (not

necessarily distinct) maximal orders. Therefore, maximal
orders are also Eichler orders.



Eichler orders

(E, C) is a pair of supersingular elliptic curve over F, and
cyclic subgroup of order M with ged(p, M) = 1iff
End(E, C) = O(M) C By » an Eichler order of level M.

Level of an Eichler order
The level of an Eichler order O, is defined as the ratio of the

reduced discriminant of order O and the discriminant of the
quaternion algebra B = Q(i, j).

lev(0) = m

From the definition of (reduced) discriminants it follows that
maximal orders are Eichler orders of level 1.



Eichler orders

(E, C) is a pair of supersingular elliptic curve over F, and
cyclic subgroup of order M with ged(p, M) = 1iff
End(E, C) = O(M) C By » an Eichler order of level M.

Example

03=01N0, =Z+Zi+Zj+Z is an Eichler order
of level 2, because discrd(03) = 26 and disc(B23 ) = 23.
Therefore, if ¢ € End(E, C) = O3 then ¢ € End(E) such that
¢(C) = Cwith #C = 2.

T+i+)+1)



Eichler orders

(E, C) is a pair of supersingular elliptic curve over F, and
cyclic subgroup of order M with ged(p, M) = 1iff
End(E, C) = O(M) C By » an Eichler order of level M.

Fix a base point (Eq, Co), where Co < E(Fp) is a cyclic
subgroup of order M. Then End(Ey, Co), the subring of End(Ey)
that maps Cy to itself, is an Eichler order of level M and
reduced discriminant pM.



Eichler orders

(E, C) is a pair of supersingular elliptic curve over F, and
cyclic subgroup of order M with ged(p, M) = 1iff
End(E, C) = O(M) C By » an Eichler order of level M.

Let Sy be the category of supersingular elliptic curves over
Fp, equipped with a cyclic M-isogeny (under isogenies
identifying the cyclic subgroups).

Let Zy be the category of left End(Eo, Co)-ideals (under
module homomorphisms).

Then the functor Hom(—, (Eg, Co)) from Sy to Zy is an
equivalence of categories.
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Deuring correspondence lets us use the relationship between
quaternion algebras and modular forms to study the
eigenvalues of the adjacency matrix of Gg(p).
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1. Gy(p) is connected with diameter O(log p), where the
constant in the bound is independent of £. That is, the
largest number of vertices which must be traversed in
order to travel from one vertex to another when paths
which backtrack, detour, or loop are excluded from
consideration is O(log p).



Spectral graph theory

Deuring correspondence lets us use the relationship between
quaternion algebras and modular forms to study the
eigenvalues of the adjacency matrix of Gg(p).

1. Gy(p) is connected with diameter O(log p), where the
constant in the bound is independent of £. That is, the
largest number of vertices which must be traversed in
order to travel from one vertex to another when paths
which backtrack, detour, or loop are excluded from
consideration is O(log p).

2. Gy(p) is an expander graph, i.e. simultaneously sparse and
highly connected. Therefore, the natural random walk on
Ge(p) converges to its limiting distribution as rapidly as
possible.



G,(431) with 37 vertices and diameter 7




Problems about supersingular elliptic curves

Difficult problems Easier problems

1. Given E/Fp, find a maximal
order O C B,  such that
0 = End(E).
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Difficult problems Easier problems
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1. Given E/Fp, find a maximal 0 C By, find a
order O C Bp o such that supersingular j-invariant
O = End(E). such that End(E(j)) = O.
2. Given E/Fp, chosen 2. Find all the maximal orders
uniformly at random, (up to isomorphism) of B .

determine End(E).

w

Given j,j’ € Fp. find an
isogeny ¢ : E — F’ such that
J(E) = j and j(E') = J.
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Problems about supersingular elliptic curves

Difficult problems Easier problems
1. Given maximal order
1. Given E/Fp, find a maximal 0 C By, find a
order O C Bp o such that supersingular j-invariant
O = End(E). such that End(E(j)) = O.
2. Given E/Fp, chosen 2. Find all the maximal orders
uniformly at random, (up to isomorphism) of B .

determine End(E).
(6) 3. Given maximal orders

3. Givenj,j’ € Fj find an 0,0’ C By find an ideal |
isogeny ¢ : E — E’ such that that is left O-ideal and right
J(E) =jand j(E") =" 0’-ideal.
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Problems about supersingular elliptic curves

Easier problems

Difficult problems
1. Given maximal order

1.

w

Given E/Fp, find a maximal
order O C B,  such that
O = End(E).

Given E/Fp, chosen
uniformly at random,
determine End(E).

Given j,j’ € Fp. find an
isogeny ¢ : E — F’ such that
J(E)=jand j(E') ="

Given a maximal order in

Bp.oo, determine the ideal
class set.

0 C By, finda
supersingular j-invariant
such that End(E(j)) = O.

. Find all the maximal orders
(up to isomorphism) of B, w.

. Given maximal orders

0,0’ C By « find an ideal |
that is left O-ideal and right
O’-ideal.
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Problems about supersingular elliptic curves

Easier problems

Difficult problems
1. Given maximal order

1. Given E/Fp, find a maximal
order O C B,  such that
0 = End(E).

2. Given E/F, chosen
uniformly at random,
determine End(E).

w

- Given j,j’ € F. find an
isogeny ¢ : E — F’ such that
J(E) =jand j(E") ="

4. Given a maximal order in

Bp.oo, determine the ideal

class set.

0CBy, finda
supersingular j-invariant
such that End(E(j)) = O.

. Find all the maximal orders

(up to isomorphism) of B, w.

. Given maximal orders

0,0’ C By « find an ideal |
that is left O-ideal and right
O’-ideal.

. Given p, determine (all)

supersingular j-invariants in
Fy.
20



Problems about supersingular elliptic curves

Difficult problems Equivalent and quantum-safe
- All three problems are known
1. Given E/Fp, find a maximal to be equivalent.
order O C B,  such that
0 = End(E).

2. Given E/F, chosen
uniformly at random,
determine End(E).

w

Given j,j’ € Fp. find an
isogeny ¢ : E — F’ such that
j(E) = jand j(E)) = /.

20



Problems about supersingular elliptic curves

Difficult problems Equwalent and quantum-safe

All three problems are known

1. Given E/Fp, find a maximal

w

order O C B,  such that
O = End(E).

. Given E/Fp, chosen

uniformly at random,
determine End(E).

- Given j,j’ € F. find an

isogeny ¢ : E — F’ such that
J(E) =jand j(E") ="

to be equivalent.

- The fact that End(E) is

non-commutative makes
these problems resistant to
known quantum algorithms.
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Problems about supersingular elliptic curves

Difficult problems Equwalent and quantum-safe
All three problems are known
1. Given E/Fp, find a maximal to be equivalent.
order O C B,  such that he f h )
0 = End(E). The fact that Er.1d(E) is
non-commutative makes
2. Given E/Fp, chosen these problems resistant to
uniformly at random, known quantum algorithms.

determine End(E).
(6) - We can rewrite these

3. Given j,j" € F find an problems in terms of cyclic
isogeny ¢ : E — E’ such that M-isogenies and Eichler
J(E) =jand j(E') =/". orders of level M. For SQlsign,

we assume that given E/F. it
is difficult to find a
(non-trivial) cyclic
endomorphism of E of

smooth degree. 20



Dessert: Quantum-safe signature




NIST list

In 2022, NIST

selected two lattice-
based signatures
(CRYSTALS-Dilithium
and FALCON) and one
hash-based signature
(SPHINCS+)

NST Sewcncsic Q| SCSREMENY
Information Technology Laboratory

COMPUTER SECURITY RESOURCE CENTER

PROJECTS PQC DIGITAL SIGNATURE SCHEMES

(Post-Quantum Cryptography: Digital Signature Schemes )

f v

S PROJECT LINKS

Overview

News & Updates

Round 1 Additional Signatures

Offcial comments on the First Round Signatures should be submitted using the "Submit Comment” link for the appropriate algorithm.

Al relevant comments will be posted in their enfirety and should not include Pl information in the body of the email message.

Isogeny Signatures

Atgorithm Algorithm Information

SQusign

21



NIST list

cQ | SCSRCMENU
Information Technology Laboratory

COMPUTER SECURITY RESOURCE CENTER

PROJECTS PQC DIGITAL SIGNATURE SCHEMES

Post-Quantum Cryptography: Digital Signature Schemes

f v

S PROJECT LINKS

Overview

Signature schemes o it

with short signatures ey e O

and fast verificatio n, e

Al cclant comments will e posted intheircntircty and should not include Pinformation inthe bodly of the cmail message.
Isogeny Signatures

postand

not based on struc-
tured lattices.

Antonin Leroux
Patrick Longa

Michael Meyer

Lorenz Panny

Sikhar Patranabis

Christophe petit

Irancisco Hodriguez Henriquez
Sina Schaelfer

Benjamin Wesolowski

21



NIST list

Information Technology Laboratory

COMPUTER SECURITY RESOURCE CENTER

Post-Quantum Cryptography: Digital Signature Schemes
f v

S PROJECT LINKS

Overview

News & Updates

Round 1 Additional Signatures

Offcial comments on the First Round Signatures should be submitted using the "Submit Comment” link for the appropriate algorithm.

P postand

Al relevant comments will be posted in their enfirety and should not include Pl information in the body of the email message.

Isogeny Signatures
On [y submission Agortn__aigortm normatin submiters comments
based on isogeny;

shortest signatures; e

Michael Meyer

fast verification; com- g

plex signing procedure b

Benjamin Wesolowski




Preparation for SQlsign

Let \ be the security parameter.

- Fix a prime p =3 (mod 4) with log,(p) ~ 2. such that the
N2/-torsion subgroup is defined over a small extension of
Fp2 for smooth number N ~ p°/% and fis as big as possible.
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Preparation for SQlsign

Let \ be the security parameter.

- Fix a prime p =3 (mod 4) with log,(p) ~ 2. such that the
N2/-torsion subgroup is defined over a small extension of
F,. for smooth number N ~ p3“ and f is as big as possible.

- Let N2 = MM’ such that M is a A-bit integer consisting all
the smallest factors, and M’ is a 2\-bit integer.

- Let L = 2¢ ~ p"/“ where e is greater than the diameter of
Ga(p).

- Fix Eg : y? = x> + x with known endomorphism ring
Oo = End(Ep).

22



SQlsign, Step 1: -protocol

The prover P chooses a random isogeny ¢ : Eg — E; such that deg(¢) is a
prime smaller than 2*/2, leading to a random elliptic curve £;. P keeps ¢
secret and publishes E.. Now, P can prove “knowledge” of O; := End(E:) to a
verifier \:

104 & Hom(Eo, —) of degree M’
1 = ¢'(Eo)

C < E(Fp),C=Z/MZ
7 < Hom((E%, C), —)

n: E — B, ker(T on) cyclic n é Hom(E1, E5), ker(T om) ~ Cyc2l?i>c
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SQlsign, Step 1: -protocol

The prover P chooses a random isogeny ¢ : Eg — E; such that deg(¢) is a
prime smaller than 2*/2, leading to a random elliptic curve £;. P keeps ¢
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P,E0,00,M,L,E

104 & Hom(Eo, —) of degree M’
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SQlsign, Step 1: -protocol

The prover P chooses a random isogeny ¢ : Eg — E; such that deg(¢) is a
prime smaller than 2*/2, leading to a random elliptic curve E;. P keeps ¢

secret and publishes E.. Now, P can prove “knowledge” of O; := End(E:) to a
verifier \:

secret: ¢

Eo
secret: qb’l feSPOWSEEW
Bl ooy B}

challenge
Computing L-isogeny n : £, — E}
1. Translate isogeny 7 o ¢’ o  to left O-ideal | :==1,, - lgr - 17
(isogeny-to-kernel-to-ideal).
2. From I,1, get) € [I]. with nrd(J) = L.

3. Translate left Oi-ideal J to n (ideal-to-kernel-to-isogeny) -



SQlsign, Step 2: Fiat-Shamir transformation

Choose a random oracle cryptographic hash function H with
appropriate domain and codomain (based on a compression
algorithm).
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SQlsign, Step 2: Fiat-Shamir transformation

Choose a random oracle cryptographic hash function H with
appropriate domain and codomain (based on a compression
algorithm). The key generation algorithm G outputs a pair
(01, E1) such that O, = End(E7), where O, is the secret signing
key and E; is the public verification key.

Signing (M’ M, L, 04,H, m)

1.
2.

¢ & Hom(Eo, —) of degree M’
£y = ¢'(Eo)

3. b=H(mj(E))
4,
5
6

7 = Decompress(E7, b)

. m: B — B, ker(T on) cyclic

. return o == (E},7m)
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SQlsign, Step 2: Fiat-Shamir transformation

Choose a random oracle cryptographic hash function H with
appropriate domain and codomain (based on a compression
algorithm). The key generation algorithm G outputs a pair
(01, E1) such that O, = End(E7), where O, is the secret signing
key and E; is the public verification key.

Signing (M’ M, L, 04,H, m) Verification (M, L, E1,H,m, o)

1. ¢ & Hom(Eo, —) of degree M’ 1. b= H(m[lj(£1))

B = ¢(Eo) 2. 7 = Decompress(E;, b)
?

. b=H(mIj(E)) 3. return n € Hom(£y, £3),

ker(7 on) < cyclic

2

3

4 T = Decompress(E}, b)

5. n: £y — B, ker(7 o n) cyclic
6

. return o == (E},7m)

2%



SIDH (2011-2022) reached

Round 4 of NIST's quantum-

safe KEM list.

<+—Cryptography Scheme Is

Quantamacazine o ] Q

‘Post-Quantum’

Cracked on a Laptop

Two researchers have broken an encryption protocol that
many saw as a promising defense against the power of

quantum computing.
A New Twist on Old Mathematics

Thomas Decru didn’t set out to break SIDH. He was trying to
build on it — to generalize the method to enhance another type
of cryptography. That didn’t work out, but it sparked an idea: His
approach might be useful for attacking SIDH. And so he
approached Wouter Castryck, his colleague at the Catholic
University of Leuven in Belgium and one of his former doctoral

advisers, and the two dived into the relevant literature.

‘They stumbled across a paper published by the mathematician
Ernst Kani in 1997. In it was a theorem that “was almost
immediately applicable to SIDH,” Castryck said. “I think once we
realized that .. the attack came quite quickly, in one or two
days.”

25



On August 5, 2022, Castryck
and Decru posted a preprint
outlining an efficient clas-
sical key recovery algorithm
against SIDH.
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SQISignHD uses this con-
structively: easier to gen-
erate public parameters &
simpler signing procedure;
but needs efficient impli-
mentation of 4D isogeny.
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Questions?



ECDSA

Choose a cryptographic hash function H with appropriate
domain and codomain. The key generation algorithm G
outputs a pair (k, Q) such that Q = [R]P, where k is the secret
signing Rey and Q is the public verification key.

Signing (G, P, R, H, m)

1.
2.

@ N @@ I & W

t&{1,...,0-1}
R« [t]P
r < x(R) (mod ¢)

if r=0 then goto Step 1.

e+ H(m)

S <+ (e + kNt~ (mod £)

if s = 0 then goto Step 1.

return o == (r,s)

Verification (G, P,Q,H, m, o)
1. e« H(m)
1

2. Uy < es™" (mod £), Uy < rs”"
(mod ¢)
3. T+ [n]P+[uz]Q

4. return r = x(T) (mod ¢)



EdDSA, a footnote

Twisted Edwards model
A twisted Edwards curve defined over Fy is the curve

C:ax® +y> =14dx%? a,d € Fq, and ad(a — d) # 0

with two singular points. It is birationally equivalent to
E:v? =u®+2(a+ d)u? + (a — d)?u such that every point has
order divisible by 4.

Nonce “commitment” R =r+G Hash function
Public verification key Q = s+G
Secret nonce r = H(v,M) —‘ — r

EdDSA signature — @ = ( re G r+H R Q M + Private signing key

Base point (generator of order n) J L l\,{essage being signed
§(2m

“Challenge” x = H(R,Q,M component of the signature)

NIST IR 8214B, Notes on Threshold EdDSA/Schnorr Signatures
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