Every Real Elliptic Curve
Lives in a Donut

6.1 Complex Curves

Elliptic curves defined over Q — the rational elliptic curves — are stand-
outs because they are so helpful in understanding and solving homoge-
neous third-degree number theory problems. But elliptic curves can just
as well be defined over R or C, and in these settings they reveal markedly
different personalities. Studying them leads to surprises and deep
connections. We now begin this journey. Here, the trio of fields

QcRcC

is an overall organizing principle that’s as powerful as it is simple.

In this book we’ve so far worked mainly at the Q level, converting
rational homogeneous number theory problems of degree at most 3 into
lines, nondegenerate conics, and cubics. Geometry then helps us arrive
at solutions. In Q? we have seen that when they exist, rational points are
everywhere dense in a nondegenerate conic, while for a cubic, in many
cases there are only finitely many rational points. At the other extreme of
C, these degree-one, -two, and -three curves, respectively, become, topo-
logically, a sphere, a sphere, and a torus. The rational points lying within
any one of these surfaces constitute a very skinny subset and, amazingly,
the genus of the full surfaces — a very global concept which Chapter 7
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138 Chapter 6. Every Real Elliptic Curve Lives in a Donut

covers in more detail — tells us quite a bit about the nature of that skinny
set of rational points. This remarkable linkage continues to hold even in
higher degrees, where the genus is larger and number theory solutions
are always sparse.

6.2 Complex Numbers Enlighten

The term “complex setting” can be taken in two different ways. One is in
the affine sense as a direct analog of R%, namely C? = C x C. It can also be
taken in the projective sense as a direct analog of P(R). In the first sense,
C? is just a vector space of complex dimension 2 — that is, the set of all
ordered pairs (x, y) with x and y in C and supplied with scalar multiplica-
tion by elements of C as well as vector addition. As for the complex analog
of P2(R), we can proceed in essentially the same way as in the real case,
which we looked at as the unit disk with antipodal points identified. This
isdepicted in Figure 2.2 on p. 40, where the mapr — m% compresses R to
the open interval (—1, 1), which is a “unit open 1-disk” — that is, an open
1-dimensional disk or interval of radius 1 (that is, diameter, or length, 2).
We can do an analogous thing in the complex setting. If |c| denotes the
real distance from the origin to ¢ € C, then the mapc — ICI% compresses
C to the open 2-disk |c|] < 1. Continuing our analogy to the real case,
perform this shrinking on each complex 1-subspace of C2, the points of
a complex 1-subspace being all C-scalar multiples of some fixed nonori-
gin point in C2. The union of all these shrunken complex 1-subspaces is
a subset of C? and is analogous to the open real disk in R%2. Now in the
real case, we added boundary points of each 1-disk and identified antipo-
dal points. That’s equivalent to looking at any shrunken real line — an
open interval bridging two endpoints — as a circle with a missing point,
and adding that point to make a closed loop. The complex analog regards
a shrunken C as a sphere with a missing point — essentially a Riemann
sphere without its north pole. Now add that missing point. This collec-
tion of Riemann spheres is analogous to the set of circles in P2(R). (Those
nine lines in Figure 2.3 on p. 41, with antipodal points identified, are topo-
logically nine circles.) We denote this complex analog as P?(C). This is
difficult to visualize, but we can informally think of P?(C) as C? to which
we’ve added points at infinity. This will become clearer as we consider
some examples.
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Exercise 6.2.1. When the elliptic curve y* = x> — x — 1 is plotted in C?,
most of its points are complex. P = (0, i) is an example. The pseudocode
in Appendix C styled for use by Maple or Mathematica can compute suc-
cessive multiples of P and is algebraic in nature, so code working in the
real rational setting can also calculate successive multiples of any complex
P on the curve. Find 2P, 3P, and

_(@ 24,6551‘)
~\784° 21,952 ) °

Check that each of your points does in fact satisfy y* = x3 — x — 1.

6.3 Plotting a Complex Circle

Example 6.3.1. Plotting a circle in the complex setting is illuminating
and sets the stage for analogous plots of elliptic curves. Let’s see what
happens in the case of, say, the circle x? + y*> = 1. We now assume x
and y are complex, so we accordingly write x = x; +ix, and y = y; +iy,.
Substituting these into x? + y? = 1 and separating into real and imaginary
parts gives

2 2,2 2
X{—x3+y1—y;=1,
XXy +y1Y2 =0.

It turns out that each of these equations defines a real 3-dimensional sur-
face in R* and that their intersection is a real 2-dimensional surface in
R#. Of course it’s hard for most of us to visualize in 4-space, but one
thing we can do is cut everything down by one dimension. This can be
done by setting x, = 0, which defines a real 3D slice in R*. This 3D slice
— (x1,Y1,Y,)-space — intersects the real 3-dimensional surface in a real
curve. By setting x, = 0, only x;, ¥;, and y, can assume nonzero values.
With x, = 0, the two equations above reduce to

xt+yi-y3=1,

Y12 =0.

Now x? + y2 — y3 = 1 defines a hyperboloid of one sheet, and y;y, =0
defines the union of the (x;, y,)-plane when y; = 0, together with the
(x1,y1)-plane when y, = 0. The two equations mean that we don’t see the
whole hyperboloid, but only the part within these two planes. Figure 6.1
depicts this curve in (xy, y;, y,)-space. o



140 Chapter 6. Every Real Elliptic Curve Lives in a Donut
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Figure 6.1. The intersection in R* of the complex unit circle with
(1, y1, y2)-space.

One of the things we’ve learned from the projective disk model P?(R)
is how points at infinity glue together the “ends” of branches to form topo-
logical loops. It turns out that the same thing happens in our complex ana-
log, P?(C). The hyperbola in the (x;, y,)-plane has two asymptotes, and at
the “ends” of each asymptote, branches get glued together. For example,
to go from Figure 6.1 to Figure 6.2, think of the hyperbola in Figure 6.1 as
made of wire. Bend the two topmost wires in the (x;, y,)-plane — always
keeping them in that plane — so that the two ends almost meet to make
the top half of a circle. Repeat, using the bottommost two wires to make
the bottom half of a circle. Then, just before soldering the ends together,
twist the right half of the circle 180 degrees about the x;-axis, and then
do the soldering. The two soldered joints are the two points “c0” in the
figure. Topologically, we get one big loop having two solder joints, with
this big loop still touching the real circle at 1 and —1 in Figure 6.2.

Now our space R* defined by x, = 0 is but one 3-dimensional slice
in R*. More generally, any x, = r = a constant defines a 3-space parallel
to the slice x, = 0. As r varies through R, these slices fill 4-space. As an
example, let’s vary x, a little — say, to x, = r = 0.1. With x, = 0.1,
x? — x% + y? — y2 = 1 then becomes x? + y? — y3 = 1.01. This still
defines a hyperboloid of one sheet, but instead of being intersected by the
two planes defined by y,y, = 0, the intersection is with y;y, + 0.1x; = 0,
another hyperboloid of one sheet, but which looks quite a bit like two
planes. This is depicted as the shaded surface in Figure6.3, and the
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Figure 6.2. Here, the skeleton curve in Figure 6.1 has been topologically
massaged to fit on a sphere.

previous circle-plus-hyperbola has morphed slightly into two curves, each
running close to the circle-plus-hyperbola. For clarity, we have drawn just
one of these.

If we topologically transform Figure 6.3 in the same way that Fig-
ure 6.1 got transformed into Figure 6.2, our curve now appears somewhat

Figure 6.3. This shows one of the two disjoint curves comprising the in-
tersection of the complex circle with the slice x, = r = 0.1.
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like the largest loop in the top half of Figure 6.4, and the other curve (the
one we didn’t draw in Figure 6.3) appears dashed on the rear lower half.
We see other loops corresponding to other choices of ¥ > 0, and these
loops fill out half the sphere, the other half being filled out as r runs
through negative values. <o

Figure 6.4. Asrin Figure 6.3 takes on all real values, the sphere gets cov-
ered with disjoint curves. A few are shown here.

Exercise 6.3.2. Follow the approach used for plotting a complex circle to
plot the (x;,y;,y,)-slice of the complex parabola y = x2. Topologically
map this skeleton to a sphere. Then plot the slices x, = r (r small) to see
how nearby parallel slices map to the sphere. Finally, indicate how the
remaining curves fit on the sphere by sketching in a few more curves.

Exercise 6.3.3. Redo Exercise 6.3.2 for the complex hyperbola xy = 1.

6.4 Plotting a Complex Elliptic Curve

Let’s now explore plotting an elliptic curve in the complex setting. We can
mimic the steps used for a unit circle in the last section.
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Example 6.4.1. For simplicity, we choose the elliptic curve y? = x> — x,
shown in Figure 6.5, where we see both its affine plot and its image in the
projective disk. As with the circle, assume x and y are complex and set
X = Xx; +ix, and y = y; + iy,. Substituting these into y> = x> — x and
separating into real and imaginary parts gives

2 2 _ .3 2
Yi—Y3 =X —3x1X5 — Xy,
2 =3x%x, — X3 — X

Y1Y2 = 2X1Xy 2 2-

Again, as with the circle, we first look in the 3-space x, = 0, and in that
(x1, Y1, y2)-space the two equations lead to

Yi—=y5=xi—x and y,y,=0.
As before, y,y, = 0 defines the union of the (x;, y;)- and (x;, y,)-planes.
In the (x;,y;)-plane defined by y, = 0, the equation y? — y3 = x3 — x;
becomes y? = x3 —x; and we see the real elliptic curve we started with. In
the (x;, y,)-plane given by y; = 0, the equation y? —y3 = x3 — x; becomes
—y3 = x3 — x;, and we see essentially the reflection of the curve about

the y;-axis but drawn in the (x;, y,)-plane. These curves are depicted in
Figure 6.6, where the more lightly drawn part is the reflected curve.

y y

Figure 6.5. Image in the projective plane of a cubic.

In this figure, we see two branches. The one in the (x;, y;)-plane joins
ends at the end of the y;-axis, and the other joins its ends at the end of
the y,-axis. Since we’re in the complex setting, the (y;, y,)-plane is the
Riemann sphere minus its point at infinity, and the two branches both join
up at this one point at infinity, {oo}. So topologically, one loop goes from
x; = 1to{oo}, with another one going from x; = —1 to {oo}. Together with
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Figure 6.6. The heavily drawn curves are what we see in the usual
(x1,y1)-plane. Looking in the (x;,y,)-plane reveals a “reflected” image
of this.

S oy

Figure 6.7. The ordinary and reflected curves in Figure 6.6 topologically
lie on a torus in a natural way.

the other two loops touching the origin, there are four loops. In Figure 6.6,
two of the loops can be regarded as made of thin wire, and the other two,
out of thick wire. These wires can be bent to form the skeleton depicted
in Figure 6.7. In analogy to the circle example, we can now let x, run
through real values r, and the corresponding curves fill out the torus. The
curves for r > 0 are depicted in Figure 6.8 and fill out half the torus — the
upper-front and lower-rear quarters in the picture. The lower front and
upper rear are filled in as r runs through negative values. o
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Figure 6.8. The curves corresponding to setting x, equal to real constants
topologically cover the torus with curves, any two touching only at the
point at infinity.

Exercise 6.4.2. For the complex curve y* = x(x? — 1)(x? — 4), use the
methods of this section to topologically map intersections of the curve
with 3D slices of R* to a double torus like the one in Figure 7.1 on p. 156.

6.5 Subgroups and Cosets

When we plotted an elliptic curve in the complex setting, curves over R
played a pivotal role since the complex curve was built up as the union of
real curves. In fact, the very suggestive torus skeleton depicted in Figure
6.7 is topologically the union of, for example, the real elliptic curve
y? = x> — x and its “brother” y> = —x3 + x, obtained by replacing x
everywhere by —x. There are two groups within this skeleton, one of
them consisting of the heavily drawn curves in Figure 6.7 and the other
one comprised of the lightly drawn curves. It’s not hard to see this funda-

mental fact shared by elliptic curves over Q, R, and C:

The connect-the-dots addition algorithm works in all three
settings. Therefore an elliptic curve in P?(C) is an abelian
group, as are the real and the rational subsets of the curve.
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From now on, the term group will always mean
abelian group.

To keep things simple, we continue to work with the familiar example
of y? = x3 — x shown in the left picture of Figure 6.5, although our argu-
ments are basically the same for any short-form elliptic curve with an oval.
(If there’s no oval in the usual real plane, it gets revealed by looking in a
different plane, as we will see in the next section.) The curve y* = x3 — x
is an abelian group in P?(R) under our connect-the-dots algorithm for
which a line cutting the curve is basic. From just looking at the curve, it
seems that any line cuts the real curve in exactly one or three points. This
is easy to check. On the one hand, when m # 0, we can substitute mx + b
for y in y* — x> + x = 0 and this results in a cubic in x which factors
into three linear terms. If their roots are all real, the line cuts the curve
in three real points. If the roots are not all real, then because complex
roots come in conjugate pairs, there’s just one real root and the line cuts
the real curve in a single point. On the other hand, if the line is vertical,
say X = X, then plugging x, in for x in y? — x> + x = 0 gives y? equal to
some constant k = x3 — x,. There are three cases. If k > 0, then y has
two distinct solutions which, with the point at infinity, give three points
of intersection. If k = 0, then y? has two identical solutions, meaning
the line x = x, is tangent to the oval and this double point plus the point
at infinity again gives three intersections. k < 0 means the only point of
intersection is the point at infinity.

This leads to two observations about the connect-the-dots algorithm.

« The first is that any line intersects the branch in at least one point.
If the line is vertical, it intersects the branch at infinity. If it’s not vertical,
the reader can pin this case down in Exercise 6.5.8 on p. 148.

« The second observation is that any line intersects the oval in either
zero or two points. To see this, suppose a line intersects the oval in a point
P. As a second point Q travels once around the oval (starting, say, from
P as a tangent line there), the angle the line makes with the horizontal
changes by 180°, thus accounting for all slopes of the rotating line. So
because every line has a slope (which can be infinity), a line intersecting
the oval in some point P also intersects it in some second point Q. The
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line can’t intersect the oval in three points since the line must intersect
the branch, so any line intersects the oval in either zero or two points.

The above observations allow us to see this fundamental group-theo-
retic fact about the branch and the oval.

The branch (always including the point at infinity) is a sub-
group of the entire real projective elliptic curve.

This is because the points of the branch are closed under addition and
subtraction. That’s true because the sum of two points in the branch must
remain in the branch. If not, that sum would be in the oval, an impossi-
bility because the oval either contains zero or two points, never just one
point. Ditto for the difference.

Notation 6.5.1. When a group and subgroup are clear from context, we
let G denote the group and H the subgroup. o

Definition 6.5.2. A coset of a subgroup H of a group G is a translate by
some g, € G of that subgroup — thatis,aset H+g, ={h+g, : h € H}.
We typically assume g, & H. o

Comment 6.5.3. It is easy to show that a coset of H is either H itself or
is disjoint from it. o

Example 6.5.4. R? is a group G under vector addition, and any line H
through the origin is a subgroup of G. Any (parallel) translate of H by a
vector g, is a coset of H. Another line through the origin H' # H intersects
each coset in one point, and we may let that point in the subgroup H' serve
as a representative of the coset. The set H' of all these representatives can
be thought of as the quotient group G/H of G by H. O

Example 6.5.5. In the above example, G can be any R” and H, any sub-
space of G. H' can be any vector space complement of H — for exam-
ple, the orthogonal complement of H. If H has dimension d, then H’ is
G/H and has dimension n — d. In the expected sense, G is isomorphic
to H X G/H — that is, each element of G can be identified with a pair of
elements from the subgroups H and H'. o

Example 6.5.6. In Example 6.5.5, the field R can be replaced by C or in
fact by any field. o
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Example 6.5.7. Let G = Rand H = Z. Then R/Z is isomorphic to a circle
group O. The points of the circle parameterize the cosets of Z in R, as do
the points of the interval [0,1) C R. R is 1-dimensional. An analogous
2-dimensional example would be G = R? and H equal to the plane lattice
72. Then R2?/Z?2 is isomorphic to the torus group O x O. Its points (or
equally well, those of [0,1) x [0,1) C R?) parameterize the points of this
quotient group. O

Exercise 6.5.8. Establish that any nonvertical line intersects the branch
of the cubic y? = x> — x.

Exercise 6.5.9. If 7" is a cyclic group of order n and Z™ is a subgroup of
7", when is (Z")/(Z™) isomorphic to Z"~™?

Returning to the real curve y? = x*> — x shown in Figure 6.5 on p. 143,
we know that the branch is a subgroup H of the entire real elliptic curve
G, but what can we say about what’s left over, the oval? We’ve seen before
that not only is the oval a loop, the branch is, too — its ends connect at
infinity, so the branch forms a topological loop. This suggests that perhaps
the oval is a coset of the branch! This is indeed so, and here’s why: If g, is
any point of the oval, we will show that the oval is the set H 4+ g, — that
is, the oval is a group-theoretic translate of the branch by an element of
the oval. To see that if g is any point of the oval, then there’san h € H
so that g = h + g, let —g be the reflection of g about the x-axis. By our
previous observations, the line through —g and g, intersects H in a point
h, so we have g = h + g, as desired. This is depicted in Figure 6.9.

We’ve learned that the real projective elliptic curve is a group G, as is
its branch H. It’s fair to ask what the quotient G/H is. Since H has just
the oval as a coset, the quotient consists of two elements, and the only 2-
element group is Z,. The observations above fit in with this, because with
{0 « branch} and {1 < oval}, 0 + 0 = 0 corresponds to the sum of two
branch points being a branch point, while 0+1 = 1+0 = 1 corresponds to
the sum of a branch point and oval point being in the oval. Also,1+1 =0
corresponds to the sum of two points in the oval being in the branch.

We are not quite done with our story. Take a look at Figure 6.6 on
p. 144 depicting the space curve obtained when our elliptic curve in the
complex setting is sliced by the (x;, y;,y,)-subspace of R*. The part of
the space curve that’s drawn more lightly is a reflected (and rotated) ver-
sion of the darker curve we’ve been discussing. If we look at this lightly
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Figure 6.9. The oval is a coset of the real projective curve’s branch group.
Given points g, g in the oval, the line through g, and —g intersects the
branch in h. This picture can be summed up as h + g, = g.

drawn curve as simply a plane curve in the usual (x, y)-plane, its equation
is obtained from y? = x3 — x by replacing x everywhere with —x, giving
y? = —x3+x. Just as the branch in R? of any curve y? = x3+ax+b is right-
most and opens to the right, so the branch of any curve y> = —x3> —ax+b
is leftmost and opens to the left. Since our definition of addition in elliptic
curves uses lines and is purely geometric, the same goes for our reflected
version, which tells us that it, too, is an abelian group, say, G’. All our
other observations similarly hold, meaning that its branch H' is a sub-
group, its oval is a coset of that subgroup, and the quotient G’'/H’ is the
group Z,.

Figure 6.7 on p. 144 puts these groups, subgroups, and cosets together
in a suggestive way as the skeleton of a torus. The two heavily drawn loops
together form G, while the other two loops form G’. The outer, heavily
drawn loop is the branch subgroup H of G, while the more lightly drawn
loop on the left is H' and touches H at infinity, their mutual 0-element.
The other two loops are the other two ovals in Figure 6.6 on p. 144 and
are cosets of H and H’. To see this more easily, Figure 6.7 is redrawn
as Figure 6.10 with additional labeling. Notice that the two heavy loops
are disjoint, as are the two lightly drawn loops. In each case, the coset is
disjoint from its subgroup.
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= JH > oy

I\

Figure 6.10. The two heavy loops form the group G. The outer heavy
loop is the branch subgroup H of G. That branch’s 0-element is oo in the
drawing. The two more lightly drawn loops form the group G’. The left
light loop is the branch subgroup H' of G’, and that branch’s 0-element is
again oo in the drawing.

Yet another way of relating Figure 6.7 to a skeleton torus is depicted
in Figure 6.11. In it, the coordinate pairs appearing in the top and bottom
drawings are the endpoints of curves in the top drawing. The curves in
the top drawing correspond to the line segments in the bottom drawing
in an obvious way. In the bottom drawing, all four corners of the square
are labeled (0, 0), meaning they’re identified to a single point. The two
points (1, 0) are likewise identified, as are similarly the two points (0, 1).
The light shading stands for a thin rubber sheet, and the usual way of
forming a topological torus from the square by identifying edges auto-
matically makes these identifications. Without any shading, the bottom
drawing depicts the real projective curve with its branch subgroup loops,
coset loops, and how these touch each other, just as the top picture does.
But filling in the square does much more — it corresponds to extending
the real projective curve to a complex projective curve. (Although it’s cus-
tomarily called a curve or complex curve, visually it’s a real, 2-dimensional
surface. This difference is an artifact of nomenclature history.) The locus
of > = x3 — x in C?, plus the point at infinity, is a closed surface in
P2(C) — a topological torus. The filled-in square in the bottom drawing
has a natural group structure via vector addition in which coordinatewise
addition is taken modulo 2, and there is a corresponding group structure
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in the surface extending that of the real curve: Addition via the connect-
the-dots algorithm is defined geometrically just as in the real case, except
now the lines are complex. So, for example, two distinct points in the
vector space C? determine a unique complex line through them.

£(0:0)

Y
(0.0)
B OO O )
kS :
E I
, coset of H |
AR Xy (T8 “0.1)
i T<0,0) 100 -?<0,0)
H

Figure 6.11. Another way our 3D slice relates to a torus skeleton.
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6.6 Elliptic Curves with No Oval

Example 6.6.1. The branch and loop in Figure 6.5 are topologically just
the loops we tend to draw when making an everyday sketch of a torus. But
this chapter’s title is “Every Real Elliptic Curve Lives in a Donut,” and lots
of elliptic curves in the real plane have only a branch and no oval. So, for
example, what’s the story about an elliptic curve such as y* = x> + x? Its
plot in Figure 6.12 reveals no oval.

Figure 6.12. This curve y*> = x*> + x = (x + i)x(x — i) is analogous to
y? = x3 — x = (x + 1)x(x — 1). Every elliptic curve has a loop, but where
is it?

If we play the same game as in the last two examples, we get a curve in
the 3-dimensional slice x, = 0 consisting of the branch shown in
Figure 6.12, plus its reflection (rotated by 90°) analogous to those exam-
ples. That is, the space curve we get is the union of two branches touching
at (0,0, 0), one in the (x;, y;)-plane opening to the right, the other in the
(x1,y2)-plane opening to the left. Now all of 4-space is covered by the
parallel 3-slices x, = r as r runs through R, but seeing a torus by visual-
izing the union of the curves in these 3-slices doesn’t sound very doable.
It would be nice to have a single 3-slice showing loops the way Figure 6.6
does.



6.6. Elliptic Curves with No Oval 153

How can we get such a slice? A clue is revealed if we work by analogy.
Factor the right-hand side of y? = x3 — x into x> — x = (x + 1)x(x — 1).
These three factors are 0 when x = 0 and £1 — the three points where all
loops cross the x;-axis. The loops/branches themselves are formed using
x; as a parameter. Let’s do an analogous thing for y? = x> + x: The right-
hand side factors into (x +i)x(x —i), and this is 0 when x = 0 and +i. The
loops now cross the x,-axis (rather than the x;-axis) at three points, and
the loops/branches are formed using x, as a parameter. As one example,
at x, = 3, y*is x* + x evaluated at 3, which is % and y itself works out

to be
i\/5(1 +1) .
4
These y-values lie in the plane y; = y, in (x;, y1,y,)-space. Similarly, at
X, = —3,y%is —%, and the y-values are
i—ﬁ(l i),
4

These lie in the plane y; = —y, in (x5, y1,Y,)-space. These two planes
y; =y, and y; = —y, are perpendicular to each other, in the same sense
that y; = 0 and y, = 0 are perpendicular in the previous two examples. It
turns out that we get a picture looking much like Figure 6.6, just oriented
differently in 4-space. o

In the previous section we obtained various group-theoretic results
for elliptic curves having an oval. Using the ideas just above, we can
replicate the geometric arguments of the previous section to get analo-
gous group-theoretic results when there’s no oval in (x;, y;)-space by us-
ing (x5, y1,y2)-space as a 3D slice instead of (x;, y;, y,)-space.






