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Normalization

Given an S-algebra R, the ring of all elements of R integral over S is
called the integral closure, or normalization of S in R.
The following lemma by Nagata gives us general method for finding a
subring over which the given ring is integral.

Lemma 1

Let R = k[r1, r2, . . . , rn] be a finitely generated k-algebra and
f ∈ k[x1, x2, . . . , xn] be a non-zero polynomial such that
f (r1, r2, . . . , rn) = 0. Then there exist s1, s2, . . . , sn−1 ∈ R such that
rn is integral over S = k[s1, s2, . . . , sn−1] and R = S [rn].

This lets us prove the first main result of normalization, called
Noether’s normalization lemma.

Theorem 1

Let k be a field and R be a non-zero finitely generated k-algebra.
Then there exist elements t1, . . . , td ∈ R which are algebraically
independent over k and such that R is integral over k[t1, . . . , td ].

3 / 23



Arithmetic
Geometry

Gaurish Korpal

Normalization

Nagata’s
argument

Dimension of
polynomial ring

Dedekind domain

Factorization

Localization

Extension

Spectrum of ring

Homeomorphism

Spectrum of Z[x]

Normalization

Given an S-algebra R, the ring of all elements of R integral over S is
called the integral closure, or normalization of S in R.
The following lemma by Nagata gives us general method for finding a
subring over which the given ring is integral.

Lemma 1

Let R = k[r1, r2, . . . , rn] be a finitely generated k-algebra and
f ∈ k[x1, x2, . . . , xn] be a non-zero polynomial such that
f (r1, r2, . . . , rn) = 0. Then there exist s1, s2, . . . , sn−1 ∈ R such that
rn is integral over S = k[s1, s2, . . . , sn−1] and R = S [rn].

This lets us prove the first main result of normalization, called
Noether’s normalization lemma.

Theorem 1

Let k be a field and R be a non-zero finitely generated k-algebra.
Then there exist elements t1, . . . , td ∈ R which are algebraically
independent over k and such that R is integral over k[t1, . . . , td ].

3 / 23



Arithmetic
Geometry

Gaurish Korpal

Normalization

Nagata’s
argument

Dimension of
polynomial ring

Dedekind domain

Factorization

Localization

Extension

Spectrum of ring

Homeomorphism

Spectrum of Z[x]

Normalization

Given an S-algebra R, the ring of all elements of R integral over S is
called the integral closure, or normalization of S in R.
The following lemma by Nagata gives us general method for finding a
subring over which the given ring is integral.

Lemma 1

Let R = k[r1, r2, . . . , rn] be a finitely generated k-algebra and
f ∈ k[x1, x2, . . . , xn] be a non-zero polynomial such that
f (r1, r2, . . . , rn) = 0. Then there exist s1, s2, . . . , sn−1 ∈ R such that
rn is integral over S = k[s1, s2, . . . , sn−1] and R = S [rn].

This lets us prove the first main result of normalization, called
Noether’s normalization lemma.

Theorem 1

Let k be a field and R be a non-zero finitely generated k-algebra.
Then there exist elements t1, . . . , td ∈ R which are algebraically
independent over k and such that R is integral over k[t1, . . . , td ].

3 / 23



Arithmetic
Geometry

Gaurish Korpal

Normalization

Nagata’s
argument

Dimension of
polynomial ring

Dedekind domain

Factorization

Localization

Extension

Spectrum of ring

Homeomorphism

Spectrum of Z[x]

Nagata’s argument

We can generalize Nagata’s argument in the proof of previous
lemma, to get the following result.

Lemma 2

Let R = k[x1, . . . , xn] be a ring of polynomials and f ∈ R be a
non-constant polynomial. Then there exist y1, . . . , yn−1 ∈ R such
that xn is integral over S = k[y1, . . . , yn−1, f ] and R = S [xn].

Hence given a non-constant polynomial in a ring of polynomials R,
we can find a subring S ⊆ R such that R is integral over S .
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Dimension of polynomial ring

The concept of normalization is one of the cornerstone of dimension
theory. This can be illustrated by using the previous lemma to find
dimension of a polynomial ring. Let’s first recall the definition of
Krull dimension of a ring:

Krull dimension

The Krull dimension of a ring R, dim(R), is defined as

dim(R) = sup{ht(p) : p is prime ideal of R}

where ht(p) = sup{n : pn ( . . . ( p1 ( p, pi are prime ideals of R}.

Let R = k[x1, . . . , xn] be the polynomial ring. We will proceed by
induction on n.
We have the following chain of prime ideals in R:

〈0〉 ( 〈x1〉 ( 〈x1, x2〉 ( · · · ( 〈x1, x2, . . . , xn〉

Since this is a chain of length n, we have dim R ≥ n .
5 / 23
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Dimension of polynomial ring

Now consider another chain of prime ideals in R of length `:

〈0〉 ( p1 ( p2 ( · · · ( p`

Let f ∈ p1 be a non-constant polynomial, then by the previous
lemma, there exists a subring S = k[y1, . . . , yn−1, f ], such that R is
integral over S . Now by incomparability of prime ideals under integral
extensions, we get the corresponding chain of prime ideals of length `
in S .

〈0〉 ( p1 ∩ S ( p2 ∩ S ( · · · ( p` ∩ S

But S/〈f 〉 is isomorphic to a polynomial ring with n − 1 variables.
Hence by induction hypothesis dim S/〈f 〉 = n − 1. Since
〈f 〉 ⊆ p1 ∩ S , we have dim S/(p1 ∩ S) ≤ dim S/〈f 〉 and hence
ht(p` ∩ S) ≤ dim S/〈f 〉, i.e. `− 1 ≤ n − 1, equivalently ` ≤ n. Now

by taking supremum of both sides we conclude that dim R ≤ n .
Combining both the inequalities we get that dim R = n.
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Dedekind domain

Let’s first recall the definition:

Dedekind domain

A Dedekind domain is a Noetherian, integrally closed, integral
domain of Krull dimension 1.

Examples: Principal ideal domains (except fields), Ring of integers
of a number field
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Factorization

We know that the rings of algebraic integers do not always have
unique factorization property. For example, Z[

√
−5] is the ring of

integers of Q[
√
−5], is not a unique factorization domain since

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

gives two distinct factorizations of 6 into irreducibles. But in a
Dedekind domain we have unique factorization of ideals.

Theorem 2

Every proper ideal in a Dedekind domain R is uniquely representable
as a product of prime ideals.

Hence our motive is to find prime factorization of ideals in a
Dedekind domain.
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Localization

To prove the result which will help us do ideal factorization in
Dedekind domains, we will take help of the technique of localization.

Theorem 3

A Dedekind domain is a Noetherian integral domain R whose
localization Rp at each non-zero prime ideal p is a principal ideal
domain with non-zero maximal ideal.

Hence we have an alternate definition of Dedekind domain in terms
of localization.
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Extension

Let R be a Dedekind domain with field of fractions K and S be the
integral closure of R in a finite extension L of K .

Lemma 3

pS 6= S for any prime ideal p in R.

Lemma 4

If S is a finitely generated R-module then S is a Dedekind domain
and p ⊆ q⇔ q | pS where p and q are prime ideals in R and S
respectively.

Combining the above two lemmas we conclude that every prime ideal
p of R lies under at least one prime q of S .
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Extension

Let R be a Dedekind domain with field of fractions K and L be a
finite extension of K . Let S be a Dedekind domain which is the
integral closure of R in L and q be a prime ideal in S lying over
non-zero prime ideal p in R.

Ramification index

The exponent with which the prime ideal q occur in the prime
decomposition of pS is called its ramification index.

Residual degree

R/p is the residual field of R at p and S/q is the residual field of S
at q. We define the degree of field extension of S/q over R/p as the
residual degree of q over p.

For example, if pS = qe11 · · · q
e`
` then ei is the ramification index of qi

over p, denoted by e(qi/p) and fi = [S/qi : R/p] is the residual
degree of qi over p, denoted by f (qi/p).
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Extension

The following result will help us find the prime ideal factorization in
Dedekind domains:

Theorem 4

Let R be a Dedekind domain with field of fractions K and S be the
integral closure of R in a finite extension L of K . If S is a finitely
generated R-module then

[L : K ] =
∑
q|pS

e(q/p)f (q/p)

for any non-zero prime ideal p of R.

12 / 23
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Quadratic number field

We can illustrate the application of the result to find factorization of
ideals in the ring of integers of a quadratic number field. That is, we
set R = Z, K = Q, L = Q(

√
m) for some square free integer m, and

S =

{
Z[
√

m] if m ≡ 2, 3 (mod 4)

Z
[
1+
√
m

2

]
if m ≡ 1 (mod 4)

Then for p = 〈p〉 where p is some prime integer, we get

pS =



〈p,
√

m〉2 if p | m

〈2, 1 +
√

m〉2 if p = 2,m ≡ 3 (mod 4)〈
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〉〈
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〉
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Spectrum of ring

Spectrum of a ring is the collection of the primes ideals of that ring.
For example, SpecZ = {〈0〉} ∪ {〈p〉 : p is a prime integer}.

Zariski topology

Let R be a commutative ring with identity and a be an ideal in R.
We define V (a) = {p ∈ Spec R : a ⊆ p} ⊆ Spec R. Then the
following properties hold:

(i) V (a) ∪ V (b) = V (a ∩ b)

(ii)
⋂
λ V (aλ) = V (

∑
λ aλ)

(iii) V (R) = φ

(iv) V (0) = Spec R

Then we define topology τ on X such that the closed subsets are of
the form V (a). Moreover, the sets of the form
D(r) = Spec R\V (〈r〉) for all r ∈ R constitute a base of open
subsets of Spec R.
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Affine line

Let k be a field, then the we define the affine line A1
k = Spec k[x ]

where k[x ] is the ring of polynomials with coefficients in the field k.
Since k[x ] is a principal ideal domain, we have
A1

k = {〈0〉} ∪ {〈f (x)〉 : f (x) is a monic irreducible polynomial}.

But, in general, determining all the prime ideals of a given ring is not
easy. In the above two cases, we were able to write the prime ideals
since the ring R was a principal ideal domain. Our motive is to
determine the elements of spectrum of given ring R in general. For
that we will take help of topological structure of the spectrum.
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Homeomorphism

Theorem 5

Let ϕ : R → S be a ring homomorphism, where R and S are
commutative rings with identity. We define the map of sets

ϕ∗ : Spec S → Spec R

q 7→ ϕ−1(q)

which is continuous. Moreover, following properties are true:

(i) If ϕ is a localization morphism, i.e. S = D−1R for some
multiplicatively closed subset D of R, then ϕ∗ is a
homemorphism onto the subspace {p ∈ Spec R : p ∩ D = φ} of
Spec R.

(ii) If ϕ is surjective, then ϕ∗ induces a homeomorphism onto the
closed subspace V (ker(ϕ)).
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We can illustrate the application of the result to find prime ideals of
Z[x ]. Consider the canonical ring homomorphism:

ϕ :Z ↪→ Z[x ]

n 7→ n

Then we have the following corresponding map of the sets:

ϕ∗ : SpecZ[x ]→ SpecZ
p 7→ ϕ−1(p)

where ϕ−1(p) = p ∩ Z. Also, we know that

SpecZ = {〈0〉}
⋃(⋃

p

{pZ}

)

By the above result we know that ϕ∗ is a continuous map, and hence

SpecZ[x ] = ϕ∗−1({〈0〉})
⋃(⋃

p

ϕ∗−1({pZ})

)
17 / 23
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We will now analyse the preimage of zero ideal and non-zero prime
ideals of Z under the ϕ∗ map. Consider the multiplicative closed
subset D = Z\{0} of Z[x ]. Then we have the canonical ring
homomorphism between Z[x ] and D−1Z[x ] = Q[x ]:

ψ : Z[x ]→ Q[x ]

f (x) 7→ f (x)

1

Then we have the following map of sets:

ψ∗ : A1
Q → SpecZ[x ]

q 7→ ψ−1(q)

Now by previous result we know that ψ∗ is a homeomorphism from
A1

Q onto ϕ∗−1({〈0〉}).
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Consider the natural surjective ring homomorphism between Z[x ] and
Z[x ]/〈p〉 = Fp[x ]:

σp : Z[x ]→ Fp[x ]

f (x) 7→ f (x) mod p

where f (x) mod p = f (x) + 〈p〉. Then we have the following map of
sets

σ∗p : A1
Fp
→ SpecZ[x ]

q 7→ σ−1p (q)

Now by previous result we know that σ∗p is a homeomorphism from

A1
Fp

onto ϕ∗−1({pZ}).
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Now using the above two homeomorphisms (bijection) we get

SpecZ[x ] = ψ∗
(
A1

Q
)⋃(⋃

p

σ∗p(A1
Fp

)

)

as sets.
Next we note that:

(i) ψ−1(〈0〉) = 〈0〉
(ii) ψ−1(〈g(x)〉) = 〈f (x)〉 for any monic irreducible polynomial

g(x) ∈ Q[x ], where f (x) ∈ Z[x ] is Q-irreducible polynomial with
1 as the gcd of the coefficients.

(iii) σ−1p (〈0〉) = 〈p〉
(iv) σ−1p (〈g(x)〉) = 〈p, f (x)〉 for any monic irreducible polynomial

g(x) ∈ Fp[x ], where f (x) ∈ Z[x ] is Fp-irreducible polynomial
such that g(x) ≡ f (x) mod p.
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Hence we conclude that the prime ideals in Z[x ] are:

(i) principal prime ideal 〈f 〉, where f is either 0, a prime integer p,
or a Q-irreducible polynomial written so that its coefficients
have gcd 1

(ii) maximal ideals 〈p, f 〉, where p is a prime integer and f is a
monic integral polynomial irreducible modulo p.

This illustrates a real mixing of arithmetic and geometric properties;
SpecZ[x ] can be seen as a family of affine lines, parametrized by the
points of SpecZ, and over fields of different characteristics.
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