
Appendix. An Elementary Introduction 
to Hyperelliptic Curves 

by Alfred J. Menezes, Yi-Hong Wu, and Robert J. Zuccherato 

This appendix is an elementary introduction to some of the theory of hyperelliptic 
curves over finite fields of arbitrary characteristic that has cryptographic relevance. 
Cantor's algorithm for adding in the jacobian of a hyperelliptic curve is presented, 
along with a proof of its correctness. 

Hyperelliptic curves are a special class of algebraic curves and can be viewed 
as generalizations of elliptic curves. There are hyperelliptic curves of every genus 
9 ~ 1. A hyperelliptic curve of genus 9 = 1 is an elliptic curve. Elliptic curves have 
been extensively studied for over a hundred years, and there are many books on 
the topic (for example, [Silverman 1986 and 1994], [Husemoller 1987], [Koblitz 
1993], [Menezes 1993]). 

On the other hand, the theory of hyperelliptic curves has not received as much 
attention by the research community. Most results concerning hyperelliptic curves 
which appear in the literature on algebraic geometry are couched in very general 
terms. For example, a common source cited in papers on hyperelliptic curves is 
[Mumford 1984]. However, the non-specialist will have difficulty specializing (not 
to mention finding) the results in this book to the particular case of hyperelliptic 
curves. Another difficulty one encounters is that the theory in such books is usually 
restricted to the case of hyperelliptic curves over the complex numbers (as in 
Mumford's book), or over algebraically closed fields of characteristic not equal to 
2. The recent book [Cassels and Flynn 1996] is an extensive account of curves of 
genus 2. (Compared to their book, our approach is definitely "low-brow".) 

Recently, applications of hyperelliptic curves have been found in areas outside 
algebraic geometry. Hyperelliptic curves were a key ingredient in Adleman and 
Huang's random polynomial-time algorithm for primality proving [Adleman and 
Huang 1992]. Hyperelliptic curves have also been considered in the design of errOf­
correcting codes [Brigand 1991], in the evaluation of definite integrals [Bertrand 
1995], in integer factorization algorithms [Lenstra, Pila and Pomerance 1993], 
and in public-key cryptography (see Chapter 6 of the present book). Hyperelliptic 
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curves over finite fields of characteristic two are particularly of interest when 
implementing codes and cryptosystems. 

Charlap and Robbins [1988] presented an elementary introduction to elliptic 
curves. The purpose was to provide elementary self-contained proofs of some 
of the basic theory relevant to Schoof's algorithm [Schoof 1985] for counting the 
points on an elliptic curve over a finite field. The discussion was restricted to fields 
of characteristic not equal to 2 or 3. However, for practical applications, elliptic 
and hyperelliptic curves over characteristic two fields are especially attractive. 
This appendix, similar in spirit to the paper of Charlap and Robbins, presents 
an elementary introduction to some of the theory of hyperelliptic curves over 
finite fields of arbitrary characteristic. For a general introduction to the theory of 
algebraic curves, consult [Fulton 1969]. 

§ 1. Basic Definitions and Properties 

Definition 1.1. Let IF be a field and let if be the algebraic closure of IF (see 
Definition 1.8 of Chapter 3). A hyperelliptic curve C of genus g over IF (g ~ 1) 
is an equation of the form 

C : v2 + h(u)v = f(u) in IF[u,v] , (1) 

where h(u) E IF[u] is a polynomial of degree at most g, f(u) E IF[u] is a monic 
polynomial of degree 2g + 1, and there are no solutions (u, v) E if x if which 
simultaneously satisfy the equation v2 + h(u)v = f(u) and the partial derivative 
equations 2v + h(u) = 0 and h'(u)v - f'(u) = O. 

A singular point on C is a solution (u, v) E if x if which simultaneously satisfies 
the equation v2 + h(u)v = f(u) and the partial derivative equations 2v + h(u) = 0 
and h'(u)v - f'(u) = o. Definition 1.1 thus says that a hyperelliptic curve does not 
have any singular points. 

For the remainder of this paper it is assumed that the field IF and the curve C 
have been fixed. 

Lemma 1.1. Let C be a hyperelliptic curve over IF defined by equation (1). 

1) If h(u) = 0, then char(lF) i= 2. 
2) If char(lF) i= 2, then the change of variables u --+ U, v --+ (v - h(u)/2) 

transforms C to the form v2 = f(u) where degu f = 2g + 1. 
3) Let C be an equation of the form (1) with h(u) = 0 and char(lF) i= 2. Then C 

is a hyperelliptic curve if and only if f(u) has no repeated roots in if. 

Proof. 
1) Suppose that h(u) = 0 and char(lF) = 2. Then the partial derivative equations 

reduce to f'(u) = O. Note that degu f'(u) = 2g. Let x E if be a root of the 
equation f'(u) = 0, and let y E if be a root of the equation v2 = f(x). Then 
the point (x, y) is a singular point on C. Statement 1) now follows. 
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2) Under this change of variables, the equation (1) is transfonned to 

(v - h(u)/2)2 + h(u)(v - h(u)/2) = f(u) , 

which simplifies to v2 = f(u) + h(U)2/4; note that deguU + h2/4) = 29 + 1. 
3) A singular point (x, y) on C must satisfy y2 = f(x), 2y = 0, and f'(x) = O. 
Hence y = 0 and x is a repeated root of the polynomial f(u). 0 

Definition 1.2. Let II( be an extension field of IF. The set oflI(-rational points on 
C, denoted C(II(), is the set of all points P = (x, y) E II( x II( that satisfy the 
equation (I) of the curve C, together with a special point at infinity* denoted 00. 

The set of points C(iF) will simply be denoted by C. The points in C other than 
00 are called finite points. 

Example 1.1. The illustrations on the next page show two examples of hyperelliptic 
curves over the field of real numbers. Each curve has genus 9 = 2 and h(u) = O. 

Definition 1.3. Let P = (xA.-y) be a finite point on a hyperelliptic curve C. The 
opposite of P is the point P = (x, -y - h(x». (Note that P is indeed on C.) We 
also d!fine the opposite of 00 to be 00 = 00 itself. If a finite point P satisfies 
P = P, then the point is said to be special; otherwise, the point is said to be 
ordinary. 

Example 1.2. Consider the curve C : v2 + uv = u5 + 5u4 + 6u2 + u + 3 over the 
finite field lF7. Here, h(u) = u, f(u) = u5 + 5u4 + 6u2 + u + 3 and 9 = 2. It can 
be verified that C has no singular points (other than 00), and hence C is indeed a 
hyperelliptic curve. The IF 7-rational points on C are 

C(lF7) = {oo, (1, 1), (1, 5), (2, 2), (2, 3), (5, 3), (5, 6), (6, 4)} . 

The point (6,4) is a special point. 

1) C1 : v2 = u5 + u4 + 4u3 + 4u2 + 3u + 3 = (u + 1)(u2 + 1)(u2 + 3). The graph of 
C1 in the real plane is shown below. 

* The point at infinity lies in the projective plane p2(lF). It is the only projective point 
lying on the line at infinity that satisfies the homogenized hyperelliptic curve equation. If 
g 2: 2, then 00 is a singular (projective) point; this is allowed, since 00 f:j.lF x IF. 
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2) C2 : v2 = u5 - 5u3 + 4u = u(u - 1)(u + 1)(u - 2)(u + 2). The graph of C2 in 
the real plane is shown below. 

Example 1.3. Consider the finite field F25 = F2[x]/(X5 + X2 + 1), and let a be a 
root of the primitive polynomial X5 + x2 + 1 in F 25. The powers of a are listed in 
Table 1. 

..1L an ..1L ~ ..1L an 
0 11 a 2 + a + 1 22 a 4 + a 2 + 1 
1 a 12 a 3 +a2 + a 23 a 3 + a 2 + a + 1 
2 a 2 13 a 4 + a 3 + a 2 24 a 4 + a 3 +a2 + a 
3 a 3 14 a 4 + a 3 + a 2 + 1 25 a 4 + a 3 + 1 
4 a 4 15 a 4 + a 3 + a 2 + a + 1 26 a 4 + a 2 + a+ 1 
5 a 2 + 1 16 a 4 +a3 + a+ 1 27 a 3 + a + 1 
6 a 3 +a 17 a 4 + a + 1 28 a 4 +a2 +a 
7 a 4 +a2 18 a+l 29 a 3 + 1 
8 a 3 + a 2 + 1 19 a 2 +a 30 a 4 +a 
9 a 4 + a 3 + a 20 a 3 +a2 31 
10 a 4 + 1 21 a 4 +a3 

Table 1. Powers of a in the finite field F25 = F2[x]/(X5 + X2 + 1) 

Consider the curve C : v 2 + (u2 + u)v = u5 + u3 + 1 of genus 9 = 2 over the 
finite field F 25. Here, h( u) = u2 + u and f (u) = u5 + u3 + 1. It can be verified that 
C has no singular points (other than (0), and hence C is indeed a hyperelliptic 
curve. The finite points in C(F25), the set of F25-rational points on C, are: 

(0,1) 
(a9, ( 27 ) 
(a I5 ,0) 

(a2D , ( 15 ) 

(a27 ,O) 
(a3D ,0) 

(1, 1) 
(a9 , a 3D ) 

(a I5 , aB) 
(a2D, ( 29) 

(a27, ( 2) 

(a3D , ( 16) 

(a5 , ( 15 ) 

(aID, ( 23 ) 
(alB, ( 23 ) 

(a23 ,0) 
(a2B, ( 7 ) 

(a5, ( 27 ) 
(aID, a 3D ) 

(alB, ( 29 ) 

(a23,a4) 

(a2B ,aI6 ) 

Of these, the points (0,1) and (1, 1) are special. 

(a7, ( 4) 

(a I4 ,aB) 

(aI9, ( 2) 

(a25 , a) 
(a29 ,0) 

(a7, ( 25 ) 

(a I4 , ( 19) 

(a I9 ,a2B ) 

(a25 , ( 14) 

(a29 , a) 
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§ 2. Polynomial and Rational Functions 

This section introduces basic properties of polynomials and rational functions that 
arise when they are viewed as functions on a hyperelliptic curve. 

Definition 2.1. The coordinate ring of Cover IF, denoted IF[C], is the quotient 
ring 

IF[C] = IF[u, v]/(v2 + h(u)v - f(u» , 

where (v2+h(u)v - f(u» denotes the ideal in IF[u, v] generated by the polynomial 
v2 + h(u)v - f(u).(See Example 4.1 in Chapter 3 for the definition of "quotient 
ring".) Similarly, the coordinate ring of C over iF is defined as 

iF[C] = iF[u, v]j(v2 + h(u)v - f(u» . 

An element of iF[C] is called a polynomial function on C. 

Lemma 2.1. The polynomial r(u, v) = v2 + h(u)v - f(u) is irreducible over iF, 
and hence iF[C] is an integral domain. 

Proof. If r(u, v) were reducible over iF, it would factor as (v - a(u»(v - b(u» 
for some a, b E iF[u]. But then degu(a . b) = degu f = 2g + 1 and degu(a + b) = 
degu h ::; g, which is impossible. 0 

Observe that for each polynomial function G(u, v) E iF[C], we can repeat­
edly replace any occurrence of v2 by f(u) - h(u)v, so as to eventually obtain a 
representation 

G(u, v) = a(u) - b(u)v, where a(u), b(u) E iF[u] . 

It is easy to see that the representation of G(u, v) in this form is unique. 

Definition 2.2. Let G(u, v) = a(u) - b(u)v be a polyn~mial function in iF[C]. 
The conjugate of G(u, v) is defined to be the polynomial function G(u, v) = 
a(u) + b(u)(h(u) + v). 

Definition 2.3 Let G(u, v) = a(u) - b(u)v be a polynomial function in iF[C]. The 
norm of G is the polynomial function N(G) = GG. 

The norm function will be useful in transforming questions about polynomial 
functions in two variables into easier questions about polynomials in a single 
variable. 

Lemma 2.2. Let G, H E iF[C] be polynomial functions. 
1) N(G) is a polynomial in iF[u]. 
2) N(G) = N(G). 
3) N(GH) = N(G)N(H). 
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Proof. Let G = a - bv and H = e - dv, where a, b, e, dE IF[u].* 
1) Now,G=a+b(h+v)and 

N(G) = G . G = (a - bv)(a + b(h + v» = a2 + abh - b2 f E IF[u] . 

2) The conjugate of G is 

G = (a + bh) + (-b)(h + v) = a - bv = G . 

Hence N(G) = G G = GG = N(G). 
3) G H = (ae + bdj) - (be + ad + bdh)v, and its conjugate is 

GH = (ae + bdj) + (be + ad + bdh)(h + v) 

= ae + bdf + beh + adh + bdh2 + bev + adv + bdhv 

= ae + be(h + v) + ad(h + v) + bd(h2 + hv + j) 

= ae + be(h + v) + ad(h + v) + bd(h2 + 2hv + v2 ) 

= (a + b(h + v»(e + d(h + v» 

=GH. 

Hence N(GH) = GHGH = GHGH = GGHH = N(G)N(H). 0 

Definition 2.4. The function field !F(C) of Cover !F is the field of fractions of 
!F[C]. Similarly, the function field IF(C) of Cover IF is the field of fractions of 
IF[C]. The elements of IF(C) are called rational functions on C. 

Note that W[C] is a subring of W(C), i.e., every polynomial function is also a 
rational function. 

Definition 2.5. Let R E IF(C), and let P E C, P f 00. Then R is said to be 
defined at P if there exist polynomial functions G, H E W[ C] such that R = G / H 
and H(P) f 0; if no such G, H E IF[C] exist, then R is not defined at P. If R is 
defined at P, the value of Rat P is defined to be R(P) = G(P)/ H(P). 

It is easy to see that the value R(P) is well-defined, i.e., it does not depend 
on the choice of G and H. The following definition introduces the notion of the 
degree of a polynomial function. 

Definition 2.6. Let G(u, v) = a(u) - b(u)v be a nonzero polynomial function in 
IF[C]. The degree of G is defined to be 

deg(G) = max{2degu (a), 2g+ 1 +2degu(b)} . 

Lemma 2.3. Let G, H E !F[ C]. 
1) deg(G) = degu(N(G». 

* If not explicitly stated otherwise, the variable in all polynomials will henceforth be 
assumed to be u. 
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2) deg(GH) = deg(G) + deg(H). 
3) deg(G) = deg(G). 

Proof. 
1) Let G = a(u) - b(u)v. The nonn of G is N(G) = a2 + abh - b2 f. Let d1 = 

degu(a(u)) and d2 = degu(b(u)). By the definition of a hyperelliptic curve, 
degu(h(u)) :::; 9 and degu(f(u)) = 2g + 1. There are two cases to consider: 

Case 1: If 2d1 > 2g + 1 + 2d2 then 2d1 ~ 2g + 2 + 2d2, and hence d1 ~ 9 + 1 + d2• 

Hence 

degu(a2) = 2d1 ~ d1 + 9 + 1 + d2 > d1 + d2 + 9 ~ degu(abh) . 

Case 2: If 2d1 < 2g + 1 + 2d2 then 2d1 :::; 2g + 2d2, and hence d1 :::; 9 + d2• Thus, 

degu(abh) :::; d1 + d2 + 9 :::; 2g + 2d2 < 2g + 2d2 + 1 = degu(b2 f) . 

It follows that 

degu(N(G)) = max(2d1, 2g + 1 + 2d2) = deg(G) . 

2) We have 

deg(GH) = degu(N(GH)) , by 1) 

= degu(N(G)N(H)) , by part 3) of Lemma 2.2 

= degu(N(G)) + degu(N(H)) 

= deg(G) + deg(H) . 

3) Since N(G) = N(G), we have deg(G) = degu(N(G)) = degu(N(G)) = deg(G). 
o 

Definition 2.7. Let R = G / H E iF( C) be a rational function. 
1) If deg(G) < deg(H) then the value of Rat 00 is defined to be R(oo) = o. 
2) If deg(G) > deg(H) then R is not defined at 00. 

3) If deg(G) = deg(H) then R(oo) is defined to be the ratio of the leading coef­
ficients (with respect to the deg function) of G and H. 

§ 3. Zeros and Poles 

This section introduces the notion of a uniformizing parameter, and the orders of 
zeros and poles of rational functions. 

Definition 3.1. Let R E iF(C) be a nonzero rational function, and let P E C. If 
R(P) = 0 then R is said to have a zero at P. If R is not defined at P then R is 
said to have a pole at P, in which case we write R(P) = 00. 

Lemma 3.1. Let G E iF[C] be a nonzero polynomial junction, and let P E C. If 
G(P) = 0, then G(P) = o. 
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Proof. Let G = a(u) - b(u)v and P = (x, y). Then G = a(u) + b(u)(v + h(u», 
p = (x, -y - hex»~, and G(P) = a(x) + b(x)( -y - hex) + hex»~ = a(x) - yb(x) = 
G(P) = 0.0 

The next three lemmas are used in the proof of Theorem 3.1, which establishes 
the existence of uniformizing parameters. 

Lemma 3.2. Let P = (x, y) be a point on C. Suppose that a nonzero polynomial 
function G = a(u) - b(u)v E F[C] has a zero at P, and suppose that x is not a 
root of both a(u) and b(u). Then G(P) = 0 if and only if P is a special point. 

Proof. If P is a special point, then G(P) = 0 by Lemma 3.1. Conversely, suppose 
that P is an ordinary point, i.e., y f. (-y - hex»~. If G(P) = 0 then we have: 

a(x) - b(x)y = 0 

a(x) + b(x)(h(x) + y) = 0 . 

Subtracting the two equations, we obtain b(x) = 0, and hence a(x) = 0, which 
contradicts the hypothesis that x is not a root of both a(u) and b(u). Hence if 
G(P) = 0, it follows that P is special. 0 

Lemma 3.3. Let P = (x, y) be an ordinary point on C, and let G = a(u) - b(u)v E 

F[C] be a nonzero polynomial function. Suppose that G(P) = 0 and x is not a 
root of both a( u) and b( u). Then G can be written in the form (u - x Y S, where 
s is the highest power of(u - x) that divides N(G), and S E F(C) has neither a 
zero nor a pole at P. 

Proof. We can write 

G = G. G = N(G) = a2 + abh - b2 f 
G G a+b(h+v) 

Let N(G) = (u - x)Sd(u), where s is the highest power of (u - x) that divides 
N(G) (so d(u) E F[u] and d(x) f. 0). By Lemma 3.2, G(P) f. O. Let S = d(u)/G. 
Then G = (u - xYS and S(P) f. 0, 00.0 

Lemma 3.4. Let P = (x, y) be a special point on C. Then (u - x) can be written 
in the form (v - y)2 . S(u, v), where S(u, v) E F(C) has neither a zero nor a pole 
at P. 

Proof. Let H = (v - y)2 and S = (u - x)/ H, so that (u - x) = H· S. We will show 
that S(P) f. 0,00. Since P is a special point, 2y + hex) = O. Consequently, since 
P is not a singular point, we have h'(x)y - j'(x) f. O. Also, f(x) = y2 + h(x)y = 
y2 + (-2y)(y) = _y2. Now, 

H(u, v) = (v - y)2 = v2 - 2yv + y2 = feu) - h(u)v - 2yv + y2 . 

Hence 
_1_ = (f(U)+y2) -v (h(U)+2Y) . 
S(u, v) u - x u - x 

(2) 
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Notice that the right hand side of (2) is indeed a polynomial function. Let s(u) = 
H(u, y), and observe that s(x) = O. Moreover, s'(u) = f'(u) - h'(u)y, whence 
s'(x) -:f O. Thus (u - x) divides s(u), but (u - X)2 does not divide s(u). It follows 
that the right hand side of (2) is nonzero at P, and hence that 8(P) -:f 0,00, as 
required. 0 

Theorem 3.1. Let P E C. Then there exists afunction U E iF(C) with U(P) = 0 
such that the following property holds: for each nonzero polynomial function G E 
iF[C], there exist an integer d and a function 8 E iF(C) such that 8(P) -:f 0,00 
and G = Ud 8. Furthermore, the number d does not depend on the choice of U. 
The function U is called a uniJormizing parameter for P. 

Proof. Let G(u, v) E iF[C] be a nonzero polynomial function. If P is a finite point, 
suppose that G(P) = 0; if P = 00, suppose that G(P) = 00. (If G(P) -:f 0,00, 
then we can write G = UOG where U is any polynomial in iF[C] satisfying 
U(P) = 0.) We prove the theorem by finding a uniformizing parameter for each 
of the following cases: 1) P = 00; 2) P is an ordinary point; and 3) P is a special 
point. 
1) We show that a uniformizing parameter for the point P = 00 is U = u9 /v. 

First note that U(oo) = 0 since deg(u9) < deg(v). Next, write 

where d = -deg(G). Let 8 = (v/u9)dG. Since deg(v) - deg(u9) = 29 + 1 -
29 = 1 and d = - deg(G), it follows that deg(u-9dG) = deg(v-d). Hence 
8(00) -:f 0,00. 

2) Assume now that P = (x, y) is an ordinary point. We show that a uniformizing 
parameterfor P is U = (u-x); observe that U(P) = O. Write G = a(u)-b(u)v. 
Let (u - xY be the highest power of (u - x) which divides both a(u) and b(u), 
and write 

G(u, v) = (u - xnao(u) - bo(u)v) . 

By Lemma 3.3, we can write (ao(u) - bo(u)v) = (u - x)S8 for some integer 
s 2:: 0 and some 8 E iF(C) such that 8(P) -:f 0,00. Hence G = (u - xy+s8 
satisfies the conclusion of the theorem with d = r + s. 

3) Assume now that P = (x, y) is a special point. We show that a uniformizing 
parameter for P is U = (v - y); observe that U(P) = O. By replacing any 
powers of u greater than 29 with the equation of the curve, we can write 

G(u, v) = U29b2g(V) + u29-'~9_'(V) + ... + ub,(v) + bo(v) , 

where each Mv) E iF[v]. Replacing all occurrences of u by «u - x) + x) and 
expanding, we obtain 

G(u, v) = (u - X)29b29(V) + (u - X)29-'b29_'(V) + ... + (u - x)b,(v) + bo(v) 

= (u - x)B(u, v) + bo(v) , 
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where each bi(v) E 1F[v], and B(u, v) E 1F[C]. Now G(P) = ° implies bo(y) = 
0, and so we can write bo(v) = (v - y)c(v) for some C E 1F[v]. By the proof of 
Lemma 3.4 (see equation (2)), we can write (u - x) = (v - y)2 / A( u, v), where 
A(u, v) E 1F[C] and A(P) :f. 0,00. Hence 

G(u, v) = (v _ y) [(V -;)B(U, v) + C(V)] 
(u, v) 

= A(v(- y) [(v - y)B(u, v) + A(u, v)c(v)] 
u,v) 

~dv - y)G ( ) 
- A(u,v) I U,V . 

Now if GI(P) :f. 0, then we are done, since we can take S = GdA. On the 
other hand, if GI(P) = 0, then c(y) = ° and we can write c(v) = (v - y)cI(v) 
for some CI E 1F[v]. Hence 

G = (v - y)2 [~~::~; +CI(V)] 

(v _ y)2 
= A( [B(u, v) + A(u, V)cI(V)] 

u, v) 

d!.f (v - y)2 G ( ) 
- A( u, v) 2 U, V . 

Again, if G2(P) :f. 0, then we are done. Otherwise, the whole process can be 
repeated. To see that the process terminates, suppose that we have pulled out 
k factors of v - y. There are two cases to consider. 
a) If k is even, say k = 2l, we can write 

(v _ y)21 
G = A I D(u,v) 

(u, v) 

where D E 1F[C]. Hence, AIG = (v - y)21 D = (u - X)l Al D, whence 
G = (u-x)l D. Taking norms of both sides, we have N(G) = (u-x)21 N(D). 
Hence k ~ degu(N(G)). 

b) If k is odd, say k = 2l + 1, we can write 

(v _ y)21+1 
G = A(u, v)I+1 D(u, v) , 

where D E 1F[C]. Hence, AI+IG = (v - y)21+1 D = (u - x)l Al(v - y)D, 

whence AG = (u - x)l(v - y)D. Taking norms of both sides, we have 
N(AG) = (u - x)2IN(v - y)N(D). Hence 2l < degu(N(AG)), and so 
k ~ degu(N(AG)). 

In either case, k is bounded by degu(N(AG)), and so the process must termi­
nate. 

To see that d is independent of the choice of U, suppose that U1 is another 
uniformizing parameter for P. Since U(P) = U1 (P) = 0, we can write U = Uf A 
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and U1 = U b B, where a ~ 1, b ~ 1, A, B E F(C), A(P) f:. 0,00, B(P) f:. 
0,00. Thus U = (Ub B)a A = uab Ba A. Dividing both sides by U, we obtain 
U ab- 1 B a A = 1. If we substitute P in both sides of this equation, we see that 
ab - 1 = 0. Hence a = b = 1. Thus G = UdS = Uf(AdS), where AdS has neither 
a zero nor a pole at P. 0 

The notion of a uniformizing parameter is next used to define the order of 
a polynomial function at a point. An alternative definition from [Koblitz 1989], 
which is more convenient to use for computational purposes, is given in Definition 
3.3. Lemma 3.6 establishes that these two definitions are in fact equivalent. 

Definition 3.2. Let G E F[C] be a nonzero polynomial function, and let P E C. 
Let U E F(C) be a uniforrnizing parameter for P, and write G = UdS where 
S E F(C), S(P) f:. 0,00. The order of G at P is defined to be ordp(G) = d. 

Lemma 3.5. Let G] ,G2 E F[ C] be nonzero polynomial functions, and let P E C. 
Let ordp(G]) = r], ordp(G2) = r2. 
1) ordp(G] G2) = ordp(Gd + ordp (G2). 
2) If r] f:. r2, then ordp(G] + G2) = min(r], r2). If r] = r2 and G] f:. -G2, then 

ordp(G] + G2) ~ r2. 

Proof. Let U be a uniformizing parameter for P. By Definition 3.2, we can write 
G] = uriS] and G2 = U r2S2, where S], S2 E F(C), SI(P) f:. 0,00, S2(P) f:. 0, 00. 
Without loss of generality, suppose that r] ~ r2. 
1) G]G2 = u r l+r2(S]S2), from which it follows that ordp (G]G2) = r] +r2. 
2) G] + G2 = u r2(ur l- r2S1 + S2). If r] > r2, then (url-rzSd(p) = 0, S2(P) f:. 
0,00, and so ordp(G] + G2) = r2. If r] = r2, then (S] + S2)(P) f:. 00 (although it 
may be the case that (S] + S2)(P) = 0), and so ordp(GI + G2) ~ r2. 0 

We now give an alternate definition of the order of a polynomial function at a 
point. 

Definition 3.3. Let G = a(u) - b(u)v E F[C] be a nonzero polynomial function, 
and let P E C. The order of G at P, denoted ordp(G), is defined as follows: 
1) If P = (x, y) is a finite point, then let r be the highest power of (u - x) 

that divides both a(u) and b(u), and write G(u, v) = (u - xYCao(u) - bo(u)v). 
If ao(x) - bo(x)y f:. 0, then let s = 0; otherwise, let s be the highest power 
of (u - x) that divides N(ao(u) - bo(u)v) = a6 + aoboh - b6f. If P is an 
ordinary point, then define ordp(G) = r+s. If P is a special point, then define 
ordp(G) = 2r + s. 

2) If P = 00, then 

ordp(G) = - max{2 degu(a), 2g + 1 + 2 degu(b)} 

Lemma 3.6. Definitions 3.2 and 3.3 are equivalent. That is, if the order function 
of Definition 3.3 is denoted by ord, then ordp(G) = ordp(G) for all P E C and 
all nonzero G E F[C]. 
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Proof. If P = 00, the lemma follows directly from the proof of part 1) of Theorem 
3.1. For the case when P is an ordinary point, the lemma follows directly from 
Lemma 3.3 and the proof of part 2) of Theorem 3.1. 

Suppose now that P = (x, y) is a special point, and let G = a - bv. Let r be 
the highest power of (u - x) which divides both a(u) and b(u), and write 

def 
G = (u - xnao(u) - bo(u)v) = (u - xt H(u, v) . 

Let ordp(H) = s. Then, by Lemma 3.4, 

ordp(G) = ordp«u - xn + ordp(H) = 2r + s . 

Now since v - y is a uniformizing parameter for P, we can write 

MUltiplying both sides by A2 and taking norms, we have 

N(A2)N(H) = (y2 + h(u)y - f(uW N(Al) . 

Now N(A])(x) f. 0, since Al(P) f. 0 and P is special (Lemma 3.1). Similarly, 
N(A2)(x) f. O. Also, u = x is a root of the polynomial y2+h(u)y- feu). Moreover, 
u = x is not a double root of y2 + h(u)y - feu), since h'(x)y - f'(x) f. O. It 
follows that (u - x)S is the highest power of (u - x) that divides N(H). Hence, 
ordp(G) = 2r + s = ordp(G). 0 

Lemma 3.7 is a generalization of Lemma 3.1. 

Lemma 3.7. Let G E IF[C] be a nonzero polynomial function, and let P E C. 
Then ordp(G) = ordp(G). 

Proof. There are two cases to consider. 
1) Suppose P = 00; then P = 00. By Definition 2.6 and part 2) of Definition 

3.3, ordp(G) = - deg(G) and ordp(G) = ordp(G) = - deg(G). By part 3) of 

Lemma 2.3, deg(G) = deg(G). Hence, ordp(G) = ordp(G). 
2) Suppose now that P = (x, y) is a finite point. Let G = a(u) - b(u)v = (u -

xl H(u, v), where r is the highest power of (u - x) that divides both a(u) and 
b(u) and H(u, v) = ao(u) - bo(u)v. If H(x, y) f. 0, then let s = 0; otherwise, 
let s be the highest power of (u - x) that divides N(H). Now G = (u - xl H, 
where H = (ao + boh) + bov. Recall that H(P) = 0 if and only if H(P) = O. 
Since (u-x) does not divide both ao+boh and bo (since otherwise, (u-x)lao), 
and s is the highest power of (u - x) that divides N(H) = N(H), it follows 
from Definition 3.3 that ordp(G) = ordp(G). 0 

Theorem 3.2. Let G E 1F[C] be a nonzero polynomial function. Then G has afinite 
number of zeros and poles. Moreover, LPEC ordp(G) = O. 

Proof. Let n = deg(G); then degu(N(G)) = n. We can write 

N(G) = GG = (u - Xl)(U - X2) ... (u - x n ) , 
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where Xi ElF, and the Xi are not necessarily distinct. The only pole of G is at P = 
00, and ordoo(G) = -no If Xi is the u-coordinate of an ordinary point P = (Xi, Yi) 
on C, then ordp(u-xi) = 1 and ordp(u-xi) = 1, and (U-Xi) has no other zeros. 
If Xi is the u-coordinate of a special point P = (Xi, Yi) on C, then ordp(u - Xi) = 
2, and (u - Xi) has no other zeros. Hence, N(G), and consequently also G, 
has a finite number of zeros and poles, and moreover LPEG\{oo} ordp(N(G)) = 

2n. But, by Lemma 3.7, LPEG\{oo} ordp(G) = LPEG\{oo} ordp(G), and hence 
LPEG\{oo} ordp(G) = n. We conclude that LPEG ordp(G) = O. 0 

Definition 3.4. Let R = G / H E F( C) be a nonzero rational function, and let 
P E C. The order of R at P is defined to be ordp(R) = ordp(G) - ordp(H). 

It can readily be verified that ordp(R) does not depend on the choice of G 
and H, and that Lemma 3.5 and Theorem 3.2 are also true for nonzero rational 
functions. 

§ 4. Divisors 

This section presents the basic properties of divisors and introduces the jacobian 
of a hyperelliptic curve. 

Definition 4.1. A divisor D is a formal sum of points on C 

D = L mpP, mp E ;Z; , 
PEG 

where only a finite number of the integers mp are nonzero. The degree of D, 
denoted deg D, is the integer LPEG mp. The order of D at P is the integer mp; 
we write ordp(D) = mp. 

The set of all divisors, denoted ill), forms an additive group under the addition 
rule: 

L mpP+ L npP= L(mp+np)P. 
PEG PEG PEG 

The set of all divisors of degree 0, denoted ]]])0, is a subgroup of ]]]). 

Definition 4.2. Let D\ = LPEG mpP and D2 = LPEG npP be two divisors. 
The greatest common divisor of D\ and D2 is defined to be 

g.c.d.(D\,D2) = L min(mp,np)P- (L min(mp,np )) 00. 

PEG PEG 

(Note that g.c.d.(D\, D 2) E ]]])0.) 

Definition 4.3. Let R E IF( C) be a nonzero rational function. The divisor of R is 

diveR) = L (ordpR)P . 
PEG 
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Note that if R = G I H then div(R) = div(G) - div(H). Theorem 3.2 shows 
that the divisor of a rational function is indeed a finite formal sum and has degree 
o. 
Example 4.1. If P = (x, y) is an ordinary point on C, then div(u-x) = P+P-200. 
If P = (x, y) is a special point on C, then div(u - x) = 2P - 200. 

Lemma 4.1. Let G E iF[C] be a nonzero polynomial junction, and let div(G) = 
LPEC mpP. Then div(G) = LPEC mpP. 

Proof. The result follows directly from Lemma 3.7. 0 

If Rl, R2 E iF(C) are nonzero rational functions, then it follows from part 1) 
of Lemma 3.5 that div(RIR2) = div(RI) + div(R2). 

Definition 4.4. A divisor D E ][))o is called a principal divisor if D = div(R) for 
some nonzero rational function R E iF( C). The set of all principal divisors, denoted 
IP', is a subgroup of ][))o. The quotient group Jf = ][))o lIP' is called the jacobian of the 
curve C. If D l , D2 E ][))o then we write Dl rv D2 if Dl - D2 E IP'; Dl and D2 
are said to be equivalent divisors. 

Definition 4.5. Let D = LPEC mpP be a divisor. The support of D is the set 
supp(D) = {P E C I mp f:. a}. 

Definition 4.6. A semi-reduced divisor is a divisor of the form D = L miPi -
(L mi)oo, where each _ mi :::: 0 and the Pi's ar:.. finite points such that when 
Pi E supp(D) one has Pi fj. supp(D), unless Pi = Pi, in which case mi = 1. 

Lemma 4.2. For each divisor D E ][))o there exists a semi-reduced divisor Dl E ][))o 

such that D rv D l . 

Proof. Let D = LPEC mpP. Let (Cl, C2) be a partition of the set of ordinary 
points on C such that 1) P E C1 if and only if P E C2 ; and 2) if P E C1 then 
mp :::: mp. Let Co be the set of special points on C. Then we can write 

D= L mpP+ L mpP+ L mpP-moo. 
PECI PEC2 PECo 

Consider the following divisor 

DI = D - L mpdiv(u - x) - L [n;p] div(u - x) . 
P=(X,y)EC2 P=(x,y)ECo 

Then DI rv D. Finally, by Example 4.1, we have 

DI = L (mp - mp)p+ L (m p - 2 [n;p]) P - mlOO 
PECI PECo 

for some integer ml :::: 0, and hence DI is a semi-reduced divisor. 0 
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§ 5. Representing Semi-Reduced Divisors 

This section describes a polynomial representation for semi-reduced divisors of 
the jacobian. It leads to an efficient algorithm for adding elements of the jacobian 
(see §7). 

Lemma 5.1. Let P = (x, y) be an ordinary point on C, and let R E F(C) be a 
rational function that does not have a pole at P. Then for any k ;::: 0, there are 

- - k' unique elements Co,CI, ... , Ck ElF and Rk E IF(C) such that R = 2::i=o Ci(U-X)'+ 
(u - x)k+1 Rk, where Rk does not have a pole at P. 

Proof. There is a unique Co E F, namely Co = R(x, y), such that P is a zero of 
R-Co. Since (u-x) is a unifonnizing parameter for P, we can write R-Co = (u­
x)RI for some (unique) RI E F(C) with ordp(Rd ;::: O. Hence R = Co+(u-x)RI . 
The lemma now follows by induction. 0 

In the next lemma, when we write "mod (u - xl", we mean modulo the ideal 
generated by (u - x)k in the subring of F( C) consisting of rational functions that 
do not have a pole at P. Thus, the conclusion in Lemma 5.1 can be restated: 
R == 2:::=oCi(U - x)k (mod (u - x)k+I). 

Lemma 5.2. Let P = (x, y) be an ordinary point on C. Then for each k ;::: 1, 
there exists a unique polynomial bk(u) E F[u] such that 
1) degu bk < k; 
2) bk(x) = y; and 
3) b~(u) + bk(U)h(u) == feu) (mod(u - x)k). 

k I . 
Proof. We apply Lemma 5.1 to R(u, v) = v. Let v = 2::i~ Ci(U - x)' + (u -

k - - kl' 
x) R k- I , where Ci E IF and R k- I E IF(C). Define bk(u) = 2::i~ Ci(U - x)'. 
From the proof of Lemma 5.1, we know that Co = y, and hence bk(X) = y. 
Finally, since v2 + h(u)v = feu), if we reduce both sides modulo (u - x)k we 
obtain bk(u? + bk(U)h(u) == feu) (mod(u - x)k). Uniqueness is easily proved by 
induction on k. 0 

The following theorem shows how a semi-reduced divisor can be represented 
as the g.c.d. of the divisors of two polynomial functions. 

Theorem 5.1. Let D = 2:: miPi - (2:: mi)oo be a semi-reduced divisor, where 
Pi = (Xi,Yi). Let a(u) = I1(u - Xi)m i • There exists a unique polynomial b(u) 
satisfying: 1) degu b < degu a; 2) b(Xi) = Yi for all i for which mi #- 0; and 3) 
a(u) divides (b(u)2 + b(u)h(u) - feu)). Then D = g.c.d.(div(a(u)), div(b(u) - v)). 

Notation: g.c.d.(div(a(u)), div(b(u) - v)) will usually be abbreviated to 
div(a(u), b(u) - v) or, more simply, to div(a, b). 

Proof. Let C I be the set of ordinary E-oints in suppeD), and let Co be the set of 
special points in suppeD). Let C2 = {P : P E Cd. Then we can write 



170 Appendix. An Elementary Introduction to Hyperelliptic Curves 

D= L Pi + L miPi -moo, 
PiECo PiEC I 

where mi, m are positive integers. 
We first prove that there exists a unique polynomial b(u) which satisfies the 

conditions of the theorem. By Lemma 5.2, for each Pi E C1 there exists a unique 
polynomial Mu) E 1F[u] satisfying 1) degu bi < mi; 2) MXi) = Yi; and 3) (u -
Xi)mi Ib;(u) + Mu)h(u) - feu). It can easily be verified that for each Pi E Co, 
Mu) = Yi is the unique polynomial satisfying 1) degu bi < 1; 2) MXi) = Yi; 
and 3) (u - xi)lb;(u) + bi(u)h(u) - feu). By the Chinese Remainder Theorem for 
polynomials (see Exercise 3 in §3 of Chapter 3), there is a unique polynomial 
b(u) E 1F[u], degu b < I: mi, such that 

b(u) == Mu) (mod(u - xi)mi) for all i . 

It can now be verified that b(u) satisfies conditions 1),2) and 3) of the theorem. 
Next, 

div(a(u)) = div (II(u-Xi)mi) = L 2Pi + L miPi+ L miFi-(*)oo. 
~E~ ~E~ ~E~ 

In addition, 

where each Si ~ mi since (u - Xi)m i divides N(b - v) = b2 + hb - f. Now if 
P = (x, y) E Co, then (u-x) divides b2 +bh- f. The derivative of this polynomial 
evaluated at u = x is 

2b(x)b'(x) + b'(x)h(x) + b(x)h'(x) - j'(x) 

= b'(x)(2y + hex)) + (h'(x)y - j'(x)) 

= h'(x)y - j'(x) , since 2y + hex) = 0 

#0. 

Thus, u = x is a simple root of N(b - v) = b2 + bh - f, and hence ti = 1 for all i. 
Therefore, 

g.c.d.(a(u), b(u) - v) = L Pi + L miPi - moo = D , 
PiECo PiECI 

as required. D 

Note that the zero divisor is represented as div(1, 0). The next result follows 
from the proof of Theorem 5.1. 

Lemma 5.3. Let a( u), b( u) E 1F[ u] be such that degu b < degu a. If a I (b2 + bh - j), 
then div(a, b) is semi-reduced. 
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§ 6. Reduced Divisors 

This section defines the notion of a reduced divisor and proves that each coset in 
the quotient group Jf = lIJ)o lIP' has exactly one reduced divisor. We can therefore 
identify each element of Jf with its reduced divisor. 

Definition 6.1. Let D = 2: miPi - (2: mi)oo be a semi-reduced divisor. If 
2: mi :::; g (g is the genus of C) then D is called a reduced divisor. 

Definition 6.2. Let D = 2:PEC mpP be a divisor. The norm of D is defined to 
be 

IDI = 2:= Impl 
PEC\{oo} 

Note that given a divisor D E lIJ)0, the operation described in the proof of 
Lemma 4.2 produces a semi-reduced divisor D\ such that D\ rv D and ID\I :::; IDI. 

Lemma 6.1. Let R be a nonzero rational function in IT<,(C). If R has no finite 
poles, then R is a polynomial function. 

Proof. Let R = G I H, where G, H are nonzero polynomial functions in iF[ C). 

Then R = * . i = GHIN(H), and so we can write R = (a - bv)/c, where 

a, b, c E iF[u], c #- O. Let x E if be a root of c. Let P = (x, y) E C where y E if, 
and let d 2: 1 be the highest power of (u - x) that divides c. 

If P is ordinary, then ordp(c) = ordp(c) = d. Since R has no finite poles, 

ordp(a - bv) 2: d and ordp(a - bv) 2: d. Now since P and P are both zeros 
of a - bv, we have a(x) = 0 and b(x) = O. It follows that ordp(a) 2: d and 
ordp(b) 2: d. Hence (u - x)d is a common divisor of a and b, and it can be 
canceled with the factor (u - x)d of c. 

Suppose now that P is special. Then ordp(c) = 2d. Since R has no finite poles, 
ordp(a - bv) 2: 2d. Then, as in part 3) of the proof of Theorem 3.1, we can write 

(v - y)2dD 
a - bv = Ad ' 

where A and D are nonzero polynomial functions in iF[c], and A satisfies (v_y)2 = 
(u - x)A. Hence a - bv = (u - x)d D. Again, the factor (u - x)d of a - bv can be 
canceled with the factor (u - x)d of c. 

This can be repeated for all roots of c; it follows that R is a polynomial 
function. D 

Theorem 6.1. For each divisor D E lIJ)o there exists a unique reduced divisor D\ 
such that D rv D\. 

Proof. Existence. Let D' be a semi-reduced divisor such that D' rv D and ID'I :::; 
IDI (see the proof of Lemma 4.2). If ID'I :::; g, then D' is reduced and we are done. 
Otherwise, let p\, P2 , ... ,Pg+! be finite points in supp(D'). The points Pi are not 
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necessarily distinct, but a point P cannot occur in this list more than ordp(D') 
times. Let div(a(u), b(u)) be the representation of the divisor 

P, + P2 + ... + Pg+, - (g + 1)00 

given by Theorem 5.1. Since degu(b) S; g, we have deg(b(u) - v) = 2g + 1, and 
hence 

div(b(u) - v) = P, + P2 + ... + Pg+, + Q, + ... + Qg - (2g + 1)00 

for some finite points Q" Q2, ... , Qg. Subtracting this divisor from D' gives a 
divisor D", where D" rv D' rv D and ID"I < ID'I. We can now produce another 
semi-reduced divisor Dill rv D" such that I Dill I S; ID"I. After doing this a finite 
number of times, we obtain a semi-reduced divisor D, with ID,I S; g, and we are 
done. 

Algorithm 2 in §7 describes an efficient algorithm which, given a semi-reduced 
divisor D = div(a, b), finds a reduced divisor D, such that D rv D,; the algorithm 
only uses a and b. 

Uniqueness. Suppose that D, and D2 are two reduced divisors with D, rv D 2, 
D, 'f D2. Let D3 be a semi-reduced divisor with D3 rv D, - D2 obtained as in 
the proof of Lemma 4.2. Since D, 'f D 2, there is a point P such that ordp(Dd 'f 
ordp (D2). Suppose, without loss of generality, that ordp(Dd = m, 2: 1, and either 
1) ordp(D2) = 0 and ordp(D2) = 0, or 2) ordp(D2) = m2 with 1 S; m2 < m" 
or 3) ordp(D2) = m2 with 1 S; m2 S; mi. (If P is special, then 3) cannot occur.) 
In case 1), ordp (D3) = m, 2: 1. In case 2), ordp (D3) = (m, - m2) 2: 1. In case 
3), ordp (D3) = (m, + m2) 2: 1. In all cases, ordp (D3) 2: 1, and so D3 'f O. Also, 
ID31 S; ID, - D21 S; ID,I + ID21 S; 2g. Let G be a nonzero rational function 
in iF(C) such that div(G) = D3; since D, rv D2, and D3 rv D, - D 2 , we know 
that D3 is principal and hence such a function G exists. By Lemma 6.1, since 
G has no finite poles, it must be a polynomial function. Then G = a(u) - b(u)v 
for some a, b E iF[u]. Since deg(v) = 2g + 1 and deg(G) = ID31 S; 2g, we must 
have b(u) = O. Suppose that degu(a(u)) 2: 1, and let x E iF be a root of a(u). 

Let P = (x, y) be a point on C. Now, if P is ordinary, then both P and P are 
zeros of G, contradicting the fact that D3 is semi-reduced. If P is special, then it 
must also be a zero of G of order at least 2, again contradicting the fact that D3 
is semi-reduced. Thus, degu(a(u)) = 0 and so D3 = 0, a contradiction. D 

§ 7. Adding Reduced Divisors 

Let C be a hyperelliptic curve of genus 9 defined over a finite field IF, and let .IT 
be the jacobian of C. Let P = (x, y) E C, and let a be an automorphism of iF 
over IF. Then pud,;.f(xu, yU) is also a point on C. 

Definition 7.1. A divisor D = E mpP is said to be defined over IF if 

Dud,;.f E mpPu is equal to D for all automorphisms a of iF over IF. 
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A principal divisor is defined over JF if and only if it is the divisor of a rational 
function that has coefficients in JF. The set ](JF) of all divisor classes in ] that 
have a representative that is defined over JF is a subgroup of ]. Each element of 
](JF) has a unique representation as a reduced divisor div(a, b), where a, bE JF[u], 
degu a :::; g, degu b < degu a; and hence ](JF) is in fact a finite abelian group. This 
section presents an efficient algorithm for adding elements in this group. 

Let D1 = div(a1, b1) and D2 = div(a2, b2) be two reduced divisors defined 
over JF (that is, a1, a2, b1, b2 E JF[u]). Algorithm I finds a semi-reduced divisor 
D = div(a, b) with a, b E JF[u], such that D rv D1 + D2. Algorithm 2 reduces 
D to an equivalent reduced divisor D'. Notation: b mod a denotes the remainder 
polynomial when b is divided by a. 

Algorithms 1 and 2 were presented in [Koblitz 1989]. They generalize ear­
lier algorithms in [Cantor 1987], in which it was assumed that h(u) = 0 and 
char(JF) f 2. 

Algorithm 1 

INPUT: Semi-reduced divisors D1 = div(a1, b)) and D2 = div(a2, b2), both defined 
over JF. 

OUTPUT: A semi-reduced divisor D = div(a, b) defined over JF such that 
D rv D1 +D2. 
1) Use the Euclidean algorithm (see §3 of Chapter 3) to find polynomials d1, e1, 

e2 E JF[u] where d1 = g.c.d.(a1, a2) and d1 = e1 a1 + e2a2. 
2) Use the Euclidean algorithm to find polynomials d, e1, e2 E JF[u] where d = 

g.c.d.(d1, b1 + b2 + h) and d = e1 d1 + e2(b1 + b2 + h). 
3) Let 81 = e1e1, 82 = e1e2, and 83 = e2, so that 

(3) 

4) Set 
(4) 

and 

(5) 

Theorem 7.1. Let D1 = div(a1, b1) and D2 = div(a2, b2) be semi-reduced divisors. 
Let a and b be defined as in equations (4) and (5). Then D = div(a, b) is a semi­
reduced divisor and D rv D1 + D2. 

Proof. We first verify that b is a polynomial. Using equation (3), we can write 

81 a1b2 + 82 a2b1 + 83(b1b2 + f) 
d 

b2(d - 82a2 - 83(b1 + b2 + h» + 82a2b1 + 83(b1 b2 + f) 
=----------------------------------~-

d 

b 82a2(b1 - b2) - 83(b~ + b2h - f) 
= 2 + ------------::---=-------

d 
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Since dla2 and a21(b~ + b2h - f), b is indeed a polynomial. 
Let b = (slal~ + s2a2bl + s3(bl b2 + f)jd + sa, where s E JF[u). Now 

b Sl al b2 + S2a2bl + s3(bl b2 + f) - dv 
- v = d + sa 

Sl al b2 + S2a2bl + s3(bl b2 + f) - Sl al v - S2a2V - s3(bl + ~ + h)v = +00 
d 

Sl al (b2 - v) + S2a2(b1 - v) + s3(bl - v)(b2 - v) 
= d + sa . (6) 

From (6) it is not hard to see that alb2 +bh - f. Namely, b2 +bh - f is obtained 
by multiplying the left side of (6) by its conjugate: (b - v)(b+v+ h) = b2 + bh - f. 
Thus, to see that alb2 + bh - f it suffices to show that al a2 divides the product of 
(slal(~ -V)+S2a2(bl -v)+s3(bl -v)(~ -v») with its conjugate; and this follows 
because allbi+b1h- f = (b l -v)(b1 +v+h) and a2Ib~+~h- f = (~-v)(~+v+h). 
Lemma 5.3 now implies that div(a, b) is a semi-reduced divisor. 

We now prove that D '" DI + D 2. There are two cases to consider. 
1) Let P = (x, y) be an ordinary point. There are two subcases to consider. 

a) Suppose that ordp(Dd = ml, ordp(D1) = 0, ordp (D2) = m2, and 
ordp(D2) = 0, where ml ~ 0, m2 ~ O. Now ordp(al) = ml, ordp (a2) = 
m2, ordp(bl - v) ~ ml, and ordp(b2 - v) ~ m2. If ml = 0 or m2 = 0 (or 
both) then ordp(dl ) = 0, whence ordp(d) = 0 and ordp(a) = ml + m2. If 
ml ~ 1 and m2 ~ 1, then, since (b l + ~ + h)(x) = 2y + h(x) :f 0, we have 
ordp(d) = 0 and ordp(a) = ml + m2. From equation (6) it follows that 

ordp(b - v) ~ min{ml +m2,m2 +ml,ml +m2} = ml +m2 . 

Hence, ordp(D) = ml + m2. 
b) Suppose that ordp(DI) = ml and ordp (D2) = m2, where ml ~ m2 ~ l. 

We have ordp(al) = mJ, ordp(a2) = m2, ordp(dd = m2, ordp(bl -
v) ~ ml, ordp(~ - v) = 0, and ordp(~ - v) ~ m2. The last inequality 
implies that ordp(~ + h + v) ~ m2, and hence ordp(bl + b2 + h) ~ m2 or 
(bl + b2 + h) = o. It follows that ordp(d) = m2 and ordp(a) = ml - m2. 
From equation (6) it follows that 

ordp(b-v) ~ min{ml +0,m2+ml,ml +O} -m2 =ml-m2 . 

Hence, ordp(D) = ml - m2. 
2) Let P = (x, y) be a special point. There are two subcases to consider. 

a) Suppose that ordp(Dd = 1 and ordp (D2) = 1. Then ordp(ad = 2, 
ordp(a2) = 2, and ordp(d1) = 2. Now (b1 + b2 + h)(x) = 2y + h(x) = 0, 
whence either ordp(b1 + ~ + h) ~ 2 or b1 + b2 + h = O. It follows that 
ordp(d) = 2 and ordp(a) = O. Hence, ordp(D) = O. 

b) Suppose that ordp(Dd = 1 and ordp(D2) = O. Then ordp(al) = 2, 
ordp(a2) = 0, whence ordp(d1) = ordp(d) = 0 and ordp(a) = 2. Since 
ordp(b1 - v) = 1, it follows from equation (6) that ordp(b - v) ~ 1. It can 
be inferred from equation (6) that ordp(b - v) ~ 2 only if ordp(s2a2 + 
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s3(b2 - v)) 2 1. If this is the case, then ordp(s2a2 + s3(b2 + h + v)) 2 1, 
and hence ordp(s2a2 + s3(bl + b2 + h)) 2 1 (or S2a2 + s3(bl + b2 + h) = 0). 
It now follows from equation (3) that ordp(d) 2 1, a contradiction. Hence 
ordp(b - v) = 1, whence ordp(D) = 1. 0 

Example 7.1. Consider the hyperelliptic curve C : v2 + (u2 + u)v = uS + u3 + 1 
of genus g = 2 over the finite field F25 (see Example 1.3). P = (a30 ,0) is an 
ordinary point in C(F25), and the opposite of P is P = (a30 , a I6 ). QI = (0, 1) and 
Q2 = (1, 1) are special points in C(F25). The following are examples of computing 
the semi-reduced divisor D = div(a, b) = DI + D2, for sample reduced divisors DI 
and D2 (see Algorithm 1). 
1) Let D I = P + Q I - 200 and D2 = P + Q2 - 200 be two reduced divisors. Then 

DI = div(al, bl ), where al = u(u + a 30 ), bl = au + 1, and D2 = div(a2, b2), 
where a2 = (u + 1)(u + a 30), b2 = a 23u + a l2 . 

1) d1 = g.c.d.(aj, a2) = u + a 30; d1 = al + a2. 
2) d = g.c.d.(dl , bl + b2 + h) = u + a 30 ; d = 1 . dl + 0 . (bl + bz + h). 
3) d = al + a2 + 0 . (bl + b2 + h). 
4) Set a = a,az/~ = u(u + 1) = u2 + u, and 

b l·a,b2+1·a2bl+0·(blb2+j) d = mo a 
d 

== 1 (mod a) . 

Check: 

div(a) = 2Ql + 2Q2 - 400 
3 

div(b - v) = QI + Q2 + L Pi - 500, where Pi i= QI, Q2 
i=1 

div(a, b) = QI + Qz - 200 . 

2) Let DI = P+QI -200 and D2 = QI +Q2 -200. Then Dl = div(al,bl), where 
a, = u(u+a30 ), b, = au+ 1, and D2 = div(a2, b2 ), where a2 = u(u+ 1), b2 = 1. 
1) d1 = g.c.d.(al, a2) = u; d1 = a l4al + a 14a2. 
2) d = g.c.d.(dl , bl + bz + h) = u; d = 1 . u + 0 . (bl + bz + h). 
3) d = a l4al + a 14a2 + 0 . (b1 + b2 + h). 
4) a = (u + a 30)(u + 1); b == a 14u + a 13 (mod a). Check: 

div(a) = 2Q2 + P + P - 400 
3 

div(b - v) = P + Q2 + L Pi - 500, where Pi i= P, P, Q2 
i=1 

div(a, b) = P + Q2 - 200 . 

3) Let DI = P + QI - 200 and D2 = P + Q2 - 200. Then DI = div(al, bj ), where 
al = u(u + a 30 ), bl = au + 1, and D2 = div(a2, b2), where a2 = (u + a 30)(u + 1), 
b2 = a l4u + a l3 . 
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1) dl = g.c.d.(al, a2) = (u + a 30); dl = 1 . al + 1· a2. 
2) d = g.c.d.(dl , bl + ~ + h) = 1. 
3) d = (a l5u + ( 4)al + (a l5u + ( 4)a2 + a l5 . (bl + b2 + h). 
4) a = u(u + 1)(u + a 30)2; b == a l7u3 + a 26u2 + a 2u + 1 (mod a). Check: 

div(a) = 2P + 2P + 2QI + 2Q2 - 800 
2 

div(b - v) = 2P+ QI + Q2 + LPi - 600, where Pi f. p,P, QI, Q2 
i=1 

div(a, b) = 2P + QI + Q2 - 400 . 

Algorithm 2 

INPUT: A semi-reduced divisor D = div(a, b) defined over IF. 
OUTPUT: The (unique) reduced divisor D' = div(a', b') such that D' '" D. 
1) Set 

and 
b' = (-h - b) mod a' . 

2) If degu a' > 9 then set a f- a', b f- b' and go to step 1. 
3) Let c be the leading coefficient of a', and set a' f- CIa'. 
4) Output(a',b'). 

Theorem 7.2. Let D = div(a, b) be a semi-reduced divisor. Then the divisor D' = 
div(a', b') returned by Algorithm 2 is reduced, and D' '" D. 

Proof. Let a' = (f - bh - b2)/a and b' = (-h - b) mod a'. We show that 

1) degu(a') < degu(a); 
2) D' = div(a', b') is semi-reduced; and 
3) D '" D'. 

The theorem then follows by repeated application of the reduction process (step 1 
of Algorithm 2). 
1) Let m = degu a, n = degu b, where m > n and m 2: 9 + 1. Then degu a' = 

max(2g + 1, 2n) - m. If m > 9 + 1, then max(2g + 1, 2n) ::; 2(m - 1), whence 
degu a' ::; m - 2 < degu a. If m = g+ 1, then max(2g+ 1, 2n) = 2g+ 1, whence 
degu a' = 9 < degu a. 

2) Now f - bh - b2 = aa'. Reducing both sides modulo a', we obtain 

f + (b' + h)h - (b' + hi == 0 (mod a') , 

which simplifies to 

f - b'h - (b'i == 0 (mod a') . 

Hence a'[(f - b'h - (b')2). It follows from Lemma 5.3 that div(a', b') is semi­
reduced. 
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3) Let Co = {P E supp(D): P is special}, C1 = {P E supp(D): P is ordinary}, 
and C2 = {P : P E Cd, so that 

D= L Pi + L miPi-(*)oo. 
PiECo PiEC1 

Then, as in the proof of Theorem 5.1, we can write 

div(a) = L 2Pi + L miPi + L miPi - (*)00 

and 

where ni 2: mi, C3 is a set of points in C\(Co U C1 U C2 U {oo}), Si 2: 1, and 
Si = 1 if ~ is special. Since b2 + bh - f = N(b - v), it follows from Lemma 
4.1 that 

div(b2 + bh - f) 

= L 2Pi + L niPi+ L niPi+ L SiPi+ L SiPi-(*)oo, 
PiECo 

and hence 

div(a') = div(b2 + bh - f) - div(a) 

= L tiPi + L tiPi + L SiPi + L SiPi - (*)00 , 
PiEC; PiEC; 

where ti = ni - mi and C; = {Pi E C1 : ni > md. Now b' = -h - b + sa' 
for some S E JF[u]. If Pi = (Xi, Yi) E C; U C3 , then b'(Xi) = -h(Xi) - b(Xi) + 
s(xi)a'(xi) = -h(Xi) - Yi. Then, as in the proof of Theorem 5.1, it follows 
that 

div(b' - v) 

= L OPi + L riPi + L OPi + L WiPi + L ZiPi - (*)00 , 

where ri 2: ti, Wi 2: Si, Wi = 1 if Pi E C3 is special, and C4 is a set of points 
in C\(C; U C3 U {oo}). Hence, 

div(a', b') = L tiPi + L SiPi - (*)00 
PiEC; PiEC3 

rv - L tiPi - L SiPi + (*)00 
PiEC; Pi EC3 

= D - div(b - v) , 

whence D rv D'. 0 
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Note that all of the computations in Algorithms 1 and 2 take place in the field 
IF itself (and not in any proper extensions of IF). In Algorithm 1, if degu al :::: g 
and degu a2 :::: g, then degu a :::: 2g. In this case, Algorithm 2 requires at most 
1 + [g /2] iterations of step 1. 

Example 7.2. Consider the hyperelliptic curve C : v2 + (u2 + u)v = u5 + u3 + 1 
of genus g = 2 over the finite field lF25 (see Examples 1.3 and 7.1). Consider the 
semi-reduced divisor D = (0, 1) + (1, 1) + (a5 , ( 15 ) - 300. Then D = div(a, b), 
where 

and 

Algorithm 2 yields 
a'(u) = u2 + a l5u + a 26 , 

b'(u) = a 23u + a 21 • 

Hence, D rv div(a', b') = (a28 , ( 7 ) + (a29 , 0) - 200. 

Exercises 

1. Verify that the curves C in Examples 1.2 and 1.3 have no singular points (except 
for 00). 

2. Let R E IF(C) be a non-zero rational function, and let P E C. Prove that 
ordp(R) does not depend on the representation of R as a ratio of polynomial 
functions (see Definition 3.4). 

3. Prove Lemma 5.3. 

4. Let C be the curve in Example 1.2. Find the divisor of the polynomial function 
G(u, v) = v2 + uv + 6u4 + 6u3 + u2 + 6u. 

5. Let C be the curve in Example 1.2. Find the polynomial representation for the 
semi-reduced divisor D = 2(2,2) + 3(5, 3) + (1,1) + (6,4). 

6. Let C be the curve in Example 1.2. Use Algorithm 1 to compute D3 = 
div(a3, b3) = D 1+D2, where Dl = div(u2+6, 2u+6) and D2 = div(u2+4u+2, 4u+l). 
Check your work by computing these divisors explicitly. 

7. Let C be the curve in Example 1.2. Consider the semi-reduced divisor D = 
div(u7 +2u6 +3u5 +6u3 +4u+5, 5u6 +5u5 + 6u4 +4u3 +5u2 +4). Use Algorithm 2 
to find the reduced divisor equivalent to D. 




