Finding pairs of primes with small order reciprocity Grad Student Algebra and Number Theory Seminar

Craig Costello¹ Gaurish Korpal²

¹Queensland University of Technology, Brisbane, Australia craig.costello@qut.edu.au

> ²University of Arizona, Tucson, USA gkorpal@arizona.edu

> > March 07, 2025

Outline

- 1 Introduction
 - Definition
 - Preliminaries
- 2 Investigation
 - Data
 - Open Problems

Outline

1 Introduction

- Definition
- Preliminaries
- 2 Investigation
 - Data
 - Open Problems

Order reciprocity

Prime pairs with (k, k')-order reciprocity

The prime numbers p and q have (k, k')-order reciprocity if $\operatorname{ord}_q(p) = k$ and $\operatorname{ord}_p(q) = k'$. That is, k and k' are the smallest natural numbers such that $p^k \equiv 1 \pmod{q}$ and $q^{k'} \equiv 1 \pmod{p}$.

https://math.stackexchange.com/questions/3118453/order-reciprocity

Outline

1 Introduction

- Definition
- Preliminaries
- 2 Investigation
 - Data
 - Open Problems

Theorem

Prime pairs with (2,2)-order reciprocity do not exist.

Proof.

On the contrary, let p < q be prime numbers such that $\operatorname{ord}_q(p) = 2 = \operatorname{ord}_p(q)$. Then $p \equiv -1 \pmod{q}$ and $q \equiv -1 \pmod{p}$. However, p < q implies that p = q - 1, which forces (p, q) = (2, 3) and $\operatorname{ord}_p(q) = 1$, a contradiction.

Theorem

There are infinitely many pairs (p, q) that have (q - 1, p - 1)-order reciprocity.

Proof.

A weaker form of Artin's conjecture for primitive roots¹ says that if there are three distinct prime numbers p_1, p_2, p_3 , then at least one of them is a primitive root modulo q for infinitely many primes q. Therefore, at least one of the Fermat primes p = 5, 17, 257 is a primitive root (and thus a quadratic non-residue) modulo q for an infinite number of primes q. Since $p \equiv 1 \pmod{4}$, by quadratic reciprocity, each such prime q is a non-residue modulo p. But for Fermat primes p, every non-residue q is automatically a primitive root². In other words, for at least one $p \in \{5, 17, 257\}$, there exist infinitely many primes q such that $\operatorname{ord}_q(p) = q - 1$ and $\operatorname{ord}_p(q) = p - 1$.

¹D. R. Heath-Brown. "Artin's conjecture for primitive roots". In: *Quart. J. Math. Oxford Ser. (2)* 37.145 (1986), pp. 27–38, Corollary 1.

Proof.

A weaker form of Artin's conjecture for primitive roots¹ says that if there are three distinct prime numbers p_1, p_2, p_3 , then at least one of them is a primitive root modulo q for infinitely many primes q. Therefore, at least one of the Fermat primes p = 5, 17, 257 is a primitive root (and thus a quadratic non-residue) modulo q for an infinite number of primes q. Since $p \equiv 1 \pmod{4}$, by quadratic reciprocity, each such prime q is a non-residue modulo p. But for Fermat primes p, every non-residue q is automatically a primitive root². In other words, for at least one $p \in \{5, 17, 257\}$, there exist infinitely many primes q such that $\operatorname{ord}_q(p) = q - 1$ and $\operatorname{ord}_p(q) = p - 1$.

¹D. R. Heath-Brown. "Artin's conjecture for primitive roots". In: *Quart. J. Math. Oxford Ser. (2)* 37.145 (1986), pp. 27–38, Corollary 1.

Proof.

A weaker form of Artin's conjecture for primitive roots¹ says that if there are three distinct prime numbers p_1, p_2, p_3 , then at least one of them is a primitive root modulo q for infinitely many primes q. Therefore, at least one of the Fermat primes p = 5, 17, 257 is a primitive root (and thus a quadratic non-residue) modulo q for an infinite number of primes q. Since $p \equiv 1 \pmod{4}$, by quadratic reciprocity, each such prime q is a non-residue modulo p. But for Fermat primes p, every non-residue q is automatically a primitive root². In other words, for at least one $p \in \{5, 17, 257\}$, there exist infinitely many primes q such that $\operatorname{ord}_q(p) = q - 1$ and $\operatorname{ord}_p(q) = p - 1$.

¹D. R. Heath-Brown. "Artin's conjecture for primitive roots". In: *Quart. J. Math. Oxford Ser. (2)* 37.145 (1986), pp. 27–38, Corollary 1.

Proof.

A weaker form of Artin's conjecture for primitive roots¹ says that if there are three distinct prime numbers p_1, p_2, p_3 , then at least one of them is a primitive root modulo q for infinitely many primes q. Therefore, at least one of the Fermat primes p = 5, 17, 257 is a primitive root (and thus a quadratic non-residue) modulo q for an infinite number of primes q. Since $p \equiv 1 \pmod{4}$, by quadratic reciprocity, each such prime q is a non-residue modulo p. But for Fermat primes p, every non-residue q is automatically a primitive root². In other words, for at least one $p \in \{5, 17, 257\}$, there exist infinitely many primes q such that $\operatorname{ord}_q(p) = q - 1$ and $\operatorname{ord}_p(q) = p - 1$.

¹D. R. Heath-Brown. "Artin's conjecture for primitive roots". In: *Quart. J. Math. Oxford Ser. (2)* 37.145 (1986), pp. 27–38, Corollary 1.

Proof.

A weaker form of Artin's conjecture for primitive roots¹ says that if there are three distinct prime numbers p_1, p_2, p_3 , then at least one of them is a primitive root modulo q for infinitely many primes q. Therefore, at least one of the Fermat primes p = 5, 17, 257 is a primitive root (and thus a quadratic non-residue) modulo q for an infinite number of primes q. Since $p \equiv 1 \pmod{4}$, by quadratic reciprocity, each such prime q is a non-residue modulo p. But for Fermat primes p, every non-residue q is automatically a primitive root². In other words, for at least one $p \in \{5, 17, 257\}$, there exist infinitely many primes q such that $\operatorname{ord}_q(p) = q - 1$ and $\operatorname{ord}_p(q) = p - 1$.

¹D. R. Heath-Brown. "Artin's conjecture for primitive roots". In: *Quart. J. Math. Oxford Ser. (2)* 37.145 (1986), pp. 27–38, Corollary 1.

²M. Křížek, F. Luca, and L. Somer. *17 lectures on Fermat numbers*. Vol. 9. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer-Verlag, New York, 2001, Theorem 3.10.

For $n \in \mathbb{Z}_{>0}$, the *n*-th cyclotomic polynomial $\Phi_n(x)$ is given by

$$\Phi_n(x) = rac{x^n - 1}{\prod\limits_{\substack{d \mid n \ d < n}} \Phi_d(x)}.$$

Theorem

Let p be a prime and $n, a \in \mathbb{Z}_{>0}$ such that $p \nmid na$. Then $\operatorname{ord}_p(a) = n$ iff $p \mid \Phi_n(a)$.

Miyaji-Nakabayashi-Takano (MNT) family is parameterised as

$$p=\Phi_6(x)=x^2-x+1 \qquad ext{and} \qquad q=\Phi_4(x)=x^2+1,$$

from which it follows that $(k, k') = (\operatorname{ord}_q(p), \operatorname{ord}_p(q)) = (6, 4)$

Outline

1 Introduction

- Definition
- Preliminaries

2 Investigation

- Data
- Open Problems

Conditions

We are interested in instances of prime pairs where p and q are *large* (cryptographic size) and where k and k' are *small* (no larger than 50).

Recall that for a cyclic group $G = \langle g \rangle$ of order s, the order of $h = g^r$ is

$$\operatorname{ord}_{G}(h) = \frac{s}{\gcd(r,s)}$$

Then the following algorithm gives us all (k, k')-cycles such that q < p.

- The Choose a prime p such that $p \equiv 1 \pmod{k'}$. Let $\mathbb{F}_p^{\times} = \langle \alpha \rangle$ and set $t = \frac{|\mathbb{F}_p^{\times}|}{k'} = \frac{p-1}{k'} < p-1.$
- 2 Compute the set $Q_{k'}$ of prime numbers $q \equiv 1 \pmod{k}$ given by α^m with gcd(m, p-1) = t.
- 3 ord $_{
 ho}(q)=k'\iff q\in \mathcal{Q}_{k'}.$

4) $\operatorname{ord}_q(p) = k \iff p^k \equiv 1 \pmod{q}$ but $p^d \not\equiv 1 \pmod{q}$ for $d \mid k$ and d < k. If $k \neq k'$ then run it again by swapping k and k' to get complete list.

Recall that for a cyclic group $G = \langle g \rangle$ of order *s*, the order of $h = g^r$ is

$$\operatorname{ord}_{G}(h) = \frac{s}{\gcd(r,s)}$$

Then the following algorithm gives us all (k, k')-cycles such that q < p.

- 1 Choose a prime p such that $p \equiv 1 \pmod{k'}$. Let $\mathbb{F}_p^{\times} = \langle \alpha \rangle$ and set $t = \frac{|\mathbb{F}_p^{\times}|}{k'} = \frac{p-1}{k'} < p-1.$
- Compute the set $Q_{k'}$ of prime numbers $q \equiv 1 \pmod{k}$ given by α^m with gcd(m, p-1) = t.

A ord_q(p) = k \iff p^k \equiv 1 \pmod{q} but $p^d \not\equiv 1 \pmod{q}$ for $d \mid k$ and d < k. If $k \neq k'$ then run it again by swapping k and k' to get complete list.

Recall that for a cyclic group $G = \langle g \rangle$ of order *s*, the order of $h = g^r$ is

$$\operatorname{ord}_{G}(h) = \frac{s}{\gcd(r,s)}$$

Then the following algorithm gives us all (k, k')-cycles such that q < p.

- 1 Choose a prime p such that $p \equiv 1 \pmod{k'}$. Let $\mathbb{F}_p^{\times} = \langle \alpha \rangle$ and set $t = \frac{|\mathbb{F}_p^{\times}|}{k'} = \frac{p-1}{k'} < p-1.$
- Compute the set $Q_{k'}$ of prime numbers $q \equiv 1 \pmod{k}$ given by α^m with gcd(m, p-1) = t.

Recall that for a cyclic group $G = \langle g \rangle$ of order *s*, the order of $h = g^r$ is

$$\operatorname{ord}_{G}(h) = \frac{s}{\gcd(r,s)}$$

Then the following algorithm gives us all (k, k')-cycles such that q < p.

- 1 Choose a prime p such that $p \equiv 1 \pmod{k'}$. Let $\mathbb{F}_p^{\times} = \langle \alpha \rangle$ and set $t = \frac{|\mathbb{F}_p^{\times}|}{k'} = \frac{p-1}{k'} < p-1$.
- 2 Compute the set $Q_{k'}$ of prime numbers $q \equiv 1 \pmod{k}$ given by α^m with gcd(m, p-1) = t.
- 3 $\operatorname{ord}_p(q) = k' \iff q \in \mathcal{Q}_{k'}.$

Recall that for a cyclic group $G = \langle g \rangle$ of order s, the order of $h = g^r$ is

$$\operatorname{ord}_{G}(h) = \frac{s}{\gcd(r,s)}$$

Then the following algorithm gives us all (k, k')-cycles such that q < p.

- 1 Choose a prime p such that $p \equiv 1 \pmod{k'}$. Let $\mathbb{F}_p^{\times} = \langle \alpha \rangle$ and set $t = \frac{|\mathbb{F}_p^{\times}|}{k'} = \frac{p-1}{k'} < p-1$.
- 2 Compute the set $Q_{k'}$ of prime numbers $q \equiv 1 \pmod{k}$ given by α^m with gcd(m, p-1) = t.
- 3 $\operatorname{ord}_p(q) = k' \iff q \in \mathcal{Q}_{k'}.$

Recall that for a cyclic group $G = \langle g \rangle$ of order s, the order of $h = g^r$ is

$$\operatorname{ord}_{G}(h) = \frac{s}{\gcd(r,s)}$$

Then the following algorithm gives us all (k, k')-cycles such that q < p.

- 1 Choose a prime p such that $p \equiv 1 \pmod{k'}$. Let $\mathbb{F}_p^{\times} = \langle \alpha \rangle$ and set $t = \frac{|\mathbb{F}_p^{\times}|}{k'} = \frac{p-1}{k'} < p-1$.
- 2 Compute the set $Q_{k'}$ of prime numbers $q \equiv 1 \pmod{k}$ given by α^m with gcd(m, p-1) = t.
- 3 $\operatorname{ord}_p(q) = k' \iff q \in \mathcal{Q}_{k'}.$

Recall that for a cyclic group $G = \langle g \rangle$ of order s, the order of $h = g^r$ is

$$\operatorname{ord}_{G}(h) = \frac{s}{\gcd(r,s)}$$

Then the following algorithm gives us all (k, k')-cycles such that q < p.

- 1 Choose a prime p such that $p \equiv 1 \pmod{k'}$. Let $\mathbb{F}_p^{\times} = \langle \alpha \rangle$ and set $t = \frac{|\mathbb{F}_p^{\times}|}{k'} = \frac{p-1}{k'} < p-1$.
- 2 Compute the set $Q_{k'}$ of prime numbers $q \equiv 1 \pmod{k}$ given by α^m with gcd(m, p-1) = t.

3 $\operatorname{ord}_p(q) = k' \iff q \in \mathcal{Q}_{k'}.$

4 $\operatorname{ord}_q(p) = k \iff p^k \equiv 1 \pmod{q}$ but $p^d \not\equiv 1 \pmod{q}$ for $d \mid k$ and d < k. If $k \neq k'$ then run it again by swapping k and k' to get complete list. P_1 be the list of first 100 million primes and P_2 be the list of the next 100 million primes.

Table: Counts of prime pairs with selected (k, k')-order reciprocity.

(k, k')		(4,6)	(3,10)	(3,14)	(4,46)	(2, 35)	(11, 49)	(15, 45)	(38, 45)
#prime	P_1	738	20	14	8	5	4	3	2
pairs	P_2	258	0	0	2	2	3	2	2

 P_1 be the list of first 100 million primes and P_2 be the list of the next 100 million primes.

Table: The number of (k, k') corresponding to various frequencies of prime pairs.

#prime pairs	0	1	2	3	4 to 12	14	20	258	738	Total	
-#(k,k') tuples	P_1	97	147	209	231	588	1	1	0	1	1275
$\#(\kappa,\kappa)$ tuples	P_2	1108	159	6	1	0	0	0	1	0	1275

Data

Frequency distribution of (k, k')-prime pairs $(2 \le k \le k' \le 51)$ for first 100 million prime numbers.

Data

Frequency distribution of (k, k')-prime pairs $(2 \le k \le k' \le 51)$ for second 100 million prime numbers.

Outline

1 Introduction

- Definition
- Preliminaries

2 Investigation

- Data
- Open Problems

I Is (620461, 15493) the only prime pair with (12, 12)-order reciprocity?

- 2 Are there any fixed values of (k, k') with min(k, k) > 4 for which there are an infinite number of primes with (k, k')-order reciprocity?
- 3 Are there any fixed values of (k, k') with min(k, k) > 2 for which there are no pairs of primes with (k, k')-order reciprocity?
- 4 Are there **any** large pairs of primes with small (k, k')-order reciprocity?

- I Is (620461, 15493) the only prime pair with (12, 12)-order reciprocity?
- 2 Are there any fixed values of (k, k') with min(k, k) > 4 for which there are an infinite number of primes with (k, k')-order reciprocity?
- 3 Are there any fixed values of (k, k') with min(k, k) > 2 for which there are no pairs of primes with (k, k')-order reciprocity?
- 4 Are there **any** large pairs of primes with small (k, k')-order reciprocity?

- I Is (620461, 15493) the only prime pair with (12, 12)-order reciprocity?
- 2 Are there any fixed values of (k, k') with min(k, k) > 4 for which there are an infinite number of primes with (k, k')-order reciprocity?
- 3 Are there any fixed values of (k, k') with min(k, k) > 2 for which there are no pairs of primes with (k, k')-order reciprocity?
- 4 Are there **any** large pairs of primes with small (k, k')-order reciprocity?

- I Is (620461, 15493) the only prime pair with (12, 12)-order reciprocity?
- 2 Are there any fixed values of (k, k') with min(k, k) > 4 for which there are an infinite number of primes with (k, k')-order reciprocity?
- 3 Are there any fixed values of (k, k') with min(k, k) > 2 for which there are no pairs of primes with (k, k')-order reciprocity?
- 4 Are there **any** large pairs of primes with small (k, k')-order reciprocity?