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Abstract

In this report we discuss 3 key ideas. Firstly, a generalization of the result used for
factorization of prime ideals in number field extensions to any Dedekind domain extension

satisfying a very mild condition. Secondly, determining the prime ideals of Z[x] using
geometry. Thirdly, illustrating the application of normalization process to determine the

dimension of polynomial ring.
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Introduction

Arithmetic geometry can be defined as the part of algebraic geometry connected with the study
of algebraic varieties over arbitrary rings, in particular over non-algebraically closed fields.
The central problem is to study the solutions in Rn of a system of polynomial equations in n
variables with coefficients in a ring R (such as R = Z, R = Q, or R = Z/pZ). Hence it lies at
the intersection between algebraic geometry and number theory.

In the first chapter a generalization of the result used for factorization of prime ideals in
number field extensions to any Dedekind domain extension, satisfying a very mild condition, has
been discussed. The books by Marcus [Mar77], and Lorenzini [Lor96] were the main references
for this chapter.

In the second chapter two main concepts has been discussed. Firstly, determining the prime
ideals of Z[x] using geometry. Secondly, illustrating the application of normalization process to
determine the dimension of polynomial ring. Moreover, in the previous report [Kor17] I used
two important theorems, namely Noether normalization lemma (that lead to the conclusion
that dim(K[x1, . . . , xn]) = n) and Riemann–Roch theorem (while defining genus of algebraic
curve) without knowledge of their proofs. In the second chapter, we will see the proof of the
former. The books by Liu [Liu02], Eisenbud [Eis04], and Reid [Rei95] were the main references
for this chapter.

This report is the second step towards my preparation for the master’s thesis to be submitted
in May, 2019. Before submitting the final thesis I am expected to write four reports on arithmetic
geometry, one each semester, and this is the second one in that series of four reports.
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Chapter 1

Dedekind domain

We ended the first chapter of our previous report with the definition of Dedekind domain [Kor17,
Definition 1.15]. In this chapter we will study some general properties of Dedekind domains.
Let’s first recall the definition:

Definition (Dedekind domain). A Noetherian, integrally closed integral domain in which every
non-zero prime ideal is maximal is called a Dedekind domain.

1.1 Factorization

We know that the rings of algebraic integers do not always have unique factorization property.
But since every ring of algebraic integers happens to be a Dedekind domain, every proper ideal
admits a unique factorization as a product of prime ideals [Kor16, Remark 12]. In this section
we will prove this unique factorization property of Dedekind domains. Though one can deduce
this from the general primary decomposition theorems [AM07, Corollary 9.4], we will discuss
the direct proof using elementary tools [Mar77, Theorem 16].

Lemma 1.1. In a Dedekind domain R every ideal contains a product of prime ideals.

Proof. On the contrary, assume that there is a non-empty set A of ideals in R which do not
contain any product of prime ideals. Since R is Noetherian, A has a maximal element m [Kor17,
Theorem 1.3]. Also, m is certainly not prime since A doesn’t contain a product of prime ideals.
Hence there exists r, s ∈ R\m such that rs ∈ m. Since m + 〈r〉 and m + 〈s〉 are strictly bigger
than m, they must contain a product of prime ideals. But (m+ 〈r〉)(m+ 〈s〉) ⊆ m, contradicting
the fact that m didn’t contain any product of prime ideals. Hence the set A is empty, completing
the proof.

Lemma 1.2. Let a be a proper ideal in a Dedekind domain R with field of fractions K. Then
there exists r ∈ K\R such that ra ⊆ R.

Proof. Let a ∈ a, a 6= 0. By Lemma 1.1, 〈a〉 contains a product of prime ideals, say p1, p2, . . . , p`
such that p1p2 · · · p` ⊆ 〈a〉 and ` is minimal. Since R is a commutative ring with identity, every
proper ideal is contained in a maximal ideal [DF11, Proposition 7.11], let that ideal be p. Hence
we have

p1p2 · · · p` ⊆ 〈a〉 ⊆ a ⊆ p

We note that p contains a prime ideal pi for some i. Since if not, then there exists aj ∈ pj\p
for all j = 1, . . . , ` such that a1 · · · a` ∈ p which will contradict the fact that p is a prime ideal.
Also since R is a Dedekind domain, every non-zero prime ideal is maximal, i.e. pi ⊂ p implies
that pi = p. Without loss of generality, let i = 1. Hence we have

p1p2 · · · p` ⊆ 〈a〉 ⊆ a ⊆ p1
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Also by the minimality of `, there exists b ∈ (p2 · · · p`)\〈a〉. Hence we have found an element
b
a ∈ K\R. We observe that since a ∈ p1

b

a
a ⊆ b

a
p1 ⊆ R

Hence we have found r = b
a , completing the proof.

Remark 1.1. The ideal f = ra is called fractional ideal of the field of fractions K [Kor16,
Definition 18].

Proposition 1.1. Let a be an ideal in a Dedekind domain R. Then there is an ideal b such
that ab is a principal ideal.

Proof. Fix a ∈ a, a 6= 0. We claim that b = {b ∈ R : ba ⊆ 〈a〉}. We will divide the proof into
two steps:

Step 1. b in an ideal in R.

Since a ∈ b, b 6= 0. It’s easy to check that b is a subgroup of R under addition operation.
Finally we note that rb ∈ b for all r ∈ R and b ∈ b. Hence b is an ideal in R.

Step 2. ab = 〈a〉
Consider the set f = 1

a ab. Since ab ⊆ 〈a〉, we have f ⊆ R. Moreover, f is an ideal in R.
Hence it’s sufficient to prove that f = R. On the contrary, let f ( R. Then by Lemma 1.2
there exists r ∈ K\R such that rf ⊆ R. Since b ⊆ f, we have

rb ⊆ rf ⊆ R

From this we conclude that rb ⊆ b, since given any b ∈ b we have rb ∈ b as follows

rb ∈ rb⇒ rb ∈ R and
r

a
ab ⊆ R⇒ rba ⊆ aR = 〈a〉

Now R is Noetherian since it’s a Dedekind domain, hence b is finitely generated. Say
b = 〈b1, . . . , bm〉, then rb ⊆ b implies that rbi for all i = 1, . . . ,m is a linear combination
of b1, . . . , bm with coefficients in R. Hence we have

r

 b1
...
bm

 = M

 b1
...
bm

 =⇒ (rI −M)

 b1
...
bm

 = 0

for some m ×m matrix M and identity matrix I. Hence det (rI −M) = 0, giving us a
monic polynomial in R[X] of degree m whose root is r. But R is integrally closed since
it’s a Dedekind domain, hence r ∈ R. This contradicts the assumption that r 6∈ R, hence
completing the proof.

Remark 1.2. Hence we can say that ideal classes in a Dedekind domain form a group with the
class of principal ideals being the identity element [Kor16, Theorem 33].

Corollary 1.1. If a1, a2, a3 are ideals in a Dedekind domain R, and a1a2 = a1a3 then a2 = a3.

Proof. By the above proposition there exists an ideal b such that ba1 = 〈a〉 for some a ∈ a1.
Then we have

a1a2 = a1a3 ⇒ ba1a2 = ba1a3 ⇒ aa2 = aa3 ⇒ a2 = a3

since a 6= 0 and R is an integral domain.
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Corollary 1.2. If a and b are ideals in a Dedekind domain R, then a | b if and only if b ⊆ a.

Proof. (⇒) By definition, a | b implies that there exists an ideal f such that af = b. Hence
b ⊆ a trivially.

(⇐) By the above proposition there exists an ideal c such that ca = 〈a〉 for some non-zero
a ∈ a. Then b ⊆ a implies that cb ⊆ 〈a〉. Hence we have an ideal f = 1

a cb of R such that af = b.
Thus a | b.

Theorem 1.1. Every proper ideal in a Dedekind domain R is uniquely representable as a
product of prime ideals.

Proof. We will prove the existence and uniqueness of factorization in two steps.

Step 1. Every proper ideal is representable as a product of prime ideals.

On the contrary, assume that there is a non-empty set A of ideals in R which are not
representable as a product of prime ideals. Since R is Noetherian, A has a maximal
element m [Kor17, Theorem 1.3] such that m 6= R since it’s a proper ideal. Since R is a
commutative ring with identity, every proper ideal is contained in a maximal ideal [DF11,
Proposition 7.11], let that ideal be p. Then by Corollary 1.2 we have m = pa for some
ideal a. Then m ⊆ a. But since prime ideals are proper ideal, p 6= R implies that m 6= a.
Hence we have the strict containment m ( a. This implies that a 6∈ A and hence can be
represented as product of prime ideals. But then m is also representable as product of
prime ideals, contradicting our assumption and completing the proof.

Step 2. The representation is unique.

Suppose that
p1p2 · · · pm = q1q2 . . . qn

where pi and qj are non-zero prime ideals not necessarily distinct. Then we have

p1p2 · · · pm ⊆ q1

which implies that pi ⊆ q1 for some i. Rearranging the pi’s if necessary, we can assume
that p1 ⊆ q1. Since all non-zero prime ideals are maximal ideals in R, p1 = q1. Now by
Corollary 1.1, we get

p2 · · · pm = q2 . . . qn

Continuing this way we eventually find that m = n and pi = qi for all i (after rearrange-
ment).

Proposition 1.2. A Dedekind domain R is a unique factorization domain if and only if it is
a principal ideal domain.

Proof. (⇒) Let a be an ideal of R, then by Proposition 1.1 a divides some principal ideal 〈a〉.
Since R is a unique factorization domain, a is a product of prime elements in R, say a = p1 · · · p`.
Also, in unique factorization domain prime elements and irreducible elements are same ([DF11,
Proposition 8.12]) we conclude that a divides a product of principal prime ideals

a | 〈p1〉〈p2〉 · · · 〈p`〉

Then by Theorem 1.1 it follows that a itself is a product of principal prime ideals and therefore
a principal ideal.

(⇐) This is always true since every principal ideal domain is a unique factorization domain
[DF11, Theorem 8.14].
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Remark 1.3. The above proposition is equivalent to Theorem 1.8 of previous report [Kor17]
since every unique factorization domain is integrally closed. In that proof, the crucial fact we
used was that every prime ideal of a unique factorization domain of dimension 1 is principal.
Then it was sufficient to prove that unique factorization domain of dimension 1 is a Bézout
domain, which was proved using induction.

Example 1.1. We know that Z[
√
−5] is a Dedekind domain [Kor15, Theorem 1.7.8], but is not

a unique factorization domain since

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

gives two distinct factorizations of 6 into irreducibles [DF11, Propostion 8.11]. We can also
directly see that it is not a principal ideal domain since a = 〈3, 2 +

√
−5〉 is not a prin-

cipal ideal [DF11, Example 2, pp. 273]. It is known, but not easy to prove, that d =
−1,−2,−3,−7,−11,−19,−43,−67 and −163 are the only negative values of d for which the
ring of integers of Q(

√
d) is a principal ideal domain [Kor15, Theorem 1.7.9].

1.2 Localization

The technique of localization reduces many problems in commutative algebra to problems about
local rings. This often turns out to be extremely useful since most of the problems with which
commutative algebra has been successful are those that can be reduced to the local case [Eis04,
pp. 57]. We will prove an equivalent definition of Dedekind domain in terms of localization at
prime ideals [Liu02, Corollary 1.2.14].

Theorem 1.2. A Dedekind domain is a Noetherian integral domain R whose localizations Rp

at the non-zero prime ideals p are principal ideal domains, but not a field1.

Proof. Given a Noetherian domain R, we know that dimR = 0 if and only if R is a field. Hence
it is sufficient to prove the equivalence of the following two statements:

(i) For every non-zero prime ideal p in R the local ring Rp is a principal ideal domain with
non-zero maximal ideal.

(ii) The ring R is integrally closed and has dimension 1.

(i)⇒ (ii) We know that the prime ideals of Rp are in one-to-one correspondence with the

prime ideals of R contained in p [AM07, Corollary 3.13]. Hence every chain of prime ideals
ending with prime ideal p extends to a corresponding chain of same length in Rp. Thus we have

dimR = sup{ht(p) : p ∈ SpecR} = sup{dimRp : p ∈ SpecR} = 1

since every principal ideal domain has dimension 1 [Kor17, Lemma 1.4]. Moreover, if K is the
field of fractions2 of R, then K is also field of fractions of Rp since Rp ( K. Also, any element
r ∈ K that is integral over R, is also integral over Rp for all p ∈ Spec(R) [AM07, Proposition
5.6]. But Rp is integrally closed since it is a principal ideal domain [Kor17, Proposition 1.2],
hence r ∈ ∩pRp = R where p are all non-zero prime ideals in R. Hence R is integrally closed.

(ii)⇒ (i) Since localization preserves the property of R being a Noetherian domain, Rp

is also a Noetherian domain [AM07, Corollary 7.4] . Also, integral closure is a local property3,

1As in §1.3 of previous report [Kor17], fields are not considered principal ideal domains.
2It is the smallest field with respect to the inclusion that contains R.
3Normalization commutes with localization [Eis04, Proposition 4.13].
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hence Rp is integrally closed for each prime ideal p [AM07, Proposition 5.12]. Moreover, every
chain of prime ideals in Rp contracts to a chain of at least that length in R. Thus we have

dimRp = sup{ht(q) : q ∈ Spec(Rp)} = sup{ht(q) : q ∩R ⊆ p} ≤ dimR = 1

Since R is an integral domain, dimRp = 0 if and only if R is a field, i.e. dimR = 0. But we
know that dimR 6= 0, hence dimRp = 1. Hence Rp is an integrally closed Noetherian local
domain of dimension 1, which is equivalent to saying that Rp is a principal ideal domain with
non-zero maximal ideal [AM07, Proposition 9.2, (ii)⇔(iii)].

1.3 Extension

Lemma 1.3. Let R be a Dedekind domain with field of fractions K and L be a finite extension
of K. If S is the integral closure of R in L then pS 6= S for any prime ideal p in R.

Proof. We will divide the proof into two steps:

Step 1. If p = 〈a〉 is a principal ideal.

On the contrary, let pS = S. Then there exists b ∈ S such that ab = 1. Also, b 6∈ R since
if not then p = R which will be absurd since prime ideals are proper ideals. Since b is an
integral element over R, there exists a minimal monic polynomial f(x) ∈ R[x] of degree
n such that f(b) = 0, that is

bn + rn−1b
n−1 + · · ·+ r0 = 0

But since ab = 1, we have

bn−1 + rn−1b
n−2 + · · ·+ ar0 = 0

Hence we have found an integral relation of b over R of degree less than n, contradicting
the minimality of n. Hence such a b does not exist and pS 6= S.

Step 2. If p is any non-zero prime ideal in R.

Let D = R\p be the multiplicatively closed subset of R. Then we have D−1p = q a prime
ideal in Rp [AM07, Corollary 3.13]. Also, D−1S = Sp is localization of S. Then pS 6= S
if and only if qSp 6= Sp [AM07, Proposition 3.8]. But since Rp is a principal ideal domain
by Theorem 1.2, q is a principal ideal. Hence qSp 6= Sp as in the previous step.

Remark 1.4. Even more is true in the above setting. Krull-Akizuki theorem implies that S is
in fact a Dedekind domain [Neu99, Proposition I.12.8]. But we will work on a bit less general
setting avoiding the use of more advanced tools from algebra [Lor96, §III.3].

Proposition 1.3. Let R be a Dedekind domain with field of fractions K and S be the integral
closure of R in a finite extension L of K. Then S is a Dedekind domain if S is a finitely
generated R-module

Proof. Since R is Noetherian and S is finitely generated R-module, S is also Noetherian [Kor17,
Corollary 1.5]. Also, since dimR = 1 and L over K is a finite extension, dimS = 1 [Kor17,
Corollary 1.6]. Moreover, it is given that S is integrally closed in its field of fractions L. Hence
S is a Dedekind domain.

Lemma 1.4. Let p be a prime ideal in a Dedekind domain R with field of fractions K and q
be a prime ideal in the integral closure S of R in a finite extension L of K. If S is a finitely
generated R-module then the following are equivalent:
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(i) q | pS

(ii) pS ⊆ q

(iii) p ⊆ q

(iv) p = q ∩R

(v) p = q ∩K

where pS is the extension of p in S under the natural inclusion ring homomorphism.

Proof. By Proposition 1.3 we know that S is a Dedekind domain, hence we can apply Corol-
lary 1.2 to get (i) ⇔ (ii). Also, (ii) ⇔ (iii) trivially since q is an ideal in S. And, (iv) ⇔ (v)
since R = S ∩K and q ⊆ S. We just need to show that (iii)⇒ (iv), since (iv)⇒ (iii) is trivial.
Now for (iii) ⇒ (iv), we know that p ⊆ q ∩ R and q ∩ R is a prime ideal of R [AM07, pp. 9].
Since R is a Dedekind domain, p and q ∩R are maximal ideals, hence must be equal.

Remark 1.5. This lemma clearly illustrates the fact that extension of a prime ideal need not
be a prime ideal [AM07, pp. 10]. In fact, the prime ideals q’s lying over a given prime ideal
p are the ones which occur in the prime decomposition of pS [Kor16, Definition 14]. Also, by
Lemma 1.3 we can conclude that every prime ideal p of R lies under at least one prime q of S
[Mar77, Theorem 20].

Definition 1.1 (Ramification index). Let R be a Dedekind domain with field of fractions K
and L be a finite extension of K. Let S be a Dedekind domain which is the integral closure of
R in L. The exponent with which the prime ideal q in S lying over a given non-zero prime ideal
p in R occur in the prime decomposition of pS is called its ramification index. For example, if
pS = qe11 · · · q

e`
` then ei is the ramification index of qi over p, denoted by e(qi/p).

Remark 1.6. Due to unique factorization of prime ideals in the Dedekind domain S, the value
of e(q/p) is unique and hence well defined.

Definition 1.2 (Residual degree). Let R be a Dedekind domain with field of fractions K and
L be a finite extension of K. Let S be a Dedekind domain which is the integral closure of R
in L and q be a prime ideal in S lying over non-zero prime ideal p in R. Then R/p is the
residual field of R at p and S/q is the residual field of S at q. We define the degree of field
extension of S/q over R/p as the residual degree of q over p. For example, if pS = qe11 · · · q

e`
`

then fi = [S/qi : R/p] is the residual degree of qi over p, denoted by f(qi/p).

Remark 1.7. We have the following ring homomorphism

ψ :R ↪→ S → S/q

x 7→ x 7→ x+ q

with kerψ = q ∩R = p by Lemma 1.4. Hence we have the embedding

ϕ : R/p ↪→ S/q

Moreover, since S is finitely generated R-module [Kor17, Theorem 1.6] and p ⊆ q i.e. S/q is
annihilated by p [DF11, Example 5, pp. 338], we conclude that S/q is a finite dimensional
R/p-vector space.

Theorem 1.3. Let R be a Dedekind domain with field of fractions K and S be the integral
closure of R in a finite extension L of K. If S is a finitely generated R-module then

[L : K] =
∑
q|pS

e(q/p)f(q/p)

for any non-zero prime ideal p of R.
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Proof. We will divide our proof into three steps:

Step 1. Proving the theorem when R and S are principal ideal domains

By Proposition 1.3 we know that S is a Dedekind domain, hence by Theorem 1.1 we have

pS = qe11 · · · q
e`
` (1.1)

for some prime ideals qi’s of S. Since qi’s are pairwise co-prime ideals in S, by Chinese
Remainder Theorem [DF11, Theorem 7.6.17] we have

S/pS ∼= S/qe11 ⊕ · · · ⊕ S/q
e`
` (1.2)

as rings and also as R/p-vector spaces since p ⊆ pS ⊆ qeii for all i = 1, . . . , ` (as seen in
Remark 1.7). Hence we have to show that

[L : K] =
∑̀
i=1

eifi (1.3)

where fi = [S/qi : R/p] = dimR/p S/qi. Till now we didn’t use the fact that R and S are
principal ideal domains.

Claim 1. dimR/p S/pS = [L : K]

Since R is a principal ideal domain and S is a finitely generated R-module (under the
ring multiplication action), by Structure theorem [Kor17, Proposition 1.7] we know
that

S ∼= Rn ⊕ Tor(S)

for some n ≥ 0 (called rank of S over R) and

Tor(S) = {s ∈ S : rs = 0 for some non-zero r ∈ R}

Since S is an integral domain, Tor(S) = {0}, and hence S is a free R-module, i.e.
S ∼= Rn. Since [L : K] is finite and S is integral closure of R in L, we conclude that
the rank of S over R is equal to [L : K], i.e. [L : K] = n [Kor17, Lemma 1.3].

Since by Lemma 1.4 we know that R ∩ pS = p, we have a R-module isomorphism4

S/pS ∼= (R⊕ · · · ⊕R)/(pR⊕ · · · ⊕ pR) = Rn/pRn (1.4)

Moreover we have [DF11, Exercise 10.2.12]

Rn/pRn ∼= R/pR⊕ · · · ⊕R/pR = R/p⊕ · · · ⊕R/p = (R/p)n (1.5)

as R-modules. But since p ⊆ pS i.e. S/pS is annihilated by p [DF11, Example 5, pp.
338], S/pS ∼= (R/p)n as R/p-vector space (using (1.4) and (1.5)). Hence we have

dimR/p S/pS = n = [L : K]

Claim 2. dimR/p S/q
ei
1 = eifi for i = 1, . . . , `.

Without loss of generality, fix qi = q, ei = e and fi = f = dimR/p S/q. We will prove
our claim by induction on e. As noted before, p ⊆ qe ⊆ . . . ⊆ q and S/q, . . . , S/qe

are R/p-vector spaces. Base case is true since for e = 1 we have

dimR/p S/q = 1 · f
4This is not always true, since 2Z ∼= 3Z as Z-modules but Z/2Z 6∼= Z/3Z as Z-modules.
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Now our induction hypothesis is that

dimR/p S/q
e−1 = (e− 1)f (1.6)

Now we will prove the inductive step. Consider the linear transformation for R/p-
vector spaces

ϕ :S/qe → S/qe−1

x+ qe 7→ x+ qe−1

where ker(ϕ) = qe−1/qe. Then by Rank-Nullity Theorem5 [HK15, Theorem 3.2] we
know that

dimR/p S/q
e = dimR/p S/q

e−1 + dimR/p q
e−1/qe

Then using induction hypothesis (1.6) we get

dimR/p S/q
e = (e− 1)f + dimR/p q

e−1/qe (1.7)

Next we note that since S is a principal ideal domain, q = 〈β〉 for some β ∈ S and
we have the surjective S-module homomorphism

ψ :S ↪→ qe−1/qe

x 7→ xβe−1 + qe

where ker(ψ) = 〈β〉 = q. Therefore by first isomorphism theorem we have S-module
isomorphism

S/q ∼= qe−1/qe

Since q annihilates qe−1/qe, we have S/q ∼= qe−1/qe as S/q-vector spaces. Hence we
have

dimS/q q
e−1/qe = 1 (1.8)

Now we note that we have tower of fields, R/p ↪→ S/q ↪→ qe−1/qe, hence we have
[DF11, Theorem 13.14]

dimR/p q
e−1/qe = dimR/p S/q · dimS/q q

e−1/qe

Now using (1.8) we get
dimR/p q

e−1/qe = f

Using this in (1.7) we get the desired result.

Combining the above two claims with (1.2) we get (1.3).

Step 2. Proving the theorem for the localizations D−1R and D−1S for D = R\p
D = R\p ⊆ R ⊆ S is a multiplicatively closed subset, hence we can define the ring of
fractions of R and S with respect to D. Let D−1R = Rp and D−1S = Sp be the respective
ring of fractions (abuse of notations). Let Q and P are the extensions of q and p, under the
respective ring localization homomorphisms. Since the field of fractions of a ring doesn’t
change after localization, we wish to prove that

[L : K] =
∑

Q|PSp

e(Q/P)f(Q/P)

5This can also be seen as a consequence of Splitting Lemma [DF11, Proposition 10.25]. Since any short exact
sequence of vector spaces split, in particular, if T : V → W is a linear transformation then V ∼= ker(T )⊕ Im(T )
since we have the short exact sequence 0→ ker(T )→ V → V/ ker(T )→ 0 where Im(T ) ∼= V/ ker(T ).
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By Theorem 1.2 we know that Rp is a Dedekind domain (integrally closed Noetherian
domain of dimension 1) as well as a principal ideal domain (since it is a local ring). To
be able to use the previous step, it’s sufficient to prove that Sp is also a Dedekind domain
and a principal ideal domain.

Claim 1. Sp is a Dedekind domain

By Proposition 1.3 we know that S is an integrally closed Noetherian domain of
dimension 1. Since localization respects integral closure [AM07, Proposition 5.12] and
Noetherian condition [AM07, Proposition 7.3], we just need to prove that dimension
of Sp is 1. The prime ideals of Sp are in one-to-one correspondence with the prime
ideals of S not intersecting D = R\p. Since S is a Dedekind domain, by (1.1) we
know that qi’s are the only primes lying over p in S. Also, by Lemma 1.4 we know
that qi ∩ R = p for all i = 1, . . . , `. Hence the only prime ideals q of S for which
D∩q = φ are q = qi for all i = 1, . . . , `. Since p is non-zero prime ideal, ` ≥ 1. Hence
Sp have ` non-zero prime ideals,

dimSp ≥ 1

Moreover, every chain of prime ideals in Sp contracts to a chain of at least that length
in S. Thus we have

dimSp = sup{ht(Q) : Q ∈ Spec(Sp)} ≤ dimS = 1

Hence dimSp = 1.

Claim 2. Sp is a principal ideal domain

From previous claim we conclude that Sp is an integral domain of dimension 1 that
has property of unique factorization of ideals by Theorem 1.1. Also, the set of non-
zero prime ideals is finite, which is in fact same as the number of prime ideal in
S lying over p. Let the extension of qi in Sp be Qi for all i = 1, . . . , `. Without
loss of generality fix i = 1, i.e. consider the non-zero prime ideal Q1. Then by
unique factorization of ideals we know that Q2

1 6= Q1, i.e. there exists a non-zero
element x ∈ Q1\Q2

1. Also, since dimension is 1, every non-zero prime ideal Qi is
a maximal ideal. Hence the ideals Q2

1,Q2, . . . ,Q` are pairwise co-prime. Hence by
Chinese Remainder Theorem [DF11, Theorem 7.6.17] we have the following ring
isomorphism

χ : Sp/(Q
2
1Q2 · · ·Q`)→ Sp/Q

2
1 × Sp/Q2 · · · × Sp/Q`

r 7→ (r + Q2
1, r + Q2, . . . , r + Q`)

Hence there exists y ∈ Sp such that χ(y) = (x+Q2
1, 1+Q2, . . . , 1+Q`), i.e. y−x ∈ Q2

1

and y − 1 ∈ Qi for all i = 2, . . . , `. Since y − x ∈ Q2
1 ( Q1 and x ∈ Q1\Q2

1, we have
〈y〉 ⊆ Q1 but 〈y〉 6⊆ Q2

1. Also, y − 1 ∈ Qi and 1 6∈ Qi for all i = 2, . . . , ` (proper
ideals) implies that 〈y〉 6⊆ Qi for all i = 2, . . . , `. But in a commutative ring every
proper ideal must be contained in some maximal ideal [DF11, Proposition 7.11], we
conclude that 〈y〉 = Q1. Hence, non-zero prime ideals (maximal ideals) of Sp are
principal ideals. Since number of prime ideals is finite and every proper ideal is a
unique product of prime ideals, we conclude that Sp is a principal ideal domain.

Combining the above two claims with the previous step, we complete the proof of this
step.

Step 3. It is sufficient to prove the theorem for the localizations Rp and Sp.

Given a prime ideal q in S lying over the non-zero prime ideal p in R, let Q and P be the
extensions of q and p, under the respective localization ring homomorphisms.
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Claim 1. e(q/p) = e(Q/P)

This follows directly from the Going-up Lemma [AM07, Theorem 5.10] since R ⊆ S
and S is integral over R.

Claim 2. f(q/p) = f(Q/P)

This follows from the following general lemma:

Given a commutative ring R, a maximal ideal m ⊂ R and a mul-
tiplicative closed subset D ⊆ R\m. Then R/m ∼= D−1R/D−1m as
fields. Where the ring isomorphism is given by

σ : R/m→ D−1R/D−1m

r + m 7→ r

1
+D−1m

The above map is injective because any homomorphism from a field
to a non-zero ring is injective (0 6∈ D implies that D−1R is a non-zero
ring and m ∩D = φ implies that D−1m is a prime ideal). The map
is surjective because for any a

d + D−1m ∈ D−1R/D−1m there exists
t ∈ R such that td − 1 ∈ m (since d 6∈ m and m is a maximal ideal,
i.e. 〈m, d〉 = R) and we have

σ(rt+ m) =
r

d
+D−1m

as per the equivalence relations of localization.

By Lemma 1.4 we know that q∩R = p, hence R ⊆ S implies that R\p = R\(q∩R) ⊆
S\(q ∩ S) = S\q. Thus by the above lemma, R/p ∼= Rp/P and S/q ∼= Sp/Q. Thus
we have

dimR/p S/q = dimRp/P Sp/Q

Hence completing the proof of our claim.

Combining the above three steps, we complete the proof of the theorem.

Remark 1.8. We know a direct proof of the above theorem when R and S are ring of integers
of number fields [Kor16, Theorem 18]. The key difference between that proof and the proof
given above is that there we could use the concept of embeddings in C [Kor16, Definition 4]
and here we had to take help of localization [Lor96, Theorem III.3.5]. Moreover, additional
assumption of the field extension L over K being separable allows us to write a simpler proof
involving linear algebra instead of localization [Neu99, Proposition 8.2].

Example 1.2. We can find prime ideal factorization of ring of integers of quadratic number
fields. That is, we set R = Z, K = Q, L = Q(

√
m) for some square free integer m, and

S =

{
Z[
√
m] if m ≡ 2, 3 (mod 4)

Z
[
1+
√
m

2

]
if m ≡ 1 (mod 4)

Then for p = 〈p〉 where p is some prime integer, we get [Kor16, Theorem 28].

pS =



〈p,
√
m〉2 if p | m

〈2, 1 +
√
m〉2 if p = 2,m ≡ 3 (mod 4)〈

2, 1+
√
m

2

〉〈
2, 1−

√
m

2

〉
if p = 2,m ≡ 1 (mod 8)

prime if p = 2,m ≡ 5 (mod 8)

〈p, n+
√
m〉〈p, n−

√
m〉 if p 6= 2, p - m,m ≡ n2 (mod p)

prime if p - m and m is not a quadratic residue mod p

12



Chapter 2

Motivation for scheme theory

In the second chapter of our previous report we tried to illustrate the relationship between
arithmetic and geometry using the specific example of elliptic curves. In this chapter we wish
to explore foundations of these geometric relations. Our aim is to introduce few ideas which
will help us develop the general geometric machinery (scheme theory) needed for further inves-
tigations. We won’t define what is meant by scheme in this report.

2.1 Spectrum of a ring

As seen in Theorem 1.2, spectrum of a ring is the collection of the primes ideals of that ring.
But we can give it a topological structure using subsets of the spectrum which behave like closed
sets.

Lemma 2.1. Let R be a commutative ring with identity and a be an ideal of R. We define

V (a) = {p ∈ SpecR : a ⊆ p} ⊆ SpecR

Then the following properties hold:

(i) V (a) ∪ V (b) = V (a ∩ b)

(ii)
⋂
λ V (aλ) = V (

∑
λ aλ)

(iii) V (R) = φ and V (0) = SpecR

Proof. (i) We will show both side set containment.

(⊆) This is trivial.

(⊇) For this we need to use the fact that prime ideals are irreducible ideals [AM07,
Proposition 1.11(ii)].

p ∈ V (a ∩ b)⇒ a ∩ b ⊆ p

⇒ a ⊆ p or b ⊆ p (irreducible ideal)

⇒ p ∈ V (a) or p ∈ V (b)

⇒ p ∈ V (a) ∪ V (b)

(ii) This follows from the fact that
∑

λ aλ is the smallest ideal containing all aλ’s.

p ∈
⋂
λ

V (aλ) ⇐⇒ p ∈ V (aλ) ∀λ

⇐⇒ aλ ⊆ p ∀λ
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⇐⇒
∑
λ

aλ ⊆ p

⇐⇒ p ∈ V

(∑
λ

aλ

)

(iii) True since there is no prime ideal containing whole ring (prime ideals are proper ideals)
and every prime ideal contains the zero ideal.

Definition 2.1 (Zariski topology). Let X = SpecR, then we define topology τ on X such that
the closed subsets are of the form V (a). Moreover, the sets of the form D(r) = SpecR\V (〈r〉)
for all r ∈ R constitute a base of open subsets of SpecR.

Lemma 2.2. The singleton {p} ⊂ SpecR is closed in the Zariski topology if and only if p is a
maximal ideal of R.

Proof. (⇒) Since {p} is closed, {p} = V (a) for some ideal a in R. Since p is the only prime ideal
containing a and every proper ideal of a commutative ring with identity should be contained in
a maximal ideal [DF11, Proposition 7.11], p is a maximal ideal.

(⇐) If p is a maximal ideal then V (p) = {p} and hence {p} is a closed set.

Definition 2.2 (Closed point). A prime ideal p in R is said to be a closed point of SpecR if
{p} is a closed set of SpecA under the Zariski topology.

Example 2.1. Since Z is a principal ideal domain [DF11, Proposition 8.1], we have

SpecZ = {〈0〉} ∪ {〈p〉 : p is a prime integer}

Here every non-zero prime ideal is a maximal ideal. Hence all prime ideals except the zero ideal,
represent closed points of SpecZ.

Definition 2.3 (Affine line). Let k be a field, then the we define the affine line A1
k = Spec k[x]

where k[x] is the ring of polynomials with coefficients in the field k. Since k[x] is a principal
ideal domain [DF11, Corollary 9.4], we have

A1
k = {〈0〉} ∪ {〈f(x)〉 : f(x) is a monic irreducible polynomial}

Remark 2.1. Here every non-zero prime ideal is a maximal ideal. Hence all prime ideals except
the zero ideal, represent closed points of A1

k. Moreover, all proper closed subsets of A1
k are finite

sets since any polynomial is a product of finitely many irreducible polynomials.

Proposition 2.1. Let ϕ : R → S be a ring homomorphism, where R and S are commutative
rings with identity. We define the map of sets

ϕ∗ : SpecS → SpecR

q 7→ ϕ−1(q)

Then the following properties are true:

(i) The map ϕ∗ is continuous.

(ii) If ϕ is a localization morphism, i.e. S = D−1R for some multiplicatively closed subset D
of R, then ϕ∗ is a homemorphism onto the subspace {p ∈ SpecR : p ∩D = φ} of SpecR.

(iii) If ϕ is surjective, then ϕ∗ induces a homeomorphism onto the closed subset V (ker(ϕ)) of
SpecR.

14



Proof. The map ϕ∗ is well defined since contraction of a prime ideal is again a prime ideal
[AM07, pp. 9].

(i) We need to show that inverse image of a closed set of SpecR is a closed set in SpecS. Let
V (a) ⊂ SpecR be a closed set where a is an ideal in R. Hence it is sufficient to prove the
following

Claim: ϕ∗−1(V (a)) = V (ϕ(a)S), where ϕ(a)S is the ideal in S generated by ϕ(a).

We will show both side set containment simultaneously.

q ∈ ϕ∗−1(V (a)) ⇐⇒ ϕ∗(q) ∈ V (a)

⇐⇒ ϕ−1(q) ∈ V (a)

⇐⇒ a ⊆ ϕ−1(q)

⇐⇒ ϕ(a) ⊆ q

⇐⇒ Sϕ(a) ⊆ q

⇐⇒ q ∈ V (Sϕ(a))

(ii) We know that ϕ∗ is a bijection onto {p ∈ SpecR : p∩D = φ} [AM07, Proposition 3.11(iv)]
and continuity follows from previous part. We just need to show that ϕ∗−1 is continuous.
Hence it’s sufficient to show that ϕ∗ is a closed map. Let V (b) ⊂ SpecD−1R be a closed
set, where b is an ideal in D−1R.

Claim: ϕ∗(V (b)) = V (ϕ−1(b)) ∩ Im(ϕ∗), where ϕ−1(b) is the ideal in R [AM07, pp. 9].

(⊆) V (b) ⊂ SpecD−1R implies that ϕ∗(V (b)) ⊆ Im(ϕ∗). Also, we have

p ∈ ϕ∗(V (b))⇒ p = ϕ−1(q) for some q ∈ V (b)

⇒ p = ϕ−1(q) such that b ⊆ q

⇒ ϕ−1(b) ⊆ p

⇒ p ∈ V (ϕ−1(b))

(⊇) Let p ∈ V (ϕ−1(b))∩Im(ϕ∗) ⊆ Im(ϕ∗). Since ϕ∗ is a bijection onto Im(ϕ∗), there exists
q ∈ SpecD−1R such that p = ϕ−1(q). But since ϕ−1(b) ⊆ p, we have ϕ−1(b) ⊆ ϕ−1(q),
i.e. b ⊆ q. Hence q ∈ V (b) which is equivalent to saying p ∈ ϕ∗(V (b)).

(iii) Consider the following lemma:

If ϕ : R → S is a surjective ring homomorphism between commutative rings with iden-
tity, with an ideal a in R and an ideal b in S such that kerϕ ⊂ a. Then the following
properties hold:

(1) aec = a and bce = b

(2) a is a prime ideal in R if and only if ae is a prime ideal in S.

where ae = Sϕ(a) is the extension ideal of a in S and bc = ϕ−1(b) is the contraction
ideal of b in R.
We know that there exists a bijection between the set of contracted ideals in R and
extended ideals in S [AM07, Proposition 1.17]: {a : aec = a} ←→ {b : bce = b}. For (1)
note that since ϕ is surjective, every ideal b of S is an extension ideal, i.e. b = ae for
some ideal a in R. For (2), non-trivial fact is that the extension ideal is again a prime
ideal. Here we use the fact that kerϕ ⊆ a. Suppose x, y ∈ S such that xy ∈ ae where
x = ϕ(a) and y = ϕ(b) for some a, b ∈ R (surjection). Now choose c ∈ a such that
ϕ(c) = xy) (possible due to previous part). Then ab− c ∈ kerϕ ⊆ a, i.e. ab ∈ a. Since
a is a prime ideal, a ∈ a or b ∈ a. Hence we have x ∈ ae or y ∈ ae.
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Hence ϕ∗ is a bijection onto the set of prime ideals containing kerϕ, i.e. V (kerϕ). We
already know that ϕ∗ is a continuous map. Hence it’s enough to show that ϕ∗ is a closed
map, i.e. ϕ∗−1 is continuous. Let V (b) ⊂ SpecS be a closed set, where b is an ideal in S.

Claim: ϕ∗(V (b)) = V (ϕ−1(b)), where ϕ−1(b) is the ideal in R [AM07, pp. 9].

We will show both side set containment.

(⊆) This containment is same as that for the previous part.

(⊇) Let p ∈ V (ϕ−1(b)), then ϕ−1(b) ⊆ p. Since 〈0〉 ⊆ b, we have ϕ−1(〈0〉) ⊆ ϕ−1(b).
Hence we have kerϕ ⊆ ϕ−1(b), i.e. V (ϕ−1(b)) ⊆ V (kerϕ). Since ϕ∗ is a bijection
onto V (kerϕ), there exists q ∈ SpecS such that p = ϕ−1(q) ∈ V (ϕ−1(b)). Therefore,
ϕ−1(b) ⊆ ϕ−1(q), i.e. b ⊆ q. Hence q ∈ V (b), i.e. p ∈ ϕ∗(V (b)).

Theorem 2.1. The prime ideals in Z[x] are:

(i) 〈0〉

(ii) principal prime ideal 〈f〉, where f is either a prime integer p, or a Q-irreducible polynomial
written so that its coefficients have gcd 1

(iii) maximal ideals 〈p, f〉, where p is a prime integer and f is a monic integral polynomial
irreducible modulo p.

Proof. Our goal is to determine the SpecZ[x], and we will use the previous theorem to achieve
this goal. Consider the canonical ring homomorphism:

ϕ :Z ↪→ Z[x]

n 7→ n

Then we have the following corresponding map of the sets:

ϕ∗ : SpecZ[x]→ SpecZ
p 7→ ϕ−1(p)

where ϕ−1(p) = p ∩ Z. Also, by Example 2.1 we know that SpecZ = {〈0〉}
⋃(⋃

p{pZ}
)

. Now

by Proposition 2.1(i) we know that ϕ∗ is a continuous map, and hence

SpecZ[x] = ϕ∗−1({〈0〉})
⋃(⋃

p

ϕ∗−1({pZ})

)
(2.1)

We will now analyse the preimage of zero ideal and non-zero prime ideals of Z under the ϕ∗

map.

Claim 1. ϕ∗−1({〈0〉}) is homeomorphic to A1
Q.

Consider the multiplicative closed subset D = Z\{0} of Z[x]. Then we have the canonical
ring homomorphism between Z[x] and D−1Z[x] = Q[x]:

ψ : Z[x]→ Q[x]

f(x) 7→ f(x)

1

Then we have the following map of sets:

ψ∗ : A1
Q → SpecZ[x]
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q 7→ ψ−1(q)

Now by Proposition 2.1(ii) we know that ψ∗ is a homeomorphism onto the subspace

{p ∈ SpecZ[x] : p ∩D = φ} = {p ∈ SpecZ[x] : p ∩ Z = {0}}
= {p ∈ SpecZ[x] : ϕ−1(p) = 〈0〉}
= {p ∈ SpecZ[x] : ϕ∗(p) = 〈0〉}
= ϕ∗−1(〈0〉)

Claim 2. ϕ∗−1({pZ}) is homeomorphic to A1
Fp

.

Consider the natural surjective ring homomorphism between Z[x] and Z[x]/〈p〉 = Fp[x]:

σp : Z[x]→ Fp[x]

f(x) 7→ f(x) mod p

where f(x) mod p = f(x) + 〈p〉. Then we have the following map of sets

σ∗p : A1
Fp
→ SpecZ[x]

q 7→ σ−1p (q)

Now by Proposition 2.1(iii) we know that σ∗p is a homeomorphism onto the subspace

V (kerσp) = {p ∈ SpecZ[x] : kerσp ⊆ p}
= {p ∈ SpecZ[x] : 〈p〉 ⊆ p}
= {p ∈ SpecZ[x] : p ∩ Z = pZ} (Z is a Dedekind domain, Lemma 1.4)

= {p ∈ SpecZ[x] : ϕ−1(p) = pZ}
= {p ∈ SpecZ[x] : ϕ∗(p) = pZ}
= ϕ∗−1(pZ)

Now using the above two claims in (2.1) we get

SpecZ[x] = ψ∗
(
A1
Q
)⋃(⋃

p

σ∗p(A1
Fp

)

)

Also, from Definition 2.3 we know the elements of A1
Q and A1

Fp
. Hence we have

SpecZ[x] ={〈0〉}
⋃{

ψ−1(〈g(x)〉) : g(x) is a monic irreducible polynomial in Q[x]
}⋃(⋃

p

〈p〉

)⋃(⋃
p

{
σ−1p (〈g(x)〉) : g(x) is a monic irreducible polynomial in Fp[x]

})
(2.2)

since ψ−1(〈0〉) = 〈0〉 and σ−1p (〈0〉) = 〈p〉. Now we will analyse the inverse images of ψ and σp
separately.

Claim 1. Given a monic irreducible polynomial g(x) ∈ Q[x], we have ψ−1(〈g(x)〉) = 〈f(x)〉 where
f(x) ∈ Z[x] is Q-irreducible polynomial with 1 as the gcd of the coefficients.

By ψ−1(g(x)) we mean to clear the denominators of coefficients, i.e. multiply the polyno-
mial with the least common multiple of denominators of the coefficients. We observe that
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f(x) so obtained has 1 as the greatest common divisor of all the coefficients. This can be
proved as follows.

g(x) = xn +
an−1
bn−1

xn−1 + . . .+
a0
b0

; gcd(ai, bi) = 1 ∀ i

Then for ` = lcm(bn−1, . . . , b0) we have

f(x) = `g(x) = `xn + `
an−1
bn−1

xn−1 + . . .+ `
a0
b0
∈ Z[x]

by clearing the denominators. Let gcd
(
`, `an−1

bn−1
, . . . , `a0b0

)
= d. Now there exist mi ∈ Z

for i = 0, . . . , n such that dmn = ` and dmi = `ai
bi

. Hence we have mnai = mibi, which
implies that bi | mn for all i = 0, . . . , n − 1 since gcd(ai, bi) = 1. But then ` | mn and
hence d = 1.

Now we need to show both side set containment. This trivially follows from the fact that
ψ−1(g(x)) = `g(x) = f(x) ∈ 〈f(x)〉 and ψ(f(x)) = f(x)

1 = `g(x)
1 ∈ 〈g(x)〉.

Claim 2. Given a monic irreducible polynomial g(x) ∈ Fp[x], we have σ−1p (〈g(x)〉) = 〈p, f(x)〉 where
f(x) ∈ Z[x] is Fp-irreducible polynomial such that g(x) ≡ f(x) mod p.

By σ−1p (g(x)) we mean to find a f(x) ∈ Z[x] such that g(x) ≡ f(x) mod p, i.e g(x) =
f(x) + 〈p〉. Hence we just need to prove both side set containment1.

(⊆) Let r(x) ∈ σ−1p (〈g(x)〉), then σp(r(x)) = g(x)h(x) for some h(x) ∈ Fp[x]. Now we
have

r(x) + 〈p〉 = (f(x) + 〈p〉)(s(x) + 〈p〉)

since h(x) = s(x) + 〈p〉 for some s(x) ∈ Z[x] (due to surjection). Hence we have

r(x) + 〈p〉 = f(x)s(x) + 〈p〉

Thus we conclude that r(x) − f(x)s(x) ∈ 〈p〉, i.e. r(x) − f(x)s(x) = pt(x) for some
t(x) ∈ Z[x]. We can rearrange the terms to get

r(x) = f(x)s(x) + pt(x) ∈ 〈p, f(x)〉

(⊇) We have p ∈ σ−1p (〈g(x)〉) since 0 ∈ 〈g(x)〉. Also, f(x) ∈ σ−1p (〈g(x)〉) since σp(f(x)) =
g(x).

Combining the above two claims with (2.2) we complete the proof.

Remark 2.2. We followed the geometric approach for the above proof [Liu02, Example 2.1.8].
This illustrates a real mixing of arithmetic and geometric properties; SpecZ[x] can be seen
as a family of affine line, parametrized by the points of SpecZ, and over fields of different
characteristics. We can also give a purely algebraic proof of this theorem but it won’t give us
much insights into the geometry [Rei95, Proposition 1.5].

1In the previous case, Gauss’s lemma says that converse is also true, i.e. f(x) is irreducible in Z[x] if and
only if f(x) is irreducible in Q[x] where f(x) ∈ Z[x] such that the gcd of coefficients is 1 [DF11, Corollary 9.6].
But in this case, though irreducibility in Z/pZ[x] implies irreducibility in Z[x], the converse is not true [DF11,
Proposition 9.12].
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2.2 Normalization

Given an R-algebra S, the ring of all elements of S integral over R is called the integral closure,
or normalization of R in S. The most important examples occur when R is an integral domain
and S is its field of fractions. In this case the subalgebra of elements of S integral over R is
simply called the normalization of R [Eis04, pp. 118]. For example, consider a one-dimensional
Noethrian integral domain R which is not a Dedekind domain. Passing to the normalization of
R, in geometric terms means taking the resolution of singularities in the scheme X = Spec(R)
[Neu99, pp. 91]. We will explain the example once we introduce the definition of schemes.

Definition 2.4 (R-algebra). Let R and S be two commutative rings, then S is an R-algebra if S
has a R-module structure with scalar multiplication defined by a ring homomorphism ϕ : R→ S
as r · s = ϕ(r)s for all r ∈ R and s ∈ S.

Remark 2.3. If R is a field k and S 6= 0, then ϕ is injective [AM07, Proposition 1.2] and
therefore k can be canonically identified with its image in S. Thus a k-algebra is effectively a
ring containing k as a subring, i.e. ϕ(a) = a for all a ∈ k (inclusion map).

Definition 2.5 (Finite R-algebra). S is said to be finite R-algebra is S is a finitely generated
R-module.

Definition 2.6 (Finitely generated R-algebra). S is said to be finitely generated R-algebra if
there exists a finite set of elements s1, . . . , sn ∈ S such that every element of S can be written
as a polynomial in s1, . . . , sn with coefficients in ϕ(R), i.e. S = ϕ(R)[s1, . . . , sn].

Remark 2.4. Finitely generated R-algebra is isomorphic to quotient of a polynomial ring over
ϕ(R). Consider the following ring homomorphism

ψ : ϕ(R)[x1, x2, . . . , xn]→ ϕ(R)[s1, s2, . . . , sn]

f(x1, x2, . . . , xn) 7→ f(s1, s2, . . . , sn)

where ψ is surjective since every element of S can be written as a polynomial in s1, . . . , sn with
coefficients in ϕ(R). Then by first isomorphism theorem we have S ∼= ϕ(R)[x1, x2, . . . , xn]/ kerψ.

Definition 2.7 (Algebraically independent). The elements t1, . . . , tm of an R-algebra are said
to be algebraically independent if there doesn’t exist a non-zero polynomial relation between
t1, . . . , tm with coefficients in ϕ(R).

Remark 2.5. If S is a finitely generated R-algebra and all elements of S are algebraically
independent then kerψ = {0} and S is isomorphic to a polynomial ring.

Lemma 2.3. Consider a finite set {m(j)}j∈{1,...,`} of n-tuples m(j) =
(
m

(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

)
where m

(j)
i ∈ Z>0. Then for two distinct tuples, m(j1) 6= m(j2), there exists a system of positive

integers w1, . . . , wn−1, wn = 1 such that

n∑
i=1

wim
(j1)
i 6=

n∑
i=1

wim
(j2)
i

Proof. We will proceed by induction on n. For n = 1 the statement is trivially true. Let n > 1,
and the statement be true for upto (n− 1)-tuples. Now consider n-tuples(

m
(j1)
1 ,m

(j1)
2 , . . . ,m(j1)

n

)
6=
(
m

(j2)
1 ,m

(j2)
2 , . . . ,m(j2)

n

)
Then we have two cases (without loss of generality):

19



Case 1. When the (n− 1)-tuples are equal, i.e.
(
m

(j1)
2 , . . . ,m

(j1)
n

)
=
(
m

(j2)
2 , . . . ,m

(j2)
n

)
Then we set w1 = w2 = . . . = wn = 1 so as to ensure that

n∑
i=1

wim
(j1)
i 6=

n∑
i=1

wim
(j2)
i

since m
(j1)
1 6= m

(j2)
1 .

Case 2. When the (n− 1)-tuples are not equal, i.e.
(
m

(j1)
2 , . . . ,m

(j1)
n

)
6=
(
m

(j2)
2 , . . . ,m

(j2)
n

)
Then by inductive hypothesis there exists w2, w3, . . . , wn−1, wn = 1 such that

n∑
i=2

wim
(j1)
i 6=

n∑
i=2

wim
(j2)
i

Now ifm
(j1)
1 = m

(j2)
1 , then any choice of w1 will work. Otherwise, we can choose sufficiently

large w1. For example,

w1 > max
j

(
n∑
i=2

wim
(j)
i

)
ensures that the inequality holds.

Lemma 2.4 (Nagata’s normalization). Suppose that R = k[r1, r2, . . . , rn] be a finitely generated
k-algebra and f ∈ k[x1, x2, . . . , xn] be a non-zero polynomial such that f(r1, r2, . . . , rn) = 0.
Then there exist s1, s2, . . . , sn−1 ∈ R such that rn is integral over S = k[s1, s2, . . . , sn−1] and
R = S[rn].

Proof. We have

f(x1, x2, . . . , xn) =
∑̀
j=1

αm(j)xm
(j)

=
∑̀
j=1

αm(j)

n∏
i=1

x
m

(j)
i

i

where m(j) =
(
m

(j)
1 , . . . ,m

(j)
n

)
and αm(j) 6= 0 for all n-tuples m(j). As in Lemma 2.3, we can

choose positive w1, w2, . . . , wn−1, wn = 1 such that
∑n

i=1wim
(j1)
i 6=

∑n
i=1wim

(j2)
i for m(j1) 6=

m(j2).
Claim: si = ri − rwi

n for i = 1, . . . , n− 1.
We just need to check that rn is integral over S = k[s1, s2, . . . , sn−1]. Then R = S[rn]

trivially follows due to the definition of si’s. We have

f(r1, . . . , rn−1, rn) = f(s1 + rw1
n , . . . , sn−1 + rwn−1

n , rn)

=
∑̀
j=1

αm(j)

n−1∏
i=1

(si + rwi
n )m

(j)
i rm

(j)
n

n

where in jth summand the highest degree of rn is given by
∑n

i=1wim
(j)
i . Due to our choice of

wi’s, all the ` sums
∑n

i=1wim
(j)
i are distinct. Hence we obtain a maximum value of

∑n
i=1wim

(j)
i

for a unique m(j), let’s call that unique n-tuple to be m. Hence we have

0 = f(r1, . . . , rn−1, rn) = αmg(rn)

where g(x) ∈ k[s1, s2, . . . , sn−1][x] is a monic polynomial. Thus rn is integral over S =
k[s1, s2, . . . , sn−1].
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Remark 2.6. Since R = S[rn] and rn is integral over S, we can also conclude that R is a finite
S-algebra [Kor17, Theorem 1.1].

Theorem 2.2 (Noether’s normalization). Let k be a field and R be a non-zero finitely generated
k-algebra. Then there exist elements t1, . . . , td ∈ R which are algebraically independent over k
and such that R is integral over k[t1, . . . , td].

Proof. Let R = k[r1, . . . , rn], we now proceed by induction on the number of generators n of R.
If n = 0, then the statement trivially holds. If n > 0 and r1, . . . , rn are algebraically independent
over k, then again nothing to prove since we have R = k[t1, . . . , td], i.e. ri = ti and d = n.

Now suppose that n > 0 and r1, . . . , rn are algebraically dependent, i.e. there exists non-
zero polynomial f ∈ k[x1, . . . , xn] such that f(r1, . . . , rn) = 0. Then by Lemma 2.4 we know
that there exist s1, s2, . . . , sn−1 ∈ R such that rn is integral over S = k[s1, s2, . . . , sn−1] and
R = S[rn]. Since by inductive hypothesis the statement is true for any finitely generated
k-algebra with (n − 1) generators, there exist elements t1, . . . , td ∈ S which are algebraically
independent over k and such that S is integral over T = k[t1, . . . , td]. Hence we have T ⊆ S ⊆ R
such that R is integral over S and S is integral over T . Thus we can conclude that R is integral
over T [Kor17, Proposition 1.4]. Hence completing the proof.

Remark 2.7. The proof discussed above is due to Nagata in the 1950s [Rei95, Theorem 4.6].
There is an alternative proof traditional in algebraic geometry, which works if the field k is
infinite [AM07, Exercise 5.16].

Corollary 2.1. Let k be a field and R be a non-zero finitely generated k-algebra. Then there
exist elements t1, . . . , td ∈ R which are algebraically independent over k and such that R is a
finite k[t1, . . . , td]-algebra.

Proof. Since k[t1, . . . , td] ⊆ R, R is a finite k[t1, . . . , td]-algebra if and only if R is a finitely
generated k[t1, . . . , td]-algebra and is integral over k[t1, . . . , td] [AM07, pp. 60]. By the above
theorem we already know thatR is integral over k[t1, . . . , td]. Since k ⊆ k[t1, . . . , td] ⊆ R andR is
finitely generated k-algebra, we conclude that R is a finitely generated k[t1, . . . , td]-algebra.

Lemma 2.5. Let R = k[x1, . . . , xn] be a ring of polynomials and f ∈ R be a non-constant poly-
nomial. Then there exists y1, . . . , yn−1 ∈ R such that xn is integral over S = k[y1, . . . , yn−1, f ]
and R = S[xn].

Proof. We have

f(x1, x2, . . . , xn) =
∑̀
j=1

αm(j)xm
(j)

=
∑̀
j=1

αm(j)

n∏
i=1

x
m

(j)
i

i

where m(j) =
(
m

(j)
1 , . . . ,m

(j)
n

)
and αm(j) 6= 0 for all n-tuples m(j). As in Lemma 2.3, we can

choose positive w1, w2, . . . , wn−1, wn = 1 such that
∑n

i=1wim
(j1)
i 6=

∑n
i=1wim

(j2)
i for m(j1) 6=

m(j2).
Claim: yi = xi − xwi

n for i = 1, . . . , n− 1.
We just need to check that xn is integral over S = k[y1, y2, . . . , yn−1, f ]. Then R = S[xn]

trivially follows due to the definition of yi’s. We have

f(x1, . . . , xn−1, xn) = f(y1 + xw1
n , . . . , yn−1 + xwn−1

n , xn)

=
∑̀
j=1

αm(j)

n−1∏
i=1

(yi + xwi
n )m

(j)
i xm

(j)
n

n
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where in jth summand the highest degree of xn is given by
∑n

i=1wim
(j)
i . Due to our choice of

wi’s, all the ` sums
∑n

i=1wim
(j)
i are distinct. Hence we obtain a maximum value of

∑n
i=1wim

(j)
i

for a unique m(j), let’s call that unique n-tuple to be m. Hence we have

f(x1, . . . , xn−1, xn) = αmg(xn)

where g ∈ k[y1, . . . , yn−1][y] is a monic polynomial. Then g(y)− f
αm
∈ S = k[y1, . . . , yn−1, f ][y]

is a monic polynomial with xn as a root. Thus xn is integral over S = k[y1, y2, . . . , yn−1, f ].

Remark 2.8. This lemma illustrates the power of Nagata’s normalization process [Eis04,
Lemma 13.2(a)]. Given a non-constant polynomial in a ring of polynomials R, we can find
a subring S ⊆ R such that R is integral over S.

Lemma 2.6. Let R be a commutative ring and a ⊆ b be ideals in R, then dim(R/b) ≤ dim(R/a).

Proof. If p1 ( p2 ( · · · ( pn is a chain of prime ideals containing b, then it is also a chain of
prime ideals containing a. The result follows from the definition of Krull dimension.

Theorem 2.3. The Krull dimension of polynomial ring k[x1, x2, . . . , xn] is n.

Proof. Given to us is the polynomial ring R = k[x1, x2, . . . , xn]. We will proceed by induction
on n.

Base case: For n = 0, we have R = k which is of dimension 0 since (0) is the only prime
ideal, i.e. supremum of height of all prime ideals of k is 0.

Inductive hypothesis: Krull dimension of any polynomial ring with less than n variables
is equal to the number of variables.

Induction: We have the following chain of prime ideals in R = k[x1, . . . , xn]:

(0) ( (x1) ( (x1, x2) ( · · · ( (x1, x2, . . . , xn)

Since this is a chain of length n, we have dimR ≥ n .
Now consider another chain of prime ideals in R of length `:

(0) ( p1 ( p2 ( · · · ( p`

Let f ∈ p1 be a non-constant polynomial, then by Lemma 2.5 there exists y1, . . . , yn−1 ∈ R such
that xn is integral over S = k[y1, . . . , yn−1, f ] and R = S[xn]. Hence R is integral over S. Now
by incomparability of prime ideals under integral extensions [AM07, Corollary 5.9], we get the
corresponding chain of prime ideals of length ` in S.

(0) ( p1 ∩ S ( p2 ∩ S ( · · · ( p` ∩ S

But S/〈f〉 is isomorphic to a polynomial ring with n−1 variables. Hence by inductive hypothesis
dimS/〈f〉 = n−1. Since 〈f〉 ⊆ p1∩S, by Lemma 2.6 we know that dimS/(p1∩S) ≤ dimS/〈f〉,
i.e. `− 1 ≤ n− 1, equivalently ` ≤ n. Now by taking supremum of both sides we conclude that
dimR ≤ n .

Combining both the inequalities we get that dimR = n, hence completing the proof.

Remark 2.9. This theorem introduces the technique of the normalization theorem in a simple
setting [Eis04, Theorem 13.1]. We can give a second proof of this theorem using going-down
lemma and the theory of primary decomposition [Eis04, Corollary 10.13a].
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Conclusion

In this report the stage for the introduction of scheme theory has been set. The idea of scheme
can be used in algebraic number theory to deal with the rings like R = Z[x,y,z]

〈xn+yn−zn〉 . Considering

Spec(R) leads us towards Wile’s celebrated proof of Fermat’s Last Theorem. In future reports,
the theory of schemes will be discussed.
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