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Abstract

The report begins with an introduction to the theory of complex manifolds. Then a proof of
Dolbeault theorem, analogous to that of de Rham theorem, has been presented. Finally, the

utility of Dolbeault-Čech isomorphism is illustrated by proving that every analytic
hypersurface in Cn can be described as the zero-locus of an entire function.
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Introduction

In 1876, Karl Weierstrass asked the following three questions regarding complex valued holo-
morphic and meromorphic functions defined on an open subset U of C [20, Chapter 2]:

W1. Does there exist a holomorphic function with prescribed zeros?
W2. Is every meromorphic function on a quotient of two holomorphic functions?
W3. Does there exist a meromorphic function with prescribed poles and their principal part?

The answer to all these questions is yes. The first two questions were answered by Weierstrass
himself in 1876, and the third question was answered by Gösta Mittag-Leffler during 1876-1882.
The answer to the first and second question follows from the Weierstrass factorization theorem.
Moreover, the affirmative answer to the second question is a corollary to the first one [3, Theorem
VII.5.15, Corollary VII.5.20]. The answer to the third question is known as the Mittag-Leffler
theorem, and the Weierstrass factorization theorem can be deduced from it [3, Theorem VIII.3.2,
Exercise VIII.3.3].

W3

W1

W2

Figure 1: The relation between Weierstrass’ questions identified by Mittag-Leffler.

The close bond between these three questions motivated other mathematicians to ask these
question for complex valued holomorphic and meromorphic functions defined on open sets in
Cn. In 1883, Henri Poincaré generalized W2 by proving that every meromorphic function on C2

is a quotient of two holomorphic functions on C2 [15, Chapter 6] [2, §2]. However, there wasn’t
much progress made until 1895, when Pierre Cousin proved in his Ph.D. thesis that W1, W2 and
W3 for product domains X = U1 × U2 × · · ·Un ⊂ Cn are consequences of a single fundamental
theorem [2, §3.1].

Fundamental theorem W3

Auxiliary theorem

W1

W2

Figure 2: The relation between Weierstrass’ questions for product domains identified by Cousin.
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Therefore, Cousin was successful in bringing together the three problems of Weierstrass to
make one coherent family. Moreover, the methods of Poincaré and Cousin exhibited what would
later be called the “from local to global” problem form. However, in 1913, Thomas Hakon
Grönwall and William Fogg Osgood found a counter example to W2, i.e. in the product of two
ring-shaped domains there is a meromorphic function that cannot be written as the quotient
of two holomorphic functions. Since W2 was an easy consequence of W1, they concluded that
there was some flaw2 in the proof of auxiliary theorem, which was the logarithmic variant of
Cousin’s fundamental theorem [2, §3.3]. Later, in 1934, Henri Cartan published a three-page
note to show that the three problems had not significantly changed since Cousin, and gave the
following labels [2, §3.4]:

Cousin I: Name given to Cousin’s fundamental theorem. Also known as the additive problem.
Cousin II: Name given to Cousin’s auxiliary theorem. Also known as the multiplicative prob-

lem.
Poincaré problem: Name given to the problem about the quotient representation of mero-

morphic functions.

Kyoshi Oka made a breakthrough by first solving Cousin I for bounded domains of holomor-
phy in 1937 and then an year later establishing that Cousin II for domains of holomorphy is a
problem of purely topological nature. That is, he proved that for domains of holomorphy, the
solvability of Cousin II depends only on a topological property of the zero-locus [2, §3.4.2]. To
illustrate the independence of Cousin II, he also gave an example of product domain (since every
product domain is a domain of holomorphy), in which Cousin I Y=⇒ Cousin II [13, p. 250].

Cousin I

If the zero-locus is topologically “nice”

Cousin II

Figure 3: The relation between Cousin problems for domains of holomorphy identified by Oka.

In 1944, Cartan generalized the Cousin problems by recasting them in terms of ideals3 [2,
§4]. In particular, this theory is the new setting enabled the use of powerful abstract methods
such as Hilbert’s Nullstellensatz available in algebraic geometry [10, Proposition 1.1.29].

We saw in previous report that during 1945-1951 the concept of sheaf and sheaf cohomology
was developed [12, pp. 2-3]. Fortunately, during these developments, several important questions
left pending in Cartan’s 1944 paper were also answered [2, §5]. From 1949 to 1953, Cartan
organized various seminars which were devoted to the study of fibre-spaces, homotopy theory,
cohomology theories and analytic functions in several variables. During the last three talks, the
cohomology of coherent sheaves on Stein spaces was developed and Cartan proved two results
concerning a coherent sheaf F on a Stein manifold X which were analogous to Cousin problems
(called Cartan A and Cartan B) [2, §5.5]. For more details, refer to the books by Gunning and
Rossi [9], Kaup and Kaup [11], Fritzsche and Grauert [6], Maurin [15], Krantz [13] and Taylor
[19].

In 1952, Cartan’s student Jean-Pierre Serre4 gave the cohomological formulation of the con-
ditions for solving the Cousin problems [2, p. 62]:

2Cousin thought he had established Fundamental theorem =⇒ Auxiliary theorem for any product domain,
but he had proved it only for those product domains in which at most one of the components is not necessarily
simply connected.

3This was actually the second half of a single work. The first half was published in 1940, but the Second
World War caused the delay in the publication of the other half.

4In 1953, he also proved that Poincaré’s problem is solvable for Stein manifold, i.e. on a Stein manifold any
meromorphic function is the quotient of two holomorphic functions.
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Let X be a complex analytic variety5, O be the sheaf of holomorphic complex valued
functions andM be the sheaf of meromorphic complex valued functions on X. Then
Cousin I is solvable for X if and only if Ȟ

1
(X,O) → Ȟ

1
(X,M) is one to one and

onto, and Cousin II is solvable for X if and only if Ȟ
1
(X,O∗) → Ȟ

1
(X,M∗) is

one to one and onto. In particular, for Cousin I to be solvable, it is sufficient that
Ȟ

1
(X,O) = 0 and for Cousin II to be solvable, it is sufficient that Ȟ

1
(X,O∗) = 0.

Pierre Dolbeault, another student of Cartan, in 1953 introduced the ∂-cohomology6 of the
differential forms defined on complex analytic manifolds [7, §9.1.1]. He proved that this holo-
morphic analogue of de Rham cohomology defined on real manifolds is isomorphic to the sheaf
cohomology of the sheaf of holomorphic differential forms [4]. Therefore, Dolbeault’s theorem
is a complex analogue of de Rham’s theorem7 [12, Theorem 3.1]. Using the Dolbeault-Čech
isomorphism we get that Ȟ

1
(Cn,O) = 0 (Theorem 2.8). Combining this with the purely topo-

logical fact that Ȟ
1
(Cn,Z) = 0 (Corollary 2.2), and using the exponential sheaf sequence we can

conclude that Ȟ
1
(Cn,O∗) = 0 (Lemma 2.3). Hence proving that both the Cousin problems are

solvable for Cn [8, pp. 46-47].
This report consists of two chapters. In chapter 1 we will discuss various concepts related to

complex differential forms and complex manifolds needed to define Dolbeault cohomology. We
will also develop the tools like ∂-Poincaré lemma, which will be used later to establish important
sheaf theoretic results about the complex differential forms. In chapter 2 we will first illustrate
the local to global principle by discussing the solution of Cousin problems for C. Then we will
prove Dolbeault theorem and use it to solve Cousin problem for analytic hypersurface in Cn.

Apart from the two chapters, we have also included three appendices. In Appendix A, to
supplement the discussions in the first chapter, we have stated a few facts from linear algebra.
In Appendix B we have discussed the function theory of several complex variables, which will
be used in both the chapters. In Appendix C some fundamental results about smooth partition
of unity, which will play an important role in various arguments presented in the report, have
been stated.

5For example, complex manifold.
6Now called Dolbeault cohomology.
7However, note that, unlike de Rham cohomology, Dolbeault cohomology is not a topological invariant because

it depends closely on the complex structure.
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Chapter 1

Dolbeault cohomology

1.1 Differential forms on Cn

This section generalizes the concepts discussed in previous report [12, §1.1, 1.3], following the
discussion from [10, §1.3] and [24, §I.3].

1.1.1 Tangent space

Definition 1.1 (Real tangent space). Let U ⊂ Cn be an open subset. In particular, we can
consider U ⊂ R2n, to be a smooth manifold of dimension 2n. Then for w ∈ U we define the real
tangent space of U at the point w as the real vector space of R-linear derivations on the ring of
real-valued smooth functions in a neighborhood of w, i.e.

Tw,RU = {Xw : C∞w (U)→ R | Xw(fg) = Xw(f)g(w) + f(w)Xw(g)}

Remark 1.1. If we write the standard coordinates on Cn as zj = xj + iyj , then a canonical
basis of Tw,RU is given by the tangent vectors{

∂

∂x1

∣∣∣∣
w

, · · · , ∂

∂xn

∣∣∣∣
w

,
∂

∂y1

∣∣∣∣
w

, · · · , ∂

∂yn

∣∣∣∣
w

}
Clearly, dimR(Tw,RU) = 2n as seen in the case of smooth manifolds.

Definition 1.2 (Complexified tangent space). Let U ⊂ Cn be an open subset. Then we define
the complexified tangent space of U at the point w to be the complexification1 of real tangent
space of U at w

Tw,CU = Tw,RU ⊗R C

Remark 1.2. We can also use the canonical basis of real tangent space to define its complexi-
fication [17, p. 379]. We can view Tw,CU as the complex vector space of C-linear derivations in
the ring of complex-valued smooth functions2 in a neighborhood of w, i.e. Tw,CU also has the
same basis {

∂

∂x1

∣∣∣∣
w

, · · · , ∂

∂xn

∣∣∣∣
w

,
∂

∂y1

∣∣∣∣
w

, · · · , ∂

∂yn

∣∣∣∣
w

}
Hence, as expected, we have dimR(Tw,RU) = dimC(Tw,CU).

1For the definition, see Definition A.2.
2That is, they posses partial derivatives of all orders with respect to the 2n real coordinates in Cn.
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Definition 1.3 (Complex structure for Tw,RU). Each real tangent space Tw,RU admits a natural
complex structure3 defined on the basis as

J : Tw,RU → Tw,RU

∂

∂xj

∣∣∣∣
w

7→ ∂

∂yj

∣∣∣∣
w

∂

∂yj

∣∣∣∣
w

7→ − ∂

∂xj

∣∣∣∣
w

Remark 1.3. We will regard this J as a vector bundle endomorphism of the smooth vector
bundle TRU over U .

Proposition 1.1. The complexified tangent bundle TCU = TRU ⊗R C decomposes as a direct
sum of complex vector bundles

TCU = (TRU)1,0 ⊕ (TRU)0,1

such that the C-linear extension J̃ = J ⊗ 1C satisfies

J̃ |(TRU)1,0 = i · 1TCU and J̃ |(TRU)0,1 = −i · 1TCU

Proof. Fix a point w ∈ U , and substitute V = Tw,RU and VC = Tw,CU in the proof of Proposi-
tion A.7.

Remark 1.4. As seen in the proof of Proposition A.7, we can write

∂

∂xj
=

1

2

(
∂

∂xj
− iJ

(
∂

∂xj

))
+

1

2

(
∂

∂xj
+ iJ

(
∂

∂xj

))
∂

∂yj
=

1

2

(
∂

∂yj
− iJ

(
∂

∂yj

))
+

1

2

(
∂

∂yj
+ iJ

(
∂

∂yj

))
where

1

2

(
∂

∂xj
− iJ

(
∂

∂xj

))
,
1

2

(
∂

∂yj
− iJ

(
∂

∂yj

))
∈ (TRU)1,0

and
1

2

(
∂

∂xj
+ iJ

(
∂

∂xj

))
,
1

2

(
∂

∂yj
+ iJ

(
∂

∂yj

))
∈ (TRU)0,1

Next, use the definition of J to get:

∂

∂xj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
+

1

2

(
∂

∂xj
+ i

∂

∂yj

)
∂

∂yj
=
i

2

(
∂

∂xj
− i ∂

∂yj

)
− i

2

(
∂

∂xj
+ i

∂

∂yj

)
Definition 1.4 (Complex partial derivative). Based on the discussion above, we define the
operators:

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
and

∂

∂zj
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
for j = 1, . . . , n.

3For definition, see Definition A.3.
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Remark 1.5. Hence we can say that
{

∂
∂z1

∣∣
w
, . . . , ∂

∂zn

∣∣
w

}
is a basis for the complex vector space

(Tw,RU)1,0 and
{

∂
∂z1

∣∣
w
, . . . , ∂

∂zn

∣∣
w

}
is a basis for the complex vector space (Tw,RU)0,1. Therefore,

the following forms a basis of Tw,CU{
∂

∂z1

∣∣∣∣
w

, . . . ,
∂

∂zn

∣∣∣∣
w

,
∂

∂z1

∣∣∣∣
w

, . . . ,
∂

∂zn

∣∣∣∣
w

}
Proposition 1.2. Let f : U → V be a holomorphic map between open subsets U ⊂ Cn and
V ⊂ Cn. The C-linear extension of the pushforward map4 f∗ : Tw,RU → Tf(w),RV respects the
above decomposition, i.e. f̃∗

(
(Tw,RU)1,0

)
⊂ (Tw,RV )1,0 and f̃∗

(
(Tw,RU)0,1

)
⊂ (Tf(w),RV )0,1.

Proof. Follows directly from the Remark B.5.

1.1.2 Cotangent space

Definition 1.5 (Real cotangent space). Let U ⊂ Cn be an open subset. In particular, we can
consider U ⊂ R2n, to be a smooth manifold of dimension 2n. Then for w ∈ U we define the real
cotangent space of U at the point w as dual space of the real vector space Tw,RU , i.e.

T ∗w,RU = HomR(Tw,RU,R)

Remark 1.6. If we write the standard coordinates on Cn as zj = xj + iyj , then a canonical
basis of T ∗w,RU is given by the cotangent vectors{

dx1

∣∣
w
, · · · ,dxn

∣∣
w
,dy1

∣∣
w
, · · · ,dyn

∣∣
w

}
Clearly, dimR(T ∗w,RU) = 2n as seen in the case of smooth manifolds.

Definition 1.6 (Complexified cotangent space). Let U ⊂ Cn be an open subset. Then we
defined the complexified cotangent space of U at the point w to be the complexification of real
cotangent space

T ∗w,CU = T ∗w,RU ⊗R C

Remark 1.7. We can also use the canonical basis of real cotangent space to define its complex-
ification [17, p. 379]. We can view T ∗w,CU as the complex vector space with the basis{

dx1

∣∣
w
, · · · ,dxn

∣∣
w
,dy1

∣∣
w
, · · · ,dyn

∣∣
w

}
Hence, as expected, we have dimR(T ∗w,RU) = dimC(T ∗w,CU).

Remark 1.8. As in Proposition A.8, we get the complex structure J on T ∗w,RU from the complex
structure J on Tw,RU . We will regard this J as a vector bundle endomorphism of the smooth
vector bundle T ∗RU over U .

Proposition 1.3. The complexified cotangent bundle T ∗CU = T ∗RU ⊗R C decomposes as a direct
sum of complex vector bundles

T ∗CU = (T ∗RU)1,0 ⊕ (T ∗RU)0,1

such that the C-linear extension J̃ = J ⊗ 1C satisfies

J̃ |(T ∗RU)1,0 = i · 1T ∗CU and J̃ |(T ∗RU)0,1 = −i · 1T ∗CU

Proof. Fix a point w ∈ U , and substitute V = Tw,RU and VC = Tw,CU in the proof of Proposi-
tion A.8.

4It was defined in the the previous report [12, Definition 1.5].
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Remark 1.9. From Corollary A.2, we have T ∗w,CU =
(
T ∗w,RU

)
C
∼= (Tw,CU)∗. Hence we can

obtain another basis for T ∗w,CU by defining the dual basis of (Tw,RU)1,0 and (Tw,RU)0,1. Observe
that:

1

2

(
∂

∂xj
− i ∂

∂yj

)
(dxk + i dyk) =

{
1 if k = j

0 if k 6= j

1

2

(
∂

∂xj
− i ∂

∂yj

)
(dxk − i dyk) = 0

and

1

2

(
∂

∂xj
+ i

∂

∂yj

)
(dxk + i dyk) = 0

1

2

(
∂

∂xj
+ i

∂

∂yj

)
(dxk − i dyk) =

{
1 if k = j

0 if k 6= j

Definition 1.7 (Complex differential). Based on the discussion above, we define the differentials:

dzj := dxj + i dyj and dzj := dxj − i dyj

for j = 1, . . . , n.

Remark 1.10. Hence we can say that
{

dz1

∣∣
w
, . . . ,dzn

∣∣
w

}
is a basis for the complex vector

space (T ∗w,RU)1,0 and
{

dz1

∣∣
w
, . . . ,dzn

∣∣
w

}
is a basis for the complex vector space (T ∗w,RU)0,1.

Therefore, the following forms a basis of T ∗w,CU{
dz1

∣∣
w
, . . . ,dzn

∣∣
w
,dz1

∣∣
w
, . . . ,dzn

∣∣
w

}
1.1.3 Differential forms

Definition 1.8 (Differential (p, q)-form). Let U ⊂ Cn be an open subset. Over U one has the
complex vector bundle5 of rank

(
n
p

)(
n
q

)
defined as∧p,q

T ∗RU :=
∧p (

(T ∗RU)1,0
)
⊗C
∧q (

(T ∗RU)0,1
)

whose fiber is
∧p,q T ∗w,RU . The smooth sections6 of this vector bundle are called the differential

forms of type (p, q) on U . The space of all smooth differential forms of type (p, q) on U is denoted
by Ωp,q(U).

Remark 1.11. Any (p, q)-form ω ∈ Ωp,q(U) can be written uniquely as

ω =
∑

|α|=p,|β|=q

fαβ dzα ∧ dzβ

where α = (α1, . . . , αp) and β = (β1, . . . , βq) are multi-indices with 1 ≤ αj , βk ≤ n; dzα =
dzα1 ∧ . . . ∧ dzαp and dzβ = dzβ1 ∧ . . . ∧ dzβq ; and fαβ is a complex-valued smooth function on
U , i.e. fαβ ∈ C∞(U). In particular, Ω0,0(U) = C∞(U).

5That is, in the definition of smooth vector bundle, replace R by C. This will be discussed in detail later, see
Remark 1.27.

6For definition, see [12, Definition 1.38].
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Remark 1.12. Let Ωk
C(U) be the space of sections of vector bundle

∧k T ∗CU . Any element
ω ∈ Ω1

C(U) can thus be written in a unique manner in the form

ω =
n∑
j=1

fj dzj +
n∑
k=1

fk dzk

Moreover, if ω ∈ Ωr
C(U) and η ∈ Ωs

C(U) then ω ∧ η = (−1)rsη ∧ ω ∈ Ωr+s
C (U).

Remark 1.13. By Remark A.12 we have∧k
T ∗CU

∼=
⊕
p+q=k

∧p,q
T ∗RU =⇒ Ωk

C(U) ∼=
⊕
p+q=k

Ωp,q(U)

Thus we have natural projection operators
∧k T ∗CU → ∧p,q T ∗RU and Ωk

C(U)→ Ωp,q(U), denoted
by Πp,q for p+ q = k.

1.1.4 Exterior derivative

Definition 1.9 (Differential of a (p, q)-form). Let U ⊂ Cn be an open subset, and d : Ωk
C(U)→

Ωk+1
C (U) be the complex linear extension of the usual exterior differential7. Then

∂ : Ωp,q(U)→ Ωp+1,q(U) and ∂ : Ωp,q(U)→ Ωp,q+1(U)

are defined as ∂ := Πp+1,q ◦ d and ∂ := Πp,q+1 ◦ d.

Remark 1.14. For any f ∈ Ω0
C(U) = C∞(U) one has

df =
n∑
j=1

∂f

∂xj
dxj +

n∑
j=1

∂f

∂yj
dyj =

n∑
j=1

∂f

∂zj
dzj +

n∑
j=1

∂f

∂zj
dzj = ∂f + ∂f

Since {dzj} are linearly independent, by Theorem B.2, f is holomorphic if and only if ∂f = 0.

Lemma 1.1. For the differential operators ∂ and ∂ one has:

1. d = ∂ + ∂

2. ∂2 = ∂ 2 = 0 and ∂∂ = −∂∂

3. They satisfy the Leibniz’s rule, i.e.

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η
∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

for ω ∈ Ωp,q(U) and η ∈ Ωr,s(U).

Proof. We will use the properties of d studied earlier8. .

1. This follows from the local description of ∂ and ∂. Given ω =
∑

α,β fαβ dzα∧dzβ ∈ Ωp,q(U),
we have

∂ω =

n∑
j=1

∑
α,β

∂fαβ
∂zj

dzj ∧ dzα ∧ dzβ

∂ω =

n∑
j=1

∑
α,β

∂fαβ
∂zj

dzj ∧ dzα ∧ dzβ

7For definition, see [12, Definition 1.17].
8In the previous report, see [12, Theorem IX, Theorem XXVI].
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2. Recall that d2 = 0 since the second order partial derivatives commute. Since d = ∂ + ∂,
we have

d2 = d ◦ d

= d ◦ ∂ + d ◦ ∂
= ∂ ◦ ∂ + ∂ ◦ ∂ + ∂ ◦ ∂ + ∂ ◦ ∂
= ∂2 + ∂∂ + ∂∂ + ∂ 2

Moreover, each operator projects to a different summand of Ωp+q+2
C (U), we obtain

∂2 = ∂∂ + ∂∂ = ∂ 2 = 0

Therefore, ∂2 = ∂ 2 = 0 and ∂∂ = −∂∂.

3. Recall that for ω ∈ Ωp+q
C (U) and η ∈ Ωr+s

C (U) we have

d(ω ∧ η) = dω ∧ η + (−1)p+qω ∧ dη ∈ Ωp+q+r+s+1
C (U)

Since ∂ := Πp+r+1,q+s ◦ d, taking the (p+ r + 1, q + s)-parts on both sides one obtains

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

Similarly, taking the (p+ r, q + s+ 1)-parts one obtains

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

Remark 1.15. As noted in Remark A.13, Ωk
C(U) does not reflect the complex structure J ,

whereas its decomposition into subspaces Ωp,q(U) does.

1.2 ∂-closed and exact forms on Cn

In this section the proof of ∂-Poincaré lemma will be discussed, following [9, §I.D] and [19, §1.4,
10.1].

Definition 1.10 (∂-closed forms). Let U ⊂ Cn be an open subset. Then a differential form
ω ∈ Ωp,q(U) is called ∂-closed if ∂ω = 0.

Remark 1.16. If U is an open set in Cn, let Zp,q(U) denote the set of all ∂-closed (p, q)-forms
on U . The sum of two such (p, q)-forms is another ∂-closed (p, q)-form, and so is the product
of a ∂-closed (p, q)-form by a scalar. Hence Zp,q(U) is the vector sub-space of Ωp,q(U). Also,
from Theorem B.2 it follows that Zp,0(U) is the space of (p, 0)-forms whose coefficients are
complex-valued holomorphic functions in U . In particular, note that Z0,0(U) = O(U), the space
of complex-valued functions holomorphic in U .

Definition 1.11 (∂-exact forms). Let U ⊂ Cn be an open subset. Then a differential form
ω ∈ Ωp,q(U), for q > 0, is called ∂-exact if ω = ∂η for some differential form η ∈ Ωp,q−1(U).

Remark 1.17. If U is an open set in Cn, let Bp,q(U) denote the set of all ∂-exact (p, q)-forms
on U . The sum of two such (p, q)-forms is another ∂-exact (p, q)-form, and so is the product of
a ∂-exact (p, q)-form by a scalar. Hence Bp,q(U) is the vector sub-space of Ωp,q(U). Moreover,
the trivial form ω ≡ 0 is the only (p, 0)-form which is ∂-exact for any value of p = 0, 1, . . . , n.
That is, Bp,0(U) consists only of zero.
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Theorem 1.1. Every ∂-exact form is ∂-closed.

Proof. Let U be an open set in Cn and ω ∈ Bp,q(U) such that ω = ∂η for some η ∈ Ωp,q−1(U).
From Lemma 1.1 we know that ∂ω = ∂(∂η) = 0 hence ω ∈ Zp,q(U) for all q ≥ 1. For q = 0, the
statement is trivially true.

Remark 1.18. This theorem implies that Bp,q(U) ⊂ Zp,q(U) for all q ≥ 1. However, the
converse doesn’t always hold. For example, if U = C2 \ {0}, then the (0, 1)-form

ω =


∂

(
z2

z1r2

)
when z1 6= 0

−∂
(
z1

z2r2

)
when z2 6= 0

where (z1, z2) ∈ U and r2 =
∣∣z2

1

∣∣+
∣∣z2

2

∣∣, is ∂-closed but not ∂-exact [9, pp. 30–31].

1.2.1 Cauchy integral formula

Proposition 1.4 (Generalized Cauchy integral formula). Let U be a region9 in C bounded by
a simple closed rectifiable curve10 γ, and f be complex-valued smooth function in some open
neighborhood V of U . Then for any point z ∈ U ,

f(z) =
1

2πi

∫
γ

f(w)
dw

w − z
+

1

2πi

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z

Proof. For any point z ∈ U select a disc ∆(z; r) with closure contained in U . Let γr be the
boundary of the ∆(z; r), a circle of radius r centered at z. Furthermore, let Ur = U \ ∆(z; r)
and observe that this is an open region bounded by γ − γr.

Now note that as a function of w, for a fixed z,

∂f(w)

∂w

dw ∧ dw

w − z
=

∂

∂w

(
f(w)

w − z

)
dw ∧ dw = d

(
f(w)

dw

w − z

)
9A region is an open connected subset of the complex plane [3, p. 40].

10A rectifiable curve is a curve having finite length. In other words, the measure (for example, arc length or
distance) between any two points of this curve is finite. For more details, see [3, p. 62].
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whenever the functions involved are well defined11. Therefore, by the Stokes theorem12 in the
plane we get∫∫

Ur

∂f(w)

∂w

dw ∧ dw

w − z
=

∫∫
Ur

d

(
f(w)

dw

w − z

)
=

∫
γ

f(w)
dw

w − z
−
∫
γr

f(w)
dw

w − z
(1.1)

Note that the integral of (w − z)−1 dw ∧ dw exists on a bounded region, as seen by integrating
it using polar coordinates centered at z. That is, substituting w = z +Reiθ and

dw ∧ dw = (dx+ i dy) ∧ (dx− idy)

= −2i dx ∧ dy

= −2i(cos θ dR−R sin θ dθ) ∧ (sin θ dR+R cos θ dθ)

= 2iR dθ ∧ dR

for w = x+ iy, x = R cos θ, and y = R sin θ. We get∫∫
Ur

dw ∧ dw

w − z
= 2i

∫∫
Ur

e−iθ dθ dR

Therefore, as r → 0, the surface integral over Ur converges to the surface integral over U

lim
r→0

∫∫
Ur

∂f(w)

∂w

dw ∧ dw

w − z
=

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z
(1.2)

Moreover, since γr is defined by w = z + reit with 0 ≤ t ≤ 2π, we have

lim
r→0

∫
γr

f(w)
dw

w − z
= lim

r→0

∫ 2π

t=0
f
(
z + reit

)
idt = if (z)

∫ 2π

t=0
dt = 2πif(z) (1.3)

Letting r → 0 in (1.1), and using (1.2) and (1.3) we get∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z
=

∫
γ

f(w)
dw

w − z
− 2πif(z)

=⇒f(z) =
1

2πi

∫
γ

f(w)
dw

w − z
+

1

2πi

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z

Hence completing the proof.

Remark 1.19. If f is holomorphic then ∂f(w)
∂w = 0 and we get the familiar Cauchy integral

formula [3, Theorem IV.5.4]:

f(z) =
1

2πi

∫
γ

f(w)
dw

w − z

11Note the abuse of notations. Here f(w) is a function of w and w which are linearly independent “variables”.
The better notation would have been f(w,w) just like we have f(x, y) in R2. Hence ∂/∂w treats w as a constant.
Moreover, the differential is well defined whenever w 6= z, which will hold when we apply the Stokes theorem.

12This is the standard Stokes theorem expressed in the complex notation [13, Theorem 1.1.1]: Let U ⊂ Cn be
a bounded open set with rectifiable boundary and ω ∈ Ωp,q(U) with p+ q = 2n. Then∫

∂U

ω =

∫
U

dω =

∫
U

∂ω + ∂ω
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Corollary 1.1. Let U be a region in C bounded by a simple closed rectifiable curve γ, and f be
complex-valued smooth function in some open neighborhood V of U . Then for any point z ∈ U ,

f(z) = − 1

2πi

∫
γ

f(w)
dw

w − z
+

1

2πi

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z

Proof. Note that as a function of w, for a fixed z,

∂f(w)

∂w

dw ∧ dw

w − z
=

∂

∂w

(
f(w)

w − z

)
dw ∧ dw = d

(
f(w)

dw

w − z

)
whenever the functions involved are well defined. Now repeat the steps performed in the proof
of previous result.

Proposition 1.5. Let U be an open subset of C bounded by a simple closed rectifiable curve γ,
and f be complex-valued smooth function in an open neighborhood V of U . Then there exists a
complex-valued smooth function g ∈ C∞(U) such that

∂g(z)

∂z
= f(z)

Proof. For any point z ∈ U select a disc ∆(z; r) with closure contained in U . Let γr be the
boundary of the ∆(z; r), a circle of radius r centered at z. Furthermore, let Ur = U \ ∆(z; r)
and observe that this is an open region bounded by γ − γr.

Now note that as a function of w, for a fixed z,

d log |w − z|2 = d(log(w − z) + log(w − z)) =
dw

w − z
+

dw

w − z

whenever the functions involved are well defined13. Therefore, by the Stokes theorem in the
plane we get∫
γ

f(w) log |w − z|2 dw −
∫
γr

f(w) log |w − z|2 dw =

∫∫
Ur

d
(
f(w) log |w − z|2 dw

)
=

∫∫
Ur

∂f(w)

∂w
log |w − z|2 dw ∧ dw +

∫∫
Ur

f(w)
dw ∧ dw

w − z

(1.4)

13Note that ∂/∂w and ∂/∂w treat w and w as constants, respectively. Also recall that we can define the
logarithm in every simply connected open set not containing 0 [3, Corollary IV.6.17]. In every of these open sets we
can compute the differentials. It turns out that on the overlaps these differentials agree because different branches
of the logarithm differ locally by a constant which is killed by taking a derivative [3, Corollary III.2.21]. Therefore,
even though logarithm is not a globally defined function, its derivative is defined and smooth everywhere in C\{0}.
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Observe that, as r → 0, the surface integral over Ur converges to the surface integral over U

lim
r→0

∫∫
Ur

∂f(w)

∂w
log |w − z|2 dw ∧ dw =

∫∫
U

∂f(w)

∂w
log |w − z|2 dw ∧ dw (1.5)

and

lim
r→0

∫∫
Ur

f(w)
dw ∧ dw

w − z
=

∫∫
U

f(w)
dw ∧ dw

w − z
(1.6)

Moreover, since γr is defined by w = z + reit with 0 ≤ t ≤ 2π, we have

lim
r→0

∫
γr

f(w) log |w − z|2 dw = lim
r→0

∫ 2π

t=0
f
(
z + reit

)
(−2r)(log r)ie−it dt

≤ lim
r→0

∫ 2π

t=0

∣∣f (z + reit
)

(−2r)(log r)ie−it dt
∣∣

≤ lim
r→0

2Mr(log r)

∫ 2π

t=0
dt

= 4πM lim
r→0

r log r = 0

(1.7)

where M = supz∈U |f(z)| and |ie−it| = 1. Letting r → 0 in (1.4), and using (1.5), (1.6) and
(1.7) we get∫

γ

f(w) log |w − z|2 dw =

∫∫
U

∂f(w)

∂w
log |w − z|2 dw ∧ dw +

∫∫
U

f(w)
dw ∧ dw

w − z (1.8)

Next, we apply the operator ∂/∂z to each integral in (1.8). We can use Leibniz’s differentiation
under the integral sign14 for the integrals where the integrand obtained after differentiation is
still integrable. Hence we have

∂

∂z

∫
γ

f(w) log |w − z|2 dw =

∫
γ

∂ log |w − z|2

∂z
f(w) dw = −

∫
γ

f(w)
dw

w − z

∂

∂z

∫∫
U

∂f(w)

∂w
log |w − z|2 dw ∧ dw =

∫∫
U

∂ log |w − z|2

∂z

∂f(w)

∂w
dw ∧ dw = −

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z

Hence by applying ∂/∂z to (1.8), we get:

−
∫
γ

f(w)
dw

w − z
= −

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z
+

∂

∂z

∫∫
U

f(w)
dw ∧ dw

w − z

⇒ ∂

∂z

∫∫
U

f(w)
dw ∧ dw

w − z
= −

∫
γ

f(w)
dw

w − z
+

∫∫
U

∂f(w)

∂w

dw ∧ dw

w − z
= 2πif(z) (Corollary 1.1)

Therefore, we have

g(z) =
1

2πi

∫∫
U

f(w)
dw ∧ dw

w − z
=⇒ ∂g(z)

∂z
= f(z)

14The proof of this result is an application of Dominated Convergence Theorem [5, Theorem 2.27].
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Observe that from (1.8) it follows that g ∈ C1(U) since

g(z) =
1

2πi

∫
γ

f(w) log |w − z|2 dw − 1

2πi

∫∫
U

∂f(w)

∂w
log |w − z|2 dw ∧ dw

and the differential equation shows that ∂g/∂z ∈ C∞(U). In particular, g ∈ C∞(U), as desired.

Corollary 1.2. Let V be an open neighborhood of the closure of a disc ∆ ⊂ ∆ ⊂ V ⊂ C. For
f ∈ C∞(V ), the function

g(z) :=
1

2πi

∫∫
∆

f(w)

w − z
dw ∧ dw

satisfies ∂g(z)/∂z = f(z) for z ∈ ∆.

Corollary 1.3. Let f ∈ C∞(V ) on an open set V of C. Then, locally15 on this open set, there
exists a complex-valued smooth function g such that ∂g/∂z = f .

Corollary 1.4. If f ∈ C∞(V ), for an open set V ⊂ C containing a compact set K, then there
exists an open set U , with K ⊂ U ⊂ V , and a g ∈ C∞(U), such that ∂g/∂z = f in U .

Remark 1.20. We can prove the above three corollaries directly: Huybrechts [10, Proposition
1.3.7] and Kaup and Kaup [11, Lemma 61.6] prove Corollary 1.2 using Lemma C.2, Proposi-
tion B.4 and Stokes theorem; Voisin [21, Theorem 1.28] proves Corollary 1.3 by assuming that
f has a compact support since we want to prove a local statement and using Stokes theorem;
and Taylor [19, Proposition 1.4.2] proves Corollary 1.4 by using Lemma C.2 and the generalized
Cauchy integral formula. The proof discussed here is by Gunning and Rossi [9, Lemma I.D.2].

Theorem 1.2. If U is any open subset of C and f ∈ C∞(U), then there exists g ∈ C∞(U) such
that ∂g/∂z = f .

Proof. From Lemma C.1 we know that there exists a sequence {Kn} of compact subsets of U
such that

1. Kn ⊂ int(Kn+1) for each n;

2.
⋃
n∈N

int(Kn) = U ; and

3. each bounded component of the complement of Kn meets the complement of U .

First we will prove by induction that there exists a sequence of complex-valued smooth
functions {gn} satisfying ∂gn/∂z = f on an open neighborhood of Kn, such that

|gn(z)− gn−1(z)| < 1

2n−1
for all z ∈ Kn−1 if n > 1

For the base case we get g1 by Corollary 1.4. Next, as the induction hypothesis, assume
that there exist complex-valued smooth functions {g1, . . . , gm} satisfying the desired conditions.
We again apply Corollary 1.4 to get a function h which is smooth in an open neighborhood
of Km+1 and satisfies ∂h/∂z = f on this neighborhood. Since Km ⊂ int(Km+1), on an open
neighborhood of Km we have

∂(h− gm)

∂z
= 0

15Here “locally” means that for any point z ∈ V there is some open neighborhood U of z where ∂g/∂z = f .
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So, by Theorem B.2, h− gm is holomorphic on this neighborhood of Km. By Runge’s theorem
[3, Theorem VIII.1.7], we can choose a rational function r, with poles in C \ U , such that

|h(z)− gm(z)− r(z)| < 1

2m
for all z ∈ Km

If we set gm+1 = h− r , then ∂gm+1/∂z = f on an open neighborhood on Km+1 and

|gm+1(z)− gm(z)| < 1

2m
for all z ∈ Km

By induction, a sequence {gn} with the required properties exists.
Next, we note that16 the sequence {gn} of complex-valued smooth functions converges uni-

formly on each compact set Kn to a function g defined on U . Moreover, gn− gm is holomorphic
on an open neighborhood of Km for each n > m. Thus for each fixed m, {gn−gm} is a sequence
of complex-valued holomorphic functions on an open neighborhood of Km which is uniformly
convergent on Km. Therefore, by Morera’s theorem [3, Exercise IV.5.8], the limit function g−gm
is holomorphic on int(Km). Hence, g is smooth on int(Km). Since this is true for each m and⋃
m int(Km) = U , we conclude that g is a complex-valued smooth function on the whole of U .

Clearly, ∂g/∂z = f in U .

Remark 1.21. In particular, if U is simply connected and f : U → C is holomorphic, then f
has a primitive in U [3, Corollary IV.6.16].

1.2.2 ∂-Poincaré lemma

Lemma 1.2. Let ∆ ⊂ Cn be a compact polydisc17, and ω ∈ Ωp,q(V ) for some open neighborhood
V of ∆. If q > 0 and ∂ω = 0, then there is η ∈ Ωp,q−1(∆) such that ω = ∂η.

Proof. Consider the following explicit representation of ω ∈ Ωp,q(V )

ω =
∑

|α|=p,|β|=q

fαβ dzα ∧ dzβ

Let ` be the least integer such that the expression for ω involves no conjugate differential dzj
with j > `; i.e. ω can be written in terms of the conjugate differentials dz1, . . . ,dz` and the
differentials dz1, . . . ,dzn. We will proceed by induction on `.

For the base case there is nothing to prove since for ` = 0 we have ω = 0 because by
hypothesis q > 0. Next, as the induction hypothesis, assume that for 0 < ` < k, every ∂-closed
(p, q)-form in an open neighborhood of ∆ is ∂-exact on ∆. In general, for the induction step,
we write

ω = dzk ∧ θ + ξ

where θ and ξ involve only the conjugate differentials dz1, . . . ,dzk−1. Since ω is ∂-closed, we
have

0 = ∂ω = ∂(dzk ∧ θ) + ∂ξ

=
(
∂(dzk) ∧ θ + (−1)0+1 dzk ∧ ∂θ

)
+ ∂ξ

=
(
−dzk ∧ ∂θ

)
+ ∂ξ

16Recall the following three facts from real analysis: (1). If a sequence (xn)∞n=1 in Rn satisfies
∑
n≥1 |xn+1 −

xn| <∞, then it is Cauchy.; (2). A sequence {fn} converges uniformly if and only if {fn} is uniformly Cauchy;
(3). A sequence of functions {fn} from a set A to a metric space X is said to be uniformly Cauchy if for all
ε > 0, there exists N > 0 such that for all a ∈ A we have |fn(a)− fm(a)| < ε whenever m,n > N .

17For its definition see Definition B.1.
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It follows, by Theorem B.2, that the coefficients of the forms θ and ξ are holomorphic in
zk+1, . . . , zn since the partial derivatives ∂/∂zk+1, . . . , ∂/∂zn for any such coefficient are all
zero. Consider the following explicit representation of θ

θ =
∑
|α|=p

βj∈{1,...,k−1}

gαβ dzα ∧ dzβ

Observe that any coefficient gαβ of θ is a complex-valued smooth function of the variable zk in
an open neighborhood of ∆k, where the original polydisc has the product decomposition18

∆ = ∆1 × · · · ×∆n

where ∆j is a disc in C. The function gαβ is also a complex-valued smooth function of z1, . . . , zk−1

and a holomorphic function of zk+1, . . . , zn in the corresponding domains. By Corollary 1.2 there
exists a function hαβ which is smooth in zk ∈ ∆k:

hαβ(z) = hαβ(z1, . . . , zn) =
1

2πi

∫∫
∆k

gαβ(z1, . . . , zk−1, w, zk+1, . . . , zn)

w − zk
dw ∧ dw

such that
∂hαβ
∂zk

= gαβ

Note that hαβ is also19 smooth in z1, . . . , zk−1 and holomorphic in zk+1, . . . , zn in the same
regions as gαβ is. Replacing each coefficient gαβ in the differential form θ by such a function hαβ
yields a new (p, q − 1)-form

σ =
∑
|α|=p

βj∈{1,...,k−1}

hαβ dzα ∧ dzβ

which by this construction satisfies the equation

∂σ = dzk ∧ θ + ρ

for some differential form ρ involving only the conjugate differentials dz1, . . . ,dzk−1. Now con-
sider the differential form

ν = ω − ∂σ = ξ − ρ

Note that ν is a ∂-closed form since

∂ν = ∂ω − ∂2
σ = 0

and it involves only the conjugate differentials dz1, . . . ,dzk−1 since ξ and ρ do. The induction
hypothesis implies that ν is ∂-exact on ∆, i.e. ν = ∂λ for some λ ∈ Ωp,q−1(∆). Hence, for
η = σ + λ we have ω = ∂η, completing the proof.

Corollary 1.5. Let ω be a (p, q)-form such that ∂ω = 0 and q > 0, then it is locally20 expressible
as ∂η for some (p, q − 1)-form η.

18In this argument it is important that ∆ is a Cartesian product of some compact sets ∆1, . . . ,∆n in C, since
it enables us to apply Corollary 1.4 in each variable separately, while treating the other variables as parameters
[19, p. 241].

19From the proof of Proposition 1.5 it is clear that the function g constructed in holomorphic or smooth in any
additional parameters in which f is holomorphic or smooth [9, Lemma I.D.2].

20Suppose V is an open set Cn and ω ∈ Ωp,q(U) such that q > 0 and ∂ω = 0, and for any point z ∈ U , then in
some open neighborhood U of z such that ω = ∂η for some η ∈ Ωp,q−1(U).
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Proof. The open polydiscs form a basis for the product topology on Cn. Therefore, this result
follows from the previous one.

Theorem 1.3 (∂-Poincaré lemma). Let ∆ be an open polydisc in the space Cn, not necessarily
having a compact closure, and ω ∈ Ωp,q(∆). If q > 0 and ∂ω = 0, then there is η ∈ Ωp,q−1(∆)
such that ω = ∂η.

Proof. Let {∆j} be a sequence of open polydiscs in Cn which have same center as ∆ and satisfy
the following conditions:

1. ∆j ⊂ ∆j+1; and

2. ∆ =
⋃
j

∆j

We will divide the proof into two cases:

Case 1. If q > 1.

We will inductively construct a sequence of (p, q − 1)-forms {ηj} such that

(a) ηj ∈ Ωp,q−1(Vj) for some open neighborhood Vj of ∆j ;

(b) ∂ηj = ω on ∆j ; and

(c) ηj
∣∣
∆j−1

= ηj−1 if j > 1.

For the base case we get η1 ∈ Ωp,q−1(V1) by Lemma 1.2. Next, as the induction hypothesis,
assume that there exist (p, q − 1)-forms {η1, . . . , ηk} satisfying the desired conditions. We
again apply Lemma 1.2 to get a (p, q − 1)-form θ on an open neighborhood V of ∆k+1

such that ∂θ = ω on this neighborhood. Since ∆k ⊂ ∆k+1, on an open neighborhood of
∆k we have

∂(θ − ηk) = 0

So, θ − ηk is a ∂-closed (p, q − 1)-form with q − 1 > 0. By yet another application of
Lemma 1.2 there exits a (p, q − 2)-form ξ on an open neighborhood U of ∆k such that
∂ξ = θ−ηk on this neighborhood. From Lemma C.2 we know that there exits a real-valued
smooth function F in Cn such that

(a) 0 ≤ F (z) ≤ 1 for all z ∈ Cn;
(b) F (z) = 1 for z ∈ ∆k; and

(c) F (z) = 0 for z ∈ Cn \ U .

Hence we have Fξ ∈ Ωp,q−2(Cn). Then we get the (p, q − 1)-form ηk+1 = θ − ∂(Fξ)

defined on the open neighborhood V of ∆k+1, which satisfies the desired conditions:

∂ηk+1 = ω on ∆k+1 and ηk+1

∣∣
∆k

= θ − ∂ξ = ηk

As a result of the above construction there is η ∈ Ωp,q−1(∆) such that η
∣∣
∆j

= ηj and

∂η = ω, which concludes the proof of this case.

Case 2. If q = 1.

First we will inductively construct a sequence of (p, 0)-forms {ηj} such that

(a) ηj ∈ Ωp,q−1(Vj) for some open neighborhood Vj of ∆j ;

(b) ∂ηj = ω on ∆j ; and
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(c) If ηj =
∑
α
f

(j)
α dzα for α = (α1, . . . , αp) and dzα = dzα1 ∧ · · · ∧ dzαp , then

∣∣∣f (j)
α (z)− f (j−1)

α (z)
∣∣∣ < 1

2j−1
for all α and z ∈ ∆j−1 if j > 1

For the base case we get η1 ∈ Ωp,q−1(V1) by Lemma 1.2. Next, as the induction hypothesis,
assume that there exist (p, 0)-forms {η1, . . . , ηk} satisfying the desired conditions. We again
apply Lemma 1.2 to get a (p, 0)-form θ on an open neighborhood V of ∆k+1 such that
∂θ = ω on this neighborhood. Let the following be the explicit representation of θ

θ =
∑
α

gα dzα

Then on an open neighborhood of ∆k all the coefficients of the form θ−ηk are holomorphic
by Remark 1.16 since ∂(θ − ηk) = 0. Observe that each coefficient has a power series
expansion centered at the common center of all the polydiscs and converging uniformly in
∆k. Hence choosing suitable partial sums, we find polynomial terms rα(z) such that∣∣∣gα(z)− f (k)

α (z)− rα(z)
∣∣∣ < 1

2k
for all α and z ∈ ∆k

Let ξ be the (p, 0)-form with the polynomials rα as coefficients

ξ =
∑
α

rα dzα

Note that ∂ξ = 0 since the coefficients are holomorphic. Then we get the (p, 0)-form
ηk+1 = θ − ξ defined on the open neighborhood V of ∆k+1, which satisfies the desired
conditions:

∂ηk+1 = ω on ∆k+1 and
∣∣∣f (k+1)
α (z)− f (k)

α (z)
∣∣∣ < 1

2k
for all α and z ∈ ∆k

Next, fix one α. Then we note that21 the sequence
{
f

(j)
α

}
of smooth functions converges

uniformly on each ∆j to a function fα defined on ∆. Moreover, f (j)
α − f (k)

α is holomorphic
on an open neighborhood of ∆k for each j > k since ∂(ηj − ηk) = 0. Thus for each fixed
k,
{
f

(j)
α − f (k)

α

}
is a sequence of holomorphic functions on an open neighborhood of ∆k

which is uniformly convergent on ∆k. Therefore, by Morera’s theorem [3, Exercise IV.5.8],
the limit function fα − f (k)

α is holomorphic on ∆k. Hence, fα is smooth on ∆k. Since
this is true for each k and

⋃
k ∆k = ∆, we conclude that fα is a complex-valued smooth

function on the whole of ∆.

Finally we define the (p, 0)-form

η =
∑
α

fα dzα = lim
j→∞

ηj

Note that for a fixed k we have

η − ηk = lim
j→∞

(ηj − ηk)

21Recall the following three facts from real analysis: (1). If a sequence (xn)∞n=1 in Rn satisfies
∑
n≥1 |xn+1 −

xn| <∞, then it is Cauchy.; (2). A sequence {fn} converges uniformly if and only if {fn} is uniformly Cauchy;
(3). A sequence of functions {fn} from a set A to a metric space X is said to be uniformly Cauchy if for all
ε > 0, there exists N > 0 such that for all a ∈ A we have |fn(a)− fm(a)| < ε whenever m,n > N .
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Since ηj − ηk have coefficients holomorphic in ∆k, it follows that in ∆k, η = ηk + σk for
some holomorphic form σk given by

σk =
∑
α

(
fα − f (k)

α

)
dzα

Hence ∂η = ∂ηk = ω in each ∆k, which completes the proof.

Remark 1.22. If we consider ω = f dz ∈ Ω0,1(U) for some open set U ⊂ C, then Theorem 1.2
gives us the “∂-Poincaré lemma in one variable.” However, due to the lack of purely topological
or intrinsic analytical description of the domains in Cn for n ≥ 2 on which approximation
theorems (like Runge’s theorem) hold, we confine ourselves to the simple case of polydiscs [9,
§I.F].

Remark 1.23. Unlike the Poincaré lemma we proved in the previous report [12, Theorem 1.2],
we cannot give a simple topological condition on the domain which will ensure that the ∂-closed
forms are also ∂-exact. This is because the failure of Riemann mapping theorem in Cn for n ≥ 2
implies that there is no canonical topologically trivial domain in Cn for n ≥ 2, as there is in C
(namely, the disc) [13, §0.3.2].

1.3 Differential forms on complex manifolds

In this section some basic definitions and facts from [10, §2.1, 2.2 and 2.6], [24, §I.2, I.3], [21,
§2.1, 2.2, 2.3] and [6, §IV.1] will be stated.

Definition 1.12 (Complex manifold). A complex manifold M of dimension n is a second count-
able Hausdorff space together with a holomorphic structure on it. A holomorphic structure U is
the collection of charts {(Uα, φα)}α∈A where Uα is an open set ofM and φα is a homeomorphism
of Uα onto an open set of Cn such that

1. the open sets {Uα}α∈A cover M .

2. for every pair of indices α, β ∈ A with Uα ∩ Uβ 6= ∅ the homeomorphisms

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ),

φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

are holomorphic maps22 between open subsets of Cn.

3. the family U is maximal in the sense that it contains all possible pairs (Uα, φα) satisfying
the properties 1. and 2.

Example 1.1. Following two complex manifolds will be used throughout this report:

1. The complex space Cn is a complex manifold with single chart (Cn,1Cn), where 1Cn is
the identity map. In other words, (Cn,1Cn) = (Cn, z1, . . . , zn) where z1, . . . , zn are the
standard coordinates on Cn.

2. Any open subset V of a complex manifold M is also a smooth manifold. If {(Uα, φα)} is
an atlas for M , then {(Uα ∩V, φα|Uα∩V )} is an atlas for V , where φα|Uα∩V : Uα ∩V → Cn
denotes the restriction of φα to the subset Uα ∩ V .

22For the definition of several complex variables holomorphic mapping, see Definition B.8.
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Remark 1.24. Every complex manifold M is paracompact [6, §IV.1].

Definition 1.13 (Holomorphic function on a manifold). Let M be a complex manifold of
dimension n. A function f : M → C is said to be a holomorphic function at a point w in M if
there is a chart (U, φ) about w in M such that f ◦ φ−1, a function defined on the open subset
φ(U) of Cn, is holomorphic23 at φ(w). The function f is said to be holomorphic in M if it is
holomorphic at every point of M .

(U,w) (Cn, φ(w))

(C, f(w))

φ

f
f◦φ−1

Definition 1.14 (Holomorphic map between complex manifolds). Let M and N be complex
manifolds of dimension m and n, respectively. A continuous map F : M → N is said to be
holomorphic at a point w of M if there are charts (V, ψ) about F (w) in N and (U, φ) about w
in M such that the composition ψ ◦F ◦φ−1, a map from the open subset φ(F−1(V )∩U) of Cm
to Cn, is holomorphic at φ(w).

(U,w) (V, F (w))

(Cm, φ(w)) (Cn, ψ(F (w)))

F

φ ψ

ψ◦F◦φ−1

The continuous map F : M → N is said to be holomorphic if it is holomorphic at every point
in M .

Definition 1.15 (Biholomorphic manifolds). Two complex manifolds M and N are called bi-
holomorphic if there exists a holomorphic homeomorphism24 f : X → Y .

Theorem 1.4. If (U, φ) is a chart on a complex manifold M of dimension n, then U is biholo-
morphic to φ(U) ⊂ Cn.

Remark 1.25. If (U, φ) is a chart of a manifold, i.e. φ : U → Cn, then let rj = zi ◦ φ be the
jth component of φ and write φ = (r1, . . . , rn) and (U, φ) = (U, r1, . . . , rn). Thus, for w ∈ U ,
(r1(w), . . . , rn(w)) is a point in Cn. The functions r1, . . . , rn are called coordinates or local
coordinates on U .

1.3.1 Complex differential forms

Definition 1.16 (Complex vector bundle). A complex vector bundle of rank k over a smooth
manifold M is a smooth manifold E equipped with a smooth surjective map π : E → M such
that for an open cover {Uα} of M , there is a local trivialization diffeomorphism

τα : π−1(Uα)→ Uα × Ck

satisfying the following conditions:
23For the definition of complex-valued holomorphic function, see Definition B.3.
24Note that the inverse of a holomorphic homeomorphism is holomorphic by Proposition B.5.
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1. the following diagram commutes

π−1(Uα) Uα × Ck

Uα

τα

π
p1

where p1 is the projection onto the first factor,

2. the composite maps

τα ◦ τ−1
β : τβ

(
π−1(Uα ∩ Uβ)

)
→ τα

(
π−1(Uα ∩ Uβ)

)
are C-linear for each w ∈ Uα ∩ Uβ .

Remark 1.26. For a fixed w ∈ Uα ∩ Uβ , the linear transformation(
τα ◦ τ−1

β

)
w

: {w} × Ck → {w} × Ck

must respect the projection onto the first factor, by the first condition above, and is thus
described by a complex k × k-matrix, whose coefficients are smooth functions of w. These
matrices are called transition matrices. In particular, the map ταβ = τα ◦ τ−1

β is given by

ταβ(w, v) = (w, σαβ(w)v) ∀w ∈ Uα ∩ Uβ, v ∈ Ck

and is completely determined by the map σαβ : Uα ∩Uβ → GL(k,C), called the transition map.
Since ταβ is smooth, so is σαβ . From now on, we will assume that the transition maps can in
fact be used to define a vector bundle. For proof, see [25, §9] and [24, §I.2].

Definition 1.17 (Fiber of a complex vector bundle). If π : E →M is a complex vector bundle
and w ∈M , then Ew = π−1(w) is called the fiber of E at the point w. It is canonically a vector
space, with structure given by any of the trivializations of E in the neighborhood of w.

Remark 1.27. A complex vector bundle is a smooth vector bundle whose fibers are complex
vector spaces and the transition maps are complex linear [12, Definition 1.36].

Definition 1.18 (Almost complex structure). An almost complex structure on a smooth mani-
foldM is a vector bundle endomorphism J of (real) tangent bundle TRM , such that J2 = −1TRM ,
i.e. for all w ∈M , the linear map Jw : Tw,RM → Tw,RM is a linear complex structure for Tw,RM .

Remark 1.28. Equivalently, the almost complex structure is the structure of a complex vector
bundle on TRM [21, Definition 2.11]. Also, if an almost complex structure exists, then the real
dimension of M is even [10, Definition 2.6.1]. However, not every smooth manifold of even
dimension admits an almost complex structure [10, Remark 2.6.3].

Definition 1.19 (Almost complex manifold). An almost complex manifold is a smooth manifold
together with an almost complex structure.

Proposition 1.6. Let M be an almost complex manifold. Then there exists a direct sum de-
composition of the complexified tangent bundle TCM = TRM ⊗R C into complex vector bundles

TCM = (TRM)1,0 ⊕ (TRM)0,1

such that the C-linear extension J̃ = J ⊗ 1C satisfies

J̃ |(TRM)1,0 = i · 1TCM and J̃ |(TRM)0,1 = −i · 1TCM
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Proposition 1.7. Let M be an almost complex manifold. Then the dual of complexified tangent
bundle T ∗CM = T ∗RM ⊗R C decomposes as a direct sum of complex vector bundles

T ∗CM = (T ∗RM)1,0 ⊕ (T ∗RM)0,1

such that the C-linear extension J̃ = J ⊗ 1C satisfies

J̃ |(T ∗RM)1,0 = i · 1T ∗CM and J̃ |(T ∗RM)0,1 = −i · 1T ∗CM

Remark 1.29. As in Proposition A.8, we get the almost complex structure J on T ∗w,RM from the
almost complex structure J on Tw,RM . We will regard this J as a vector bundle endomorphism
of the smooth vector bundle T ∗RM over M .

Definition 1.20 (Differential (p, q)-form). Let M be an almost complex manifold. Over M we
define the complex vector bundle of rank

(
n
p

)(
n
q

)
∧p,q

T ∗RM :=
∧p (

(T ∗RM)1,0
)
⊗C
∧q (

(T ∗RM)0,1
)

whose fiber is
∧p,q T ∗w,RM . The smooth sections of this vector bundle are called the differential

forms of type (p, q) on M . The space of all smooth differential forms of type (p, q) on M is
denoted by Ωp,q(M).

Remark 1.30. Let Ωk
C(M) be the space of sections of vector bundle

∧k T ∗CM . By Remark A.12
we have ∧k

T ∗CM
∼=
⊕
p+q=k

∧p,q
T ∗RM =⇒ Ωk

C(M) ∼=
⊕
p+q=k

Ωp,q(M)

Thus we have natural projection operators
∧k T ∗CM →

∧p,q T ∗RM and Ωk
C(M) → Ωp,q(M),

denoted by Πp,q for p+ q = k.

Definition 1.21 (Differential of a (p, q)-form). Let M be an almost complex manifold, and
d : Ωk

C(M) → Ωk+1
C (M) be the complex linear extension of the usual exterior differential25.

Then
∂ : Ωp,q(M)→ Ωp+1,q(M) and ∂ : Ωp,q(M)→ Ωp,q+1(M)

are defined as ∂ := Πp+1,q ◦ d and ∂ := Πp,q+1 ◦ d.

Lemma 1.3. For an almost complex manifold M , the differential operators ∂ and ∂ satisfy the
Leibniz’s rule, i.e.

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η
∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

for ω ∈ Ωp,q(M) and η ∈ Ωr,s(M).

Proof. We will use the properties of d studied earlier26. Recall that for ω ∈ Ωp+q
C (M) and

η ∈ Ωr+s
C (M) we have

d(ω ∧ η) = dω ∧ η + (−1)p+qω ∧ dη ∈ Ωp+q+r+s+1
C (U)

Since ∂ := Πp+r+1,q+s ◦ d, taking the (p+ r + 1, q + s)-parts on both sides one obtains

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

Similarly, taking the (p+ r, q + s+ 1)-parts one obtains

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

Hence completing the proof.
25For definition, see [12, Definition 1.44].
26In the previous report, see [12, Theorem IX, Theorem XXVI].
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Definition 1.22 (Integrable almost complex structure). An almost complex structure J on M
is called integrable if dω = ∂ω + ∂ω for all ω ∈ Ωk

C(M).

Remark 1.31. By Lemma 1.1 we know that the almost complex structures on the open sets
in Cn are integrable. For more details about this definition, see [10, Proposition 2.6.15], [24, p.
34] and [21, Theorem 2.24].

Definition 1.23 (Complex manifold). A complex manifold M of dimension n is a smooth
manifold of dimension 2n equipped with a holomorphic structure, i.e. if M is covered by open
sets Uα which are diffeomorphic via maps called φα to open sets in Cn, in such a way that the
transition diffeomorphisms

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ)

are holomorphic.

Proposition 1.8. A complex manifold M induces an almost complex structure on its underlying
smooth manifold.

Proof. This follows from Definition A.4 and Remark A.5. For details, see [24, Proposition
I.3.4].

Theorem 1.5. The induced almost complex structure on a complex manifold is integrable.

Proof. This follows by looking at the local coordinates as in Lemma 1.1. For details, see [24,
Theorem I.3.7].

Corollary 1.6. If M is a complex manifold, then ∂2
= 0.

Definition 1.24 (Pullback of a k-form). Let F : M → N be a holomorphic map between
complex manifolds. Then the C-linear extension of the pullback map defined on the underlying
smooth manifolds [12, Definition 1.45]

F ∗ : Ωk
C(N)→ Ωk

C(M)

is called the pullback of a complex k-form

Remark 1.32. Pullback of the identity map is an identity map, i.e. (1M )∗ = 1ΩkC(M).

Proposition 1.9. If F : M → N and G : N → N ′ are holomorphic maps between complex
manifolds, then (G ◦ F )∗ = F ∗ ◦G∗.

Ωk
C(N ′) Ωk

C(N)

Ωk
C(M)

G∗

(G◦F )∗
F ∗

Proposition 1.10. Let F : M → N be a holomorphic map between complex manifolds. If ω is
a differential form on N , then F ∗(dω) = d(F ∗ω), i.e. the following diagram commutes

Ωk
C(N) Ωk+1

C (N)

Ωk
C(M) Ωk+1

C (M)

d

F ∗ F ∗

d
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Theorem 1.6. Let F : M → N be a holomorphic map between complex manifolds. Then
the pullback of differential forms F ∗ : Ωk

C(N) → Ωk
C(M) induces natural C-linear maps F ∗ :

Ωp,q(N)→ Ωp,q(M). These maps are compatible with ∂ and ∂.

Proof. If F is holomorphic then F ∗ is compatible with the decomposition [10, Proposition 2.6.10]

Ωk
C(M) ∼=

⊕
p+q=k

Ωp,q(M)

In particular, F ∗ (Ωp,q(N)) ⊂ Ωp,q(M) and Πp+1,q ◦ F ∗ = F ∗ ◦ Πp+1,q. Thus, for ω ∈ Ωp,q(M)
we have

∂ (F ∗ (ω)) = Πp+1,q (d (F ∗ (ω))) = Πp+1,q (F ∗ (d (ω))) = F ∗
(
Πp+1,q (d (ω))

)
= F ∗

(
∂ (ω)

)
where, as usual, we are abusing the notations ∂ and d. Analogously, we can show that ∂ ◦F ∗ =
F ∗ ◦ ∂.

1.3.2 Holomorphic differential forms

Definition 1.25 (Holomorphic vector bundle). A holomorphic vector bundle of rank k is a triple
(E,M, π) consisting of a pair of complex manifolds E andM , and a holomorphic surjective map
π : E →M satisfying the following conditions

1. for each w ∈M , the inverse image Ew = π−1(w) is an k-dimensional vector space over C,

2. for each w ∈ M , there is an open neighborhood U of w and a biholomorphic map τ :
π−1(U)→ U × Ck such that

(a) the following diagram commutes

π−1(U) U × Ck

U

τ

π
p1

where p1 is the projection onto the first factor,

(b) for each v ∈ U , the induced map τv : π−1(v)→ Ck, defined by τv(z) = (v, τ(z)), is a
C-linear isomorphism.

Remark 1.33. We can also define it the way we defined the complex vector bundle in Re-
mark 1.26. That is, we have biholomorphic local trivializations

τα : π−1
α (Uα)→ Uα × Ck

such that the transition maps σαβ = Uα ∩ Uβ → GL(k,C) are holomorphic.

Definition 1.26 (Pullback of holomorphic vector bundle). Let f : M → N be a holomorphic
map between complex manifolds and let E be a holomorphic vector bundle on N given by
transition maps σαβ corresponding to an open cover {Uα}. Then the pullback f∗E of E is the
holomorphic vector bundle over M that is given by the transition maps σαβ ◦ f corresponding
to an open cover {f−1 (Uα)}.

Definition 1.27 (Holomorphic tangent bundle). Let M be a complex manifold of dimension
n which is covered by open sets Uα biholomorphic, via maps called φα, to open sets Vα of Cn.
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Then the holomorphic tangent bundle TM of M is a holomorphic vector bundle of rank n with
the transition maps σαβ given by

σαβ(w) := Jac(φαβ)(w) =

[
∂φ`αβ

∂zj

∣∣∣∣
w

]
1≤`≤n
1≤j≤n

is the Jacobian matrix at the point w (see Definition B.10).

Remark 1.34. In this definition, if we replace the complex manifold with the smooth manifold,
and the holomorphic Jacobian matrix with the real Jacobian matrix, we will get the definition of
smooth tangent bundle [21, §2.1.2]. This definition is equivalent to the one used in the previous
report, where it was defined using derivations [12, Defintion 1.31].

Theorem 1.7. IfM is a complex manifold, then (TRM)1,0 is naturally isomorphic (as a complex
vector bundle) to the holomorphic tangent bundle TM .

Proof. Let U, V ⊂ Cn be open subsets and f : U → V be a biholomorphic map. Then by
Proposition 1.2 we get the linear isomorphism

f̃∗ : (Tw,RU)1,0 ⊕ (Tw,RU)0,1 →
(
Tf(w),RV

)1,0 ⊕ (Tf(w),RV
)0,1

Also, from Remark B.10 we know that

f̃∗(w) =

[
Jac(f)(w) 0

0 Jac(f)(w)

]
Let {(Uα, φα)} be a holomorphic atlas of M , i.e. Uα is biholomorphic to φα(Uα) = Vα ⊂
Cn. Then

(
φ−1
α

)∗ (
(TRUα)1,0

)
∼= (TRVα)1,0. With respect to the canonical trivialization the

induced isomorphisms
(
Tφβ(w),RVβ

)1,0 ∼=
(
Tφα(w),RVα

)1,0 are given by the transition maps of TM
[10, Definition 2.2.14, Proposition 2.6.4(ii)]. Therefore, both (TRM)1,0 and TM are naturally
isomorphic.

Remark 1.35. We call the bundles (TRM)1,0 and (TRM)1,0 the holomorphic and antiholomor-
phic tangent bundle of the complex manifold M .

Definition 1.28 (Holomorphic cotangent bundle). The holomorphic cotangent bundle T ∗M is
the dual of TM . That is, for all w ∈M we have T ∗wM = HomC(TwM,C).

Definition 1.29 (Holomorphic p-forms). Over M we consider the holomorphic vector bundle∧p T ∗M whose fiber is
∧p T ∗wM . The holomorphic sections27 of this vector bundle are called the

holomorphic p-forms on M . The space of all holomorphic p-forms on M is denoted by Op(M).

Remark 1.36. We note that holomorphic 0-forms on M are the holomorphic complex-valued
functions onM , i.e. O0(M) = O(M). As in Remark 1.25, let (U, r1, . . . , rn) be a coordinate chart
of M . Then the differentials {dr1, . . . ,drn} are 1-forms on U . At each point w ∈ U , the 1-forms
{dr1

∣∣
w
, . . . ,drn

∣∣
w
} form a basis of

∧1(T ∗wM) = T ∗wM , dual to the basis {∂/∂r1|w, . . . , ∂/∂rn|w}
for the tangent space TwM . Hence, a 1-form on U is a linear combination ω =

∑n
α=1 fαdrα

where fα are complex-valued holomorphic functions on U . In general28, any holomorphic p-form
ω ∈ Op(M) can be written uniquely as

ω =
∑
|α|=p

fα drα

where α = (α1, . . . , αp) are multi-indices with 1 ≤ αj ≤ n, drα = drα1 ∧ . . . ∧ drαp and fα is a
complex-valued holomorphic function on U , i.e. fα ∈ O(U).

27Replace “smooth” by “holomorphic” in [12, Definition 1.38].
28In the case of M = Cn the expression was much more straightforward because TwM ∼= Cn (vector space

isomorphism) and we could replace rj by zj .
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1.4 ∂-closed and exact forms on complex manifolds

In this section some basic definitions and facts from [8, p. 25], [21, §2.3.3], [10, §2.6] and [13,
§6.3] will be stated.

Definition 1.30 (∂-closed forms). Let M be a complex manifold. Then a differential form
ω ∈ Ωp,q(M) is called ∂-closed if ∂ω = 0.

Remark 1.37. Given a complex manifoldM , denote the set of all ∂-closed (p, q)-forms onM by
Zp,q(M). The sum of two such (p, q)-forms is another ∂-closed (p, q)-form, and so is the product
of a ∂-closed (p, q)-form by a scalar. Hence Zp,q(M) is the vector sub-space of Ωp,q(M). Also, if
we write the elements of Zp,0(M) is terms of local coordinates, then from Theorem B.2 it follows
that it is the space of (p, 0)-forms whose coefficients are complex-valued holomorphic functions
in M , i.e. Op(M) = Zp,0(M) by Remark 1.36. In particular, note that Z0,0(M) = O(M), the
space of complex-valued functions holomorphic in M .

Definition 1.31 (∂-exact forms). Let M be a complex manifold. Then a differential form
ω ∈ Ωp,q(M), for q > 0, is called ∂-exact if ω = ∂η for some differential form η ∈ Ωp,q−1(M).

Remark 1.38. Given a complex manifoldM , denote the set of all ∂-exact (p, q)-forms onM by
Bp,q(M). The sum of two such (p, q)-forms is another ∂-exact (p, q)-form, and so is the product of
a ∂-exact (p, q)-form by a scalar. Hence Bp,q(M) is the vector sub-space of Ωp,q(M). Moreover,
the trivial form ω ≡ 0 is the only (p, 0)-form which is ∂-exact for any value of p = 0, 1, . . . , n.
That is, Bp,0(M) consists only of zero.

Theorem 1.8. On a complex manifold M , every ∂-exact form is ∂-closed.

Proof. LetM be a complex manifold and ω ∈ Bp,q(M) such that ω = ∂η for some η ∈ Ωp,q−1(M).
From Corollary 1.6 we know that ∂ω = ∂(∂η) = 0 hence ω ∈ Zp,q(M) for all q ≥ 1. For q = 0,
the statement is trivially true.

Lemma 1.4. Let F : M → N be a holomorphic map of complex manifolds, then the pullback
map F ∗ sends ∂-closed forms to ∂-closed forms, and ∂-exact forms to ∂-exact forms.

Proof. Suppose ω is ∂-closed. From Theorem 1.6 we know that F ∗ commutes with ∂

∂F ∗ω = F ∗∂ω = 0

Hence, F ∗ω is also ∂-closed. Next suppose θ = ∂η is ∂-exact. Then

F ∗θ = F ∗∂η = ∂F ∗η

Hence, F ∗θ is ∂-exact.

1.4.1 Dolbeault cohomology

Definition 1.32 (Dolbeault cohomology of a complex manifold). The (p, q)th Dolbeault coho-
mology group29 of a complex manifold M is the quotient group

Hp,q

∂
(M) :=

Zp,q(M)

Bp,q(M)

Remark 1.39. Hence, the Dolbeault cohomology of a complex manifold measures the extent
to which ∂-closed forms are not ∂-exact on that manifold.

29It is also a vector space over C.
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Proposition 1.11. If M is a complex manifold then its Dolbeault cohomology group in degree
(p, 0) is the group of holomorphic p-forms on M .

Proof. Since there are no non-zero ∂-exact (0, p)-forms

Hp,0

∂
(M) = Zp,0(M) = Op(M)

Remark 1.40. Though the definitions of de Rham and Dolbeault cohomology are similar, they
measure different things. The de Rham cohomology is a topological invariant, whereas the
Dolbeault cohomology measures the holomorphic complexity30.

Proposition 1.12. On a complex manifold M of dimension n, the Dolbeault cohomology
Hp,q

∂
(M) vanishes for q > n.

Proof. It follows from the fact that if q > n then
∧p,q(T ∗RM) = 0. Hence for q > n, the only

(p, q)-form on M is the zero form.

1.4.2 ∂-Poincaré lemma for complex manifolds

Definition 1.33 (Pullback map in cohomology). Let F : M → N be a holomorphic map of
complex manifolds, then its pullback F ∗ induces31 a linear map of quotient spaces, denoted by
F#

F# :
Zp,q(N)

Bp,q(N)
→ Z

p,q(M)

Bp,q(M)

[ω] 7→ [F ∗(ω)]

This is a map in cohomology F# : Hp,q

∂
(N)→ Hp,q

∂
(M) called the pullback map in cohomology.

Remark 1.41. From Remark 1.32 and Proposition 1.9 it follows that:

1. If 1M : M → M is the identity map, then 1
#
M : Hp,q

∂
(M) → Hp,q

∂
(M) is also the identity

map.

2. If F : M → N and G : N → N ′ are holomorphic maps, then (G ◦ F )# = F# ◦G#.

Proposition 1.13 (Invariance of Dolbeault cohomology for biholomorphic manifolds). Let F :
M → N be a biholomorphic map of manifolds, then the pullback map in cohomology F# :
Hp,q

∂
(N)→ Hp,q

∂
(M) is an isomorphism.

Proof. Since F is a biholomorphic map, F−1 : N →M is also a holomorphic map of manifolds.
Therefore, using Remark 1.41 we have

1Hp,q

∂
(M) = 1

#
M = (F−1 ◦ F )# = F# ◦ (F−1)#

This implies that (F−1)# is the inverse of F#, i.e. F# is an isomorphism.

Theorem 1.9 (∂-Poincaré lemma for complex manifolds). Let M be a complex manifold, then
for all w ∈M there exists an open neighborhood U such that every ∂-closed (p, q)-form on U is
∂-exact for q ≥ 1.

Proof. Let (U, φ) be a chart on the complex manifold M of dimension n such that w ∈ U . By
Theorem 1.4 we know that the coordinate map φ : U → φ(U) ⊂ Cn is biholomorphic. We choose
U such that φ(U) is an open polydisc in Cn. Then by Theorem 1.3 every ∂-closed (p, q)-form
on φ(U) is exact for q ≥ 1, i.e. Hp,q

∂
(φ(U)) = 0 for q ≥ 1. Now we can use Proposition 1.13

to conclude that Hp,q

∂
(U) = 0 for q ≥ 1, i.e. every ∂-closed (p, q)-form on U is ∂-exact for

q ≥ 1.

30Donu Arapura, “de Rham vs Dolbeault Cohomology”, https://mathoverflow.net/q/95432, 28 April 2012.
31Follows from Lemma 1.4.
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Chapter 2

Cousin problems

2.1 Cousin problems for C

In this section some basic definitions and facts from [19, §1.6], [14, §13.1], [13, §0.3.4] and [3,
§VII.5, VIII.3] will be stated.

2.1.1 Mittag-Leffler theorem

Consider the following problem:

Let U be an open subset of C and {ak} be a sequence of distinct points in U such
that {ak} has no limit points in U . For each integer k ≥ 1 consider the rational
function

Sk(z) =

mk∑
j=1

Ajk
(z − ak)j

where mk is some positive integer and A1k, . . . , Amkk are arbitrary complex coeffi-
cients. Is there a meromorphic function f on U whose poles are exactly the points
{ak} and such that the singular part1 of f at z = ak is Sk(z)?

The answer to this problem is yes and was solved by Gösta Mittag-Leffler during 1876-1884,
building on the work of his mentor Karl Weierstrass [20]. Here we will discuss a proof which
will illustrate the general method for solving the Cousin problems.

Theorem 2.1 (Single variable Cousin I). Let U ⊂ C be an open set with an open covering
{Uα}. Suppose that for each Uα, Uβ with nonempty intersection there is a holomorphic function
gαβ ∈ O(Uα ∩ Uβ) satisfying

1. gαβ + gβα = 0 for each pair (α, β);

2. gαβ + gβγ + gγα = 0 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then there exist fα ∈ O(Uα) for each α such that gαβ = fβ − fα on Uα ∩ Uβ whenever the
intersection is nonempty.

Proof. As in Theorem C.1, let {Vk} be a locally finite refinement of {Uα} and {ψk} be a smooth
partition of unity of U subordinate to the open cover {Vk} . Then for a fixed k, ψk has a compact

1Let f has a pole of order m at z = a such that f has the Laurent series expansion in an open neighborhood
V of a give by

f(z) =
Am

(z − a)m
+ . . .+

Am−1

(z − a)m−1
+ . . .+

A1

(z − a)
+ g(z)

where g is analytic in V and Am 6= 0. Then
∑m
j=1

Aj

(z−a)j is called singular part or principal part of f at z = a.

30



support contained in Vk ⊂ Ur(k). We can then define the smooth functions {hkα} in the open
sets {Uα} by

hkα(z) =

{
ψk(z)gr(k)α(z) if z ∈ Vk ∩ Uα
0 if z ∈ Uα \ (Vk ∩ Uα)

Since ψk vanishes in an open neighborhood of U \Vk, ψk will also vanish in an open neighborhood
of Uα \ (Uα ∩ Vk). Therefore, the function hkα = ψkgr(k)α is a smooth function Uα, and for
each α we have the smooth function

hα :=
∑
k

hkα on Uα

Then, on Uα ∩ Uβ , using the properties of {gαβ} we get

hβ − hα =
∑
k

(hkβ − hkα) =
∑
k

ψk
(
gr(k)β − gr(k)α

)
=
∑
k

ψk
(
−gβr(k) − gr(k)α

)
=
∑
k

ψk (gαβ) = gαβ

since
∑

k ψk = 1. This gives us a smooth solution {hα} to the first Cousin problem.
Next, since gαβ is holomorphic, by Theorem B.2 we have

∂hα
∂z

=
∂hβ
∂z

on Uα ∩ Uβ

Hence there exists a function h ∈ C∞(U) such that

h =
∂hα
∂z

on Uα for each α (2.1)

Also, from Theorem 1.2 we get f ∈ C∞(U) such that

∂f

∂z
= h (2.2)

Comparing (2.1) and (2.2) we get that

fα = hα − f ∈ O(Uα) for each α

Since fβ−fα = gαβ , the set {fα} is the required holomorphic solution to the Cousin problem.

Theorem 2.2 (Mittag-Leffler theorem). Let U be an open subset of C and {ak} be a sequence
of distinct points in U such that {ak} has no limit points in U . For each integer k ≥ 1 consider
the rational function

Sk(z) =

mk∑
j=1

Ajk
(z − ak)j

where mk is some positive integer and A1k, . . . , Amkk are arbitrary complex coefficients. Then
there is a meromorphic function f on U whose poles are exactly the points {ak} and such that
the singular part of f at z = ak is Sk(z).

Proof. Choose an open cover {Uα} of U with the property that each Uα contains at most one
point of {ak}. Assign a meromorphic function hα on Uα for each α such that hα = Sk if Uα
contains ak, otherwise fα ≡ 0. We can then define the Cousin data for the cover {Uα} by setting

gαβ = hβ − hα on Uα ∩ Uβ (2.3)

Note that for each Uα, Uβ with nonempty intersection gαβ ∈ O(Uα ∩ Uβ) since there doesn’t
exist any pole ak ∈ Uα ∩ Uβ . Moreover, {gαβ} satisfies the conditions
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1. gαβ + gβα = 0 for each pair (α, β);

2. gαβ + gβγ + gγα = 0 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Therefore, by Theorem 2.1, there exist fα ∈ O(Uα) for each α such that

gαβ = fβ − fα on Uα ∩ Uβ (2.4)

Comparing (2.3) and (2.4) we get that

hβ − hα = fβ − fα on Uα ∩ Uβ

for each pair (α, β). Hence, we can define a meromorphic function f on U such that

f(z) = hα(z)− fα(z) for z ∈ Uα

for each α. Since subtracting a holomorphic function fα from hα doesn’t affect the poles and
singular parts, f is the desired meromorphic function on U whose poles are exactly the points
{ak} and the singular part at z = ak is Sk.

2.1.2 Weierstrass theorem

Consider the following problem:

Let U be an open subset of C and {ak} be a sequence of distinct points in U such
that {ak} has no limit points in U . Given a sequence of integers {mk}, is there a
function f which is holomorphic on U such that the only zeros of f are the points
ak with multiplicity mk?

The answer to this problem is yes and was solved by Karl Weierstrass in 1876. Though this
problem was solved before Mittag-Leffler theorem, we will deduce it from Cousin I following [14,
Theorem 13.1.6].

Lemma 2.1. Let U ⊂ C be simply connected open set and f : U → C be a holomorphic and
non-vanishing function.Then there is a holomorphic function g on U such that exp(g) = f .

Proof. This is a standard result in single variable complex analysis, see [3, Theorem VIII.2.2(g)]
or [14, Lemma 13.1.5].

Theorem 2.3 (Single variable Cousin II). Let U ⊂ C be an open set with an open covering {Uα}.
Suppose that for each Uα, Uβ with nonempty intersection there is a non-vanishing holomorphic
function gαβ ∈ O∗(Uα ∩ Uβ) satisfying

1. gαβ · gβα = 1 for each pair (α, β);

2. gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then there exist fα ∈ O∗(Uα) for each α such that gαβ =
fβ
fα

on Uα∩Uβ whenever the intersection
is nonempty.

Proof. Let {Vj} be a refinement of {Uα} such that for each j, Vj is an open ball and Vj ⊂ Ur(j).
Next, we define hjk : Vj ∩ Vk → C by hjk(z) = gr(j)r(k)(z). Then {hjk} is a set of holomorphic
functions satisfying

1. hjk · hkj = 1 for each pair (j, k);

2. hjk · hk` · h`j = 1 on Vj ∩ Vk ∩ V` for each triple (j, k, `).
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Step 1: There exist uj ∈ O∗(Vj) for each j such that hjk = uk/uj on Vj ∩ Vk whenever the
intersection is nonempty.

Since each open ball Vj is simply connected, by Lemma 2.1, there exists h̃jk ∈ O(Vj ∩ Vk)
such that hjk = exp(h̃jk). Then {h̃jk} satisfies the condition of Cousin I data for the covering
{Vj}, and by Theorem 2.1 there exist ũj ∈ O(Vj) for each j such that h̃jk = ũk − ũj on Vj ∩ Vk
whenever the intersection is nonempty. Then the set {uj} for uj = exp(ũj) is the required
holomorphic solution to the Cousin problem.

Step 2: There exist fα ∈ O∗(Uα) for each α such that gαβ = fβ/fα on Uα ∩ Uβ whenever
the intersection is nonempty.

Note that, for z ∈ Uα ∩ Vj ∩ Vk we have(
uk
uj
gr(k)αgαr(j)

)
(z) =

(
uk
uj

1

gr(j)r(k)

)
(z)

=

(
uk
uj
gr(k)r(j)

)
(z)

=

(
uk
uj
hkj

)
(z)

= 1

Therefore, we have ukgr(k)α(z) = ujgr(j)α(z) on Uα ∩ Vj ∩ Vk. Since this is true for any pair
(j, k), for any α we define non-vanishing holomorphic function fα ∈ O∗(Uα) such that

fα(z) = ujgr(j)α(z) for z ∈ Uα ∩ Vj

Finally, {fα} is the required holomorphic solution to the Cousin problem since

fβ
fα

(z) =
ujgr(j)β

ujgr(j)α
(z) =

1

gβr(j)gr(j)α
(z) = gαβ(z) for z ∈ Uα ∩ Uβ ∩ Vj

where j is arbitrary.

Theorem 2.4 (Weierstrass theorem). Let U be an open subset of C and {ak} be a sequence of
distinct points in U such that {ak} has no limit points in U . Given a sequence of integers {mk},
there is a function f which is holomorphic on U such that the only zeros of f are the points ak
with multiplicity mk.

Proof. Choose an open cover {Uα} of U with the property that each Uα contains at most one
point of {ak}. Assign a holomorphic function hα on Uα for each α such that hα = (z − ak)mk if
Uα contains ak, otherwise hα ≡ 1. We can then define the Cousin data for the cover {Uα} by
setting

gαβ =
hβ
hα

on Uα ∩ Uβ (2.5)

Note that for each Uα, Uβ with nonempty intersection gαβ ∈ O∗(Uα ∩ Uβ) since there doesn’t
exist any zero ak ∈ Uα ∩ Uβ , and {gαβ} satisfies the conditions

1. gαβ · gβα = 1 for each pair (α, β);

2. gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Therefore, by Theorem 2.3, there exist fα ∈ O∗(Uα) for each α such that

gαβ =
fβ
fα

on Uα ∩ Uβ (2.6)
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Comparing (2.5) and (2.6) we get that

hβ
hα

=
fβ
fα

on Uα ∩ Uβ

for each pair (α, β). Hence, we can define a holomorphic function f on U such that

f(z) =
hα(z)

fα(z)
for z ∈ Uα

for each α. Since dividing hα by a non-vanishing holomorphic function fα doesn’t affect the
zeros of hα and their multiplicities, f is the desired holomorphic function on U whose only zeros
are the points ak with multiplicity mk.

Corollary 2.1. Let U ⊂ C be any open set. Let Y ⊂ U be a discrete set. Then there is a
holomorphic function f on all of U such that Y = {z ∈ U : f(z) = 0}.

2.2 Cousin problems for Cn

In this section some basic definitions and facts from [13, §6.1] and [9, §I.E] will be stated.

2.2.1 Cousin I

Consider the following problem:

Let U ⊂ Cn be an open set with an open covering {Uα}. Suppose that for each
Uα, Uβ with nonempty intersection there is a holomorphic function gαβ ∈ O(Uα∩Uβ)
satisfying

1. gαβ + gβα = 0 for each pair (α, β);

2. gαβ + gβγ + gγα = 0 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then does there exist fα ∈ O(Uα) for each α such that gαβ = fβ − fα on Uα ∩ Uβ
whenever the intersection is nonempty?

The answer to this problem is yes when U is a polydisc. Moreover, in general, this is true when U
is a domain of holomorphy2, for details see [13, Proposition 6.1.8]. In fact, the solution to Cousin
I is exactly same as the single variable case since in the theory of single variable holomorphic
functions, every open set is a domain of holomorphy.

Theorem 2.5 (Cousin I for a polydisc). Let ∆ ⊂ Cn be an open polydisc with an open covering
{Uα}. Suppose that for each Uα, Uβ with nonempty intersection there is a holomorphic function
gαβ ∈ O(Uα ∩ Uβ) satisfying

1. gαβ + gβα = 0 for each pair (α, β);

2. gαβ + gβγ + gγα = 0 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then there exist fα ∈ O(Uα) for each α such that gαβ = fβ − fα on Uα ∩ Uβ whenever the
intersection is nonempty.

2An open set U ⊂ Cn is called a domain of holomorphy is there doesn’t exist non-empty open sets U1, U2 with
U2 connected, U2 6⊂ U1, U1 ⊂ U2 ∩ U , such that for every holomorphic function f on U there is a holomorphic
function f2 on U2 such that h = h2 on U1, see [13, §0.3.1] and [19, §2.5].
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Proof. As in Theorem C.1, let {Vk} be a locally finite refinement of {Uα} and {ψk} be a smooth
partition of unity of ∆ subordinate to the open cover {Vk} . Then for a fixed k, ψk has a compact
support contained in Vk ⊂ Ur(k). We can then define the smooth functions {hkα} in the open
sets {Uα} by

hkα(z) =

{
ψk(z)gr(k)α(z) if z ∈ Vk ∩ Uα
0 if z ∈ Uα \ (Vk ∩ Uα)

Since ψk vanishes in an open neighborhood of ∆\Vk, ψk will also vanish in an open neighborhood
of Uα \ (Uα ∩ Vk). Therefore, the function hkα = ψkgr(k)α is a smooth function Uα, and for
each α we have the smooth function

hα =
∑
k

hkα on Uα

Then, on Uα ∩ Uβ , using the properties of {gαβ} we get

hβ − hα =
∑
k

(hkβ − hkα) =
∑
k

ψk
(
gr(k)β − gr(k)α

)
=
∑
k

ψk
(
−gβr(k) − gr(k)α

)
=
∑
k

ψk (gαβ) = gαβ

since
∑

k ψk = 1. This gives us a smooth solution {hα} to the first Cousin problem.
Next, for each set Uα consider the differential form ωα ∈ ∂hα ∈ Ω0,1(Uα). In each intersection

Uα ∩Uβ we note that ωα = ∂(hβ + gαβ) = ωβ , since gαβ are holomorphic functions. Hence there
exists a global differential form ω ∈ Ωp,q(∆) such that

ω = ∂hα on Uα for each α (2.7)

Also, since ∂ω = 0, from Theorem 1.3 we get f ∈ Ω0,0(∆) = C∞(∆) such that

∂f = ω (2.8)

Comparing (2.7) and (2.8) we get that

fα = hα − f ∈ O(Uα) for each α

Since fβ−fα = gαβ , the set {fα} is the required holomorphic solution to the Cousin problem.

2.2.2 Cousin II

Consider the following problem:

Let U ⊂ Cn be an open set with an open covering {Uα}. Suppose that for each
Uα, Uβ with nonempty intersection there is a non-vanishing holomorphic function
gαβ ∈ O∗(Uα ∩ Uβ) satisfying

1. gαβ · gβα = 1 for each pair (α, β);

2. gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then does there exist fα ∈ O∗(Uα) for each α such that gαβ =
fβ
fα

on Uα ∩ Uβ
whenever the intersection is nonempty?

The answer to this problem is yes when U is a polydisc. However, in general, this is not true
when U is any domain of holomorphy. Unlike the single variable case, Cousin I doesn’t imply
Cousin II for n ≥ 2. For the counterexample given by Kiyoshi Oka, see [13, pp. 250-253].
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Lemma 2.2. Let U ⊂ Cn be simply connected open set and f : U → C be a holomorphic and
non-vanishing function.Then there is a holomorphic function g on U such that exp(g) = f .

Proof. Since this is a topological fact, we are able to generalize the proof of Lemma 2.1. For
details, see [14, Lemma 13.1.5] and [13, Lemma 6.1.10].

Theorem 2.6 (Cousin II for a polydisc). Let ∆ ⊂ Cn be an open polydisc with an open cov-
ering {Uα}. Suppose that for each Uα, Uβ with nonempty intersection there is a non-vanishing
holomorphic function gαβ ∈ O∗(Uα ∩ Uβ) satisfying

1. gαβ · gβα = 1 for each pair (α, β);

2. gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Then there exist fα ∈ O∗(Uα) for each α such that gαβ =
fβ
fα

on Uα∩Uβ whenever the intersection
is nonempty.

Instead of proving this theorem3, we will directly prove the generalization of Corollary 2.1
in the next section.

2.3 Cousin problem for analytic hypersurface in Cn

Consider the following problem:

Is any analytic subvariety Y of a complex manifold M the zero-locus of some global
holomorphic functions defined on M?

The answer to this problem is yes when Y is a hypersurface and M is Cn.

2.3.1 Analytic subvariety of a complex manifold

In this subsection some definitions and properties from [10, §2.1, 2.3] and [6, §I.8, IV.1] will be
discussed.

Definition 2.1 (Analytic subvariety). LetM be a n-dimensional complex manifold. An analytic
subvariety of M is a closed subset Y ⊂M such that for every point w ∈ Y there exists an open
neighborhood w ∈ U ⊂M and f1, . . . , fm ∈ O(U) with

U ∩ Y = {z ∈ U : fj(z) = 0 for j = 1, . . . ,m}

Remark 2.1. A more natural definition of an analytic subvariety of M is that it is a subset
Y ⊂ M such that for every point w ∈ M there exists an open neighborhood w ∈ U ⊂ M and
f1, . . . , fm ∈ O(U) with

U ∩ Y = {z ∈ U : fj(z) = 0 for j = 1, . . . ,m}

This definition is equivalent to the earlier one because we can prove that w ∈M \ Y if and only
if Y is a closed subset of M [6, p. 36].

Definition 2.2 (Analytic hypersurface). An analytic subvariety Y of M is called analytic hy-
persurface if we can always take m = 1, i.e. for every point w ∈ Y there exists an open
neighborhood w ∈ U ⊂M and f ∈ O(U) with

U ∩ Y = {z ∈ U : f(z) = 0}
3For an outline of the proof, see [9, pp. 33-36]. Here, unlike the single variable case, we also need to show

the existence of non-vanishing continuous solution before proving the existence of non-vanishing smooth solution.
For details, see [13, Proposition 6.1.11(Part I)].
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Remark 2.2. In general, analytic subvariety cannot be given by global equations. For example,
if M is compact and connected, there are no non-constant holomorphic functions on M . For
an example in which the ambient manifold M is not compact, consider the complex manifold
M := U1 ∪ U2 with

U1 =

{
(z1, z2) ∈ C2 : |z1| <

1

2
and |z2| < 1

}
U2 =

{
(z1, z2) ∈ C2 : |z1| < 1 and

1

2
< |z2| < 1

}
Next, consider the closed subset4 Y = {(z1, z2) ∈ U2 : z1 = z2} ⊂ M . Note that U1 and U2

give an open covering of M with Y ⊂ U2, i.e. for all p ∈ Y we can use U2 since Y ∩ U2 =
{(z1, z2) ∈ U2 : f(z1, z2) = z1 − z2 = 0} where f ∈ O(U2). Therefore, Y is an analytic hypersur-
face of M .

Claim: There does not exist g ∈ O(M) such that Y = {(z1, z2) ∈M : g(z1, z2) = 0}.
On the contrary, let there exist g ∈ O(M) such that g vanishes exactly on Y . Note that

M ⊂ ∆(0; 1). Hence, by Theorem B.4, there exists G ∈ O(∆(0; 1)) such that G|M = g. In
particular, for z1 = z2 = z, G(z, z) = h(z) is a single variable holomorphic functions which
vanishes for 1

2 < |z| < 1 in M . Since zero function is the only single variable holomorphic
function with uncountably many zeros, h(z) vanishes for 0 ≤ |z| < 1 in ∆(0; 1), i.e. G|M = g
vanishes on Z = {(z1, z1) ∈M : z1 = z2} ⊃ Y . Contradiction.

The region corresponding to M The regions corresponding to U1 and U2.

The analytic subvariety Y of X The vanishing set Z of G in M

4Recall that for a continuous function the inverse image of a closed set is closed. In particular, the set of zeros
of a continuous function is closed.
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2.3.2 Sheaf theory and Čech cohomology

In this subsection we will revisit the results from sheaf theory and Čech cohomology that were
discussed in the previous report [12, Chapter 2].

Example 2.1 (Sheaves on complex manifold). Recall that if one has a presheaf of functions (or
forms) on a topological space M which is defined by some local property, then the presheaf is
also a sheaf [12, Example 2.4]. In particular, if M is a complex manifold then:

• O is the sheaf of holomorphic functions on M such that for every open subset U of M
we have the additive abelian group O(U) of holomorphic functions on U along with the
natural restriction maps as the group homomorphisms for the nested open subsets.

• O is the sheaf of non-vanishing holomorphic functions onM such that for every open subset
U of M we have the multiplicative abelian group O∗(U) of non-vanishing holomorphic
functions on U along with the natural restriction maps as the group homomorphisms for
the nested open subsets.

• Ωp,q is the sheaf of complex (p, q)-forms on M such that for every open subset U of M we
have the additive abelian group Ωp,q(U) of smooth (p, q)-forms on U (smooth sections of a
exterior power of a vector bundle, i.e. smooth maps of manifolds) along with the natural
restriction maps as the group homomorphisms for the nested open subsets.

• Op is the sheaf of holomorphic p-forms on M such that for every open subset U of M we
have the additive abelian group Op(U) of holomorphic p-forms on U (holomorphic sections
of an exterior power of holomorphic cotangent bundle, i.e. holomorphic maps of manifolds)
along with the natural restriction maps as the group homomorphisms for the nested open
subsets.

Example 2.2 (Sheaf maps). Recall that a sheaf map is collection of group homomorphisms
which commute with the restriction maps. Then for a complex manifold M we have:

• The exponential map exp : O → O∗ defined by the collection of group homorphisms
{expU : O(U) → O∗(U)}U⊂M where expU (f) = exp(f) is defined via charts. This is a
sheaf map since for U ⊂ V ⊂M , expU and expV commute with the restriction maps.

• Since the exterior derivative is a local operator, it commutes with restriction [12, Remark
1.29]. Therefore, d : Ωk

C → Ωk+1
C is a map of sheaves [12, Example 2.6]. In particular,

∂ : Ωp,q → Ωp+1,q is a sheaf map between the sheaf of complex differential forms on a
complex manifold M .

Example 2.3 (Kernel sheaf). For a complex manifoldM we have the sheaf of closed (p, q)-forms
on M given by ker(∂) = Zp,q corresponding to the sheaf map ∂ : Ωp,q → Ωp,q+1. In particular,
Zp,0 = Op is the sheaf of holomorphic p-forms on M .

Example 2.4 (Exact sequence of sheaves). For a complex manifold M we have:

• The short exact sequence, called exponential sheaf sequence

0 Z O O∗ 02πi exp

Note that the sheaf map exp is surjective by Lemma 2.2, since locally M is biholomorphic
to an open set in Cn and for every point w ∈ Cn we can find a simply connected open
neighborhood U such that every f ∈ O∗(U) can be written as exp(g) = f for some
g ∈ O(U).

38



• The exact sequence of sheaves of differential forms

0 Op Ωp,0 Ωp,1 Ωp,2 · · ·∂ ∂ ∂

where the exactness follows from Theorem 1.8, Theorem 1.9, and Remark 1.37.

Remark 2.3 (Long exact sequence of Čech cohomology). By Remark 1.24 we know that complex
manifolds are paracompact. Hence we can use Serre’s theorem [12, Theorem 2.1] to get the long
exact sequence of Čech chohomology corresponding to a short exact sequence of sheaves of a
complex manifold.

• The exponential sheaf sequence on M will induce the following long exact sequence of
cohomology

· · · Ȟ
q
(M,O) Ȟ

q
(M,O∗) Ȟ

q+1
(M,Z) Ȟ

q+1
(M,O) · · ·∆

• Using Example 2.3 and Example 2.4 we get the following short exact sequence of sheaves
on a complex manifold M

0 Zp,` Ωp,` Zp,`+1 0∂

for every ` ≥ 0. This induces the following long exact sequence of cohomology

· · · Ȟ
q
(M,Ωp,`) Ȟ

q
(M,Zp,`+1) Ȟ

q+1
(M,Zp,`) Ȟ

q+1
(M,Ωp,`) · · ·∆

for each `.

Remark 2.4 (Fine sheaves). Note that, for p, ` ≥ 0, Ωp,` are smooth sections of vector bundles
and hence are fine sheaves. Therefore we can use [12, Theorem 2.2] to get Ȟ

q
(M,Ωp,`) = 0 for

all ` ≥ 1.

Theorem 2.7 (Homotopy invariance of Čech cohomology). Let M and N be two smooth man-
ifolds, and assume that f : M → N is a homotopy equivalence. If G is a constant sheaf on N ,
then Ȟ

q
(M,f−1G) ∼= Ȟ

q
(N,G) for all q ≥ 0. In other words, the Čech cohomology of locally

constant sheaves on smooth manifolds is a homotopy invariant.

Proof. In the previous report [12, Theorem 2.1, 2.2], we proved that Čech cohomology of a
manifold is isomorphic to its sheaf cohomology [22, §5.18, 5.33]. Moreover, it is a well known
fact that sheaf cohomology of locally constant sheaves is a homotopy invariant [23, §10.2, 11.3].
Therefore, sheaf cohomology of locally constant sheaves is a homotopy invariant [18, §6.3].

Corollary 2.2. If a smooth manifold M is contractible and G is a constant sheaf on M , then
Ȟ

0
(M,G) ∼= G(M) and Ȟ

q
(M,G) ∼= 0 for q > 0.

Proof. Since M ' {∗}, form some point ∗ ∈M , we know that Ȟ
k

(M,G) ∼= Ȟ
k ({∗}, f−1G

)
for

all k ≥ 0. We also know that Ȟ
k

(M,G) ∼= G(M) [12, Proposition 2.6]. Therefore, we just need
to show that Ȟ

k
({∗}, G) = 0 for any constant sheaf G. Fortunately, when we calculate Čech

cohomology of a point we don’t need to take direct limit because the system is trivial, i.e. there
is only one covering with only one open subset:

Ȟ
q

({∗}, G) =
Žq({{∗}}, G)

B̌q({{∗}}, G)
=

ker{δ : Č
q
({{∗}}, G)→ Č

q+1
({{∗}}, G)}

im{δ : Č
q−1

({{∗}}, G)→ Č
q
({{∗}}, G)}
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Note that Č
q
({{∗}}, G) = {f |f : {∗} → G is a constant map}. Hence for q > 0 we have

Žq({{∗}}, G) =

{
Č
q
({{∗}}, G) if q is odd

{f |f ≡ 0 where 0 is the identity element of G} if q is even

and

B̌q({{{∗}}, G) =

{
{f |f ≡ 0 where 0 is the identity element of G} if q − 1 is odd
Č
q
({{∗}}, G) if q − 1 is even

Therefore, Žq({{∗}}, G) = B̌q({{∗}}, G) for all q > 0. Hence completing the proof.

Remark 2.5. In the previous report we proved de Rham-Čech isomorphism, which says that
if M is a smooth manifold then for each k ≥ 0 there exists a group isomorphism Hk

dR(M) ∼=
Ȟ
k
(M,R) [12, Theorem 3.1]. By the above theorem we can conclude that de Rham cohomology

is in fact a homotopy invariant.

2.3.3 Dolbeault isomorphism

In this subsection we will prove Dolbeault’s theorem, following [13, §6.3] and [8, p. 45]. This
is a complex analogue of de Rham’s theorem [12, Theorem 3.1], and asserts that the Dolbeault
cohomology is isomorphic to the Čech cohomology of the sheaf of holomorphic differential forms.

Theorem 2.8. Let M be a complex manifold. Then for each p, q ≥ 0 there exists a group
isomorphism

Hp,q

∂
(M) ∼= Ȟ

q
(M,Op)

Proof. For q = 0, from Proposition 1.11 and [12, Lemma 2.4], we know that both Hp,0

∂
(M) and

Ȟ
0
(M,Op) are isomorphic to the group of holomorphic p-forms on M . That is

Hp,0

∂
(M) ∼= Ȟ

0
(M,Op)

Now let’s restrict our attention to q ≥ 1. From Example 2.4 we know that the ∂-Poincaré
lemma implies the existence of the following long exact sequence of sheaves of differential forms

0 Op Ωp,0 Ωp,1 Ωp,2 · · ·∂ ∂ ∂

Then, as noted in Remark 2.3, we have a family of short exact sequence of sheaves

0 Op Ωp,0 Zp,1 0

0 Zp,1 Ωp,1 Zp,2 0

...
...

...
...

...

0 Zp,` Ωp,` Zp,`+1 0

...
...

...
...

...

∂

∂

∂

which will induce the respective long exact sequences of Čech cohomology

· · · Ȟ
q
(M,Ωp,0) Ȟ

q
(M,Zp,1) Ȟ

q+1
(M,Op) Ȟ

q+1
(M,Ωp,0) · · ·

· · · Ȟ
q
(M,Ωp,1) Ȟ

q
(M,Zp,2) Ȟ

q+1
(M,Zp,1) Ȟ

q+1
(M,Ωp,1) · · ·

...
...

...
...

· · · Ȟ
q
(M,Ωp,`) Ȟ

q
(M,Zp,`+1) Ȟ

q+1
(M,Zp,`) Ȟ

q+1
(M,Ωp,`) · · ·

...
...

...
...

∆

∆

∆
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Now let’s study one of these long exact sequence of Čech cohomology. By [12, Lemma 2.4]
we have Ȟ

0
(M,Ωp,`) ∼= Ωp,`(M) and Ȟ

0
(M,Zp,`) ∼= Zp,`(M). Also by Remark 2.4 we have

Ȟ
q
(M,Ωp,`) = 0 for all q ≥ 1 and ` ≥ 0. Hence for any ` ≥ 0 we get the exact sequence

0 Zp,`(M) Ωp,`(M) Zp,`+1(M) Ȟ
1
(M,Zp,`) 0 Ȟ

1
(M,Zp,`+1)

· · · 0 Ȟ
3
(M,Zp,`) Ȟ

2
(M,Zp,`+1) 0 Ȟ

2
(M,Zp,`)

∂ ∆

∆

∆

Now consider the following part of the above sequence

0 Zp,`(M) Ωp,`(M) Zp,`+1(M) Ȟ
1
(M,Zp,`) 0∂ ∆

Since this sequence is exact, the map ∆ : Zp,`+1(M) → Ȟ
1
(M,Zp,`) is a surjective group

homomorphism and im{∂ : Ωp,`(M) → Zp,`+1(M)} = ker(∆). Hence by the first isomorphism
theorem we get

Ȟ
1
(M,Zp,`) ∼=

Zp,`+1(M)

ker(∆)
for all ` ≥ 0

Since im{∂ : Ωp,`(M)→ Zp,`+1(M)} = im{∂ : Ωp,`(M)→ Ωp,`+1(M)} = Bp,`+1(M), we get

Ȟ
1
(M,Zp,`) ∼= Hp,`+1

∂
(M) for all ` ≥ 0 (2.9)

Note that Zp,0 = Op, hence from (2.9) we get

Ȟ
1
(M,Op) ∼= Hp,1

∂
(M)

Next we consider the remaining parts of the long exact sequence, i.e. for q ≥ 1 and ` ≥ 0 we
have

0 Ȟ
q
(M,Zp,`+1) Ȟ

q+1
(M,Zp,`) 0∆

The group homomorphism ∆ is an isomorphism since this is an exact sequence of abelian groups

Ȟ
q+1

(M,Zp,`) ∼= Ȟ
q
(M,Zp,`+1) for all q ≥ 1, ` ≥ 0 (2.10)

Again substituting Zp,0 = Op and restricting our attention to q ≥ 2, we apply (2.10) recursively
to get

Ȟ
q
(M,Op) ∼= Ȟ

q−1 (
M,Zp,1

)
∼= Ȟ

q−2 (
M,Zp,2

)
...
∼= Ȟ

1 (
M,Zp,q−1

)
Then using (2.9) we get

Ȟ
q
(M,Op) ∼= Hp,q

∂
(M) for all q ≥ 2

Hence completing the proof.
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2.3.4 Solution of the problem

We can now solve the Cousin problem, following the solution outlined in [8, p. 47].

Lemma 2.3. Ȟ
q
(Cn,O∗) = 0 for q > 0.

Proof. Consider the long exact sequence associated to the exponential sheaf sequence on Cn

· · · Ȟ
q
(Cn,O) Ȟ

q
(Cn,O∗) Ȟ

q+1
(Cn,Z) Ȟ

q+1
(Cn,O) · · ·∆

By the ∂-Poincaré lemma (Theorem 1.3), we get Hp,q

∂
(Cn) = 0 for all p ≥ 0 and q > 0.

Then using Dolbeault isomorphism (Theorem 2.8) for p = 0, we get Ȟ
q
(Cn,O) = 0 for q > 0.

Moreover, since Cn is contractible, we can use Corollary 2.2 to get Ȟ
q
(Cn,Z) = 0 for q > 0.

Substituting these in the sequence and using exactness, we conclude that Ȟ
q
(Cn,O∗) = 0 for

q > 0.

Theorem 2.9. Any analytic hypersurface in Cn is the zero locus of an entire function f : Cn →
C.

Proof. Let H be the analytic hypersurface in Cn, then H ⊂ Cn such that for every point w ∈ Cn
there exists an open neighborhood w ∈ U ⊂ Cn and f ∈ O(U) with

U ∩H = {z ∈ U : h(z) = 0}

By Theorem B.7 we know that Ow is a unique factorization domain. Therefore, if h is a
representative element of the equivalence classes in Ow, then h = h1 · · ·hk for some irreducible
representative functions in Ow. Hence we can choose h such that it is not divisible by the square
of any non-unit5 in Ow.

Next, choose an open cover U = {Uα} of Cn and functions hα ∈ O(Uα) such that

Uα ∩H = {z ∈ U : hα(z) = 0}

where hα is not divisible by the square of any non-unit. We can then define the Cousin data for
the cover U = {Uα} by setting

gαβ =
hβ
hα

on Uα ∩ Uβ (2.11)

Note that for each Uα, Uβ with nonempty intersection gαβ ∈ O∗(Uα ∩ Uβ) since6 hα and hβ
vanish at the same points in Uα ∩ Uβ , and {gαβ} satisfies the conditions

1. gαβ · gβα = 1 for each pair (α, β);

2. gαβ · gβγ · gγα = 1 on Uα ∩ Uβ ∩ Uγ for each triple (α, β, γ).

Therefore, (gαβ) ∈ Ž1(U ,O∗). But since Ȟ
1
(Cn,O∗) = 0 by Lemma 2.3, after some refinement

of U if necessary7, there exists a cochain (fα) ∈ Č
0
(U ,O∗) such that

gαβ = δ(fα) =
fβ
fα

on Uα ∩ Uβ (2.12)

5Recall that the non-vanishing functions at w ∈ Cn are the unit elements in Ow.
6We can prove this by contradiction. On the contrary assume that there exists z ∈ Uα∩Uβ such that hα(z) = 0

but hβ(z) 6= 0. Then z ∈ Uα ∩H but z 6∈ Uβ ∩H. Which contradicts our assumption that z ∈ Uα ∩ Uβ .
7If we need a refinement V of U , then just start whole argument with the open cover V instead of U .
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Comparing (2.11) and (2.12) we get that

hβ
hα

=
fβ
fα

on Uα ∩ Uβ

for each pair (α, β). Hence, we can define a global holomorphic function f on Cn such that

f(z) =
hα(z)

fα(z)
for z ∈ Uα

for each α. Since dividing hα by a non-vanishing holomorphic function fα doesn’t affect the
vanishing set of hα, f is the desired holomorphic function on Cn whose vanishing set is H.
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Future work

In the Remark 1.26 and Remark 1.33 we noted that transition maps can be used to define vector
bundles. Following is the more precise statement:

Theorem 1. If M be a smooth manifold and π : E → M is a complex8 vector bundle of rank
k. Then there exists an open cover {Uα} of M and a collection of smooth transition maps
{σαβ : Uα ∩ Uβ → GL(k,C)} such that

1. σαα = Ik

2. σαβ · σβγ · σγα = Ik

where Ik is a k× k identity matrix. This collection {gαβ} is called transition data. Conversely,
given an open cover {Uα} of M and a collection of smooth maps {σαβ : Uα ∩ Uβ → GL(k,C)}
satisfying the above two conditions, there exists a complex rank k vector bundle π′ : E′ → M
whose transition data is given by {σαβ}. Moreover, these two processes are well-defined and are
inverses of each other when applied to the set of equivalence classes of vector bundles9 and the
set of equivalence classes of transition data10.

Now, if we use this result to define vector bundles using transition data, then we get the
following [24, Lemma III.4.4]:

Theorem 2. There is one-to-one correspondence between the equivalence classes of holomorphic
line bundles on a complex manifold M and the elements of the cohomology group Ȟ

1
(M,O∗)

where O∗ is the sheaf of non-vanishing holomorphic functions.

Also, by considering the underlying complex vector bundle of rank 1, we get:

Theorem 3. There is one-to-one correspondence between the equivalence classes of complex line
bundles on a smooth manifold M and the elements of the cohomology group Ȟ

1
(M, E∗) where E∗

is the sheaf of non-vanishing smooth functions.

We can generalize this result by generalizing the definition of Čech cohomology. In the
previous report we defined Čech cohomology for a sheaf of abelian groups [12, Definition 2.15].
Note that we can’t define Čech cohomology in a similar way if F is a sheaf of non-abelian groups,
since δ ◦ δ 6= 0 if the sheaf is not abelian. However, we have the following general definition of
the zeroth and first Čech cohomolgy [16, Remark 5.5(2)]:

(a). Ȟ
0
(X,F) := F(X)

8Same argument is valid for smooth and holomorphic vector bundles. For the case of smooth vector bundles,
replace C by R, and for the case of holomorphic vector bundles consider holomorphic transition maps and
holomorphic isomorphism of vector bundles.

9Two vector bundles over M are said to be equivalent if they are isomorphic as vector bundles over M .
10Two sets of transition data {σαβ} and {σ′αβ} are said to be equivalent if there exists a collection of smooth

functions {ρα : Uα → GL(k,C)} such that σ′αβ = ρα · σαβ · ρ−1
β for all α, β.
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(b). Ȟ
1
(X,F) := lim−→

U
Ȟ

1
(U ,F) where the direct limit is indexed over all the open covers of X

with order relation induced by refinement, i.e. U < V if V is a refinement of U , and
Ȟ

1
(U ,F) is a pointed set11 defined as

Ȟ
1
(U ,F) := ker{δ : Č

1
(U ,F)→ Č

2
(U ,F)}

/
∼

(gαβ) ∼ (hαβ)⇔ ∃(fα) ∈ Č
0
(U ,F) such that fα ∗ gαβ = hαβ ∗ fβ on Uα ∩ Uβ

with ∗ being the group operation. Therefore, Ȟ
1
(X,F) is a group if and only if F is an

abelian sheaf.

Using this new definition we get the following more general correspondence between vector
bundles and Čech cohomology [25, §24]:

Theorem 4. Let M be a smooth manifold, then

(a). there is one-to-one correspondence between the equivalence classes of rank k smooth vector
bundles over M and the elements of the first cohomology set Ȟ

1
(M,O(k)) where O(k) is

the sheaf of smooth functions to the Lie group O(k) of orthogonal matrices.

(b). there is one-to-one correspondence between the equivalence classes of rank k complex vector
bundles over M and the elements of the first cohomology set Ȟ

1
(M,U(k)) where U(k) is

the sheaf of smooth functions to the Lie group U(k) of unitary matrices.

Clearly this is a generalization of the previous result, since for k = 1 we get Ȟ
1
(M,U(1)) =

Ȟ
1
(M,S1) = Ȟ

1
(M, E∗).

Definition (Picard group). The set of isomorphic classes of line bundles on a manifold M form
a group under the tensor product12 operation, where the inverse of a line bundle is its dual
bundle13. This group of isomorphism classes of holomorphic line bundles on M is called the
Picard group of M , denoted by Pic(M).

In fact, the one-to-one correspondence that we get in Theorem 2 is a group isomorphism, i.e.
Pic(M) ∼= Ȟ

1
(M,O∗) [8, p. 133]. This enables us to define the first Chern class of holomorphic

line bundles as follows [10, Definition 2.2.13]:

Definition (First Chern class of holomorphic line bundle). The exponential sheaf sequence on
a complex manifold M

0 Z O O∗ 02πi exp

gives a long exact sequence in cohomology

· · · Ȟ
q
(M,O) Ȟ

q
(M,O∗) Ȟ

q+1
(M,Z) Ȟ

q+1
(M,O) · · ·∆

Therefore, we have the connecting homomorphism

∆ : Ȟ
1
(M,O∗)→ Ȟ

2
(M,Z)

[L] 7→ c1(L)

where c1(L) is called the first Chern class of the holomorphic line bundle L on M .
11For details regarding its construction, refer to the lecture notes by Zinger [25, §24].
12If π : L → M and π′ : L′ → M are smooth line bundles, then their tensor product, L ⊗ L′ is defined such

that (L⊗ L′)w = Lw ⊗ L′w for all w ∈M [25, §13].
13If π : L → M is a smooth line bundles of rank k, the dual bundle of L∗ is a line bundle L∗ → M such that

(L∗)w = L∗w = HomR(Lw,R) for all w ∈M . For complex and holomorphic line bundles, replace R by C [25, §12].
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The immediate consequences of this definition are [8, p. 139]:

c1(L⊗ L′) = c1(L) + c1(L′) and c1(L∗) = −c1(L)

Note that, in the previous report we only proved the existence of connecting homomorphism ∆
[12, Theorem 2.1]. However, to be able to calculate the first Chern class of a holomorphic line
bundle we must know the exact definition of ∆, which turns out to be a challenging task [24, p.
104].

Similarly, the one-to-one correspondence that we get in Theorem 3 is a group isomorphism.
This enables us to define the first Chern class of complex line bundles as follows [24, p. 105]:

Definition (First Chern class of complex line bundle). The exponential sheaf sequence on a
smooth manifold M

0 Z E E∗ 02πi exp

gives a long exact sequence in cohomology

· · · Ȟ
q
(M, E) Ȟ

q
(M, E∗) Ȟ

q+1
(M,Z) Ȟ

q+1
(M, E) · · ·∆

Therefore, we have the connecting homomorphism

∆ : Ȟ
1
(M, E∗)→ Ȟ

2
(M,Z)

[L] 7→ c1(L)

where c1(L) is called the first Chern class of the complex line bundle L on M .

Since E is a fine sheaf, by [12, Theorem 2.2], Ȟ
k
(M, E) = 0 for k > 0. Therefore, the con-

necting homomorphism ∆ : Ȟ
1
(M, E∗)→ Ȟ

2
(M,Z) is a group isomorphism, and the equivalence

classes of complex line bundles are determined by their first Chern class in Ȟ
2
(M,Z) [8, p. 140].

Theorem 5. There is a natural group isomorphism between the equivalence classes of complex
line bundles on a smooth manifold M and the elements of the cohomology group Ȟ

2
(M,Z). That

is, a complex line bundle is determined upto smooth vector bundle isomorphism by its first Chern
class.

In the previous report we proved thatHk
dR(M) ∼= Ȟ

k
(M,R) for k ≥ 0 [12, Theorem 3.1]. Also

note that there is a natural homomorphism j : Ȟ
2
(M,Z)→ Ȟ

2
(M,R) induced by the inclusion

of constant sheaves Z ↪→ R. Combining these with the fact that Ȟ
1
(M, E∗) ∼= Ȟ

2
(M,Z), we can

compute the Chern classes of complex line bundles using differential forms [24, Theorem III.4.5].

c1 : {isomorphism classes of complex line bundles over M} → H2
dR(M)

[L] 7→ c1(L)

Since a complex vector bundle L of rank 1 over a smooth manifold M can be thought of as
a smooth vector bundle L of rank 2 over M , we can use the following result for computing the
first Chern class of a complex line bundle [1, pp. 71-73]:

Theorem 6. Let π : L→M be an oriented smooth oriented rank 2 vector bundle over M , and
{Uα} be a coordinate open cover of M that trivializes E. If {σαβ : Uα ∩ Uβ → SO(2)} are the
transition functions14 of L and {ηγ} is a parition of unity of M subordinate to {Uγ}, then

c1(L) = − 1

2πi

∑
γ

d (ηγ d log(σγα)) on Uα for each α

where σαβ are thought of as complex valued functions by identifying SO(2) with S1 via[
cos θ − sin θ
sin θ cos θ

]
= eiθ and c1(L) is a closed form representing a cohomology class in H2

dR(M).
14The structure group of every smooth rank k vector bundle π : E → M can be reduced to the orthogonal

group O(k) using Gram-Schmidt process. This is also a key step of the proof of Theorem 4(a). Moreover, if the
vector bundle is orientable then the structure group can be further reduced to SO(k) [1, Proposition 6.4].
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Appendix A

Algebra

A.1 Complexification of vector space

In this section some definitions and facts from [17, Chapter 14] will be stated.

Definition A.1 (Tensor product of vector spaces). Let U and V be vector spaces over a field F .
The tensor product U ⊗F V is a vector space over F equipped with a bilinear map f : U ×V →
U ⊗F V such that for each bilinear map from U × V to any vector space W over F there is a
unique linear map h : U ⊗ V →W making the following diagram commute.

U × V U ⊗F V

W

f

g
h

Remark A.1. We use the symbol ⊗ to denote the image of any ordered pair (u, v) under the
tensor map, i.e. u ⊗ v = f(u, v) for any u ∈ U and v ∈ V . Not all members of U ⊗F V are of
this form. In general, if {ui : i ∈ I} is a basis for U and {vj : i ∈ J} is a basis for V , then any
vector w ∈ U ⊗F V has a unique expression as a sum

w =
∑
i∈I

∑
j∈J

ri,j(ui ⊗ vj)

where only a finite number of the coefficients ri,j are non-zero.

Proposition A.1. For finite dimensional vector spaces U and V over a field F

dimF (U ⊗F V ) = dimF (U) dimF (V )

Proposition A.2 (Bilinearity on U×V equals linearity on U⊗F V ). Let U , V and W be vector
spaces over a field F . Let HomF (U, V ;W ) be the set of all bilinear maps from U ×V to W , and
HomF (U ⊗ V ;W ) be the set of all linear maps from U ⊗ V to W . Then the mediating map

φ : HomF (U, V ;W )→ HomF (U ⊗F V ;W )

g 7→ h

where h is the unique linear map satisfying g = h ◦ f for the tensor map f : U × V → U ⊗F V ,
is an isomorphism.

Proposition A.3 (Linear functionals on tensor product). Let U and V be finite dimensional
vector spaces over a field F . Then the linear transformation

ψ : U∗ ⊗F V ∗ → (U ⊗F V )∗
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defined by ψ(f ⊗ g)(u ⊗ v) = f(u)g(v), is an isomorphism. Thus, the tensor product of linear
functionals is a linear functional on tensor products.

Corollary A.1. For a finite dimensional vector spaces U and V over a field F , we have

U∗ ⊗F V ∗ ∼= HomF (U, V ;F )

Proof. From Proposition A.3 we know that U∗ ⊗F V ∗ ∼= (U ⊗F V )∗. Note that (U ⊗F V )∗ =
HomF (U⊗F V ;F ), hence we can use Proposition A.2 to conclude that U∗⊗F V ∗ ∼= (U⊗F V )∗ ∼=
HomF (U, V ;F )

Theorem A.1 (Extending the base field). Let V be vector space over a field F and K be a
finite extension of F . Then W = V ⊗F K is a vector space over K such dimK(W ) = dimF (V ).
Moreover, if WF is the vector space obtained by restricting the the scalar multiplication for W
to scalars from F , then WF contains an isomorphic copy of V .

Proof. Since K is a vector space over F , we can form the tensor product

WF = V ⊗F K

where all relevant maps are F -bilinear and F -linear. By definition of tensor product WF is a
vector space over F . However, since V is not a K-space, we can’t have a K-tensor product. We
just need to show that WF can be made into a vector space over K.

Claim: For α ∈ K, the scalar multiplication operation α(v ⊗ β) = v ⊗ (αβ) is well defined.
To prove the claim, we need to check that

v ⊗ β = w ⊗ γ ⇒ v ⊗ (αβ) = w ⊗ (αγ)

Note that for a fixed α, the map

g : V ×K → V ⊗F K
(v, β) 7→ v ⊗ (αβ)

is F -bilinear. Now the definition of tensor product implies that there exists a unique F -linear
map

h : V ⊗F K → V ⊗F K
v ⊗ β 7→ v ⊗ (αβ)

since the following diagram commutes

V ×K V ⊗F K

V ⊗F K

f

g
h

We define this map h to be scalar multiplication by α, under which W = V ⊗F K is a vector
space over the field K. Note that WF and W are identical as sets and as abelian groups, only
the scalar multiplication operation is different. Moreover, we recover WF from W simply by
restricting scalar multiplication to scalars from F .

If K is a degree d field extension of F , then using Proposition A.1 we get

dimF (WF ) = dimF (V ⊗F K) = dimF (V ) · d

Hence, if {vi : i ∈ I} is a basis for V , then {vi ⊗ 1} is a basis for W , that is,

dimK(W ) = dimF (V )

The map µ : V →WF defined by µ(v) = v ⊗ 1 is an injective F -linear map, so WF contains
an isomorphic copy of V .
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Remark A.2. We can also think of µ as mapping of V into W , in which case µ is called the
K-extension map of V .

Theorem A.2 (Extending the linear map). Let U and V be two vector spaces over the field F ,
with K-extension maps µU and µV , respectively. Then for any F -linear map τ : U → V , the
map τ ⊗ 1K : U ⊗F K → V ⊗F K is the unique K-linear map that makes the following diagram
commute

U V

U ⊗F K V ⊗F K

τ

µU µV

τ⊗1K

Thus, τ ⊗ 1K is the extension of the F -linear map τ to a K-linear map.

Definition A.2 (Complexification of a real vector space). To each real vector space V , we can
associate a complex vector space VC = V ⊗R C called the complexification of V .

Proposition A.4. Let V be a real vector space, and Ṽ = V ⊕ V be a complex vector space with
multiplication law (a+ ib) (v1, v2) = (av1 − bv2, bv1 + av2). Then there is a unique isomorphism
φ : Ṽ → VC of C-vector spaces which makes the diagram

V

Ṽ VC

µ

φ

commute. Explicitly,
φ(v1, v2) = v1 ⊗ 1 + v2 ⊗ i

Proof. Firstly we will verify that φ is C-linear

φ ((a+ ib)(v1, v2)) = φ (av1 − bv2, bv1 + av2)

= (av1 − bv2)⊗ 1 + (bv1 + av2)⊗ i
= a(v1 ⊗ 1)− b(v2 ⊗ 1) + b(v1 ⊗ i) + a(v2 ⊗ i)
= a(v1 ⊗ 1) + ib(v2 ⊗ i) + ib(v1 ⊗ 1) + a(v2 ⊗ i)
= a (v1 ⊗ 1 + v2 ⊗ i) + ib (v2 ⊗ i+ v1 ⊗ 1)

= (a+ ib) φ(v1, v2)

To show that φ is an isomorphism, we will write down the inverse map:

ψ : VC → Ṽ

v ⊗ α 7→ α(v, 0)

which is extended by linearity. Using the definition of scalar multiplication for VC we verify that
ψ is C-linear. Let β ∈ C then

ψ(β(v ⊗ α)) = ψ(v ⊗ βα)

= βα(v, 0)

= β ψ(v ⊗ α)

Finally, we show that φ and ψ are inverse of each other:

ψ (φ (v1, v2)) = ψ (v1 ⊗ 1 + v2 ⊗ i) = (v1, 0) + i (v2, 0) = (v1, 0) + (0, v2) = (v1, v2)

φ(ψ(v ⊗ α)) = φ(α(v, 0)) = αφ(v, 0) = α(v ⊗ 1) = v ⊗ α
Note that it suffices to verify φ ◦ ψ = 1VC for elementary tensors.
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Proposition A.5. The complexification of the dual space V ∗ of a real vector space V is naturally
isomorphic to the space of all R-linear maps from V to C. That is, (V ∗)C = V ∗ ⊗R C ∼=
HomR(V,C).

Proof. The isomorphism is given by

Φ : (V ∗)C → HomR(V,C)

ϕ1 ⊗ 1 + ϕ2 ⊗ i 7→ ϕ1 + iϕ2

where ϕ1 and ϕ2 are elements of V ∗ = HomR(V,R).

Corollary A.2. The complexification of the dual space V ∗ of a real vector space V is naturally
isomorphic to the dual of the dual space of VC. That is, (V ∗)C = (VC)∗.

Proof. Given a R-linear map ϕ : V → C, we can extend by linearity to obtain a C-linear map

ϕ̃ : VC → C
v ⊗ α 7→ αϕ(v)

This extension gives an isomorphism from HomR(V,C) to HomC(VC,C). The latter is just the
complex dual space to VC, hence giving the isomorphism (V ∗)C ∼= HomR(V,C) ∼= (VC)∗.

Remark A.3. More generally, given real vector spaces V andW there is a natural isomorphism

HomR(V,W )C ∼= HomC(VC,WC)

Proposition A.6. Complexification commutes with the operations of taking tensor products.
That is, if V and W are real vector spaces then there is a natural isomorphism (V ⊗R W )C ∼=
VC ⊗CWC, where the left-hand tensor product is taken over R while the right-hand one is taken
over C.

A.2 Linear complex structure

In this section some definitions and facts from [24, §I.3] and [10, §1.2] will be stated.

Definition A.3 (Complex structure). Let V be a real vector space and suppose that J is an
R-linear endomorphism J : V → V such that J2 = −1V . Then J is called a complex structure
on V .

Lemma A.1. If J is a complex structure on a real vector space V , then V admits in a natural
way the structure of a complex vector space.

Proof. We can equip V with the structure of a complex vector space in the following manner:

(α+ iβ)v := αv + βJ(v), α, β ∈ R, i =
√
−1

Thus scalar multiplication on V by complex numbers is well defined, and V becomes a complex
vector space.

Lemma A.2. If V is a complex vector space, then we can define a complex structure J on V
when it is considered as a real vector space.

Proof. Since V is a complex vector space and R ⊂ C, it can also be considered as a vector space
over R, and the operation of multiplication by i =

√
−1 is an R-linear endomorphism of V onto

itself, which we can call J ,

J : V → V

v 7→ iv

This is a complex structure.
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Remark A.4. Moreover, if {v1, . . . , vn} is a basis for V over C, then

{v1, . . . , vn, J(v1), . . . , J(vn)}

will be a basis for V over R, i.e. dimR(V ) = 2 dimC(V ). Hence a complex structure can only
exist on an even dimensional real vector space.

Definition A.4 (Standard complex structure on R2n). Let Cn be the usual Euclidean space of
n-tuples of complex numbers, {(z1, . . . , zn)}, and let zj = xj + iyj , j = 1, . . . , n, where xj , yj
are the real and imaginary parts. Then Cn can be identified with R2n = {(x1, y1, . . . , xn, yn)}.
Scalar multiplication by i in Cn induces a mapping J : R2n → R2n given by

J(x1, y1, . . . , xn, yn) = (−y1, x1, . . . ,−yn, xn)

and, with J2 = −1. This is the standard complex structure on R2n.

Remark A.5. Given a basis {e1, e2, . . . , en} for the complex space Cn, this set, together with
these vectors multiplied by i namely {ie1, ie2, . . . , ien} , form a basis for the real space R2n.
There are two natural ways to order this basis:

1. If one orders the basis as {e1, ie1, e2, ie2, . . . , en, ien} , then the matrix for the standard
complex structure J on R2n takes the block diagonal form:

J =



0 −1
1 0

0 −1
1 0

. . .
. . .

0 −1
1 0


2n×2n

2. On the other hand, if one orders the basis as {e1, e2, . . . , en, ie1, ie2, . . . , ien} , then the
matrix for the standard complex structure J on R2n takes the block-antidiagonal form:

J =

[
0 −In
In 0

]
2n×2n

Remark A.6. If J is a complex structure on V , then J ∈ GL(V ) where GL(V ) is the general
linear group1 of V . Moreover, the coset space2 GL(2n,R)/GL(n,C) determines all complex
structures on R2n by the mapping [A] 7→ A−1JA, where [A] is the equivalence class of A ∈
GL(2n,R).

Proposition A.7. Let V be a real vector space with a complex structure J . Then we have

VC = V 1,0 ⊕ V 0,1

where

V 1,0 = {w ∈ VC : (J ⊗ 1C)(w) = i · w} and V 0,1 = {w ∈ VC : (J ⊗ 1C)(w) = −i · w}

Moreover, the complex conjugation on VC, defined as v ⊗ α = v ⊗ α for v ∈ V and α ∈ C,
induces R-linear isomorphism V 1,0 ∼= V 0,1.

1If V is a vector space over the field F , GL(V ) or Aut(V ) is the group of all automorphisms of V , i.e. the set
of all bijective linear transformations from V onto V , together with functional composition as group operation.
If V has finite dimension n, then GL(V ) and GL(n, F ) are isomorphic.

2GL(n,C), is a complex Lie group of complex dimension n2. As a real Lie group (through realification) it
has dimension 2n2. In fact, we have GL(n,R) < GL(n,C) < GL(2n,R), which have real dimensions n2, 2n2 and
(2n)2 = 4n2. See, John Lee’s Introduction to Smooth Manifolds (2nd Edition), Example 7.18(d), p. 158.
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Proof. Note that J̃ = J ⊗ 1C is the C-linear extension of the R-linear map J , which still has
the property that J̃2 = −1VC . It follows that J̃ has two eigenvalues {i,−i}. Also, V 1,0 is
the eigenspace corresponding to the eigenvalue i and V 0,1 is the eigenspace corresponding to
−i. Since the minimal polynomial p(t) = t2 + 1 of J̃ is product of distinct linear factors, J̃ is
diagonalizable [17, Theorem 8.11]. Hence VC is the direct sum of eigenspaces corresponding to
the distinct eigenvalues [17, Theorem 8.10].

In particular, every vector w of VC can be written as :

w =
w − iJ̃(w)

2
+
w + iJ̃(w)

2

where (w − iJ̃(w))/2 is an eigenvector with eigenvalue i while (w + iJ̃(w))/2 is an eigenvector
with eigenvalue −i. Note that (

w − iJ̃(w)

2

)
=
w + iJ̃(w)

2

Hence, complex conjugation interchanges the two factors, and induces R-linear isomorphism
V 1,0 ∼= V 0,1.

Remark A.7. Note that the complex vector space obtained from V by means of the complex
structure J , denoted by VJ , is C-linear isomorphic to V 1,0. Hence we can identify VJ with V 1,0.

Proposition A.8. Let V be a real vector space endowed with a complex structure J . Then the
dual space V ∗ = HomR(V,R) has a natural complex structure given by J (f)(v) = f(J(v)) for
all f ∈ V ∗ and v ∈ V . The induced decomposition on (V ∗)C ∼= HomR(V,C) ∼= (VC)∗ is given by

(V ∗)C = (V ∗)1,0 ⊕ (V ∗)0,1

where

(V ∗)1,0 ∼= {f ∈ HomR(V,C) | f(J(v)) = if(v)} ∼= (V 1,0)∗

(V ∗)0,1 ∼= {f ∈ HomR(V,C) | f(J(v)) = −if(v)} ∼= (V 0,1)∗

A.3 Multilinear algebra

By replacing bilinearity with multilinearity in Definition A.1, we can extend the definition of
tensor product to more than two vector spaces. In this section some facts about tensor spaces
will be stated from [17, Chapter 14] and [10, §1.2]. Unlike the rest of the report, here the letter
T denote “tensor” space instead of “tangent” space.

Definition A.5 ((p, q)-tensor). Let V be a finite dimensional vector space over a field F . For
non-negative integers p and q, the tensor product

T pq (V ) = V ⊗F · · · ⊗F V︸ ︷︷ ︸
p factors

⊗F V ∗ ⊗F · · · ⊗F V ∗︸ ︷︷ ︸
q factors

= V ⊗p ⊗ (V ∗)⊗q

where V ⊗k is k-fold tensor product of V with itself, is called the space of tensors of type (p, q),
where p is the contravariant type and q is the covariant type. If p = q = 0, then T pq (V ) = F .

Remark A.8. For a finite dimensional vector space V over a field F , we have V ∼= V ∗∗, hence
we can generalize Corollary A.1 to get:

T pq (V ) = V ⊗p ⊗F (V ∗)⊗q ∼= ((V ∗)⊗p ⊗F V ⊗q)∗ ∼= HomF

(
(V ∗)×p × V ×q, F

)
where V ×k is k-fold cartesian product of V with itself. Therefore, the k-tensor defined in the
previous report [12, Definition 1.6, 1.7] is in fact a (0, k)-tensor, i.e. a vector belonging to (V ∗)⊗q.
In other words, T 0

k (V ) = T k0 (V ∗) = Lk(V ) [12, Remark 1.4].
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Proposition A.9. Let V be a finite dimensional vector space over a field F . Then

1. dimF (T pq (V )) = (dimF (V ))p+q

2. T pq (V )⊗ T rs (V ) ∼= T p+rq+s (V )

Definition A.6 (Tensor algebra). The external direct sum

T (V ) =
∞⊕
p=0

T p0 (V )

is a graded algebra, where T p0 (V ) are the elements of grade p. This graded algebra T (V ) is
called the tensor algebra over V .

Remark A.9. Since
T 0
q (V ) = (V ∗)⊗q = T q0 (V ∗)

there is no need to look separately at T 0
q (V ).

Definition A.7 (Antisymmetric tensor). Let V be a finite dimensional vector space and τ ∈
T p0 (V ). For each σ ∈ Sp, we have the isomorphism on T p0 (V ) defined as

λp : T p0 (V )→ T p0 (V )

x1 ⊗ · · · ⊗ xp 7→ xσ(1) ⊗ · · · ⊗ xσ(p)

which we extend by linearity. A tensor τ ∈ T p0 (V ) is said to be antisymmetric (p, 0)-tensor if
λσ(τ) = (sgnσ)τ for all permutations σ ∈ Sp.

Remark A.10. The set of all antisymmetric (p, 0)-tensors∧p
(V ) := {τ ∈ T p0 (V ) | λσ(τ) = (sgnσ)τ for all σ ∈ Sp}

is a subspace of T p0 (V ), called the antisymmetric tensor space or exterior product space of degree
(p, 0) over V .

Remark A.11. Note that if char(F ) 6= 2 then alternating and skew symmetric tensors are
the same [17, pp. 391, 398]. Since we have F = R or C, the alternating k-tensor defined in
the previous report [12, Definition 1.9] is in fact an antisymmetric (0, k)-tensor, i.e. a vector
belonging to

∧k(V ∗). In other words,
∧k(V ∗) = Ak(V ) [12, Remark 1.5, Definition 1.37]. Hence

the definition and properties of wedge product (or exterior product) stated in the previous report
[12, p. 6], like dimF (

∧p(V )) =
(
n
p

)
and

∧p(V ) = 0 for p > n where n = dimF (V ), hold here
also.

Definition A.8 (Antisymmetric tensor algebra). The graded algebra∧
(V ) =

n⊕
p=0

∧p
(V )

where dimF (V ) = n, is called antisymmetric tensor algebra or exterior algebra of V .

Proposition A.10. The exterior algebra of a direct sum is isomorphic to the tensor product of
the exterior algebras. That is, if V and W are vector spaces over a field F , then∧

(V ⊕W ) ∼=
∧

(V )⊗F
∧

(W )

This is a graded isomorphism; i.e.,∧k
(V ⊕W ) ∼=

⊕
p+q=k

∧p
(V )⊗F

∧q
(W )
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Proposition A.11. Complexification commutes with the operations of taking exterior powers.
That is, if V is a real vector space there is a natural isomorphism

(∧p
R V
)
C
∼=
∧p

C (VC), where
the left-hand exterior power is taken over R while the right-hand one is taken over C.

Remark A.12. If V is endowed with a complex structure J , then we introduce the notation∧p,q
V :=

∧p
(V 1,0)⊗C

∧q
(V 0,1)

where VC = V 1,0 ⊕ V 0,1 as shown in Proposition A.7. Hence we have∧k
VC ∼=

⊕
p+q=k

∧p,q
V

Definition A.9 (Natural projection). With respect to the direct sum decomposition of
∧
VC =⊕n

k=0

∧k VC one defines the natural projections

Πk :
∧

VC →
∧k

VC and Πp,q :
∧

VC →
∧p,q

V

Remark A.13. The operator Πk does not depend on the complex structure J , but the operator
Πp,q certainly do.
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Appendix B

Analysis

B.1 Several variable holomorphic functions

In this section some definitions and facts from [9, §I.A], [10, §1.1] and [13, §1.2] will be stated.

Definition B.1 (Open polydisc). An open polydisc or open polycylinder in Cn is a subset
∆(z; r) ⊂ Cn of the form

∆(z; r) = ∆(z1, . . . , zn; r1, . . . , rn) = {w ∈ Cn : |wj − zj | < rj , 1 ≤ j ≤ n}

Definition B.2 (Closed polydisc). The closure of ∆(z; r) is called the closed polydisc with
center z and polyradius r, and is denoted by ∆(z; r).

Remark B.1. The open polydiscs form a basis for the product topology on Cn. Considered
only as a topological space (or as a real vector space), Cn is the same as R2n, the ordinary
Euclidean space of 2n dimensions.

Definition B.3 (Several variable holomorphic function). A complex-valued function f defined
on an open subset U ⊂ Cn is called holomorphic in U if each point w = (w1, . . . , wn) ∈ U has
an open neighborhood W , w ∈W ⊂ U , such that the function f has a power series expansion

f(z) = f(z1, . . . , zn) =
∞∑

j1,...,jn=0

aj1...jn(z1 − w1)j1 · · · (zn − wn)jn

which converges for all z ∈W .

Remark B.2. The set of all complex-valued functions holomorphic in U is denoted by O(U).
Clearly, if f is holomorphic in U ⊂ Cn, then f is smooth in U , i.e. f ∈ O(U) implies that
f ∈ C∞(U).

Proposition B.1. If a complex-valued function f is holomorphic in an open subset U ⊂ Cn,
then it is continuous in U and is holomorphic in each variable separately.

Proof. The function f has a power series expansion of the form

f(z) = f(z1, . . . , zn) =
∞∑

j1,...,jn=0

aj1...jn(z1 − w1)j1 · · · (zn − wn)jn

which is absolutely uniformly convergent in all suitably small open polydiscs ∆(w; r) [3, The-
orem III.1.3]. Therefore, the function f is continuous in such polydiscs ∆(w; r), and hence
any function holomorphic in U is also continuous in U . Moreover, the power series can be
rearranged arbitrarily and will still represent the function f . In particular, if the coordinates
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z1, . . . , zj−1, zj+1, . . . , zn are given any fixed values a1, . . . , aj−1, aj+1, . . . , an, then this power
series can be rearranged as a convergent power series in the variable zj alone, for zj sufficiently
close to wj and each ak sufficiently close to zk for k = 1, . . . , j − 1, j + 1, . . . , n. Therefore,
the function f is holomorphic in each variable separately throughout the domain in which it is
analytic.

Definition B.4 (Complex partial differential operators). As in Definition 1.4, we define the
following two first-order linear partial differential operators

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
and

∂

∂zj
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
for zj = xj + iyj and j = 1, . . . , n.

Remark B.3. The previous result implies that the operation ∂/∂zj is well-defined for each
complex-valued holomorphic function. Therefore, when applied to holomorphic functions, the
operator ∂/∂zj coincides with the ordinary complex derivative with respect to one of the variables
zj . For example,

∂

∂zj
znj =

1

2

(
∂

∂xj
− i ∂

∂yj

)
(xj + iyj)

n

=
1

2

(
∂

∂xj
(xj + iyj)

n − i ∂
∂yj

(xj + iyj)
n

)
=

1

2

(
n(xj + iyj)

n−1 − i · n(xj + iyj)
n−1i

)
= n(xj + iyj)

n−1

= nzn−1
j

Proposition B.2 (Cauchy formula for polydisc). Let w ∈ Cn and f be a complex-valued
holomorphic function in an open neighborhood of a closed polydisc ∆(w; r). Then, for any
z ∈ ∆(w; r), it holds that

f(z) =
1

(2πi)n

∫
|ζn−wn|=rn

· · ·
∫

|ζ1−w1|=r1

f(ζ)dζ1 · · · dζn
(ζ1 − z1) · · · (ζn − zn)

Proof. From the previous result we know that f is holomorphic in each variable in an open
neighborhood of ∆(w; r). By repeated application of Cauchy integral formula for functions of
one variable leads to the formula

f(z) =
1

2πi

∫
|ζn−wn|=rn

f(z1, . . . , zn−1, ζn)

ζn − zn
dζn

=
1

(2πi)2

∫
|ζn−wn|=rn

dζn
ζn − zn

∫
|ζn−1−wn−1|=rn−1

f(z1, . . . , ζn−1, ζn)

ζn−1 − zn−1
dζn−1

...

...

=
1

(2πi)n

∫
|ζn−wn|=rn

dζn
ζn − zn

· · · · · ·
∫

|ζ1−w1|=r1

f(ζ1, . . . , ζn−1, ζn)

ζ1 − z1
dζ1
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for all z ∈ ∆(w; r). For any fixed point z = (z1, . . . , zn), from the the previous result, it follows
that this integrand is continuous on the compact domain of integration. Hence the iterated
integral can be replaced by a single multiple integral

f(z) =
1

(2πi)n

∫
|ζn−wn|=rn

· · ·
∫

|ζ1−w1|=r1

f(ζ)dζ1 · · · dζn
(ζ1 − z1) · · · (ζn − zn)

completing the proof.

Theorem B.1 (Osgood’s lemma). If a complex-valued function f is continuous in an open set
U ⊂ Cn and is holomorphic in each variable separately, then it is holomporphic in U .

Proof. Select any point w ∈ U and any closed polydisc ∆(w; r) ⊂ U . Since f is holomorphic in
each variable separately in an open neighborhood of ∆(w; r), a repeated application of Cauchy
integral formula leads to the formula

f(z) =
1

(2πi)n

∫
|ζ1−w1|=r1

dζ1

ζ1 − z1
· · · · · ·

∫
|ζn−wn|=rn

dζn
ζn − zn

f(ζ)

for all z ∈ ∆(w; r). For any fixed point z = (z1, . . . , zn), this integrand is continuous on the
compact domain of integration. Hence the iterated integral can be replaced by a single multiple
integral

f(z) =
1

(2πi)n

∫
|ζ1−w1|=r1

· · ·
∫

|ζn−wn|=rn

f(ζ)dζ1 · · · dζn
(ζ1 − z1) · · · (ζn − zn)

(B.1)

Note that |zj − wj | < |ζj − wj | for all j = 1, . . . , n. Therefore, we have

∞∑
k=0

(
zj − wj
ζj − wj

)k
=

1

1− zj−wj
ζj−wj

=
ζj − wj
ζj − zj

∀j = 1, . . . , n

Hence for a fixed z ∈ ∆(w; r), we have the following absolutely uniformly convergent series
expansion for all points ζ on the domain of integration

1

(ζ1 − z1) · · · (ζn − zn)
=

∞∑
k1,...,kn=0

(z1 − w1)k1 · · · (zn − wn)kn

(ζ1 − w1)k1+1 · · · (ζn − wn)kn+1
(B.2)

Using (B.2) in (B.1), and interchanging the orders of summation and integration, we get the
power series expansion of f

f(z) =
1

(2πi)n

∫
|ζ1−w1|=r1

· · ·
∫

|ζn−wn|=rn

f(ζ)dζ1 · · · dζn
∞∑

k1,...,kn=0

(z1 − w1)k1 · · · (zn − wn)kn

(ζ1 − w1)k1+1 · · · (ζn − wn)kn+1

=
∞∑

k1,...,kn=0

ak1...kn(z1 − w1)k1 · · · (zn − wn)kn

where ak1...kn =
1

(2πi)n

∫
|ζ1−w1|=r1

· · ·
∫

|ζn−wn|=rn

f(ζ)dζ1 · · · dζn
(ζ1 − w1)k1+1 · · · (ζn − wn)kn+1

Therefore, f is a holomorphic function in U .

Remark B.4. The hypothesis that the function f be continuous in U is not required, i.e.
Goursat’s theorem [3, §IV.8] can be generalized to several variables. However, this stronger
result, called Hartogs’s theorem, is much more difficult to prove [13, Theorem 1.2.5].
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Corollary B.1. The power series expansion of a holomorphic function f : U → C at w ∈ U ⊂
Cn is uniquely determined by that function and it converges within the polydisc ∆(w; r) contained
in U .

Proof. By differentiating (B.1) it follows that

∂k1+···+knf(z)

∂zk11 · · · ∂z
kn
n

=
k1! · · · kn!

(2πi)n

∫
|ζ1−w1|=r1

· · ·
∫

|ζn−wn|=rn

f(ζ)dζ1 · · · dζn
(ζ1 − z1)k1+1 · · · (ζn − zn)kn+1

Comparing this with the final statement of the above theorem, we get

ak1...kn =
1

k1! · · · kn!

∂k1+···+knf(w)

∂wk11 · · · ∂w
kn
n

Therefore, all the power series expansion convergent within any fixed compact subset of ∆(w; r)
must coincide.

Theorem B.2 (Cauchy-Riemann criterion). A complex-valued smooth1 function f defined in
an open subset U ⊂ Cn is holomorphic in U if and only if it satisfies the system of partial
differential equations

∂

∂zj
f(z) = 0, ∀ j = 1, . . . , n

Proof. At any point in U , we consider f(z) to be a function of the single variable zj , holding
the other variables constant. Next, we decompose f into its real and imaginary parts by writing
f(z) = u(z) + iv(z), and observe that

∂

∂zj
f(z) =

1

2

(
∂

∂xj
+ i

∂

∂yj

)
(u(z) + iv(z)) =

1

2

(
∂u

∂xj
− ∂v

∂yj

)
+
i

2

(
∂u

∂yj
+

∂v

∂xj

)
Therefore, ∂f(z)/∂zj = 0, for all j = 1, . . . , n is equivalent to the classical Cauchy-Riemann
equations for each variable separately. This is equivalent to the function f being holomorphic in
each variable separately. The desired result follows from Proposition B.1 and Theorem B.1.

Remark B.5. The transition from the real partial differentials to the complex partial differen-
tials can be illustrated for the simplest case. For some open set U ⊂ C = R2, consider the differ-
entiable map f : U → R2 such that f(x, y) = (u(x, y), v(x, y)). Then the total derivative2 Df(w)
at point w = (r, s) ∈ U is a R-linear map between tangent spaces Df(w) : TwR2 → Tf(w)R2.
With respect to the standard basis we get the real Jacobian matrix

Df(w) =


∂u

∂x

∣∣∣∣
w

∂u

∂y

∣∣∣∣
w

∂v

∂x

∣∣∣∣
w

∂v

∂y

∣∣∣∣
w


Next, we extend Df(w) to a C-linear map D̃f(w) : TwR2 ⊗R C→ Tf(w)R2 ⊗R C. If we consider
f = u+ iv and z = x+ iy, then with respect to the new basis we get the complexified Jacobian
matrix

D̃f(w) =


∂f

∂z

∣∣∣∣
w

∂f

∂z

∣∣∣∣
w

∂f

∂z

∣∣∣∣
w

∂f

∂z

∣∣∣∣
w

 =


∂f

∂z

∣∣∣∣
w

∂f

∂z

∣∣∣∣
w(

∂f

∂z

∣∣∣∣
w

) (
∂f

∂z

∣∣∣∣
w

)


1That is, continuously differentiable in the underlying real coordinates of Cn. In other words, f ∈ C∞(U).
2This was called pushforward of a vector in the previous report [12, Definition 1.5].
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Therefore, if f is holomorphic, then the differential in the new base system is given by the
diagonal matrix 

∂f

∂z

∣∣∣∣
w

0

0
∂f

∂z

∣∣∣∣
w


Proposition B.3. Let U be an open set in Cn. Then:

1. O(U) is a ring under the operations (f + g)(z) = f(z) + g(z) and (fg)(z) = f(z)g(z).

2. If f ∈ O(U) and is nowhere vanishing, then 1/f ∈ O(U)

3. If f ∈ O(U) and is real-valued or has constant modulus, then f is constant.

Theorem B.3 (Identity theorem). Let U be a connected open set in Cn and f, g ∈ O(U). If
f(z) = g(z) for all points z in an open subset V ⊂ U , then f(z) = g(z) for all points z ∈ U .

Proof. This is a straight-forward generalization of the single-variable identity theorem, see [9,
Theorem I.A.6] for the proof.

Theorem B.4 (Hartogs’s extension theorem). Let U ⊂ Cn for n > 1 be a bounded open set and
K be a compact subset U with the property that U \ K is connected. If f is a complex-valued
holomorphic function on U \K, then there is a unique complex-valued holomorphic function F
on U such that F |U\K = f .

Proof. The proof involves a typical ∂-argument as seen in the proof of ∂-Poincaré lemma, see
[13, Theorem 1.2.6] and [19, §2.2].

Remark B.6. This extension does not hold when n = 1. For example, consider the function
f(z) = 1/z, which is clearly holomorphic in C \ {0}, but cannot be continued as a holomorphic
function on the whole C.

This extension also does not hold when U \K is not connected. For example, consider the
open ball U = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1} and the compact set K = {(z1, z2) ∈ C2 :
|z1|2 + |z2|2 = 1/2}. Then U \K = U1 ∪ U2 where

U1 := {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1/2}
U2 := {(z1, z2) ∈ C2 : 1/2 < |z1|2 + |z2|2 < 1}

such that U1 ∩ U2 = ∅. Now consider the holomorphic function f defined on U \K as

f(z) =

{
0 if z ∈ U1

1 if z ∈ U2

But this clearly can’t be extended to a holomorphic function on U .

B.2 Algebraic properties of Ow
In this section some definitions and facts from [13, §6.4], [9, §II.A, II.B] and [10, §1.1] will be
stated.

Definition B.5 (Ring of germs of holomorphic functions). For w ∈ Cn, consider the set

Ow := {(U, f)|w ∈ U ⊂ Cnopen , f ∈ O(U)}/ ∼

where (U, f) ∼ (V, g) if ∃W open, w ∈ W such that W ⊂ V ∩ U and f |W = g|W . The
representative function of an equivalence class is called a germ of holomorhic functions at w and
Ow is called the ring of germs of holomorphic functions at w ∈ Cn with the following operations:
[(U, f)] + [(V, g)] := [(U ∩ V, f + g)] and [(U, f)] · [(V, g)] := [(U ∩ V, fg)].
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Remark B.7. The ring Ow is a commutative ring with an identity element. The zero of this
ring is the germ of the function which vanishes identically, and the identity of the ring is the
germ of the function which is identically one.

Lemma B.1. Ow is an integral domain.

Proof. Consider two arbitrary germs [(U, f)] and [(V, g)] such that

[(U, f)] · [(V, g)] = [(U ∩ V, fg)] = [(W, 0)]

for some open neighborhoodW of w. Hence f(z)g(z) = 0 in some connected open neighborhood
W ′ ⊂W ∩V ∩U of w. If f(z0) 6= 0 for a single point z0 ∈W ′, then by continuity f(z) 6= 0 in an
open neighborhood of z0 and therefore g(z) = 0 in that open neighborhood. By Theorem B.3,
therefore, it follows that g(z) = 0 in W ′, hence that (V, g) ∼ (W ′, 0).

Lemma B.2. A germ [(U, f)] ∈ Ow is a unit if and only if f(w) 6= 0.

Proof. We need to show that the multiplicative inverse of [(U, f)] exists if and only if f does
not vanish at w. Suppose that [(U, f)] ∈ Ow such f(w) 6= 0. By continuity, f(z) 6= 0 in an open
neighborhood V ⊂ U of w; and hence 1/f(z) is continuous in V and is holomorphic in each
variable separately in V . An application of Proposition B.3(2) shows that 1/f(z) is holomorphic
in V , hence [(V, 1/f)] ∈ Ow.

Lemma B.3. Ow is a local ring.

Proof. Since a germ [(U, f)] is a unit if and only if f(w) 6= 0, any proper ideal a of Ow consists
only of germs which vanish at w. So the unique maximal ideal in Ow is

m := {[(U, f)] ∈ Ow|f(w) = 0}

Therefore, Ow is a local ring.

Definition B.6 (Order of a holomorphic function). Let f be a holomorphic function in a
neighborhood of w in Cn such that

f(z) = f(z1, . . . , zn) =

∞∑
j1,...,jn=0

aj1...jn(z1 − w1)j1 · · · (zn − wn)jn

Then the order of f is defined to be the least value of j1 + . . .+ jn for which aj1...jn 6= 0, i.e.

ord(f) := min{j1 + . . .+ jn|aj1...jn 6= 0}

Remark B.8. If ord(f) = k, then there exists a non-singular linear change of coordinates so
that in the new coordinates, the coefficient of zkn is 1. When f is of this form it is said to be
normalized (with respect to the variable zn) of order k.

Definition B.7 (Weierstrass polynomial). A function W , holomorphic in a neighborhood of
w ∈ Cn is called a Weierstrass polynomial of degree m, if we have

W (z1, . . . , zn) = W (z′, zn) = zmn + am−1(z′)zm−1
n + . . .+ a1(z′)zn + a0(z′)

where z′ = (z1, . . . , zn−1) and aj are holomorphic functions in a neighborhood of
w′ = (w1, . . . , wn−1) ∈ Cn−1 and aj(0) = 0 for j = 0, . . . ,m− 1.

Remark B.9. If we denote the ring of germs of holomorphic functions in the variables
z1, . . . , zn−1 by Ow′ , then3 the Weierstrass polynomial W ∈ Ow′ [zn] such that the coefficients
are non-unit elements of Ow′ . Note that Ow′ ⊂ Ow′ [zn] ⊂ Ow.

3From now onwards we will abuse the notation for germs, i.e. instead of writing [(U, f)] ∈ Ow we will simply
write f ∈ Ow such that f is an holomorphic function in an open neighborhood of w.
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Theorem B.5 (Weierstrass preparation theorem). Let f be a normalized holomorphic function
of order k in a neighborhood of w ∈ Cn. Then in a small neighborhood of w, f can be written
uniquely as

f(z) = u(z) ·W (z)

where u ∈ Ow is a unit and W ∈ Ow′ [zn] is a Weierstrass polynomial of degree k.

Proof. To prove this we will need Hartogs’s extension theorem [13, Theorem 6.4.5] or Riemann
extension theorem [9, Theorem II.B.2].

Theorem B.6 (Weierstrass division theorem). Let W ∈ Ow′ [zn] be a Weierstrass polynomial in
zn of degree k. Then any f ∈ Ow can be written in a unique manner in the form f = g ·W + r,
for some g ∈ Ow and r ∈ Ow′ [zn] a polynomial of degree less than k. Moreover, if f ∈ Ow′ [zn]
then necessarily g ∈ Ow′ [zn].

Proof. For a proof, see [9, Theorem II.B.3].

Lemma B.4. A Weierstrass polynomial W ∈ Ow′ [zn] is reducible over Ow if and only if it
is reducible over Ow′ [zn]. Moreover, if W is reducible, then all of its non-unit factors are
Weierstrass polynomials of Ow′ [zn].

Proof. (⇒) Suppose that W is reducible over Ow, and write W = f1f2 for some non-units
f1, f2 ∈ Ow. Since W is a Weierstrass polynomial, it is normalized and hence both f1 and f2

are also normalized. Applying Theorem B.5, we get f1 = u1W1 and f2 = u2W2 for some units
u1, u1 ∈ Ow and Weierstrass polynomials W1,W2 ∈ Ow′ [zn]. Thus W = (u1u2)(W1W2). But
since W1W2 is also a Weierstrass polynomial, the uniqueness part of the Theorem B.5 implies
that4 u1u1 = 1 and W1W2 = W . Therefore W is reducible in the ring of polynomials Ow′ [zn]
as well, and its factors are Weierstrass polynomials.

(⇐) Suppose that W is reducible over Ow′ [zn], and write W = g1g2 for some non-units
g1, g2 ∈ Ow′ [zn]. If g1 was a unit in Ow, then W/g1 = g2 and by the application of Theorem B.6
it would follow that 1/g1 ∈ Ow′ [zn]. This is impossible, since g1 is a non-unit element of Ow′ [zn].
Therefore g1 is a non-unit element of Ow. Similarly, g2 is non-unit element of Ow. Therefore,
W is reducible in Ow as well.

Theorem B.7. The local ring Ow is a unique factorization domain.

Proof. Note that for any fixed point w ∈ Cn the linear change of variable ζj = zj −wj induces a
canonical isomorphism between the rings Ow and O0. Hence, for the local theory, it is sufficient
to consider only the ring O0 for 0 ∈ Cn. We will proceed by induction on n.

For n = 1, the theorem is trivial: if f ∈ O0 has order k then f(z) = zkg(z) where g(0) 6= 0,
so that g is a unit in O0.

Let On−1
0 denote the ring of germs of holomorphic functions at 0 ∈ Cn−1. We will continue

the abuse of notations by writing g ∈ On−1
0 instead of [(U, g)] ∈ On−1

0 . Now assume that the
result is true for n − 1, i.e. On−1

0 is a unique factorization domain. Let f ∈ On0 . Without loss
of generality, we can assume that f is normalized of order k. Then by Theorem B.5 we have
f = u ·W , where W ∈ On−1

0 [zn]. From Gauss Lemma5 it follows that On−1
0 [zn] is a unique

factorization domain, and W = W1 · · ·Wm where Wj ∈ On−1
0 [zn] are irreducible elements. By

Lemma B.4, it follows that the Wj ’s are Weierstrass polynomials. Therefore, f = u ·W1 · · ·Wm.
If f could also be written as f = V1 · · ·V`, then we apply Theorem B.5 to each Vj ∈ On0 to obtain
Vj = u′j ·W ′j , that is, f = u′ ·W ′1 · · ·W ′`, where u′ is a unit and W ′j ∈ O

n−1
0 [zn] are Weierstrass

4Here again we are abusing notations. Actually, the constant function 1 and u1u2 will represent the same
equivalence class in Ow, and W1W2 and W will represent same equivalence class in Ow′ [zn]. That is, in some
small enough neighborhood of w, all these equalities, like W = f1f2, will hold.

5It implies that R is a unique factorization domain if and only if R[x] is a unique factorization domain. For
proof, see Theorem 9.3.7 on p. 304 of Dummit and Foote’s book “Abstract Algebra”.
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polynomials. Since there is only one way to write f as a unit times a Weierstrass polynomial,
we conclude that

W1 · · ·Wm = W ′1 · · ·W ′`
By induction hypothesis On−1

0 [zn] is a unique factorization domain, and hence {W1, . . . ,Wm} =
{W ′1, . . . ,W ′`}.

B.3 Several variable holomorphic mappings

In this section some definitions and facts from [9, §I.A, I.B], [10, §1.1] and [6, §I.7] will be stated.

Definition B.8 (Several varaible holomorphic mapping). Let U ⊂ Cn be an open set, and
g : U → Cm be any mapping such that

g(z) = g(z1, . . . , zn) = (g1(z), . . . , gm(z))

where gj : U → C for all j = 1, . . . ,m. The mapping g is called a holomorphic mapping if the
m complex-valued functions g1, . . . , gm are holomorphic in U .

Proposition B.4 (Chain rule). Let U ⊂ Cn and V ⊂ Cm be open subsets. If g : U → V is a
holomorphic mapping and f : V → C is a holomorphic function, then

∂(f ◦ g)

∂zj
=

m∑
k=1

(
∂f

∂wk

∂gk
∂zj

+
∂f

∂wk

∂gk
∂zj

)
and

∂(f ◦ g)

∂zj
=

m∑
k=1

(
∂f

∂wk

∂gk
∂zj

+
∂f

∂wk

∂gk
∂zj

)
where wk = gk(z1, . . . , zn) for k = 1, . . . ,m.

Proof. We have the following composite maps

U V C

(z1, . . . , zn) (w1, . . . , wm) f(w)

g f

where wk = gk(z1, . . . , zn) for k = 1, . . . ,m. We can separate each gk into real and imaginary
parts by writing gk(z) = uk(z) + ivk(z). Since all the functions involved are differentiable in the
underlying real coordinates, the usual chain rule for differentiation can be applied as follows:

∂(f ◦ g)

∂zj
=

m∑
k=1

(
∂f

∂uk

∂uk
∂zj

+
∂f

∂vk

∂vk
∂zj

)

=

m∑
k=1

1

2

(
∂f

∂uk
− i ∂f

∂vk

)
∂gk
∂zj

+

m∑
k=1

1

2

(
∂f

∂uk
+ i

∂f

∂vk

)
∂gk
∂zj

=

m∑
k=1

(
∂f

∂wk

∂gk
∂zj

+
∂f

∂wk

∂gk
∂zj

)
Similarly we can prove for ∂/∂z.

Corollary B.2. Let U ⊂ Cn and V ⊂ Cm be open subsets. If g : U → V is a holomorphic
mapping and f : V → C is a holomorphic function, then the composition f ◦ g ∈ O(U).

Definition B.9 (Several complex variables biholomorphic mapping). Let U, V ⊂ Cn be two
open sets. A holomorphic mapping f : U → V is called biholomorphic if it is bijective and its
inverse f−1 : V → U is also holomorphic.
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Definition B.10 (Jacobian matrix of a holomorphic mapping). Let g : U → Cm be a holomor-
phic mapping, where U is an open subset of Cn. The Jacobian matrix of the mapping g at a
point w ∈ U is defined to be the matrix

Jac(g)(w) :=

[
∂gj

∂zk

∣∣∣∣
w

]
1≤j≤m
1≤k≤n

Remark B.10. This Jacobian matrix is also related to the complexified Jacobian matrix for
total derivative discussed in Remark B.5. For some open set U ⊂ Cn = R2n, consider the
differentiable map f : U → Cm = R2m such that

g(z) = g(z1, . . . , zn) = g(x, y) =
(
u1(x, y), . . . , um(x, y), v1(x, y), vm(x, y)

)
where x = (x1, . . . , xn), y = (y1, . . . , yn). Then the total derivativeDg(z) at point w = (r, s) ∈ U
is a R-linear map between tangent spaces Dg(w) : TwR2n → Tf(w)R2m. With respect to the
standard basis we get the real Jacobian matrix

Dg(w) =


[
∂uj

∂xk

∣∣∣∣
w

]
j,k

[
∂uj

∂yk

∣∣∣∣
w

]
j,k[

∂vj

∂xk

∣∣∣∣
w

]
j,k

[
∂vj

∂xk

∣∣∣∣
w

]
j,k


Next, we extend Dg(w) to a C-linear map D̃g(w) : TwR2n⊗RC→ Tf(w)R2m⊗RC. If we consider
gj = uj + ivj for all j = 1, . . . ,m and zk = xk + iyk for k = 1, . . . , n, then with respect to the
new basis we get the complexified Jacobian matrix

D̃g(w) =


[
∂gj

∂zk

∣∣∣∣
w

]
j,k

[
∂gj

∂zk

∣∣∣∣
w

]
j,k[

∂gj

∂zk

∣∣∣∣
w

]
j,k

[
∂gj

∂zk

∣∣∣∣
w

]
j,k


Therefore, if g is holomorphic, then the differential in the new base system is given by the
diagonal matrix [

Jac(g)(w) 0

0 Jac(g)(w)

]
In particular, for a holomorphic function g we have

det (Dg(w)) = det (Jac(g)(w)) det
(

Jac(g)(w)
)

= |det (Jac(g)(w))|2 ≥ 0

Proposition B.5. Let g : U → V be a bijective holomorphic map between two open subsets U
and V of Cn. Then Jac(g)(w) 6= 0 for all w ∈ U . In particular, g is biholomorphic.

Proof. The proof involves the use of Implicit Function Theorem6. For complete proof, see [10,
Proposition 1.1.13].

Remark B.11. Recall that the product topology on Cn = R2n is equivalent to the metric
topology, i.e. topology generated by open polydiscs is same as the one generated by open balls.
Next, observe that the unit open ball B(0, 1) and unit open polydisc ∆(0; 1) are diffeomorphic:

6For the exact statement and proof, see [9, Theorem I.B.5], [10, Proposition 1.1.11] and [6, Theorem I.7.6].
The proof of the implicit function theorem is a special case of the Weierstrass preparation theorem, discussed in
the previous section.
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1. B(0, 1) is diffeomorphic to R2n and the diffeomorphism is given by the map

φ : B(0, 1)→ R2n

x 7→ x√
1− ‖x‖2

2. If g : (−1, 1)→ R is any diffeomorphism, then

ψ : ∆(0; 1)→ R2n

(x1, . . . , x2n) 7→ (g(x1), . . . , g(x2n))

is a smooth map with smooth inverse. Hence ∆(0; 1) is also diffeomorphic to R2n.

However, they are not biholomorphic for n > 1 [13, §0.3.2].
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Appendix C

Topology

In this appendix, for the sake of completeness, the proofs of a few simple standard results1 for
Cn have been discussed.

Lemma C.1. If U is an open set in C, then there exists a sequence {Kn} of compact subsets
of U such that

1. Kn ⊂ int(Kn+1) for each n;

2.
⋃
n∈N

int(Kn) = U ; and

3. each bounded component of the complement of Kn contains a point of the complement of
U .

Proof. For each n ∈ N, define the open set,

Vn := ∆(∞;n) ∪
⋃

z∈C\U

∆

(
z;

1

n

)

where ∆(z; 1
n) = {w ∈ C : |z − w| < 1

n}, and ∆(∞, n) = {w ∈ C : |w| > n} is the “disk at ∞”.
Then we define

Kn := C \ Vn
which is a closed and bounded (hence compact2) subset of U for all n. Now we will verify the
three desired properties:

1. If z ∈ Kn and r = 1
n −

1
n+1 , then ∆(z; r) ⊂ Kn+1. The interior of Kn+1 is, by definition,

the largest open subset of Kn+1. Therefore, Kn ⊂
⋃
z∈Kn ∆(z; r) ⊂ int(Kn+1).

2. As n → ∞ we get Vn → C \ U . Therefore,
⋃
n∈N

Kn = U . Now since Kn ⊂ int(Kn+1), we

have
⋃
n∈N

int(Kn) = U .

3. We need to show that every bounded connected component C of Vn meets C\U . To prove
this, pick a w ∈ C. Note that w, being an element of Vn, must be contained in ∆(z; 1

n)
for some z ∈ C \ U or in ∆(∞;n). Since C is bounded, we have3 w ∈ ∆(z; 1

n) for some
z ∈ C \ U . Observe that C ∪ ∆(z; 1

n) is a connected subset of Vn, since it is the union
of two connected open subsets of Vn with non-empty intersection. Since C is a connected
component of Vn, we know that C is a maximal connected set of Vn. Therefore, ∆(z, 1

n)
must be contained in C. Hence C contains z, which is in C \ U .

1These results are also true for Rn.
2Note that Kn can be empty also.
3If C \ U 6= ∅ then there is no bounded component of Vn to begin with.
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Remark C.1. We can’t guarantee that the third property will hold for an unbounded compo-
nent, unless we replace C by the Riemann sphere4 C∪ {∞}. For example, if U = {z ∈ C : |z| >
1/2} then for n = 1 the unbounded connected component C = ∆(∞; 1) doesn’t intersect with
C \ U .

Lemma C.2. Let K be a compact subset of an open set U ⊂ Cn. Then there exists a real-valued
smooth function F (z) in Cn such that

1. 0 ≤ F (z) ≤ 1 for all z ∈ Cn;

2. F (z) = 1 for z ∈ K; and

3. F (z) = 0 for z ∈ Cn \ U .

Proof. Consider the following smooth5 function defined on R:

h(x) =

{
e
−1

(x−r) e
−1

(x−R) for r < x < R

0 otherwise

Consequently the function defined as6

g(x) =

∫ R
x
h(t) dt∫ R

r
h(t) dt

is a smooth function such that

1. 0 ≤ g(x) ≤ 1 for all x ∈ R;

2. g(x) = 1 for x ≤ r; and

3. g(x) = 0 for x ≥ R.

Next, consider the special case in which K is a closed ball of radius r centered at origin, and U
is an open ball of radius R > r, i.e.

K = {z ∈ Cn : |z| ≤ r} and U = {z ∈ Cn : |z| < R}

Then for z = (z1, . . . , zn) ∈ Cn, the function

f(z) = g(‖z‖) = g
(√
|z1|2 + · · ·+ |zn|2

)
satisfies the required conditions

1. 0 ≤ f(z) ≤ 1 for all z ∈ Cn;

2. f(z) = 1 for ‖z‖ ≤ r; and

3. f(z) = 0 for ‖z‖ ≥ R.
4The same construction works for the case of Riemann sphere. In fact we can prove a stronger statement: for

each n ∈ N, every connected component of C ∪ {∞} \Kn contains a connected component of C ∪ {∞} \ U . For
details, see [3, Proposition VII.1.2], there this theorem is used to prove Runge’s theorem.

5This is a standard exercise in real analysis, for example, see Problem 1.2 of Loring Tu’s book “An Introduction
to Manifolds.”

6The same construction can be used for bump functions on smooth manifolds, see Lemma 2.1.8 of Amiya
Mukherjee’s book “Differential Topology.”
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Now for the general case, select a finite number of pairs of concentric balls Kj ⊂ Uj such that
K ⊂

⋃
Kj and Uj ⊂ U . Let fj(z) be the functions satisfying the desired conditions on these

pairs of balls, as constructed for the special case. Then the function

F (z) = 1−
∏
j

(1− fj(z))

is the desired function, hence completing the proof.

Theorem C.1. Let {Uα}α∈A be an open cover of an open subset U ⊂ Cn, then there is a
smooth partition of unity {ψk}∞k=1 with every ψk having compact support such that for each k,
supp(ψk) ⊂ Uα for some α ∈ A.

Proof. Since any open subset U ⊂ Cn is paracompact, every open covering {Uα} has a locally
finite refinement {Vk}. Then the smooth partition of unity {ψk} of U subordinate to {Vk} will
have compact support. For details, see [9, Appendix A].

Remark C.2. This result was also used in the previous report [12, Theorem XIII]. However,
there we didn’t require the support to be compact.
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