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Complex manifold

Complex manifold

A complex manifold M of dimension n is a smooth manifold of
dimension 2n equipped with a holomorphic structure, i.e. if M is
covered by open sets Uα which are diffeomorphic via maps called φα
to open sets in Cn, then the transition diffeomorphisms

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ)

are holomorphic for all α, β.

Complex local coordinates

Let w ∈ M be a point. If (U, φ) is a chart of M with w ∈ U, then

φ : U → Cn

w 7→ (z1(w), . . . , zn(w))

where zj : U → C for j = 1, . . . , n are called local coordinates at w .
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Real tangent space

Real tangent space

Consider the complex manifold M of dimension n as a smooth
manifold of dimension 2n. Then for w ∈ M we define the real
tangent space of M at the point w as the real vector space of
R-linear derivations on the ring of real-valued smooth functions in a
neighborhood of w , i.e.

Tw ,RM = {Xw : C∞w (M)→ R | Xw (fg) = Xw (f )g(w) + f (w)Xw (g)}

If we write the local coordinates around w ∈ M as zj = xj + iyj , then
a canonical basis of Tw ,RM is given by the tangent vectors{

∂

∂x1

∣∣∣∣
w

, · · · , ∂

∂xn

∣∣∣∣
w

,
∂

∂y1

∣∣∣∣
w

, · · · , ∂

∂yn

∣∣∣∣
w

}
Clearly, dimR(Tw ,RM) = 2n as seen in the case of smooth manifolds.
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Complexified tangent space

Complexified tangent space

If M is a complex manifold, then we define the complexified tangent
space of M at the point w to be the complexification of the real
tangent space of M at w

Tw ,CM = Tw ,RM ⊗R C

We can view Tw ,CM as the complex vector space of C-linear
derivations in the ring of complex-valued smooth functions in a
neighborhood of w . Using the canonical basis of real tangent space
we can define its complexification as the complex vector space with
the basis {

∂

∂x1

∣∣∣∣
w

, · · · , ∂

∂xn

∣∣∣∣
w

,
∂

∂y1

∣∣∣∣
w

, · · · , ∂

∂yn

∣∣∣∣
w

}
Hence, as expected, we have dimR(Tw ,RM) = dimC(Tw ,CM).
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Almost complex structure

Almost complex structure

An almost complex structure on a smooth manifold M is a vector
bundle endomorphism J of (real) tangent bundle TM, such that
J2 = −1TM , i.e. for all w ∈ M, the linear map Jw : TwM → TwM is
a linear complex structure for TwM.

A complex manifold M induces an almost complex structure on its
underlying smooth manifold, defined on the basis as

Jw : Tw ,RM → Tw ,RM

∂

∂xj

∣∣∣∣
w

7→ ∂

∂yj

∣∣∣∣
w

∂

∂yj

∣∣∣∣
w

7→ − ∂

∂xj

∣∣∣∣
w

We will regard this J as a vector bundle endomorphism of the real
vector bundle TRM over M.
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Almost complex structure

Proposition

The complexified tangent bundle TCM = TRM ⊗R C decomposes as
a direct sum of complex vector bundles

TCM = (TRM)1,0 ⊕ (TRM)0,1

where

(TRM)1,0 = {X ∈ TCM : (J ⊗ 1C)(X ) = i · X} and

(TRM)0,1 = {X ∈ TCM : (J ⊗ 1C)(X ) = −i · X}

Note that, we have(
∂

∂xj
− i

∂

∂yj

)
∈ (TRM)1,0 and

(
∂

∂xj
+ i

∂

∂yj

)
∈ (TRM)0,1
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isomorphism

Introduction

The proof

Applications

Almost complex structure

Proposition

The complexified tangent bundle TCM = TRM ⊗R C decomposes as
a direct sum of complex vector bundles

TCM = (TRM)1,0 ⊕ (TRM)0,1

where

(TRM)1,0 = {X ∈ TCM : (J ⊗ 1C)(X ) = i · X} and

(TRM)0,1 = {X ∈ TCM : (J ⊗ 1C)(X ) = −i · X}

Note that, we have(
∂

∂xj
− i

∂

∂yj

)
∈ (TRM)1,0 and

(
∂

∂xj
+ i

∂

∂yj

)
∈ (TRM)0,1



Sheaf Theory
and Complex

Geometry

Gaurish Korpal

Complex
manifolds

Introduction

Tangent space

Cotangent space

Differential forms

Introduction

Exterior derivative

Dolbeault
cohomology

Introduction

Properties

Dolbeault-Čech
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Almost complex structure

Next, observe that

∂

∂xj
=

1

2

(
∂

∂xj
− i

∂

∂yj

)
+

1

2

(
∂

∂xj
+ i

∂

∂yj

)
∂

∂yj
=

i

2

(
∂

∂xj
− i

∂

∂yj

)
− i

2

(
∂

∂xj
+ i

∂

∂yj

)
We define the following operators:

Complex partial derivative

∂

∂zj
:=

1

2

(
∂

∂xj
− i

∂

∂yj

)
and

∂

∂z j
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
for j = 1, . . . , n.
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Holomorphic and antiholomorphic tangent bundle

Hence we can say that
{

∂
∂z1

∣∣
w
, . . . , ∂

∂zn

∣∣
w

}
is a basis for the complex

vector space (Tw ,RM)1,0 and
{

∂
∂z1

∣∣
w
, . . . , ∂

∂zn

∣∣
w

}
is a basis for the

complex vector space (Tw ,RM)0,1.

Holomorphic tangent bundle

The complex vector bundle (TRM)1,0 is called holomorphic tangent
bundle of M.

Antiholomorphic tangent bundle

The complex vector bundle (TRM)0,1 is called antiholomorphic
tangent bundle of M.

Therefore, the following also forms a basis of Tw ,CM{
∂

∂z1

∣∣∣∣
w

, . . . ,
∂

∂zn

∣∣∣∣
w

,
∂

∂z1

∣∣∣∣
w

, . . . ,
∂

∂zn

∣∣∣∣
w

}
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Real cotangent space

Real cotangent space

Consider the complex manifold M of dimension n as a smooth
manifold of dimension 2n. Then for w ∈ M we define the real
cotangent space of M at the point w as dual space of the real vector
space Tw ,RM, i.e.

T ∗w ,RM = HomR(Tw ,RM,R)

If we write the local coordinates around w ∈ M as zj = xj + iyj , then
a canonical basis of T ∗w ,RM is given by the cotangent vectors{

dx1

∣∣
w
, · · · , dxn

∣∣
w
, dy1

∣∣
w
, · · · , dyn

∣∣
w

}
Clearly, dimR(T ∗w ,RM) = 2n as seen in the case of smooth manifolds.
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Complexified cotangent space

Complexified cotangent space

If M is a complex manifold, then we defined the complexified
cotangent space of M at the point w to be the complexification of
real cotangent space

T ∗w ,CM = T ∗w ,RM ⊗R C

We can also use the canonical basis of real cotangent space to define
its complexification. Therefore, T ∗w ,CM is the complex vector space
with the basis {

dx1

∣∣
w
, · · · , dxn

∣∣
w
, dy1

∣∣
w
, · · · , dyn

∣∣
w

}
Hence, as expected, we have dimR(T ∗w ,RM) = dimC(T ∗w ,CM).
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Almost complex structure

We get the linear complex structure Jw on T ∗w ,RM from the linear
complex structure Jw on Tw ,RM as:

Jw (τw )(Xw ) = τw (Jw (Xw )) ∀τw ∈ T ∗w ,RM,Xw ∈ Tw ,RM

We will regard this J as a vector bundle endomorphism of the
smooth vector bundle T ∗RU over U.

Proposition

The complexified cotangent bundle T ∗CM = T ∗RM ⊗R C decomposes
as a direct sum of complex vector bundles

T ∗CM = (T ∗RM)1,0 ⊕ (T ∗RM)0,1

where

(T ∗RM)1,0 = {τ ∈ T ∗CM | (J ⊗ 1C)(τ) = i · τ} and

(T ∗RM)0,1 = {τ ∈ T ∗CM | (J ⊗ 1C)(τ) = −i · τ}
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Almost complex structure

Recall that if V is a real vector space, and VC = V ⊗R C is its
complexification. Then we have (V ∗)C ∼= HomR(V ,C) ∼= (VC)∗.
Using this, we can prove that (T ∗RM)1,0 ∼=

(
(TRM)1,0

)∗
and

(T ∗RM)0,1 ∼=
(
(TRM)0,1

)∗
.

Hence we can obtain basis for T ∗w ,CM by defining the dual basis of

(Tw ,RM)1,0 and (Tw ,RM)0,1.

Complex differential

dzj := dxj + i dyj and dz j := dxj − i dyj

for j = 1, . . . , n.

We can say that
{

dzj
∣∣
w

}n
j=1

is a basis for the complex vector space

(T ∗w ,RM)1,0 and
{

dz j
∣∣
w

}n
j=1

is a basis for the complex vector space

(T ∗w ,RM)0,1. The following forms a basis of T ∗w ,CM{
dz1

∣∣
w
, . . . , dzn

∣∣
w
, dz1

∣∣
w
, . . . , dzn

∣∣
w

}
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Differential forms



Sheaf Theory
and Complex

Geometry

Gaurish Korpal

Complex
manifolds

Introduction

Tangent space

Cotangent space

Differential forms

Introduction

Exterior derivative

Dolbeault
cohomology

Introduction

Properties

Dolbeault-Čech
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Differential k-form

Differential k-form

Let M be a complex manifold of dimension n. The smooth sections
of rank

(
n
k

)
complex vector bundle

∧k T ∗CM are called differential
k-forms on M. The space of all k-forms on M is denoted by Ωk

C(M).

Let (U, φ) = (U, z1, . . . , zn) be a coordinate chart on M, then any
element ω ∈ Ω1

C(U) can be written uniquely as

ω =
n∑

j=1

fj dzj +
n∑

k=1

gk dzk

where fj , gk are complex valued smooth functions.
Also, if ω ∈ Ωr

C(U) and η ∈ Ωs
C(U) then

ω ∧ η = (−1)rsη ∧ ω ∈ Ωr+s
C (U)
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Differential (p, q)-form

Differential (p, q)-form

Let M be a complex manifold of dimension n. We define the complex
vector bundle of rank

(
n
p

)(
n
q

)
over M as∧p,q

T ∗RM :=
∧p (

(T ∗RM)1,0
)
⊗C
∧q (

(T ∗RM)0,1
)

whose fiber is
∧p,q T ∗w ,RM. The smooth sections of this vector

bundle are called the differential forms of type (p, q) on M. The
space of all (p, q)-forms on M is denoted by Ωp,q(M).

Since T ∗CM = (T ∗RM)1,0 ⊕ (T ∗RM)0,1 implies that∧k
(T ∗

CM) ∼=
⊕

p+q=k

∧p
((T ∗

RM)1,0) ⊗C
∧q

((T ∗
RM)0,1) =

⊕
p+q=k

∧p,q
T ∗

RM

We have
Ωk

C(M) ∼=
⊕

p+q=k

Ωp,q(M)
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isomorphism

Introduction

The proof

Applications

Differential (p, q)-form

Let (U, φ) = (U, z1, . . . , zn) be a coordinate chart on M, then we
define

dzα := dzα1 ∧ . . . ∧ dzαp

dzβ := dzβ1 ∧ . . . ∧ dzβq

where α = (α1, . . . , αp) and β = (β1, . . . , βq) are multi-indices with
1 ≤ αj , βk ≤ n.

Proposition

Let (U, φ) = (U, z1, . . . , zn) be a coordinate chart on M, then
ω ∈ Ωp,q(U) can be written uniquely as

ω =
∑

|α|=p,|β|=q

fαβ dzα ∧ dzβ

where fαβ is a complex-valued smooth function on U, i.e.
fαβ ◦ φ−1 : φ(U)→ C is smooth for all α, β.
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Exterior derivative

Differential of a k-form

d : Ωk
C(M)→ Ωk+1

C (M) is the complex linear extension of the usual
exterior differential.

Let (U, φ) = (U, z1, . . . , zn) be a coordinate chart on M, then for any
f ∈ Ω0

C(U) = C∞(U) we have

df =
n∑

j=1

∂f

∂xj
dxj +

n∑
j=1

∂f

∂yj
dyj =

n∑
j=1

∂f

∂zj
dzj +

n∑
j=1

∂f

∂z j
dz j

In general, if ω =
∑
|α|+|β|=k fαβ dzα ∧ dzβ ∈ Ωk(U), we have

d : Ωk(U)→ Ωk+1(U)

ω 7→
∑

|α|+|β|=k

dfαβ ∧ dzα ∧ dzβ



Sheaf Theory
and Complex

Geometry

Gaurish Korpal

Complex
manifolds

Introduction

Tangent space

Cotangent space

Differential forms

Introduction

Exterior derivative

Dolbeault
cohomology

Introduction

Properties

Dolbeault-Čech
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Exterior derivative

Note that for p + q = k we have natural projection operators

Πp,q : Ωk
C(M)→ Ωp,q(M)

Differential of a (p, q)-form

We define ∂ := Πp+1,q ◦ d and ∂ := Πp,q+1 ◦ d as

∂ : Ωp,q(M)→ Ωp+1,q(M) and ∂ : Ωp,q(M)→ Ωp,q+1(M)

Let (U, φ) = (U, z1, . . . , zn) be a coordinate chart on M, then given
ω =

∑
α,β fαβ dzα ∧ dzβ ∈ Ωp,q(U), we have

∂ω =
n∑

j=1

∑
α,β

∂fαβ
∂zj

dzj ∧ dzα ∧ dzβ

∂ω =
n∑

j=1

∑
α,β

∂fαβ
∂z j

dz j ∧ dzα ∧ dzβ
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Exterior derivative

Proposition

The differential operators ∂ and ∂ satisfy the following properties:

1 d = ∂ + ∂

2 ∂2 = ∂ 2 = 0 and ∂∂ = −∂∂
3 Leibniz’s rule, i.e.

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η
∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

for ω ∈ Ωp,q(M) and η ∈ Ωr ,s(M).
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isomorphism

Introduction

The proof

Applications

Exterior derivative

Proposition

The differential operators ∂ and ∂ satisfy the following properties:

1 d = ∂ + ∂

2 ∂2 = ∂ 2 = 0 and ∂∂ = −∂∂
3 Leibniz’s rule, i.e.

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η
∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η

for ω ∈ Ωp,q(M) and η ∈ Ωr ,s(M).



Sheaf Theory
and Complex

Geometry

Gaurish Korpal

Complex
manifolds

Introduction

Tangent space

Cotangent space

Differential forms

Introduction

Exterior derivative

Dolbeault
cohomology

Introduction

Properties

Dolbeault-Čech
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Dolbeault cohomology
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∂-closed forms

∂-closed forms

Let M be a complex manifold. Then a differential form ω ∈ Ωp,q(M)
is called ∂-closed if ∂ω = 0. The space of all ∂-closed (p, q)-forms on
M is denoted by Zp,q(M).

Let (U, φ) = (U, z1, . . . , zn) be a coordinate chart on M, then we can
write the elements of ω ∈ Zp,0(U) is terms of local coordinates as:

ω =
∑
|α|=p

fα dzα such that
∂fα
∂z j

= 0 for all α, j

That is, Zp,0(M) is the space of (p, 0)-forms whose coefficients are
complex-valued holomorphic functions on M.

Holomorphic p-form

We define Zp,0(M) to be the space of holomorphic p-forms on
M,and denote it by Op(M). In particular, Z0,0(M) = O(M), the
space of complex-valued functions holomorphic on M.
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isomorphism

Introduction

The proof

Applications

∂-closed forms

∂-closed forms

Let M be a complex manifold. Then a differential form ω ∈ Ωp,q(M)
is called ∂-closed if ∂ω = 0. The space of all ∂-closed (p, q)-forms on
M is denoted by Zp,q(M).

Let (U, φ) = (U, z1, . . . , zn) be a coordinate chart on M, then we can
write the elements of ω ∈ Zp,0(U) is terms of local coordinates as:

ω =
∑
|α|=p

fα dzα such that
∂fα
∂z j

= 0 for all α, j

That is, Zp,0(M) is the space of (p, 0)-forms whose coefficients are
complex-valued holomorphic functions on M.

Holomorphic p-form

We define Zp,0(M) to be the space of holomorphic p-forms on
M,and denote it by Op(M). In particular, Z0,0(M) = O(M), the
space of complex-valued functions holomorphic on M.



Sheaf Theory
and Complex

Geometry

Gaurish Korpal

Complex
manifolds

Introduction

Tangent space

Cotangent space

Differential forms

Introduction

Exterior derivative

Dolbeault
cohomology

Introduction

Properties

Dolbeault-Čech
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∂-exact forms

∂-exact forms

Let M be a complex manifold. Then a differential form ω ∈ Ωp,q(M),
for q > 0, is called ∂-exact if ω = ∂η for some differential form
η ∈ Ωp,q−1(M). The space of all ∂-exact (p, q)-forms on M is
denoted by Bp,q(M).

The trivial form ω ≡ 0 is the only (p, 0)-form which is ∂-exact for
any value of p = 0, 1, . . . , n. That is, Bp,0(M) consists only of zero.

Proposition

On a complex manifold M, every ∂-exact form is ∂-closed.

Proof: Let M be an complex manifold and ω ∈ Bp,q(M) such that
ω = ∂η for some η ∈ Ωp,q−1(M). We know that ∂ω = ∂(∂η) = 0
hence ω ∈ Zp,q(M) for all q ≥ 1. For q = 0, the statement is
trivially true.
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Dolbeault cohomology of a complex manifold

The (p, q)th Dolbeault cohomology group of a complex manifold M is
the quotient group

Hp,q

∂
(M) :=

Zp,q(M)

Bp,q(M)

Hence, the Dolbeault cohomology of a complex manifold measures
the extent to which ∂-closed forms are not ∂-exact on that manifold.

Proposition

If M is a complex manifold of dimension n then

1 Hp,0

∂
(M) = Zp,0(M) = Op(M)

2 Hp,q

∂
(M) = 0 for q > n
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Hp,q

∂
(C) = 0 for q ≥ 1

∂-Poincaré lemma in one variable

If U is any open subset of C and f ∈ C∞(U), then there exists

g ∈ C∞(U) such that
∂g

∂z
= f .

If we consider ω = f dz ∈ Ω0,1(U) = Z0,1(U) for some open set
U ⊂ C, then the lemma implies that there exists g ∈ Ω0,0(U) such
that ω = ∂g . In particular, H0,1

∂
(U) = 0 for U ⊂ C.

Similarly, for any p ≥ 0 we will get Hp,1

∂
(U) = 0 for U ⊂ C.

Corollary

If U is any open subset of C, then Hp,q

∂
(U) = 0 for q ≥ 1.
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∂-Poincaré lemma in one variable

If U is any open subset of C and f ∈ C∞(U), then there exists

g ∈ C∞(U) such that
∂g

∂z
= f .

If we consider ω = f dz ∈ Ω0,1(U) = Z0,1(U) for some open set
U ⊂ C, then the lemma implies that there exists g ∈ Ω0,0(U) such
that ω = ∂g . In particular, H0,1

∂
(U) = 0 for U ⊂ C.

Similarly, for any p ≥ 0 we will get Hp,1

∂
(U) = 0 for U ⊂ C.

Corollary

If U is any open subset of C, then Hp,q

∂
(U) = 0 for q ≥ 1.



Sheaf Theory
and Complex

Geometry

Gaurish Korpal

Complex
manifolds

Introduction

Tangent space

Cotangent space

Differential forms

Introduction

Exterior derivative

Dolbeault
cohomology

Introduction

Properties

Dolbeault-Čech
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Relationship with single variable complex analysis

To prove the ∂-Poincaré lemma in one variable we use the
generalized Cauchy integral formula for any point z ∈ U:

f (z) =
1

2πi

∫
γ

f (w)
dw

w − z
+

1

2πi

∫∫
U

∂f (w)

∂w

dw ∧ dw

w − z

where U be a region in C bounded by a simple closed rectifiable
curve γ, and f be complex-valued smooth function in some open
neighborhood V of U.
If f ∈ O(U) then we get the Cauchy integral formula

f (z) =
1

2πi

∫
γ

f (w)
dw

w − z

Using this we can prove that

Proposition

If U ⊂ C is simply connected domain and f : U → C is holomorphic,
then f has a primitive in U.
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Hp,q

∂
(Cn) = 0 for q ≥ 1

∂-Poincaré lemma for Cn

Let ∆ be an open polydisc in the space Cn, not necessarily having a
compact closure, and ω ∈ Ωp,q(∆). If q > 0 and ∂ω = 0, then there
is η ∈ Ωp,q−1(∆) such that ω = ∂η.

Since the open polydisc need not be bounded, we can put ∆ = Cn to
get

Corollary

Hp,q

∂
(Cn) = 0 for q ≥ 1.

Due to the lack of purely topological or intrinsic analytical description
of the domains in Cn for n ≥ 2 on which approximation theorems
(like Runge’s theorem) hold, we can’t prove this lemma for general
domains.



Sheaf Theory
and Complex

Geometry

Gaurish Korpal

Complex
manifolds

Introduction

Tangent space

Cotangent space

Differential forms

Introduction

Exterior derivative

Dolbeault
cohomology

Introduction

Properties

Dolbeault-Čech
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Relationship with Poincaré lemma

Last semester we proved that:

Poincaré lemma

Let U be a star-convex open set in Rn. If k ≥ 1, then every closed
k-form on U is exact.

Unlike the Poincaré lemma, there isn’t a simple topological condition
on the domain which will ensure that the ∂-closed forms are also
∂-exact.
For n = 1 Poincaré lemma is equivalent to the Fundamental Theorem
of Calculus, i.e. the existence of antiderviative of smooth functions
defined on open sets in R.
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Dolbeault-Čech isomorphism
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Exact sequence of sheaves

Using the invariance of Dolbeault cohomology for biholomorphic
manifolds, we get that

∂-Poincaré lemma for M

If M be a complex manifold, then for all w ∈ M there exists an open
neighborhood U such that every ∂-closed (p, q)-form on U is ∂-exact
for q ≥ 1.

Recall that the smooth sections of the exterior power of a vector
bundle, i.e. smooth maps of manifolds, form a sheaf. In particular,
Ωp,q is the sheaf of (p, q)-forms on M. Also, since ∂ : Ωp,q → Ωp,q+1

is a map of sheaves, ker(∂) = Zp,q is a sheaf.

Corollary

The following is an exact sequence of sheaves of differential forms

0 Op Ωp,0 Ωp,1 Ωp,2 · · ·∂ ∂ ∂
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Dolbeault theorem

Dolbeault-Čech isomorphism

Let M be a complex manifold. Then for each p, q ≥ 0 there exists a
group isomorphism

Hp,q

∂
(M) ∼= Ȟ

q
(M,Op)

Proof outline: For q = 0, we know that both Hp,0

∂
(M) and

Ȟ
0
(M,Op) are isomorphic to the group of holomorphic p-forms on

M. That is

Hp,0

∂
(M) ∼= Ȟ

0
(M,Op)
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Short exact sequence of differential forms

Now let’s restrict our attention to q ≥ 1. Consider the following long
exact sequence of sheaves of differential forms

0 Op Ωp,0 Ωp,1 Ωp,2 · · ·∂ ∂ ∂

In particular, we have a family of short exact sequence of sheaves

0 Op Ωp,0 Zp,1 0

0 Zp,1 Ωp,1 Zp,2 0

...
...

...
...

...

0 Zp,` Ωp,` Zp,`+1 0

...
...

...
...

...

∂

∂

∂
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...
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isomorphism

Introduction

The proof

Applications

Exact sequence of Čech cohomology
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q
(M,Ωp,0) Ȟ
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Fine sheaves

Now let’s study one of these long exact sequence of Čech
cohomology. Firstly, note that

Ȟ
0
(M,Ωp,`) ∼= Ωp,`(M) and Ȟ

0
(M,Zp,`) ∼= Zp,`(M)

Also, for p, ` ≥ 0, Ωp,` are smooth sections of vector bundles and
hence are fine sheaves. Therefore, we have Ȟ

q
(M,Ωp,`) = 0 for all

` ≥ 1. Hence for any ` ≥ 0 we get the exact sequence

0 Zp,`(M) Ωp,`(M) Zp,`+1(M) Ȟ
1
(M,Zp,`) 0 Ȟ

1
(M,Zp,`+1)

· · · 0 Ȟ
3
(M,Zp,`) Ȟ

2
(M,Zp,`+1) 0 Ȟ

2
(M,Zp,`)

∂ ∆

∆

∆
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First isomorphism theorem

Now consider the following part of the above sequence

0 Zp,`(M) Ωp,`(M) Zp,`+1(M) Ȟ
1
(M,Zp,`) 0∂ ∆

Since this sequence is exact, the map

∆ : Zp,`+1(M)→ Ȟ
1
(M,Zp,`)

is a surjective group homomorphism. Hence by the first isomorphism
theorem we get

Ȟ
1
(M,Zp,`) ∼=

Zp,`+1(M)

ker(∆)
for all ` ≥ 0
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Hp,1

∂
(M) ∼= Ȟ

1
(M ,Op)

By the exactness of the sequence, we also get that

ker(∆) = im{∂ : Ωp,`(M)→ Zp,`+1(M)}
= im{∂ : Ωp,`(M)→ Ωp,`+1(M)}
= Bp,`+1(M)

Hence, we have

Ȟ
1
(M,Zp,`) ∼= Hp,`+1

∂
(M) for all ` ≥ 0 (1)

Note that Zp,0 = Op, hence from (1) we get

Ȟ
1
(M,Op) ∼= Hp,1

∂
(M)
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Hp,q

∂
(M) ∼= Ȟ

q
(M ,Op) for all q ≥ 2

Next we consider the remaining parts of the long exact sequence, i.e.
for q ≥ 1 and ` ≥ 0 we have

0 Ȟ
q
(M,Zp,`+1) Ȟ

q+1
(M,Zp,`) 0∆

The group homomorphism ∆ is an isomorphism since this is an exact
sequence of abelian groups

Ȟ
q+1

(M,Zp,`) ∼= Ȟ
q
(M,Zp,`+1) for all q ≥ 1, ` ≥ 0 (2)

Again substituting Zp,0 = Op and restricting our attention to q ≥ 2,
we apply (2) recursively to get

Ȟ
q
(M,Op) ∼= Ȟ

q−1 (
M,Zp,1

) ∼= · · · ∼= Ȟ
1 (

M,Zp,q−1
)

Then using (1) we get

Ȟ
q
(M,Op) ∼= Hp,q

∂
(M) for all q ≥ 2

Hence completing the proof.
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q
(M,Zp,`+1) for all q ≥ 1, ` ≥ 0 (2)

Again substituting Zp,0 = Op and restricting our attention to q ≥ 2,
we apply (2) recursively to get

Ȟ
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isomorphism

Introduction

The proof

Applications

Hp,q

∂
(M) ∼= Ȟ

q
(M ,Op) for all q ≥ 2

Next we consider the remaining parts of the long exact sequence, i.e.
for q ≥ 1 and ` ≥ 0 we have

0 Ȟ
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Exponential sheaf sequence

Proposition

Ȟ
q
(Cn,O∗) = 0 for q > 0.

Proof: Consider the exponential sheaf sequence on Cn

0 Z O O∗ 02πi exp

It induces a long exact sequence of cohomology

· · · Ȟ
q
(Cn,O) Ȟ

q
(Cn,O∗) Ȟ

q+1
(Cn,Z) Ȟ

q+1
(Cn,O) · · ·∆

Next, we note that for all q > 0

H0,q

∂
(Cn) = 0⇒ Ȟ

q
(Cn,O) = 0

Since Cn is contractible and Čech cohomology of constant sheaves on
smooth manifolds is a homotopy invariant, we get

Ȟ
q
(Cn,Z) = 0 for q > 0

Using these and the exact sequence we get Ȟ
q
(Cn,O∗) = 0 for q > 0.
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Analytic hypersurface

Analytic hypersurface

Let M be a n-dimensional complex manifold. An analytic
hypersurface of M is a subset H ⊂ M such that for every point
w ∈ M there exists an open neighborhood w ∈ U ⊂ M and
f ∈ O(U) such that U ∩ H = {z ∈ U : f (z) = 0}.

In general, analytic hypersurface cannot be given by global function.

Cousin problem

Any analytic hypersurface in Cn is the zero locus of an entire
function f : Cn → C.

Proof outline: Since Ow is a UFD, we can choose an open cover
U = {Uα} of Cn and functions hα ∈ O(Uα) such that

Uα ∩ H = {z ∈ U : hα(z) = 0}

where hα is not divisible by the square of any non-unit. Then use

Ȟ
1
(Cn,O∗) = 0 to get the desired global function.
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isomorphism

Introduction

The proof

Applications

Analytic hypersurface

Analytic hypersurface

Let M be a n-dimensional complex manifold. An analytic
hypersurface of M is a subset H ⊂ M such that for every point
w ∈ M there exists an open neighborhood w ∈ U ⊂ M and
f ∈ O(U) such that U ∩ H = {z ∈ U : f (z) = 0}.

In general, analytic hypersurface cannot be given by global function.

Cousin problem

Any analytic hypersurface in Cn is the zero locus of an entire
function f : Cn → C.

Proof outline: Since Ow is a UFD, we can choose an open cover
U = {Uα} of Cn and functions hα ∈ O(Uα) such that

Uα ∩ H = {z ∈ U : hα(z) = 0}

where hα is not divisible by the square of any non-unit. Then use

Ȟ
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In general, analytic hypersurface cannot be given by global function.

Cousin problem

Any analytic hypersurface in Cn is the zero locus of an entire
function f : Cn → C.

Proof outline: Since Ow is a UFD, we can choose an open cover
U = {Uα} of Cn and functions hα ∈ O(Uα) such that

Uα ∩ H = {z ∈ U : hα(z) = 0}

where hα is not divisible by the square of any non-unit. Then use

Ȟ
1
(Cn,O∗) = 0 to get the desired global function.
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