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Complex manifold

Sheaf Theory .
2l Gl Complex manifold
o,
ety (el A complex manifold M of dimension n is a smooth manifold of
dimension 2n equipped with a holomorphic structure, i.e. if M is

covered by open sets U, which are diffeomorphic via maps called ¢,
to open sets in C", then the transition diffeomorphisms

$a 05" - p(Ua N Us) = ¢a(Ua N Up)

are holomorphic for all «;, 5.
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Korpal A complex manifold M of dimension n is a smooth manifold of
dimension 2n equipped with a holomorphic structure, i.e. if M is
covered by open sets U, which are diffeomorphic via maps called ¢,
to open sets in C”, then the transition diffeomorphisms

$a 05" - p(Ua N Us) = ¢a(Ua N Up)

are holomorphic for all «;, 5.

Complex local coordinates

Let w € M be a point. If (U, ) is a chart of M with w € U, then

o:U—C"

w = (z1(w), ..., z,(w))

where z; : U — C for j =1, ..., n are called local coordinates at w.

v
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Consider the complex manifold M of dimension n as a smooth
manifold of dimension 2n. Then for w € M we define the real
tangent space of M at the point w as the real vector space of
R-linear derivations on the ring of real-valued smooth functions in a
neighborhood of w, i.e.

TwrM = {Xy : CF(M) = R | Xu(fg) = Xu(f)g(w) + f(w)Xw(g)}

o’
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. Real tangent space

Consider the complex manifold M of dimension n as a smooth
manifold of dimension 2n. Then for w € M we define the real
tangent space of M at the point w as the real vector space of
R-linear derivations on the ring of real-valued smooth functions in a
neighborhood of w, i.e.

TwrM = {Xy : CF(M) = R | Xu(fg) = Xu(f)g(w) + f(w)Xw(g)}

o’

If we write the local coordinates around w € M as z; = x; + iy;, then
a canonical basis of T,, g M is given by the tangent vectors

s J

Clearly, dimg( T, g M) = 2n as seen in the case of smooth manifolds.
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Complexified tangent space
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If M is a complex manifold, then we define the complexified tangent
space of M at the point w to be the complexification of the real
tangent space of M at w

TW7(5M = TWJRM Qr C
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If M is a complex manifold, then we define the complexified tangent
space of M at the point w to be the complexification of the real
tangent space of M at w

TW7(5M = TWJRM Qr C

We can view T, cM as the complex vector space of C-linear

derivations in the ring of complex-valued smooth functions in a

neighborhood of w. Using the canonical basis of real tangent space

we can define its complexification as the complex vector space with
0 0

the basis
78 e — e —_—
Ox1 " O ’ OYn w

Hence, as expected, we have dimg( T, rM) = dimc(Tw,cM).
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Almost complex structure
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Sy Almost complex structure

SIS An almost complex structure on a smooth manifold M is a vector
bundle endomorphism J of (real) tangent bundle TM, such that
J? =17y, ie. forall we M, the linear map J,, : T,M — T,,M is
a linear complex structure for T,, M.
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Almost complex structure

Almost complex structure

An almost complex structure on a smooth manifold M is a vector
bundle endomorphism J of (real) tangent bundle TM, such that
J? =17y, ie. forall we M, the linear map J,, : T,M — T,,M is
a linear complex structure for T,, M.

A complex manifold M induces an almost complex structure on its
underlying smooth manifold, defined on the basis as

JW : TW’RM — TW,RM

o9 L0
il il
B B
Wily Ol

We will regard this J as a vector bundle endomorphism of the real
vector bundle T M over M.
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The complexified tangent bundle TcM = TgM ®g C decomposes as
a direct sum of complex vector bundles

TeM = (TaM)0 @ (TeM)%?
where
(TeM)? = {X € TcM: (U 1c)(X)=i-X} and

(TeM)®! ={X € TcM : (J®1c)(X) = —i - X}
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The complexified tangent bundle TcM = TgM ®g C decomposes as
a direct sum of complex vector bundles

TeM = (TaM)0 @ (TeM)%?
where
(TeM)? = {X € TcM: (U 1c)(X)=i-X} and

(TeM)®! ={X € TcM : (J®1c)(X) = —i - X}

Note that, we have

5 1,0 i i 0,1
(axj—/ayj>6(TRM) and <axj+layj>6(TRM)
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Sewitth el Next, observe that
0 1/ 0 .0 ) 1
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o _ifo 0N _ifo .0
8yj_2 Ox; y; 2 \ Ox; y;

We define the following operators:

Complex partial derivative




Holomorphic and antiholomorphic tangent bundle

Sheaf Theory el 9 R .
and Compls Hence we can say that {—821 |W, s B ’W} is a basis for the complex
eometry
1,0 9 9 ; ;
it (e vector space (T, gM)"° and {Ta‘w’ N A W} is a basis for the

complex vector space (T, g M)%1.




Holomorphic and antiholomorphic tangent bundle

Sheaf Theory el 9 R .
and Compls Hence we can say that {—821 |W, s B ’W} is a basis for the complex
eometry
1,0 9 9 ; ;
ety (el vector space (T, gM)"° and {Ta‘w’ N A W} is a basis for the

complex vector space (T, g M)%1.

Holomorphic tangent bundle

The complex vector bundle ( Tg M)!0 is called holomorphic tangent
bundle of M.




Holomorphic and antiholomorphic tangent bundle
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SRR \ector space (T, rM)M and {8%1‘ ""a%,,|w} is a basis for the

W’

complex vector space (T, g M)%1.

Holomorphic tangent bundle

The complex vector bundle ( Tg M)!0 is called holomorphic tangent
bundle of M.

Antiholomorphic tangent bundle

The complex vector bundle ( Tg M)%! is called antiholomorphic
tangent bundle of M.




Holomorphic and antiholomorphic tangent bundle

2 ilw} is a basis for the complex

Ozy lw? """ Oz,
W,...,%Lﬂ} is a basis for the
n

Sheaf Theory Hence we can say that {
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BN vector space (T, kM) and {8%1

complex vector space (T, g M)%1.

Holomorphic tangent bundle

The complex vector bundle ( Tg M)!0 is called holomorphic tangent
bundle of M.

Antiholomorphic tangent bundle

The complex vector bundle ( Tg M)%! is called antiholomorphic
tangent bundle of M.

Therefore, the following also forms a basis of T,, cM
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Real cotangent space

Consider the complex manifold M of dimension n as a smooth
manifold of dimension 2n. Then for w € M we define the real
cotangent space of M at the point w as dual space of the real vector
space T, rM, i.e.

T:,’RM = HOHl]R( Tw,]R M, R)




Real cotangent space

Sheaf Theory
and Complex
Geometry

Gaurish Korpal

Real cotangent space

Consider the complex manifold M of dimension n as a smooth
manifold of dimension 2n. Then for w € M we define the real
cotangent space of M at the point w as dual space of the real vector
space T, rM, i.e.

T:,’RM = HOHl]R( Tw,]R M, R)

v

If we write the local coordinates around w € M as z; = x; + iy;, then
a canonical basis of T, M is given by the cotangent vectors

{dxl‘wa"' 7an’W,d}/1|W7"' adyn’W}

Clearly, dimg( Ty M) = 2n as seen in the case of smooth manifolds.
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Complexified cotangent space

If M is a complex manifold, then we defined the complexified
cotangent space of M at the point w to be the complexification of
real cotangent space

TycM=TyrgMerC
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Complexified cotangent space

If M is a complex manifold, then we defined the complexified
cotangent space of M at the point w to be the complexification of
real cotangent space

TycM=TyrgMerC

We can also use the canonical basis of real cotangent space to define
its complexification. Therefore, Tj ~M is the complex vector space
with the basis

{dxl‘wa"' 7an|W7dy1|Wa"' 7d.yl”I|W}

Hence, as expected, we have dimg(T,; zx M) = dimc (T, -M).



Almost complex structure

Szl iz We get the linear complex structure J,, on T M from the linear

and Complex

Cprineitny complex structure J,, on T, g M as:
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Tu(Tw)(Xw) = Tw(Jw (X)) V7w € Ty gM, Xy, € Ty g M

We will regard this J as a vector bundle endomorphism of the
smooth vector bundle Tz U over U.



Almost complex structure

Szt Ty We get the linear complex structure J,, on T M from the linear
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R complex structure J,, on T, g M as:
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Tu(Tw)(Xw) = Tw(Jw (X)) V7w € Ty gM, Xy, € Ty g M

We will regard this J as a vector bundle endomorphism of the
smooth vector bundle Tz U over U.

Proposition

The complexified cotangent bundle TiM = Tg M ®r C decomposes
as a direct sum of complex vector bundles

TEM = (TEM)Y0 @ (Tem)*?
where

(TaM)0 = {r e TEM | (T @1c)(r) =i-7} and
(TaM)> = {7 € TEM | (T @ 1I¢)(r) = —i - 7}




Almost complex structure

Szl iy Recall that if V is a real vector space, and V¢ = V ®g C is its
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Geometry complexification. Then we have (V*)¢ = Homg(V,C) 2 (V¢)*.

Gaurish Korpal



Almost complex structure

o Recall that if V is a real vector space, and V¢ = V ®g C is its
Seome complexification. Then we have (V*)¢ = Homg(V,C) 2 (V¢)*.
. . *
B Using this, we can prove that (T M) = ((TeM)™0)" and

(TaM)°t = ((TaM)®t)",



Almost complex structure

o Recall that if V' is a real vector space, and Vg = V ®gr C is its

ety complexification. Then we have (V*)¢ = Homg(V,C) 2 (V¢)*.
Gaurish Korpal Using this, we can prove that (T M) = ((TeM)°)" and
(TaM)OL = ((TeM)O1)".
Hence we can obtain basis for T M by defining the dual basis of
(TW,]RM)I’O and (TW’]RM)O’I.




Almost complex structure

o Recall that if V' is a real vector space, and Vg = V ®gr C is its
ety complexification. Then we have (V*)¢ = Homg(V,C) 2 (V¢)*.

Bl Using this, we can prove that (T M) = ((TzM)™)" and

(TaM)OL = ((TeM)O1)".

Hence we can obtain basis for T M by defining the dual basis of

(TW,]RM)I’O and (TW’]RM)O’I.

Complex differential

dzj :==dx; +idy; and dz;:=dx; —idy;

forj=1,...,n.




Almost complex structure

o Recall that if V' is a real vector space, and Vg = V ®gr C is its
ety complexification. Then we have (V*)¢ = Homg(V,C) 2 (V¢)*.

Bl Using this, we can prove that (T M) = ((TzM)™)" and

(TaM)OL = ((TeM)O1)".

Hence we can obtain basis for T M by defining the dual basis of

(TW,]RM)I’O and (TW’]RM)O’I.

Complex differential

dzj :==dx; +idy; and dz;:=dx; —idy;

forj=1,...,n.

We can say that {dzj‘w};zl is a basis for the complex vector space
(T gM)*0 and {dff|w};:1 is a basis for the complex vector space
(TV’CRM)O,I. The following forms a basis of T; M

{dzl|w"'"dz"|w’d?1}w""’d?"}w}
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Differential k-form
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Let M be a complex manifold of dimension n. The smooth sections

of rank () complex vector bundle N T&M are called differential

k-forms on M. The space of all k-forms on M is denoted by QX(M).
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Let M be a complex manifold of dimension n. The smooth sections

of rank () complex vector bundle N T&M are called differential

k-forms on M. The space of all k-forms on M is denoted by QX(M).

Let (U,¢) = (U, z,...,z,) be a coordinate chart on M, then any
element w € QL(U) can be written uniquely as

n

n
w:Zﬂ-dzj—i-ngdEk

j=1 k=1

where f;, g are complex valued smooth functions.
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Differential k-form

Let M be a complex manifold of dimension n. The smooth sections

of rank () complex vector bundle N T&M are called differential

k-forms on M. The space of all k-forms on M is denoted by QX(M).

Gaurish Korpal

Let (U,¢) = (U, z,...,z,) be a coordinate chart on M, then any
element w € QL(U) can be written uniquely as

n

n
w:Zﬂ-dzj—i-ngdEk

j=1 k=1

where f;, g are complex valued smooth functions.
Also, if w € Q¢(U) and n € Q& (U) then

wAn=(-1)"nAw e QE>(U)



Differential (p, q)-form
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Gaurish Korpal Let M be a complex manifold of dimension n. We define the complex
vector bundle of rank (7)(7) over M as

/\P,q T]RTM — /\P ((T]f{fM)l’O) ®c /\‘7 ((T]ng)O,l)

whose fiber is A7 Tyx z M. The smooth sections of this vector
bundle are called the differential forms of type (p,q) on M. The
space of all (p, g)-forms on M is denoted by QP9(M).
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Gaurish Korpal Let M be a complex manifold of dimension n. We define the complex
vector bundle of rank (7)(7) over M as

/\P,q T]RTM — /\P ((T]f{fM)l’O) ®c /\‘7 ((T]ng)O,l)

whose fiber is A7 Tyx z M. The smooth sections of this vector
bundle are called the differential forms of type (p,q) on M. The
space of all (p, g)-forms on M is denoted by QP9(M).

Since T¢M = (TEM)L0 @ (T M)%1 implies that
k ’ *
N Temy = @ NTmm)e: N(Tmim) = G N Tim
pt+q=k p+q=k
We have

QL(M) = @ QP9(M)
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,Zp) be a coordinate chart on M, then we

dzy :=dzg, AL Adz,,
dfﬁ = del VAR dfﬁq

where a = (o, ...,ap) and = (B1,. .., Bq) are multi-indices with
1< 0,8k < n.
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,Zp) be a coordinate chart on M, then we

dzy :=dzg, AL Adz,,
dfﬁ = del VAR dfﬁq

where o = (aq,...,ap) and § = (B1,..., ) are multi-indices with
1< 0,8k < n.

Proposition

Let (U,¢) = (U, z,...,z,) be a coordinate chart on M, then
w € QP9(U) can be written uniquely as

w= Y fapdzy AdZp
l=p.|81=q

where f,3 is a complex-valued smooth function on U, i.e.
fag o ¢t : ¢(U) — C is smooth for all o, 3.
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d: Q&(M) — QK™ (M) is the complex linear extension of the usual
exterior differential.
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d: Q&(M) — QK™ (M) is the complex linear extension of the usual
exterior differential.

Let (U,¢) = (U, z,...,z,) be a coordinate chart on M, then for any
feQU) = C>®(U) we have

= Of - Of
df = gdxﬁzfdyj dz,+z dzj
=1 =1
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d: Q&(M) — QK™ (M) is the complex linear extension of the usual
exterior differential.

Let (U,¢) = (U, z,...,z,) be a coordinate chart on M, then for any
feQU) = C>®(U) we have

= Of - Of
df = gdxﬁzfdyj dz,+z dzj
=1 =1

In general, if w = 37,1 5=k fap dZa A dZ5 € QX(U), we have

d: Q%(U) - Q“1(V)

wrr Y dfug Adzy AdZg
locl+[B1=K
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Exterior derivative

Szl iy Note that for p + g = k we have natural projection operators
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Differential of a (p, g)-form
We define § := NP9 0d and § := NP9t o d as

81 QPI(M) — QPTLI(M) and 3 : QPI(M) — QPIHL(M)




Exterior derivative

Szl iy Note that for p + g = k we have natural projection operators

and Complex
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Differential of a (p, g)-form
We define § := NP9 0d and § := NP9t o d as

81 QPI(M) — QPTLI(M) and 3 : QPI(M) — QPIHL(M)

Let (U,¢) = (U, z,...,2z,) be a coordinate chart on M, then given
w=73,4fapdza Ndzg € QP9(U), we have

Ow = ZZ 37‘@5 dzj Ndz, Adzg

Jj=1 o,

8&}—22 aﬁ dzJ/\dza/\d25

=1 a8
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The differential operators @ and 9 satisfy the following properties:
Q@d=0+0




Exterior derivative

Sheaf Theory
and Complex
Geometry

ish Korpal

The differential operators @ and 9 satisfy the following properties:
Q@d=0+0
Q@ 9>=0%2=0and 90 = —90
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The differential operators @ and 9 satisfy the following properties:
Q@d=0+0
Q@ 9>=0%2=0and 90 = —90
© Leibniz's rule, i.e.
AwAn)=0wAn+ (—1)PT9w A dn
A(wAn)=0wAn+(—1)""w A dn

for w € QP9(M) and n € Q"°(M).
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Gaurish Korpal Let M be a complex manifold. Then a differential form w € Q”9(M)
is called O-closed if dw = 0. The space of all d-closed (p, g)-forms on
M is denoted by ZP9(M).
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ish Korpal Let M be a complex manifold. Then a differential form w € Q”9(M)
is called O-closed if dw = 0. The space of all d-closed (p, g)-forms on
M is denoted by ZP9(M).

Let (U,¢) = (U, z,...,z,) be a coordinate chart on M, then we can
write the elements of w € ZPO(U) is terms of local coordinates as:

of, .
w= Y fudz, such that a?j =0 forall a,j
lal=p
That is, ZP°(M) is the space of (p,0)-forms whose coefficients are
complex-valued holomorphic functions on M.
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Gaurish Korpal Let M be a complex manifold. Then a differential form w € Q”9(M)
is called O-closed if dw = 0. The space of all d-closed (p, g)-forms on
M is denoted by ZP9(M).

Let (U,¢) = (U, z,...,z,) be a coordinate chart on M, then we can
write the elements of w € ZPO(U) is terms of local coordinates as:

of, .
w= Y fudz, such that a?(j =0 forall a,j
lal=p
That is, ZP°(M) is the space of (p,0)-forms whose coefficients are
complex-valued holomorphic functions on M.

Holomorphic p-form

We define ZP°(M) to be the space of holomorphic p-forms on
M,and denote it by OP(M). In particular, Z%°(M) = O(M), the
space of complex-valued functions holomorphic on M.
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Let M be a complex manifold. Then a differential form w € QP9(M),
for g > 0, is called D-exact if w = 517 for some differential form

n € QP971(M). The space of all d-exact (p, q)-forms on M is
denoted by BP9(M).

ish Korpal
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Let M be a complex manifold. Then a differential form w € QP9(M),
for g > 0, is called D-exact if w = 517 for some differential form

n € QP971(M). The space of all d-exact (p, q)-forms on M is
denoted by BP9(M).

ish Korpal

The trivial form w = 0 is the only (p, 0)-form which is d-exact for
any value of p=10,1,...,n. Thatis, BP°(M) consists only of zero.
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Let M be a complex manifold. Then a differential form w € QP9(M),
for g > 0, is called D-exact if w = 517 for some differential form

n € QP971(M). The space of all d-exact (p, q)-forms on M is
denoted by BP9(M).

Korpal

The trivial form w = 0 is the only (p, 0)-form which is d-exact for
any value of p=10,1,...,n. Thatis, BP°(M) consists only of zero.

Proposition

On a complex manifold M, every d-exact form is O-closed.

Proof: Let M be an complex manifold and w € B9(M) such that
w = Jn for some n € QP971(M). We know that dw = 9(dn) = 0
hence w € ZP9(M) for all ¢ > 1. For g = 0, the statement is

trivially true.
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The (p, q)t" Dolbeault cohomology group of a complex manifold M is
the quotient group

_zPa(M)
= Boa()
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The (p, q)t" Dolbeault cohomology group of a complex manifold M is
the quotient group

_zPa(M)
= Boa()

Hence, the Dolbeault cohomology of a complex manifold measures
the extent to which O-closed forms are not 0-exact on that manifold.
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The (p, q)t" Dolbeault cohomology group of a complex manifold M is
the quotient group

_zPa(M)
= Boa()

Hence, the Dolbeault cohomology of a complex manifold measures
the extent to which O-closed forms are not 0-exact on that manifold.

Proposition

If M is a complex manifold of dimension n then
p,0 — zp0 _
Q H; (M) = Z2PO(M) = OP(M)
(2] Hg’q(M) =0forg>n




H29(C) =0 for g > 1
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0-Poincaré lemma in one variable

If U is any open subset of C and f € C>°(U), then there exists

g € C*(U) such that ?Fi =f.




9Y(C)=0forg>1

0
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0-Poincaré lemma in one variable

If U is any open subset of C and f € C>°(U), then there exists
% g _
g € C*=(U) such that%—f.

If we consider w = f dz € Q%1(U) = Z%1(U) for some open set
U C C, then the lemma |mp||es that there exists g € Q%%(U) such
that w = dg. In particular, H Y(U)=0for U CC.



9Y(C)=0forg>1

0
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0-Poincaré lemma in one variable

If U is any open subset of C and f € C>°(U), then there exists
% g _
g € C*=(U) such that%—f.

If we consider w = f dz € Q%1(U) = Z%1(U) for some open set
U C C, then the lemma |mp||es that there exists g € Q%%(U) such
that w = dg. In particular, H Y(U)=0for U CC.

Similarly, for any p > 0 we W|II get Hg’ (U)y=0for UcCC.

If U is any open subset of C, then Hg’q(U) =0 for g > 1.




Relationship with single variable complex analysis

Szl Ty To prove the O-Poincaré lemma in one variable we use the

and Complex

Geometry generalized Cauchy integral formula for any point z € U:
Gaurish Korpal
1 6f(w ) dw Adw
f f
(2) = 2//() 2%///
¥

where U be a region in C bounded by a simple closed rectifiable
curve 7, and f be complex-valued smooth function in some open
neighborhood V of U.
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To prove the 0-Poincaré lemma in one variable we use the
generalized Cauchy integral formula for any point z € U:

) = 2 /f(w) 2m//6f(w ) dw A dw

27i
where U be a region in C bounded by a simple closed rectifiable

¥
curve 7, and f be complex-valued smooth function in some open
neighborhood V of U.

If f € O(U) then we get the Cauchy integral formula

(2) = 5 / Fw) 2

Y

Geometry
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Using this we can prove that

Proposition

If U C C is simply connected domain and f : U — C is holomorphic,
then f has a primitive in U.
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Let A be an open polydisc in the space C”, not necessarily having a
compact closure, and w € QP"’(A_). If g > 0 and dw = 0, then there
is 7 € QP971(A) such that w = Jn.
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et Ml O-Poincaré lemma for C"

Let A be an open polydisc in the space C”, not necessarily having a
compact closure, and w € QP"’(A_). If g > 0 and dw = 0, then there
is 7 € QP971(A) such that w = Jn.

Since the open polydisc need not be bounded, we can put A = C" to
get

P,q ny —
H (C") =0 for g > 1.
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Hz(C") =0 for g > 1
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et Ml O-Poincaré lemma for C"

Let A be an open polydisc in the space C”, not necessarily having a
compact closure, and w € QP"’(A_). If g > 0 and dw = 0, then there
is 7 € QP971(A) such that w = Jn.

Since the open polydisc need not be bounded, we can put A = C" to
get

P,q ny —
H (C") =0 for g > 1.

Due to the lack of purely topological or intrinsic analytical description
of the domains in C” for n > 2 on which approximation theorems
(like Runge's theorem) hold, we can't prove this lemma for general
domains.
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Last semester we proved that:

Poincaré lemma

Let U be a star-convex open set in R". If k > 1, then every closed
k-form on U is exact.
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Last semester we proved that:

Poincaré lemma

Let U be a star-convex open set in R". If k > 1, then every closed
k-form on U is exact.

Unlike the Poincaré lemma, there isn't a simple topological condition
on the domain which will ensure that the O-closed forms are also
O-exact.

For n = 1 Poincaré lemma is equivalent to the Fundamental Theorem
of Calculus, i.e. the existence of antiderviative of smooth functions
defined on open sets in R.
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0-Poincaré lemma for M

If M be a complex manifold, then for all w € M there exists an open
neighborhood U such that every 0-closed (p, g)-form on U is 0-exact
for g > 1.
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0-Poincaré lemma for M

If M be a complex manifold, then for all w € M there exists an open
neighborhood U such that every 0-closed (p, g)-form on U is 0-exact
for g > 1.

Recall that the smooth sections of the exterior power of a vector
bundle, i.e. smooth maps of manifolds, form a sheaﬁ In particular,
QP9 is the sheaf of (p, g)-forms on M. Also, since 9 : QP9 — QP9+l

is a map of sheaves, ker(9) = ZP9 is a sheaf.



Exact sequence of sheaves

Sheaf Theory

Fri @it Using the invariance of Dolbeault cohomology for biholomorphic
Geometry .
manifolds, we get that
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0-Poincaré lemma for M

If M be a complex manifold, then for all w € M there exists an open
neighborhood U such that every 0-closed (p, g)-form on U is 0-exact
for g > 1.

Recall that the smooth sections of the exterior power of a vector
bundle, i.e. smooth maps of manifolds, form a sheaﬁ In particular,
QP9 is the sheaf of (p, g)-forms on M. Also, since 9 : QP9 — QP9+l

is a map of sheaves, ker(9) = ZP9 is a sheaf.

The following is an exact sequence of sheaves of differential forms

0 OP « QPO _9 L opl 9, qp2 9
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Dolbeault-Cech isomorphism

Let M be a complex manifold. Then for each p, g > 0 there exists a
group isomorphism

) ~ 9
HE9(M) = H (M, OP)
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Dolbeault-Cech isomorphism

Let M be a complex manifold. Then for each p, g > 0 there exists a
group isomorphism

) ~ 9
HE9(M) = H (M, OP)

Proof outline: For q = 0, we know that both H2°(M) and

F|O(M, OP) are isomorphic to the group of holomorphic p-forms on
M. That is

p,0 ~ M0
HEO(M) = H'(M, 0P)




Short exact sequence of differential forms
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Geometry Now let's restrict our attention to g > 1. Consider the following long
Seuith ke exact sequence of sheaves of differential forms

0 OP —— QPO 2, gt 9, qp2 9
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Geometry Now let's restrict our attention to g > 1. Consider the following long
Seuith ke exact sequence of sheaves of differential forms

0 OP —— QPO 2, gt 9, qp2 9

In particular, we have a family of short exact sequence of sheaves

0 OP —— QPO 2 Zpl 0

0 Zple L qrl 0, 702 g

0 zZp:t . Qpt 9, zpl+l 0
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Since complex manifolds are paracompact, each short exact sequence
of sheaves will induce a long exact sequences of Cech cohomology

S RY(M,QP0) — (M, 2P1) A BTN (M, 0P) — -
C o RY(MLQPY) s BY(M, 2P2) A BTN M, 2Pt

va+1

C = RY(M, QP — HI(M, 2P B HTT (M, 2P -
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Now let’s study one of these long exact sequence of Cech
cohomology. Firstly, note that

FO(M,97) = Q2 (M) and FO(M, 20) = 27 ()
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Now let’s study one of these long exact sequence of Cech
cohomology. Firstly, note that

FO(M,97) = Q2 (M) and FO(M, 20) = 27 ()
Also, for p,£ >0, QP are smooth sections of vector bundles and

hence are fine sheaves. Therefore, we have H?(M, Q) = 0 for all
£>1.
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S e Now let’s study one of these long exact sequence of Cech
cohomology. Firstly, note that

FO(M,97) = Q2 (M) and FO(M, 20) = 27 ()

Also, for p, ¢ > 0, QP-Y are smooth sections of vector bundles and

hence are fine sheaves. Therefore, we have H?(M, Q) = 0 for all
£ > 1. Hence for any ¢ > 0 we get the exact sequence

0 — ZPHM) < QPE(M) 25 2P (M) A BY(M, 2PY) — 0 — HY(M, 2P
|a

e 0 F(M, 27) & (M, 2071 0 ¢ (M, 27)
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0 —— ZPLM) s QPEM) —2 2RI (M) Ay BY(M, 2P0) —— 0
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ety (el Now consider the following part of the above sequence

0 —— ZPLM) s QPEM) —2 2RI (M) Ay BY(M, 2P0) —— 0
Since this sequence is exact, the map
A 2PN MY - 1M, 2P0

is a surjective group homomorphism.
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ety (el Now consider the following part of the above sequence

0 —— ZPLM) s QPEM) —2 2RI (M) Ay BY(M, 2P0) —— 0
Since this sequence is exact, the map
A 2PN MY - 1M, 2P0

is a surjective group homomorphism. Hence by the first isomorphism
theorem we get

ZP,€+1(M)

V1
HY (M, 2Pt
(M, ) ker(A)

1

forall ¢>0
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HEY (M) = H (M, OP)
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By the exactness of the sequence, we also get that

e ker(A) = im{9 : QP (M) — ZP*T1 (M)}
=im{9 : Q*Y(M) = QP+ (M)}
= BPH (M)
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By the exactness of the sequence, we also get that

e ker(A) = im{9 : QP (M) — ZP*T1 (M)}
=im{9 : Q*Y(M) = QP+ (M)}
= BPH (M)

Hence, we have

(M, 270) = HE (M) for all €20 (1)



1 ~ 1l
HEY (M) = H (M, OP)
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By the exactness of the sequence, we also get that

e ker(A) = im{9 : QP (M) — ZP*T1 (M)}
=im{9 : Q*Y(M) = QP+ (M)}
= BPH (M)

Hence, we have
(M, 270) = HE (M) for all €20 (1)

Note that ZP0 = OP, hence from (1) we get

A (M, 0P) = HE (M)
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,l-/5 (M) = H'(M,OP) for all g > 2
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v g+1

0 —— RY(Mm, zptt) 25 R97 (M, 2Pt) —— 0
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v g+1

0 —— Ri(M, zpt41y 25 BT (M, 2P0 —— 0

The group homomorphism A is an isomorphism since this is an exact
sequence of abelian groups

|zlqﬂ(/\/’azp’é) =~ H9(M, 2P forallg>1,0>0 (2)
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P,q ~ 19
H2(M) = H'(M, OP) for all g > 2

Next we consider the remaining parts of the long exact sequence, i.e.
for ¢ > 1 and £ > 0 we have

0 —— (M, 2pt+1) 25 {H7 (M, 200 —— 0

The group homomorphism A is an isomorphism since this is an exact
sequence of abelian groups

v

|zlqﬂ(/\/’azp’é) =~ H9(M, 2P forallg>1,0>0 (2)

Again substituting ZP% = OP and restricting our attention to q > 2,
we apply (2) recursively to get

HI(M, 0Py = BT (M, 2°1) = . = 1Y (M, 2P 1)
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P,q ~ 19
H2(M) = H'(M, OP) for all g > 2

Next we consider the remaining parts of the long exact sequence, i.e.
for ¢ > 1 and £ > 0 we have

0 —— (M, 2pt+1) 25 {H7 (M, 200 —— 0

The group homomorphism A is an isomorphism since this is an exact
sequence of abelian groups

v

|zlqﬂ(/\/’azp’é) =~ H9(M, 2P forallg>1,0>0 (2)

Again substituting ZP% = OP and restricting our attention to q > 2,
we apply (2) recursively to get

HI(M, 0Py = BT (M, 2°1) = . = 1Y (M, 2P 1)

Then using (1) we get

AY(M, 0P) = H2I(M)| for all g > 2

Hence completing the proof.
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Proof: Consider the exponential sheaf sequence on C"

exp

0 7 <= 0 O* 0
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Gaurish Korpal Hq((cn, O*) =0 for g > 0.

Proof: Consider the exponential sheaf sequence on C"

exp

0 7 <= 0 O* 0

It induces a long exact sequence of cohomology

. — RY(C", 0) — R(C", 0%) & HITY(C, Z2) — RITHC", 0) — - --
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Gaurish Korpal Hq((cn, O*) =0 for g > 0.

Proof: Consider the exponential sheaf sequence on C"

exp

0 7 <= 0 O* 0

It induces a long exact sequence of cohomology
- — HY(C", 0) — R(C", 0%) &5 RTTY(C", Z2) — RTTH(C, 0) — - -
Next, we note that for all g > 0
HY9(C") = 0= H(C",0) =0
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Gaurish Korpal Hq((cn, O*) =0 for q> 0.

Proof: Consider the exponential sheaf sequence on C"

exp

0 7 <= 0 O* 0

It induces a long exact sequence of cohomology
- — HY(C", 0) — R(C", 0%) &5 RTTY(C", Z2) — RTTH(C, 0) — - -
Next, we note that for all g > 0
HY9(C") = 0= H(C",0) =0

Since C" is contractible and Cech cohomology of constant sheaves on
smooth manifolds is a homotopy invariant, we get

HY(C",Z) =0 for g >0
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Gaurish Korpal Hq((cn, O*) =0 for q> 0.

Proof: Consider the exponential sheaf sequence on C"

0 /R R N 0

It induces a long exact sequence of cohomology
- — HY(C", 0) — R(C", 0%) &5 RTTY(C", Z2) — RTTH(C, 0) — - -
Next, we note that for all g > 0
HY9(C") = 0= H(C",0) =0

Since C" is contractible and Cech cohomology of constant sheaves on
smooth manifolds is a homotopy invariant, we get
HY(C",Z) =0 for g >0

Using these and the exact sequence we get qu((C", O*) =0 for g > 0.
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hypersurface of M is a subset H C M such that for every point
w € M there exists an open neighborhood w € U C M and

f € O(U) such that UNH ={z e U: f(z) =0}.
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hypersurface of M is a subset H C M such that for every point
w € M there exists an open neighborhood w € U C M and

f € O(U) such that UNH ={z e U: f(z) =0}.

In general, analytic hypersurface cannot be given by global function.
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ety (el Let M be a n-dimensional complex manifold. An analytic
hypersurface of M is a subset H C M such that for every point
w € M there exists an open neighborhood w € U C M and

f € O(U) such that UNH ={z e U: f(z) =0}.

In general, analytic hypersurface cannot be given by global function.

Cousin problem

Any analytic hypersurface in C" is the zero locus of an entire
function f : C" — C.
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Korpal Let M be a n-dimensional complex manifold. An analytic
hypersurface of M is a subset H C M such that for every point
w € M there exists an open neighborhood w € U C M and

f € O(U) such that UNH ={z e U: f(z) =0}.

In general, analytic hypersurface cannot be given by global function.

Cousin problem

Any analytic hypersurface in C" is the zero locus of an entire
function f : C" — C.

Proof outline: Since O, is a UFD, we can choose an open cover
U = {U,} of C" and functions h, € O(U,) such that

UsnNH={ze U: hy(z) =0}

where h,, is not divisible by the square of any non-unit. Then use
I:il((C”, 0*) = 0 to get the desired global function.
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