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Abstract. Supplementing other treatments, this article discusses the history and meaning of
four theorems that have been accepted as Abel’s Theorem. The discussion explains Abel’s
own proofs, and pays due attention to the hyperelliptic case. Section 1 explains how each
theorem came to be called Abel’s Theorem. Section 2 treats Abelian integrals, Clebsch’s
geometric reformulation, and Abel’s Elementary Function Theorem. Section 3 treats Abel’s
Equivalence Theorem, the genus, and adjoints. Section 4 treats the Riemann–Roch The-
orem and Abel’s Relations Theorem. Section 5 explains the various forms of Abel’s Ad-
dition Theorem and Abel’s proofs of them. Section 6 discusses the Abel map, and uses
it to prove the Addition Theorem in its most elaborate form. Section 7 discusses the Pi-
card and Albanese varieties, and explains Abel’s version of the genus. Section 8 sums
it all up, and concludes that only the Addition Theorem can rightfully be called Abel’s
Theorem.

1 Why Four Theorems?

Did Abel prove just one theorem? The name Abel’s Theorem has always referred
to a theorem Abel proved about sums of integrals of algebraic functions – never
mind, he was the first to prove the insolvability of the quintic by radicals, and the
first to investigate the convergence of Newton’s binomial formula with an arbitrary
complex exponent (see [68], pp. 754, 964).
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However, four different theorems have been touted as the one and only Abel’s
Theorem. Why? Because Abel published three papers on the subject.

To make it easier to refer to the four, let us call them the Elementary Func-
tion Theorem, the Equivalence Theorem, the Relations Theorem, and the Addition
Theorem. Their statements are explained informally later in this section, and more
formally in Sects. 2, 3, 4, and 5.

Abel’s first paper [1] treats the Addition Theorem in some detail, and proves
versions of the other three theorems as preliminary results along the way. Abel
submitted it in 1826, but it did not appear until 1841.

Meanwhile, virtually two years after Abel submitted the first paper, he feared
it was lost forever, and so he wrote the second paper [2] (see [109], pp. 453, 469).
In it, he summarized the Addition Theorem informally, then he treated it in a major
special case, the case of hyperelliptic integrals.

The following January, Abel wrote the third paper [3]. In it, he proved only the
Elementary Function Theorem, but in full generality. It is just a preliminary result,
but Abel didn’t say so. At the time, he was slowly dying of tuberculosis, and writing
the paper was a strenuous effort (see [109], p. 482).

Abel’s first paper is fairly long: sixty-one handwritten pages. Abel was proud
of its quality, and hopeful it would secure his career. He finished it in Paris, and
showed it to Cauchy. Alas, Cauchy merely glanced at it. Shortly afterwords, on
October 30, Abel submitted it in person to the Royal Academy of Sciences, a part
of the French Institute. Fourier, the secretary, read the introduction aloud, and the
academy appointed Cauchy and Legendre as referees. (See [87], p. 56; see [12],
p. 309; see [82], p. 150; see [109], p. 411.)

The treatment itself is actually elementary – “really only a wonderful exercise in
the integral calculus,” as Forsyth [47], p. 580, put it. However, the treatment is poorly
organized and hard to read. Moreover, Gray [53], p. 365, observed: “it is occasionally
wrong, which is more serious, and it operates at such a level of generality that it was
and is not clear that matters are always as Abel described.” And Kline [68], p. 655,
explained that Abel’s “paper was very difficult to understand, partly because he tried
to prove what we would today call an existence theorem by actually computing the
result.” Also, Cooke [37], p. 411, felt that “the paper owes its great length to Abel’s
insecurity about the foundations of analysis, based on the bitter experience of errors
he had fallen into by using insufficiently grounded methods.”

So the paper was reworked, “in a shortened and simplified form,” in 1881 by
Rowe [97], in part on the basis of Boole’s 1857 work in the same direction. However,
in 1894, Brill and Noether [17], Fn., pp. 213–214, said that Rowe “did not cover all
the difficult parts.” Then, in 1900, Forsyth [47], pp. 579–601, gave an exposition,
which was “adopted” from Rowe’s, and further shortened and simplified by using
the theory of Riemann surfaces.

At any rate, the details in Abel’s paper have been less important than the concepts
when others have developed the paper’s mathematical content.

The first paper was not published until 1841. So it did not appear in the 1839 edi-
tion of Abel’s collected works, which was “prepared at the request” of King Oscar I
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of Sweden and Norway, and paid for by the state through the Church Department,
which handled education. The editor, Holmboe, had to ask the department for help
in obtaining a copy of the paper, and a formal diplomatic request was sent to the
French authorities. There was no reply, but the paper was published at last. (See [82],
p. 258, and [109], pp. 548–549.)

Abel’s original manuscript, in his handwriting, is preserved in Italy, except for
pp. 21–24, which remain lost. The manuscript has had an interesting, but long and
sad history. It was related by Ore [82], pp. 246–261, summarized by Stubhaug [109],
pp. 549–551, and recently updated by Del Centina [41].

Del Centina edited the book [42] containing his update. The book also contains
facsimiles of the manuscript, of the four missing pages in Libri’s handwriting, and of
Legendre’s cover letter. (G. Libri was a professor of mathematics and member of the
academy, which charged him with overseeing the printing in 1841; see [41], p. 91.) In
addition, the book contains some other articles about Abel’s life and work and about
Florence’s Moreniana Library, which houses fifty-three pages of the manuscript and
Legendre’s letter.

Legendre’s letter is undated; likely, it was written in June 1829. Indeed, on June 4,
Legendre learned of Abel’s death. On June 29, Cauchy submitted the referees’ report,
which Legendre cosigned. The report was weak: it said most of the results had
already appeared in print, but owing to Abel’s great achievements and tragic death,
publication was being recommended. The recommendation was accepted. (See [82],
pp. 247 and 233.)

In the letter, Legendre wrote (see the transcription in [41] on p. 96) that he
was the first to look at the manuscript, but found the script illegible and the symbols
poorly formed. So he asked Cauchy to referee it. However, Cauchy was distracted by
other matters, and forgot about the paper until March 1829 when a German scientist
expressed his astonishment that it had not yet been refereed. Cauchy then found the
manuscript, but the two of them were concerned since Abel had already published
part of his work in Crelle’s journal and would probably continue with the rest. They
then learned of Abel’s unfortunate death, which changed the situation.

But the facsimile shows perfectly legible script and well-formed symbols!
The German scientist was Jacobi. He was astonished by a footnote in Abel’s

second paper [2], p. 445. In the introduction, Abel said he would prove the Addition
Theorem in full generality in a subsequent issue of the journal, but here he would
treat a special case, which includes elliptic functions. (At the time, the term “elliptic
function” referred to the integral, not, as later and now, its inverse.) In the footnote,
Abel added sadly that he had presented a memoir on the general case to the Royal
Academy toward the end of 1826. Legendre wrote to Jacobi about the paper in
February 1929, and Jacobi replied, asking how come Abel’s great discovery could
have been ignored for so long. (See [41], p. 89, and [82], p. 246; also see [111],
p. 402, about Steiner’s minor role.)

In [2], Abel treated the hyperelliptic case. It is considerably simpler; indeed,
the paper is one-fifth as long as the Paris memoir [1]. Yet, this case has the flavor
of the general case. Moreover, “since the longer paper didn’t appear until 1841,”
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as Cooke [37], p. 411, pointed out, “it was primarily the hyperelliptic case that
introduced Abel’s new methods to the world.”

Abel’s treatment in [2] is computationally involved too. Indeed, eight pages of its
twelve are devoted to obtaining, in the hyperelliptic case, a relatively explicit form
of the key Elementary Function Theorem. Nevertheless, the degree of abstraction
was strikingly novel. Indeed, in a letter to Gauss on 2 January 1829, Bessel wrote
(as quoted in [82], p. 213): “I have been very surprised about Abel’s theorem,
which makes it possible to discover the properties of integrals without executing
them. I believe an entirely new phase of the integral calculus has been brought
to light. I wish that Abel would pursue it further in many applications. It appears
unintelligible to me that such a theorem has been presented to the Academy in Paris,
and yet remains unknown.”

Abel’s treatment was analyzed carefully both historically and mathematically by
Brill and Noether [17], pp. 209–210, by Houzel [58], pp. 73–74, and by Cooke [37],
pp. 413–418. In particular, Brill and Noether felt they found the “bridge that
leads from Euler to Abel in a certain transformation that Abel applied.” However,
Cooke [37], p. 405, argued that a somewhat different route is more plausible.

In the introduction to [2], Abel put the Addition Theorem roughly this way:
the integrals of arbitrary algebraic differentials form a very large class of transcen-
dental functions with an addition formula; if an arbitrary sum of functions arising
from the same differential cannot be given by a single function of the same sort, as
is the case for elliptic functions, at least the sum can be given by a sum of a specific
number of them, plus certain algebraic and transcendental terms.

The preceding statement is basically what Cooke [37], p. 400, called the
“commonly-accepted informal statement of Abel’s theorem.” In fact, the Addition
Theorem was accepted as Abel’s Theorem by Gray [52], p. 142, and [53], p. 366,
by Shafarevich [107], pp. 416–417, by Kline [68], p. 654, by Ore [83], p. 15, by
Klein [67], p. 104, by Baker [8], p. 209, and by Weierstrass [111], pp. 403–404.
(The half-page statement of the theorem in [68] is strikingly similar to that in [8],
although [8] is not cited.)

However, contrary to what Abel announced in [2], in his third paper [3], he
proved only the key, but preliminary, Elementary Function Theorem. It provides
a sufficient condition for this sum of integrals to be given by the algebraic and
transcendental terms alone, so by an elementary function. The condition is not
imposed on the common integrand, but on the variables of the integrals, their upper
limits; they must form the full set of roots of a certain resultant equation with variable
coefficients.

The paper is very short: two pages. The statement fills the first page; the proof,
the second. The mathematics is more elegant and more conceptual than in [2]. There
is no introduction, but in the very last sentence, Abel said he would develop a number
of illuminating applications later.

The Elementary Function Theorem too has been commonly accepted as Abel’s
Theorem by historians and mathematicians. Some have also explained that Abel
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went on to derive his Addition Theorem in full generality. Notably, Dieudonné [43],
pp. 19–20, and Wirtinger [120], p. 159, did so.

Other authors have simply gone on to derive the Addition Theorem, without
clearly crediting it to Abel. For example, see the treatments by Hensel and Lands-
berg [57], by Goursat [51], pp. 244–250 and 665–685, by Bliss [14], pp. 119–132,
and by Griffiths [55], pp. 327–345. Goursat, however, treated the Addition Theorem
only in the hyperelliptic case.

Still other authors have also explained, at most, how to recover the older addition
theorems for circular functions and elliptic functions. For example, see the treatments
by Clebsch and Gordan [33], Ch. 2, by Clebsch and Lindemann [34], Ch. 6, by
Cremona [40], p. 161, by Enriques and Chisini [44], p. 141, by Markusevich [76],
pp. 37–40, and by Laudal [72], p. 68.

Some treatments require more discussion here. First, Rowe [97], p. 713 and
p. 721, accepted the Elementary Function Theorem as Abel’s Theorem, and described
it as “the principal theorem of Abel’s memoir [1].” Correspondingly, Rowe cited
Equation (37) in [1], but nothing in [3]. Nevertheless, Rowe devoted twelve pages,
a third of [97], to Abel’s derivation of the Addition Theorem. Later, Forsyth [47],
pp. 579–601, did about the same thing.

Brill and Noether [17], p. 212, referred to the Elementary Function Theorem as
the celebrated (berühmt) Abel’s Theorem. However, they then called the Addition
Theorem the main result (Hauptergebnis) in [1]. Thus they felt that Abel’s main
result was not commonly accepted as Abel’s Theorem.

By contrast, Ore [82], p. 219, and [83], p. 17, felt that Abel had, in [3], reproved
the “main theorem from his Paris memoir [1].” Thus he felt that the Elementary
Function Theorem is Abel’s main result. Yet Ore [83], p. 15, accepted the Addition
Theorem as Abel’s Theorem.

Under the heading Abel’s Addition Theorem, Birkhoff and Merzbach [11],
pp. 188–190, gave a translation of the introduction to Abel’s first paper [1], which
includes informal statements of the Relations Theorem and the Addition Theorem.
Then they said: “We reproduce below Picard’s [sic] simplified proof of Abel’s Addi-
tion [sic] Theorem.” Thus they ended with a statement labeled Abel’s Theorem, but
which is, in fact, a statement of Abel’s Elementary Functions Theorem.

Birkhoff and Merzbach’s version of Picard’s statement and proof is nearly iden-
tical to Coolidge’s statement and proof in [38], p. 213. They cited both Picard and
Coolidge, whereas Coolidge just cited Abel’s third paper [3]. But Coolidge gave
a valid explanation: “We can do no better than to reproduce his [Abel’s] original
form, with slight changes of wording and notation.”

Coolidge did cite Picard on a related matter. Both he, p. 213, and Birkhoff and
Merzbach, pp. 176–177, quoted Picard’s famous pronouncement on Abel’s Theorem:
“Perhaps never in the history of science has so important a proposition been obtained
using such simple considerations.”

Birkhoff and Merzbach cited the second edition (1905) of Picard’s book [90],
pp. 437–439, whereas Coolidge cited the third edition (1926, p. 464). In the former,
Picard cited only Abel’s Paris paper [1], and then proved a version of Abel’s Ele-
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mentary Function Theorem. Picard’s treatment is rather different from Abel’s, but
also rather different from the one “reproduced” by Birkhoff and Merzbach. Later, on
p. 426, Picard arrived at Abel’s Addition Theorem, although only for integrals of the
first kind; he did not credit it to Abel, but did say that it follows from Abel’s Theorem.

For an integral of the first kind (one finite everywhere), the elementary function
reduces to a constant. So two sums of these integrals have the same value (modulo
periods) if the variables of each form the set of roots of the same resultant equation,
but with different choices of coefficients. Two such sets are called (linearly, or
rationally) equivalent. And Abel’s Equivalence Theorem says this: if two sets of
variables are equivalent, then the corresponding sums have the same value for every
integral of the first kind.

Abel, however, did not deal with integrals of the first kind as such, although he cer-
tainly did seek conditions guaranteeing the constancy of the sum of integrals. Accord-
ing to Brill and Noether [17], p. 275, Riemann was the first to formulate and prove the
Equivalence Theorem in full generality essentially as above. Riemann [92], pp. 123–
124, called it Abel’s Addition Theorem, and referred to Jacobi’s proof of it in the hy-
perelliptic case [64], § 8. Also, he said that, for an arbitrary Abelian integral, a similar
argument yields the Elementary Function Theorem, although he did not use the name.

The converse of the Equivalence Theorem holds too, although Abel did not rec-
ognize it. It and the direct assertion were combined and proved under the heading of
Abel’s Theorem by Weyl on p. 149 of his celebrated book [119] on Riemann surfaces,
although Weyl did mention that Abel proved only the direct assertion. In a footnote,
Weyl explained further that Abel’s theorem was “developed in splendid simplicity
in the short note [3],” and “is more general, in that it concerns not only integrals of
the first kind . . . The converse of Abel’s theorem for integrals of the first kind may
be read between the lines in Riemann; it was stated explicitly (without completely
adequate proof) by Clebsch [29], p. 198.” But Weyl failed to mention Weierstrass.

After the appearance in 1913 of Weyl’s book, it has become common in the
theory of Riemann surfaces – as Patterson [86], p. 10, pointed out – to do as Weyl
did, and accept the full necessary and sufficient criterion as Abel’s Theorem, even
though Weyl noted doing so is historically misleading.

However, Severi called the full criterion the Abel–Riemann Theorem on p. 271
of his 1921 book [104], which was based on his 1907–8 lectures in Padua, but the
name “Abel–Riemann Theorem” never caught on. Severi also said the result can be
found somewhere unspecified in Weierstrass’s work, and indeed Weierstrass [111],
pp. 407–419, did prove it all.

The Relations Theorem is the fourth theorem accepted as Abel’s Theorem.
Notably, it was accepted by Houzel [58], p. 72, and by Bell [9], p. 322. Later
Bell [10], pp. 501–502, accepted the Addition Theorem, citing Baker [8], p. 209, as
his authority.

Abel stated the Relations Theorem informally in the introduction to his Paris
paper [1], p. 146. Then he said that this theorem yields the Addition Theorem, which
he also stated informally. Unfortunately, he did not make comprehensive formal
statements of his results, let alone use the heading of “Theorem,” in [1], as he did in
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his later two papers. So there is some uncertainty about precisely how to formulate
these two theorems.

Moreover, Abel included two assertions in this statement of the Addition Theo-
rem, which he omitted from his later statement in the introduction to [2]. The first
assertion concerns the variables of the given sum of integrals and those of the reduced
sum: the latter must be algebraic functions of the former. The second assertion is
that, in the given sum, the integrals can be multiplied by arbitrary rational numbers.

The Relations Theorem lies a step beyond the Elementary Function Theorem,
but they sound similar. Both assert that the same sum of integrals is given by an
elementary function. However, in the Elementary Function Theorem, the integration
variables are assumed to form the set of roots of a single resultant equation whose
coefficients are polynomials in certain variables; moreover, these variables are the
arguments of the elementary function. In the Relations Theorem, the integration
variables are assumed to satisfy a specific number p of algebraic relations. In fact,
these relations make the last p variables into algebraic functions of the first variables;
moreover, the first variables are also the arguments of the elementary function.

The situation is a bit more tangled. Abel began the technical discussion in [1]
with a short conceptual proof of the Elementary Function Theorem; it is similar to his
proofs in [3] and [4]. Unfortunately, on p. 149 of [1], he said this theorem is what he
had announced on p. 146. It isn’t! There is no mention in the Elementary Function
Theorem of a specific number of relations among the integration variables; Abel
stressed the matter in the introduction, and devoted pp. 170–180 to it. Fortunately,
neither Houzel nor Bell were mislead; both indicated the importance of the number.

Legendre, it seems, never appreciated the full extent of Abel’s Addition Theorem.
But, he did come to appreciate its importance for hyperelliptic integrals, to which he
devoted the third supplement to his Traité des fonctions elliptiques in two volumes,
1825–26. (See [82], pp. 204, 208, 213, 219–220, 233–234, and [68], p. 421.) In
the supplement, Legendre introduced the term “ultra-elliptic” to refer to the more
general integrals.

Legendre sent a copy of the supplement to Crelle for review on March 24,
1832, and at Crelle’s request, Jacobi reviewed it. He [63], p. 415, translated “ultra-
elliptiques” by hyperelliptischen, and the prefix “hyper” has stuck, even in French.
Moreover, since Abel had introduced the integrals, Jacobi suggested calling them
Abelian transcendents (Abelschen Transcendenten). However, by 1847, he [65],
p. 151, had begun calling them Abelian integrals (Abelschen Integralen) as well.
Furthermore, Jacobi was inspired to give in [64], dated 12 July 1832, the first of
several treatments of Abel’s Addition Theorem in the hyperelliptic case, which he
called simply Abel’s Theorem.

In his cover letter, Legendre [75] praised Abel’s Addition Theorem, calling it, in
the immortal words of Horace’s Ode 3, XXX.1 (see [9], p. 307), a monument more
lasting than bronze (monumentum aere perennius). In turn, Jacobi [63], p. 415, said,
“Surely, as the noblest monument to this extraordinary genius, it is preferable that
this theorem acquire the name of Abel’s Theorem.” And ever after, it has been called
Abel’s Theorem!



402 S. L. Kleiman

2 Abel’s Elementary Function Theorem

An Abelian integral is simply an integral of the form

ψx :=
∫

R(x, y) dx

where x is an independent variable, R is a rational function, and y = y(x) is an
(integral) algebraic function. That is, R is the quotient of two polynomials. And y is
the implicit multivalued function defined by an irreducible equation of the form

f(x, y) := yn + f1(x)y
n−1 + · · · + fn(x) = 0 (2.1)

where the fi(x) are polynomials in x.
The notation here and below is not always the same as Abel’s, but is essentially

self-consistent, whereas Abel’s changed from paper to paper.
For example, y := √

x is defined by f(x, y) := y2 − x. More generally, let
ϕ(x) be a squarefree polynomial. Then y := √

ϕ(x) is defined by the irreducible
polynomial f(x, y) := y2 − ϕ(x). Now, any polynomial in x and y can be reduced
to one of the form ϕ1(x)y + ϕ2(x); just replace each even power y2r by ϕ(x)r , and
each odd power y2r+1 by ϕ(x)r y.

Hence ψx can be written in the form

ψx =
∫

π1(x) dx

π2(x)
+
∫

ρ1(x) dx

ρ2(x)
√
ϕ(x)

(2.2)

where the πi(x) and ρi(x) are polynomials. The first summand can be integrated
by the method of partial fractions, and the integral expressed as a sum of rational
functions and logarithms, so as an elementary function.

Let d be the degree of ϕ(x). If d is 1 or 2, then, via a rational change of variables,
the second summand can be transformed into one like the first, and then integrated.
Indeed, if ϕ(x) = ax + b, then∫

ρ1(x) dx

ρ2(x)
√
ϕ(x)

=
∫

2ρ1
(
(y2 − b)/a

)
dy

aρ2
(
(y2 − b)/a

) .

Suppose ϕ(x) = ax2+bx+c. Then by completing the square and replacing x by
u := αx + β and y by v := γy for suitable constants α, β, γ , the second summand
can be transformed into one with ϕ(x) = 1− x2. Finally, setting

x = 2t

1+ t2
and y = 1− t2

1+ t2
,

transforms the second summand in (2.2) into one like the first.
If d ≥ 3, then the second summand in (2.2) usually cannot be expressed as an

elementary function. It is called an elliptic integral when d is 3 or 4, as such integrals
arise in rectifying the ellipse. The second summand was termed a hyperelliptic
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integral when d ≥ 5 in 1832 by Legendre and Jacobi, since such integrals share
many formal properties with the elliptic integrals.

Usually, the Abelian integral ψx is interpreted, following the dictates of rigor, as
a contour integral with fixed lower limit on the Riemann surface of f . Furthermore,
Dieudonné [43], p. 19, felt Abel himself meant just such an integral. And, indeed,
Abel [1], p. 149, spoke of “integrating between certain limits.” But it seems more
likely, as Cooke [37], pp. 400, 412–413, suggested, that Abel really meant an in-
definite complex integral of the sort used by Euler. Indeed, when Abel [1], p. 145,
summarized his work, he spoke of a function with a given sort of derivative.

Abel began his study of advanced mathematics by reading Euler’s three standard
texts (Introductio, Institutiones calculi differentialis, and Institutiones calculi inte-
gralis). He read them together with his mathematics teacher and mentor, Holmboe,
at the Christiania Cathedral School, a preparatory school. Furthermore, Abel dis-
covered his theorem before leaving for Paris; indeed, it is proved in full generality
in the posthumous fragment [4]. (See [12], p. 2; see [111], pp. 401–402; see [17],
pp. 213, 274; and see [37], p. 407.)

When Abel was in Paris, Cauchy had just begun to develop his theory of in-
tegration, and he published a preliminary version in his own journal. Abel wrote
to Holmboe that he read the issues diligently, but they seem not to have had much
influence on his work on his theorem. (See [109], p. 409; see [82], p. 147; and
see [37], p. 412.)

Furthermore, as Cooke [37], p. 412, observed, “absolutely no knowledge of
contour integrals or the residue theorem is even remotely hinted at in the present
paper [2], even though their implicit presence is obvious to a modern mathematician.”
On the contrary, as Cooke noted on p. 414, Abel “used a principle that we recognize
nowadays as a special case of the residue theorem.” In addition, Cooke noted on
p. 416 that Abel used a formula “that seems to foreshadow Cauchy’s formulas for
the derivatives of an analytic function.”

Abel used this principle and this formula in [1] too, but not in [3], nor in [4].
Indeed, Abel used them to obtain fairly explicit, though intricate, forms of the
Elementary Function Theorem in [1] and [2]. However, he did not use them in his
strikingly short proofs of the more conceptual forms of the theorem in [1] again, and
in [3] and [4].

There is no geometry in Abel’s work, even though it might seem he considered
himself a geometer (see [72], p. 68). Indeed, on his roundabout trip to Paris, Abel
registered at an inn in Predazzo as “professore della geometria” (see [109], p. 391).
And he began his Paris paper [1] with these words: “The transcendental functions
considered up to now by geometers [sic] are very few in number.” Thus, under
geometry, Abel included, as did others, the analysis of functions arising as arc
lengths, areas, and the like.

Yet, Abel’s work might have benefited if he had known more about the singu-
lar points and the points at infinity of an algebraic curve in the projective plane.
Moreover, projective geometry was a subject of considerable interest in France and
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Germany when Abel visited them (see [68], pp. 834–860). Also, he was a good
friend of the geometer Steiner (see [82], p. 96).

However, in 1864 Clebsch [29] reformulated Abel’s theorem geometrically,
and derived results about contacts between various curves and surfaces. In the
introduction, Clebsch said that such applications had not been sought earlier, because
Riemann’s 1857 theory of Abelian integrals was difficult to understand despite the
more recent efforts of younger mathematicians. Moreover, according to Brill and
Noether [17], p. 320, Clebsch wrote Roch in August 1864, saying that, even after
great effort, he understood little of Riemann’s paper [92].

Clebsch studied in Königsberg from 1850 to 1854, learning function theory
from Richlot and geometry from Hesse, both of whom had studied under Jacobi.
Hesse encouraged Clebsch to pursue the algebraic geometry of Cayley, Salmon, and
Sylvester. Clebsch’s later melding of their work with that of Abel and Riemann led
to a sea change in algebraic geometry, which turned toward the study of birational
invariants. Clebsch learned about Riemann’s great conceptual theory in 1863 from
Gordan. However, Riemann’s approach was analytic and topological, not really
algebra-geometric.

Gordan studied in Berlin, where he followed Kummer’s lectures on number
theory in 1855, in Königsberg, where he was influenced by Jacobi’s school, and in
Breslau, where he completed his dissertation in 1862. He then visited Göttingen to
pursue his interest in Riemann’s theory. Unfortunately, Riemann’s health was failing,
and he spent that winter and spring in Italy. However, he left behind several students
who understood his work, including Neumann, Prym, and Roch.

At the time, Clebsch was a professor in Karlsruhe, about to move to Giessen,
and he invited Gordan to go there with him. In 1868, Clebsch succeeded Riemann
in Göttingen. Alas, Clebsch died of diphtheria at 39 in November 1872, and Gordan
left Giessen the next year to become a professor in Erlangen. (See [18]; see [46];
see [48], p. 448; see [52], p. 141; see [53], pp. 367–368; and see [68], pp. 934–937.)

Clebsch [29] reformulated Abel’s setup much as follows. View the equation
f(x, y) = 0 as defining a (projective) plane curve C. Let g(x, y) = 0 define a second
curve D. Say C and D intersect in μ points, coalescing allowed, with abscissas
x1, . . . , xμ. View x1, . . . , xμ as (a complete set of conjugate algebraic) functions of
the coefficients a1, . . . , ar of g(x, y). See Fig. 1.

In Abel’s two-page third paper [3], the Elementary Function Theorem is formu-
lated in its conceptual form basically as follows.

Theorem 2.1 (Elementary Function). There exist constants k1, . . . , km and rational
functions u, v1, . . . , vm of a1, . . . , ar such that

ψx1 + · · · + ψxμ = u + k1 log v1 + · · · + km log vm . (2.3)

For example, let us work out the case y := ϕ(x) where ϕ(x) is a polynomial
(compare with Abel [4], pp. 60–64); here f(x, y) := y−ϕ(x). Expand R(x, ϕ(x)) in
partial fractions in x. Since the assertion is linear in R, we may assume R = (x−b)q .
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x1 x
x2

C : f(x, y) = 0

y D : g(x, y) = 0

xμ−1

xμ

Fig. 1. Clebsch’s geometric reformulation (courtesy of J.-M. Økland)

If q �= −1, then ψx1 + · · · + ψxμ is equal to

u := (x1 − b)q+1

(q + 1)
+ · · · + (xμ − b)q+1

(q + 1)
.

However, u is a symmetric rational function in x1, . . . , xμ. And they are all the
roots of g(x, ϕ(x)). Therefore, u is a rational function in the coefficients of g(x, ϕ(x)).
But they are linear combinations of the coefficients a1, . . . , ar of g(x, y). So the sum
is a rational function in a1, . . . , ar , as asserted. If q = −1, then ψx1 + · · · +ψxμ is
equal to log(x1 − b)+ · · · + log(xμ − b), so to log v where

v := (x1 − b) · · · (xμ − b) .

But v is, similarly, a rational function in a1, . . . , ar , as asserted.
The key here is a basic theorem about a polynomial equation: any symmetric

rational function in its roots can be expressed as a rational function in its coefficients.
This theorem is also the key to the general case (see [107], p. 417, for example).
Indeed, Dieudonné [43], p. 20, described Abel’s proof as “remarkable” since it yields
such a “general” result, yet is “hardly more than an exercise in the theory of the
symmetric functions of the roots of a polynomial.” When Abel used this theory
in [3], p. 516, he just said it was “known,” and gave no reference.

In fact, this theorem on symmetric functions was proved, for the first time, in
1771 by Vandermonde, although, a hundred years earlier, Newton had proved it
for various sums and products of the roots (see [68], p. 600). Moreover, Brill and
Noether [17], pp. 209–211, suggested it was just such advances in the theory of
equations that allowed Abel to generalize Euler’s addition formula of 1756–57 for
elliptic integrals. Cooke [37], p. 400, added: “Although Brill and Noether do not go
into details, it seems clear that a still-primitive understanding of complex numbers
had retarded the full understanding of the significance of symmetric polynomials in
Euler’s day.”

Similarly, Kline [68], p. 645, suggested Abel may have gotten some ideas from
Gauss, especially from hisDisquisitiones Arithmeticae of 1801. Also, as Cox, Little,



406 S. L. Kleiman

and O’Shea [39], p. 314, noted, in 1816 Gauss published another proof of this
theorem on symmetric functions (which introduced the lex ordering) as part of his
second proof of the fundamental theorem of algebra.

On the other hand, on p. 56 in [59], Houzel gives a rather different impression
of the history of this key theorem on symmetric functions. He says that Newton
discovered the general case, but published only a particular case; the general case
was published, for the first time, by Waring in 1762, at a period when it waws
“common knowledge.” If so, then Euler must have known it when he worked on his
addition formula. Why then was euler unable to generalize it? It would be very nice
to know the full story.

Of course, the method of partial fractions also plays a key role here. But, the
method was well known, already when Euler worked, having been introduced in
1702 independently by Leibniz and James Bernoulli. And both used logarithms of
complex numbers then too. (See [68], p. 407.)

3 Abel’s Equivalence Theorem

Abel proved only the Elementary Function Theorem, Theorem 1, in his third pa-
per [3]. But, in his other three papers, [1], [2], and [4], he addressed two further
questions. First, when is the sum ψx1 + · · · + ψxμ in (2.3) constant? Second, how
many of the xi can be varied independently?

Remarkably, both questions lead to the same number p, the (geometric, or true)
genus of C : f(x, y) = 0. Furthermore, the first question leads to the Equivalence
Theorem, and the second, to the Relations Theorem and from there to the Addition
Theorem. The first question is discussed in this section; the second, in the next,
Sect. 4.

Suppose the integral ψx is of the first kind, that is, everywhere finite, even at
infinity – in other words, bounded. (The division of Abelian integrals into three
kinds was introduced in 1793 by Legendre for elliptic integrals, and in 1857 by
Riemann in general; see [68], p. 421 and p. 663.) It follows, as explained next, that,
when we vary the coefficients a1, . . . , ar of the auxiliary equation g(x, y) = 0, the
function

σ(a1, . . . , ar) := ψx1 + · · · + ψxμ .

remains constant.
Indeed (compare with [76], p. 38), since ψxi remains bounded as xi varies,

σ(a1, . . . , ar) remains bounded as the a j vary. Now, owing to Theorem 1, each
partial derivative ∂σ/∂a j is a rational function. So ∂σ/∂a j too is bounded. Hence it
is constant. Therefore, σ is linear and bounded, so constant.

Fix a1, . . . , ar . Say D : g(x, y) = 0 meets C : f(x, y) = 0 in the points

z1 = (x1, y1), . . . , zμ = (xμ, yμ) .
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Make a second choice of the coefficients, say a′1, . . . , a′r . Let g′(x, y) = 0 and

z′1 =
(
x′1, y

′
1

)
, . . . , z′μ =

(
x′μ, y

′
μ

)
be the corresponding items. Then the constancy simply means the equation

ψx1 + · · · + ψxμ = ψx′1 + · · · + ψx′μ (3.1)

holds (modulo periods) for all ψ of the first kind.
Possibly, some of the z’s are equal to some of the z′’s. If so, then some of the terms

in (3.1) cancel. Also, the other z’s and z′’s are the zeros and poles of the restriction
of g/g′ to C. So the z’s and z′’s form sets (or point-groups) that are equivalent in the
following sense.

In general, two sets of points of C, repetitions allowed, are called (linearly, or
rationally) equivalent if, after all common points are removed, the remaining points
are the zeros and poles of a meromorphic (or rational) function onC. Extra care must
be taken if C is singular; one way to proceed is to work on the desingularization of
C, the Riemann surface of f .

Consider two equivalent sets, say consisting of z1, . . . , zν and z′1, . . . , z′ν. Pass
a curve D of suitably high degree through z1, . . . , zν. Say D intersects C in
zν+1, . . . , zμ as well. As the two sets are equivalent, there is a second curve D′
of the same degree so that D′ intersects C in z′1, . . . , z′μ, zμ+1, . . . , zν. (In basically
this context, equivalent sets are said to be “co-residual”; see [8], p. 136 and [38],
p. 206.) Hence, the preceding discussion yields Abel’s half of the full Equivalence
Theorem.

Theorem 3.2 (Equivalence). Consider two sets of points of C with abscissas
x1, . . . , xν and x′1, . . . , x′ν. The sets are equivalent if and only if the equation

ψx1 + · · · + ψxν = ψx′1 + · · · + ψx′ν ,

holds for all ψ of the first kind.

As mentioned in Sect. 1, the other half of the theorem was stated explicitly for
the first time by Clebsch [29], p. 198, in 1864. In fact, there Clebsch assumed C is
nonsingular. However, as Brill and Noether [17], pp. 326–327, pointed out, Clebsch
shortly afterward published two papers in which he allowed C to have nodes and
cusps.

A necessary and sufficient condition that the integral ψx := ∫ R(x, y) dx be of
the first kind is that the integrand be a differential of the form

R(x, y) dx = h(x, y)

∂ f/∂y
dx (3.2)

where h satisfies two conditions. First, h must vanish suitably wherever ∂ f/∂y
vanishes on C, and h must behave similarly at infinity; such an h is called an adjoint
of C, and more is said about adjoints below. Second, h must be a special adjoint;
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that is, the bound deg h ≤ deg f − 3 must hold in addition. (See [8], pp. 121–122;
see [38], p. 206; and see [68], p. 936.) Such differentials too are said to be of the first
kind.

For example, suppose f(x, y) := y2−ϕ(x)whereϕ(x) is a squarefree polynomial
of degree d. Set

p :=
{
(d − 1)/2, if d is odd ;
(d − 2)/2, if d is even .

(3.3)

Then every differential of the first kind is a linear combination of the following p
basic ones (see [76], p. 33, for example):

dx√
ϕ(x)

,
x dx√
ϕ(x)

, . . . ,
x p−1 dx√

ϕ(x)
. (3.4)

Abel, though, was not interested in integrals of the first kind, although some
commentators, such as Sylow [110], p. 298, felt he should have been. Rather, Abel
was interested in the constancy of the sumψx1+· · ·+ψxμ. In the case f := y2−ϕ(x),
his Theorem III on p. 450 in [2] provides an explicit expression for the right side of
(2.3). Then, on p. 451, he said it is easy to see that this expression is constant when
ψx is any linear combination of the integrals of the differentials listed in (3.4). Abel
did not claim to have found every integral for which the sum is constant, but likely
he felt he had.

For any C : f = 0, Abel investigated this constancy in [1], pp. 159–170, but
his results are not definitive. “At the cost of rather complicated computations,” as
Dieudonné [43], p. 20, put it, Abel concluded constancy obtains when the integrand
is of the form (3.2) and the coefficients of h(x, y) satisfy certain linear relations (see
also [17], p. 216). Dieudonné added that the form (3.2) is “central in Riemann’s
theory.”

Abel denoted the number of linearly independent h by γ , and gave several
formulas for γ . They are complicated, but notably depend only on the degree d
of C and on certain numbers associated to the singularities. He worked with the
singularities by expressing y as a fractional power series in x, a method introduced
by Newton in 1671 and treated by De Gua in 1740, Euler in 1748–1749, and Cramer
in 1750 (see [68], pp. 552–554, and [17], pp. 133, 135, 139, 141, 216).

Notably, Abel found that

γ ≤ π where π := (d − 1)(d − 2)/2 . (3.5)

At one time, π was called the “virtual” genus of C, but now π is normally called its
“arithmetic” genus.

Abel found that equality holds in (3.5) when the coefficients of f satisfy no
special relation. In fact, equality holds whenever C is nonsingular everywhere,
including at infinity. Notably, however, if C is hyperelliptic, then C is nonsingular
at finite distance, but singular at infinity.
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For any C : f = 0, the number of linearly independent integrals of the first kind
is equal to the genus p, where by the genus is meant half the first Betti number of the
associated Riemann surface. This result was proved in essence in 1857 by Riemann
himself [92], p. 137, (or [11], p. 198, in English translation). In fact, he used p to
denote the genus; this use of the letter p soon became common, and has remained
so. Notably, however, Weierstrass [111] used % instead to denote this quantity, and
used no term to refer to it.

Whether p is viewed topologically, as half the Betti number, or analytically, as
the number of integrals, p is plainly a birational invariant. In other words, p is
invariant under a map from C to another plane curve if the map is given by rational
functions in x and y and has an inverse given similarly. Such a transformation is just
a kind of change of variables in the integrals, and it induces an analytic isomorphism
between the associated Riemann surfaces.

The term “genus” is not due to Riemann. Rather, it was introduced in 1865 by
Clebsch [30], p. 43, in order to indicate his aim of using this invariant p as a means
for classifying curves. And indeed, he proved in § 1 of [30] that every curve of
genus 0 is birationally equivalent to a line and in [32] that every curve of genus 1 is
birationally equivalent to a nonsingular plane cubic.

Earlier, plane curves C : f(x, y) = 0 were classified according to their degree
(or order), that is, the degree of f . This method was introduced in 1637 by Descartes,
and used by Wallis, Newton, James Bernoulli and others. (See [68], pp. 308–334
and 547–554.)

Also in 1865, Clebsch [31], p. 98, gave an important algebra-geometric formula
for p, namely,

p = (d − 1)(d − 2)/2− δ− κ (3.6)

where d is the degree of C and where δ and κ are the numbers of nodes and cusps,
provided C has no higher singularities. Clebsch then related this formula to the
Plücker formulas.

When C is nonsingular, p = γ by (3.6) and the statement after (3.5). When C
is singular, p and γ can differ. Indeed, Clebsch and Gordan [33], p. 49, observed
that the sum ψx1 + · · · + ψxμ can remain constant for certain integrals ψx of the
third kind when C has nodes and cusps. (See also [17], pp. 216–217.) The full story
involves the restrictions placed on the variables ai , the coefficients of g(x, y), on
which the sum depends. The situation was not understood fully until after 1950; see
Sect. 7.

The term “genus” was accepted right away by most all, except writers in English;
they used the term “deficiency” instead. The notion of deficiency had already been
introduced in 1729 by Maclaurin: he proved an irreducible plane curve of degree
d has at most (d − 1)(d − 2)/2 nodes and cusps, and he considered the difference
between this maximum number and the actual number, that is, the right side of (3.6)
(see [68], p. 552). This difference was termed the deficiency and denoted D, not p,
by Cayley [27], p. 1, also in 1865, although Cayley cited Cramer’s book of 1750,
not Maclaurin’s of 1720. The term deficiency was used for about fifty years.
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Cayley [27], p. 1, also cited Clebsch’s paper [30], not because the term genus
was introduced there, but because there “it was first explicitly stated” that, if a curve
of degree d has (d − 1)(d − 2)/2 nodes and cusps, then it is birational to the line,
and so can be traced globally by a single algebraic parameter. Cayley noted that
this fact follows from Riemann’s general theory, and then gave it a simple direct
algebra-geometric proof. Cayley termed such curves unicursal.

For example, let C : f(x, y) = 0 be the lemniscate. It was introduced by James
Bernoulli in 1694 in connection with his study of bending rods. Here

f(x, y) := (x2 + y2)2 − a2 (x2 − y2)
where a is a constant, and C is a figure eight. (See [68], p. 412.) Hence C has a node
at the origin, but it also has two more imaginary nodes at infinity. So (3.6) yields
p = 0; whence, C is unicursal. Therefore, any Abelian integral ψx := ∫ R(x, y) dx
is given by an elementary function in x.

However, Bernoulli tried to find the arc length s of the lemniscate C in terms of
the polar radius r, and was led to this formula:

s =
∫ r

0

a2 dr√
a4 − r4

.

He “surmised that this integral . . . could not be integrated in terms of the elementary
functions,” as Kline [68], p. 412, put it, and continued, “Seventeenth-century attempts
to rectify the ellipse, whose arc length is important for astronomy, . . . [and] the
problem of finding the period of a simple pendulum led” to similar elliptic integrals.

The birational invariance of the genus was proved algebra-geometrically in 1866
by Clebsch and Gordan [33], pp. 54–60. They begin with (3.6), and proceeded to
determine the degree and the numbers of nodes and cusps on the transformed curve.
Klein, who [66], p. 2, called Clebsch “one of my principal teachers,” nevertheless,
on p. 5, criticized the proof for involving “a long elimination, without affording the
true geometrical insight into [the] meaning” of the genus.

On the other hand, as Kline [68], pp. 939–940, explained, Clebsch was no longer
“satisfied merely to show the significance of Riemann’s work for curves. He sought
now to establish the theory of Abelian integrals on the basis of the algebraic theory of
curves . . . One must appreciate that at this time Weierstrass’s more rigorous theory of
Abelian integrals was not known and Riemann’s foundation – his proof of existence
based on Dirichlet’s principle – was not only strange but not well established.”

Clebsch and Gordan’s proof was not the first algebra-geometric proof of the
invariance of the genus, as is sometimes said (for example, on p. 939 in [68]).
Indeed, Cayley [27], p. 3, found one the year before, in 1865. However, Clebsch and
Gordan’s work inspired further advances; Cayley’s didn’t really.

The term adjoint (adjungirte) was introduced in 1874 by Brill and Noether on
p. 272 of their great paper [16]. (See [52], p. 147; see [17], p. 335; and see [34],
p. 429. In [58], p. 110, the term is attributed to Clebsch, but not documented.) The
notion is implicit in Abel’s work, in Riemann’s, and in Clebsch’s, but it is explicit
and central in Brill and Noether’s; so they had to give it a name.
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Brill and Noether’s paper [16] is the next milestone in algebraic geometry after
Clebsch and Gordan’s book [33]. Indeed, as Gray [52], p. 148, wrote, “It should
be stressed that with this work the algebraic geometers not only caught up with
Riemann, they surpassed him in generality and rigour. It is from this point that they
began to make new discoveries . . . ”

Brill studied under Clebsch in Karlsruhe and Giessen, graduating in 1864 and
passing his Habilitation in 1867. He taught as Dozent in Giessen until 1869, then
as professor in Darmstadt until 1875, in Munich until 1884, and in Tübingen until
1918. (See [91].)

Noether (Emmy’s father, Max) earned his doctorate in 1868 under the physicist
Kirchhoff in Heidelberg without a dissertation. He learned about Riemann’s theory
of algebraic functions from Kirchhoff and by reading Riemann and Clebsch–Gordan.
Lüroth was in Heidelberg; he had studied with Clebsch in Giessen, and encouraged
Noether to go there. There Noether joined the circle of young mathematicians around
Clebsch and Gordan in lectures, in seminars, on strolls, and over coffee. Noether
passed hisHabilitation in 1870 back in Heidelberg; he taught there until 1874, when
he moved to Erlangen permanently. (See [15], p. 213; see [25], p. 161; and see [69],
p. 125.)

A curve C : f(x, y) = 0 is said to have multiplicity m at a point z, and z is said
to be an m-fold point of C, if the Taylor expansion of f at z begins with a form
of degree m. This form has m linear factors, and they define the tangent lines to C
at z. If m > 1 and if the lines are distinct, then z is an ordinary multiple point. For
example, a node is an ordinary double point.

When Brill and Noether [16], p. 272, defined adjoints, they assumed every
singularity (multiple point) is ordinary. In § 7, they explained how to make do
in general by reducing the singularities to ordinary ones through a sequence of
quadratic transformations of the ambient plane, a method Noether had developed in
1871. “Actually he merely indicated a proof which was perfected and modified by
many writers,” as Kline [68], p. 941, pointed out.

It is also possible to transform the curve into one only with nodes by using
birational transformations that do not extend to the ambient plane. Notably, Kro-
necker developed a method of doing so, and, as Kline [68], p. 941, observed, “he
communicated this method verbally to Riemann and Weierstrass in 1858, lectured
on it from 1870 on, and published it in 1881.” Many others worked on the matter as
well, and Bliss devoted his 1923 AMS Presidential Address [13] to an account of
this work.

There are occasions, however, when it is neither customary nor desirable to
reduce the singularities of the given curve. For example, a hyperelliptic curve C is
given by an equation of the form y2 = ϕ(x) where ϕ(x) is a squarefree polynomial,
and an equation of any other form would mask the hyperellipticity. Yet, if say
d := degϕ, then C has a point z of multiplicity d − 2 at the end of the y-axis, and if
d ≥ 4, then this singularity is not ordinary as the line at infinity is the only tangent
to C at z.
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Let C : f = 0 and Γ : h = 0 be curves. Then Γ and h are called adjoints of C
under the following conditions. First, Γ must be allowed to be reducible and to have
multiple components, including the line at infinity, so that the various h of given
degree or less, plus 0, form a vector space. Now, suppose every multiple point z of C
is ordinary. If z is an m-fold point of C, then z must be an (m − 1)-fold point of Γ .
This definition is basically that given by Brill and Noether in [16], p. 272.

The definition of adjoint was extended in 1884 by Noether [79], p. 337, to curves
C with arbitrary singularities. He proceeded by induction on the number of quadratic
transformations required to reduce the singularities of C to ordinary multiple points.
Namely, Γ is an adjoint of C if the first transform Γ ′ of Γ is an adjoint of the
first transform of C. However, care must be taken in forming Γ ′. Let the quadratic
transform be centered at the point z of multiplicity m on C and μ on Γ . Then Γ ′
must include the exceptional line corresponding to z with multiplicity μ− m + 1.

The first rigorous general theory of adjoints was developed by Gorenstein in his
1950 Harvard thesis (see [94], p. 191), which was supervised by Zariski (see [85],
p. 119) and published in 1952 in [50]. In effect, on p. 431, Gorenstein termed
Γ an adjoint of C if the restriction h|C belongs to the conductor, in the field of
meromorphic (or rational) functions on C, of the subring generated by x and y,
and if a corresponding condition holds at infinity. He proved, on pp. 434–435, that
a differential is of the first kind if and only if it is of the form (3.2) where h is an
adjoint in his sense. His sense and Noether’s are shown to be equivalent, for instance,
in Casas’s text [20], p. 152.

4 Abel’s Relations Theorem

In Abel’s Paris paper [1], he first studied these two questions. Given an Abelian
integral ψx, when is the sum ψx1 + · · · + ψxμ equal to an elementary function?
When does the sum remain constant? His answers are discussed above in Sects. 2
and 3.

On p. 170, Abel began his study of a third question. How many of the xi in (2.3)
can be varied independently? That is, in the intersection of the curvesC : f(x, y) = 0
and D : g(x, y) = 0, how many of the common points can be assigned at will on C
by making suitable choices of the coefficients of g(x, y)? The answer is, as Abel put
it on p. 172, “rather remarkable.”

The answer is also rather subtle. Indeed, in 1898, Scott [99], p. 261, wrote: “The
theory of the intersections of curves has probably led its investigators into more errors
than any other modern theory. Even the history of the central question, the so-called
Cramer paradox, is usually given incorrectly, with the omission of all reference to
Maclaurin. This [omission] is all the more surprising, inasmuch as Cramer himself
ascribes [the paradox] to Maclaurin.”

The Cramer paradox is this. A curveC : f(x, y) = 0 of degree d is determined by
(d2 + 3d)/2 points. Indeed, each point places one linear relation on the coefficients
of f ; moreover, f has (d + 2)(d + 1)/2 coefficients, but one can be normalized to
be 1 since C is also defined by the vanishing of c f for any nonzero scalar c. Now,
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a second curve D : g(x, y) = 0 of degree d meets C in d2 points, in general. So
these d2 points do not determine a unique curve of degree d through them, yet

d2 ≥ (d2 + 3d
)
/2 if d ≥ 3 .

How can this be?
According to Scott [99], pp. 262–263, Maclaurin, in 1720, made “no attempt to

explain” the paradox. But in 1750, independently, both Cramer and Euler explained
it. Namely, the d2 relations are not independent. In fact, according to Brill and
Noether [17], pp. 289–290, Euler recognized that precisely (d2 + 3d)/2 − 1 are
independent, and in 1818, Lamé gave the reason why: the d2 points also lie on
the curve defined by the vanishing of any linear combination a f + bg; so the
relations determine all but one of the available coefficients. For example, through
eight arbitrary (general) points on a cubic, there pass infinitely many other cubics,
but they all pass through the same ninth point; it is not arbitrary, but depends on the
eight.

What did Abel do? Once again, his work is simpler in [2], where he treated the
hyperelliptic case. So let f(x, y) := y2 − ϕ(x) where ϕ(x) is a nonzero squarefree
polynomial of degree d, but any d ≥ 1 works here. Now, as noted before, g(x, y)
can be reduced to the form

g(x, y) = θ1(x)y − θ2(x)

by replacing each even power y2r by ϕ(x)r , and each odd power y2r+1 by ϕ(x)r y.
Observe that this reduction preserves the common zeros of f and g, which are the
common points of C : f = 0 and D : g = 0 at finite distance. Assume θ1 and θ2 are
not identically zero.

Abel allowed for the possibility that, as the coefficients of g(x, y) are varied,
θ2(x) and ϕ(x) retain a fixed common factor ϕ1(x). Say

θ2(x) = θ(x)ϕ1(x) and ϕ(x) = ϕ1(x)ϕ2(x) .

Mathematically, ϕ1(x) is needed at times, see below. Abel’s recognition of this need
was one milestone on the route to his work from Euler’s; for an interesting historical
discussion of ϕ1(x), see Cooke’s [37], pp. 408–409, 413.

Eliminating y between f(x, y) and g(x, y) gives the “resultant” polynomial

F(x) := θ(x)2ϕ1(x)− θ1(x)
2ϕ2(x) .

Let its roots be x1, . . . , xμ. They are the abscissas of the variable points of intersection
of C and D. Let y1, . . . , yμ be the corresponding ordinates. So yi is determined by
the equation g(xi, yi) = 0, or

θ1(xi)yi − θ(xi)ϕ1(xi) = 0 . (4.1)

Note that, if x′ is a root of ϕ1(x), then (x′, 0) is a fixed point of intersection.
Conversely, every fixed point at finite distance is of this form. Say x1, . . . , xα can
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be assigned at will by choosing the coefficients of g(x, y), and say xα+1, . . . , xμ are
determined by (x1, y1), . . . , (xα, yα).

Equation (4.1) may be viewed as linear relation among the coefficients of θ1(x)
and θ(x). However, Abel did not consider (4.1) explicitly in [2]. Rather, he formed
the equivalent equation

θ(xi)
√
ϕ1(xi) = εiθ1(xi)

√
ϕ2(xi) (4.2)

where εi = ±1. Since F(xi) = 0, (4.2) holds; it is equivalent to (4.1) since
f(xi, yi) = 0. The value of εi depends on the choice of signs in the square roots, but
remains constant as xi varies, as Abel noted on p. 449.

Normalize g(x, y) by assuming θ1(x) is monic. Let m and n be the degrees of
θ1 and θ. Then g has m + n + 1 free coefficients. They yield the coefficients of F.
Hence α ≤ m + n + 1. In fact,

α = m + n + 1 , (4.3)

and this equality is “easy to see from the shape of (4.2),” as Abel said on p. 453, but
without further explanation.

Here’s an explanation, which can be rephrased in terms of (4.2). Suppose α <

m+n+1. Then (x1, y1), . . . , (xα, yα) fail to determine the values of the coefficients
of g. Make two different choices of these values, obtaining g1 and g2 say. Then
g1 and g2 vanish at (xi, yi) for i = 1, . . . , α, so for i = 1, . . . , μ since the first α
points determine them all. Let (x0, y0) be another point of C. Set ci := gi(x0, y0)

and g′ := c1g2 − c2g1. Then g′ vanishes at (xi , yi) for i = 0, 1, . . . , μ. But then
eliminating y between f(x, y) and g′(x, y) gives a resultant polynomial of degree μ

with μ+ 1 roots, a contradiction.
Let d1 and d2 be the degrees of ϕ1 and ϕ2. Note μ = deg F. Hence

μ = max{ 2n + d1, 2m + d2 } and d1 + d2 = d . (4.4)

Therefore, (4.3) yields

2μ ≥ 2n + d1 + 2m + d2 = 2α− 2+ d ;
furthermore, the inequality is strict if d is odd. Hence (3.3) yields

μ− α ≥ p ; (4.5)

furthermore, μ−α = p if and only if computing Δ := (2m+ d2)− (2n+ d1) gives
Δ = ±1 when d = 2p+ 1, and gives Δ = 0 when d = 2p+ 2.

For example, given α ≥ 0, write α+ p = q(2p+ 2)+ d2 with 0 ≤ d2 ≤ 2p+ 1.
Set m := q(p+ 1). Define n by (4.3). Define d1 and μ by (4.4). Then μ− α = p.

On p. 454, Abel arrived at Inequality (4.5). He asserted that equality can be
achieved, but did not say how. Of course, equality does not hold for every m and n,
despite what is said in [58], p. 74. Moreover, when equality holds, if μ is odd and d



What is Abel’s Theorem Anyway? 415

is even, then d1 must be odd; in particular, then ϕ1 cannot be constant, despite what
is said in [37], p. 409.

Abel noted that the minimum value p of μ − α is equal to the number p of
differentials in (3.4), which he found to have constant sum ψx1 + · · · + ψxμ. This
equality appears to be a coincidence in Abel’s work, but likely he felt something
deeper is involved since he called attention to it.

Earlier, Abel [1], pp. 170–180, studied a similar situation with an arbitrary curve
C : f(x, y) = 0. His goal was the same, “to find the minimum . . . of μ − α,”
as he said on p. 172. And he tried to relate this minimum to the number γ of
independent integrals with constant sum ψx1 + · · · + ψxμ; this γ was discussed
above in Sect. 3.

In [1], Abel’s computations are more involved, and his results are less conclusive.
On p. 180, he arrived at the equation

μ− α = γ − ι

where ι ≥ 0. Moreover, he observed that ι vanishes in general. Brill and Noether [17],
p. 219, gave a concrete example where ι > 0.

In fact, Abel did not write ι, but A + B. The nature of A and B was clarified
a bit by Sylow [110], p. 298, and a bit more by Brill and Noether [17], pp. 218–219;
notably, A reflects the behavior at the singularities of C at finite distance, and B does
so at infinity. However, the situation is subtle; in particular, care is required in the
matters of which D to take and of how to let D vary; see Sect. 7.

The situation has been completely clarified over the course of time through the
efforts of many. First, in 1857, Riemann [92], §5, studied the number, α + 1 say,
of independent meromorphic functions with poles only at μ given points, repetition
allowed, on a Riemann surface of genus p; he found μ − α ≤ p. Then, in 1864,
Roch [93] refined Riemann’s inequality into the equation

μ− α = p− i (4.6)

where i is the number of independent differentials of the first kind vanishing at the
μ points. The number i is called the index of specialty.

In 1874, Brill and Noether [16] gave the first algebra-geometric treatment of (4.6),
whose assertion they named the Riemann–Roch Theorem. “They took from Clebsch
the idea that it was to be studied geometrically, that is, in terms of a linear family of
adjoint curves,” as Gray [54], p. 814, observed. Moreover, later they themselves [17],
p. 358, pointed out that their theory served to replace Abel’s Theorem as a tool in
algebraic geometry.

The idea is essentially this (but see [43], p. 39; see [38], pp. 205–207; see [25],
p. 165; and see [49], Ch. 8). Under the relation of (linear) equivalence, which
was discussed in Sect. 3, the sets of points of C form equivalence classes, called
complete linear systems, or series. Each has a degree, or order, μ and a dimension α.
By definition, μ is the number of points that vary from set to set. And α is the
maximum number of points that can be assigned at will on C; that is, α general
points lie in one and only one set in the system.
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Plainly α+ 1 is equal to the number of independent functions with poles only at
the μ variable points in any given set in the system. Furthermore, i−1 is equal to the
dimension of the system cut out by the special adjoint curves through those μ points.
And p− 1 is equal to the dimension of the system cut out by all the special adjoint
curves; it is called the canonical system. Thus (4.6) has a purely algebra-geometric
interpretation directly on C, and this interpretation is compatible with birational
transformation.

For instance, consider the canonical system. As just observed, for it, α = p− 1.
Also, plainly, i − 1 = 0. Hence, μ = 2p− 2. And, indeed, 2p− 2 is the number of
zeros of a differential of the first kind.

Hence, if μ ≥ 2p− 1, then i = 0. Indeed, as just observed, every special adjoint
curve cuts C in 2p − 2 variable points; so no such curve can pass through the μ

variable points in a set of the given system. So then μ− α = p.
Remarkably, up to a suitable fixed set of points on C, every complete linear

system is cut by the adjoint curves of suitably high degree passing through that fixed
set. Conversely, consider all the adjoint curves of given degree through a fixed set of
points on C; up to a possibly larger fixed set, these curves cut out a complete linear
system on C.

Already Abel recognized the need for fixed points. Of course, he worked with
abscissas, roughly as follows. Eliminating y between f(x, y) and g(x, y), he [1],
p. 147, obtained their resultant polynomial r(x), and then factored it,

r(x) = F0(x) · F(x) ,
so that, as the coefficients of g(x, y) vary, the roots of F0(x) remain fixed and those
of F(x) vary. (See also [17], p. 214.)

Let the roots of F(x) be x1, . . . , xμ. Let y1, . . . , yμ be the ordinates of the
corresponding points of intersection of C and D. Say (x1, y1), . . . , (xα, yα) can be
assigned at will, and (xα+1, yα+1), . . . , (xμ, yμ) are determined by them. Abel [1],
pp. 170–171, considered the quotient

F(1)(x) := F(x)

(x − x1) · · · (x − xα)
,

whose roots are precisely xα+1, . . . , xμ.
Abel observed that the coefficients of F(1)(x) are rational functions in

x1, y1; . . . ; xα, yα . (4.7)

Indeed, these quantities provide α linear relations among the coefficients of g(x, y).
These relations can be solved owing to the choice of α. Therefore, the coefficients of
g(x, y) are rational functions in the quantities in (4.7). Hence so are the coefficients
of r(x), since they are polynomials in those of f(x, y) and g(x, y). Finally, the
coefficients of F(1)(x) are polynomials in those of r(x) and F0(x) and in x1, . . . , xα.

Since y is an algebraic function of x, the μ− α relations

F(1)(xα+1) = 0, . . . , F(1)(xμ) = 0 (4.8)
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make xα+1, . . . , xμ into algebraic functions of x1, . . . , xα. Hence yα+1, . . . , yμ are
algebraic functions of them as well. Abel viewed the relations in (4.8) as distinct
conditions on the individual variables xα+1, . . . , xμ.

On p. 170, Abel also combined these considerations with the more conceptual
form of the Elementary Function Theorem, which he stated on p. 149. Specifically,
he observed that the right-hand side of (2.3) becomes a linear combination of an
algebraic function and of logarithms of algebraic functions of x1, . . . , xα.

Strictly speaking, the rootsof F0(x)yield termson the left-handsideof (2.3). How-
ever, since these terms remain constant, they can be moved to the right-hand side, and
incorporated in u. Abel did not include these terms in his statement on p. 149.

The preceding considerations yield the following theorem, which appears to be
what Abel was aiming for.

Theorem 4.3 (Relations). Let ψx be an Abelian integral, and let μ ≥ 2p− 1 where
p is the genus. Set α := μ− p. Then, for some m,

ψx1 + · · · + ψxμ = u + k1 log v1 + · · · + km log vm (4.9)

where k1, . . . , km are constants and where u, v1, . . . , vm are algebraic functions of
x1, . . . , xα, provided that xα+1, . . . , xμ satisfy precisely p relations of the form (4.8)
that arise from a system of all adjoint curves of the same degree through some fixed
set of points.

5 Abel’s Addition Theorem

The final step is to prove the Addition Theorem. However, its statement appears in
different forms in different places. The simplest form is an immediate consequence
of the Relations Theorem. The most elaborate form is explained in this section, but
its proof calls for the development of an additional tool, the Abel map, which is the
subject of Sects. 6 and 7.

On pp. 170 and 185 in [1], Abel gave the Addition Theorem in its simplest form.
It asserts that the sum of an arbitrary number α of Abelian integrals ψxi can be
reduced (modulo periods) to an elementary function v of the xi diminished by a sum
of p such integrals, where, as always, p is the genus:

ψx1 + · · · + ψxα = v− (ψxα+1 + · · · + ψxμ) where μ := α+ p . (5.1)

Furthermore, xα+1, . . . , xμ are algebraic functions of x1, . . . , xα; these same func-
tions work for any integral ψx associated to the same algebraic function y(x), but v
depends on the choice of ψx.

To derive this assertion, apply the Relations Theorem as follows. As usual, denote
the curve associated to ψx by C. Form the system of adjoint curves of high enough
degree, so that it cuts out onC a complete linear system of degree μ′ with μ′ ≥ μ and
μ′ ≥ 2p− 1. The Relations Theorem now provides (4.9), but with μ′ in place of μ.
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Fix μ′ − μ general points on C, say with abscissas xμ+1, . . . , xμ′ , and require
the adjoint curves to pass through them. In effect, we have reordered the vari-
ables x1, . . . , xμ′ so that xα+1, . . . , xμ are algebraic functions of x1, . . . , xα and
xμ+1, . . . , xμ′ . Then we fix the values of the latter so that, of the p relations of
algebraic dependence, none become trivial. Thus xα+1, . . . , xμ become algebraic
functions of x1, . . . , xα. Hence, so do the functions u, v1, . . . , vm in (4.9); thus they
form the desired v. Finally, the sum ψxμ+1 + · · · + ψxμ′ is constant; so it may be
incorporated in v.

Let us now see how to tie in the hyperelliptic case as discussed in Sect. 4. Using
its notation, assume μ = α+ p. The Addition Theorem is trivial when α ≤ p : just
fix any p − α points on C, and use their abscissas as the needed additional x’s on
the right. So assume α ≥ p+ 1. Finally, assume d ≥ 2, so that d = degC.

Let E be the line at infinity. Then (d−3)E is a special adjoint curve since, as noted
in Sect. 3, the constant 1 is an adjoint polynomial. Hence the sum D + (d − 3)E
is an adjoint curve. Consider all the adjoint curves that have the same degree as
D + (d − 3)E and that pass through the fixed points of the system of sets cut out
on C by D + (d − 3)E as D varies. These fixed points serve as the μ′ − μ points
considered above.

These adjoints cut on C a complete linear system. It includes the system cut by
the various D, up to the fixed set cut by (d − 3)E. So both systems have the same
number μ of variable points. Hence both have the same number α of points that can
be assigned at will; indeed, the smaller one has α by assumption, and the larger has α
by the Riemann–Roch (4.6), since μ ≥ 2p+1, so i = 0. Therefore, the two systems
have the same sets of variable points. Thus Abel’s procedure in the hyperelliptic
case in [2] is, indeed, a special case of his general procedure in [1], at least when the
latter is interpreted in terms of the theory of adjoints.

Aesthetically, (5.1) would be more pleasing without the minus sign on the right-
hand side, and Abel [1], p. 186, showed how to replace it easily with a plus sign. At
the same time, he showed how to allow minus signs on the left. Namely, given any
x′1, . . . , x

′
α′ , (5.1) yields

ψx′1 + · · · + ψx′α′ + ψxα+1 + · · · + ψxμ = v′ − (ψx′′1 + · · · + ψx′′p
)
.

Subtract this formula from (5.1), and set V := v− v′. The result is

ψx1 + · · · + ψxα − ψx′1 − · · · − ψx′α′ = V + ψx′′1 + · · · + ψx′′p , (5.2)

which is essentially Abel’s Formula (112), p. 186.
In the hyperelliptic case, Abel’s main result is Théorème VIII on p. 454 in [2].

Its Formula (39) is a lot like (5.2), but is essentially this:

ψx1 + · · · + ψxα − ψx′1 − · · · − ψx′α′ = V + ε1ψx
′′
1 + · · · + εpψx

′′
p (5.3)

where εk = ±1 for k = 1, . . . , p. Abel’s use of εk is interesting. Cooke [37], p. 401,
pointed out that Euler had ignored signs in the elliptic case, p = 1.
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On p. 455, Abel noted that the value of εk is determined by the equation

θ
(
x′′k
)√

ϕ1
(
x′′k
) = −εkθ1

(
x′′k
)√

ϕ2
(
x′′k
)
.

This equation is similar to (4.2), but has a minus sign because, when (5.3) is derived,
ψx′′k arises on the left-hand side, and is moved to the right.

On p. 455, Abel also noted that the coefficients of the polynomials θ(x) and θ1(x)
are determined by the system of α+ α′ equations

θ(xi)
√
ϕ1(xi) = θ1(xi)

√
ϕ2(xi) and θ

(
x′j
)√

ϕ1

(
x′j
)
= −θ1

(
x′j
)√

ϕ2

(
x′j
)

where i = 1, . . . , α and j = 1, . . . , α′. Thus the curve D is determined.
So, in the intersection C ∩ D, the point with abscissa x′′k has ordinate y′′k given

by (4.1) with x′′k , y′′k in place of xi, yi . But Abel did not use this equation. Rather, it
would seem he set

y′′k :=
√
ϕ1
(
x′′k
)√

ϕ2
(
x′′k
)
.

And choosing the wrong signs for the square roots leads to the ordinate−y′′k . In fact,
Abel did not use ordinates in [2]. (And he wrote y1, . . . , not x′′1 , . . . .)

But why does the ordinate −y′′k yield as integral −ψx′′k up to an elementary
function? Abel didn’t say. However,−y′′k does so because of the Elementary Function
Theorem; just apply it to the system of vertical lines D : x − a = 0.

With (5.1) in mind and the algebraic function y(x) fixed, Abel stressed two
fundamental properties of the number p : first, p depends on y(x), but is independent
of ψx and α; second, p is minimal.

The first property, independence, means that, given any integrand, the sum of
α integrals, for any α, can be reduced to a sum of p integrals, plus an elementary
function. This property plays a key role in Abel’s derivation above of (5.2) from
(5.1), as he himself noted on p. 186. Of course, if the sum of p+ 1 integrals can be
reduced to a sum of p, then the sum of any number α can be reduced to p too by
a simple induction on α.

The second property, minimality, means there exists some integrand such that the
sum of p integrals cannot be reduced to a sum of p− 1 integrals plus an elementary
function. In fact, there exists one such of the first kind.

This minimality shows “clearly why Euler’s original statement could not be
generalized,” as Dieudonné [43], p. 20, put it. Indeed, Cooke [37], pp. 392–393,
explained:“In 1751 Euler was given the duty of reading the collected works of
Fagnano, which led him to discover an addition theorem for elliptic integrals.” Let
us see why Euler’s Addition Theorem cannot be generalized.

To be sure, from 1714 to 1720, Fagnano found ad hoc algebraic relations among
the lengths of cords and arcs of lemniscates, ellipses, and hyperbolas. Earlier, in
1698, John Bernoulli (James’s brother) noted there are algebraic relations among the
arguments of sums and differences of logarithms and inverse trigonometric functions;
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he asked if this property is shared by other functions that arise as integrals. (See [68],
pp. 413–418, and [58], pp. 6–8.)

Fagnano’s work led Euler in 1757 to discover the addition formula∫ x1

0

dx√
1− x4

±
∫ x2

0

dx√
1− x4

=
∫ x3

0

dx√
1− x4

where the variables x1, x2, x3 must satisfy the symmetric relation

x4
1x

4
2x

4
3 + 2x4

1x
2
2x

2
3 + 2x2

1x
4
2x

2
3 + 2x2

1x
2
2x

4
3

+ x4
1 + x4

2 + x4
3 − 2x2

1x
2
2 − 2x2

1x
2
3 − 2x2

2x
2
3 = 0 .

(Also see [43], pp. 18–19, [107], pp. 412–413, [58], p. 8, [76], pp. 1–4, 28–40.)
In 1759, Euler generalized this addition formula to some other elliptic integrals;

he expressed the sum or difference of two integrals as a third plus an elementary
function. Moreover, as Kline [68], p. 420, observed, “He expressed regret that his
methods were not extensible to higher roots than the square root or to radicands
of higher than fourth degree.” In fact, no methods work for these integrals, as
Abel showed: for them, p ≥ 2, and p is the minimal number of integrals in the
reduced sum. Moreover, as an example, Abel devoted the last part of his paper [1],
pp. 188–211, to the case yn = ϕ(x) where ϕ(x) is a polynomial.

The importance of minimality was recognized soon after the appearance of
Abel’s second and third papers, [2] and [3], in 1828 and 1829. Indeed, between
1838 and 1841, when Abel’s [1] first paper finally appeared, Jürgensen, Broch, and
Minding treated the minimality in various cases; their work was compared with
Abel’s by Brill and Noether [17], pp. 225–231. On p. 217, they noted that “Abel’s
competitors (Mitbewerber)” had more difficulty than he did because they did not
know his normal form (3.2) for the integrands.

The minimality of p is related to another significant property of (5.1): the unique-
ness of xα+1, . . . , xμ when α ≥ p; that is, if x′α+1, . . . , x

′
μ work too, then they are

equal to xα+1, . . . , xμ up to order, given the v. Abel did not notice this uniqueness.
However, it and the minimality are implicit in Riemann’s paper [92], and are explicit
in Weierstrass’s paper [111], pp. 419, 421; a version of their treatments is given in
the next section.

In its most elaborate form, Abel’s Addition Theorem asserts that any linear
combination of Abelian integrals is equal to the sum of p integrals, plus an elementary
function; the combining coefficients can be any rational numbers – positive or
negative, integers or fractions. Abel [1], pp. 187–188, derived this assertion in short
order, but without adequate justification.

Basically, Abel suggested that, if the combining coefficients are integers, then
it suffices, in (5.2), to take additional xi and x′i , and let them coalesce; however, he
did not explain why the x′′i remain determinate. Furthermore, when he introduced
a common denominator n, he claimed, unconvincingly, that it is also possible to
introduce arbitrary positive integers as combining coefficients on the right. Then he
took all these coefficients equal to n, and finally he divided both sides by n. This
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argument was repeated, with little change, by Rowe [97], p. 743. Its spirit reappears
in Sect. 6.

Nevertheless, the division of Abelian integrals is a subject with a substantial
history (see [68], pp. 417–419, 756; see [58], pp. 8, 23–26, 84; and see [43], p. 21).
In 1718, Fagnano showed how to find the midpoint of any arc of the lemniscate. In
1825, Legendre treated the division of any elliptic integral of the first kind by any
odd number n; he claimed there is an equation of degree n2 for the new upper limit,
but did not prove it. In 1827 and 1829, Abel made a systematic study of this matter,
among others, in two one-hundred-page papers on elliptic functions; of course, he
wrote both after his Paris paper.

In 1832, the night before his fatal duel, Galois wrote an account of his research,
which has been preserved. In particular, he wrote that, for any genus p, the division
by any n of the sum of p Abelian integrals leads to an equation of degree n2p. This
statement was proved by Clebsch [29], § 15, in 1864. Starting in 1834 with Jacobi,
there has been a lot of work done over the years on two related matters: on the
behavior of theta functions when their arguments are divided by n, and on arbitrary
isogenies of Abelian varieties.

Here is a formal statement of the Addition Theorem in its most elaborate form.
Its (5.4) is essentially Abel’s Formula (119) in [1], p. 188. A proof is discussed at
the end of Sect. 6.

Theorem 5.4 (Addition). Let y(x) be an algebraic function, p its genus, and ψx
an associated Abelian integral. Let α be a positive integer, and h1, . . . , hα rational
numbers. Then

h1ψx1 + · · · + hαψxα = v+ ψx′1 + · · · + ψx′p (5.4)

where v is an elementary function of x1, . . . , xα, and where x ′1, . . . , x′p are algebraic
functions of them.

More precisely, v is aC-linear combination of an algebraic function of x1, . . . , xα
and of logarithms of algebraic functions; if ψx is of the first kind, then v is constant.
Moreover, x′1, . . . , x′p work for every choice of ψx; also, if h1 = 1, . . . , hα = 1 and
α ≥ p, then x′1, . . . , x′p are unique, given the v.

Lastly, p is minimal: given algebraic functions x ′1, . . . , x
′
p−1 of x1, . . . , xp, there

exists an integral of the first kind ψx such that, for any constant v,

ψx1 + · · · + ψxp �= v+ ψx′1 + · · · + ψx′p−1 .

6 The Abel Map

Theorem 4 is proved at the end of this section through an elaboration of the ideas of
Riemann [92] and Weierstrass [111]. The proof involves a new tool, the Abel map,
and so it is discussed first. The map combines the Equivalence Theorem and the
Riemann–Roch Theorem in a powerful sophisticated geometric form.
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To begin, note that the definition of ψx involves an inherent ambiguity. It is
a fancy sort of constant of integration. It arises in part from the choice of the starting
point of integration, but in part from the choice of the path of integration. For
example, notice that ∫ x

1

1

x
dx = log x + 2mπ

√−1 (6.1)

if the path is chosen to wind m times around the origin in the complex plane.
Euler “drew attention to the fact that the function

∫ y
0 dx/

√
1− x4 has in the

real domain a ‘modulus of multi-valuedness’ similar to the inverse trigonometric
functions,” as Shafarevich [107], p. 414, said crediting Slavutin. Abel [1], p. 149,
noted the presence of the ambiguity in connection with the sum of integrals in (2.3),
but he simply dismissed it as unimportant so long as the variables are kept within
suitable limits. In particular, he did not observe that the ambiguity is related to the
genus p.

The ambiguity was discussed by Cauchy in 1846 (see [68], pp. 640–641). How-
ever, it was treated definitively by Riemann in 1857 and 1865 (see [68], pp. 662–665;
see [107], pp. 417–421; see [58], p. 97; and see [43], pp. 85–87). Riemann proved
every integral of the first kind has 2p periods, which are numbers like the num-
ber 2π

√−1 in (6.1). These periods generate, by Z-linear combination, all possible
changes in the value of the integral arising from changes in the path of integration,
with fixed end points. (Note, however, that

∫ x
1

1
x dx is of the third kind and genus 0.)

In effect, Riemann did the following. He fixed a basis ψ1x, . . . , ψpx of the
integrals of the first kind. Then, inside the vector space C p, he formed the discrete
subgroup, or lattice, generated by the corresponding 2p p-vectors of periods. He
proved the lattice has rank 2p, and he formed the quotient

J := C p/(period lattice). (6.2)

By 1920, for example in Severi’s book [104], p. 272, J was called the Jacobian (or
Jacobian variety, or Jacobi variety), and still is. (In 1907, Enriques and Severi [45],
spoke of the “Jacobi surface” of a curve of genus 2.)

Let C′ be the Riemann surface of y(x); so C′ is the desingularization of the
plane curve C associated to y(x). Let C(α) be the α-fold symmetric product of C′;
by definition, C(α) is the quotient of the direct product Cα of α copies of C′ under
permutation of the factors. So C(α) parameterizes the (unordered) sets of α points
of C′, repetitions allowed. Let us continue to abuse notation, in the spirit of Abel’s
work, by using x1, . . . , xα to refer both to points of C′ and to the abscissas of their
images in C.

In effect, Riemann introduced and studied the following map:

Ψα : C(α) → J given by Ψα{x1, . . . , xα} =
(

α∑
i=1

ψ1xi, . . . ,
α∑
i=1

ψpxi

)
.

This map is rather important, but for a long time, it had no name.
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In 1948, Weil [113, (c)], p. 150, gave Ψα a nondescript name, the “canonical
map,” and this name has often been used since then. Since about 1970 (see for
example [35], p. 284), Griffiths’s school has used the name “Abel–Jacobi map” for
a major generalization of Ψα, introduced in 1952 by Weil [115], p. 94. Maybe the
best name for Ψα is just the Abel map; it is historically correct and conveniently
short.

The fibers of Ψα are the complete linear systems owing to the Equivalence
Theorem. It now follows from the Riemann–Roch Theorem that Ψα is surjective for
α ≥ p (since dim Im(Ψα) = p and C(α) is compact) and it also follows that Ψα is
injective on a saturated dense open subset Uα for α ≤ p. In fact, Uα is Zariski open;
that is, its complement is defined by polynomial equations. In particular, Ψp restricts
to an isomorphism between dense open subsets of C(p) and J .

A priori, J is a complex analytic manifold, and Ψα is a complex analytic map;
indeed, they are constructed by means of integrals. A posteriori, J and Ψα are
algebraic; they are given by polynomials! This result was established through the
efforts of many mathematicians over the course of a century (see [58], pp. 110–111,
and [43], pp. 85–87). This result is remarkable! And it is essential in the proof below
of Theorem 4, as it guarantees that the functions x′1, . . . , x′p are, in fact, algebraic.

Furthermore, J is an Abelian variety, or compact algebraic group variety: not
only do its points form a group, but the operations of adding and of inverting are
given by polynomial maps. This abstract definition was given in 1948 by Weil [113],
(c) p. 110, and it is now the standard definition in algebraic geometry. In fact, an
Abelian variety is not simply compact, but is projective; this result was proved in
1957 by Weil [116].

Of course, J is an Abelian (commutative) group by construction. However,
every Abelian variety is an Abelian group. This result was discovered in 1889 by
Picard [88], p. 222, in the case where the variety is a surface (see [74], p. 357).
The general case was proved in 1948 by Weil [113], (c) p. 107. However, Weil said
Chevalley had proved the result earlier in an unpublished work using differential
forms and the adjoint group. Weil gave a different proof, which is rather elementary
and purely algebraic.

It would be reasonable to guess this result gave rise to the name “Abelian variety,”
but it did not. The name stems rather from another important result: an Abelian
variety is parameterized globally by Abelian functions with common periods. This
result was proved in 1889 for surfaces and in 1895 in general by Picard [88], p. 222,
and [89], p. 250; his proof was completed at certain points of analysis in 1903 by
Painlevé [84]. In the general case, Picard had to assume to begin with that the Abelian
variety is an Abelian group. (See [74], pp. 355, 369; see [121], p. 104; and see [60],
p. 256.)

An Abelian function is, by definition, a meromorphic function in p complex
variables with 2p independent periods (see also [76], pp. 41–44). The general theory
of Abelian functions was begun by Riemann [92] in 1857, and developed by many
others, particularly by Weierstrass in 1869, 1876, and 1879, by Frobenius in 1884,
and by Poincaré in 1897 and 1902.
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Riemann [92] was initially interested in inverting Abelian integrals of the first
kind, that is, in finding an expression for the inverse of the Abel map Ψp : C(p) → J
on the dense open subset ΨpUp of J . The inverse can be expressed using the coordi-
nate functions on C(p), so in terms of functions on ΨpUp. Since J := C p/periods,
these functions can be lifted to an open subset of C p, and then continued to mero-
morphic functions on C p with 2p periods. These special meromorphic functions,
Riemann named “Abelian functions.”

Later, in 1859, Riemann studied arbitrary meromorphic functions in p variables.
He proved, according to Hermite, that they have at most 2p independent periods,
which satisfy bilinear relations, known today as “Riemann’s bilinear relations,” like
those satisfied by the Abelian functions coming from a curve. In 1869, Weierstrass
observed that not every Abelian function arises from a curve; in other words, not
every Abelian variety is a Jacobian.

Consider the set of all the Abelian functions whose periods include a given lattice
of rank p. Plainly, this set is a field K . In fact, K has transcendence degree p overC;
in other words, any p+1 Abelian functions satisfy a polynomial equation, but some
p satisfy none. This statement is implicit in Riemann’s work. Weierstrass formulated
it explicitly, but did not offer a proof. The first complete proof was published in 1902
by Poincaré.

It follows that K is the field of rational functions on a p-dimensional projective
algebraic variety, which is parameterized on a Zariski open set by p of them. There
are many such varieties! Among them, there is a unique Abelian variety. The latter
result was proved in 1919 by Lefschetz [73], p. 82. At the time, all the varieties
with field K were called “Abelian varieties.” However, Lefschetz [73], p. 83, said he
would use the name only for the distinguished variety.

Some authors – including Severi, Siegel [108], p. 98, and Markusevich [76],
p. 148 – never accepted the more restrictive definition of Abelian variety. Rather,
they called the distinguished variety a “Picard variety.” In this usage, for example
see Severi’s paper [102], p. 381, the pth symmetric product C(p) is an Abelian
variety since the Abel map Ψp : C(p) → J is birational; that is, pullback identifies
the function fields. So beware!

Originally, the notion of Abelian variety was even broader: it included any variety
whose functions form a subfield of finite index in a given field of Abelian functions,
in other words, a variety that is parameterized on a classical open set by Abelian
functions (see [98], p. 213). For example, an Abelian surface is just a hyperelliptic
surface (see [101], p. 436, and [98], p. 213). The index was termed the “rank” by
Enriques and Severi in 1909 according to Scorza [98]; however, on p. 134, he said
he would use the term “Abelian variety” only when the rank is 1.

In 1832, Jacobi [64], p. 10, posed the famous problem that inspired Riemann;
it is known today as the Jacobi Inversion Problem. In Jacobi’s own words (as
translated in [11], p. 210), he asked: “what, in the general case, are those functions
whose inverses are Abelian transcendents, and what does Abel’s theorem show about
them?” On p. 11, Jacobi answered the question for hyperelliptic curves of genus 2.
He did so “after long, fruitless efforts, to discover the natural generalization of
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‘inversion’ of elliptic integrals,” as Dieudonné [43], p. 20, put it. Did Abel consider
inversion in general? Bjerknes [12], p. 216, and Shafarevich [107], p. 419, suggested
that Abel did at least have it in mind. At any rate, it is ultimately due to this work of
Jacobi’s that J is called the Jacobian.

The inversion of elliptic integrals was introduced in 1827 first by Abel and then,
a couple of months later, by Jacobi, but Jacobi did not credit Abel. (Thirty years
earlier, Gauss inverted them, but his work appeared only much later, after his death
in 1855.) Nevertheless, here too Abel inspired Jacobi; this conclusion is universally
accepted today; indeed, it is inescapable given all the evidence (see [12], pp. 183–
216; see [82], pp. 180–190; see [58], pp. 17–18; see [43], p. 20; and see [109],
pp. 452–454, 538).

The properties of the Abel map Ψα : C(α) → J yield Theorem 4 as follows.
First, suppose p is not minimal. Then there exist algebraic functions x′1, . . . , x

′
p−1

of x1, . . . , xp such that, for each ψi x in the basis of integrals of the first kind, there
exists a constant vi such that, modulo periods,

ψi x1 + · · · + ψi x p = vi + ψi x
′
1 + · · · + ψi x

′
p−1 .

Hence ΨpC(p) ⊆ (v1, . . . , vp) + Ψp−1C(p−1) ⊆ J . But ΨpC(p) = J as Ψp is
surjective. Hence Ψp−1C(p−1) = J . But this equation is false, since C(p−1) is of
complex dimension p− 1 and J is of complex dimension p.

Next, to prove the asserted uniqueness, suppose that there exist constants vi and
algebraic functions x′1, . . . , x′p and x′′1 , . . . , x′′p of x1, . . . , xα such that

ψi x1 + · · · + ψi xα = vi + ψi x
′
1 + · · · + ψi x

′
p

ψi x1 + · · · + ψi xα = vi + ψi x
′′
1 + · · · + ψi x

′′
p

modulo periods for i = 1, . . . , p. Then

Ψp{x′1, . . . , x′p} = Ψp{x′′1 , . . . , x′′p} in J .

Form U := Ψ−1
α

(
(v1, . . . , vp) + ΨpUp

)
. Then U is open and dense in C(α)

since Ψα is surjective as α ≥ p. Let {x1, . . . , xα} vary in U . Then {x′1, . . . , x′p} and
{x′′1 , . . . , x′′p} belong to Up. Hence these two points of Up are equal since Ψp is
injective on Up. Thus the asserted uniqueness is proved.

Finally, to prove (5.4), let n be the least common denominator of h1, . . . , hα, and
say h1 = n1/n, . . . , hα = nα/n. Form the map Φα from the direct product Cα to J ,

Φα : Cα → J, given by Φα(x1, . . . , xα) = n1Ψ1x1 + · · · + nαΨ1xα . (6.3)

Fix (v1, . . . , vp) ∈ J so that the open set (v1, . . . , vp)+ ΨpUp meets ΦαCα. Then,
since Ψp is an isomorphism on Up, the equation

Φα(x1, . . . , xα) = (v1, . . . , vp)+ Ψp
{
x′1, . . . , x

′
p

}
(6.4)

defines x′1, . . . , x′p as a full set of conjugate algebraic functions of x1, . . . , xα as the
latter vary as a tuple in the open set Φ−1

α ((v1, . . . , vp)+ ΨpUp) ⊂ Cα.
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If n > 1, then the sum h1ψx1+· · ·+hαψxα is ambiguous, even modulo periods.
For example, 1

2

∫ x
1

1
x dx might mean either 1

2 log x or 1
2 log x + π

√−1; the two are
distinct modulo the period 2π

√−1, but their doubles are equal. Similarly, 1
n

∫ x
1

1
x dx

has n distinct interpretations. Likewise, since an integral of the first kind ψx has
2p periods, 1

nψx has n2p distinct interpretations. Thus multiplication by n defines
a covering map νn : J → J of degree n2p; it is a group homomorphism, and its
kernel is (Z/n)2p.

Hence νn(ΨpUp) is open. Therefore, after x1, . . . , xα are further restricted, there
exist algebraic functions x′′1 , . . . , x′′p of them (in fact, there are n2p different choices,
and they form a full set of conjugates) such that

nΨp
{
x′′1 , . . . , x

′′
p

} = Ψp
{
x′1, . . . , x

′
p

}
.

Therefore, (6.3) and (6.4) yield

n1Ψ1x1 + · · · + nαΨ1xα = (v1, . . . , vp)+ nΨp
{
x′′1 , . . . , x

′′
p

}
. (6.5)

Notice, (6.5) yields (5.4) for all integrals ψx of the first kind; however, this case is
recovered below.

To derive (5.4) in full generality, restrict x1, . . . , xα further so that there exist
algebraic functions x′′′1 , . . . , x′′′p of them such that

Ψp
{
x′′′1 , . . . , x′′′p

} = −Ψp
{
x′′1 , . . . , x

′′
p

}
. (6.6)

Put q := n1 + · · · + nα + n p. Form the two sets{
x′′′1 , . . . , x′′′p , x

′′
1 , . . . , x

′′
p

} ∈ C(2p) and{
n1x1, . . . , nαxα, nx

′′′
1 , . . . , nx ′′′p

} ∈ C(q)

where n1x1 stands for x1 repeated n1 times, and so forth.
Then, as x1, . . . , xα vary, the first set above varies in the fiber of Ψ2p over 0. And

owing to (6.5) and (6.6), the second set varies in the fiber of Ψq over (v1, . . . , vp).
So each set varies in a linear system. It now follows from the Elementary Function
Theorem that, for any integral ψx,

ψx′′′1 + · · · + ψx′′′p + ψx′′1 + · · · + ψx′′p = v′

n1ψx1 + · · · + nαψxα + nψx′′′1 + · · · + nψx′′′p = v′′

where v′ and v′′ are linear combinations of an algebraic function of x1, . . . , xα and
of logarithms of algebraic functions. Set v := v′′/n − v′. Then (5.4) follows. The
proof of Theorem 4 is now complete.

In this proof, the integrals of the first kind predominate. Those of the second
and third kind only enter briefly at the end, and these integrals are handled by the
Elementary Function Theorem. Nevertheless, they had a rich history in the nineteenth
and twentieth centuries, and it would be a worthwhile endeavor to write an account
of it.
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7 Abel’s Version of the Genus

In the preceding section, Abel’s Addition Theorem was proved in its most elaborate
form, Theorem 4. In the proof, the Jacobian J and the Abel map Ψα played a major
role, and their algebraicity was crucial. Historically, they also played a substantial
role in the development of the theory of algebraic surfaces from about 1870 to 1920;
often implicit, this role involved both their direct application to suitable curves and
families of curves and their indirect application through their generalization to the
Picard and Albanese varieties. However, it was the needs of arithmetic in the 1920s
and 1930s that provided the impetus to develop in the 1940s and 1950s a purely
algebra-geometric theory. And this theory has led finally to a full understanding of
Abel’s version of the genus.

Mathematically, J and Ψα arise from the symmetric product C(α), which is
algebraic by construction. The fibers of Ψα are the complete linear systems of degree
α; so they are algebraic subvarieties. Why not construct J algebra-geometrically as
the quotient of C(α) divided by the relation of linear equivalence? Why not define
Ψα as the quotient map?

Of course, algebraic geometers have constructed J and Ψα in just this way for
over a century. Furthermore, they have defined the group structure on J essentially
as described in the next paragraph. This definition was attributed by Severi in [104],
p. 272, and again in [105], p. 12, to Castelnuovo [21], although Castelnuovo did not
mention J explicitly in this 1893 paper.

Fix a base point x0; it corresponds to the fixed lower limit of integration. Given
two linear systems of degree α, take a set from each. Their union determines a linear
system of degree 2α. So it is of dimension at least 2α− p by the Riemann–Roch The-
orem. Assume α ≥ p. Then this system contains a set of the form {αx0, x1, . . . , xα}.
Define the sum to be the linear system determined by {x1, . . . , xα}. It is easy to see
that this sum is well defined, and compatible with the sum in J as defined by (6.2).

In 1905, Castelnuovo [22], pp. 478–481, showed how this algebra-geometric
construction of J and Ψα generalizes naturally to yield an Abelian variety param-
eterizing the complete linear systems fibering an algebraic system of curves on an
algebraic surface. Castelnuovo did not use the term “Abelian variety”; it was not
in use at the time. Rather, he spoke of the Picard variety of the surface to honor
Picard’s discovery (see the preceding section) that a compact commutative group
variety is parameterized by Abelian functions. Castelnuovo needed these functions
to complete research of his own, of Enriques’s, and of Severi’s into the fundamental
nature of irregular surfaces. (See [23], pp. 492–493; see [24], pp. 709–710; see [74],
p. 369; and see [121], pp. 104, 162–163.)

In 1950, Weil [114], p. 439, subtly refined the use of the term “Picard variety,”
restricting it to mean the Abelian variety parameterizing complete linear systems of
subvarieties of codimension 1 of a given variety of any dimension; the parameter-
ization is part of the package. In his commentary [117], I, p. 572, Weil explained:
“Historically speaking, it would have been justified to give it Castelnuovo’s name,
but it was a question of tampering as little as possible with common usage rather
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than rendering unto this master his due honor.” Weil’s refined usage quickly became
standard.

Also, Weil [114], p. 438, discussed a related Abelian variety, and named it the
Albanese variety, which is the name that has stuck. Weil also suggested the name
“dual Picard variety,” and used it in his paper [115] in 1952.

The Albanese variety is the target of a map Ψ whose source is the given variety X.
Like the Abel map, Ψ is given by simple integrals of the first kind. More abstractly, Ψ
is characterized by a universal property: any map from X to an Abelian variety factors
through Ψ . For a curve, the Albanese variety and the Picard variety coincide; both
are equal to the Jacobian. This statement is an abstract algebra-geometric version of
the Equivalence Theorem.

However, the Albanese variety of a surface had already been introduced in 1913
by Severi [103]. He noted that it is distinct from the Picard variety, but each admits
a homomorphism onto the other (the two are “isogenous,” to use another common
term Weil introduced in [113]; see [117], I, p. 570). For the next forty years, Severi
and his students spoke of there being two Picard varieties associated to a surface
(see [7], p. 1, for example). So “historically speaking, it would have been justified
to give it” Severi’s name.

Also, Weil offered rather weak mathematical justification for having given the
variety Albanese’s name: in [114], p. 438, he said only “it had been considered
mainly by Albanese”; in [117], I, p. 571, he said roughly that Albanese had obtained
a bit better understanding of the fibers of Ψ than Severi had.

Perhaps, Weil acted instead out of a sense of poetic justice; this idea comes
from reading between the lines in [117], I, on pp. 553 and 562 as well. Furthermore,
Lang [71] documents other cases where Weil did not simply ignore social conventions
for giving credit, but took “license for obscuring and misrepresenting works and
original ideas of others who opened up the field, and for poking fun at them.”

On the one hand, perhaps Weil felt Severi had not given Castelnuovo enough
credit, and on the other, perhaps Weil felt he owed Albanese a debt of gratitude for
having established in São Paulo, Brazil, a mathematical library where Weil “profited
greatly” from reading for the first time the works of Castelnuovo, Torelli, and others.
Both Albanese and Weil were in São Paulo for about a year, the period of time after
Albanese returned to Brazil from four years back in Italy and before he died on 8
June 1947, but there is no evidence the two men ever met (see [26], p. 2, and [118],
pp. 188, 192).

Severi was not pleased by the name! (See [117], I, p. 571, and [106], p. 80.)
In 1946, Weil [112] carefully rebuilt the foundations of algebraic geometry,

and in 1948, he [113] developed an algebra-geometric theory of the Riemann–
Roch Theorem, Abelian varieties, and the Jacobian. This theory is the first valid in
arbitrary characteristic, and it served as the basis for Weil’s two great proofs in [113]
of E. Artin’s celebrated 1921 conjectures about the arithmetic of a curve defined by
polynomial equations with coefficients in a finite field.

In fact, in 1882, Dedekind and Weber gave an abstract algebraic proof of the
Riemann–Roch Theorem, and in 1929, F. K. Schmidt observed that their proof
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required little change to make it valid in arbitrary characteristic. In the 1930s, Hasse
proved Artin’s “Riemann Hypothesis” in genus 1 using an analogue of the theory
of elliptic functions, and he and Deuring suggested a geometric way to generalize
the proof to higher genus. This work inspired Weil. (See [43], pp. 65 and 82–83,
and [71], pp. 50–52.)

Weil constructed the Jacobian J by patching together copies of the set Up

parameterizing linear systems of degree p and dimension 0 on the curve C. But
Weil left open two questions: Is J defined over the same coefficient field as C? Is J
embeddable in projective space?

These questions were answered in the affirmative in the 1950s by Chow, Mat-
susaka, and Weil himself. All three constructed both the Albanese and the Picard
varieties of a variety of any dimension and in any characteristic. Matsusaka gave the
first construction of the Picard variety. It is a lot like Castelnuovo’s, but Matsusaka
used the theory of Chow coordinates (developed by Chow and van der Waerden in
1938) to form the quotient, which, from the start, has the right coefficient field and
is projective.

Chow gave a similar construction of the Jacobian, and then obtained the Albanese
and Picard varieties by using his theory of the “image” and “trace” of the Jacobian of a
“general curve,” which is a 1-dimensional section of the ambient variety by a general
linear space. Chow’s work appeared after Matsusaka’s, but his construction of the
Jacobian was announced earlier by Weil [114], p. 438, in 1950, and the year before
by Chow himself, according to a footnote in [28], p 453.

Weil gave a more complete and elegant treatment, based on the “see-saw prin-
ciple,” taken directly from Severi, and the theorems of the square and the cube,
in a course at the University of Chicago. He also developed a suitable theory of
descent of coefficient fields. His work became the core of Lang’s book [70] of 1959.
(See [116], p. 248, and [117], II, pp. 540–541.) This book also contains many his-
torical notes describing the work of Chow, Matsusaka, and many others, along with
references to the original papers.

In the 1950s, Rosenlicht published a remarkable series of papers, which grew
out of his 1950 Harvard thesis. Like Gorenstein’s thesis on adjoints, Rosenlicht’s
thesis was supervised by Zariski, who had studied Abelian functions and algebraic
geometry with Castelnuovo, Enriques, and Severi in Rome from 1921 to 1927
(see [85], Ch. 3). Rosenlicht generalized the theory of the Abel map to a curveC with
arbitrary singularities in arbitrary characteristic. His work leads to a full explanation
of the final mystery in Abel’s Paris paper [1]: the significance of the number γ ,
Abel’s version of the genus.

In [94], Rosenlicht generalized the two basic notions: (linear) equivalence of
sets of points, and differentials of the first kind. To discuss them, let O be the (semi-
local) ring of rational functions on C that can be expressed as a fraction whose
numerator and denominator are polynomials in the coordinate functions on C and
whose denominator vanishes at no singularity of C.
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If two point sets contain no singularity, then they are called equivalent if, after
all common points are removed, the remaining points are the zeros and poles of
a function in O whose reciprocal is also in O.

Care must be taken with a point set that contains a singularity. It is best to
interpret the set as a subscheme defined locally by a principal ideal. This idea was
introduced by Cartier in his 1958 Paris thesis [19], p. 222. The theory was developed
further by Grothendieck in his February 1962 Bourbaki talk [56], No. 232, § 4, and
he called these subschemes Cartier divisors. This name is now common, but for the
sake of simplicity, not used below.

A generalized differential of the first kind, or Rosenlicht differential, is a mero-
morphic differential ω on the desingularization C′ of C possessing two properties:
first, ω has no pole at any z ∈ C′ lying over a simple point of C; second, for each
h ∈ O, the sum

∑
z resz hω vanishes as z ∈ C′ ranges over the points lying over the

singularities of C.
Let π be the number of independent Rosenlicht differentials; it is known today

as the arithmetic genus of C. For example, if C is plane a curve of degree d, then
π = (d − 1)(d − 2)/2 by Rosenlicht’s lemma on p. 186. For any C, his Theorem 7
asserts a generalized Riemann–Roch Formula:μ−α = π−i where i is the number of
independent Rosenlicht differentials that vanish at a given set of μ points and where
α is the dimension of the system of all sets that are equivalent, in the generalized
sense, to the given set.

Let O be the integral closure of O in the function field of C, and put δ :=
dimO/O. Rosenlicht’s Theorem 8 asserts π = p + δ. For example, if C has only
nodes and cusps, then δ is the number of them; if also C is plane, then Rosenlicht’s
formula recovers Clebsch’s formula, (3.6).

In [95], Rosenlicht generalized “Abel’s theorem,” that is, the Equivalence Theo-
rem, Theorem 2. Namely, his Theorem 1 asserts that, over C, two sets of points are
equivalent if and only if, for every Rosenlicht differential, the two corresponding
sums of integrals (from a fixed point) have the same value.

Rosenlicht then fixed a basis ω1, . . . , ωπ of the Rosenlicht differentials. His
Theorem 2 asserts that, inside the vector spaceCπ , the corresponding period vectors
form a discrete subgroup. Its rank is strictly less than 2π if C is singular. So the
quotient P is a complex Lie group, but P is not compact, so is not an Abelian variety.
Rosenlicht termed P the generalized Jacobian, and observed that it is the target of
a generalized Abel map Φα.

Let ω0 be a meromorphic differential. Suppose that, for any two equivalent sets
of points, the two corresponding sums of integrals of ω0 have the same value. Then
ω0 is a Rosenlicht differential. Indeed, suppose not. Then the following argument
(inspired by [95], p. 507) yields a contradiction.

Given α ≥ π + 1, let z1, . . . , zα vary independently in an open subset U of
the smooth locus of C containing no pole of ω0. Form the π + 1 by α matrix
M := [ωi/dz j] of functions. Since ω0, . . . , ωπ are independent, M is of rank π + 1
on an open subset of the self-product Uα. But M is equal to the Jacobian matrix of
the following generalized Abel map:
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Λ : Uα → Cπ+1 given by

Λ(z0, . . . , zα) =
(∑α

j=0

∫ z j ω0, . . . ,
∑α

j=0

∫ z j ωπ

)
Therefore, by the Implicit Function Theorem, the image ΛUα contains a nonempty
open subset V of Cπ+1.

By hypothesis, Λ remains constant as the set {z1, . . . , zα} varies in a linear
system. Hence, by the Riemann–Roch Theorem, the fibers of Λ are all of dimension
at least α− π. Consequently, no such V can exist, a contradiction.

For example, suppose C is plane. Then the curves D of given degree cut on
C a complete linear system of equivalent sets by Rosenlicht’s Corollary on p. 175
in [94]; whence, up to a fixed set of points, so do all the D that pass through that fixed
set. Conversely, every complete linear system on C is of the latter form, because any
set of points lies in some D of suitable degree.

By the observations above, the Rosenlicht differentials ω are characterized by
the constancy of the sum ∫ z1

ω+ · · · +
∫ zμ

ω (7.1)

where {z1, . . . , zμ} = C ∩ D as D ranges over the curves of given degree passing
through a given set, for all sets and degrees.

For instance, if C has only nodes and cusps, then the Rosenlicht differentials ω

of the third kind are just the differentials flagged by Clebsch and Gordan [33], p. 49,
because, for these ω, the sum (7.1) remains constant.

Is the constancy of (7.1) what Abel considered? Did he define γ as the number
of independent such ω? If so, then γ = π. But, as Brill and Noether [17], pp. 216
and 222, pointed out, Abel found instead that γ = p if C is smooth at finite distance
and has mild singularities at infinity, for instance, if C is hyperelliptic. Rowe [97]
carried Abel’s computations further; in more cases, he arrived at an expression for
γ (actually, for μ − α), and in a supplement, Cayley proved that this expression is
equal to p.

How can the constancy of (7.1) lead to different values of γ? Through different
restrictions on D. Clebsch and Gordan, in effect, placed no restrictions on D. Abel [1],
p. 147, however, required D, to begin with, to be defined by the vanishing of
a polynomial g(x, y) of the form:

g(x, y) := g1(x)y
n−1 + g2(x)y

n−2 + · · · + gn(x)

where n is the highest power of y in the polynomial f(x, y) defining C as in (2.1).
See the discussion of the hyperelliptic case in Sects. 4 and 5.

More precisely, γ = p if the D are required to satisfy the adjunction conditions,
which are discussed in Sect. 3, and γ = π if not.

There is, however, a middle ground: require the D to satisfy only some of
the adjunction conditions. This idea was introduced in an 1879 monograph by
Lindemann, who aimed to prove a generalized Riemann–Roch theorem. However,
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the same year in [78], Noether detected a gap in Lindemann’s transcendental proof,
and replaced it by an algebraic proof, which also yields additional results. (See the
footnote in [78], p. 507, and also [106], p. 9.)

In fact, there are a number of partial desingularizations C† that lie between
C and its full desingularization. Indeed, it follows from Theorems 4, 5, and 8 in
Rosenlicht’s paper [94] that there exists a C† whose arithmetic genus γ is any given
number between p and π.

Given a C†, both it and C have canonical systems associated to their respective
Rosenlicht differentials. The system on C† is obtained from the system on C by
imposing the appropriate adjunction conditions, and the latter are defined by the
conductor ideal associated to the two curves. This statement can be seen as part of
Grothendieck’s extensive duality theory, first described in his May 1957 Bourbaki
talk [56], No. 149.

If C† has bad (non-Gorenstein) singularities, then additional care must be taken
with the notion of canonical system, and for that matter, of any linear system. From
a technical point of view, it is best to work with “ω-pseudo-divisors” as introduced
in [6]; they are defined by the invertible subsheaves of the torsion-free sheaf of
Rosenlicht differentials, the dualizing sheafω. From a conceptual point of view, the
theory ofω-pseudo-divisors can been seen to be close in spirit to Brill and Noether’s
theory in [16] and Noether’s in [78].

For any curve C, plane or not, Rosenlicht proved the generalized Jacobian P and
the Abel map Φα are algebraic. To do so, he [95], Thm. 7, gave a second construction
of them, a purely algebraic one. It is modeled on Weil’s construction for smooth
curves via patching, and works in any characteristic.

In 1962, Oort [81] gave another algebraic construction by a “method of group
extensions,” which works in any characteristic. The generalized Jacobian P is an
extension of the Jacobian J of the desingularized curve by a linear group. Oort
assumed J exists. Then he constructed the extension in a way that shows how its
nature depends on the nature of the singularities.

In his February 1962 Bourbaki talk [56], No. 232, Grothendieck outlined a so-
phisticated new construction, yielding a Picard variety associated to any given vari-
ety. When the variety is a curve, Grothendieck’s Picard variety is just Rosenlicht’s
generalized Jacobian. (See also Grothendieck’s letter [36], p. 197, of 9 August 1960
to Serre.) In spirit, the construction is a lot like Castelnuovo’s and Matsusaka’s, but it
is a lot more refined. To replace Matsusaka’s use of Chow coordinates, Grothendieck
introduced a new parameter space, the “Hilbert scheme.”

Grothendieck, however, had to appeal to the theory of Chow coordinates for
a key finiteness result: in projective space, the subvarieties of given degree form
a bounded family (see [56], No. 221, p. 7). Grothendieck’s action was “scandalous,”
since, on p. 1, he proclaimed that Hilbert schemes were “destined to replace” Chow
coordinates as a tool – a prophetic statement.

In 1966, Mumford [77], Lect. 14, saved the day. He introduced an important new
concept, now known as “Castelnuovo–Mumford” regularity; it yields a simple direct
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proof of the needed finiteness. In addition, Mumford gave the details of Grothen-
dieck’s construction of the Picard variety, worked out in the case of surfaces.

Furthermore, Mumford showed how Grothendieck’s work yields the first alge-
braic proof of a basic theorem, which asserts the completeness of the characteristic
linear system of a suitably positive curve on a surface; in fact, this proof is the goal
of [77]. In 1904, first Enriques and then Severi gave algebraic proofs, which were
later found to be deficient. Meanwhile, in 1905, Castelnuovo used the theorem to
find the dimension of the Picard variety. In 1910, Poincaré gave a rigorous analytic
proof (see [121], pp. 98–104).

For any curve C, the algebraicity and other properties of P and Φα yield a new
version of Theorem 4, the elaborate form of the Addition Theorem. In it, p is
replaced by π, and integrals of the first kind are replaced by integrals of Rosenlicht
differentials. The proof at the end of Sect. 6 carries over with almost no change;
there is no need for P to be compact, nor for multiplication by n to define a map
νn : P→ P of any particular (finite) degree.

It is interesting to compare the two versions of Theorem 4. The new one asserts
that an arbitrary sum of integrals of the same Rosenlicht differential can be reduced
to a sum of π such integrals, plus a constant. The old version asserts that the initial
sum can be reduced to a sum of p such integrals, plus an elementary function v. If
p < π, then v need not be constant.

In 1957, Rosenlicht [96] proved a sort of universal mapping property for gener-
alized Jacobians. However, he did not begin with a singular curve and its Jacobian.
Rather, he began with a map Υ : U → G where U is a smooth open curve and G is
a commutative algebraic group. Then he embeddedU in a suitable compact singular
curve C so that Υ extends to a map C → G that factors through the generalized
Jacobian of C. Consequently, this universal mapping property does not amount to an
abstract algebra-geometric version of the Equivalence Theorem for a given singular
curve.

Nevertheless, Rosenlicht [96], p. 81, observed that his universal mapping prop-
erty “can be used to prove theorems about algebraic groups themselves.” Also, he
noted that Serre too had proved this property independently and that Serre and Lang
had applied it to class field theory. Then in 1959 Serre published a monograph [100],
where he developed all this theory from scratch.

Generalized Jacobians appear in another major part of the theory of Abelian
integrals, which concerns the way they vary and degenerate, or specialize, as the
underlying curve does. The subject was traced by Severi [105], p. 14, back to some
of Klein’s work in 1874, in which he studied the limits of integrals of the first kind
on a smooth plane quartic as the quartic varies, acquiring a double point. From
1890 to 1910, the theory was developed by Picard, Poincaré, and Lefschetz, and by
Castelnuovo, Enriques, and Severi, and applied to the theory of algebraic surfaces.
(See [24], pp. 725–727; see [121], Chaps. 6–7; see [43], pp. 35, 53; and see [60],
pp. 253–255.)

In 1947, Severi published a monograph [105], about generalized Jacobians and
their behavior under specialization for curves with at most nodes and cusps. In fact,
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according to Serre [100], p. 114, Severi was the first author to discuss the generalized
Jacobian explicitly: he studied its analytic structure and its algebraic structure, but
“without always properly distinguishing the one from the other.”

In 1956, Igusa [62], Thm. 3, established the compatibility of specializing a curve
with specializing its generalized Jacobian when the general curve is smooth and
the special curve has at most one node. Moreover, in Sect. 1, he proved that such
a specialization obtains in the important case now known as a “Lefschetz pencil”: the
curves are cut on a smooth surface by a general 1-parameter family of hyperplanes.
Igusa worked in arbitrary characteristic, and was the first to do so; he explained on
p. 171, that Néron had, in 1952, studied the total space of such a family of Jacobians,
but Néron had not explicitly considered the special fiber.

Igusa’s approach is like Castelnuovo’s, Chow’s, and Matsusaka’s before him
and Grothendieck’s after him. However, Grothendieck went considerably further:
not only did he prove compatibility with specialization for an arbitrary family of
(irreducible) curves, in equicharacteristic or mixed, but he worked with a family of
varieties of arbitrary dimension.

In particular, when a curve varies and degenerates, its arithmetic genus π, which
is the dimension of its generalized Jacobian, remains constant, whereas its geometric
genus p drops. So, for the purpose of studying the degeneration of Abelian integrals,
Abel’s version of the genus, π or γ , is better suited to the job than Riemann’s
version p.

Thus, though it once seemed odd that Abel had focused on the constancy of
the sum of integrals, rather than on the boundedness of the summands, in fact the
constancy turned out to be the deeper, subtler condition. Indeed, after the significance
of the boundedness was explained by Riemann, it took a hundred years more before
the significance of the constancy was fully understood. Once again, Abel’s intuition
has proven to be sound!

8 Conclusion

For various reasons, four different theorems have been commonly accepted by
respected scholars as the celebrated theorem known as Abel’s Theorem. In fact,
some scholars have implicitly accepted two of the four as the same. But the four
theorems are not simply versions of each other. Rather, they are mathematically
distinct, and are the results of successive steps forward.

The Elementary Function Theorem is the result of the first step. It is the key to
the other theorems. Abel proved it in relatively explicit forms in [1] and [2]; he also
proved it, with far less work, in more elegant and more conceptual forms in [1], [3],
and [4]. In [1], p. 150, he explained why he proved it twice: the conceptual method
is not computationally effective.

However, in [3], Abel proved only the Elementary Function Theorem, and he
did not identify it as a preliminary result. Moreover, it is the one theorem common
to Abel’s four papers. Doubtless, these reasons are ultimately why this theorem is
so widely accepted as Abel’s Theorem.
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The Equivalence Theorem is the result of the second step. Combined with its
converse, which Abel did not recognize, it has become a fundamental result in
an important part of modern mathematics, the theory of Riemann surfaces. So the
theorem needs a name for ready reference, and it is common and fitting to use
Abel’s name since he made the seminal contribution. Historical correctness being
a secondary consideration, mathematicians will doubtless always refer to the full
Equivalence Theorem as Abel’s Theorem.

The Relations Theorem is the result of the third step. In the introduction to [1],
Abel stated it informally in a way that makes it sound deceptively like a more refined
form of the Elementary Function Theorem. Furthermore, he reinforced this false idea
a few pages later. There appears to be no further reason for interest in this theorem;
so there appears to be no strong reason to accept it as Abel’s Theorem.

The Addition Theorem is the result of the fourth and last step. In the introductions
to both [1] and [2], Abel makes it clear that this theorem is his goal. However, he
stated the theorem in different forms.

In the introduction to [2], Abel stated the Addition Theorem in its simplest form,
which is an immediate consequence of the Relations Theorem. However, he gave
proofs only for hyperelliptic integrals.

In the introduction to [1], Abel stated the Addition Theorem in a more elaborate
form, and in the course of the paper, he refined the statement even further. Although
Abel’s proof is, apparently, not fully valid, nevertheless, in its most elaborate form,
the Addition Theorem can be proved using the Jacobian variety and the Abel map,
which combine the full Equivalence Theorem and the Riemann–Roch Theorem in
a powerful algebra-geometric form.

The Addition Theorem involves a numerical invariant, the genus. But the genus
comes in two versions, Abel’s and Riemann’s. In fact, Abel’s definition is nebulous,
but it can be made clear and precise. Then the two genera may differ in value; if so,
then Riemann’s has the smaller value, ostensibly an advantage. With either genus,
the Addition Theorem sounds the same, mutatis mutandis. However, Abel’s genus
is better suited for the study of the degeneration of Abelian integrals.

In 1832, Jacobi successfully advocated that, as a monument to Abel’s genius,
the Addition Theorem be called Abel’s Theorem. Yet, Jacobi knew only the simplest
form of the theorem; the more elaborate forms appear only in [1], which was, at the
time, temporarily misplaced.

Thus, of the four theorems, only the Addition Theorem can rightfully be called
Abel’s Theorem!

Acknowledgments. The author is indebted to Beverly, his wife, and to Ragni Piene,
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ous drafts.
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[65] C. G. J. Jacobi, Notiz über A. Göpel. J. für Math. 35 (1847), 277–282. = “Werke II.”
Reimer, 1882, pp. 145–152.

[66] F. Klein, “Lectures on Mathematics.” Reported by A. Ziwet. Macmillan, 1894.
[67] F. Klein, “Vorlesungen über die Entwicklung der Mathematik im 19. Jarhundert.”

Prepared by R. Courant and O. Neugebauer. Part I. Springer, 1926.
[68] M. Kline, “Mathematical thought from ancient to modern times.” Oxford U. Press,

1972.
[69] E. Kramer, Noether, Max. In “Dictionary of Scientific Biography.” Gillispie (ed. in

chief) Vol. X. Scribner’s 1974, pp. 193–141.
[70] S. Lang, “Abelian varieties.” Interscience Tract 7. Interscience, 1959.
[71] S. Lang, Comments on non-references in Weil’s works. Mitteilungen DMV. 1 (2002),

49–56.
[72] O. A. Laudal, Themathematical significance of Abel’s Parismemoir. In [42], pp. 65–68.
[73] S. Lefschetz, On certain numerical invariants of algebraic varieties with applications

to Abelian varieties. (Bordin prize, Paris, 1919, and Bôcher prize, AMS, 1924.) Trans.
AMS 22 (1921), 327–482. = “Selected Papers, Chelsea, 1971, pp. 41–196.

[74] S. Lefschetz, Hyperelliptic surfaces and Abelian varieties. In “Selected topics in al-
gebraic geometry.” Bull. National Res. Council, No. 96 (Washington, 1934). Chelsea
reprint, 1970, pp. 349–395.



What is Abel’s Theorem Anyway? 439

[75] A. M. Legendre, Cover letter. J. für Math. 8 (1832), 413.
[76] A. I. Markusevich, “Introduction to the classical theory of Abelian functions.” Transl.

Math. Monographs 96, AMS, 1992.
[77] D. Mumford, “Lectures on curves on an algebraic surface.” Annals of Math. Studies,

No. 59. Princeton U. Press, 1966.
[78] M. Noether, Ueber Schnittpunktsysteme einer algebraischen Curve mit nicht-

adjungirten Curven. Math. Ann. 15 (1879), 507–528.
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9 (1895), 244–255. = “Oeuvres” Tome III, Cen. nat. rech. sc., 1980, pp. 417–428.
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