
Visualizing Elliptic Curves and Their Tori
Galen Ballew James Duncan

University of Illinois at Chicago

Mathematical
Computing
Laboratory

Summary

Our research focuses on elliptic curves E over Q with complex
multiplication (by the maximal order of an imaginary quadratic
field). Viewed over C, each E gives rise to two tori, defined by
the generators ω1 and ω2 of the period lattice. These tori can be
constructed virtually into a 3D mesh. Further, this mesh can be
translated into gcode and printed using a 3D printer.

Motivation

Elliptic curves are interesting mathematical pheomena. Certain
curves can be used to solve Diophantine equations, part of factor-
ing algorithms, or used in cryptography. Elliptic curves are also
a critical element in the proof of Fermat’s Last Theorem. This
research project is about developing an understanding of elliptic
curves, their properties, and creating visualizations of them.

Definition

An elliptic curve over a field K of characteristic different than 2
and 3 is the geometric locus of an equation of the form

E : y2 = x3+ax+b,

where a,b ∈ K such that ∆ := −16(4a3 + 27b2) 6= 0, together
with the projective point O = [0 : 1 : 0] ∈ E(K).

This equation is called the Weierstrass form of the elliptic
curve. On E(K), the set of points that satisfy E, we define a
group addition law via the chord-tangent method :

E with coefficients in Q

Let E/Q be an elliptic curve, and let E(Q) be the group of points
on E/Q with rational coefficients. Mordell’s theorem states that
E(Q) is a finitely generated abelian group. Then

E(Q)' Zr⊕E(Q)tors

where r = r(E) is some non-negative integer, called the arith-
metic rank of E/Q, and where E(Q)tors is the group of points of
finite order in E(Q), called the torsion subgroup of E(Q).

E with coefficients in C

Let ω1, ω2 ∈C such that ω1 and ω2 are linearly independent over
R. We may then define the complex lattice Λ as

Λ = n1ω1+n2ω2 : n1,n2 ∈ Z.
The Weierstrass ℘-function is doubly periodic and defined as

1
u2 + ∑

ω∈Λ
ω 6=0

(
1

(u−ω)2−
1

ω2

)
.

It also satifies the differential equation

℘
′(z)2 = 4℘(z)3−g2℘(z)−g3

which is in the form of an elliptic curve. Π, the fundamental
parallelogram of Λ, generates a torus, T2, in the fashion below.
C/Λ is topologically equivalent to T2 and the group of poitns on
T2 is isomorphic as a group to the points on E(C).

Complex Multiplication

Let E/Q be an elliptic curve with rational coefficients. We say
that E/Q has complex multiplication, or CM for short, if there
is an endomorphism φ : E/Q→ E/Q that is not a multiplication-
by-n map for any integer n, so that Z (End(E). There are 9
curves, up to isomorphism, with CM by the maximal order of an
imaginary quadratic field and they are the focus of our research.

Cremona Label Equation
64a4 y2 = x3+ x
256a1 y2 = x3+4x2+2x
27a3 y2+ y = x3

49a1 y2+ xy = x3− x2−2x−1
121b1 y2+ y = x3− x2−7x+10
361a1 y2+ y = x3−38x+90
1849a1 y2+ y = x3−860x2+9707
4489a1 y2+ y = x3−7370x2+243528
26569a1 y2+ y = x3−2174420x+1234136692

Sample SAGE Code

SAGE was used to calculate the period lattice of each curve,
which gives the basis that defines their tori. The periods were
calculated to an arbitrary precision using Gauss’s Arithmetic-
Geometric Mean. Further, SAGE was used to compile charac-
teristic information about the curves, as seen in the table below.

Curve Datum
Label Discriminant Conductor Torsion Rank CM Field

64a4
-64 64 Z/2 0 Q(

√
−1)

j-invariant: 1728

256a1
512 256 Z/2 1 Q(

√
−2)

j-invariant: 8000

27a3
-27 27 Z/3 0 Q(

√
−3)

j-invariant: 0

49a1
-343 49 Z/2 0 Q(

√
−7)

j-invariant: -3375

121b1
-1331 121 Trivial 1 Q(

√
−11)

j-invariant: -32768

361a1
-6859 361 Trivial 1 Q(

√
−19)

j-invariant: -884736

1849a1
-79507 1849 Trivial 1 Q(

√
−43)

j-invariant: -884736000

4489a1
-300763 4489 Trivial 1 Q(

√
−67)

j-invariant: -14719795200

26569a1
-4330747 26569 Trivial 1 Q(

√
−163)

j-invariant: -262537412640768000

Mesh Building

The images of the tori are wireframe renderings of their virtual
3-dimensional meshes. These were constructed in Blender and
Autodesk Maya. All of the tori were built and visualized using
relative scale. The meshes are the basis for the 3D prints. They
were exported as .stl or .obj and imported into Cura for the Ulti-
maker2 3D printer.

Tori Visualization

3D Printing

The Cura software converts 3D meshes into G-code. G-code
is a programming language for machine tools. It converts the
3D mesh into (X,Y,Z) coordinates for the printhead of the Ulti-
maker2.

Future Research

There is currently no definitive method for calculating the rank
of an elliptic curve. More specifically, it is unknown whether the
rank of an elliptic curve can be arbitrarily large (i.e. whether ranks
are bounded or unbounded.) Currently, the largest known rank is
at least 24, discovered by Martin and McMillen in 2000.

References

A.C. Cojocaru. Primes, Elliptic Curves, and Cyclic Groups: A
Synopsis. (2016)

J. Siverman, J. Tate. Rational Points on Elliptic Curves.
Undergraduate Texts in Mathematics (2015)

http://mcl.math.uic.edu/

Arithmetic of Elliptic Curves

Galen Ballew & James Duncan

May 6, 2016

Abstract

Our research focuses on 9 specific elliptic curves E over Q, each with complex
multiplication by the maximal order in an imaginary quadratic field. Viewed over C,
each E gives rise to tori, defined by the generators ω1, ω2 ∈ C of the period lattice.
Using SAGE, information and characteristics about the curves and their tori were
calculated and compiled. Additionally, the tori were virtually constructed using 3D
modeling software. These virtual meshes were converted to G-Code and printed on an
Ultimaker2 3D printer.

1 Motivation

Elliptic curves are interesting mathematical phenomena. Certain curves can be used to
solve Diophantine equations (for example, in the proof of Fermat’s Last Theorem), part of
factoring algorithms, or used in cryptography. This research project is about developing an
understanding of elliptic curves, their properties, and creating visualizations of them.

2 Elliptic Curves over Q
In order to define an elliptic curve, we have to consider the more general class of curves to
which elliptic curves belong.

Definition 1. A cubic plane curve C defined over a field K is a curve in the plane given
by the equation

y2 = x3 + ax+ b

for a, b ∈ K. The discriminant of C is defined as

∆ = −16(4a3 + 27b2).

Theorem 1. Let C be a cubic plane curve. Then C is non-singular if and only if its
discriminant is non-zero.

Proof. (⇒) Let f(x) = x3 + ax+ b. Define F (x, y) = y2 − x3 − ax− b, the left-hand side of
the above equation. Then points (x′, y′) such that F (x′, y′) = 0 correspond to points on the
cubic curve.

1

Let C be non-singular. Then there are no points on the curve where both partial deriva-
tives of F vanish simultaneously. Suppose (x0, y0) is a point such that ∂F

∂x
= ∂F

∂y
= 0:

∂F

∂x
(x0) = −3x2

0 − a = 0,

∂F

∂y
(y0) = 2y0 = 0.

Then y0 = 0 and x0 = ±
√
−a/3. Note that since f ′(x0) = 0 and f(x0) = 0, x0 is a double

root of f . We see that in this case, ∆ = 0. Without loss of generality, let x0 =
√
−a/3.

Then setting F (x0, y0) = 0, we have:

0 = −

(√
−a
3

)3

− a
√
−a
3
− b

=
a

3

√
−a
3
− a
√
−a
3
− b

=
−2a

3

√
−a
3
− b.

It follows that

b2 =
4a2

9

(
−a
3

)
=
−4a3

27
.

So 4a3 + 27b2 = 0, which implies that the discriminant is zero.
The case of x0 = −

√
−a/3 follows similarly.

b2 =

(
2a

3

√
−a
3

)2

= − 4

27
a3.

Again, this implies that the discriminant is zero.

(⇐) Now let ∆ 6= 0. We will show that this implies that the partial derivatives of F will
never vanish simultaneously, so there are no singular points on C. Note that ∆ 6= 0 implies

2

that the 3 roots of f(x) are distinct. Thus, f and f ′ will not share a common root. That is, if

(x0, 0) is on C then
∂F

∂x
|x0 6= 0. In other words, the partial derivatives will not simultaneously

vanish. C is therefore non-singular.

Definition 2. An elliptic curve E over the field K is a cubic curve in the projective plane
with non-zero discriminant, defined by the Weierstrass equation

Ea,b : y2 = x3 + ax+ b,

together with a fixed K-rational point O ∈ E, called the point at infinity, given in
projective coordinates as [0 : 1 : 0].

For the rest of this section we will assume that K = Q. As we will see, the rational
points on E/Q, which we denote E(Q), form an abelian group. The group law is defined as
follows.

Let P = (x1, y1) and Q = (x2, y2) be distinct points on E. Define P ∗ Q = (x3, y3) as
the third point of intersection with E on the secant line through P and Q. Define P +Q as
(P ∗ Q) ∗ O. The secant line through any point on the curve and the point at infinity is a
vertical line, so because the curve is symmetric about the x-axis, P +Q = (x3,−y3).

The line through P and Q has the equation

y = λx+ ν, where λ =
y2 − y1

x2 − x1

and ν = y1 − λx1 = y2 − λx2.

To find a formula for P ∗Q, we substitute y = λx+ ν into the equation for E, giving

(λx+ ν)2 = x3 + ax+ b.

Moving everything to one side gives

0 = x3 − λ2x2 + (a− 2λν)x+ (b− ν2). (1)

This is a cubic equation in x which has three roots, so we can rewrite the equation as

0 = (x− x1)(x− x2)(x− x3) (2)

since we know that the roots of (1) occur exactly where the line y = λx+ ν meets the curve.
Matching the coefficients of the x2 term of (1) and (2) gives

λ2 = x1 + x2 + x3

so x3 = λ2 − x1 − x2. Thus y3 = λx3 + ν. Finally, P +Q = (x3,−y3).
However, if we want to add a point P = (x1, y1) on E to itself, these formulas will not

work because the denominator of λ will be zero. In that case, we can implicitly differentiate
y2 = x3 + ax+ b giving 2ydy = (3x2 + a)dx and then the slope of the tangent line at P is

λ =
dy

dx
=

3x2
1 + a

2y1

3

Figure 1: Adding points on the curve.

which we can then use to find P + P = 2P just as before.
Figure 1 shows a visualization of the group law. This operation of addition is commuta-

tive: the line through P and Q is the same as that through Q and P . Moreover, the point O
is the identity element, because for any P 6= O, the line through P and O is a vertical line,
and thus the third point of intersection of that line with the curve is −P . Reflecting across
the x-axis gives P again. The line connecting O to itself is the line at infinity, which inter-
sects with E at O. And every point P also has an inverse, namely −P , by the symmetry of
the curve. Proving the associativity of the group law would take many pages of calculations,
but can be done using the explicit addition formulas given above.

We present the following theorem without proof.

Theorem 2. Mordell’s Theorem
Let E/Q be an elliptic curve, and let E(Q) be the group of points on E/Q. Then

E(Q) ' Zr ⊕ E(Q)tors

where r = r(E) is some non-negative integer, called the arithmetic rank of E/Q, and
where E(Q)tors is the group of points of finite order in E(Q), called the torsion subgroup
of E(Q).

This important result, proved by Louis Mordell in 1922, tells us that E(Q) is a finitely
generated abelian group. That is, given a finite number of rational points on E/Q we can
arrive at all other points in E(Q) using the group addition law.

4

3 Complex Points on E/C
We have thus far considered the rational points E(Q) on an elliptic curve E defined over
the rationals. We now shift our focus to elliptic curves with complex coefficients, E/C. The
group law described above was purely algebraic, and so applies equally well to E(R), the
points with real coordinates satisfying the Weierstrass equation Ea,b, and E(C), the points
with complex coordinates. Moreover, if we assume a, b ∈ Q, these groups satisfy the following
hierarchy:

{O} ⊂ E(Q) ⊂ E(R) ⊂ E(C).

However, we cannot visualize E(C) in the same way that we can E(R) (see Figure 1).
Therefore, our goal in this section will be to move from the picture of E(R) in R2 that we
have already seen to a picture of E(C) as an embedding of a torus in the complex projective
plane and 3D visualizations of that torus.

To do so, we turn to the theory of elliptic functions. By replacing x and y by 4x and 4y
in the Weierstrass equation, we get

y2 = 4x3 − g2x− g3. (3)

If g2 and g3 are such that the polynomial on the right has distinct roots, which is the case
when ∆ 6= 0, then we may find complex numbers ω1 and ω2 called periods. We may find
approximations of ω1 and ω2 to arbitrary precision using the following method.

To simplify things, let us assume that our curve is defined over R. Let a and b be positive
real numbers, and define an and bn by

a0 = a, b0 = b,

an =
1

2
(an−1 + bn−1),

bn =
√
an−1bn−1.

an is the arithmetic mean (average) of the previous values an−1 and bn−1, while bn is their
geometric mean. These number converge quickly to a shared value.

Proposition 1. Suppose a ≥ b > 0. Then, for all n

bn−1 ≤ bn ≤ an ≤ an−1

and

0 ≤ an − bn ≤
1

2
(an−1 − bn−1).

Therefore,
M(a, b) = lim

n→∞
an = lim

n→∞
bn

exists.

5

Proof. If we assume that an−1 ≥ bn−1, the quantity
√
an−1 −

√
bn−1 is non-negative. Using

this quantity, We have

an − bn =
1

2
(
√
an−1 −

√
bn−1)2 ≥ 0,

so we see that bn ≤ an. Further, we can see that

bn−1 =
√
bn−1bn−1 ≤

√
an−1bn−1 = bn

and

an =
1

2
(an−1 + bn−1) ≤ 1

2
(an−1 + an−1) = an−1.

Moreover,

an − bn =
1

2
(
√
an−1 −

√
bn−1)2

≤ 1

2
(
√
an−1 −

√
bn−1)(

√
an−1 +

√
bn−1)

=
1

2
(an−1 − bn−1).

So, an − bn ≤ (1/2)n(a − b), and thus an − bn → 0. The limit M(a, b) exists because the
an are a decreasing sequence bounded below by the bn, which themselves are increasing and
converging to the same limit as the an’s.

M(a, b) is known as the arithmetic-geometric mean of a and b. We can now express
the periods ω1 and ω2 using such means.

Theorem 3. Let E be given by

y2 = 4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3).

First assume that e1 < e2 < e3 are all real. Then the periods ω1 and ω2 are defined by

ω1 =
πi

M(
√
e3 − e1,

√
e2 − e1)

,

ω2 =
π

M(
√
e3 − e1,

√
e3 − e2)

.

Now, suppose that e1 is the unique real root of 4x3 − g2x − g3. Let e′ =
√

3e2
1 − (1/4)g2.

Then

ω1 =
2π

M(
√

4e′,
√

2e′ − 3e1)
,

ω2 = −ω1

2
+

πi

M(
√

4e′,
√

2e′ − 3e1)
.

6

The proof of the preceding theorem can be found in [7]. With the periods ω1 and ω2 in
hand, we define a lattice, Λ, in the complex plane by

Λ = Zω1 + Zω2 = {mω1 + nω2,m, n ∈ Z}.

Then, considering the complex plane mod the lattice, C/Λ, gives us the fundamental
parallelogram, Π. This parallelogram is the embedding of the torus associated to the
curve in the complex plane.

There is a one-to-one correspondence between points on E/C and points in the funda-
mental parallelogram. Given the lattice Λ, the Weierstrass ℘ -function is defined as

℘(u) =
1

u2
+
∑
ω∈Λ
ω 6=0

(
1

(u− ω)2
− 1

ω2

)

for all u ∈ C. This function is doubly periodic, with periods ω1 and ω2, i.e.,

℘(u+ ω) = ℘(u) for all u ∈ C and all ω ∈ Λ.

Furthermore, it can be shown that ℘(u) satisfies

℘′(u)2 = 4℘(u)3 − g2℘(u)− g3.

Notice that this is exactly the form of the Weierstrass equation that we gave in (3). Thus,
P (u) = (℘(u), ℘′(u)) is a point on E/C. We have thus defined a map from points in C to
E/C.

This map is onto the curve. Restricting our attention to only those points on Π – while
mapping the corners of that parallelogram to O and identifying the opposite sides – the map
also becomes one-to-one.

Figure 2 shows how one might go from a parallelogram to a torus. There are many ways
one could construct a torus from Π. In our case, we fold the fundamental parallelogram in
two ways. In the first, the major radius R1 of the torus is defined using ω1 by R1 = |ω1|/2π,
where |z| is the distance from the origin to z. That is, ω1 defines the length of the tube
shown in the third panel of Figure 2. The circumference of that tube is then defined by the
height of Π, so that the minor radius is given by

r1 =
|ω2| sin θ

2π
,

where θ is the angle between ω1 and ω2. To produce a second torus from Π, we use R2 =
|ω2|/2π and r2 = |ω1| sin θ/2π.

7

Figure 2: The parallelogram folds into the torus much as one would fold a sheet of paper.

4 E/Q with CM

Theorem 4. Let E/Q be an elliptic curve and write the ring of all isogenies of E/Q as

EndQ(E) := {ϕ : E(Q)→ E(Q) group homomorphism}.

Then, either
EndQ(E) ' Z,

in which case we say that E/Q is without Complex Multiplication (non-CM), or

∃D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}

and an order O in an imaginary quadratic field Q(
√
−D) such that

EndQ(E) ' O,

in which case we say that E/Q is with Complex Multiplication (CM) and Q(
√
−D) is

its CM field.

In our application, we’re interested in the 9 elliptic curves with CM field Q(
√
−D) and

End(E) = OQ(
√
−D) for each D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}. Relevant data for each curve

is given in Table 1. The graphs of the curves are in 5. Included in the data are computa-
tions for the conductor and j-invariant (refer to Theorem 2 for discussions of torsion and
rank.). Informally, the conductor of a curve E is an arithmetic invariant N = NE ∈ Z that
gives precise information about the reduction of E modulo each prime p. The j-invariant,
meanwhile, defines isomorphism classes of elliptic curves.

Definition 3. Let E be an elliptic curve over C defined by y2 = 4x3 − g2x − g3 via the
Weierstrass elliptic functions. Then the j-invariant is defined as

j = 1728
g3

2

∆
= 1728

g3
2

g3
2 − 27g2

3

.

8

Label Discriminant Conductor Torsion Rank CM Field

64a4
-64 64 Z/2 0 Q(

√
−1)

j-invariant: 1728
y2 = x3 + x

256a1
512 256 Z/2 1 Q(

√
−2)

j-invariant: 8000
y2 = x3 + 4x2 + 2x

27a3
-27 27 Z/3 0 Q(

√
−3)

j-invariant: 0
y2 + y = x3

49a1
-343 49 Z/2 0 Q(

√
−7)

j-invariant: -3375
y2 + xy = x3 − x2 − 2x− 1

121b1
-1331 121 Trivial 1 Q(

√
−11)

j-invariant: -32768
y2 + y = x3 − x2 − 7x+ 10

361a1
-6859 361 Trivial 1 Q(

√
−19)

j-invariant: -884736
y2 + y = x3 − 38x+ 90

1849a1
-79507 1849 Trivial 1 Q(

√
−43)

j-invariant: -884736000
y2 + y = x3 − 860x2 + 9707

4489a1
-300763 4489 Trivial 1 Q(

√
−67)

j-invariant: -14719795200
y2 + y = x3 − 7370x2 + 243528

26569a1
-4330747 26569 Trivial 1 Q(

√
−163)

j-invariant: -262537412640768000
y2 + y = x3 − 2174420x+ 1234136692

Table 1

5 Application

SageMath was used throughout this project as a means to produce information about the
9 elliptic curves we were interested in. See the Appendix for our full code, which includes
visualization of the curves and tori in Sage.

SageMath was used to calculate ω1 and ω2 for each of the period lattices defined from
the curves by the method of arithmetic-geometric means discussed above. In turn, ω1 and
ω2 were used to define major and minor radii for two distinct tori per curve. These tori were
constructed in the 3D modeling software Autodesk Maya.

Similar to the wireframe renderings in Figure 3, the meshes of the tori were converted
into G-code using the program Cura. G-code is a programming language for machine tools.

9

Figure 3: Tori generated by elliptic curve 64a4, with major radii defined by ω1 and ω2

respectively.

It converts the 3D mesh into (X,Y,Z) coordinates for the printhead of the Ultimaker2. Figure
6 shows the 3D meshes for each torus.

Figure 4: Nine of the tori in a batch 3D print job.

10

Figure 5

11

Figure 6

12

6 Open Questions

There is currently no definitive method for calculating the rank of an elliptic curve. More
specifically, it is unknown whether the rank of an elliptic curve can be arbitrarily large (i.e.
whether ranks are bounded or unbounded). The Birch and Swinnerton-Dyer conjecture, a
member of the million dollar Millenn’ium Problems, gives a method for finding the rank of
the group E(K), but has only been proven in some special cases including particular CM
curves. See, for example, [4]. Currently, the largest known rank is at least 24, discovered by
Martin and McMillen in 2000.

7 Acknowledgements

Thank you to Professor Alina Cojocaru and Cara Mullen for your time and dedication in
trying to teach an art student and a history major math! Thank you to Professor Benjamin
Antieau, Professor David Dumas, and everyone else helping to make the the Mathematical
Computing Lab at UIC the great place that it is. This project would not have been possible
without the lab’s resources.

Appendix: Sage Code

def latticeHeight(lattice):

w1, w2 = lattice.basis();

u = vector([w1.real(),w1.imag()]);

v = vector([w2.real(), w2.imag()]);

cosAngle = u.dot_product(v) / (w1.abs()*w2.abs());

sinAngle = sqrt(1 - cosAngle^2)

h1 = w2.abs()*sinAngle

h2 = w1.abs()*sinAngle

return (h1, h2)

def latticeRhombus(lattice):

w1, w2 = lattice.basis()

rhombus = polygon([(0,0),

(w2.real(),w2.imag()),

(w1.real() + w2.real(), w2.imag()),

(w1.real(),w1.imag())])

return rhombus

def latticeTori(lattice):

h1, h2 = latticeHeight(lattice)

w1, w2 = lattice.basis()

R1 = w1.abs() / (2*pi)

r1 = h1 / (2*pi)

R2 = w2.abs() / (2*pi)

13

r2 = h2 / (2*pi)

return {"Torus1": (surfaces.Torus(r1, R1), R1, r1),

"Torus2": (surfaces.Torus(r2, R2), R2, r2)}

def curveData(EC):

K = RationalField()

R = K.embeddings(RealField())[0]

lattice = EC.period_lattice(R)

rhombus = latticeRhombus(lattice)

tori = latticeTori(lattice)

return (EC, lattice, rhombus, tori)

E1 = curveData(EllipticCurve([0,0,0,1,0]))

E2 = curveData(EllipticCurve([0,4,0,2,0]))

E3 = curveData(EllipticCurve([0,0,1,0,0]))

E4 = curveData(EllipticCurve([1,-1,0,-2,-1]))

E5 = curveData(EllipticCurve([0,-1,1,-7,10]))

E6 = curveData(EllipticCurve([0,0,1,-38,90]))

E7 = curveData(EllipticCurve([0,0,1,-860,9707]))

E8 = curveData(EllipticCurve([0,0,1,-7370,243528]))

E9 = curveData(EllipticCurve([0,0,1,-2174420,1234136692]))

print "#1: " + str(E1[0])

plot(E1[0])

print "Weierstrauss Form:"

E1[0].short_weierstrass_model()

print "\nDiscriminant: " + str(E1[0].discriminant()) + "\n"

print "Conductor: " + str(E1[0].conductor()) + "\n"

print "j-invariant: " + str(E1[0].j_invariant()) + "\n"

print "Rank: " + str(E1[0].rank()) + "\n"

print "Torsion Subgroup: " + str(E1[0].torsion_subgroup()) + "\n"

print "Real/Complex Embedding - Period Lattice basis: " + str(E1[1].basis()) + "\n"

print "Rhombus:"

E1[2]

print ("\nRhombus height 1 (orthogonal to omega 1): "

+ str(latticeHeight(E1[1])[0]) + "\n")

print "Torus 1A (Major Radius from omega 1):"

E1[3]["Torus1"][0].plot()

print "\nMajor Radius: " + str(E1[3]["Torus1"][1]) + "\n"

print "Minor Radius: " + str(E1[3]["Torus1"][2]) + "\n"

print ("Rhombus height 2 (orthogonal to omega 2): "

+ str(latticeHeight(E1[1])[1]) + "\n")

print "Torus 1B (Major Radius from omega 2):"

E1[3]["Torus2"][0].plot()

print "\nMajor Radius: " + str(E1[3]["Torus2"][1]) + "\n"

14

print "Minor Radius: " + str(E1[3]["Torus2"][2]) + "\n\n\n"

print "End #1 **\n\n\n"

E2 = curveData(EllipticCurve([0,4,0,2,0]))

print "#2: " + str(E2[0])

plot(E2[0])

print "Weierstrauss Form:"

E2[0].short_weierstrass_model()

print "\nDiscriminant: " + str(E2[0].discriminant()) + "\n"

print "Conductor: " + str(E2[0].conductor()) + "\n"

print "j-invariant: " + str(E2[0].j_invariant()) + "\n"

print "Rank: " + str(E2[0].rank()) + "\n"

print "Torsion Subgroup: " + str(E2[0].torsion_subgroup()) + "\n"

print "Real/Complex Embedding - Period Lattice basis: " + str(E2[1].basis()) +"\n"

print "Rhombus:"

E2[2]

print ("\nRhombus height 1 (orthogonal to omega 1): "

+ str(latticeHeight(E2[1])[0]) + "\n")

print "Torus 2A (Major Radius from omega 1):"

E2[3]["Torus1"][0].plot()

print "\nMajor Radius: " + str(E2[3]["Torus1"][1]) + "\n"

print "Minor Radius: " + str(E2[3]["Torus1"][2]) + "\n"

print ("Rhombus height 2 (orthogonal to omega 2): "

+ str(latticeHeight(E2[1])[1]) + "\n")

print "Torus 2B (Major Radius from omega 2):"

E2[3]["Torus2"][0].plot()

print "\nMajor Radius: " + str(E2[3]["Torus2"][1]) + "\n"

print "Minor Radius: " + str(E2[3]["Torus2"][2]) + "\n\n\n"

print "End #2 **\n\n\n"

E3 = curveData(EllipticCurve([0,0,1,0,0]))

print "#3: " + str(E3[0])

plot(E3[0])

print "Weierstrauss Form:"

E3[0].short_weierstrass_model()

print "\nDiscriminant: " + str(E3[0].discriminant()) + "\n"

print "Conductor: " + str(E3[0].conductor()) + "\n"

print "j-invariant: " + str(E3[0].j_invariant()) + "\n"

print "Rank: " + str(E3[0].rank()) + "\n"

print "Torsion Subgroup: " + str(E3[0].torsion_subgroup()) + "\n"

print "Real/Complex Embedding - Period Lattice basis: " + str(E3[1].basis()) +"\n"

print "Rhombus:"

E3[2]

print ("\nRhombus height 1 (orthogonal to omega 1): "

+ str(latticeHeight(E3[1])[0]) + "\n")

15

print "Torus 3A (Major Radius from omega 1):"

E3[3]["Torus1"][0].plot()

print "\nMajor Radius: " + str(E3[3]["Torus1"][1]) + "\n"

print "Minor Radius: " + str(E3[3]["Torus1"][2]) + "\n"

print ("Rhombus height 2 (orthogonal to omega 2): "

+ str(latticeHeight(E3[1])[1]) + "\n")

print "Torus 3B (Major Radius from omega 2):"

E3[3]["Torus2"][0].plot()

print "\nMajor Radius: " + str(E3[3]["Torus2"][1]) + "\n"

print "Minor Radius: " + str(E3[3]["Torus2"][2]) + "\n\n\n"

print "End #3 **\n\n\n"

E4 = curveData(EllipticCurve([1,-1,0,-2,-1]))

print "#4: " + str(E4[0])

plot(E4[0])

print "Weierstrauss Form:"

E4[0].short_weierstrass_model()

print "\nDiscriminant: " + str(E4[0].discriminant()) + "\n"

print "Conductor: " + str(E4[0].conductor()) + "\n"

print "j-invariant: " + str(E4[0].j_invariant()) + "\n"

print "Rank: " + str(E4[0].rank()) + "\n"

print "Torsion Subgroup: " + str(E4[0].torsion_subgroup()) + "\n"

print "Real/Complex Embedding - Period Lattice basis: " + str(E4[1].basis()) +"\n"

print "Rhombus:"

E4[2]

print ("\nRhombus height 1 (orthogonal to omega 1): "

+ str(latticeHeight(E4[1])[0]) + "\n")

print "Torus 4A (Major Radius from omega 1):"

E4[3]["Torus1"][0].plot()

print "\nMajor Radius: " + str(E4[3]["Torus1"][1]) + "\n"

print "Minor Radius: " + str(E4[3]["Torus1"][2]) + "\n"

print ("Rhombus height 2 (orthogonal to omega 2): "

+ str(latticeHeight(E4[1])[1]) + "\n")

print "Torus 4B (Major Radius from omega 2):"

E4[3]["Torus2"][0].plot()

print "\nMajor Radius: " + str(E4[3]["Torus2"][1]) + "\n"

print "Minor Radius: " + str(E4[3]["Torus2"][2]) + "\n\n\n"

print "End #4 **\n\n\n"

E5 = curveData(EllipticCurve([0,-1,1,-7,10]))

print "#5: " + str(E5[0])

plot(E5[0])

print "Weierstrauss Form:"

E5[0].short_weierstrass_model()

print "\nDiscriminant: " + str(E5[0].discriminant()) + "\n"

16

print "Conductor: " + str(E5[0].conductor()) + "\n"

print "j-invariant: " + str(E5[0].j_invariant()) + "\n"

print "Rank: " + str(E5[0].rank()) + "\n"

print "Torsion Subgroup: " + str(E5[0].torsion_subgroup()) + "\n"

print "Real/Complex Embedding - Period Lattice basis: " + str(E5[1].basis()) +"\n"

print "Rhombus:"

E5[2]

print ("\nRhombus height 1 (orthogonal to omega 1): "

+ str(latticeHeight(E5[1])[0]) + "\n")

print "Torus 5A (Major Radius from omega 1):"

E5[3]["Torus1"][0].plot()

print "\nMajor Radius: " + str(E5[3]["Torus1"][1]) + "\n"

print "Minor Radius: " + str(E5[3]["Torus1"][2]) + "\n"

print ("Rhombus height 2 (orthogonal to omega 2): "

+ str(latticeHeight(E5[1])[1]) + "\n")

print "Torus 5B (Major Radius from omega 2):"

E5[3]["Torus2"][0].plot()

print "\nMajor Radius: " + str(E5[3]["Torus2"][1]) + "\n"

print "Minor Radius: " + str(E5[3]["Torus2"][2]) + "\n\n\n"

print "End #5 **\n\n\n"

E6 = curveData(EllipticCurve([0,0,1,-38,90]))

print "#6: " + str(E6[0])

plot(E6[0])

print "Weierstrauss Form:"

E6[0].short_weierstrass_model()

print "\nDiscriminant: " + str(E6[0].discriminant()) + "\n"

print "Conductor: " + str(E6[0].conductor()) + "\n"

print "j-invariant: " + str(E6[0].j_invariant()) + "\n"

print "Rank: " + str(E6[0].rank()) + "\n"

print "Torsion Subgroup: " + str(E6[0].torsion_subgroup()) + "\n"

print "Real/Complex Embedding - Period Lattice basis: " + str(E6[1].basis()) +"\n"

print "Rhombus:"

E6[2]

print ("\nRhombus height 1 (orthogonal to omega 1): "

+ str(latticeHeight(E6[1])[0]) + "\n")

print "Torus 6A (Major Radius from omega 1):"

E6[3]["Torus1"][0].plot()

print "\nMajor Radius: " + str(E6[3]["Torus1"][1]) + "\n"

print "Minor Radius: " + str(E6[3]["Torus1"][2]) + "\n"

print ("Rhombus height 2 (orthogonal to omega 2): "

+ str(latticeHeight(E6[1])[1]) + "\n")

print "Torus 6B (Major Radius from omega 2):"

E6[3]["Torus2"][0].plot()

print "\nMajor Radius: " + str(E6[3]["Torus2"][1]) + "\n"

17

print "Minor Radius: " + str(E6[3]["Torus2"][2]) + "\n\n\n"

print "End #6 **\n\n\n"

E7 = curveData(EllipticCurve([0,0,1,-860,9707]))

print "#7: " + str(E7[0])

plot(E7[0])

print "Weierstrauss Form:"

E7[0].short_weierstrass_model()

print "\nDiscriminant: " + str(E7[0].discriminant()) + "\n"

print "Conductor: " + str(E7[0].conductor()) + "\n"

print "j-invariant: " + str(E7[0].j_invariant()) + "\n"

print "Rank: " + str(E7[0].rank()) + "\n"

print "Torsion Subgroup: " + str(E7[0].torsion_subgroup()) + "\n"

print "Real/Complex Embedding - Period Lattice basis: " + str(E7[1].basis()) +"\n"

print "Rhombus:"

E7[2]

print ("\nRhombus height 1 (orthogonal to omega 1): "

+ str(latticeHeight(E7[1])[0]) + "\n")

print "Torus 7A (Major Radius from omega 1):"

E7[3]["Torus1"][0].plot()

print "\nMajor Radius: " + str(E7[3]["Torus1"][1]) + "\n"

print "Minor Radius: " + str(E7[3]["Torus1"][2]) + "\n"

print ("Rhombus height 2 (orthogonal to omega 2): "

+ str(latticeHeight(E7[1])[1]) + "\n")

print "Torus 7B (Major Radius from omega 2):"

E7[3]["Torus2"][0].plot()

print "\nMajor Radius: " + str(E7[3]["Torus2"][1]) + "\n"

print "Minor Radius: " + str(E7[3]["Torus2"][2]) + "\n\n\n"

print "End #7 **\n\n\n"

E8 = curveData(EllipticCurve([0,0,1,-7370,243528]))

print "#8: " + str(E8[0])

plot(E8[0])

print "Weierstrauss Form:"

E8[0].short_weierstrass_model()

print "\nDiscriminant: " + str(E8[0].discriminant()) + "\n"

print "Conductor: " + str(E8[0].conductor()) + "\n"

print "j-invariant: " + str(E8[0].j_invariant()) + "\n"

print "Rank: " + str(E8[0].rank()) + "\n"

print "Torsion Subgroup: " + str(E8[0].torsion_subgroup()) + "\n"

print "Real/Complex Embedding - Period Lattice basis: " + str(E8[1].basis()) +"\n"

print "Rhombus:"

E8[2]

print ("\nRhombus height 1 (orthogonal to omega 1): "

+ str(latticeHeight(E8[1])[0]) + "\n")

18

print "Torus 8A (Major Radius from omega 1):"

E8[3]["Torus1"][0].plot()

print "\nMajor Radius: " + str(E8[3]["Torus1"][1]) + "\n"

print "Minor Radius: " + str(E8[3]["Torus1"][2]) + "\n"

print ("Rhombus height 2 (orthogonal to omega 2): "

+ str(latticeHeight(E8[1])[1]) + "\n")

print "Torus 8B (Major Radius from omega 2):"

E8[3]["Torus2"][0].plot()

print "\nMajor Radius: " + str(E8[3]["Torus2"][1]) + "\n"

print "Minor Radius: " + str(E8[3]["Torus2"][2]) + "\n\n\n"

print "End #8 **\n\n\n"

E9 = curveData(EllipticCurve([0,0,1,-2174420,1234136692]))

print "#9: " + str(E9[0])

plot(E9[0])

print "Weierstrauss Form:"

E9[0].short_weierstrass_model()

print "\nDiscriminant: " + str(E9[0].discriminant()) + "\n"

print "Conductor: " + str(E9[0].conductor()) + "\n"

print "j-invariant: " + str(E9[0].j_invariant()) + "\n"

print "Rank: " + str(E9[0].rank()) + "\n"

print "Torsion Subgroup: " + str(E9[0].torsion_subgroup()) + "\n"

print "Real/Complex Embedding - Period Lattice basis: " + str(E9[1].basis()) +"\n"

print "Rhombus:"

E9[2]

print ("\nRhombus height 1 (orthogonal to omega 1): "

+ str(latticeHeight(E9[1])[0]) + "\n")

print "Torus 9A (Major Radius from omega 1):"

E9[3]["Torus1"][0].plot()

print "\nMajor Radius: " + str(E9[3]["Torus1"][1]) + "\n"

print "Minor Radius: " + str(E9[3]["Torus1"][2]) + "\n"

print ("Rhombus height 2 (orthogonal to omega 2): "

+ str(latticeHeight(E9[1])[1]) + "\n")

print "Torus 9B (Major Radius from omega 2):"

E9[3]["Torus2"][0].plot()

print "\nMajor Radius: " + str(E9[3]["Torus2"][1]) + "\n"

print "Minor Radius: " + str(E9[3]["Torus2"][2]) + "\n\n\n"

print "End #9 **\n\n\n"

References

[1] A.C. Cojocaru, Questions about the reductions modulo primes of an elliptic curve, Pro-
ceedings of the 7th conference of the Canadian Number Theory Association (Montreal,

19

2002), ed. E. Goren and H. Kisilevsky, CRM Proceedings and Lecture Notes, 36 (2004),
61-79.

[2] A.C. Cojocaru, Primes, Elliptic Curves, and Cyclic Groups: A Synopsis, Submitted
(2016).

[3] J.E. Cremona, T. Thongjunthug, The complex AGM, periods of elliptic cruves over C
and complex elliptic logarithms, Journal of Number Theory, 133 (2013), no. 8, 2813-2841.

[4] Y. Li, Y. Liu, and Y. Tian, On The Birch and Sinnerton-Dyer Conjecture for CM
Elliptic Curves over Q, arXiv:1605.01481 (2016).

[5] K. Rubin and A. Silverberg, Ranks of Elliptic Curves, Bulletin of the American Math-
ematical Society, 39 (2002), no. 4, 455-474.

[6] J. Siverman and J. Tate, Rational Points on Elliptic Curves, Undergraduate Texts in
Mathematics, 2015.

[7] L.C. Washington, Eliptic Curves: Number Theory and Cryptography, Chapman &
Hall/CRC, 2008.

[8] A. Wiles, The Birch and Swinnerton-Dyer Conjecture, Clay Mathematics Institute Web
Site, http://www.claymath.org/sites/default/files/birchswin.pdf.

Mathematical
Computing
Laboratory

20

http://www.claymath.org/sites/default/files/birchswin.pdf

	visualize-torus-m.pdf
	visualize-torus
	Motivation
	Elliptic Curves over Q
	Complex Points on E/C
	E/Q with CM
	Application
	Open Questions
	Acknowledgements

